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On Graphs and Diadraphs with Prescribed Properties.

Abstract

Let m and n be non—-negative integers and k a positive integer. A graph G is said to
have property P(m,nk) if for any m + n distinct vertices of G there are at least k other
vertices, each of which is adjacent to the first m vertices but not adjacent to any of the latter
n vertices. We know that almost all graphs have property P(m,n,k). However, for the case
m, n ? 2, almost no graphs have been constructed, with the only known examples being
Paley graphs which defined as follows. For g ? 1(mod 4) a prime power, the Paley graph
Gq of order g is the graph whose vertices are elements of the finite field Fq; two vertices a
and b are adjacent if and only if their difference is a quadratic residue. By using higher
order residues on finite fields we can generate other classes of graphs which we refer to as
generalized Paley graphs. For any m, n and k, we show that all sufficiently large (order)
graphs obtained by taking cubic and quadruple residues satisfy property P(m,n,k).A
digraph D is said to has property Q(n,k) if for every subset of n vertices of D is dominated
by at least k other vertices. Let g ? 5(mod 8) be a prime power. Define a quadruple Paley
digraph D as follows. The vertices of D are the elements of the finite field Fq. Vertex u
joins to vertex v by an arc if and only if u — v = x4 for some x ? Fqg. In this report, we show

for sufficiently large g, D has property Q(n,k).
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