

A : power control rectifier

D: frequency converter

G, P: proximity switch

J : water pump

N: data acquistion board

(1), (5), (6): louver (venting port)

(4): drying chamber

B: controller (Temp.)

E: small PLC

H: steam solinoid valve

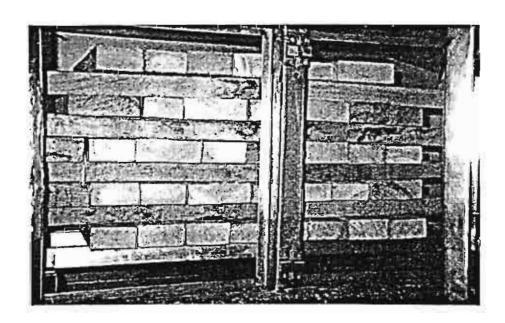
K: electronic bench balance

O: desktop computer

C: controller (RH)

F : Switching power supply

I : steam generator


L, M: temperature indicators

Q:DC gear motor

(2): rectangular-fin electric heater (3): blower

(7): louver linkage

รูปที่ 6.2 ตู้อบไม้ทดลองขนาด lab-scale

รูปที่ 6.3 การเรียงไม้ในตู้อบไม้ทดลองขนาด lab-scale

ได้สูงประมาณ 5ุ ขั้น โดยมีไม้ท่อนขนาด 2.5x2.5x34 ซม. เป็นไม้รองระหว่างชั้น ไม้หน้ากว้าง 5 ซม. จะเรียงตามความกว้างได้ 9 ท่อนในแต่ละขั้น ขณะที่ไม้หน้ากว้าง 7.5 ขม. จะเรียงได้ 6 ท่อน แหล่งให้ ความร้อนกับตู้อบคือ ฮีทเตอร์ไฟฟ้าขนาด 5.4 kW เป็นฮีทเตอร์แบบครีบสี่เหลี่ยมผืนผ้า ควบคุม อุณหภูมิโดย temperature controller ซึ่งให้สัญญาณควบคุมผ่าน power regulator เพื่อปรับกระแสที่ จ่ายให้กับฮีทเตอร์ ความขึ้นสัมพัทธ์ในตู้อบควบคุมโดยใช้ controller ซึ่งให้สัญญาณ output เพื่อปรับ ความขึ้นของอากาศโดยการเปิด-ช่องระบายอากาศ พ่นละอองน้ำ และไอน้ำให้กับระบบ ทั้งอุณหภูมิ และความขึ้นสัมพัทธ์ของอากาศสามารถปรับตั้งค่าในแต่ละช่วงเวลาของการอบแห้งได้โดยการ โปรแกรมผ่านตัว controller การพ่นไอน้ำอิ่มตัวเข้าสู่ตู้อบจะทำงานเมื่อความขึ้นสัมพัทธ์ในตู้อบลดลง ต่ำกว่าค่าที่ตั้งไว้ การระบายความขึ้นของอากาศในตู้อบจะทำงานทั้งในกรณีที่อุณหภูมิและความขึ้น สัมพัทธ์ต่ำหรือสูงเกินกว่าค่าที่ตั้งไว้ขึ้นอยู่กับตารางการอบที่ได้ตั้งค่าไว้ในแต่ละช่วง ความขึ้นอากาศจากตู้อบช่วยให้ห้องอบสามารถควบคุมความขึ้นและอุณหภูมิได้ตามต้องการ การเปิด ระบายความขึ้นจะเปิดที่ละน้อยเพื่อไม่ให้ระบบมีการเปลี่ยนแปลงมากนัก ความเร็วลมของอากาศ สามารถปรับเปลี่ยนได้ตั้งแต่ 1.1 m/s ถึง 8.8 m/s สำหรับท่ออากาศขนาด 30x30 cm² แต่ในการ ทดลองที่ความเร็วลมคงที่จะใช้ความเร็วลมไม่เกิน 5.5 m/s ความเร็วลมในตู้อบสามารถปรับตั้งได้ 3 ลักษณะคือ คงที่ (constant air velocity mode, CVM) เปลี่ยนเมื่อความขึ้นสัมพัทธ์ของอากาศต่ำกว่า คำที่ตั้งไว้ (auto-switched mode, ASM) และเปลี่ยนแปลงตามความขึ้นสัมพัทธ์ (relating to relative humidity, V-RH) ในกรณีของ CVM ความเร็วลมที่ตั้งไว้ได้แก่ 2.2 m/s, 3.3 m/s, 4.4 m/s ในกรณีของ ความเร็วลมจะจากคำคงที่คำหนึ่งไปเป็นอีกค่าหนึ่งที่มีความเร็วต่ำกว่าเมื่อความชื้นสัมพัทธ์ต่ำ กว่าค่าที่ตั้งไว้ เช่น เปลี่ยนจาก 4.4 m/s ไปเป็น 2.2 m/s เมื่อความขึ้นสัมพัทธ์ของอากาศต่ำกว่า 10% ส่วน V-RH ความเร็วลมจะเปลี่ยนแปลงตามความขึ้นสัมพัทธ์ของอากาศเป็นเชิงเส้น โดยความขึ้น สัมพัทธ์ 30%-100% เทียบเท่ากับความเร็วลม 2.2 m/s-8.8 m/s และที่ความชื้นสัมพัทธ์ต่ำกว่า 30% ความเร็วลมจะคงที่ที่ 2.2 m/s ค่าเปลี่ยนแปลงของตัวแปรที่วัดจากการทดลองได้แก่ อุณหภูมิ ความชื้น สัมพัทธ์ของอากาศในตู้อบ ความเร็วลม พลังงานไฟฟ้าที่ใช้ทั้งหมด น้ำหนักของไม้ที่อบ ซึ่งข้อมูลต่างๆ เหล่านี้วัดโดยใช้เครื่องมือวัดต่างกันได้แก่ RTD, temperature/humidity sensor, annemometer, watt transducer, electronic bench balance โดยเครื่องมือเหล่านี้จะให้สัญญาณผ่านการ์ดแปลง สัญญาณข้อมูล NI-4351 และ ADC-16 ซึ่งเป็น PC-based data acquisition card เชื่อมต่อกับ คอมพิวเตอร์เพื่อบันทึกข้อมูลในแต่ละช่วงเวลาไว้ใช้ในการวิเคราะห์ผล

ผลการทดลองและวิเคราะห์ผลการทดลอง

ผลการทดลองแสดงดังข้อมูลในตารางที่ 6.3

ตารางที่ 6.3 ผลการทดลองอบแห้งไม้ยางพาราที่เงื่อนไขการอบต่างๆ เพื่อใช้ในการวิเคราะห์โดยวิธี response surface

	ตัวแปรอิสระ (coded)				ความขึ้นสุด	เวลาที่ใช้	พลังงานที่ใช้
การ	5 -	ความชื้น	ความเร็ว	ความชื้นเริ่ม	ท้ายในไม้,	ในการอบ,	ในการอบ, Q
ทดลองที่	อุณหภูมิ, T	สัมพัทธ์, φ	ลม, ∨	ดันในไม้, χ,	χ, (kg/kg)	τ (h)	(MJ/kg)
1	0	0	0	0	0.229	13.71	12.62
2	+2	0	0	0	0.147	13.50	9.79
4	-1	-1	+1	-1	0.132	15.98	13.86
5	-1	+1	-1	+1	0.297	17.89	11.38
6	0	0	0	-2	0.144	13.59	13.38
7	+1	+1	+1	-1	0.124	10.76	14.39
8	+1	-1	-1	-1	0.122	12.40	12.33
9	+1	-1	-1	+1	0.125	12.02	10.53
10	0	-2	0	0	0.151	13.08	12.80
11	-1	-1	-1	+1	0.213	14.96	11.98
12	+1	+1	-1	+1	0.216	10.33	16.18
13	0	0	0	0	0.126	23.01	18.55
14	+1	-1	+1	1	0.133	10.88	15.64
15	+1	-1	+1	-1	0.103	12.44	11.34
16	-1	+1	+1	-1	0.212	14.35	11.38
17	-1	+1	+1	+1	0.252	13.19	11.73
18	0	+2	0	0	0.215	16.28	17.36
19	-1	-1_	+1	+1	0.099	22.88	16.47
20	+1	+1	+1	+1	0.160	11.65	14.74
21	-1	-1	-1	-1	0.100	17.40	14.12
23	0	0	-2	0	0.089	26.13	17.99
24	+1	+1	-1	-1	0.154	12.59	12.52
26	-1	+1	1	-1	0.218	17.29	14.46

จากผลการทดลองที่ได้จะเห็นว่าพลังงานที่ใช้ในการอบแห้งไม้ยางพาราในตู้อบแห้งขนาด lab-scale นี้ ที่ต่ำสุดมีค่าเท่ากับ 9.79 MJ/kg ซึ่งได้จากเงื่อนไขในการทดลองที่ 2 ในขณะที่ในเงื่อนไขการทดลองที่ 7 จะใช้เวลาในการทดลองต่ำที่สุดคือ 40.76 ชั่วโมง ที่ทำให้ความชื้นไม้สุดท้ายต่ำกว่า 16% ลำหรับในการทดลองที่ 1, 5, 11, 12, 13, 16 ถึง 20 และ 26 ความชื้นไม้สุดท้ายยังสูงกว่า 16% ซึ่งจำเป็นต้องใช้เวลาในการทดลองและพลังงานมากกว่านี้เพื่อให้ความชื้นไม้สุดท้ายได้ตามเป้าที่ตั้งไว้ ปัญหาที่เกิดขึ้นในการอบที่เงื่อนไขดังกล่าวในผลการทดลองเหล่านี้เกิดจากผิวนอกของไม้แห้งเร็วเกินไปทำให้ปิดกั้นการแพร่ของความชื้นจากใจกลางเนื้อไม้หรือเกิด water locking ซึ่งส่วนใหญ่จะเห็นว่าค่าความชื้นในไม้ยังคงสูงกว่าค่าความชื้นที่จุดหมาดของไม้ยางพารา (21.5% at 90°C (3)) ดังนั้นที่เงื่อนไขการอบแห้งดังกล่าวจึงเป็นเงื่อนไขการอบที่ควรหลีกเลี่ยง

Response Surface Model และการวิเคราะห์ทางสถิติ

Response surface โมเดล สร้างจากข้อมูลการทดลองในตารางที่ 6.3 สมการที่ 6.3 ถูกปรับ ปรุงให้ฟิตกับข้อมูลการทดลองได้ดีขึ้นโดยการกำจัดบางเทอมที่ให้ผลตอบสนองต่อโมเดลน้อยออกไป และเพิ่มเทอมที่มีผลตอบสนองต่อโมเดลมากกว่าเข้ามาแทน โดยอาจเป็นเทอมกำลังสามและเทอม interaction ใน Excel Essential Regression ที่ใช้ในการวิเคราะห์หาค่าของสัมประสิทธิ์จากสมการ ที่ 6.3 สามารถเลือกที่จะเพิ่มหรือลดเทอมต่างๆในสมการได้เพื่อสร้างสมการ Quadratic โดยวิธี multiple regression ที่ทำให้ทุกเทอมในสมการมีค่านัยสำคัญไม่เกินค่านัยสำคัญวิกฤต (critical significance)

โดยการใช้เครื่องมือในการทำ regression จะได้ว่าสมการโพลีโนเมียลลำดับสาม ที่มีการ แปลงรูปแบบของตัวแปรตอบสนอง (เช่นจาก τ ไปเป็น τ^{-1}) สามารถฟิตข้อมูลการทดลองได้ดีกว่าสม การโพลีโนเมียลลำดับสองที่ไม่ได้มีการแปลงรูปแบบของตัวแปรตอบสนอง โมเดลของตัวแปรตอบ สนองทั้งสาม (final MC, drying time, and drying energy) ที่ได้แสดงดังสมการที่ 6.4, 6.5 และ 6.6 คำสัมประสิทธิ์ (β) ในสมการดังกล่าว คำ coefficient of multiple determination (R^2) และค่า adjusted coefficient of determination (R^2) แสดงดังตารางที่ 6.4

Response Model 1

$$\chi_{f} = \beta_{0} + \beta_{1}T + \beta_{2}\chi_{i} + \beta_{3}v^{2} + \beta_{4}T.\phi + \beta_{5}v.\chi_{i} + \beta_{6}\phi^{3} + \beta_{7}T.v.\chi_{i} + \beta_{8}T^{2}.\phi + \beta_{9}T^{2}.v \tag{6.4}$$

Response Model 2

$$\tau^{-1} = \beta_0 + \beta_1 \phi + \beta_2 T^2 + \beta_3 \chi_i^2 + \beta_4 \phi \cdot v + \beta_5 v^3 + \beta_6 \chi_i^3 + \beta_7 T \cdot \phi \cdot v + \beta_8 T \cdot \phi^2 + \beta_9 \phi \cdot v^2$$
 (6.5)

Response Model 3

$$Q^{-1} = \beta_0 + \beta_1 T^2 + \beta_2 v^2 + \beta_3 \chi_i^2 + \beta_4 T.\phi + \beta_5 T.\chi_i + \beta_6 \phi.v + \beta_7 v.\chi_i + \beta_8 \phi^3 + \beta_9 T.\phi.\chi_i + \beta_{10} \phi.v.\chi_i + \beta_{11} T^2.v$$
(6.6)

ตารางที่ 6.4 แสดงค่าสัมประสิทธิ์ของสมการที่ใช้ใน response surface โมเดล

สัมประสิทธิ์ (β)	ความขึ้นไม้สุดท้าย	เวลาการอบแห้ง	พลังงานที่ใช้ในการอบ
สมบารสทธ (b)	(สมการ 6.4)	(สมการ 6.5)	(สมการ 6.6)
βο	0.187	0.06368	0.06760
β,	-0.02329	-0.00376	0.00901
β_2	0.02083	0.00298	-0.00263
β_{3}	-0.02267	0.00677	0.00217
β_{4}	-0.01648	0.00274	-0.00576
β_{5}	-0.01153	0.00285	-0.00296
β_{ϵ}	0.00400	0.00195	0.00357
β_{7}	0.01165	-0.00348	-0.00420
$eta_{ extsf{ iny 8}}$	0.03385	0.01258	-0.00118
β_{9}	-0.01435	0.00673	-0.00151
β_{10}	_	-	0.00358
β,,	-	-	-0.00210
R ²	0.865	0.809	0.832
R ² adjusted	0.772	0.677	0.664
Standard error	0.02686	0.00908	0.00749

ตัวพิมพ์หนาแสดงสัมประสิทธิ์ของเทอมที่มีนัยสำคัญ P ≤ 0.05 ตัวพิมพ์เจียงแสดงสัมประสิทธิ์ของเทอมที่มีนัยสำคัญ P ≤ 0.1

การหาความแตกต่างของนัยสำคัญของตัวแปรอิสระแต่ละตัวทำได้โดยการวิเคราะห์ความ แปรปรวน (Analysis of Variance, ANOVA) จากตารางที่ 6.4 ค่า R² แสดงให้เห็นว่า 86.5% ของค่า ความขึ้นไม้สุดท้ายสามารถทำนายได้อย่างแม่นยำ มีค่าเท่ากับ 80.9% สำหรับการทำนายเวลาที่ใช้ใน การอบแห้ง และมีความแม่นยำ 83% สำหรับการทำนายพลังงานที่ใช้ในการอบ และ response

surface โมเดลที่หาได้จากวิธี multiple regression เป็นโมเดลที่ไม่ over fitted ซึ่งดูได้จากค่าf R^2 และ $R^2_{ ext{adjusted}}$

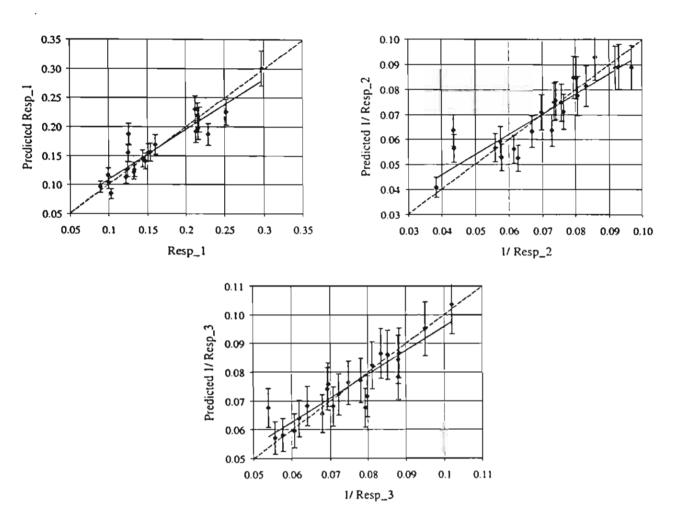
จากค่าสัมประสิทธิ์ที่หาได้ในตารางที่ 6.4 ตัวแปรอิสระทั้งหมดมีนัยสำคัญต่อความขึ้นไม้สุด ท้าย (โมเดล 1, สมการที่ 6.4) โดยเทอม $T^2 \phi$ มีนัยสำคัญมากที่สุดในโมเดล (P = 0.0004) การอบ แห้งด้วยการคงความขึ้นสัมพัทธ์ของอากาศไว้ที่สูงกว่าจะให้ค่าความขึ้นไม้สุดท้ายที่สูงกว่าการคง ความขึ้นสัมพัทธ์ของอากาศไว้ที่ค่าต่ำกว่า และการอบแห้งด้วยความเร็วลมที่สูงกว่าจะส่งผลให้ได้ ความขึ้นไม้สุดท้ายที่ต่ำกว่า สำหรับเทอมที่มี interaction กันระหว่าง T กับ Φ คำสัมประสิทธิ์มีทั้งบวก และลบ (B_4 และ B_6) เทอมดังกล่าวจะถ่วงดุลผลต่อความขึ้นไม้สุดท้ายที่ได้ เทอมที่มี interaction อาจทำให้ค่าความขึ้นไม้สุดท้ายมีโอกาสเพิ่มขึ้นตามการเพิ่มของทั้งอุณหภูมิและความขึ้นสัมพัทธ์ได้ อย่างไรก็ตาม ณ จุดนี้ ก็ยังไม่สามารถซี่ซัดถึงผลของ interaction เทอมได้ ซึ่งจำเป็นต้องพิจารณาผล จากการพลอตกราฟของพื้นผิวตอบสนองก่อน

สำหรับผลของเทอม $\beta_{s}v^3$ และเทอม $\beta_{s}T.\varphi^2$ (P = 0.02 และ P = 0.000095) ต่อตัวแปรตอบ สนองในกรณีของเวลาที่ใช้ในการอบแห้ง พบว่าเทอมดังกล่าวมีนัยสำคัญกับเวลาในการอบแห้งโดย เฉพาะอย่างยิ่ง เทอมที่มีสัมประสิทธิ์ β_{s} จากสมการที่ 6.5 และค่า β ในตารางที่ 6.4 การเพิ่มขึ้นของ ความเร็วลมจะทำให้เวลาในการอบแห้งลดลง แม้กระนั้นก็ยังไม่สามารถบ่งซื้ผลของ interaction เทอม อื่นๆ ได้ แต่จะเห็นได้ว่าปริมาณความชื้นเริ่มต้นในไม้ χ) มีผลต่อเวลาที่ใช้ในการอบแห้งน้อยกว่าตัว แปรอื่นๆ

ส่วนตัวแปรตอบสนองในโมเดลที่ 3 (พลังงานที่ใช้ในการอบแห้งไม้) พบว่าเทอม β₁T² มีนัย สำคัญสูงสุด (P = 0.0008) แสดงว่าอุณหภูมิที่ใช้ในการอบเป็นปัจจัยหลักที่ส่งผลต่อพลังงานที่ใช้ในการอบแห้งไม้ ซึ่งรายละเอียดของอิทธิพลของตัวแปรต่างๆ ที่เป็นเงื่อนไขการอบต่อตัวแปรตอบสนองจะ กล่าวถึงในหัวข้อถัดไป

การยอบรับโมเดลหรือสมการ response surface ที่สร้างขึ้นสามารถตรวจสอบได้จากการ ทดสอบทางสถิติโดยวิธี F-lack of fit (F-LOF) Test ค่าความแปรปรวนของ regression และ error แสดงดังในตารางที่ 6.5

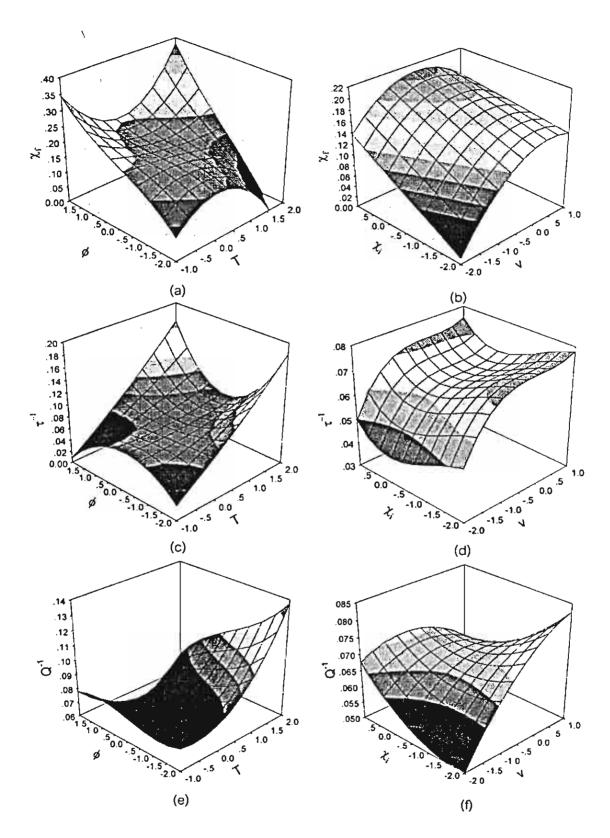
โมเดลที่มีนัยสำคัญและสามารถยอมรับได้ถ้า F_0 มีค่ามากกว่าค่าวิกฤติ ($F_{\rm cnt}$) ในการแจกแจก ทางสถิติแบบ F ที่ระดับนัยสำคัญที่กำหนดและที่ค่าองศาอิสระ n-1-i จากตารางที่ 5 แสดงค่า α (significance level) ที่คำนวณจากการหาค่า F_0 หรือค่า error probabilities (F Signif) หรืออาจ พิจารณาจากเงื่อนไขที่ว่าถ้าค่า F Signif ในตารางที่ 5 มีค่าน้อยกว่า 0.05-level of confidence โมเดลของ response surface ที่หาได้จะมีนัยสำคัญ และยอมรับได้ ดังนั้นจากตารางที่ 5 จะเห็นได้ว่า ทั้งสามโมเดลที่หาได้มีนัยสำคัญ โดยที่ถ้าค่า F Signif ของ regression มีค่าน้อยกว่า 0.05 มากๆ


ตารางที่ 6.5 ANOVA ของ response surface models

ANOVA							
Model	Source	SS	MS	Fo	F Signif	Df	
	Regression	0.06011	0.00668	9.261	0.000239	9	
Response 1,	Residual	0.00938	0.000721			13	
ความชื้นไม้สุดท้ายหลังการอบ (χ,)	LOF Error	0.00407	0.000339	0.0640	0.998	12	
	Pure Error	0.00530	0.00530			1	
	Total	0.06949			_	22	
	Regression	0.00454	0.000504	6.114	0.00189	9	
Response 2,	Residual	0.00107	8.251e-05			13	
เวลาที่ใช้ในการอบแห้ง (T ⁻¹)	LOF Error	0.000638	5.317e-05	0.1224	0.986	12	
	Pure Error	0.000435	0.000435		_	1	
	Total	0.00561				22	
	Regression	0.00305	0.000278	4.944	0.00670	11	
Response 3,	Residual	0.000618	5.617e-05			11	
พลังงานที่ใช้ในการอบแห้ง (Q ⁻¹)	LOF Error	0.000298	2.978e-05	0.0930	0.992	10	
	Pure Error	0.000320	0.000320			1	
	Total	0.00367			_	22	

$$F_{cnl.Resp_1} = F_{0.05, \, 9, \, 13} = 2.7144, \quad F_{cnl.\,Resp_2} = F_{0.05, \, 9, \, 13} = 2.7144, \quad F_{cnl.\,Resp_3} = F_{0.05, \, 11, \, 11} = 2.8206$$

โมเดลก็จะมีนัยสำคัญมากและสามารถปฏิเสธสมมุติฐาน H_0 ได้ แม้ว่าโมเดลทั้ง 3 จะมีค่า coefficient of correlation (R^2) ที่ไม่สูง แต่โมเดลทั้งสามสามารถยอมรับได้อย่างมีนัยสำคัญจากการทดสอบทาง สถิติ F Signif และ LOF error ในการทดสอบ lack of fit ค่า F_0 สำหรับ LOF ของโมเดลทั้งสามมีค่า 0.064, 0.1224 และ 0.093 ตามลำดับ ค่า error probabilities สำหรับการทดสอบ lack of fit tests มี ค่าค่อนข้างสูง (F Signif = 0.998, 0.986 and 0.992) ซึ่งหมายถึงโมเดลที่หาได้สามารถใช้ในการ ทำนายข้อมูลการทดลองได้อย่างเพียงพอ


รูปที่ 6.4 แสดงลักษณะของข้อมูลและเส้นแนวโน้มของตัวแปรตอบสนองที่คำนวณจากโมเดล ทั้งสาม เส้นประแสดงค่าที่ควรคำนวณได้ในทางทฤษฎี การที่เส้นแนวโน้มของตัวแปรตอบสนองและ การกระจายของข้อมูลไม่เป็นเส้นตรงทำมุม 45 องศากับแกนนอนหมายถึง ค่าที่ทำนายได้ไม่ถูกต้อง โมเดลทำนายจะให้ความขันน้อยกว่าโดยทำนายค่าตอบสนองได้ต่ำกว่าค่าจริงในครึ่งแรกของข้อมล และมากกว่าในครึ่งหลังซึ่งเป็นปกติของสมการทำนายที่ต้องมีการตัดกันของเส้นจริงและเส้นทำนาย เสมอ เนื่องจากค่ำ R² ของสมการทำนายมีค่าไม่เท่ากับ 1

รูปที่ 6.4 กราฟเปรียบเทียบคำตอบสนองจริงกับคำที่ทำนายจากโมเดล

กราฟ Response Surface

ตัวอย่างของกราฟ response surface ในสามมิติแสดงในรูปที่ 6.5 จากกราฟทำให้เห็นผลของ อุณหภูมิ และความขึ้นสัมพัทธ์ของอากาศต่อความขึ้นสุดท้ายของไม้ เวลาและพลังงานที่ใช้ในการอบ ไม้ เปรียบเทียบผลของความเร็วลมและความขึ้นไม้เริ่มต้น ความขึ้นของไม้สุดท้ายที่ได้จะลดลงเมื่อลด ความขึ้นสัมพัทธ์ของอากาศที่ใช้ในการอบ ทั้งกรณีของการอบแห้งที่อุณหภูมิต่ำและอุณหภูมิสูง (รูปที่ 6.5(a)) ความขึ้นไม้สุดท้ายที่ได้จะค่อนค้างไม่เปลี่ยนแปลงโดยมีค่าประมาณ 16% ในช่วงอุณหภูมิอบ แห้งระหว่าง -0.5 ถึง 0.5 (coded) ที่ความขึ้นสัมพัทธ์ต่ำๆ แต่ถ้าไม้มีความขึ้นเริ่มต้นต่ำก็จะสามารถ อบแห้งให้ได้ความขึ้นไม้สุดท้ายตามเป้าหมายที่ต้องการได้ไม่ว่าความเร็วลมจะอยู่ในช่วงใดก็ตาม

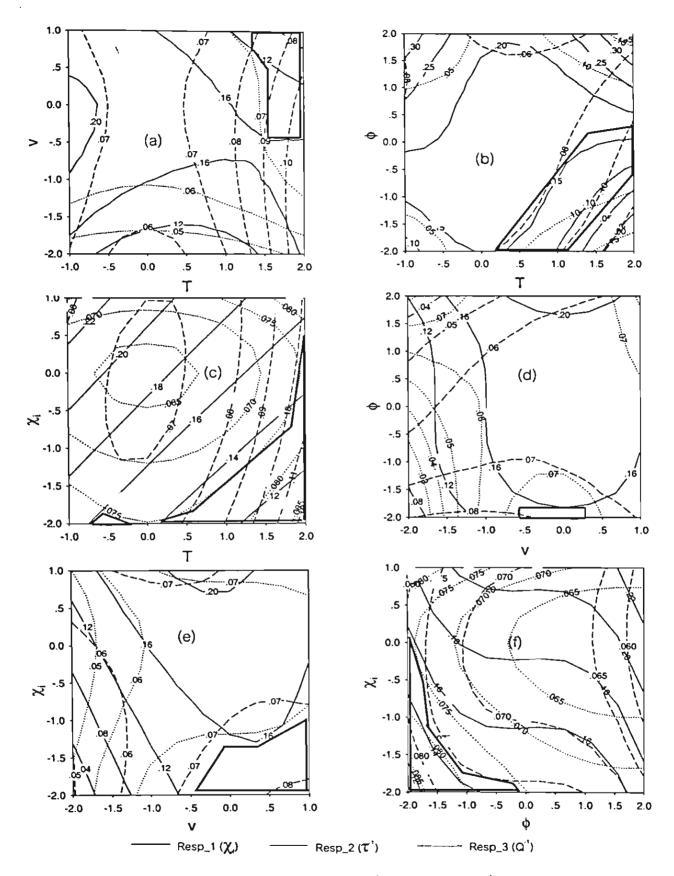
รูปที่ 6.5 ตัวอย่างกราฟ response surfaces แสดงผลของเงื่อนไขในการอบไม้ต่อความขึ้นไม้สุดท้าย ((a) และ (b)) เวลาที่ใช้ในการอบ ((c) และ (d)) และพลังงานที่ใช้ในการอบ ((e) และ (f)).

เป็นที่น่าลังเกตว่าไม้ที่มีความขึ้นเริ่มต้นสูงๆ สามารถอบแห้งให้ได้ตามเป้าหมายความขึ้นที่ต้องการได้ ด้วยความเร็วลมต่ำๆเท่านั้น อาจเนื่องมาจาก การใช้ความเร็วลมในการอบแห้งสูงๆ จะเป็นการเร่ง อัตราการอบแห้งในช่วงเริ่มต้นของการอบและส่งผลให้ความขึ้นที่อยู่ภายในเนื้อไม้ไม่สามารถเคลื่อนที่ ออกมาที่ผิวนอกได้เนื่องจากผิวนอกของไม้จะแห้งและปิดกั้นการเคลื่อนตัวของความขึ้น ซึ่งอาจแก้ไข ได้โดยการเพิ่มอุณหภูมิอบแห้งให้สูงขึ้นมากกว่าจุดเดือดของน้ำ (รูปที่ 6.5 (c)) อย่างไรก็ตามการเพิ่ม อุณหภูมิดังกล่าวก็อาจจะส่งผลต่อคุณภาพของไม้ ทำให้ไม้แตกหรือบิดงอได้ เวลาในการอบสามารถ ทำให้สั้นลงได้โดยรักษาความขึ้นสัมพัทธ์สุดท้ายในการอบให้ต่ำมากๆ โดยเวลาที่ใช้ในการอบจะลดลง อย่างรวดเร็วเมื่อเพิ่มความเร็วลม อย่างไรก็ตามที่ความเร็วลมลูงกว่า (coded) –0.5 (รูปที่ 6.5 (d)) จะ ไม่ส่งผลต่อเวลาที่ใช้ในการอบมากนัก แต่ถ้าต้องการลดพลังงานที่ใช้ในกาอบไม้ยางพาราลง ควรอบ แห้งที่อุณหภูมิสูงและความขึ้นสัมพัทธ์ต่ำ (รูปที่ 6.5 (e)) โดยไม้ที่มีความขึ้นเริ่มต้นต่ำ สามารถลดพลัง งานในการอบแห้งลงได้โดยอบด้วยอุณหภูมิสูงและใช้ความเร็วลมสูง และที่ความขึ้นไม้เริ่มต้นสูงให้ใช้ ความเร็วลมต่ำถึงปานกลาง (รูปที่ 6.5 (f))

อย่างไรก็ตามกราฟ response surface จะแสดงเพียงผลของตัวแปรอิสระสองตัวแปรต่อตัว แปรตอบสนอง ไม่สามารถหาเงื่อนไขที่เหมาะสมที่สุดในการอบแห้งไม้ได้ ดังนั้นถ้าต้องการหาเงื่อนไข การอบแห้งไม้ยางพาราที่เหมาะสมจึงจำเป็นต้องศึกษาผลที่เกิดขึ้นต่อตัวแปรตอบสนองทุกตัวแปร พร้อมๆกัน ในช่วงของข้อมูลการทดลองทั้งหมดของตัวแปรอิสระ

การหาเงื่อนไขการอบแห้งไม้ยางพาราที่เหมาะสม

จุดประสงค์ของการหาเงื่อนไขการอบแห้งไม้ยางพาราที่เหมาะสมที่สุด คือ หาเงื่อนไขที่ทำให้ การ อบใช้เวลาต่ำสุด และใช้พลังงานในการอบต่ำสุด โดยอยู่ภายใต้ข้อจำกัดของความชื้นไม้สุดท้าย ได้ตามเป้า โดยในที่นี้ความชื้นไม้สุดท้ายที่ยอมรับได้อยู่ระหว่าง 6% ถึง 16% ค่าของตัวแปรอิสระ (coded) ที่กำหนดเงื่อนไขการอบจริงจากข้อมูลการทดลองคือ:-


ข้อมูล	χ	φ	Т	٧
ค่าต่ำสุด	-2	-2	-1	-2
ค่าเฉลี่ย	-0.087	0	0.087	-0.087
ค่าสูงสุด	1	2	2	1

โดยการใช้ "solver" ของ Excel Add In tool เงื่อนไขการอบแห้งที่เหมาะสมซึ่งกำหนดโดยตัว แปร Φ, Τ, ν จะได้ความชื้นไม้สุดท้ายในช่วง 7%-15.3% สำหรับความชื้นไม้เริ่มต้นใดๆที่ใช้ในการ ทดลอง เงื่อนไขการอบแห้งที่เหมาะสมดังกล่าวคือ -0.78, 1.49, -0.01 เวลาและพลังงานที่ใช้ในการอบ แห้งสำหรับเงื่อนไขที่เหมาะสมนี้คือ 10.43-11.84 ชั่วโมง ($\mathbf{T}^1 = 0.0959\text{-}0.0846$) และ 9.20-10.59 MJ/kg ($\mathbf{Q}^1 = 0.1087\text{-}0.0944$) ตามลำดับ ค่าของตัวแปรสำหรับเงื่อนไขการอบแห้งไม้ยางพารานี้คือ ความขึ้นสัมพัทธ์ $\mathbf{\Phi} \leq 3.0$ %, อุณหภูมิ $\mathbf{T} = 112.5^{\circ}\mathbf{C}$ และความเร็วลม $\mathbf{v} = 4.4$ m/s เวลาที่ใช้ในการอบ แห้งจะใกล้เคียงกับเวลาที่ใช้ในการอบแห้งที่อุณหภูมิสูงของไม้ softwood board (*Pinus radiata*) (54) ซึ่งผลที่ได้ใกล้เคียงกันเนื่องมาจากเป็นผลของเงื่อนไขที่ได้จากการหาจุดเหมาะสมในการอบ

ถ้าต้องการให้เวลาในการอบแห้งไม้ยางพาราต่ำสุด เงื่อนไขการอบแห้ง (φ, T,ν) ควรเป็น 2, 2, 0.35 แต่ในทางปฏิบัติที่เงื่อนไขนี้ ความขึ้นไม้สุดท้ายจะอยู่นอกเป้าหมายความขึ้นไม้สุดท้ายที่ต้องการ เนื่องจากจะเกิด water locking ทำนองเดียวกันถ้าต้องการให้ใช้พลังงานในการอบแห้งไม้ยางพาราต่ำ สุด เงื่อนไขการอบแห้งจะต้องเป็น -2, 2, -2 ซึ่งเป็นเงื่อนไขการอบที่บรรยากาศค่อนข้างแห้งมากๆ ค่า ความขึ้นไม้สุดท้ายที่จะได้ก็จะอยู่นอกเป้าที่ต้องการเช่นกัน ซึ่งเป็นที่น่าสนใจว่าความขึ้นของไม้ ยางพาราเริ่มต้นจะเป็นตัวแปรที่ส่งผลต่อความขึ้นไม้สุดท้ายมากกว่าที่จะส่งผลต่อเวลาและพลังงานที่ ใช้ในการอบ ถ้านำค่าของอุณหภูมิและความขึ้นสัมพัทธ์ ที่เงื่อนไขอบแห้งที่เหมาะสมที่คำนวณได้ (-0.78, 1.49) ไปแทนในโมเดล response surface ที่ความขึ้นไม้เริ่มต้นเลลี่ย (coded –0.087) จะพบ ว่าถ้าเปลี่ยนแปลงความเร็วลมจาก 2.2 m/s ไปเป็น 5.5 m/s จะใช้พลังงานในการอบเพิ่มขึ้น 15% แต่ จะลดเวลาที่ใช้ในการอบแห้งลงถึง 56% ที่ความขึ้นไม้เริ่มต้นสูงสุด (χ, coded 1) และที่เงื่อนไขอบ แห้งของอุณหภูมิและความขึ้นสัมพัทธ์ที่เหมาะสมข้างต้น การเพิ่มความเร็วลมจาก 2.2 m/s ไปเป็น 5.5 m/s จะใช้พลังงานในการอบแห้งเลื่อนไขอบ แห้งของอุณหภูมิและความขึ้นสัมพัทธ์ที่เหมาะสมข้างต้น การเพิ่มความเร็วลมจาก 2.2 m/s ไปเป็น 5.5 m/s จะใช้พลังงานในการอบแห้งเพิ่มขึ้น 46% แต่ใช้เวลาในการอบแห้งลดลง 51% ซึ่งแสดงให้เห็น ว่าความขึ้นเริ่มต้นของไม้ก็ส่งผลต่อพลังงานที่ใช้ในการ อบแห้งมากกว่าต่อเวลาที่ใช้ในการอบแห้งเมื่อ เปลี่ยนแปลงความเร็วลมเพิ่มขึ้น

เพื่อศึกษาผลของอุณหภูมิอบแห้งต่อเวลาและพลังงานที่ใช้ในการอบ ทำได้โดยการเปรียบ เทียบเงื่อนไขการอบที่อุณหภูมิห้องอบแห้งทั่วไป 0.78, -1, -0.01 (CT) กับการอบแห้งที่อุณหภูมิสูง 0.78, 2, -0.01 (HT) ซึ่งพบว่าการอบแห้งที่อุณหภูมิสูง (high-temperature drying (HT)) สามารถลด พลังงานในการอบลงได้ 36% และลดเวลาในการอบแห้งลงได้ 34% เมื่อเปรียบเทียบกับการอบที่ อุณหภูมิที่ใช้ในห้องอบไม้ทั่วไป (conventional-temperature drying (CT))

Jai และ Lee (13) ใช้วิธีการอบแห้งที่อุณหภูมิสูง 110°C อบไม้ยางพาราหนา 3 ซม. ที่มี ความชื้นเริ่มต้น 72% ได้ความชื้นไม้สุดท้ายที่ 8% โดยใช้เวลาในการอบ 28 ชั่วโมง ซึ่งเวลาที่ใช้น้อย กว่าการอบแห้งปกติถึง 72% และประหยัดพลังงาน 45% โดยไม้ที่ได้ไม่เสียคุณภาพ แต่ผลการศึกษา ดังกล่าวไม่ได้กล่าวถึงผลของความชื้นสัมพัทธ์และความเร็วลมที่ใช้ในการอบ

รูปที่ 6.6 แสดง Multiple contour plots สำหรับการหาเงื่อนไขการอบแห้งที่เหมาะสมจากตัวแปรตอบ สนองทั้งสามา (โดยตัวแปรอิสระ coded points คือ (a) $\varphi=0$ และ $\chi=0$, (b) v=0 และ $\chi=0$, (c) $\varphi=0$ และ v=0, (d) v=0 และ v=0, (e) v=0 และ v=0, (e) v=0 และ v=0, (e) v=0 และ v=0, (e) v=0 และ v=0, (f) v=0 และ v=0)

ผลที่แตุกต่างจากการทดลองของ Jai และ Lee กับการทดลองศึกษาในที่นี้ อาจเนื่องมาจาก เงื่อนไขการอบแห้งที่ต่างกัน ไม่ว่าจะเป็นความขึ้นเริ่มต้นของไม้ ความขึ้นสัมพัทธ์และความเร็วลมที่ใช้ ในการอบ ดังเช่นในการทดลองได้ผลเงื่อนไขการอบแห้งที่เหมาะสมโดยใช้เวลาประมาณ 12 ชั่วโมง ซึ่ง น้อยกว่าผลของ Jai and Lee มากทั้งที่ความขึ้นไม้เริ่มต้นของการทดลองส่วนใหญ่ค่อนข้างสูงกว่า

นอกจาก response surface plot และวิธีการคำนวณแล้ว เงื่อนไขการอบแห้งไม้ยางพาราที่ เหมาะสมยังสามารถหาได้จากพื้นที่ของกราฟที่ได้จากการทำ contour plots ของตัวแปรตอบลนองทั้ง สามกัน กับตัวแปรอิสระสองตัวแปรเดียวกันขณะที่ตัวแปรอิสระที่เหลือมีค่าคงที่ รูปที่ 6.6 แสดงพื้นที่ที่ เป็นไปได้ทั้งหมดของเงื่อนไขการอบแห้งไม้ยางพารา ซึ่งเงื่อนไขการอบแห้งที่เหมาะสม operating region") แสดงด้วยพื้นที่ล้อมรอบด้วยเส้นที่บหนา ภายใต้เงื่อนไขที่ให้ได้ค่าตอบสนองดังนี้ 6% $\leq \chi$, \leq 16%, τ ¹ \geq 0.075 (τ \leq 13.33 h) และ Q¹ \geq 0.075 (Q \leq 13.33 MJ/kg) จากค่าที่ คำนวณเงื่อนไขอบแห้งที่เหมาะสมซึ่งเป็นเงื่อนไขอบแห้งที่อุณหภูมิสูง (Φ, T, v as -0.78, 1.49, -0.01) จะตกอยู่ในเส้นรอบพื้นที่ในรูปที่ 6.6 (a) และ (b) จะเห็นว่าไม่มีเงื่อนไขที่เหมาะสมปรากฏในพื้นที่ที่ code T< 0 (T< 100°C) ดังนั้นการอบแห้งไม้ยางพาราที่อุณหภูมิปกติทั่วไปไม่สามารถบรรลุเงื่อนไขที่ ทำให้ได้ผลตอบสนองที่ระบุไว้ข้างต้น ที่ค่าความขึ้นสัมพัทธ์เฉลี่ยและความเร็วลมเฉลี่ยของข้อมูล (0. T, 0) พื้นที่เงื่อนไขการอบที่เหมาะสมจะตกอยู่ในช่วงของการอบแห้งที่อุณหภูมิสูง (รูปที่ 6.6 (c)) ด้วย เงื่อนไขการอบ coded โดย Ф, 0, v (รูปที่ 6.6 (d)) การอบแห้งที่เหมาะสมจะมีเพียงช่วงแคบๆเท่านั้นที่ สามารถปรับเปลี่ยนความขึ้นสัมพัทธ์ได้ ในขณะที่ต้องใช้ความเร็วลมในช่วงปานกลาง จะเห็นว่าเกือบ จะเป็นไปไม่ได้เลยที่จะอบแห้งที่อุณหภูมิ 100°C (coded T=0) เพื่อให้ได้ค่าตอบสนองตามที่ระบุข้าง บน สำหรับไม้ยางพาราที่มีความขึ้นเริ่มต้นต่ำ จะอบแห้งได้ง่ายภายใต้การอบด้วยอุณหภูมิสูง (รูปที่ 6.6 (c)) ด้วย coded v=0 และ $\Phi=0$ หรือด้วยความเร็วลมปานกลางถึงสูงที่ T=100°C (รูปที่ 6.6 (e)) หรือใช้การคงความขึ้นสัมพัทธ์ต่ำ (รูปที่ 6.6 (f))

ที่ความขึ้นเริ่มต้นไม้ยางพารา coded $\chi=1$ (90% $\leq\chi\leq$ 110%) จะไม่รวมอยู่ในพื้นที่ของ operating region ซึ่งแสดงให้เห็นว่าไม้ที่มีความขึ้นเริ่มต้นสูงๆ ไม่สามารถอบแห้งให้ได้ความขึ้นไม้สุด ท้าย 6-16% ภายในเวลา 13.33 ชั่วโมงและใช้พลังงาน 13.33 MJ/kg หากต้องการให้ความขึ้นไม้สุด ท้ายได้ตามเป้าก็ต้องใช้เวลาและพลังงานในการอเพิ่มขึ้น โดยสรุปแล้วกราฟของ response surface จะเหมาะสำหรับการอธิบายความสัมพันธ์ของตัวแปรอิสระต่อผลตอบสนอง และอิทธิพลของตัวแปร ต่างๆที่ interaction กัน ส่วน multiple contour plot จะเหมาะสำหรับหาเงื่อนไขการอบแห้งที่เหมาะสม เพื่อใช้ในการกำหนดตารางการอบแห้งไม้ยางพารา

สรุปผลการใช้วิธี Response Surface หาเงื่อนไขการอบแห้งไม้ยางพาราที่เหมาะสม

วิธี Response Surface สามารถนำมาประยุกต์ใช้ในการหาเงื่อนไขการอบแห้งที่เหมาะสม ของไม้ยางพาราได้ โดยการออกแบบการทดลองที่เหมาะสมจะทำให้ได้ Response Surface Model ที่ ใช้ในการทำนายผลตอบสนองของตัวแปรที่สนใจในการอบแห้ง โมเดลดังกล่าวจะต้องเป็นโมเดลที่เชื่อ ถือได้และมีนัยสำคัญ ซึ่งทดสอบได้โดยวิธีทางสถิติ (F-test of regression and F-test Lack of Fit) สำหรับการอบแห้งไม้ยางพารา ความขึ้นไม้สุดท้ายที่ได้ เวลาและพลังงานที่ใช้ในการอบแห้ง เป็นตัว แปรตอบสนองที่สนใจ ผลการทดลองที่ได้เมื่อนำมาวิเคราะห์หา Response Surface โมเดล พบว่ารูป แบบของสมการโพลีโนเมียลลำดับสามที่มีการแปลงรูปของตัวแปรตาม (หรือตัวแปรตอบสนอง) ซึ่งมี ค่า R² มากกว่า 80% และถูกทดสอบ lack of fit มีนัยสำคัญที่จะใช้ในการทำนายผลตอบสนองจาก เงื่อนไขต่างๆที่มีในข้อมูลการทดลอง จากการใช้กราฟของ response surface ทำให้ทราบว่าอุณหภูมิ ที่ใช้ในการอบไม้และค่าความขึ้นสัมพัทธ์ที่คงไว้จะเป็นสองตัวแปรหลัก ที่ส่งผลต่อตัวแปรตอบสนอง ใน ขณะที่ความเร็วลมจะส่งผลต่อพลังงานที่ใช้ในการอบแห้งไม้ที่ความขึ้นไม้เริ่มต้นสูงๆ แห้งไม้ยางพาราที่เหมาะสมสามารถหาได้จากกราฟ contour ของตัวแปรตอบสนองทั้งสาม ซึ่งพบว่า เงื่อนไขที่เหมาะสมจะอยู่ในช่วงของการอบแห้งไม้ที่อุณหภูมิสูงด้วยความเร็วลมไม่น้อยกว่า 4.2 m/s ซึ่งเงื่อนไขที่เหมาะสมของความขึ้นสัมพัทธ์ อุณหภูมิ และความเร็วลม คือ -0.78, 1.49, 0.01 ที่เงื่อนไข นี้จะใช้เวลาในการอบแห้งประมาณ 10.43-11.84 ชั่วโมง และใช้พลังงานในการอบแห้งประมาณ 9.202-10.591 MJ/kg ตลอดช่วงของความซื้นไม้เริ่มต้นที่ใช้ในการทดลอง และพบว่าที่เงื่อนไขดังกล่าว การอบแห้งที่อุณหภูมิสูง (HT drying) ช่วยลดพลังงานที่ใช้ลงได้ 36% และลดเวลาลงได้ 34% เมื่อ เทียบกับการอบแห้งที่อุณหภูมิปกติที่ใช้ในโรงอบไม้ยางพาราโดยทั่วไป (CT drying)

สัญลักษณ์และตัวย่อ

```
е
       error
k
       number of variable
       number of data point
       number of regression coefficients except intercept term
Q
                       (MJ/kg)
       energy
       drying temperature (°C)
T
       air velocity
                       (m/s)
        regressor, or input variable or independent variable
Х
Х
        matrix of independent variable
        dependent variable
У
ŷ
        estimated response
α
        axial parameter for rotatability
\alpha
        confidence level (statistic value)
β
        coefficient of multiple regression
Φ
        relative humidity
                               (%)
τ
        time
               (h)
        initial moisture content of wood
                                              (kg/kg)
\chi
```

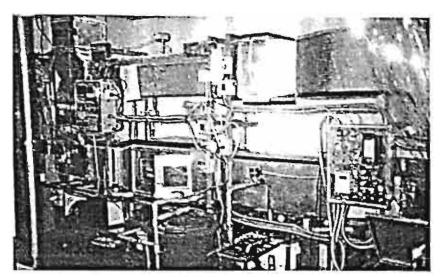
final moisture content of wood (kg/kg)

 χ_{i}

เอกสารอ้างอิง

- 1. กรมเศรษฐกิจการพาณิชย์ กองวิจัยสินค้า การส่งออกผลิตภัณฑ์ไม้ยางพาราและแนวโน้มใน อนาคต เอกสารสมาคมธุรกิจไม้ยางพาราไทย 2540.
- 2. กรมเศรษฐกิจการพาณิชย์ กองวิจัยลินค้า เอกสารทางวิชาการเรื่องสถานการณ์เฟอร์นิเจอร์และขึ้น ส่วนของไทย 2540.
- 3. โชติ รักติประกร และดำรงค์ ศรีอรัญ. การใช้ประโยชน์ไม้ยางพารา เอกสารวนผลิตภัณฑ์วิจัย เล่มที่ 1 คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ 2513
- 4. สำนักงานเศรษฐกิจการเกษตร กระทรวงเกษตรและสหกรณ์ http://oae.go.th/ (accessed 01/03)
- 5. กรมส่งเสริมอุตสาหกรรม กองบริการอุตสาหกรรม *การผลิตเครื่องเรือนจากไม้ยางพาร*า สมาคม ฐรกิจไม้ยางพาราไทย 2540.
- 6. อรุณ ชมชาญ และสุธี วิสุทธิเทพกุล. ไม้ยางพารา ลักษณะ คุณสมบัติและการใช้ประโยชน์สำหรับ การทำเครื่องเรือน เอกสารงานวิจัยไม้ขั้นประยุกต์ กองวิจัยผลิตผลปาไม้ กรมปาไม้ กระทรวง เกษตรและ สหกรณ์. กรุงเทพฯ 2521.
- 7. สรรญเสริญ เจริญศรี. การทำเยื่อกระดาษจากไม้ยางพาราชนาดกำลังการผลิตปีละ 100,000 ตัน รายงานวิจัย กองวิจัยผลิตผลป่าไม้ กรมป่าไม้ กรุงเทพฯ 2516.
- Chomcham, A. 1980. Rubber trees for integrated wood industries development in Thailand. Forest Prod. Res. Div., Royal Forest Department. Bangkok.
- 9. สุธี วิสุทธิเทพกุล. ลักษณะและคุณสมบัติของไม้ยางพารา เอกสารประกอบการฝึกอบรมเรื่อง เทคนิคการเลื่อยแปรรูปไม้และการอบอัดน้ำยาไม้ยางพารา. วันที่ 25-27 พ.ย. 2541. อ.หาดใหญ่ จ.สงขลา โดยส่วนอุตสาหกรรมครื่องเรือน สำนักพัฒนาอุตสาหกรรมรายสาขา กรมส่งเสริมอุต-สาหกรรม
- 10. ลำนักงานกองทุนสงเคราะห์การทำสวนยาง http://www.thailandrubber.thaigov.net/ (accessed 01/03)
- Forest Products Laboratory, U.S. Department of Agricultural. (1988) Dry Kiln Operator's
 Manual
- Rosen H.N. 1984. High temperature initial drying of wood: Potential for energy recovery.
 Forest Prod. J. 34(3): 10-18.
- 13. Taylor, J.M., D.J. Lavery and K. Cronin. 1996. Energy related aspects of timber drying.

- Int. J. of Ambient Energy. 17(1):41-48.
- Comstock, G.L. 1975. Energy requirements for drying of wood products. In Wood Residue as an Energy Source. Proc., Forest. Prod. Res. Soc. Symp., pp.8-12.
- Rosen, H.N., 1995, Drying of Wood and Wood Products, Handbook of Industrial Drying,
 Vol.2, 2nd ed., Mujumdar, A. S., Marcel Dekker Inc., NewYork.
- Jay, S. and T.N. Oliver. 1996. Timber drying: Trends in energy consumption and equipment utilization within the UK timber industry. Drying'96. Pp.663-670.
- Avramidis, S. and R.L.Zwick. 1992. Exploratory radio-frequency/vacuum drying of three
 B.C. coastal softwoods. Forest. Prod. J. 42(7/8): 17-24.
- Simpson, W.T. 1997. Effect of air velocity on the drying rate of single eastern white pine boards. FPL-RN-266. USDA Forest Serv., Forest Prod. Lab., Madison, Wis.
- Wu, G. and W.R. Smith. 1998. Effects of elevated and high-temperature schedules on warp in southern yellow pine lumber. Forest Prod. J. 48(2):52-56.
- 20. Jai, S.Y. and M.C. Lee. 1987. High-temperature drying of 3 cm rubber wood. Bull.Taiwan For. Res. Inst. New Series. 2(1): 31-42. (in Chinese)
- 21. Wang, Z., E.T. Choong and V.K. Gopu. 1994. Effect of presteaming on drying stresses of red oak using a coating and bending method. Wood and Fiber Sci. 26(4):527-535.
- 22. Avramidis, S. and L. Oliveira. 1993. Influence of presteaming on kiln-drying of thick hemfir lumber., Forest Prod. J. 43(11/12):7-12.
- Keey, R.B. and S.Pang. 1994. High-temperature drying of softwood boards: A kiln-wide model. Trans. IchemE. 72. Part A.:741-753.
- 24. Perre', P. and M. Martin. 1994. Drying at high temperature of sapwood and heartwood: theory, experiment and practical consequence on kiln control. Drying Technology. 12(8): 1915-1941.
- 25. Forest Products Laboratory, 1999, Wood Handbook: Wood as an Engineering Material, FPL-GTR-113. U.S. Department of Agricultural.
- 26. Pang. S., 1997, Some Considerations in Simulation of Superheated Steam Drying of Softwood Lumber, Drying Technology, 15(2): 651-670.


- 27. Resch, H, Hoag, M.L. and Rosen, H.N., 1988, Desorption of Yellow-Poplar in Superheated Steam, Forest Products Journal, 38(3): 13-18.
- 28. Day, D.L. and Nelson, G.L., 1965, Desorption Isotherms for Wheat, Transactions of ASME, 8: 293-297.
- 29. McCabe, W.L., Smith, J.C. and Harriott, P. 1993, Unit Operations of Chemical Engineering, 5thed., McGraw-Hill Book Co., Singapore.
- Wadsö, L. 1993, Surface Mass Transfer Coefficients for Wood. Drying Technology, 11(6)
 : 1227-1249.
- 31. Simpson, W.T., 1997, Effect of Air Velocity on the Drying Rate of Single Eastern White Pine Boards, USDA. Research Note of Forest Products Laboratory, FPL- RN-266.
- 32. Avramidis, S., Englezos, P. and Papathanasiou., T. 1992, Dynamic Nonisothermal Transport in Hygroscopic Porus Media: Moisture Diffusion in Wood, AlChE J, 38(2): 1279-1287.
- 33. Avramidis, S., S.G. Hatzikiriakos and Siau, J.F., 1994, An Irreversible Thermodynamics for Unsteady-State Nonisothermal Moisture Diffusion in Wood. Wood Sci. Technol., 28: 349-358.
- 34. Wadsö, L. 1993, Measurements of Water Vapour Sorption in Wood: Part 2. Results, Wood Sci. Technol, 28: 59-65.
- 35. Liu, J.Y. and Simpson, W.T., 1996, Mathematical Relationship Between Surface Emission and Diffusion Coefficients, Drying Technology, 14(3&4): 677-699.
- 36. Liu, J.Y. and Simpson, W.T., 1997, Solution of Diffusion Equation with Constant Diffusion and Surface Emission Coefficients, Drying Technology, 15(10): 2459-2477.
- 37. Liu, J.Y. and Simpson, W.T., 1999, Two-Stage Moisture Diffusion in Wood with Constant Transport Coefficients, Drying Technology. 17(1&2): 257-269.

- 38. Chen, Y., Choong, E.T. and Wetzel., D.M. 1994. Optimum Average Diffusion Coefficient
 : An Objective Index in Description of Wood Drying Data, Wood Fiber Sci., 26(3): 412-420.
- 39. Hines, A.L. and Maddox, R.N., 1985, Mass Transfer Fundamentals and Applications, Prentice-Hall, Inc., USA.
- 40. Dedic, A., 1997, A Calculation Method of Obtaining Desorption Isotherms of Beech (Fagus Moesiaca) Wood, Drying Technology, 15(10): 2557-2564.
- Cloutier, A. and Fortin, Y., 1991, Moisture Content Water Potential Relationship of Wood from Saturated to Dry Conditions, Wood Sci. Technol., 25:263-280.
- 42. Milota, M.R. and Tschernitz, J.L., 1990, Correlation of Loblolly Pine Drying Rates at High Temperature, Wood Fiber Sci., 22(3): 298-313.
- 43. Keey, R.B., 1978., Introduction to Industrial Drying Operations, 1st ed., Pergamon Press, UK.
- 44. Lee, W. H., Okano, T. and Ohta., M., 1991, Moisture Transmission in Wood: Moisture Transfer and Velocity of Moisture Transmission in a Steady State, Mokuzai Gakkaishi, 37 (2): 101-108.
- 45. Simpson, W.T. and Liu, J.Y., 1997, An Optimization Technique to Determine Red Oak Surface and Internal Moisture Transfer Coefficients During Drying, Wood Fiber Sci., 29 (4): 312-318.
- 46. Madamba, P.S. The Response Surface Methodology: An Application to Optimize Dehydration Operations of Selected Agricultural Crop. Lebensm. Wiss. u.-Technol. 2002, 35, 584-592.
- 47. Guerrero, S.; Alzamora, S.M.; Gerschenson, L.N. Optimization of a Combined Factors Technology for Preserving Banana Purrre to Minimize Colour Changes Using the Response Surface Methodology. J. Food Eng. 1996, 28, 307-322.

- 48. Redhe, M.; Forsberg, J.; Jansson, T.; Marklund, P.O.; Nilsson, L. Using the Response Surface Methodology and the D-optimality Criterion in Crashworthiness Related Problems. Struct Multidisc Optim. 2002, 28, 185-194.
- 49. Kurtaran, H.; Eskandarian, A.; Marzougui, D.; Bedewi, N.E. Crashworthiness design optimization using successive response surface approximations. Computational Mechanics 2002, 29, 409-421.
- 50. Wang, G. Li, H.; Aryasomayajula, S.R.; Grandhi, R.V. Two-level optimization of airframe structures using response surface approximation. Struct Multidisc. Optim. 2000, *20*, 116-124.
- 51. Golovidov, O.B. Variable-Complexity Response Surface Approximations for Aerodynamic Parameters in HSCT Optimization. M.SC.Thesis, Virginia polytechnic institute and State University: Blacksburg, Virginia, 1997.
- 52. Myers, R.H.; Montgomery, D.C.; Response Surface Methodology: Process and product optimization using designed experiments. 2nd ed. John Wiley & Sons Inc.: USA, 2002; 798.
- 53. Montgomery, D.C. Design and Analysis of Experiments. 2nd ed. John Wiley & Sons: New York, 1984
- 54. Pang, S. High-Temperature Drying of Pinus Radiata Boards in a Batch Kiln. Ph.D.Thesis, University of Canterbury, New Zealand, 1994.

ผลที่ได้จากโครงการวิจัย

ตู้อบไม้ทดลองขนาด Lab-scale

ผลงานตีพิมพ์ในวารสารทางวิชาการ

Theppaya, T., S. Prasertsan. *Parameters influencing drying behavior of rubber wood* (Hevea Brazilliensil) as determined from desorption experiment. Drying Technology. 20(2). 2002. pp.507-525.

ผลงานที่กำลังดำเนินการเพื่อตีพิมพ์ในวารสารทางวิชาการ

เรื่อง "Using Response Surface Methodology (RSM) to Optimize Drying Conditions of Rubber Wood" คาดว่าจะตีพิมพ์ในวารสาร Drying Technology : An International Journal

ผลงานน้ำเสนอในที่ประชุมวิชาการ

Theppaya, T., S.Prasertsan Effect of Kiln Control Parameters on Drying Schedule of Rubber Wood in a Lab-scale Wood Drying Kiln. Proc. 2rd RCETCE. 12-14 Feb. 2003. Phuket. Thailand. vol.1, pp.88-93.

ภาคผนวก

Manuscript

PARAMETERS INFLUENCING DRYING BEHAVIOR OF RUBBER WOOD (HEVEA BRAZILLIENSIS) AS DETERMINED FROM DESORPTION EXPERIMENT

T. Theppaya

The Joint Graduate School of Energy and Environment (JGSEE), Energy Division King Mongkut's University of Technology Thonburi, Thailand.

S. Prasertsan

Department of Mechanical Engineering, Prince of Songkla University, Thailand.

Key Words and Phrases: desorption; diffusion coefficient; equilibrium-moisture content; rubber wood

ABSTRACT

In this study, the drying properties of rubber wood, which are the basic parameters for kiln scheduling design, were determined from desorption experiment. Equilibrium moisture content expression was developed. The diffusion coefficients at different drying environments were evaluated. It is more appropriate to determine the diffusion coefficients by the optimum scheme in comparison to other schemes; the logarithmic, square-root and half-fraction of evaporable moisture schemes. Finally, the diffusion coefficient of rubber wood was described by, instead of wood moisture content, the drying temperature and relative humidity, which are the parameters controlling the drying kiln operation.

INTRODUCTION

Wood products were used extensively throughout history. In the past, wood was processed with limited technology and because of the abundant supply, effective utilization was out of concern. With the advancement of the scientific knowledge on wood, wood processing technologies have been continuously developed and the utilization has been extended to the previously-neglected source; agriculture-byproduct timber. Recently the use of wood from rubber trees was increased significantly. For the case of Thailand, the production of rubber wood timber was expected to exceed 1.6x10⁶ m³ in year 2000. Rubber wood has creamy-white colour, attractive texture and moderate strength. As the agricultural residue, the rubber wood products easily penetrate into the market where environmental concern provides the competitive advantage.

Economical life of the rubber trees is 25-30 years. The replantation of rubber trees gives 281 m³ of biomass per hactare, where about 42 m³ of sawn timber is generally obtained. The yield at the sawmills is relatively low because the rubber tree trunks have small diameter of about 15-25 centimeters only. The sawn timber is chemically treated to protect the wood from wood borers. The chemical solution-impregnated timber is then dried in the drying kilns to bring its moisture content down to not more than 12 per cents.

Wood drying is an energy intensive process where the requirement of 4.4-7.0 MJ heat for a kilogram of water evaporated is reported [1]. The rubber wood drying kilns use hot air (<100°C). A preliminary study of rubber wood drying in one factory revealed that the specific drying energy was 13.5 MJ/kg of water evaporated. The substantially high energy consumption is caused by the poor design of the drying kilns for this industry. In practice, the industry operates the kiln without any sound knowledge of kiln scheduling. As a fast growing tree, the inherent growth stress in the wood can, if the kiln schedule is not properly controlled, degrade the quality of the dry lumber in the forms of split, twist, bow, cup, crook and kink. To obtain high quality dry wood, the moisture content (MC) must be gradually adjusted to the targeted equilibrium moisture content (EMC) by periodically spraying steam according to the kiln schedule. The rate of moisture removal from the wood is controlled by the moisture diffusivity, which depends on the drying environment and the moisture content of the wood. EMCs at different drying environments are, therefore, the essential tool for determining the drying kiln schedule. In this study, a desorption experiment was carried out to determine the EMC values and the diffusion coefficients of rubber wood. It is aimed for further improvement of rubber wood drying process.

EQUILIBRIUM-MOISTURE CONTENT

Wood is a hygroscopically porous material that can absorb or desorb moisture from surroundings. Desorption in wood is a drying mechanism which occurs only when its moisture content is greater than the equilibrium point. For a particular drying atmosphere, different wood species have different EMCs due to differences of fiber densities and proportion of chemical compounds. EMCs of various wood species, but not rubber wood (Havea Brasilliensis), are published by USDA Wood Handbook [2]. The EMC (X*) of wood in general is a function of humidity and temperature as shown by eq.1.

$$X^* = \frac{1800}{W} \left[\frac{Kh}{1 - Kh} + \frac{K_1 Kh + 2K_1 K_2 K^2 h^2}{1 + K_1 Kh + K_1 K_2 K^2 h^2} \right]$$
 (1)

Where W, K, K_1 , and K_2 are coefficients of the desorption model, which can be calculated from the expressions of temperature (°C).

$$W = 349 + 1.29T + 0.0135T^{2}$$

$$K = 0.805 + 0.000736T - 0.00000273T^{2}$$

$$K_{1} = 6.27 - 0.00938T - 0.000303T^{2}$$

$$K_{2} = 1.91 + 0.0407T - 0.000293T^{2}$$

Pang [3] determined the new fitted constants from the EMC data of USDA Handbook and that of Yellow-poplar wood undergone superheated steam drying studied by Resch et al. [4] to modify the original equation that proposed by Day and Nelson [5] to be more accurate. The new EMC equation, which can be applied for the full commercial temperature range of 20°C to 250°C is given in eq.2.

$$X^{\star} = \left[\frac{1}{A_1} \cdot \ln(1 - \phi)\right]^{\frac{1}{B_1}} \tag{2}$$

The coefficients in eq.2 are defined as functions of temperature (K):

$$A_{_{1}} = -0.34 \times 10^{-16} \, T^{5.98}$$

$$B_1 = 348T^{-0.946}$$

The relative vapor pressure (φ) in superheated condition is defined by

$$\phi = \frac{p_{\star}}{p_{s}} \tag{3}$$

DIFFUSION COEFFICIENT

The mechanisms of drying are described by the moisture driving force and transport property. The transport property is commonly known that dependent on drying material and environment (air velocity, humidity and temperature). McCabe et al. [6] suggested that diffusion is a mechanism of slow-drying materials. The diffusion of moisture to the surface is characterized by the moisture flux inside the material, which is governed by the mass-transfer coefficient [7]. The resistance to the mass transfer of water vapor from the surface of drying material to the surrounding air is usually negligible, and thus, only moisture diffusion within the material influences the drying rate. This implies that the velocity of the air (the drying media) has little or no effect. This suggestion agreed well with a study by Simpson [8] on the effect of air velocity on the drying rate of a pine board. The humidity of the air influences the process primarily through its effect on the equilibrium-moisture content. Since diffusivity increases with temperature, hence the rate of drying.

The diffusion coefficients of woods were studied extensively under dynamic non-isothermal condition by Avramidis et al. [9], [10]. Accurate drying curve was successfully produced by including the chemical potential term in the drying model. But, it is difficult to find the chemical potential function, which is essential for evaluating the values of phenomenological coefficients. They concluded that the Fick's second law without the chemical potential as a moisture driving force (eq.4) predicts the drying time slightly less than that of the experiment under this unsteady-state condition. They also recommended that the drying curve is a strong function of the diffusion coefficient, which depends on the temperature and MC.

$$\frac{\partial X}{\partial t} = D \frac{\partial^2 X}{\partial x^2} \tag{4}$$

Based on Fick's law, Wadsö [11] calculated a diffusion coefficient of wood from a sorption experiment by using the square-root scheme (eq.5a). The maximum value of slope $(\frac{dE'}{d\sqrt{t}})$ was used in calculation due to the non-linearity characteristic of the $E'-\sqrt{t}$ relationship. Wadsö concluded that there are non-Fickian effects in wood which are not very well understood.

$$D = \frac{\pi a^2}{4} \left(\frac{dE'}{d\sqrt{t}} \right)^2 \tag{5a}$$

where
$$E' = \frac{(X_{\tau_1} - X_{\tau})}{(X_{\tau_2} - X^*)}$$
 (5b)

Liu and Simpson [12], [13], [14] determined the relationship between the surface emission and diffusion coefficients. Because of the non-linear behavior, they used what so called a two-stage approach in their study. The diffusion and surface emission coefficients were evaluated from two values of moisture fraction in wood. Although this approach predicts the diffusion curves accurately, the physical interaction is difficult to justify.

Chen et al. [15] stated that although the surface emission coefficient may be a predominant factor in thin wood board drying at low air velocity, its effect is usually not important in common kiln drying conditions with high air velocity. They also suggested that, in practice, in order to reduce the number of parameters influencing moisture diffusivity values, it is simpler to use the single value of diffusion coefficient that derived from the unsteady-state drying curve. They simply used three schemes namely, square-root, logarithmic, and half-E schemes to determine the diffusion coefficients and the optimum value from published experimental data. The optimum value is represented by the value that gives the curve less deviate from the experimental drying curve. The square-root scheme as equation (6a) is believed to be valid for a short-time drying of wood.

$$D = \frac{\pi a^2}{4} \left(\frac{d(1-E)}{d\sqrt{t}} \right)^2$$
 (6a)

where
$$E = \frac{(X_T - X^*)}{(X_{T_1} - X^*)} = \frac{X}{X_1}$$
 (6b)

E is the fraction of evaporable moisture in wood. It was reported that the analytical solution of D from eq.7, based on Fick's second law of diffusion, is valid for the long-time drying of slab [16]. Equation (8) is the logarithmic scheme derived by omitting the term n > 1 of eq.7. However, the five terms (for n=1 to 5) of summation in eq.7 are used to compute the E value in order to reduce the truncation error.

$$E = \left(\frac{8}{\pi^2}\right) \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} e^{-\left(\frac{2n-1}{2a}\right)^2 \pi^2 D^4}$$
 (7)

$$D = -\frac{4a^2}{\pi^2} \frac{d(\ln E)}{dt}$$
 (8)

Since the values of slopes (the differential terms) in eqs (6a) and (8) are not constant, the slopes at every experimental time-interval (of desorption experiment) were employed for the calculation of the instantaneous D values in the square-root and logarithmic schemes. However, the D values representing these two schemes are those

corresponding to the condition of minimum sum $(\Delta E)^2$. ΔE is the defference between the experiment and the computed values.

The scheme that determines the D value by using E=0.5 in eq. 7 is named the half-E scheme. The method that determines the value of diffusion coefficient from eq. 7 by using trial and error approach, searching for the value that makes sum of $(\Delta E)^2$ minimum is called the optimum scheme. It has been recommended that the assumption of the optimum scheme is that the E value at the surface immediately drops to zero at the beginning of drying due to the negligible surface resistance [15].

In this paper, the above-mentioned four methods (square-root, logarithmic, half-E, and optimum schemes) were used to determine the moisture diffusivity of rubber wood.

MATERIALS AND METHODS

In common practice, rubber wood drying starts with temperature around 45°C and ends at temperature 85°C. In this study, the EMC of rubber wood was determined within this range of temperature by desorption experiment. The experiment was carried out by measuring the weight changes of rubber wood specimens at five temperatures, each with three relative humidities, until equilibrium moisture content is attained. A similar experimental procedure was previously used by Dedic [17], but in this study, salt solutions were used to control the relative humidity of the air instead of using environmentally controlled chamber. Rubber wood specimens, obtained from a sawmill nearby, were prepared from sawn timbers measured 5 by 5 cm. cross section and 105 cm. in length. These lumbers were impregnated with Borax based solution in order to protect the wood from borers. The wet lumbers were cut into several pieces in rectangular blocks of 3x4x2.8 cm³ (W×L×D). The specimens were stored according to the procedure employed by Cloutier and Fortin [18], and Milota and Tschernitz [19]. The specimens were encapsulated by plastic sheet and frozen in a refrigerator to retain the moisture until they were used for experiment. Three salt solutions namely, Sodium nitrite, Sodium chloride and Potassium sulfate, were used as the moisture absorbent. The experiment was carried out at temperatures of 42.5°C, 61°C, 75°C, 85°C and 108°C. The relative humidities at each temperature were set by the saturation of the respective salt solutions. The moisture in wood was allowed to migrate in the direction normal to the grain by coating with aluminium tape on four other sides of the block, leaving the two surfaces perpendicular to the grain open. The drying cells are glass bottles of one litre volume with rubber seals. One-third of the bottle was filled with saturated salt solution and three samples were placed inside. The sealed bottle was then placed in a temperature-controlled chamber. At a predetermined time interval, the specimens were removed for weight change determination. The experiment ended when the change of the weight was not detectable within at least 4 days. The resolution of the electronic balance was 0.01 g. The

EMC values at different temperatures and relative humidities were used to form EMC equations by the non-linear curve fitting method.

RESULTS AND DISCUSSION

The experimental results are shown in Table 1. As expected, the equilibrium-moisture content decreased with the increase of temperature and the decrease of the relative humidity. Some previous studies, for example Pang [3], combined experimental data with general properties of woods in USDA Wood Handbook in order to construct an EMC model for a wider range of temperature and relative humidity. The same approach was employed in this study.

Desorption Isotherm of Rubber Wood

Desorption isotherms, derived from experimental data (Table 1) were shown in Fig.1 (smooth curve fitting was generated by MS Excel program). The curve fitting lines are the best fit of the three experimental data points of different relative humidities. However, data from USDA Wood Handbook at relative humidities of 65% and 85% were also incorporated in Fig.1 (but not used in curve fitting process) to demonstrate the appropriateness of the experimental curve. The logarithmic plot in Fig.2 was derived from the curve readings of Fig.1. It was constructed from the EMC values and the respective relative humidities and temperatures, but was limited to the EMC values of 9-19%. The final MC of rubber wood required for the succeeding process depends on its utilization and environment. In general, the final MC of rubber wood for producing furniture is about 14%. However, it is usually dried to roughly 2% below this value to provide a margin for further moisture absorption. The enthalpy of wetting or activation energy for each moisture content can be calculated from the gradient in Fig.2 and expressed by eq.9 [20].

$$E_s = -R \frac{d(\ln RH)}{d(1/T)} \tag{9}$$

where T is the absolute temperature (K)

The change of enthalpy of wetting with respect to EMC, derived from Fig 2., is given in Fig. 3. By the non-linear curve fitting method, Fig. 3 gives the enthalpy of wetting as eq 10. E_s increases significantly when the rubber wood is dried out. At 9% moisture content, the energy of bonding between moisture and dry body is over 10 times of that at 19% moisture content. It is more difficult and higher energy is needed at low moisture content drying.

$$E_s = -0.02293 + 2.67175 \exp^{(-19.6496X^*)} MJ/kg$$
 (10)

where the unit of X is in kg kg-1.

Equation (10) can be applied correctly from EMC of 9% to 19%. E_s at EMC greater than 19% approaches zero and can be neglected. Therefore, eq.10 can be used as a guideline to design rubber wood drying process.

Equilibrium moisture content model of rubber wood

The readings of EMC values of rubber wood from Fig.1 were used to construct EMC equations, which were functions of temperature and relative humidity. Two models were devised for the curve fitting. The first model uses only the experimental data read from Fig.1. The second model employs the experimental data in combination with the USDA data to provide an EMC equation for a wider range of temperature and relative humidity. A statistic program called Sigma-Plot release 5.0 was used to determine the best-fitted equations of the data. The forms of best-fitted equations with $R^2 > 0.995$ are given in eq.11 and eq.12. The coefficients, a and b, of the two models, which depend on the temperature only, were determined by using the non-linear fitting technique.

MODEL 1 (Experimental data)

$$X^* = -5.081016 + a \exp^{(Y)^b}$$
 (11)

$$a = 66.6418 - 21.8471T^{0.5} + 2.78259T - 0.116442T^{1.5}$$

$$b = 1.53145 + \frac{1.878z_1}{1 + exp^{\frac{-(z_1 - 0.66473)}{0.06628}}}$$

$$Y = \frac{RH}{100}$$

(42.5°C≤T≤108°C, 53%≤RH≤96.2%)

MODEL 2 (Combined data)

$$X^* = \frac{a(RH)^{0.5}}{(1+b(RH)^{0.5})}$$
 (12)

$$RH = \left(\frac{X^*}{a - bX^*}\right)^2$$

$$a = -1.20323 + 2.0225 \exp^{(-0.301552z_1)}$$

$$b = -0.106522 + \left(\frac{0.066278}{z_2}\right) + \left(\frac{-0.027879}{z_2^2}\right)$$

$$(0^{\circ}\text{C} \le \text{T} \le 120 \, {}^{\circ}\text{C}, \, 0\% \le \text{RH} \le 100\%)$$
where
$$z_1 = \frac{T}{100}, \, z_2 = \exp^{(z_1)}$$

The plot of model 1 together with the experimental data read from the curve of Fig.1 is shown in Fig.4.

Equation (11) agrees well with the experimental data except at temperature of 85°C and relative humidity greater than 82% where it predicts EMC slightly lower than the experimental results. It is believed that these errors were resulted from the reading of relative humidity values in Fig.1. In addition, some coefficients in eq.11 were evaluated with some tolerance. Thus, the development of EMC as expressed by eq.11 was achieved with an acceptable error tolerance. It is, therefore, suggested that model 1 can correctly predict the EMC values of rubber wood.

It was found also that model 2 (eq.12) is compatible with Model 1 in the same corresponding range of drying environment, but model 2 was extended to cover a wider range of temperature and relative humidity. Model 2, therefore, was compared with the previous studies [2], [3] (eq.1 and eq.2) as shown in Fig.5. It is observed that, at a certain temperature and relative humidity, EMCs of rubber wood (evaluated from model 2) are acceptably close to the two previous models (eq.1 and eq.2), especially at low relative humidity (low EMC). At high relative humidity, model 2 gives the EMC values of rubber wood about 7-12% lower than those of the woods from USDA Handbook and Pang [3].

Besides the EMC, it is useful to know the fiber saturation point (FSP) of rubber wood because most thermal properties of wood are exclusively discrete at this point. The FSP of wood is usually known as its EMC value at 100% relative humidity. Since the EMC expression in model 2 is valid up to 100% relative humidity, model 2 is used to evaluate the FSP of rubber wood. The FSP of rubber wood as a function of temperature is expressed in the form of third-degree polynomial by eq.13 with $R^2 = 0.999$.

$$X_{FSP}(\%) = 25.7249 - 0.113798T + 0.0017957T^2 - 1.13697 \times 10^{-5}T^3$$
 (13)

$$0^{\circ}$$
C \leq T \leq 120 $^{\circ}$ C

Diffusion coefficients

Diffusion coefficients of rubber wood calculated from the four schemes (logarithmic, square-root, half-E and optimum) are given in Table 2. Out of the four schemes, three schemes namely, the logarithmic, square-root and optimum schemes give nearly the same moisture diffusion coefficient and believed to be more realistic in comparison to the half-E scheme as indicated by the summation of $(\Delta E)^2$. The computation by the half-E scheme is performed by using the average E value of 0.5, which is not true since the E curve is not linear over the desorption time. The optimum scheme, that provides the diffusion coefficient with the minimum value of sum of $(\Delta E)^2$ in comparison to other schemes, is the scheme that can be appropriately used to calculate the diffusion coefficient of rubber wood. These four methods assume constant diffusion coefficient for each desorption condition.

The E values from the desorption experiment (eq.6b) and the calculated values based on the optimum scheme are plotted with respect to drying time as shown in Fig.6. It was observed that the predicted curves do not always agree with the experiment especially at the high relative humidity, where the discrepancy is large. It is reasonable to suggest that the experiment at high relative humidity is prone to the non-equilibrium condition after the weighing of the specimens because the difference of the relative humidity between the surroundings and the test cell was relatively large. However, the time interval for the next recording was long enough to achieve once again equilibrium of humidity. The weighing was usually finished within 5 seconds, short enough to believe that the surrounding did not disturb the instantaneous E value of the specimen.

The calculated E values derived from the optimum scheme are lower than the experimental values at approximately the first half of desorption time and vice versa thereafter. The E values of the whole drying period were determined from one optimum diffusion coefficient. Thus, the calculated E values follow the path of minimum sum of $(\Delta E)^2$ in the evaluation of the diffusion coefficient. The cross-over point in Fig.6 represents the point that $\Delta E = 0$ (experimental D equal to predicted value). In reality, the diffusion coefficient is not constant throughout the entire drying as assumed in this study, but it is a function of moisture content, which is an unknown during drying course.

There were many studies reported in [21] that the diffusion coefficient depends on wood thickness and its moisture content. It is the fact that the dependence of external parameters with internal parameters implicitly affects the drying behavior. For example, air velocity and drying temperature are the external parameters, which control the boundary layer heat and mass transfer, while the moisture diffusion coefficient is the internal parameter that partly depends on external parameters. Thus, it should identify for the parameters that are the main player in controlling moisture diffusion in wood.

Thickness and initial MC of wood have effect on drying time. These are minor parameters since drying curve of most wood does not exhibit the constant-rate period [22]. At above FSP, the moisture content of either thick or thin wood board decreases

rapidly at the first stage of drying no matter how high or low initial moisture content is. At moisture content below the FSP, air velocity plays an insignificant role to both drying rate and moisture diffusivity. Therefore, the rate of moisture movement in wood strongly depends on temperature and vapor pressure, which is the indicator of relative humidity of the environment.

In the wood drying kiln, the drying environment was adjusted with time according to the targeted EMC at each step of drying. Moreover, an EMC value can be specified by more than one temperature-humidity condition. Consequently, it is possible to express the diffusion coefficient as a function of temperature and relative humidity rather than EMC. This provides a possibility to predict the drying curve at different drying conditions and is used as a tool to establish a drying schedule for the kiln operation.

The relationship between the diffusion coefficient and relative humidity at different temperatures of rubber wood is given in Fig. 7 and eq. 14.

$$D = a \exp^{-bY} \quad cm^2/s$$
where $Y = \frac{RH}{100}$:
$$a = 5.8356 + 0.061207 \exp^{2.37464z_2}$$

$$b = -16.5806 + 25.8644 \exp z_2 - 11.7831z_2^2 + 1.755z_2^3$$

$$z_1 = \frac{T}{100}, \ z_2 = \exp^{(z_1)}$$

RH and T are in per cent and degree Celsius, respectively. Equation (14) is valid for 42.5° C< T < 108° C, and $53\% \le RH \le 96.2\%$.

It should be noted that eq.14 was derived under isothermal condition and still air. However, in practice, rubber wood is dried under non-isothermal condition and usually with the variation of drying air velocity and direction. Such complicated experiment is undertaking at the Prince of Songkla University. The results of the study will be reported in due course.

CONCLUSIONS

The equilibrium moisture contents of rubber wood were successfully determined by desorption experiment. The EMC models of rubber wood were constructed based on the experimental data alone and the combined data with USDA Wood Handbook for a wider range of drying environment. Enthalpy of wetting of rubber wood has been determined from desorption isotherm curves. These data are valid for all rubber wood, which were impregnated with Borax solution. Diffusion coefficient, which was assumed constant over moisture content range, was determined by logarithmic, square-root, half-E and optimum schemes. It was found that the optimum scheme could predict the diffusion coefficient more accurately compared to other schemes. In this study, it should be noted that although the diffusion coefficient is known as wood moisture and drying temperature dependent, it is possible to be described by two kiln operating parameters, temperature and relative humidity.

ACKNOWLEDGEMENTS

This research work was financially supported by the Thailand Research Fund under the Royal Golden Jubilee Program for Ph.D. (RGJ-Ph.D) and the Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Thailand.

NOMENCLATURE

a	half-thickness of wood sample	(cm)	
D	effective diffusion coefficient	(cm^2/s)	
E	fraction of evaporable moisture in wood	(decimal)	
EMC	equilibrium moisture content	(%)	
E_s	activation energy, enthalpy of wetting or ex	nergy	
	of bonding between moisture and dry body	<i>'</i>	(kJ/kg)
\overline{E}_{s}	mean enthalpy of wetting over a moisture	content range	(kJ/kg)
h	relative humidity		(decimal)
p_v	partial pressure of vapor		(Pa)
ps	saturation vapor pressure		(Pa)
R	gas constant for water vapor		(kJ/kg K)
t	time		(s)
T	temperature		(°C, K)
X	average free moisture content at time t _T	(dry basis)	(%)
X_1	initial free moisture content	(dry basis)	(%)
X_T	average total moisture content at time t _T	(dry basis)	(%)
X_{T1}	initial moisture content (at $t = 0$)	(dry basis)	(%)
X^{EZb}	moisture content at fiber saturation point	(dry basis)	(%)
x*	equilibrium moisture content	(dry basis)	(%)
φ	relative vapor pressure		

REFERENCES

- Rosen, H.N., 1995, Drying of Wood and Wood Products, Handbook of Industrial Drying, Vol.2, 2nd ed., Mujumdar, A. S., Marcel Dekker Inc., New York.
- 2. Forest Products Laboratory, 1999, Wood Handbook: Wood as an Engineering Material, FPL-GTR-113. U.S. Department of Agricultural.
- 3. Pang. S., 1997, Some Considerations in Simulation of Superheated Steam Drying of Softwood Lumber, Drying Technology, 15(2): 651-670.
- 4. Resch, H., Hoag, M.L. and Rosen, H.N., 1988, Desorption of Yellow-Poplar in Superheated Steam, Forest Products Journal, 38(3): 13-18.
- Day, D.L. and Nelson, G.L., 1965, Desorption Isotherms for Wheat, Transactions of ASME, 8: 293-297.
- 6. McCabe, W.L., Smith, J.C. and Harriott, P. 1993, Unit Operations of Chemical Engineering, 5thed., McGraw-Hill Book Co., Singapore.
- 7. Wadsö, L. 1993, Surface Mass Transfer Coefficients for Wood. Drying Technology, 11(6): 1227-1249.
- 8. Simpson, W.T., 1997, Effect of Air Velocity on the Drying Rate of Single Eastern White Pine Boards, USDA. Research Note of Forest Products Laboratory, FPL- RN-266.
- 9. Avramidis, S., Englezos, P. and Papathanasiou., T. 1992, Dynamic Nonisothermal Transport in Hygroscopic Porus Media: Moisture Diffusion in Wood, AIChE J, 38(2): 1279-1287.
- Avramidis, S., S.G. Hatzikiriakos and Siau, J.F., 1994, An Irreversible Thermodynamics for Unsteady-State Nonisothermal Moisture Diffusion in Wood. Wood Sci. Technol., 28: 349-358.
- 11. Wadsö, L. 1993, Measurements of Water Vapour Sorption in Wood: Part 2. Results, Wood Sci. Technol, 28: 59-65.
- 12. Liu, J.Y. and Simpson, W.T., 1996, Mathematical Relationship Between Surface Emission and Diffusion Coefficients, Drying Technology, 14(3&4): 677-699.

- 13. Liu, J.Y. and Simpson, W.T., 1997, Solution of Diffusion Equation with Constant Diffusion and Surface Emission Coefficients, Drying Technology, 15(10): 2459-2477.
- 14. Liu, J.Y. and Simpson, W.T., 1999, Two-Stage Moisture Diffusion in Wood with Constant Transport Coefficients, Drying Technology. 17(1&2): 257-269.
- 15. Chen, Y., Choong, E.T. and Wetzel., D.M. 1994. Optimum Average Diffusion Coefficient: An Objective Index in Description of Wood Drying Data, Wood Fiber Sci., 26(3): 412-420.
- 16. Hines, A.L. and Maddox, R.N., 1985, Mass Transfer Fundamentals and Applications, Prentice-Hall, Inc., USA.
- 17. Dedic, A., 1997, A Calculation Method of Obtaining Desorption Isotherms of Beech (*Fagus Moesiaca*) Wood, Drying Technology, 15(10): 2557-2564.
- 18. Cloutier, A. and Fortin, Y., 1991, Moisture Content Water Potential Relationship of Wood from Saturated to Dry Conditions, Wood Sci. Technol., 25:263-280.
- 19. Milota, M.R. and Tschernitz, J.L, 1990, Correlation of Loblolly Pine Drying Rates at High Temperature, Wood Fiber Sci., 22(3): 298-313.
- 20. Keey, R.B., 1978., Introduction to Industrial Drying Operations, 1st ed., Pergamon Press, UK.
- 21. Lee, W. H., Okano, T. and Ohta., M., 1991, Moisture Transmission in Wood: Moisture Transfer and Velocity of Moisture Transmission in a Steady State, Mokuzai Gakkaishi, 37(2): 101-108.
- 22. Simpson, W.T. and Liu, J.Y., 1997, An Optimization Technique to Determine Red Oak Surface and Internal Moisture Transfer Coefficients During Drying, Wood Fiber Sci., 29(4): 312-318.

List of Tables

TABLE 1. Rubber wood EMC from desorption experiment (average of three specimens)

TABLE 2. Diffusion coefficients of rubber wood calculated by four schemes.

Table 1

Temp.	Sodium nitrite		Sodium chloride		Potassium sulfate	
(°C)	RH (%)	EMC (%)	RH (%)	EMC (%)	RH (%)	EMC (%)
42.5	60.7	11.05	74.8	13.93	96.2	20.97
61	57.7	9.59	74.4	12.91	95.4	20.24
75	56.0	8.50	74.1	11.27	94.9	19.76
85	55.0	7.82	73.9	10.65	94.6	19.24
108	53.0	5.82	73.4	7.69	94.1	15.60

Table 2

Temp	RH	EMC	Diffusion coefficients (x10 ⁻⁶ cm ² /s)								
(°C)	(%)	(%)	*Logarithmic		*Square-root		*Half-E		*Optimum		
42.5	60.7	11.05	1.834	(0.068)	1.816	(0.066)	1.348	(0.129)	2.047	(0.054)	
	74.8	13.93	1.350	(0.056)	1.276	(0.062)	1.004	(0.056)	1.251	(0.056)	
	96.2	20.97	1.194	(0.091)	1.173	(0.092)	0.893	(0.227)	1.202	(0.074)	
61	57.7	9.59	4.673	(0.035)	4.253	(0.038)	3.367	(0.109)	4.390	(0.035)	
	74.4	12.91	2.439	(0.097)	2.465	(0.097)	1.862	(0.230)	2.452	(0.088)	
	95.4	20.24	2.329	(0.165)	2.400	(0.166)	1.607	(0.411)	2.301	(0.149)	
75	56.0	8.50	5.483	(0.038)	5.040	(0.038)	3.917	(0.111)	5.272	(0.036)	
	74.1	11.27	4.468	(0.050)	4.395	(0.050)	3.272	(0.142)	4.438	(0.048)	
	94.9	19.76	2.030	(0.162)	1.511	(0.177)	1.435	(0.350)	2.031	(0.162)	
85	55.0	7.82	6.448	(0.020)	8.167	(0.025)	5.570	(0.035)	6.595	(0.019)	
	73.9	10.65	4.924	(0.036)	4.874	(0.037)	4.211	(0.078)	5.366	(0.031)	
	94.6	19.24	2.912	(0.091)	2.789	(0.089)	2.429	(0.107)	2.796	(0.078)	
108	53.0	5.82	20.430		16.100		11.620		21.270		
	73.4	7.69	16.260		15.860		10.190		17.650		
	94.1	15.60	5.178	(0.083)	6.182	(0.060)	4.978	(0.094)	6.280	(0.060)	

^{*}value in () represent sum of $(\Delta E)^2$

List of Figures

- FIGURE 1. Desorption isotherms of rubber wood.
- FIGURE 2. Logarithmic plots for determining enthalpy of wetting of rubber wood.
- FIGURE 3. Enthalpy of wetting with respect to moisture content.
- FIGURE 4. Plot of MODEL 1 compared with the experimental data (lines represent eq. 11 and symbols represent the data read from Fig.1)
- FIGURE 5. Contour plots of EMC compare to previous study [2],[3]

 (a) eq.1 & eq.12 (USDA Handbook—— & Model 2-----)

 (b) eq.2 & eq.12 (Pang, 1997 ——— & Model 2-----)
- FIGURE 6. E-values as a function of drying time, comparison between the experimental E-values (symbols) and calculated E-value (lines) determined from the optimum scheme.
- FIGURE 7. Diffusion coefficient vs relative humidity at different desorption temperatures (lines represent predicted relation, symbols represent experiment data calculated from optimum schemes)

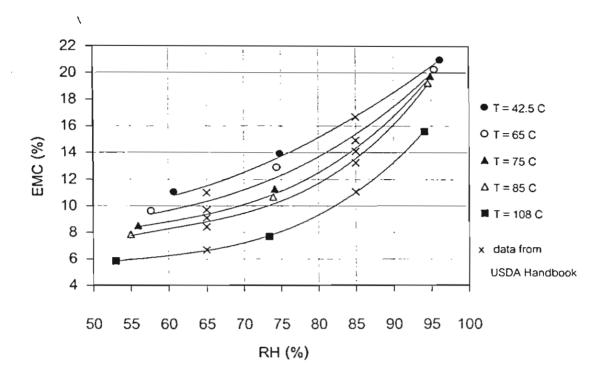


Fig.1

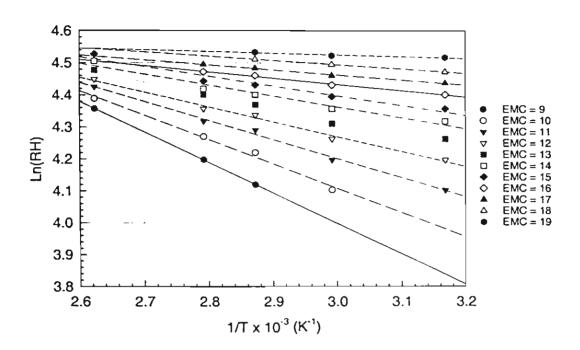


Fig.2

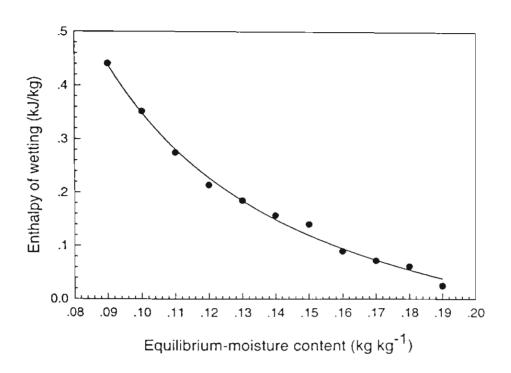


Fig.3

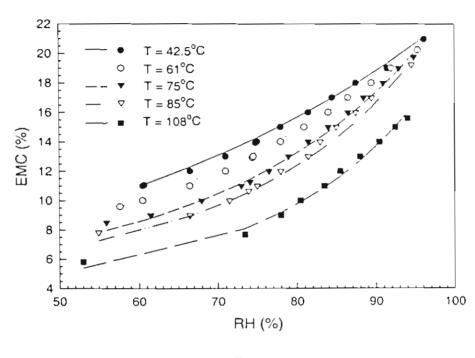


Fig.4

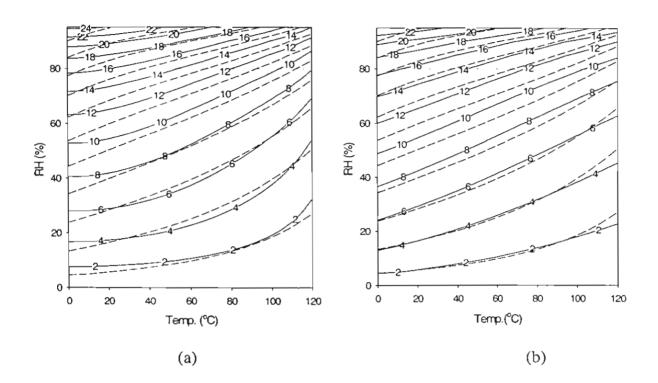


Fig.5

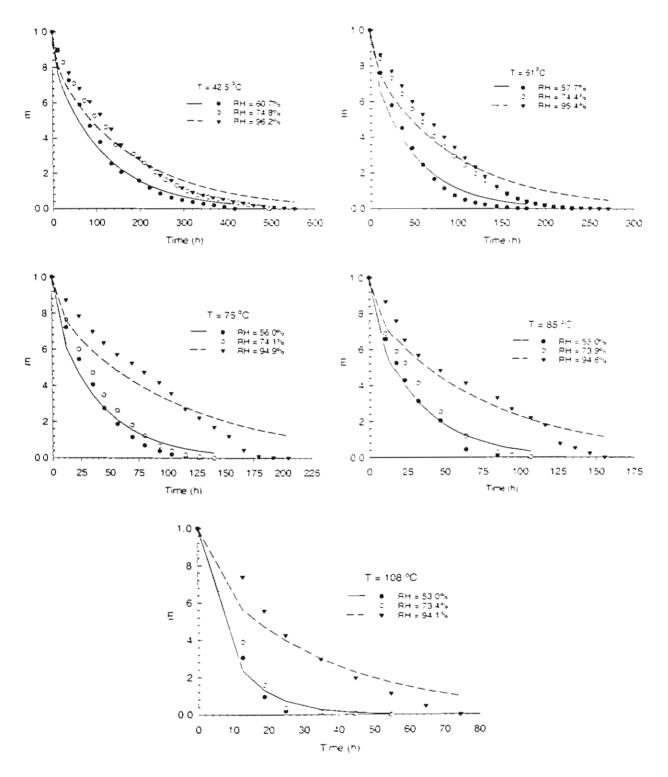


Fig.6

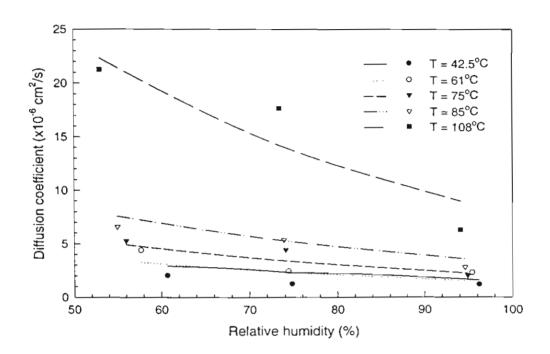


Fig.7

EFFECT OF KILN CONTROL PARAMETERS ON DRYING SCHEDULE OF RUBBER WOOD IN A LAB-SCALE WOOD DRYING KILN

T. Theppaya 1, 2 and S. Prasertsan 1

- Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University. Hatyai, Songkla, 90112, Thailand.
- 2. The Joint Graduated School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi.

 Bangkok, 10140. Thailand.

Abstract

In drying of rubber wood, the kiln schedule effects the wood drying rate, final moisture content, quality of dried wood and energy consumption. In order to develop drying strategy for rubber wood, a drying test rig was fabricated, which the relative humidity, the temperature and the air velocities are programmable. The wood samples of 34 cm in length and different cross section dimension were tested. The samples were stacked in the same way as used in conventional kiln. The drying experiments were conducted at high (110°C) and conventional (below 90°C) temperatures. It was found that drying at high temperature can shorten the drying time by 50% and consume less (over 40%) energy in constant air velocity mode (3.3 m/s). However, v-RH mode has more influence on drying energy and time in low temperature drying than that high of the temperature drying. High temperature drying with proper kiln schedule yielded the dried product of the same quality as the conventional drying schedule. In order to saving drying time and to reach the final moisture content of 8% to 14%, the holding relative humidity should be less than 7.5% for both high temperature and conventional dryings. However, the high temperature drying is suitable for the sample having width less than three times of its thickness otherwise the good quality cannot be achieved.

Key Words: drying schedule; kiln control parameters; moisture content; rubber wood

Introduction

Drying is one of the most energy consuming processes in many industrial applications including the timber. The main objective of wood drying is to reduce its moisture content which consequently improves the strength and durability. Practically, wood were dried at moisture content below the fiber saturation point, the point that it starts to shrink. Overshrinking in any direction during drying makes the wood degrades. The moisture content of the wood should be equilibrium with the environment in which they are used. Because they are material that can both absorb and desorp the moisture from surroundings. These problems mainly depend on the drying process. The drying temperature is a parameter directly influences the wood moisture content, the rate of water evaporation, the drying time, the energy consumption and also the quality. In general, the wood drying kilns are classified based on the maximum operating temperature. They are named as lowtemperature kiln (49°C), conventional-temperature kiln (82°C), elevated-temperature kiln (99°C) and high-temperature kiln (above 100°C) [1]. A substantial amount of heat energy is required even though the wood drying is done in the conventional drying kiln. Although, natural air drying does not cause any expenditure for heat energy, but this method depends on weather and it takes longer time to dry. Previous studies reported that the energy required to remove a kilogram of water from the wood is in the range of 4.7 to 7.0 MJ/kg [2], or varied from 1.51 MJ/kg for a dehumidifier drying softwood to 21.78 MJ/kg for an indirect gas fried chamber kiln drying of hardwood [3].

In furniture manufacturing factories, the size of the sawn timber is assigned by the size of products. The rubber wood lumber is sawn into small timbers of about 105 to 135 cm in length, this length includes 10 to 15 cm of extra length reserved for end cutting. After the process of chemical solution treatment and drying, they will be cut into three or four boards with 30 cm long. This is done in order to reject or avoid some defects such as knots, discolor part of the board, defects of end check and end spilt due to drying. These short boards are glued together to extended their width and length. Many rubber wood factories in Thailand use almost the same cross section of dried boards from sawing process to produce the products. The size is reduced before assembly step only by cross cutting and surface planing avoid the affect of stress released due to drying. Because of difficulty of the stress test in wood boards, the quality in this study inspected by visualization for end checking, end spilt, bow and cup. The chemically-treated rubber wood boards were purchased from a furniture factory. The flat sawn boards of 25 mm in thick, which are used by most rubber wood furniture products, were exploited for this drying experiment study. Various drying techniques have been developed to improve or adopt new kiln for drying to accomplish the goal of good economy. Therefore, kiln schedule is the strategy not only how we plan to dry the boards but also what the kiln conditions should be to reach the target moisture content with acceptable quality.

This paper presents the effects of kiln operating parameters on the drying schedule of rubber wood. It reports the results of lab-scale experiment.

Materials and Methods

Experimental apparatus

The experiment of this study was carried out on a lab-scale wood drying kiln. (see Fig.1) A lab-scale wood drying kiln was fabricated. The hot air flows through the wood stack in one direction for both close and open loop systems with no reverse flow. The drying chamber has volume approximately of 73.5 liters for loading 25 to 35 kg of green wood with 34 cm in length. The samples are arranged to have its thickness face normal to the direction of the flow with stack depth of 50 to 60 cm. Five layers stacking of sample boards, each six boards wide for a 75x340x25 mm board and each nine boards wide for a 50x340x25 mm board, can be accommodated. Each layer was separated by stickers, which are 25 mm in thick. The kiln was powered by the 5.4 kW rectangular fin-typed electric heaters, which were controlled via temperature controller and power regulator. The relative humidity (RH) and temperature of the kiln can be programmed in step changes correspond to the periods of drying time. The saturated steam and the mist of water were added when the humidity of drying air in the kiln system is below the lower setting value.

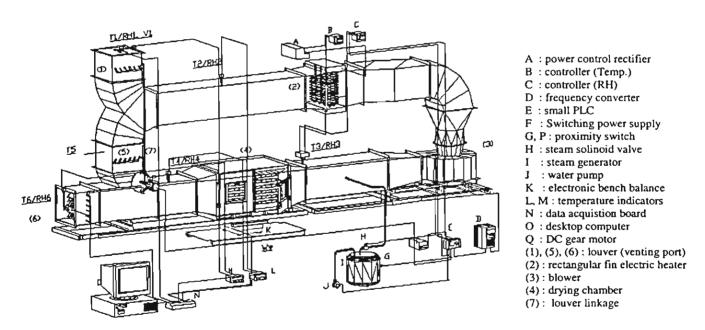


Figure 1. Experimental apparatus

Exhaust air venting devices were operated periodically at either low or high limit of the controller setting values of temperature and relative humidity (RH), depending on each step of drying patterns. The benefit of this venting control is that the kiln can draw in outside air to regulate kiln atmosphere by intake and exhaust according pre-programmed moisture and temperature. A forward curved blower was used to produce airflow inside the kiln circuit. The air velocities can be adjusted with in the range of 1.1 m/s to 8.8 m/s for a 30x30 cm² duct size, however, in velocity constant mode the air velocity not exceeding 5.0 m/s was set in this experiment. The airflow in the kiln can be adjusted to be two different velocity modes, one is a constant velocity mode, another is auto-switched mode. In the later case, air velocity will be switched from high to low velocity at a pre-

determined relative humidity. At a constant velocity mode, the air velocities are 2.2 m/s, 3.3 m/s and 4.4 m/s whereas for a varying velocity mode the air velocity will be changed from 4.4 m/s to 2.2 m/s at 10% RH or depending on pre-determined RH. The air velocity can also be set to change according to the kiln relative humidity (v-RH mode). At RH of 30% - 100% the relevant velocities were 2.2 m/s - 8.8 m/s, respectively. A constant velocity of 2.2 m/s is employed when the kiln RH decreases below 30%RH in v-RH mode.

The measuring variables during a drying process are the temperature, the relative humidity, the air velocity, the electrical power consumption and the weight of rubber wood. These data measured by different instruments such as RTD sensors, humidity sensors, anemometers, watt transducer and electronic bench balance. The signals from measuring instrument are interfaced with NI-4351 and ADC-16, the PC-based data acquisition cards, and all data are periodically saved to the computer.

Experimental study

In this study the drying configurations are high temperature (110°C) and conventional temperature (90°C) dryings with RH control. Both configurations were run at different air velocities with venting and circulating approaches. The minimum relative humidity of drying air was set from 2.5% to 10%. The actuators used to control the drying air temperature and relative humidity are configured to run automatically by following conditions:

- Exhaust air venting every 1:30 hrs of elapsed time with a venting period of 25 seconds (day and night time)
- Exhaust air venting time of 25 seconds when the RH of drying air is 5% greater than the set point value (s.p.) and with the time longer than 10 minutes (day time)
- Exhaust air venting immediately for 25 seconds when the RH is 5% greater than the s.p. (night time)
- Exhaust air venting immediately for 25 seconds when the drying air temperature is 5% greater than the s.p. (day and night time)
- Humidifying when the RH is 2% lower than the s.p. (day and night time)

Results and Discussion

Thirty-eight runs of drying experiment were performed, however, only twenty-six experiment results were presented in Table 1.

At conventional temperature drying with RH controlled, it was found that only run number 7, 8, 9 and 10 could be achieved target moisture content (MC) of 8% to 14%. Run number 1 to 6 need longer time to finish. It is anticipated that the drying time could be double. However, they were not proceeded due to water locking occurred in wood fiber and end split, obviously seen in the table that most of the final MC are above the fiber saturation point of 21.5% (eqn.13 in [4]). Although, the initial MC has significant effect on drying energy due to it is prone to produce moist air inside the kiln system.

Consequently, the kiln requires much more heat and time to bring up the kiln temperature (see test 1 and 7). In runs 8 and 9 with constant air velocity, the RH was not controlled, which means that the humidifying system was not configured to operate and only periodic exhaust air venting was functioned. At low temperature drying, lower air velocity consumes more drying time and energy than higher air velocity to reach the required MC (test 8 and 9).

Table 1. Experiment results

	Drying	Minimum RH (%)	Air velocity (m/s)	Wood moisture content (-)			Drying		
Test	Temperature (C)			intial	final	removed	Time (h)	Energy (MJ/kg)	Remarks
1	CT 65	10	2.2	1.309	0.395	0.914	22.54	11.747	constant vel.
2	CT 85	7.5	4.4/2.2	0.772	0.229	0.543	13.71	12.625	* 10% RH
3	CT 85	10	4.4/2.2	0.772	0.215	0.557	16.28	17.361	* 10% RH
4	CT 85	10	6.6/4.4	0.902	0.252	0.650	13.19	11.732	* 15%RH
5	CT 90	7.5	2.2	0.971	0.297	0.674	17.89	11.378	Constant vel
6	CT 90	7.5	2.2	0.968	0.213	0.755	14.96	11.982	Constant vel
7	CT 90	10	4.4/2.2	1.155	0.126	1.029	23.01	18.550	* 17.5%RH
8	CT 90	nc	3.3	0.836	0.089	0.747	26.13	17.994	Constant vel
9	CT 90	nc	5	0.946	0.099	0.847	22.88	16.474	Constant vel
10	CT 90	5	v-RH/2.2	0.773	0.132	0.641	15.98	13.856	* 30%RH
11	HT 112.5/90	5/5	3.3	0.930	0.125	0.805	12.02	10.531	Constant vel
12	HT 110/85	10/12.5	4.4	0.772	0.124	0.648	10.76	14.392	Constant vel
13	HT 110/90	7.5/10	3.8/2.2	0.689	0.154	0.535	12.59	12.518	* 10%RH
14	HT 110/90	5/7.5	4.4/2.2	0.986	0.181	0.805	12.54	10.542	* 10%RH
15	HT 110/90	5/7.5	4.4/2.2	0.822	0.141	0.681	12.73	10.236	* 10%RH
16	HT 110/90	5/10	4.4/2.2	0.929	0.216	0.713	10.33	16.175	* 15%RH
17	HT 110/90	7.5/10	4.4/2.2	0.701	0.123	0.578	12.50	12.649	* 10%RH
18	HT 110/90/110	7.5/12 <i>.51</i> 2.5	4.4/2.2	0.834	0.061	0.773	12.02	11.627	* 10%RH
19	HT 120/110/90	12.5/7.5/7.5	4.4/2.2	0.841	0.147	0.694	13.50	9.791	* 10%RH
20	HT 110/90	5 <i>1</i> 7.5	4.8/2.7	0.934	0.177	0.757	10.33	10.312	* 7.5%RH
21	HT 110/90	10/10	4.8/2.7	0.904	0.160	0.744	11.65	14.738	* 7.5%RH
22	HT 110/90	7.5/10	4.4/2.7	0.825	0.123	0.702	10.50	13.618	* 10%RH
23	HT 110/90	7.5/10	4.4/2.7	0.689	0.120	0.569	12.08	14.805	* 10%RH
24	HT 110/90	5/7.5	6.6/4.4	0.928	0.133	0.795	10.88	15.641	* 15%RH
25	HT 110	7.5	v-RH/2.2	0.646	0.103	0.543	12.44	11.341	* 30%RH
26	HT 110	5	v-RH/2.2	0.787	0.122	0.665	12.00	9.177	* 30%RH

^{*} is noted that the air velocity, column 4 (a/b) change from a to b at specified RH

v-RH is the mode of air velocity changing relative to RH of drying air

nc is refer to no RH control, HT is high temperature, CT is conventional temperature column 2 represented two setting temperatures corresponded to the setting relative humidity in column 3

Comparing the runs number 2 and number 3, at the same drying temperature, varying velocity mode and initial moisture content but different RH control, it was found that keeping higher RH at specified drying temperature increased the drying time and drying energy. Drying air velocity in auto-switched mode and changing relative to RH can reduced drying time and energy used. V-RH mode can save drying energy and drying time compared with the velocity auto-switched mode at lower RH controlled over 25% and 30% respectively (test 10 and 7).

At the high temperature drying, a lower drying air velocity consumed less energy but required longer drying time. Higher RH control increased drying energy and drying time. These trends are similar to drying experiment at low temperature. For a high initial MC batch, it can be observed that the air velocity switched mode should be performed after the RH of the kiln is below 10%. Because in a high MC batch, the air velocity still has significant effect on the drying rate (test 16 and 24). However, it has less effect whether the auto-switched mode is active at below or above 10% of RH for the air velocity after switching be still high (4.4 m/s). Typically in the v-RH mode for this lab-scale wood drying kiln, the relative humidity of drying air in the early drying stage is quite high, 65% to 85% (corresponded to air velocities 5.5 to 7.4 m/s). In the early stage of drying, the wood MC is still greater than 40%. Above this MC, the drying rate increased with air velocity [5]. At low initial MC of wood drying batches (MC<0.7), higher RH controlled (7.5/10) can achieve the target MC for both auto-switched mode and v-RH mode (test 13) and 25). However, the later is better. The tests 14 and 15 were run to confirm the drying schedule at the same air velocity mode and RH controlled. The high temperature drying can be compared to the low temperature drying at the same drying air velocity of 3.3 m/s (test 8 and 11). It is observed that the HT drying reduces over 50% of drying time and 40% of energy used.

Conclusions

The drying experiments were performed at high (110°C) and conventional (85°C-90°C) temperatures. It was found that drying at high temperature can shorten the drying time by 50% and consume less (over 40%) energy as compared to the constant air velocity mode (3.3 m/s). The *v-RH mode* has more influence on drying energy and time in low temperature drying than the high temperature case. High temperature drying with proper kiln schedule yielded the dried product of the same quality as the conventional drying schedule. In order to reduce the drying time and to reach the final moisture content of 8% to 14%, the controlled relative humidity should be less than 7.5% for both high temperature and conventional temperature dryings.

Acknowledgement

This research work was financially supported by the Thailand Research Fund (TRF) under the Royal Golden Jubilee Program for Ph.D. (RGJ-Ph.D) and the Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangkok, Thailand.

References

- [1] Forest Products Laboratory, U.S. Department of Agricultural. (1988) Dry Kiln Operator's Manual
- [2] Rosen, H.N. (1995) Drying of wood and wood products. *In: Handbook of Industrial Drying*, Vol.2, 2nd edn., Mujumdar, A. S., Marcel Dekker Inc., New York., pp.899-920.
- [3] Jay, S. and Oliver T.N. (1996) Timber drying: Trends in energy consumption and equipment utilization within the UK timber industry, Drying'96. Vol.A: 663-670.
- [4] Theppaya, T. and S. Prasertsan (2002) Parameters influencing drying behavior of rubber wood (Hevea Brazilliensil) as determined from desorption experiment, Drying Technology, 20:2, 507-525.
- [5] Simpson, W. T. (1997) Effect of air velocity on the drying rate of single eastern white pine boards, Res. note FPL-RN-266. Madison, WI:US. Department of Agriculture, Forest Service, Forest Products Laboratory. 5p.