บทคัดย่อ

งานวิจัยนี้เป็นการวิจัยถึงการปรับเปลี่ยนคุณสมบัติการรับแรงของฟองยางโดยการ ดัดแปลง โครงสร้างทางมหภาค คือ การซ้อนชั้นโดยการนำฟองยางที่มีความหนา และความแข็งแตกต่างกัน มาซ้อนทับกัน และการดัดแปลงด้วยการเจาะรูบนฟองยางด้วยขนาดของรู และความถี่ของรูต่างกัน โดยศึกษาผลของการดัดแปลงเหล่านี้ต่อความแข็ง และค่า sag factor ซึ่งเป็นค่าที่บอกถึงระดับความ สบายสำหรับฟองยางที่ใช้ในงานเบาะรองรับ

การศึกษาพบว่าการนำฟองยางมาซ้อนชั้นกันสองชั้นทำให้ได้ฟองยางที่มีความแข็งและค่า sag factor ของฟองยางที่ซ้อนชั้น อยู่ในระหว่างคุณสมบัติของยางตั้งต้นที่นำมาซ้อนทับกัน โดยมี อัตราส่วนความหนาระหว่างชั้นเป็นตัวแปรที่ควบคุมผลของความแข็ง และ sag factor ของฟองยาง ซ้อนชั้นที่ได้

เมื่อทำการซ้อนสามชั้นพบว่าในขณะที่ความแข็งของฟองยางซ้อนชั้นอยู่ระหว่างความแข็งของฟองยางที่นำมาซ้อนชั้นกันดังที่พบในฟองยางซ้อนสองชั้น ค่า sag factor ของยางที่ซ้อนชั้นนั้น สามารถให้ก่าที่สูงกว่าค่า sag factor ของฟองยางตั้งต้นได้

การคัดแปลงด้วยการเจาะรูขนาดของรู และความถี่ของรูต่าง ๆ กัน พบว่า ความหนาแน่นสม มูล (bulk density) และความแข็งจะแปรตามอัตราส่วนพื้นที่รับแรง โดยความแข็ง และความหนา แน่นสมมูลจะมีค่าลดลงเมื่อเส้นผ่านศูนย์กลางของรูใหญ่ขึ้น และระยะห่างระหว่างรูน้อยลง อัตรา การเปลี่ยนแปลงของความแข็ง และความหนาแน่นจากการเจาะรูนั้นเท่ากัน

คำสำคัญ ฟองน้ำ, ฟองยางธรรมชาติ, ฟองยาง, ความแข็ง, โครงสร้างมหภาค

Abstract

In this research, effects of macrostructure modification of natural rubber foam

by layering natural rubber foam of different thickness and hardness and varying holes

diameter and distance between holes on load bearing characteristic of resulting natural

rubber foam were studied. Hardness and sag factor which are measure of comfort level

of natural rubber foam in cushioning application were obtained from foam with

various prior mentioned macrostructure modifications.

Test sample were prepared by layering natural rubber foam of different

thicknesses and hardness. Two layers foam gave resulting hardness and sag factor in

between original foams. Final hardness and sag factor of layered foam was controlled

by thickness ratio of foams.

Upon stacking three layers of foam, it was found that even though hardness of

resulting layered foam fell in between original foam as found in two layers foam, sag

factor can be improved to give a higher value than that of original foams.

Introducing holes into natural rubber foam will reduce load bearing area. The

larger the diameter of holes and the closer the distance between holes the smaller the

load bearing area. Bulk density and hardness of foam were reduced together at the

same rate when reducing load bearing area.

Keywords

rubber foam, natural rubber foam, hardness, macrostructure

iii