## บทคัดย่อ

รหัสโครงการ: BGJ / 11 / 2543

ชื่อโครงการ : การศึกษาบทบาทของ cell wall hydrolases องค์ประกอบของผนัง

เซลล์ และการแสดงออกของยืนที่ควบคุมเอนไซม์ที่เกี่ยวข้องกับการ

หลุดร่วงของผลกลัวยระหว่างการสุก

ชื่อนักวิจัย: ศ.ดร. สายชล เกตุษา

น.ส. วชิรญา อื่มสบาย น.ส. อภิวรา ประยูรวงศ์

ภาควิชาพืชสวน คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ จตุจักร กรุงเทพฯ 10900

E-mail Address : agrsck@ku.ac.th (ศ.ดร. สายชล เกตุษา)

ระยะเวลาโครงการ : วันที่ 30 กันยายน 2543 ถึง วันที่ 29 กันยายน 2544

การศึกษาเกี่ยวกับการหลุดร่วงของผลกล้วยระหว่างการสุก ประกอบด้วย 5 การทดลอง ย่อยคือ 1) การเปลี่ยนแปลงเอนไซม์ cell wall hydrolases และองค์ประกอบของผนังเซลล์ใน เปลือกและเนื้อของผลกล้วยไข่ระหว่างอ่อนตัว 2) บทบาทของเอนไซม์ที่ทำให้เกิดการอ่อนตัว ของเนื้อเยื่อต่อการหลุดร่วงของผลกล้วยระหว่างการสุกภายใต้ความชื้นสัมพัทธ์ต่ำและสูง 3) การ ศึกษาเปรียบเทียบการหลุดร่วงของกล้วยหอมและกล้วยน้ำหว้าระหว่างการสุก 4) การศึกษาชั้น บริเวณการหลุดร่วงของผลกล้วยระหว่างการสุก และ 5) การแสดงออกของยืนที่ควบคุมเอนไซม์ เกี่ยวข้องกับการหลุดร่วงของผลกล้วยระหว่างการสุก ในการศึกษาครั้งนี้พบว่า การอ่อนตัวของ เปลือกและเนื้อของผลกล้วยไข่ระหว่างการสุก เกิดขึ้นในลักษณะที่คล้ายกัน เพคตินที่ละลายน้ำได้ มีการเพิ่มขึ้นในเนื้อแต่ไม่ได้เพิ่มในเปลือก กิจกรรม pectin methylesterase ลดลงในเปลือกแต่ เพิ่มในเนื้อ ขณะที่กิจกรรม polygalacturonase ลดลงในเปลือกแต่เพิ่มในเนื้อ กิจกรรม β-galactosidase มีการเพิ่มในเปลือกมากกว่าในเนื้อ ส่วนกิจกรรม cellulase ทั้งในเปลือกและเนื้อ ไม่มีการเปลี่ยนแปลงระหว่างการสุก

การศึกษาการหลุดร่วงของผลกล้วยไข่และกล้วยหอมทองระหว่างการสุกพบว่า ทั้งผลกล้วย ไข่และกล้วยหอมทองที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์สูง (90%) มีการหลุดร่วงของผลมากกว่า และเร็วกว่าผลกล้วยที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์ต่ำ (60%) กิจกรรม polygalacturonase และ pectin methylesterase ในเปลือกตรงกลางผล และตรงขั้วผลบริเวณที่เกิดการหลุดร่วง ของผล กล้วยไข่ที่บ่มภายใต้ความชื้นสัมพัทธ์สูง มีมากกว่าผลกล้วยที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์ต่ำ และเนื้อเยื่อบริเวณตรงขั้วผลมีกิจกรรม polygalacturonase และ pectin methylesterase มากกว่า ในเนื้อเยื่อบริเวณตรงกลางผล ขณะที่การเปลี่ยนแปลงกิจกรรม  $\beta$ -galactosidase ในเนื้อเยื่อ บริเวณกลางผลและขั้วผลของผลกล้วยไข่ที่บ่มภายใต้ความชื้นสัมพัทธ์ต่ำและสูง ไม่สัมพันธ์กับการ หลุดร่วงของผล กิจกรรม polygalacturonase ในเปลือกผลตรงกลางและตรงขั้วผลของผลกล้วยหอม ทองบ่มให้สุกภายใต้ความชื้นสัมพัทธ์สู่งมีมากกว่าในผลกล้วยหอมทองที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์สู่งมีมากกว่าในผลกล้วยหอมทองที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์ต่ำและสูงไม่มีความแตกต่างกัน กิจกรรมทั้ง polygalacturonase และ pectin methylesterase ในบริเวณขั้วผลมีมากกว่าในเนื้อเยื่อของเปลือก บริเวณกลางผลของผลกล้วยที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์ต่ำและสูง ขณะที่การเปลี่ยนแปลง กิจกรรม  $\beta$ -galactosidase ในเนื้อเยื่อบริเวณทั้งสองส่วน ไม่สัมพันธ์กับการหลุดร่วงผลกล้วย หอมทองที่บ่มให้สุกภายใต้ความชื้นสัมพัทธ์ต่ำและสูง

การศึกษาเปรียบเทียบการหลุดร่วงผลกล้วยหอมทองและกล้วยน้ำว้าระหว่างการบ่มให้ สุกภายใต้ความชื้นสัมพัทธ์ 85% พบว่าผลกล้วยหอมทองมีการหลุดร่วง 100% ขณะที่ผลกล้วย น้ำว้าไม่มีการหลุดร่วงของผล ภายในเวลา 5 วันระหว่างการบ่มให้สุก ผลกล้วยน้ำว้ามีความ แน่นเนื้อเปลือกและแรงต้านทานการเกิดหลุดร่วงของผลมากกว่าผลกล้วยหอมทอง กิจกรรม polygalacturonase ในเนื้อเยื่อขั้วผลบริเวณการหลุดร่วงของผลกล้วยหอมทอง มีการเพิ่มขึ้น อย่างรวดเร็วและมีมากกว่าในบริเวณเปลือกตรงกลางผลของผลกล้วยน้ำว้าและหอมทอง และกิจ กรรม polygalacturonase ในบริเวณขั้วผลของผลกล้วยหอมทอง มีมากกว่าของผลกล้วยน้ำว้า กิจกรรม pectin methylesterase ในเปลือกผลกล้วยหอมทองเพิ่มขึ้นเล็กน้อยขณะที่ในผลกล้วย น้ำว้ากลับลดลงในระหว่างการสุก ขณะที่กิจกรรม pectin methylesterase ในขั้วผลบริเวณหลุด ร่วงของผลกล้วยน้ำว้ามีมากกว่าในผลกล้วยหอมทอง

การศึกษาชั้นของเนื้อเยื่อบริเวณที่เกิดการหลุดร่วงของผลกล้วยหอมทองพบว่า ไม่มี การสร้างชั้นของบริเวณการร่วง (abscission zone) เกิดขึ้นในบริเวณเนื้อเยื่อที่จะเกิดการหลุด ร่วงของผล การศึกษาการแสดงออกของยืนที่ควบคุมเอนไซม์ polygalacturonase พบว่า การ แสดงออกของยืนในบริเวณขั้วผลที่เกิดรอยหลุดร่วงในผลกล้วยหอมทองมีมากกว่าในผลกล้วย น้ำว้าและการแสดงออกของยืนในบริเวณขั้วผลมีมากกว่าในบริเวณเปลือกผล

คำสำคัญ : การหลุดร่วงของผล, การสุก, กลัวยไข่, กลัวยหอมทอง, กลัวยน้ำว้า, บริเวณการ ร่วง, การอ่อนตัว, polygalacturonase, pectin methylesterase, β-galactosidase

## Abstract

**Project Code:** BGJ / 11 / 2543

Project Title: A Study on the Role of Cell Wall Hydrolases, Cell Wall

Components and Gene Expression of Enzyme(s) Involved in

Finger Drop of Ripening Bananas

Investigators: Professor Dr. Saichol Ketsa

Miss Wachiraya Imsabai

Miss Apivara Prayurawong

Department of Horticulture, Faculty of Agriculture

Kasetsart University, Chatuchak, Bangkok 10900

**E-mail Address :** agrsck@ku.ac.th (S. Ketsa)

**Project Period**: 30 September 2001 – 29 September 2002

The study of finger drop in ripening bananas comprised of 5 experiments as following: 1) changes in cell wall hydrolases and cell wall components of the peel and pulp of banana during softening, 2) the role of cell wall hydrolases in finger drop of banana ripened under low and high relative humidities, 3) comparative study of finger drop in 'Hom Thong' and 'Namwa' bananas during ripening, 4) anatomical study of abscission zone in rupture area of finger drop and 5) gene expression of enzymes involved in finger drop of banana.

Changes of pectin fractions (water-soluble, alkali-soluble, and ammonium oxalate soluble) and activities of polygalacturonase (PG), pectin methylesterase (PME),  $\beta$ -galactosidase (GAL) and cellulase in the peel and pulp were studied during ripening of 'Khai' (*Musa* AA Group) banana. Soluble pectin increased in the pulp, not in the peel. PME activity decreased in the peel and increased in the pulp, whereas PG activity increased in both parts. GAL activity increased much more in the peel than in the pulp. Cellulase activity in both peel and pulp did not change. The results indicate that cell wall degradation in the peel and pulp is quite different.

'Khai' (*Musa* AA Group) banana ripened at 25°C (90% RH) for 24 h had low finger drop, while those kept continuously at 25°C (90%RH) until they were fully ripe

had high finger drop. The degree of finger drop increased as bananas advanced ripening. Peel at the pedicel of ripened bananas contained higher activities of PME and PG and water-soluble pectin than the peel at the middle fruit of ripened bananas. Bananas with high finger drop had greater activities of PME and PG than those with low finger drop. Change of GAL activity apparently had no relationship with finger drop in 'Khai' banana.

'Khai' (*Musa* AA Group) and 'Hom Thong' (*Musa* AAA Group) bananas were ripened under low and high relative humidities. Finger drop of 'Khai' and 'Hom Thong' bananas occurred more rapidly under high relative humidity (RH) than low RH condition. Pedicel rupture force of ripened bananas was the same under low and high RH. PG activity in the peel at the middle of the fruit and in the pedicel adjacent to the rupture areas of bananas ripened under high RH was higher than that of banana ripened under low RH. Change in PME activity of 'Khai' and 'Hom Thong' bananas ripened under low and high RH was similar. PG and PME activities in the peel at the pedicel adjacent to the rupture area under both low and high RH were higher than in the middle of the fruit. In contrast, GAL activity in the middle of the fruit ripened under both low and high RH was higher than in the pedicel adjacent to the rupture area.

'Hom Thong' and 'Namwa' bananas were ripened at 25°C (~85% RH). Finger drop of 'Hom Thong' bananas rapidly reached 100%, whereas 'Namwa' banana did not show finger drop 5 days after peel colour change to yellow. The rupture force and fruit firmness of both banana cultivars decreased while ripening advanced. 'Namwa' bananas had greater rupture force, peel firmness and resistance to finger drop than 'Hom Thong' bananas. PG activity in the pedicel adjacent to the rupture area rapidly increased and was higher than in the peel of both 'Hom Thong' and 'Namwa' bananas. PG activity in the pedicel adjacent to the rupture area of 'Hom Thong' bananas was higher than that of 'Namwa' bananas. PME activity in 'Hom Thong' bananas slightly increased while PME activity in 'Namwa' bananas gradually decreased during ripening. In contrast, PME activity in the pedicel adjacent to the rupture area of 'Namwa' bananas was much higher than that of 'Hom Thong' bananas.

Abscission zone was not formed before and during finger drop in the rupture area. In northern blotting analysis found that *MAPG* transcript in the pedicel adjacent to the rupture area in 'Namwa' banana was lower than that in 'Hom Thong' banana. The abundance of *MAPG* transcript in the pedicel adjacent to the rupture area was higher

than that in the middle of the fruit in both bananas. It is suggested that *MAPG* transcript is related to PG activity and it may be involved in finger drop of ripening banana.

 $\mbox{Keywords}: \quad \mbox{Hom Thong, Namwa, Khai, finger drop, polygalacturonase, pectin} \\ \mbox{methylesterase, } \beta\mbox{-galactosidase, abscission zone, ripening}$