

Materials and Methods

Six *Chitra chitra*, two females and four males, were maintained in two outdoor enclosures at Kanchanaburi Inland Fisheries Research and Development Center (KIFRDC), Tha Moung District, Kanchanaburi Province, Thailand. The breeding ponds, 400 square-meter (16x25 m), were constructed near the Mae Klong River and were climatically similar to the natural habitat. The water depth varied from 60 to 80 cm, and a 30 m² artificial sandbank ascending 80-90 cm above water level was constructed for nesting in each enclosure. Roofs were constructed over the sandbanks for protection from rain-induced mortality of eggs and hatchlings (Kraemer and Bell, 1980). Fences were also constructed around the ponds to protect turtles and their eggs from predators, such as dogs, snakes, and monitor lizards (Figure 7.1). A female and two males were placed in each pond (Table 7.1). Foods provided for *C. chitra* in the captive ponds were mainly live Nile tilapia *Oreochromis niloticus*; native fishes, such as *Bardodes gonionotus*, were available, entering the ponds during water exchange with the Mae Klong River daily Monday – Friday. Air and water temperature in the captive ponds were recorded throughout the year (Figure 7.2).

Pond A

Pond A was completed in early 2000. The first female, 111 kg, was released on 26 February 2000. It was captured from the Kwae Noi River, Kanchanaburi Province, in 1997 and was separated from males for three years. The first male, 44 kg, was captured from the Mae Ping River, Nakhon Sawan Province, in June 1998. It was released in the breeding pond on 31 March 2000. The second male, 60 kg, was captured from the Kwae Noi River in April 1999 and was released into this pond on 2 November 2000.

Pond B

Pond B was completed in November 2001. One female, 71 kg, and a male, 88 kg, were caught from the Mae Klong River system in 1997. The second male, 88 kg, was caught from the agricultural canal (joining the Mae Klong River and the Tha Chin River) in Nakhon Pathom Province on 3 May 1999. All of them were released in the Pond B in November 2001.

Figure 7.1 Chitra chitra rearing Pond A at Kanchanaburi Inland Fisheries Research and Development Center.

Terrestrial Activity and Breeding Behavior

Terrestrial activity and breeding behavior of C. chitra in the breeding ponds were monitored through the year. Terrestrial activity was nocturnal, and its occurrence and frequency data derived from tracks in the sand. Walking tracks indicated terrestrial movement without nesting activity. The track dimensions allowed identification of the individual(s). Nest tracks led to

blank nests or nests with eggs. Mating behavior and copulation duration were also observed and recorded.

Table 7.1 Size, locality, date of capture, and date of release into breeding pond of C. chitra in captivity.

Pond	Sex	Shell length (cm)	Shell width (cm)	Weight (kg)	Locality (river)	Capture time	Released time
A	Female	98.5	81	111	Kwae Noi	1997	26/2/2000
	Male 1	76	66	44	Mae Ping	6/1998	31/3/2000
	Male 2	82	70	60	Kwae Noi	4/1999	2/11/2000
B	Female	84	75.5	61	Kwae Noi	1997	19/11/2001
	Male 1	97	85	88	Kwae Noi	1997	19/11/2001
	Male 2	103	85	88	Mae Klong river system	5/1999	11/2001

Incubation methods

Nests were excavated by hand within 48 hours after nesting. When the first egg was uncovered, the depth to the top of the egg chamber was measured. The depth to the bottom and the width of the chamber were also measured. Eggs of the first and the second clutch of each breeding pond were weighed to the nearest 0.01 g with an electronic balance and linear measurements of width and length measured to the nearest 0.01 mm with digital calipers. The number of eggs and clutches of each female were recorded.

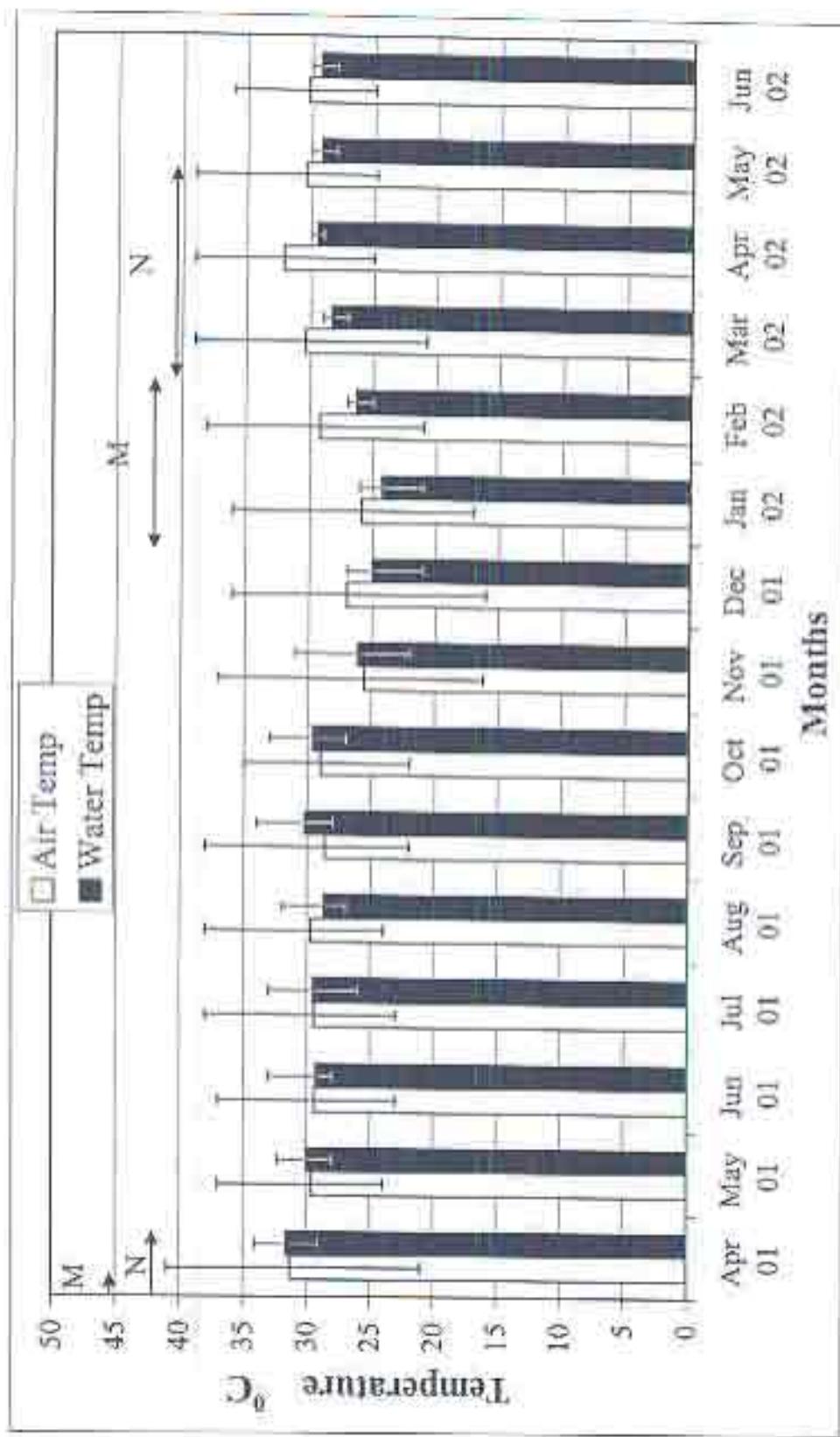


Figure 7.2 Means of water and air temperature in pond A during April 2001 to June 2002. The vertical bars show maximum and minimum of air temperature and water temperature in each month. The arrows show periods of mating (M) and nesting (N).

The eggs were carefully removed and handled to prevent horizontal rotation and reorientation of their vertical axes. Three methods were used for incubation. In the first method, one clutch from each pond was transported to the Department of Biology, Faculty of Science, Chulalongkorn University.

Eggs were put in a plastic container, 40x70x37 cm³, on 10 cm thick of sand and were covered with 20 cm of additional sand. Moisture in the container was maintained by spraying water on the sand each morning and evening.

In the second method, one clutch from each pond was incubated in circular fiber containers 75 cm in diameter. Eggs were placed on 10 cm of sand and again were covered with 20 cm of additional sand at KIFRDC. The fiber containers were placed in water to protect the eggs from ants and other insects. Water was sprayed on the sand every morning and evening to control the sand moisture content. Water loss was minimized by placing a plastic cover securely over the top of each container.

In the third method, two clutches from each pond were incubated at the nesting area *in situ*. After 30 days of incubation, the nests were surrounded by mesh to restrain the hatchlings for counting, measuring, and protection from predators.

In each method, the number of hatchlings emerging was recorded and the respective hatching success rates calculated. Incubation times were also recorded in each method. The hatchlings of all treatments were measured (CW and CL) and weighed. Max-Min mercury thermometers were inserted horizontally near the nests to monitor incubation temperature throughout the incubation period. Air temperatures and sand moisture content were also recorded in each method during the studies. Sand moisture content (%) was calculated from [(wet weight - dry weight) / dry weight] x 100.

Growth of hatchlings

Twenty hatchlings, from A1/KIFRDC (Table 7.3), were divided into two groups. They were reared indoors in two glass aquaria, 50x105x40 cm. Sand covered the bottom of the aquaria to a depth of about 4 cm. The hatchlings in each aquarium were provided with 3 cm water. Water was exchanged every Tuesday and Friday. Fry fish of Labeo rohita (Hamilton, 1822), (23.27 \pm 1.57 mm length and 0.12 \pm 0.05 g weight), Oreochromis niloticus (Linnaeus, 1758), (24.21 \pm 1.34 mm length and 0.29 \pm 0.04 g weight), were fed to C. chitra hatchlings in this study. One hundred fish within the first two months and 200 fish in the third month were provided daily in each aquarium. The total number of fish eaten was recorded daily and was divided by hatchlings in order to estimate the average amount consumed per individual. Weight, carapace width and carapace length of hatchlings were measured every two weeks for fourteen weeks.

Results

Reproduction

Timing of reproductive activity

Reproductive behaviors occurred in both ponds over the nine-month period between August and April in both years of the study. Tracks of the females were observed from August through April, with their frequency increasing in November, and from February through April. Nesting tracks and nests were observed from February through April (Figure 7.3).

In the first year of our study, the first copulation observed involved the 44 kg male and female in Pond A on 6 September 2000, at 8:00 A.M. about four months after his release into the pond. Other copulations occurred between 3 December 2000 and 3 April 2001 mainly between 6:15 A.M. and 8:30 A.M. (Table 7.1 and 7.2), with the males being most active between

December and February. At this time, males often chased the females and attempted to copulate.

In the second year, copulation occurred between December and February (Table 7.2). Copulations lasted between 10-15 minutes in both years of study (Table 7.2).

Table 7.2 Date of copulation and mating duration of *C. chitra* in pond A.

Nestling year	Copulation times	Mating duration
2001	- 6 September 2000; 6.00 am	~10 min
	- 3 December 2000; 8.00 am	~10 min
	- 22 February 2001; 7.30 am	~10 min
	- 2 April 2001; 8.30 am	~10 min
	- 3 April 2001; 6.15 am	~10 min
2002	- 29 December 2001; 2.00 p.m.	~10 min
	- 27 February 2002; 9.40 am	~15 min

Figure 7.3 Terrestrial activities of *C. chitra* in pond A: walking tracks, nesting tracks and nests between July 2001 and June 2002.

Nesting

Nesting occurred on the artificial sandbanks. Walking tracks, which may represent exploratory behavior by the females, were found before nesting actually occurred. The first nesting track was found in the morning of 22 February 2001 in Pond A, but the actual nest site was not located. Several additional nest tracks and presumed nests (i.e. large areas of disturbed sand) were found during March to April. On 7 June 2001, after heavy rains and rising water levels within the pond enclosures, Chitra eggs were discovered on the sand surface near the water's edge. Subsequently the sandbank was excavated and four clutches of eggs were removed from flooded nests.

One year later, nesting tracks were found in the morning in both Pond A and Pond B from 27 February to 20 April 2002. Nests were excavated within 48 hours after they were constructed. The nest hole of C. chitra is flask-shaped. The mean of four egg chambers of Pond A was 23.5 cm width, 32.5 cm height from sand surface to top of egg clutch, and 54 cm height from sand surface to nest bottom. The average of four egg chambers of Pond B was 22.8 cm, 32 cm, and 49.3 cm, respectively. The nest dimensions of the smaller female were less than those of the larger female (Table 7.3).

Table 7.3 Hatching success and other parameters for the three incubation methods. Abbreviations: KIFRDC, Kanchanaburi Inland Fisheries Research and Development Center; CU, Chulalongkorn University; ASB, Artificial sandbank; Size of egg chamber, width (W), height of ground surface to egg top (ET), height of nest bottom to ground surface (NB). Number in parentheses indicates the number of eggs which were found in the original nests.

Pond/Method	Nesting Date	Hatching Date	Egg chamber (W, ET, NB) cm	No. of eggs incubated	Sand Temp. (°C)	Air Temp. (°C)	No. of hatchlings emerged	Incubation time (days)	Hatch rate (%)
A1/KIFRDC	16/3/2002	10-14/5/2002	23, 40, 58	44(45)	24-38	24-42	35	55-59	80
A2/CU	21/3/2002	15-19/5/2002	23, 28, 49	87(88)	26-33.5	25-34	78	55-59	90
A3/ASB	4/4/2002	3/6/2002	22, 30, 54	79(79)	26-35	24-39	74	60	94
A4/ASB	20/4/2002	19-21/6/2002	26, 32, 55	65(68)	26-35	24-39	57	62-64	88
B1/KIFRDC	21/3/2002	18/5/2002	23, 30, 48	40(40)	24-39	24-41	1	58	3
B2/CU	27/2/2002	3/5/2002	25, 35, 50	*22(40)	26-33.5	25-34	1	65	5
B3/ASB	?	16-21/5/2002	22, 30, 50	67(67)	26-35	24-39	44	?	66
B4/ASB	3/4/2002	3-7/6/2002	21, 33, 49	58(58)	26-35	24-39	9	61-65	16

? Actual nesting date not observed.

* Eggs were found at 2 weeks old. The infertile eggs were removed.

Table 7.4 Size of eggs and hatchlings of captive *C. chitra*. Numbers in brackets of no. of eggs and no. of hatchlings indicate the number of eggs and hatchlings which were measured. Numbers in parentheses indicates standard deviation (SD).

Pond	Year	Clutch	No. of egg	Egg width (mm)	Egg length (mm)	Egg mass (g)	No. of hatching	HW (mm)	Hatching CL (mm)	Hatching	Wet mass (g)	
A	2001	A1	74[-]	-	-	-	-	-	-	-	-	
		A2	84[-]	-	-	-	-	-	-	-	-	
		A3	76[75]	33.08(0.43)	33.48(0.82)	20.41(0.77)	111	-	-	-	-	
		A4	1[-]	-	-	-	-	-	-	-	13.34	
2002		A1	45[44]	32.67(0.44)	33.05(0.51)	19.72(0.70)	35[35]	38.86(1.60)	43.07(1.11)	13.45(0.65)	-	
		A2	88[35]	32.19(0.53)	32.68(0.50)	19.14(0.72)	78[78]	38.22(1.78)	43.88(0.93)	13.85(0.54)	-	
		A3	79[-]	-	-	-	74[74]	39.32(1.27)	43.12(0.89)	13.65(0.49)	-	
		A4	68[-]	-	-	-	57[57]	38.22(1.56)	42.99(1.56)	12.79(0.70)	-	
Mean of pond A			32.76(0.58) ^a	33.18(0.75)	19.83(0.50) ^a	-	38.65(1.47) ^a	43.36(1.20) ^a	13.43(0.68) ^a	-	-	
Range			30.10-34.37	30.99-38.67	15.58-21.60	-	33.32-41.67	39.20-46.66	11.27-14.89	-	-	
B	2002	B1	40[25]	28.87(1.47)	35.50(2.59)	16.70(0.56)	111	32.02	38.23	10.76	-	
		B2	40[40]	30.68(0.95)	31.63(1.02)	16.85(0.66)	111	35.70	40.48	11.57	-	
		B3	67[-]	-	-	-	44[42]	37.82(0.98)	41.70(1.68)	11.82(0.88)	-	
		B4	58[-]	-	-	-	99	37.72(2.82)	39.53(1.99)	10.57(0.95)	-	
Mean of pond B			28.98(1.46) ^a	33.12(2.60)	16.79(0.70) ^a	-	37.61(1.73) ^a	41.20(1.86) ^a	11.59(0.99) ^a	-	-	
Range			26.89-33.40	28.39-40.49	15.31-18.40	-	32.00-41.17	36.27-45.41	9.09-13.43	-	-	
Total mean			31.94(1.57)	33.16(1.54)	19.90(1.67)	-	38.46(1.52)	42.97(1.59)	12.10(1.08)	-	-	
Total range			26.89-34.37	28.26-40.49	15.31-21.60	-	32.00-41.57	36.27-46.66	9.09-14.89	-	-	

Clutch size

Clutch size ranged from 1 to 88 eggs, although it seems likely that the single egg clutch represents aberrant "nesting". The total eggs from the Pond A female were 215 eggs, from clutches of 74, 64, 76, and 1 egg in 2001. In 2002, the female of Pond A laid 280 eggs from clutches of 45, 88, 79, and 68, respectively. Also in 2002, the female of Pond B laid 205 eggs with clutches of 40, 40, 67, and 58 eggs, respectively (Tables 7.3 and 7.4). Both females deposited four clutches each in nesting season of 35 days at intervals of 5-23 days (Table 7.3).

Egg size

Most *C. chitra* eggs were white and spherically shaped, but a few were more oblong. The smaller female produced more elongate eggs. Eggshells were brittle and easily broken. The mean dimensions of the eggs ($n = 220$) were 31.94 ± 1.57 mm width (range 26.89-34.37 mm) and 33.16 ± 1.54 mm length (range 29.39-40.49 mm). Mean egg weight was 19.00 ± 1.67 g (range 15.31-21.60 g) (Table 7.4). Comparison of egg size between the two females revealed that egg width and weight were significantly different between the two females although egg length was not (Table 7.4). The larger female laid wider and heavier eggs than the smaller female.

Incubation and Hatching Success

Mean incubation time of *C. chitra* eggs was 59 ± 3 days ($n = 255$) with a range of 55-65 days (Table 7.3) at 24-42 °C air temperature and 24-39 °C sand temperatures (Figure 7.4).

Within a clutch, hatching varied from 1-5 days between first and last egg pipping. Only in the A3/ASB clutch that was incubated in the nest area did all hatchlings ($n = 74$) emerge at the same time (60 days). In the other clutches the eggs hatched over a 3-5 day period. For the 2002 year,

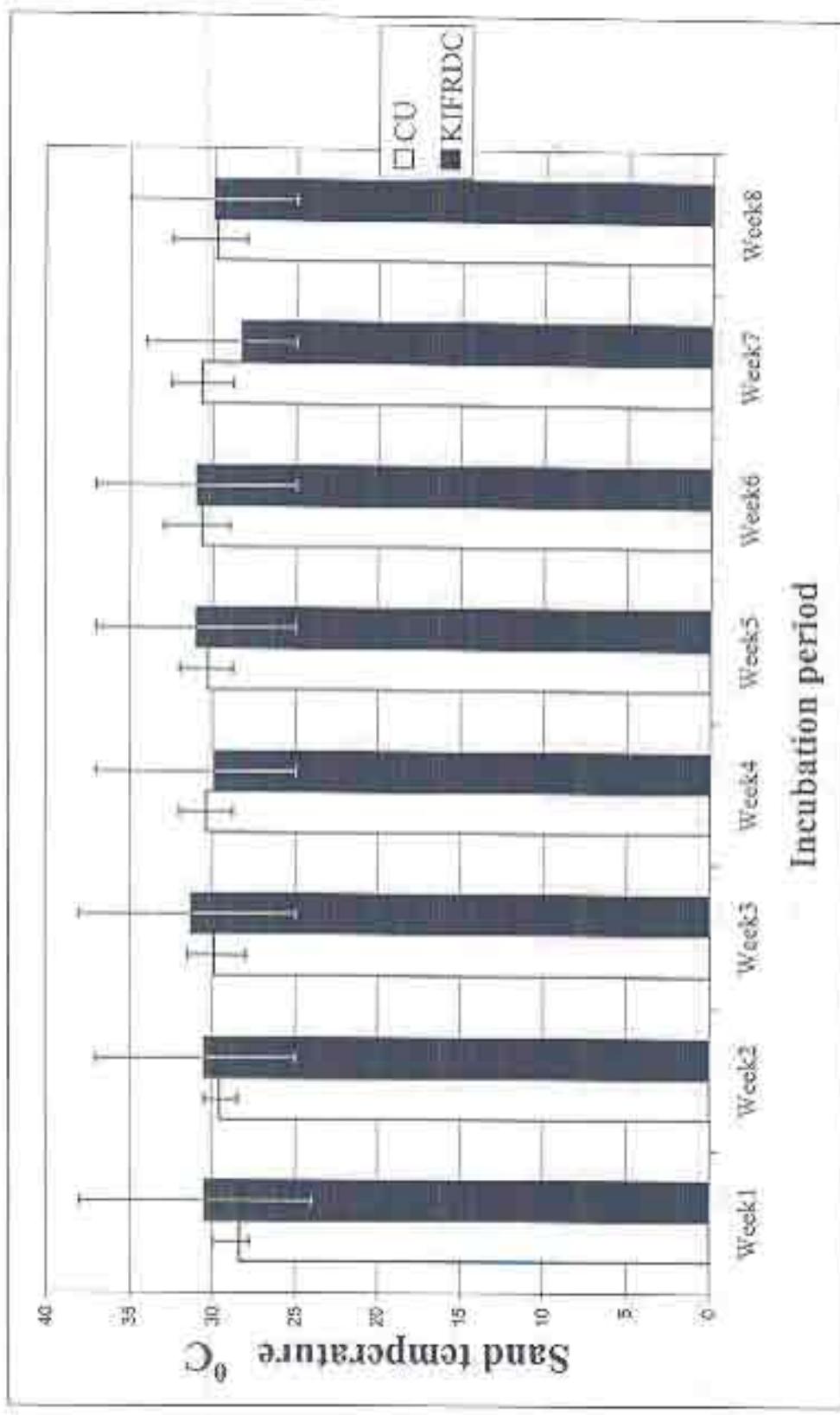


Figure 7.4 Sand temperature during *C. chitras* eggs incubation in KIFRDC and CU methods. The vertical solid bars show maximum and minimum of sand temperatures. Sand temperature of ASB was recorded as only max-min throughout the study.

the hatching success rates of the larger female's clutches incubated with the three methods ranged from 80 to 94 % (Table 7.3). Hatching success of the smaller female's clutches was much less, 3 to 66 % (Table 7.3). The hatch rates of the Pond A female were not significantly different among incubation methods. The hatch rate of Pond B was highest in B3/ASB1 clutch (66%) while hatch rates of the other clutches were very low. Air temperature ranged widely in all incubation methods; 24-42, 25-34 and 24-39 °C of KIFRDC, CU and ASB, respectively (Table 7.3). While sand temperatures in the CU method varied less than in the KIFRDC and ASB methods 24-39, 26-33.5 and 26-35 °C of KIFRDC, CU and ASB, respectively (Table 7.3). However, sand temperature in the ASB method was recorded as only max-min throughout the study (Figure 7.4).

Moisture contents of sand in CU, KIFRDC and ASB were 4.64 ± 0.53 (range = 4-5.8), 5.16 ± 0.36 (range = 4.8-6) and 3.78 ± 0.19 (range = 3.6-4.2) %, respectively. The moisture content of ASB is lower than in the CU and KIFRDC methods (Figure 7.5).

Hatching size

The mean hatching sizes were 38.46 ± 1.52 mm carapace width (range 32.00-41.67 mm), 42.97 ± 1.59 mm carapace length (range 36.27-46.66 mm) and 13.10 ± 1.03 g weight (range 9.09-14.89 g). Hatchling sizes from Pond A and Pond B were compared by t-test analysis. Hatchlings from Pond A were significantly wider, longer, and heavier than Pond B hatchlings (Table 7.4).

Growth

The mean sizes of 21 day-old hatchlings were 41.35 ± 0.57 cm carapace width, 44.53 ± 0.62 carapace length and 13.99 ± 0.60 g weight. After 14 weeks, mean hatchling size was 86.70 ± 5.17 mm carapace width, 91.72 ± 5.75 mm

Figure 7.5 Moisture content of sand during incubation in CU, KIFRDC and ASB methods for egg treatments from pond A.

carapace length and 103.97 ± 18.08 g weight, respectively. Moreover, the survival rate of these hatchlings was 90.64% for the test interval.

Figure 7.6 shows the relationships between CW, CL, Wt and age for 19 hatchlings (1 of them died after 2 weeks). It shows that CL and CW are strongly correlated with one another as well as with age, and that weight increase is strongly correlated with age (Figure 7.6). Another significant relationship was established between weight of food consumed per day and hatchling weight over a 14-week observation period (Figure 7.7).

Discussion

Mating and Nesting

The peak mating time of C. chitra observed in captivity, from December to February (Figure 7.2), is similar to the January to February mating season observed in nature (Taechacharernsukchera, 1991). Walking tracks (Figure 7.3) were found from August to April, with two peaks in November and March. The first terrestrial activity occurs before mating time and may be an exploration for suitable nesting sites. The second activity was for nesting, and nesting tracks and nests (Figure 7.3) were found from February to April. Some nests were constructed, but eggs were not deposited. These empty nests presumably result from disturbance of the nesting female and her abandonment of the nesting behavior. Similar occurrences of empty Chitra nests have been observed in nature. Fishermen and local people believe that Chitra constructs false nests to distract the egg predator Varanus salvator from locating the true nest. All captive C. chitra nested nocturnally, perhaps to avoid the high daytime temperatures (34-42°C) during the nesting season (Figure 7.2). The captives nested in late winter to late summer (February to May) when warmer temperatures provide appropriate thermal conditions for egg incubation. The captives' nesting season is probably similar to that in

nature. However, we found one clutch of wild C. chitra in Vajiralongkorn Reservoir (formerly Khoa Lam Reservoir) on 14 January 2000.

Knowledge of egg and clutch parameter is relatively well known in sea turtles, but these data are still lacking for many other turtle species (Moll, 1979; Gibbons and Greene, 1990). In this study, two C. chitra produced four clutches each in one breeding season after the larger female produced three or four (depending on whether the one egg clutch is counted) clutches the preceding year. Taechacharernsukchera (1991) dissected a dead female C. chitra that contained 97 hard-shelled oviducal eggs and 270 follicles. The size differences between follicles observed (3-4 groups) suggest that four to five clutches are laid by females each nesting season. The factors influencing the number of clutches per year are unknown. Clutch frequency of C. chitra in this study (based upon two years from Pond A and one year from Pond B) provides the first direct evidence that Chitra can lay multiple clutches (up to four) within a nesting season.

Multiple clutches hatching at intervals would provide some Chitra hatchlings an opportunity to avoid egg and hatchling predators and/or unfavorable weather conditions during portions of the hatching season.

Clutch size of C. chitra ranged from 40 to 88 eggs in this study, whereas Taechacharernsukchera (1991) found 97 eggs in a wild clutch. Nutphand (1990) stated that C. chitra normally laid 60 to 110 eggs per clutch. The highest number of eggs per clutch in C. chitra was recorded as 117 eggs (Nutphand, 1986). These data support the view that C. chitra should be classified as possessing reproductive Pattern I as defined by Moll, 1979. This pattern is characterized by the production of large clutches; multiple clutches produced during a well-defined nesting season; communal nesting in a well-defined ancestral nesting area; and careful construction of covered nests.

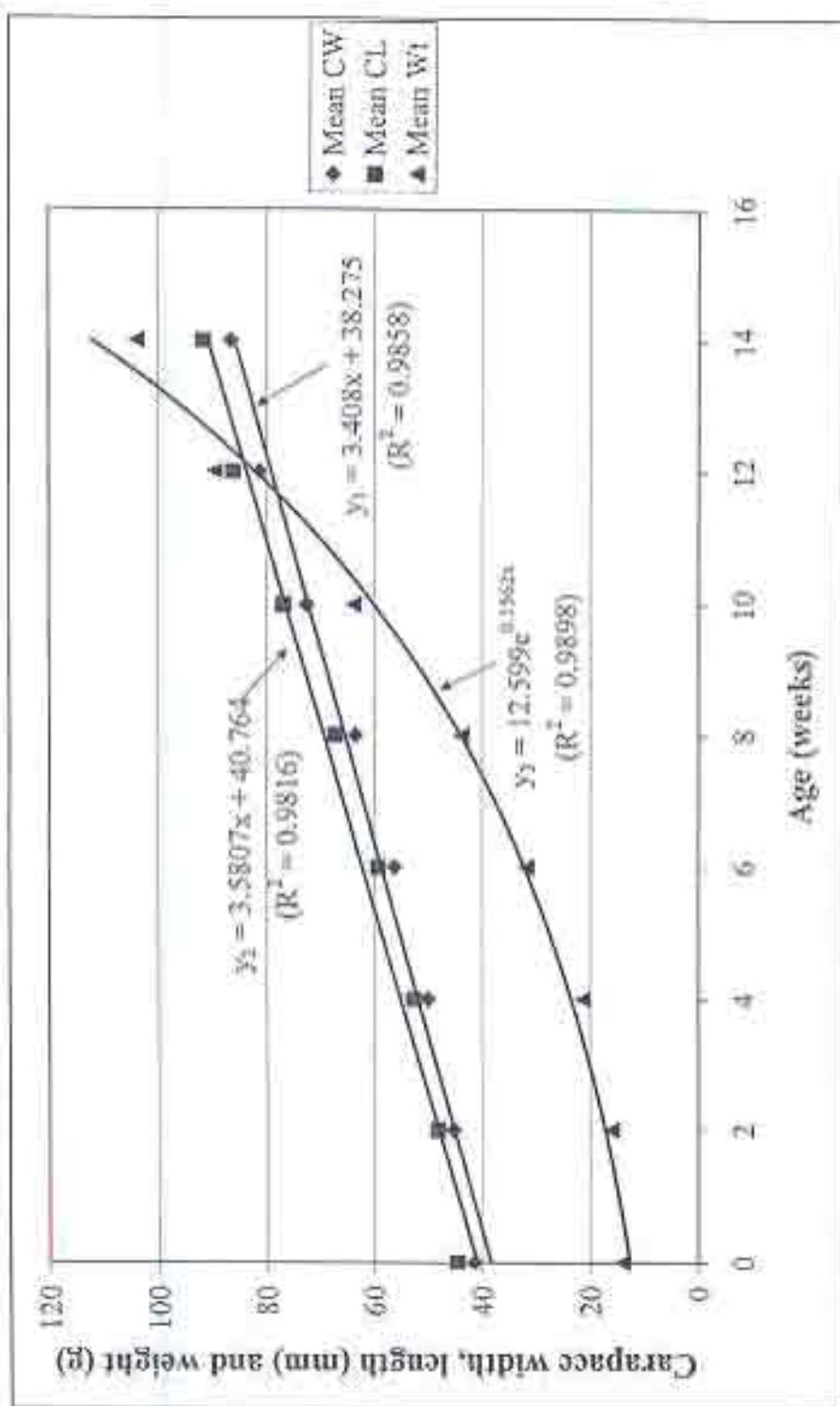


Figure 7.6 Carapace width, carapace length and weight of *C. chitra* hatchlings for 14 weeks.

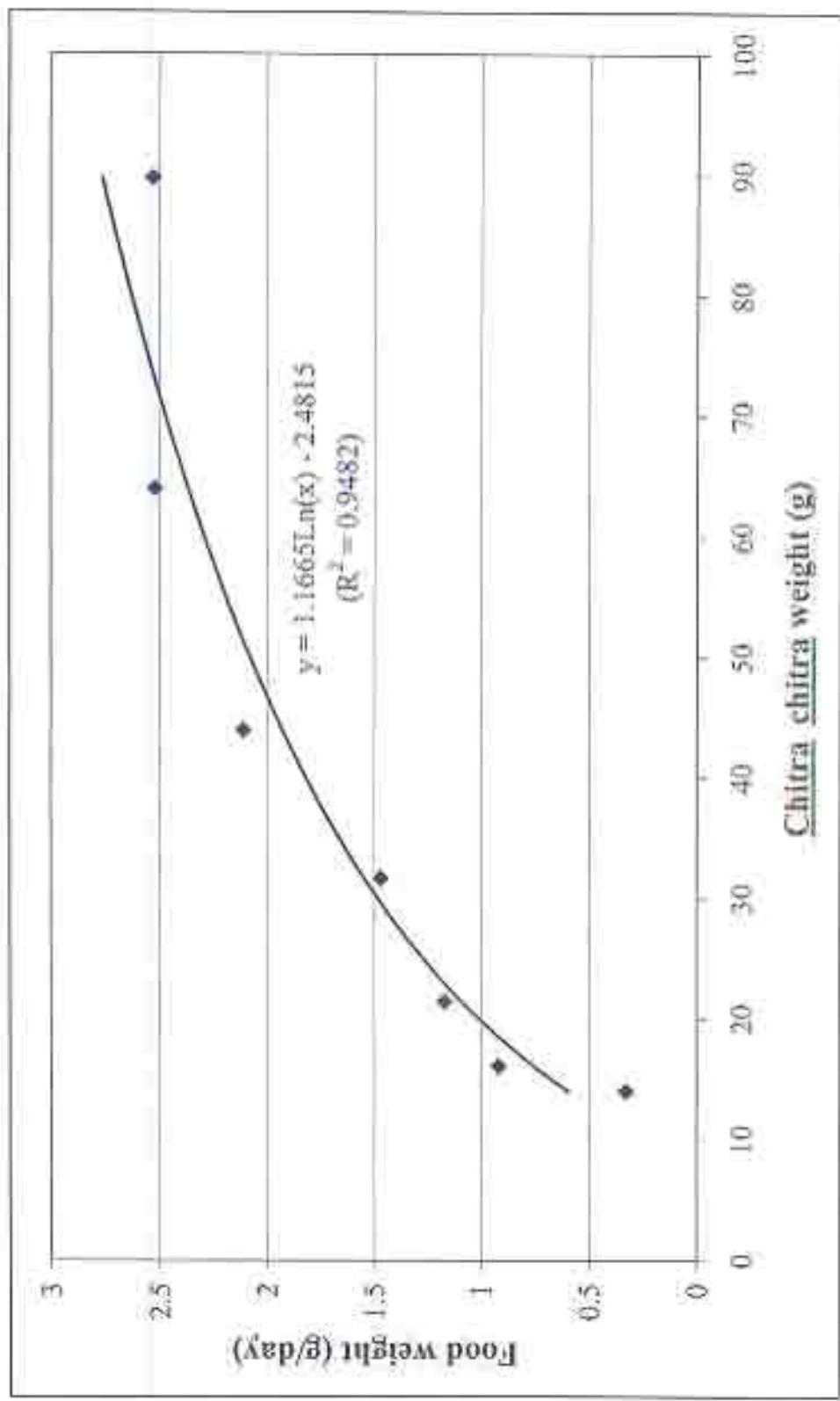


Figure 7.7 Relationship between weight (g) of *C. chitra* hatching and food weight (g) per day.

Sea turtles and many other larger riverine turtles also display Pattern 1 reproductive strategies.

The limited data available suggest that larger *Chitra* lay larger egg clutches than smaller individuals. This trend has been observed in other turtle species (Moll, 1979; Gibbons, 1982) although environmental influences may also influence clutch sizes to some extent.

Egg size and shape

Chitra chitra laid spherical eggs with white, brittle eggshells morphologically similar to those produced by other softshell turtles (see previous section on egg morphology).

Egg size of *C. chitra* is small compared to maternal body size. The large *C. chitra* female laid larger eggs than the smaller female, a trend similar to that seen in sea turtles and other freshwater turtle species (van Buskirk and Crowder, 1994; Miller, 1997; Kuchling, 1999). The smaller female produced more elongated eggs. Perhaps this might reflect the physical constraints by the diameter of the oviducts or a pelvic girdle constraint (Congdon and Gibbons, 1987) of newly matured females.

Incubation time

The incubation times of turtle eggs depend mainly on temperature and humidity. Previous studies showed that incubation times of *Testudo hermanni boettgeri* eggs incubated at high constant temperatures are shorter than those incubated at low constant temperature (Eendebak, 1995). At the same incubation temperatures, *Chrysemys picta* eggs in wetter substrates required more time to hatch than those from drier substrates (Packard et al., 1991). Temperatures and soil moisture levels in incubation methods employed in this study were not controlled. The eggs were incubated in fluctuating

temperatures (24-39 ° C sand temperature), and relatively moist substrates so that the effects of these and perhaps other environmental influences on incubation time cannot be determined from this study. However, the moisture content in the last week of each method is higher due to water infused from hatching eggs (Figure 7.5).

Hatching Success

The successful hatching of turtle eggs depends upon temperature, humidity, and air circulation. The hatch rate of C. chitra eggs in this study in Pond A did not differ among the three methods used (Table 7.3). The hatch rates were all high, > 80%, therefore, we conclude that conditions in all incubating methods were appropriate for incubation of C. chitra eggs. Although the hatching success of eggs from Pond B was lower than that from Pond A (3-66 vs. 80-94%), both sets of eggs were incubated under similar conditions. Perhaps the smaller (71 kg) female was ovipositing for the first time (anecdotal evidence suggests that C. chitra females mature at 60 kg or more) and she was physiologically deficient for effective reproductive success.

Hatching size

Hatching sizes of C. chitra are very small and similar to sizes recorded for C. indica hatchlings (43 and 38 mm CL and CW and 10 g Wt and 39 and 33 mm of CL and CW and 7 g Wt) (Sachsse, 1971). Larger C. chitra eggs produced larger hatchlings (Table 7.4), a trait also known in sea turtles and other freshwater turtle species (van Buskirk and Crowder, 1994; Kuchling, 1999).

Growth

Growth of C. chitra including (CW, CL and Wt) is very rapid during the first 14 weeks. The result was compared with growth of C. indica hatchlings that were studied by Sachsse (1971). The initial sizes of C. indica were 43

and 38 mm of CL and CW and 10 g Wt and 39 and 33 mm of CL and CW and 7 g Wt. After 2 months, their measurements were 44 and 38 mm of CL and CW and 11 g Wt and 40 and 33 mm of CL and CW and 10 g Wt, respectively. In this study the growth rate of C. chitra was much higher in the first 2-3 months than observed in C. indica. Hatchlings from captive breeding have a better chance than animals from the wild. However, growth of C. chitra is probably not maintained at this rate. Two hatchlings of wild caught C. chitra were maintained at Kanchanaburi Inland Fisheries Research and Development Center for nine years. Their sizes are 59 and 63 cm CW, 68 and 71 cm CL and 29 and 36 kg Wt, respectively (Kitimasak, unpublished data) on August 2002.

Acknowledgements

I would like to thank Mr. Vikrom Kromadit, Mr. Vitoon Kromadit, Mr. Plsit Na Phatthalung (the Director of the Zoological Park Organization), Mr. Somwang Pimonbutara (the Director of Nakhon Sawan Inland Fisheries Research and Development Center) for providing the animals in this study. Special thanks to Dr. Jaranthada Karnasuta, Mr. Rungsan Suangchompun (the Director of Kanchanaburi Inland Fisheries Research and Development Center), Mrs. Aurapa Nagachinta and Mr. Chao Damler for helping and furnishing facilities at KIFRDC. This study was supported by the Thailand Research Fund (TRF) for the Royal Golden Jubilee Ph.D. Program (RGJ).

References

van Buskirk, J., and Crowder, L.B. 1994. Life-history variation in marine turtles. Copeia 1994(1): 66-81.

Congdon, J.D., and Gibbons, J.W. 1987. Morphological constraint on egg size: A challenge to optimal egg size theory? Proceeding of the National academy of science, 84: 4145-4147.

Eendebak, B.T. 1995. Incubation period and sex ratio of Hermann's tortoise, Testudo hermanni boettgeri. Chelonian Conservation and Biology 1(3): 227-231.

Engstrom, T. N., Shaffer, H. B., and McCord, W. P. 2002. Phylogenetic diversity of endangered and critically endangered Southeast Asian softshell turtles (Trionychidae: Chitra). Biological Conservation, 104(2): 173-179.

Gibbons, J.W. 1982. Reproductive patterns in freshwater turtles. Herpetologica, 38(1): 222-227.

Gibbons, J.W., and Greene, J.L. 1990. Reproduction in the Slider and other species of turtles. pp. 124-134. In J.W. Gibbons (Ed.), Life history and ecology of the Slider turtle. Washington, D. C.: Smithsonian Institution Press.

Hilton-Taylor, C. (Compiler). 2000. 2000 IUCN Red List of Threatened Species. Gland, Switzerland and Cambridge, UK: IUCN.

Kitimasak, W., and Thirakhupt, K. 2002. New record of Chitra chitra Nutphand, 1986 in Mae Ping River, Thailand. The Natural History Journal of Chulalongkorn University 2(1): 62-63.

Kraemer, J.E., and Bell, R. 1980. Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (Caretta caretta) on the Georgia coast. Herpetologica 36(1): 72-77.

Kuchling, G. 1999. The reproductive biology of the chelonia. Zoophysiology Vol. 38. Springer: Verlag, Berlin, Heidelberg.

McCord, W. P., and Pritchard, P. C. H. 2002. A review of the softshell turtles of the genus Chitra, with the description of new taxa from Myanmar and Indonesia (Java). Hamadryad, 27(1): 11-56.

Miller, J.D. 1997. Reproduction in sea turtles. pp. 51-81. In P.L. Lutz and J.A. Musick (Eds.), The biology of sea turtles. Boca Raton: CRC Press.

Moll, E.O. 1979. Reproductive cycles and adaptations. pp. 305-331. In M. Harless and H. Morlock (Eds.), Turtles: Perspectives and Research. New York: Wiley.

Moll, E. O., and Moll, D. 2000. Conservation of river turtles. Pages 126-155 In M. W. Klemens (ed). Turtle conservation. Washington and London: Smithsonian.

Nutphand, W. 1988. "Man Lai" the world's biggest softshell turtle. Thai Zoological Magazine 1(4): 64-70. (in Thai)

Nutphand, W. 1990. Softshell turtles. Bulletin of the Thai Zoological Center 5(56): 93-104. (in Thai)

Packard, G.C., Packard, M.J., and Benigan, L. 1991. Sexual differentiation, growth, and hatching success by embryonic painted turtles incubated in wet and dry environments at fluctuating temperatures. Herpetologica 47(1): 125-132.

Pritchard, P. C. H. 2001. Observations on body size, sympatry, and niche divergence in softshell turtles (Trionychidae). Chelonian Conservation and Biology 4: 5-27.

Sachsse, W. 1971. Observations on young Chitra indica, with emphasis on prey capture (Testudines, Trionychidae). Salamandra 7(1): 31-37.

Taechacharemsukchera, V. 1991. Incubation of Chitra chitra eggs in captivity. Journal of Wildlife in Thailand. 1(1): 8-14. (in Thai)

Thirakhupt, K., and van Dijk, P. P. 1994. Species diversity and conservation of the turtles of Western Thailand. Natural History Bulletin of the Siam Society 42:209-259.

Chapter 8

Conclusions and Recommendations

Osteological comparisons between C. chitra and C. indica indicated that skull ratio characters and carapace ratio characters were different among Thai and Indian species. The magnitude of the variation displayed by these analyses supports the argument that Thai animals warrant specific status.

C. chitra is presently found in the Mae Klong and Mae Ping river systems, at Bhumiphol, Srinagarind and Vajiralongkorn Reservoirs and in the river below the dams. In this study, the new distribution range of C. chitra has been recorded to cover the area of Mae Ping river system of Northern Thailand. However, the natural population of C. chitra in both river systems is depleted and their status is certainly very rare. Moreover, live specimens of the other congener, C. burmanica Jaruthanin, 2002 or C. vandijkii McCord & Pritchard, 2002, were also found in this study from the Salween river system.

The captive-breeding program of C. chitra conducted in this study has been proven to be quite successful. Mating has been observed in the experimental ponds. Females laid eggs on the artificial sandbank during February to April with up to 4 clutches/year. Clutch size varies from 40-88 eggs/clutch. The mean incubation time of eggs is 59 ± 3 days. The hatching success in each clutch varies from 3 to 94 %. 297 hatchlings were obtained from two females in 2001. The 14 weeks-old hatchlings were 91.72 ± 5.75 mm in carapace length and 103.97 ± 18.08 g in weight with 90.64% of survival rate.

The data on the structure and composition of eggshells from a wild caught female will be useful for comparison with eggshells produced by captive females. These comparisons may help to determine whether the nutritional requirements of the captives are being met.

C. chitra is considered a top carnivore and a keystone species in its habitat. It should receive the highest priority for conservation because at present it is under the threat of extinction in the wild. Its population status in Malaysia and Indonesia is also very rare or unknown. The management programs, including the legal protection of its habitat, the maintenance of its viable population, the development of the dam water-releasing system to protect nesting sites from flooding during breeding season, breeding in captivity, rehabilitation and reintroduction as well as public awareness, education and cooperation are urgently needed. These programs, along with the intensive study of its population ecology and genetics, should be established immediately and conducted as vigorously as possible.

References

Baillie, J., and Groombridge, B. (Eds.). 1996. IUCN Red List of Threatened Animals. Gland, Switzerland: IUCN.

Baird, T., and Solomon, S. E. 1979. Calcite and aragonite in the egg shell of Chelonia mydas L. Journal of Experimental Marine Biology and Ecology 36: 295-303.

van Buskirk, J., and Crowder, L.B. 1994. Life-history variation in marine turtles. Copeia 1994(1): 66-81.

Congdon, J.D., and Gibbons, J.W. 1987. Morphological constraint on egg size: A challenge to optimal egg size theory? Proceeding of the National academy of science, 84: 4145-4147.

Das, I. 1991. Colour Guide to the Turtles and Tortoises of the Indian Subcontinent. Great Britain: The Longdunn Press.

Das, I. 1995. Turtles and Tortoises of India. Bombay: Oxford University Press.

van Dijk, P. P. and Thirakhupt, K. 1995. Southeast Asian Chitra. From Distinction to Extinction in 15 Years? In Soptom (Ed), Proceedings International Congress of Chelonian Conservation, Gonfaron France 6-10 July 1995.

Eendebak, B.T. 1995. Incubation period and sex ratio of Hermann's tortoise, Testudo hermanni boettgeri. Chelonian Conservation and Biology 1(3): 227-231.

Engstrom, T. N., and McCord, W. P. 2002. Molecular support for the taxonomic conclusions of McCord and Pritchard (2002), regarding Chitra. Hamadryad, 27(1): 57-61.

Engstrom, T. N., Shaffer, H. B., and McCord, W. P. 2002. Phylogenetic diversity of endangered and critically endangered Southeast Asian softshell turtles (Trionychidae: Chitra). Biological Conservation, 104(2): 173-179.

Ernst, C. H., and Barbour, R. W. 1989. Turtles of the world. Wahington, D.C.: Smithsonian Institution Press.

Gibbons, J.W. 1982. Reproductive patterns in freshwater turtles. Herpetologica 38(1): 222-227.

Gibbons, J.W., and Greene, J.L. 1990. Reproduction in the Slider and other species of turtles. pp. 124-134. In J.W. Gibbons (Ed.), Life history and ecology of the Slider turtle. Washington, D. C.: Smithsonian Institution Press.

Goin, C. J., and Goin, O. B. (1962). Introduction to herpetology. San Francisco: W. H. Freeman.

Hilton-Taylor, C. (Compiler). 2000. 2000 IUCN Red List of Threatened Species. Gland, Switzerland and Cambridge, UK: IUCN.

Iverson, J. B. 1992. A Revised Checklist with Distribution Maps of the Turtles of the World. Richmond, Indiana: Privately printed.

Jarulthanin, K. 2002. Salaween: The Dangerous River. Fish Zone. 3(19): 27-40.

Kitimasak, W. 1996. Effect of humidity on hatching rate and effect of food-type on growth rate of Asiatic softshell turtle Amyda cartilaginea hatchlings. Master's thesis, Department of Biology, Faculty of Science, Chulalongkorn University.

Kitimasak, W., and Thirakhupt, K. 2002. New record of Chitra chitra Nutphand, 1986 in Mae Ping River, Thailand. The Natural History Journal of Chulalongkorn University 2(1): 62-63.

Kraemer, J.E., and Bell, R. 1980. Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (Caretta caretta) on the Georgia coast. Herpetologica 36(1): 72-77.

Kuchling, G. 1999. The reproductive biology of the chelonia. Zoophysiology Vol. 38. Springer: Verlag, Berlin, Heidelberg.

Liat, L. B., and Das I. 1999. Turtles of Borneo and Penninsular Malaysia. Kota Kinabala: Natural History Publications.

McCord, W. P., and Pritchard, P. C. H. 2002. A review of the softshell turtles of the genus Chitra, with the description of new taxa from Myanmar and Indonesia (Java). Hamadryad, 27(1):11-56.

Miller, J.D. 1997. Reproduction in sea turtles. pp. 51-81. In P.L. Lutz and J.A. Musick (Eds.), The biology of sea turtles. Boca Raton: CRC Press.

Moll, E.O. 1979. Reproductive cycles and adaptations. pp. 305-331. In M. Harless and H. Morlock (Eds.), Turtles: Perspectives and Research. New York: Wiley.

Moll, E. O., and Moll, D. 2000. Conservation of river turtles. Pages 126-155 In M. W. Klemens (ed). Turtle conservation. Washington and London: Smithsonian.

Nutphand, W. 1979. The Turtles of Thailand. Bangkok: Siam Farm Zoological Garden.

Nutphand, W. 1986, "Man Lai" the world's biggest softshell turtle. Thai Zoological Magazine 1(4): 64-70. (in Thai)

Nutphand, W. 1990. Softshell turtles. Bulletin of the Thai Zoological Center 5(56): 93-104. (in Thai)

Packard, G.C., Packard, M.J., and Benigan, L. 1991. Sexual differentiation, growth, and hatching success by embryonic painted turtles incubated in wet and dry environments at fluctuating temperatures. Herpetologica 47(1): 125-132.

Packard, M. J. 1980. Ultrastructural Morphology of the shell and shell membrane of eggs of common snapping turtles (Chelydra serpentina). Journal of Morphology 165: 187-204.

Packard, M. J., and Hirsch, K. F. 1986. Scanning electron microscopy of eggshells of contemporary reptiles. Scanning electron microscopy 4: 1581-1590.

Packard, M. J., and Packard, G. C. 1979. Structure of the shell and tertiary membranes of eggs of softshell turtles (Trionyx spiniferus). Journal of Morphology 159: 131-144.

Pough, F. H. (2001). Herpetology. Upper Saddle River, N.J.: Prentice Hall.

Pritchard, P. C. H. 1979. Encyclopedia of Turtles, New Jersey: T.F.H. Publ.

Pritchard, P. C. H. 2001. Observations on body size, sympatry, and niche divergence in softshell turtles (Trionychidae). Chelonian Conservation and Biology 4: 5-27.

Roberts, H. S., and Sharp, R. M. 1985. Preferred orientation of calcite and aragonite in the reptilian eggshells. Proceedings of the Royal Society of London. Series B 255: 445-455.

Sachsse, W. 1971. Observations on young Chitra indica, with emphasis on prey capture (Testudines, Trionychidae). Salamandra 7(1): 31-37.

Saemathong, S., and Thirakhupt, K. 1994. Key to turtles and softshell turtles in Thailand. Science 48(3): 140-143. (in Thai)

Smith, M. A. 1931. The Fauna of British India. Florida: Ralph Curtis Book.

Solomon, S. E., and Baird, T. 1976. Studies on the egg shell (oviducal and oviposited) of Chelonia mydas L. Journal of Experimental Marine Biology and Ecology 22: 145-160.

Taochacharemsukchera, V. 1991. Incubation of Chitra chitra eggs in captivity. Journal of Wildlife in Thailand 1(1): 8-14. (in Thai)

Taylor, E. H. 1970. The turtles and crocodiles of Thailand and adjacent waters. The University of Kansas Science Bulletin, 49: 87-179.

The Royal Institute. 1992. Man-lai. Encyclopedia of Thailand. 23: 14791-14795.

Thirakhupt, K., and van Dijk, P. P. 1994. Species diversity and conservation of the turtles of Western Thailand. Natural History Bulletin of the Siam Society 42: 209-259.

Tikader, B.K., and Sharma, R.C. 1985. Handbook Indian Testudines. Calcutta, India: The Radiant Process Private Limited.

Vidhayanon, C., Karnasute, J., and Nabhitabhata, J. 1997. Diversity of Freshwater Fishes in Thailand. Bangkok: Office of Environment Policy and Planning.

Wangkulangkul, S., Thirakhupt, K., and Chantrapornsyl, S. 2000. Comparative study of eggshell morphology in wild and captive Olive ridley turtles

Lepidochelys olivacea at Phuket, Thailand. In "Sea turtles of the Indo-Pacific: Research, Management and Conservation" Ed by N Pilcher, G Ismail, London: Asean Academic Press, pp 208-217.

Woodall, P. F. 1984. The structure and some functional aspects of the eggshell of the broad-shelled river tortoise Chelodina expansa (Testudinata: Chelidae). Australian Journal of Zoology 32: 7-14.

World Conservation Monitoring Centre. 1998. Checklist of Cites species. Surrey, UK: Unwin Brothers.

Young, J. D. 1950. The structure and some physical properties of the testudinian eggshell. Proceedings of the Zoological Society of London 120: 455-469.

Youngprapakorn, P. 1993. Tapab Manlai. Samut Prakan: Crocodile Farm and Samut Prakan Zoo, 16 pp.

Zug, G. R., Vitt, L. J., and Caldwell, J. P. 2001. Herpetology: an introductory biology of amphibians and reptiles. San Diego, Calif, London: Academic.

Output

Publications

Kitimasak, W., Thirakhupt, K. and Moll, D. 2003. Eggshell Structure of the Siamese Narrow-headed Softshell Turtle *Chitra chitra* Nutphand, 1986 (Testudines: Trionychidae). *ScienceAsia* 29(2): (Accepted)

Kitimasak, W., Thirakhupt, K. and Moll, D. 2003. Captive Breeding of the Siamese Narrow-headed Softshell Turtle *Chitra chitra* Nutphand, 1986 (Testudines: Trionychidae). *Thai Journal of Agricultural Science* 36(2): 141-154.

Kitimasak, W., and Thirakhupt, K. 2002. New record of *Chitra chitra* Nutphand, 1986 in Mae Ping River, Thailand. *The Natural History Journal of Chulalongkorn University* 2(1): 82-83.

Oral Presentations

Captive Breeding of the Giant Narrow-headed Softshell Turtle *Chitra chitra* Nutphand, 1986 -8th Graduate Congress, December 1st , 2001, National University of Singapore, Singapore.

Eggs and Hatchlings of the Siamese Narrow-Headed Softshell Turtle *Chitra chitra* Nutphand, 1986- 7th Biological Science Graduate Congress, December 9-11, 2002, Chulalongkorn University, Thailand.

APPENDICES

APPENDIX A

a.

b.

Figure 1 Male (a, LCL= 85 cm) and female (b, LCL= 107 cm) of C. chitra in Pond A at Kanchanaburi Inland Fisheries Research and Development Center, Kanchanaburi Province.

Figure 2 Pond B (16x25 m) of Chitra chitra at Kanchanaburi Inland Fisheries Research and Development Center, Kanchanaburi Province

Figure 3 Mating activities of C. chitra in Pond A at Kanchanaburi Inland Fisheries Research and Development Center, Kanchanaburi Province.
(Photographed on 27 February 2002 at 9.40 a.m.)

Figure 4 *C. chitra* eggs in a nest at Kanchanaburi Inland Fisheries Research and Development Center, Kanchanaburi Province

a.

b.

Figure 5 *C. chitra* hatchlings emerging from its egg (a) and from its nest (b).

Figure 6 One-day old *C. chitra* hatchling, ECL= 38.23 mm.

APPENDIX B

Eggshell Structure of the Siamese Narrow-headed Softshell Turtle *Chitra chitra* Nutphand, 1986 (Testudines: Trionychidae)

Wachira Kitimasak^{a,b*}, Kurnthorn Thirakhupt^a and Don L. Moll^a

^a Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand
^b Kanchanaburi Inland Fisheries Development Center, Tha Muang, Kanchanaburi Province 71110 Thailand

^a Department of Biology, Southwest Missouri State University, Springfield, Missouri 65804 USA
^{*} Corresponding author. E-mail address: wachwat@chula.ac.th

Received 7 Jan 2003

Accepted 20 Feb 2003

ABSTRACT Eggs of *Chitra chitra* were examined for: 1) eggshell thickness by stereo-microscope, 2) eggshell structure by scanning electron microscopy (SEM), 3) qualitative and quantitative elements of eggshell structure by energy dispersive x-ray analysis (EDX), and 4) eggshell composition by X-ray diffraction analysis. It was found that the eggshell thickness of the outer layer and inner layer detected by stereo-microscope were 0.14±0.02 mm and 0.13±0.02 mm, respectively. The result of SEM showed that the eggshell had three layers: an outer calcareous sheet (previously unacertained), a middle crystalline layer, and an inner fibrous layer. The eggshells were composed of oxygen=53.0±4.8%, carbon=15.0±0.2%, manganese=5.56±0.34%, calcium=5.4±3.2%, silica=2.9±1.6%, aluminum=2.3±1.1%, potassium=0.17±0.1%, and sodium=0.74±0.3%. The eggshell was the aragonite form of CaCO_3 .

KEYWORDS: *Chitra chitra*, softshell turtle, eggshell structure, eggshell composition, SEM

INTRODUCTION

The Siamese narrow-headed softshell turtle *Chitra chitra* Nutphand, 1986 is one of the largest and the least known turtles in the world. Since its recent recognition as a distinct species¹, its population size has almost certainly continued to decline across its limited range in Thailand and elsewhere in Southeast Asia^{2,3} due to over fishing, pet trade, pollution and habitat alteration, and degradation (mainly due to reservoir construction). Its biology and natural history are very poorly known, and the lack of information seriously limits conservation efforts in its behalf. An ongoing study of this species in the field and in captivity by the authors is designed to rectify this deficiency. As part of our investigation of the reproductive biology of this species, the structure and composition of the eggshell of eggs from a wild caught female were analyzed. The results of our analysis are presented here, and compared with the few other structural analyses of turtle eggshells which have been published^{4,5}.

MATERIALS AND METHODS

A female *C. chitra* (~80 kg) was caught in Srinagarind Reservoir, Kanchanaburi Province, Thailand in March

2001. Subsequently she laid 3 eggs in a fiber holding tank. All of these eggs were broken. After that synthetic oxytocin was used to induce oviposition. All of the eggs obtained from oxytocin injection (N=32) were incubated in a styrofoam box. Six undeveloped eggs, two weeks old, were separated for study. Specific eggshell characteristics examined and techniques utilized in the analyses are described below: 1) Eggshell thickness: the eggshells were randomly cut into 5 pieces/egg of about 1 x 5 mm. They were dehydrated and stained by 0.5% eosin. Thirty thicknesses (5 locations/egg) were measured under a stereo-microscope with an ocular micrometer. The thicknesses of outer and inner layers were compared by t-test analysis using SPSS program (Ver 10). 2) Scanning Electron Microscopy (SEM): the dehydrated eggshells were coated with gold and were examined by a JSM-6400 scanning electron microscope, operated at 15 kV. 3) Energy dispersive x-ray analysis (EDX): the JSM-6400 electron microscope was used to examine both qualitative and quantitative elements in the dehydrated eggshells. 4) X-ray Diffraction analysis: the eggshells were ground down to powder-sized particles to examine their composition. An X-ray Diffractometer model JDX-8030 was used at 45 kV for this procedure.

RESULTS

Eggshell thickness

Eggshells of *C. chitra* were examined and were separated into 2 distinct layers through eosin staining. The outer layer was unstained but the inner layer had a pink color from the eosin. It was found that the mean thicknesses of the outer layer and inner layer were 0.14 ± 0.02 mm and 0.12 ± 0.02 mm, respectively (Table 1). The thicknesses of the outer and inner layers of the eggshells were significantly different ($p < 0.05$).

Scanning Electron Microscopy (SEM) Analysis

SEM determined that *C. chitra* eggshells were divided into three distinct layers: an outer calcareous sheet, a middle crystalline layer, and an inner fibrous layer (Fig. 1). The outer surface was composed of a nearly continuous calcareous sheet that covered the whole egg (Fig. 1a). It was a very thin layer that could not be

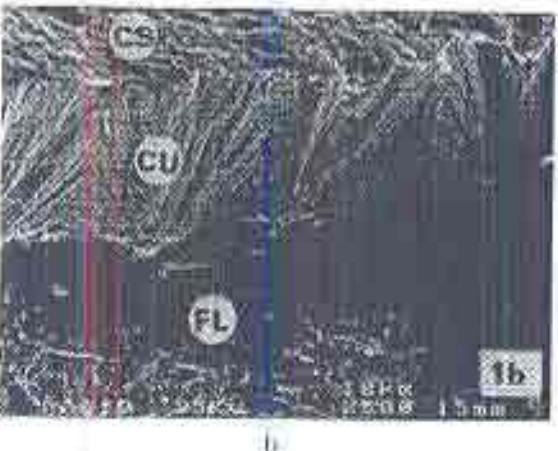


Fig. 1. SEM showing the calcareous sheet (CS) covering the outer layer of eggshell, middle layer (crystalline unit) (CU), and an inner fibrous layer (FL).
a = top view, b = side view. Bar = 10 μ m.

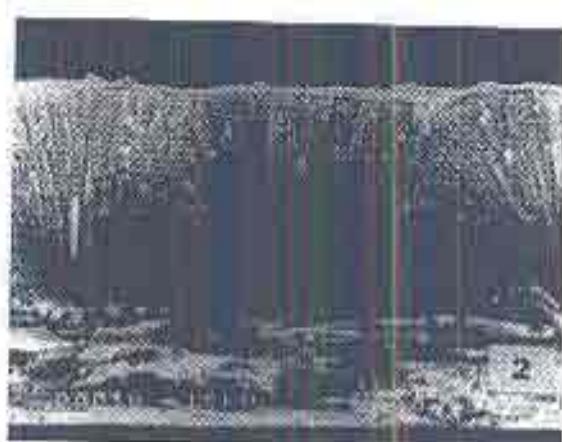


Fig. 2. SEM showing the radially fractured appearance of crystalline units of the middle layer. Bar = 10 μ m

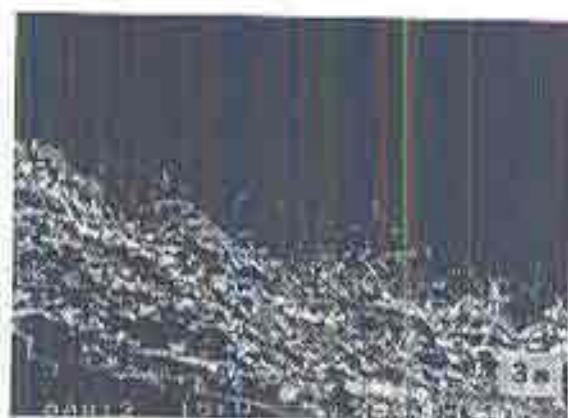


Fig. 3. SEM showing the inner layer of the eggshell.
a = side view. Bar = 10 μ m. b = top view. Bar = 10 μ m

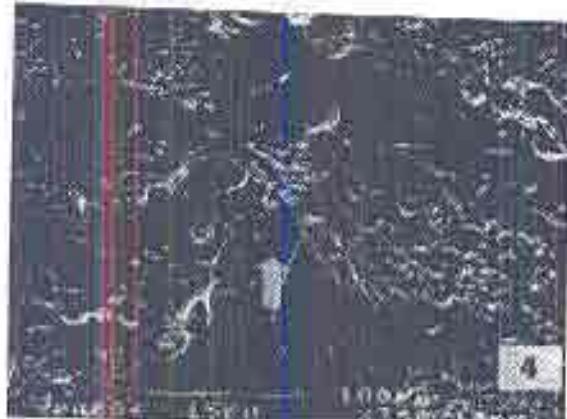


Fig. 4. Outer surface of *C. chitra* eggshell showing a pore (arrow) at the transverse of crystalline units. (Bar = 100 μ m) observed under a stereo-microscope. The middle layer was composed of fan-shaped crystalline units packed together throughout the layer (Fig. 1b; 2). These units displayed the radial fractured symmetry of aragonite projecting from nucleation centers located on the surface of the inner layer. The inner layer of the eggshell was composed of multiple layers of reticular fibers (Fig. 1b, 2, 3). Interspersed at intervals along the surface of the calcareous sheet were pore opening which extended downward between the adjacent crystalline units of the middle layer (Fig. 4).

Energy Dispersive X-Ray Analysis (EDX)

EDX analysis revealed that *C. chitra* eggshells were composed of the following elements (ranked in order of relative abundance): oxygen, carbon, magnesium, calcium, silicon, aluminum, sodium, and potassium (Table 1).

X-ray Diffraction Analysis

The powder X-ray photographs indicated that eggshells of *C. chitra* were composed of the aragonite form of CaCO_3 .

Table 1. Outer layer thickness, inner layer thickness (mm), Energy dispersive x-ray analysis (EDX) (%) and X-ray Diffraction of wild *Chitra chitra* eggs.

Analysis Method	n	Mean \pm SD
Outer layer thickness (mm)	6	0.14 \pm 0.02
Inner layer thickness (mm)	6	0.12 \pm 0.02
Energy dispersive x-ray analysis (EDX) (%)	9	Ca = 32.96 \pm 4.81 Mg = 5.55 \pm 0.34 C = 36.03 \pm 2.37 Si = 2.87 \pm 1.64 Al = 2.30 \pm 1.07 Na = 0.74 \pm 0.3 K = 0.17 \pm 0.1
X-ray Diffraction	9	Aragonite

DISCUSSION

The eggshell of *C. chitra* displayed only two layers, the middle and inner layers under stereo-microscope, but showed 3 layers including an outer calcareous sheet, under SEM. Numerous other studies of turtle eggshell structure record the presence of two shell layers. These include broad-shelled river tortoises *Chelodina expansa*¹⁰, spiny softshell turtles *Apalone spinifera*⁹, olive ridley turtles *Lepidochelys olivacea*¹¹, Euphrates softshell *Karetta euphratica*⁹, European pond turtles *Emydura orbicularis*⁹, and radiated tortoises *Gopherus radicatus*⁹.

Similar to the finding of our study of *C. chitra*, three layers were recorded in snapping turtles *Chelydra serpentina*⁹. The outer layer of the snapping turtle eggshell was covered by a thick organic calcareous sheet which obscures the tips of the crystalline units of the middle layer. The middle layer was structurally similar to that observed in *C. chitra* in this study. The outer calcareous sheet may not have been recorded in many turtle eggshells due to the researchers' use of not preserved eggs in their studies. The calcareous sheet may have deteriorated in the preservative over time. The inner layer of *C. chitra* has multiple layers of fiber similar to those observed in the previous studies of *C. serpentina*⁹ and *Trionyx spiniferus*⁹.

Young (1950)⁹ recorded that the eggshell thicknesses of *R. euphratica*, *Emydura orbicularis* and *G. radicatus* were 0.23–0.29 mm, 0.27–0.28 mm and 0.59–0.84 mm, respectively. In this study the mean total eggshell thickness of *C. chitra* was 0.26 mm, falling within the range of eggshell thicknesses of the aquatic turtles.⁹

Solomon and Baird (1976)⁹ analyzed the elements in eggshells of *Chelonia mydas* and found that the shell was composed of ~20% Ca, 0.08% Mg, and ~1% P. In *C. chitra* eggshells only ~5.37% is composed of Ca but Mg content (5.55%) is substantially higher than that in *C. mydas*. The reasons for the differences in composition of these species' eggshells are unknown.

The composition of *C. chitra* eggshells from the wild caught female was CaCO_3 in aragonite form. This result was similar to that of other studies of turtle eggshells.^{10,11}

The authors are conducting a captive breeding program for *C. chitra* at Kanchanaburi Inland Fisheries Development Center, Kanchanaburi, Thailand to promote the long-term conservation of this critically endangered species. Knowledge of the structure and elemental composition of the eggshells of *C. chitra* obtained from wild stock may be useful for comparison with those produced by captive females. The similarity of eggshells of brood stock and wild stock may be a useful indicator to determine nutritional requirements of captives and to increase the likelihood that healthy hatchlings would be produced.

ACKNOWLEDGEMENTS

We would like to thank Mr. Maris Wongvanaput for the *C. chitra* eggs. This study was supported by The Thailand Research Fund (TRF) for The Royal Golden Jubilee PhD Program (RGJ).

REFERENCES

1. Nopparat W (1980) "Man Lai," the world's biggest softshell turtle. *Thai Zoological Magazine* 1(4), 64-75. [in Thai]
2. Thirakhupt K and van Dijk PP (1994) Species diversity and conservation of the turtles of Western Thailand. *Nat Hist Natl Park* 42, 203-19.
3. Rappaport TN, Shaffer HB and McCaugh WP (2002) Phylogenetic diversity of endangered and critically endangered Southeast Asian softshell turtles (Testudinidae: Chitra). *Biol Conserv* 104(2), 173-9.
4. Nopparat W and Thirakhupt K (2002) New record of Chitra chitra Nopparat, 1986 in Mae Ping River, Thailand. *Nat Hist Chulalongkorn Univ* 2(1), 62-3.
5. Young JD (1950) The structure and some physical properties of the testudinid eggshell. *J Zool Soc Lond* 120, 455-60.
6. Solomon SK and Baird T (1976) Studies on the egg shell fortification and oviposition of *Chelonia mydas* L. *J Rep Mat Biol Egg* 22, 149-60.
7. Baird T and Solomon SK (1979) Calcite and aragonite in the egg shell of *Chelonia mydas* L. *J Rep Mat Biol Sci* 36, 295-303.
8. Packard MJ and Packard GC (1977) Structure of the shell and uterine membrane of eggs of softshell turtles (*Chelonia mydas*). *J Morphol* 158, 131-44.
9. Packard MJ (1980) Ultrastructural Morphology of the shell and shell membrane of eggs of common snapping turtles (*Chelydra serpentina*). *J Morphol* 165, 187-204.
10. Woodard PP (1984) The structure and some functional aspects of the eggshell of the broad-shelled river turtle *Chelonia depressa* (Testudinidae: Chelidae). *Aust J Zool* 32, 7-14.
11. Roberts HS and Sharp RM (1985) Preferred orientation of calcite and aragonite in the reptilian eggshells. *J Roy Soc Lond B Biol* 255, 445-55.
12. Richardson MJ and Urquhart KP (1986) Scanning electron microscopy of eggshells of contemporary reptiles. *Scan Electron Microsc* 4, 1581-90.
13. Wangyuthangkul S, Thirakhupt K and Chantapornayot S (2002) Comparative study of eggshell morphology in wild and captive Olive Ridley turtles *Lepidochelys olivacea* Projek. Thailand. In: *Sea turtles of the Indo-Pacific: Research, Management and Conservation* Edited by Pijan S and Ismail G, pp. 209-217. Asian Academic Press, London.

Captive Breeding of the Siamese Narrow-headed Softshell Turtle *Chitra chitra* Nutphand, 1986 (Testudines: Trionychidae)

Wachira Kitimasak¹, Kumthorn Thirakhupt² and Don L. Moll³

Kanchanaburi Inland Fisheries Development Center, Tha Muang,
Kanchanaburi Province, 71110 Thailand

Received November 13, 2002; Accepted February 28, 2003

Abstract

A captive breeding program of a critically endangered species, the Siamese narrow-headed softshell turtle *Chitra chitra* Nutphand, 1986, was conducted in two 400 m² ponds at Kanchanaburi Inland Fisheries Development Center (KIFDC), Kanchanaburi Province, Thailand from 2000 to 2002. Copulations were observed during September to February. Two females laid eggs during February to April in artificial sandbanks. Each captive female produced 3 or 4 clutches/year with 40-88 eggs/clutch. Egg sizes (n=220) were 31.04 ± 1.57 mm in width (range 26.39-34.37 mm), 33.16 ± 1.64 mm in length (range 29.39-40.49 mm) and 19.00 ± 1.67 g in weight (range 16.31-21.60 g). The mean incubation time of *C. chitra* eggs was 69 ± 3 days (n = 235) with a range of 55-65 days at 24-42°C air temperature and 24-39°C sand temperature. Hatchling sizes (n=287) were 38.46 ± 1.52 mm in carapace width (range 32.00-41.67 mm), 42.97 ± 1.59 mm in carapace length (range 36.27-48.60 mm) and 13.10 ± 1.03 g in weight (range 9.09-14.89 g). The hatching success in each clutch varied from 3 to 94%. The hatchlings were fed with fry fishes of *Labeo rohita* and *Oreochromis niloticus*. After 14 weeks, mean hatchling size was 86.70 ± 5.17 mm carapace width, 91.72 ± 5.75 mm carapace length and 103.97 ± 18.08 g weight, respectively. The survival rate of juveniles was 90.64%.

Key words: *Labeo rohita*, *Oreochromis niloticus*, captive breeding, incubation, growth.

Introduction

The Siamese narrow-headed softshell turtle, *Chitra chitra* Nutphand, 1986, is found in Thailand, Malaysia, and Indonesia (Thirakhupt and van Dijk, 1994; Engstrom *et al.*, 2002; Kitimasak and Thirakhupt, 2002). It is probably the largest softshell and freshwater turtle in the

world (Pritchard, 2001). All populations of this species are declining, and it is considered very rare in all these countries. IUCN (2000) listed its status as "critically endangered" due to its extremely high risk of extinction in the world. The causes of its decline are due mainly to the reduction of suitable habitat resulting from dam construction and other human-related habitat

¹ Correspondence. E-mail: wachira@chula.ac.th

² Department of Biology, Faculty of Science, Chulalongkorn University Bangkok, 10500 Thailand

³ Department of Biology, Southwest Missouri State University, Springfield, Missouri 65804, USA

alterations, and from exploitation for food and the animal trade (Thirakhupt and van Dijk, 1994).

Moll and Moll (2000) stated that captive breeding programs may be an important conservation and management methods which can be used to conserve riverine turtles under certain circumstances – especially when suitable natural habitat remains for the release of hatchlings or head-started juveniles produced by this methodology. Unfortunately the opportunity to apply this approach toward *C. chitra*'s conservation and return toward healthier population sizes in nature has been hampered by our inadequate knowledge concerning its basic biological requirements, and consequently, of the most effective techniques for successful maintenance and breeding of captives. This study was conducted to provide data which will alleviate these deficiencies, and therefore provide a sound protocol for successful captive maintenance and breeding of adult *C. chitra*, and the maintenance and growth of hatchling *C. chitra* to a size which is deemed most suitable for release into natural habitats.

Materials and Methods

Six *Chitra chitra*, two females and four males, were maintained in two outdoor enclosures at Kanchanaburi Inland Fisheries Development Center (KIFDC), Tha Muang District, Kanchanaburi Province, Thailand. The breeding ponds, 400 square-meter (18×25 m), were constructed near the Mae Klong River and were climatically similar to the natural habitat. The water depth varied from 60 to 80 cm, and a 30 m² artificial sandbank ascending 80–90 cm above water level was constructed for nesting in each enclosure. Roofs were constructed over the sandbanks for protection from rain-induced mortality of eggs and hatchlings (Kraemer and Bell, 1980). Fences were also constructed around the ponds to protect turtles and their eggs from predators, such as dogs, snakes, and monitor lizards (Figure 1). A female and two males were placed in each pond (Table 1). Foods provided for *C. chitra* in the captive ponds were mainly live *Nile tilapia*, *Oreochromis niloticus*; native fishes, such as *Bardodes gonionotus*, were available, entering

Table 1 Size, locality, date of capture, and date of release into breeding pond of *C. chitra* in captivity

Pond	Sex	Shell length (cm)	Shell width (cm)	Weight (kg)	Locality (river)	Captive time	Released time
A	Female	95.5	81	111	Kwae Noi	1997	28/9/2000
	Male 1	78	65	44	Mae Ping	8/1999	31/3/2000
	Male 2	82	70	60	Kwae Noi	4/1999	2/11/2000
B	Female	61	75.5	61	Kwae Noi	1997	19/11/2001
	Male 1	97	85	88	Kwae Noi	1997	19/11/2001
	Male 2	103	95	85	Mae Klong river system	5/1999	11/2001

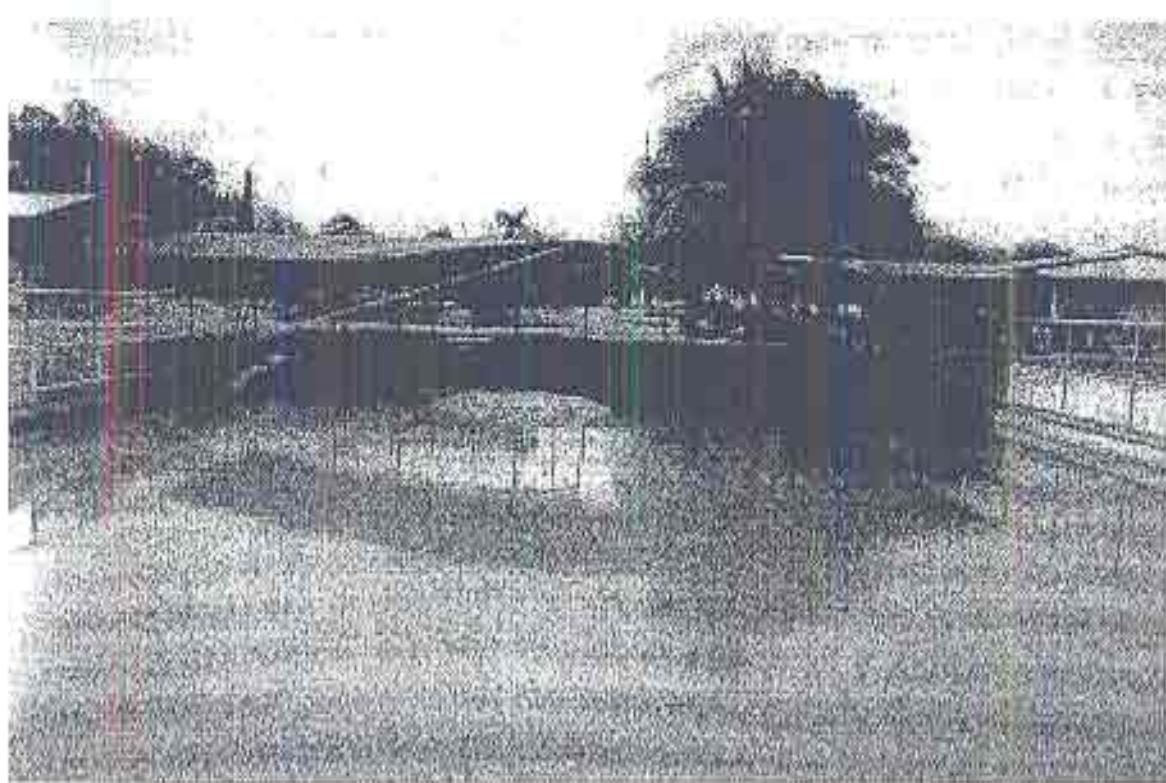


Figure 1. *Chitra chitra* rearing Pond A at Kanchanaburi Inland Fisheries Development Center.

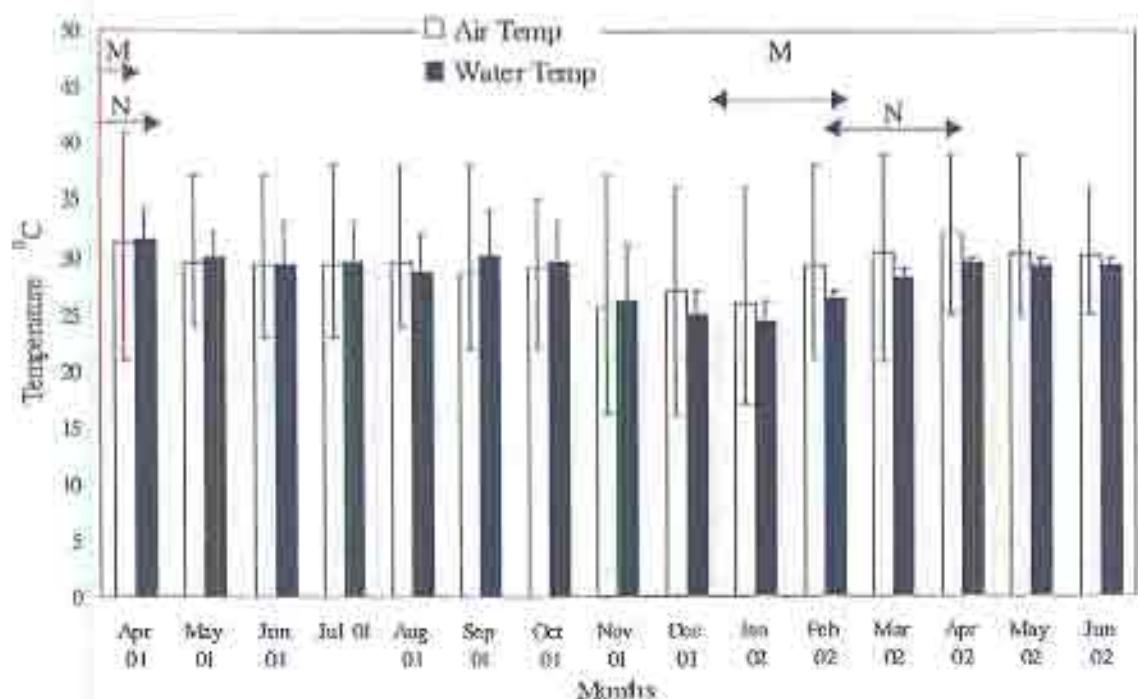


Figure 2. Means of water and air temperature in pond A during April 2001 to June 2002. The vertical bars show maximum and minimum of air temperature and water temperature in each month. The arrows show periods of mating (M) and nesting (N).

the ponds during water exchange with the Mae Klong River daily Monday - Friday. Air and water temperature in the captive ponds were recorded throughout the year (Figure 2).

Pond A

Pond A was completed in early 2000. The first female, 111 kg, was released on February 26, 2000. It was captured from the Kwae Noi River, Kanchanaburi Province, in 1997 and was separated from males for three years. The first male, 44 kg, was captured from the Mae Ping River, Nakhon Sawan Province, in June 1998. It was released in the breeding pond on March 31, 2000. The second male, 60 kg, was captured from the Kwae Noi River in April 1999 and was released into this pond on November 2, 2000.

Pond B

Pond B was completed in November 2001. One female, 61 kg, and a male, 88 kg, were caught from the Mae Klong River system in 1997. The second male, 88 kg, was caught from the agricultural canal (joining the Mae Klong River and the Tha Chcan River) in Nakhon Pathom Province on May 3, 1999. All of them were released in the Pond B in November 2001.

Terrestrial Activity and Breeding Behavior

Terrestrial activity and breeding behavior of *C. chitra* in the breeding ponds were monitored through the year. Terrestrial activity was nocturnal, and its occurrence and frequency data derived from tracks in the sand. Walking tracks indicated terrestrial movement without nesting activity. The track dimensions allowed identification of the individual(s). Nest tracks led to blank nests or nests with eggs. Mating behavior and copulation duration were also observed and recorded.

Incubation methods

Nests were excavated by hand within 48 hours after nesting. When the first egg was uncovered, the depth to the top of the egg chamber was measured. The depth to the bottom and the width of the chamber were also measured. Eggs of the first and the second clutch of each breeding pond were weighed to the nearest 0.01 g with an electronic balance and linear measurements of width and length measured to the nearest 0.01 mm with digital calipers. The number of eggs and clutches of each female were recorded.

The eggs were carefully removed and handled to prevent horizontal rotation and reorientation of their vertical axes. Three methods were used for incubation. In the first method, one clutch from each pond was transported to the Department of Biology, Faculty of Science, Chulalongkorn University. Eggs were put in a plastic container, 40×70×37 cm on 10 cm thick of sand and were covered with 20 cm of additional sand. Moisture in the container was maintained by spraying water on the sand each morning and evening.

In the second method, one clutch from each pond was incubated in circular fiber containers 75 cm in diameter. Eggs were placed on 10 cm of sand and again were covered with 20 cm of additional sand at KIFDC. The fiber containers were placed in water to protect the eggs from ants and other insects. Water was sprayed on the sand every morning and evening to control the sand moisture content. Water loss was minimized by placing a plastic cover securely over the top of each container.

In the third method, two clutches from each pond were incubated at the nesting area in situ.

After 30 days of incubation, the nests were surrounded by mesh to restrain the hatchlings for counting, measuring, and protection from predators.

In each method, the number of hatchlings emerging was recorded and the respective hatching success rates calculated. Incubation times were also recorded in each method. The hatchlings of all treatments were measured (CW and CL) and weighed. Max-Min mercury thermometers were inserted horizontally near the nests to monitor incubation temperature throughout the incubation period. Air temperatures and sand moisture content were also recorded in each method during the studies. Sand moisture content (%) was calculated from $\{(\text{wet weight} - \text{dry weight}) / \text{dry weight}\} \times 100$.

Growth of hatchlings

Twenty hatchlings, from A1/KIFDC (Table 3), were divided into two groups. They were reared indoors in two glass aquaria, 50×105×40 cm. Sand covered the bottom of the aquaria to a depth of about 4 cm. The hatchlings in each aquarium were provided with 3 cm water. Water was exchanged every Tuesday and Friday. Fry fish of *Labeo rohita* (Hamilton, 1822), (23.27±1.57 mm length and 0.12±0.05 g weight), *Oreochromis niloticus* (Linnaeus, 1758), (24.21±1.34 mm length and 0.29±0.04 g weight), were fed to *C. chitra*

hatchlings in this study. One hundred fish within the first two months and 200 fish in the third month were provided daily in each aquarium. The total number of fish eaten was recorded daily and was divided by hatchlings in order to estimate the average amount consumed per individual. Weight, carapace width and carapace length of hatchlings were measured every two weeks for fourteen weeks.

Results

Reproduction

Timing of reproductive activity

Reproductive behaviors occurred in both ponds over the nine-month period between August and April in both years of the study. Tracks of the females were observed from August through April, with their frequency increasing in November, and from February through April. Nesting tracks and nests were observed from February through April (Figure 3).

In the first year of our study, the first copulation observed involved the 44 kg male and female in Pond A on September 6, 2000, at 8.00 A.M. about four months after his release into the pond. Other copulations occurred between December 3, 2000 and April 3, 2001 mainly between 6.15 A.M. and 8.30 A.M. (Table 1 and 2), with the males being most active between December and February. At this time, males often chased the females and attempted to copulate.

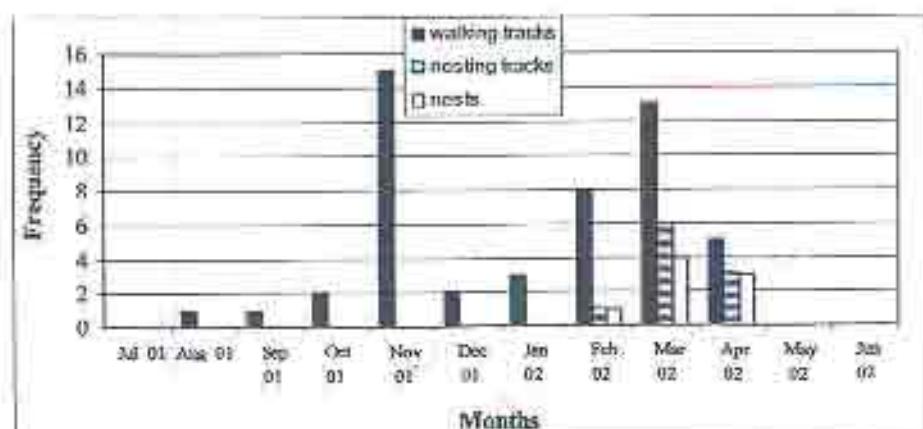


Figure 3 Terrestrial activities of *C. chitra* in pond A; walking tracks, nesting tracks and nests between July 2001 and June 2002.

Table 2 Date of copulation and mating duration of *C. chitra* in pond A.

Nesting year	Copulation times	Mating duration
2001	- 8 September 2000; 6.00 a.m.	~10 min
	- 3 December 2000; 6.00 a.m.	~10 min
	- 22 February 2001; 7.30 a.m.	~10 min
	- 2 April 2001; 8.30 a.m.	~10 min
	- 3 April 2001; 6.15 a.m.	~10 min
2002	- 29 December 2001; 2.00 p.m.	~10 min
	- 27 February 2002; 8.45 a.m.	~15 min

In the second year, copulation occurred between December and February (Table 2). Copulations lasted between 10–15 minutes in both years of study (Table 2).

Nesting

Nesting occurred on the artificial sandbanks. Walking tracks, which may represent exploratory behavior by the females, were found before nesting actually occurred. The first nesting track was found in the morning of February 22, 2001 in Pond A, but the actual nest site was not located. Several additional nest tracks and presumed nests (*i.e.* large areas of disturbed sand) were found during March to April. On June 7, 2001, after heavy rains and rising water levels within the pond enclosures, *Chitra* eggs were discovered on the sand surface near the water's edge. Subsequently the sandbank was excavated and four clutches of eggs were removed from flooded nests.

One year later, nesting tracks were found in the morning in both Pond A and Pond B from February 27 to April 20, 2002. Nests were excavated within 48 hours after they were constructed. The nest hole of *C. chitra* is flask-shaped. The mean of four egg chambers of Pond A was 23.5 cm width, 32.5 cm height from sand surface to top of egg clutch, and 54 cm height from sand surface to nest bottom. The average of four egg chambers of Pond B was 22.8 cm, 32 cm, and 49.3 cm, respectively. The

nest dimensions of the smaller female were less than those of the larger female (Table 3).

Clutch size

Clutch size ranged from 1 to 88 eggs, although it seems likely that the single egg clutch represents aberrant "nesting". The total eggs from the Pond A female were 215 eggs, from clutches of 74, 64, 76, and 1 egg in 2001. In 2002, the female of Pond A laid 280 eggs from clutches of 45, 88, 79, and 68, respectively. Also in 2002, the female of Pond B laid 205 eggs with clutches of 40, 40, 67, and 58 eggs, respectively (Tables 3 and 4). Both females deposited four clutches each in nesting season of 25 days at intervals of 5–23 days (Table 3).

Egg size

Most *C. chitra* eggs were white and spherically shaped, but a few were more oblong. The smaller female produced more elongate eggs. Eggshells were brittle and easily broken. The mean dimensions of the eggs ($n=220$) were 31.94 ± 1.57 mm width (range 26.89–34.37 mm) and 33.18 ± 1.54 mm length (range 29.39–40.49 mm). Mean egg weight was 19.00 ± 1.67 g (range 15.31–21.80 g) (Table 4). Comparison of egg size between the two females revealed that egg width and weight were significantly different between the two females although egg length was not (Table 4). The larger female laid wider and heavier eggs than the smaller female.

Table 3 Hatching success and other parameters for the three incubation methods. Abbreviations: KIFDC, Kasetsart University Inland Fisheries Development Center; CU, Chulalongkorn University; ASB, Artificial sandbank; Size of egg chamber, width (W), height of ground surface to egg top (ET), height of nest bottom to ground surface (NB). Number in parentheses indicates the number of eggs which were found in the original nests

Incubation Method	Nesting Date	Hatching Date	Egg chamber size (W x H)	No. of eggs	Temp. (°C)	Incubation time (days)					
A1/KIFDC	16/3/2002	10/4/2002	23, 40, 38	44(42)	31-32	34-44	33	60-64	80	80	80
A2/CU	21/3/2002	14-18/4/2002	30, 39, 49	57(53)	33-33.5	25-34	71	52-60	80	80	80
A3/ASB	4/4/2002	1/5/2002	31, 32, 44	78(78)	35-35	34-34	94	80	80	80	80
A4/ASB	8/4/2002	19/4/2002	31, 32, 33	39(33)	37-39	34-35	57	62-64	62	62	62
B1/KIFDC	21/3/2002	16/4/2002	21, 30, 43	46(43)	35-39	34-41	3	34	3	3	3
B2/CU	27/3/2002	3/5/2002	35, 35, 52	42(40)	36-33.5	31-28	4	36	5	5	5
B3/ASB	†	18/4/2002	31, 32, 45	47(41)	35-35	33-34	64	†	60	60	60
B4/ASB	9/4/2002	5-7/5/2002	31, 35, 48	46(43)	33-34	31-32	8	41-45	10	10	10

† Actual nesting date not observed.

* Eggs were found at 2 weeks old. The infertile eggs were removed.

Table 4. Size of eggs and hatchlings of captive *C. chira*. Numbers in brackets of no. of eggs and no. of hatchlings indicate the number of eggs and hatchlings which were measured. Numbers in parentheses indicate standard deviation (SD)

Year	Chicks	No. of eggs	Egg length (mm)	Egg width (mm)	Egg weight (g)	No. of hatchlings	Hatching rate (%)	Hatching rate (No. of hatchlings/No. of eggs)	Hatching rate (No. of hatchlings/No. of eggs)	
									SD	SD
A	92/21	A1	74.1	-	-	-	-	-	-	-
		A2	66.7	-	-	-	-	-	-	-
		A3	70.4	-	-	-	-	-	-	-
		A4	71.1	-	-	-	-	-	-	-
88/93	A1	45.4	44.37(0.44)	33.02(0.53)	18.79(0.87)	39.24(0.77)	111	13.3%	-	-
	A2	58.5	51.10(0.35)	36.44(0.45)	20.14(0.50)	50.53(0.53)	98.5	14.4%	42.01(0.11)	16.44(0.14)
	A3	78.1	-	-	-	-	76.5	38.39(2.37)	61.89(0.29)	71.46(0.64)
	A4	88.1	-	-	-	-	87.8	86.35(1.37)	48.12(0.88)	18.86(0.48)
	Mean of pool A		72.17(0.34) ^a	33.18(0.16)	19.38(0.94) ^a	54.98(1.37) ^a	84.98(1.37) ^a	45.98(1.37) ^a	42.98(0.66) ^a	17.77(0.76)
	Range		30.16-54.37	35.29-35.47	18.55-21.62	35.23-41.62	38.89-40.88	38.89-40.88	38.89-40.88	11.59-14.59
B	93/98	B1	40.0	36.41(1.47)	19.30(1.18)	13.77(0.57)	111	32.0%	22.28	10.76
	B2	40.0	36.53(0.93)	31.03(1.01)	11.48(0.84)	111	30.1%	40.48	11.14	11.14
	B3	81.1	-	-	-	44.43	31.24(0.46)	47.77(1.08)	11.08(0.88)	-
	B4	86.1	-	-	-	31.8	31.22(2.53)	30.38(1.04)	11.57(1.05)	-
	Mean of pool B		54.38(1.40) ^a	33.22(1.40)	11.78(0.52) ^a	22.21(1.73) ^a	41.06(1.00) ^a	11.60(0.89) ^a	-	-
	Range		34.20-55.40	35.38-45.48	11.33-11.43	30.00-41.17	35.77-46.44	9.26-13.43	-	-
	Total mean		51.74(1.37)	33.36(1.38)	11.99(1.47)	28.46(1.08)	42.87(1.04)	13.19(1.03)	-	-
	Total range		31.99-44.37	36.32-45.48	10.51-21.37	32.02-44.17	32.27-44.64	9.00-15.60	-	-

Incubation and Hatching Success

Mean incubation time of *C. chitra* eggs was 59 ± 3 days ($n = 255$) with a range of 55–65 days (Table 3) at 24–42°C air temperature and 24–39°C sand temperatures (Figure 4).

Within a clutch, hatching varied from 1–5 days between first and last egg piping. Only in the A3/ASB clutch that was incubated in the nest area did all hatchlings ($n = 74$) emerge at the same time (60 days). In the other clutches the eggs hatched over a 3–6 day period. For the year 2002, the hatching success rates of the larger female's clutches incubated with the three methods ranged from 80 to 94% (Table 3). Hatching success of the smaller female's clutches was much less, 3 to 66% (Table 3). The hatch rates of the Pond A female were not significantly different among incubation methods. The hatch rate of Pond B

was highest in B3/ASB1 clutch (66%) while hatch rates of the other clutches were very low. Air temperature ranged widely in all incubation methods; 24–42, 26–34 and 24–39°C of KIFDC, CU and ASB, respectively (Table 3). While sand temperatures in the CU method varied less than in the KIFDC and ASB methods 24–39, 26–33.5 and 28–35°C of KIFDC, CU and ASB, respectively (Table 3). However, sand temperature in the ASB method was recorded as only max-min throughout the study (Figure 4).

Moisture contents of sand in CU, KIFDC and ASB were 4.64 ± 0.53 (range = 4–5.8), 5.10 ± 0.38 (range = 4.8–6) and 3.78 ± 0.19 (range = 3.6–4.2)%, respectively. The moisture content of ASB is lower than in the CU and KIFDC methods (Figure 5).

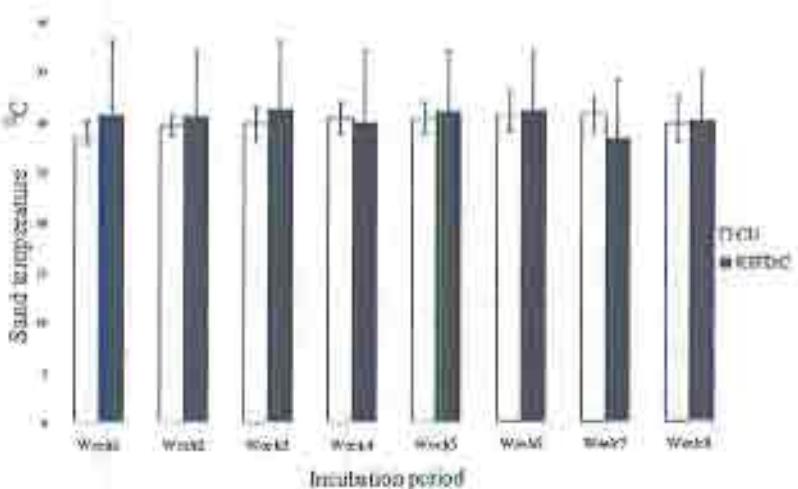


Figure 4 Sand temperature during *C. Chitra*'s eggs incubation in KIFDC and CU methods. The vertical solid bars show maximum and minimum of sand temperatures. Sand temperature of ASB was recorded as only max-min throughout the study.

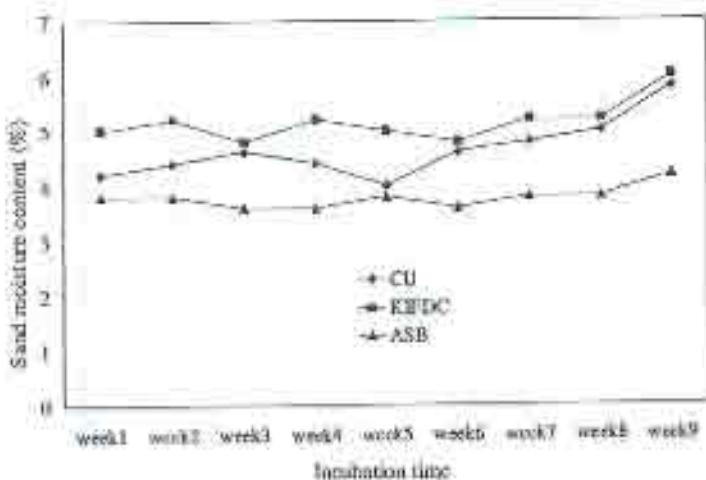


Figure 5. Moisture content of sand during incubation in CU, KIFDC and ASB methods for egg treatments from pond A.

Hatching size

The mean hatching sizes were 38.46 ± 1.52 mm carapace width (range 32.00–41.67 mm), 42.97 ± 1.59 mm carapace length (range 36.27–46.66 mm) and 13.10 ± 1.03 g weight (range 9.00–14.89 g). Hatchling sizes from Pond A and Pond B were compared by t-test analysis. Hatchlings from Pond A were significantly wider, longer, and heavier than Pond B hatchlings (Table 4).

Growth

The mean sizes of 21 day-old hatchlings were 41.35 ± 0.57 cm carapace width, 44.58 ± 0.62 carapace length and 13.99 ± 0.80 g weight. After 14 weeks, mean hatchling size was 86.70 ± 5.17 mm carapace width, 91.72 ± 5.75 mm carapace length and 103.97 ± 18.08 g weight, respectively. Moreover, the survival rate of these hatchlings was 90.64% for the test interval.

Figure 6 shows the relationships between CW, CL, Wt and age for 19 hatchlings (1 of them died after 2 weeks). It shows that CL and CW are strongly correlated with one another as well as with age, and that weight increase is strongly correlated with age (Figure 6). Another significant

relationship was established between weight of food consumed per day and hatchling weight over a 14-week observation period (Figure 7).

Discussion

Mating and Nesting

The peak mating time of *C. chitra* observed in captivity, from December to February (Figure 2), is similar to the January to February mating season observed in nature (Tachchacharemsukchera, 1991). Walking tracks (Figure 8) were found from August to April, with two peaks, are in November and March. The first terrestrial activity occurs before mating time and may be an exploration for suitable nesting sites. The second activity was for nesting, and nesting tracks and nests (Figure 3) were found from February to April. Some nests were constructed, but eggs were not deposited. These empty nests presumably result from disturbance of the nesting female and her abandonment of the nesting behavior. Similar occurrences of empty *Chitra* nests have been observed in nature. Fishermen and local people believe that *Chitra* constructs false nests to distract the egg predator *Varanus salvator* from locating the true nest. All

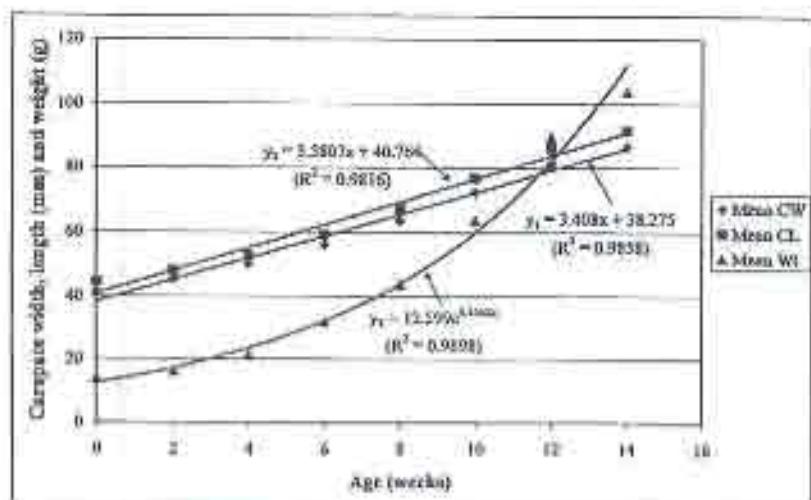


Figure 6 Carapace width, carapace length and weight of *C. chitra* hatchlings for 14 weeks.

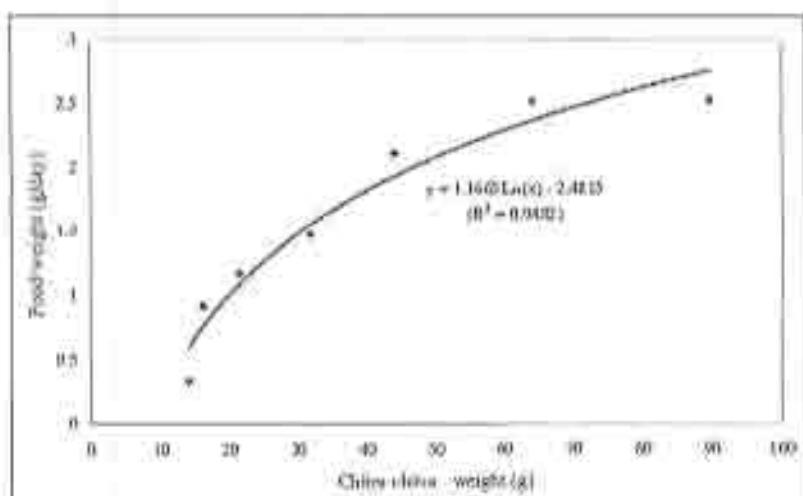


Figure 7 Relationship between weight (g) of *C. chitra* hatchling and food weight (h) per day.

captive *C. chitra* nested nocturnally, perhaps to avoid the high daytime temperatures (34–42 °C) during the nesting season (Figure 2). The captives nested in late winter to late summer (February to May) when warmer temperatures provide appropriate thermal conditions for egg incubation. The captives' nesting season is probably similar to that in nature. However, we found one clutch of wild *C. chitra* in Vajiralongkorn reservoir (formerly Khoa Lam reservoir) on January 14, 2000.

Knowledge of egg and clutch parameter is relatively well known in sea turtles, but these data

are still lacking for many other turtle species (Moll, 1979; Gibbons and Greene, 1990). In this study, two *C. chitra* produced four clutches each in one breeding season after the larger female produced three or four (depending on whether the one egg clutch is counted) clutches the preceding year. Taechacharernsukchera (1991) dissected a dead female *C. chitra* that contained 97 hard-shelled oviducal eggs and 270 follicles. The size differences between follicles observed (3–4 groups) suggest that four to five clutches are laid by female each nesting season. The factors influencing the number of clutches per year are unknown. Clutch frequency of *C. chitra* in this study (based

upon two years from Pond A and one year from Pond B) provides the first direct evidence that *Chitra* can lay up to four clutches within a nesting season.

Multiple clutches hatching at intervals would provide some *Chitra* hatchlings an opportunity to avoid egg and hatchling predators and/or unfavorable weather conditions during portions of the hatching season.

Clutch size of *C. chitra* ranged from 40 to 88 eggs in this study, whereas Taechacharemsuk-chera (1991) found 97 eggs in a wild clutch. Nutphand (1990) stated that *C. chitra* normally laid 60 to 110 eggs per clutch. The highest number of eggs per clutch in *C. chitra* was recorded as 117 eggs (Nutphand, 1986). These data support the view that *C. chitra* should be classified as possessing reproductive Pattern I as defined by Moll, 1979. This pattern is characterized by the production of large clutches; multiple clutches produced during a well-defined nesting season; communal nesting in well-defined ancestral nesting area; and careful construction of covered nest. Seaturtles and many other larger riverine turtles also display Pattern I reproductive strategies.

The limited data available suggest that larger *Chitra* lay larger egg clutches than smaller individuals. This trend has been observed in other turtle species (Moll, 1979; Gibbons, 1982) although environmental influences may also influence clutch sizes to some extent.

Egg size and shape

Chitra chitra laid spherical eggs with white, brittle eggshells morphologically similar to those produced by other softshell turtles (see previous section on egg morphology).

Egg size of *C. chitra* is small compared to maternal body size. The large *C. chitra* female laid larger eggs than the small female, a trend similar to that seen in seaturtles (van Buskirk and Crowder, 1994; Miller, 1997). The smaller female produced more elongated eggs. Perhaps this might reflect the physical constraints by the diameter of the oviducts or a pelvic girdle constraint (Congdon and Gibbons, 1987) of newly matured females.

Incubation time

The incubation times of turtle eggs depend mainly on temperature and humidity. Previous studies showed that incubation times of *Testudo hermanni boettgeri* eggs incubated at high constant temperatures are shorter than those incubated at low constant temperature (Eendebak, 1995). At the same incubation temperatures, *Chrysemys picta* eggs in wetter substrates required more time to hatch than those from drier substrates (Packard et al., 1991). Temperatures and soil moisture levels in incubation methods employed in this study were not controlled. The eggs were incubated in fluctuating temperatures (24–35°C sand temperature), and relatively moist substrates so that the effects of these and perhaps other environmental influences on incubation time cannot be determined from this study. However, the moisture content in the last week of each method is higher due to water infused from hatching eggs (Figure 5).

Hatching success

The successful hatching of turtle eggs depends upon temperature, humidity, and air circulation. The hatch rate of *C. chitra* eggs in this study in Pond A did not differ among the three methods used (Table 3). The hatch rates were all high, > 80%, therefore, we conclude that conditions in all incubating methods were appropriate for incubation of *C. chitra* eggs.

Although the hatching success of eggs from Pond B was lower than that from Pond A (3-56 vs. 80-94%), both sets of eggs were incubated under similar conditions. Perhaps the smaller (71 kg) female was ovipositing for the first time (anecdotal evidence suggests that *C. chitra* females mature at 60 kg or more) and she was physiologically deficient for effective reproductive success.

Hatching size

Hatching sizes of *C. chitra* are very small and similar to sizes recorded for *C. indica* hatchlings (43 and 38 mm CL and CW and 10 g Wt and 39 and 33 mm of CL and CW and 7 g Wt) (Sachsse, 1971). Larger *C. chitra* eggs produced larger hatchlings (Table 4), a trait also known in seaturtles (van Buskirk and Crowder, 1994).

Growth

Growth of *C. chitra* including (CW, CL and Wt) is very rapid during the first 14 weeks. The result was compared with growth of *C. indica* hatchlings that were studied by Sachsse (1971). The initial sizes of *C. indica* were 43 and 38 mm of CL and CW and 10 g Wt and 39 and 33 mm of CL and CW and 7 g Wt. After 2 months, their measurements were 54 and 38 mm of CL and CW and 11 g Wt and 40 and 33 mm of CL and CW and 10 g Wt, respectively. In this study the growth rate of *C. chitra* was much higher in the first 2-3 months than observed in *C. indica*. Hatchlings from captive breeding have a better chance than animals from the wild. However, growth of *C. chitra* is probably not maintained at this rate. Two hatchlings of wild caught *C. chitra* were maintained at Kanchanaburi Inland Fisheries Development Center for nine years. Their sizes are 59 and 63 cm CW, 68 and 71 cm CL and 29 and 30 kg Wt, respectively (Kitimasak, unpublished data) on August 2002.

Acknowledgements

We would like to thank Mr. Vikrom Kromadit, Mr. Vitoon Kromadit, Mr. Pisit Na Phatthalung (the Director of the Zoological Park Organization), Mr. Somwang Pimobutara (the Director of Nakhon Sawan Inland Fisheries Development Center) for providing the animals in this study. Special thanks to Dr. Jaranthada Karnasuta, Mr. Rungsan Suangchompun (the Director of Kanchanaburi Inland Fisheries Development Center), Mrs. Aurapa Nagachinta and Mr. Chao Damler for helping and furnishing facilities at KIFDC. This study was supported by the Thailand Research Fund (TRF) for the Royal Golden Jubilee Ph.D. Program (RGJ).

Literature Cited

- van Buskirk, J. and Crowder, L.B. 1994. Life-history variation in marine turtles. *Copeia* 1994(1): 66-81.
- Congdon, J.D. and Gibbons, J.W. 1987. Morphological constraint on egg size: A challenge to optimal egg size theory? *Proc. Nat. Acad. Sci.* 84: 4145-4147.
- Eendebak, B.T. 1995. Incubation period and sex ratio of Hermann's tortoise, *Testudo hermanni boettgeri*. *Chelonian Conservation and Biology* 1(3): 227-231.
- Engstrom, T.N., Shaffer, H.B. and McCord, W.P. 2002. Phylogenetic diversity of endangered and critically endangered Southeast Asian softshell turtles (Trionychidae: *Chitra*). *Biol. Conserv.* 104(2): 173-179.
- Gibbons, J.W. 1982. Reproductive patterns in freshwater turtles. *Herpetologica* 38(1): 222-227.
- Gibbons, J.W. and Greene, J.L. 1990. Reproduction in the Slider and other species of turtles, pp. 124-134. In: J.W. Gibbons (ed.), *Life history and ecology of the Slider turtle*.

Smithsonian Institution Press, Washington, D. C.

Hilton-Taylor, C. (Compiler). 2000. 2000 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland and Cambridge, UK. xviii + 61 p.

Kitimasak, W. and Thirakhupt, K. 2002. New record of *Chitra chitra* Nutphand, 1986 in Mae Ping River, Thailand. Nat. Hist. J. Chulalongkorn Univ. 2(1): 82-83.

Kraemer, J.E. and Bell, R. 1980. Rain-induced mortality of eggs and hatchlings of loggerhead sea turtles (*Caretta caretta*) on the Georgia coast. Herpetologica 36(1): 72-77.

Miller, J.D. 1997. Reproduction in sea turtles. pp. 61-81. In: P.L. Lutz and J.A. Musick (eds.), The Biology of Sea Turtles. CRC Press, Boca Raton.

Moll, E.O. 1979. Reproductive cycles and adaptations. pp. 305-331. In M. Harless and H. Morlock (eds.), Turtles: Perspectives and Research. Wiley & Sons, New York.

Moll, E. O. and Moll, D. 2000. Conservation of river turtles. pp. 126-155 In M. W. Klemens (ed.), Turtle conservation. Smithsonian, Washington and London.

Nutphand, W. 1986. "Man Lai," the world's biggest softshell turtle. Thai Zoological Magazine 1(4): 64-70 (in Thai).

Nutphand, W. 1990. Softshell turtles. Bulletin of the Thai Zoological Center 5:93-104. (in Thai).

Packard, G.C., Packard, M.J. and Benigan, L. 1991. Sexual differentiation, growth, and hatching success by embryonic painted turtles incubated in wet and dry environments at fluctuating temperatures. Herpetologica 47(1): 125-132.

Pritchard, P. C.H. 2001. Observations on body size, sympathy, and niche divergence in softshell turtles (Trionychidae). Chelonian Conservation and Biology 4: 5-27.

Sachsse, W. 1971. Observations on young *Chitra indica*, with emphasis on prey capture (Testudines, Trionychidae). Salamandra 7(1): 31-37.

Thirakhupt, K. and van Dijk, P. P. 1994. Species diversity and conservation of the turtles of Western Thailand. Nat. Hist. Bull. Siam Soc. 42:209-259.

Taechacharemsukchera, V. 1991. Incubation on *Chitra chitra* eggs in captivity. Journal of Wildlife in Thailand. 1(1): 8-14. (in Thai)

New Record of *Chitra chitra* Nutphand, 1986 in Mae Ping River, Thailand

WACHIRA KITIMASAK^{1,*} AND KUMTHORN THIRAKHUP²

¹ Kanchanaburi Inland Fisheries Development Center, Tha Muang, Kanchanaburi 71110, THAILAND
² Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND

Chitra chitra Nutphand, 1986 is a native softshell turtle species in Thailand. It was listed as a Critically Endangered Species by IUCN in 2000. The river systems of Thailand have been classified into six major river drainages; the Salween, Mae Klong, river of southern Peninsula, southeastern part, Chao Phraya and Mekong river systems (Vidthayanon et al., 1997). *C. chitra* has not been previously reported from anywhere other than the Mae Klong river system (Nutphand, 1990; Smith, 1931; Thirakhupt and van Dijk, 1994).

The habitat of *C. chitra* in this record was divided into two areas (Fig. 1). The first is the area below Bhumipol Dam. In this area, one live male *C. chitra* was caught by the longline hook, usually used for *Mystus* spp., near the mouth of Mae Ping River at 15°43.020'N 100°08.632'E, Mueang district, Nakhon Sawan Province in June 1998. The hook was attached to its leg. This live specimen was donated to Nakhon Sawan Inland Fisheries Development Center and was later moved to Kanchanaburi Inland Fisheries Development Center, Kanchanaburi Province on April 29, 1999 for the captive breeding program. The shell width, shell length and body weight were 66 cm, 76 cm and 44 kg, respectively.

Other evidence of *C. chitra* in Mae Ping River included four carapaces and one skull from

the survey in November 2001 and in February 2002. All of these were found in the reservoir of upper Bhumipol Dam at different times. The first carapace with the skull (Fig. 2) has been kept by a restaurant owner for more than 10 years. Its carapace width, carapace length, skull width and skull length were 61 cm, 66 cm, 13 cm and 27 cm, respectively. The second carapace (CUMZ (R) 2001.11.27.1) was from a 90 kg *C. chitra* at Ban Pakvek, Saan Ngao District, Tak Province which was captured by a fisherman in 1987. Its carapace width and carapace length were 64 cm and 71 cm respectively. The third specimen (CUMZ(R) 2001.11.27.2) was kept by a villager who bought it for food a few years ago. It was a juvenile with a carapace of 21.1 cm wide and 21.7 cm long. The fourth specimen (CUMZ(R) 2002.2.17.1) was sold to a restaurant owner by a fisherman in 1997 and was reported to have been captured from Mae Toun, Mae Ramat District, Tak Province. It weighed about 11 kg and the carapace width and length were 27.5 cm and 29.1 cm respectively. At present, the last three specimens are deposited at the Chulalongkorn University Museum of Zoology, Bangkok.

Thirakhupt and van Dijk (1994) questioned why *C. chitra* remains restricted to the Mae Klong, apparently unable to reach the nearby and connected Tha Chin and Chao Phraya rivers and this remains a biogeographical mystery. This record may provide the answer, that *C. chitra* did not only inhabit the Mae Klong river system but in Chao Phraya river system as well.

* Corresponding author.
Tel: (662) 218-5259
Fax: (662) 218-5386
E-mail: wachira@chula.com

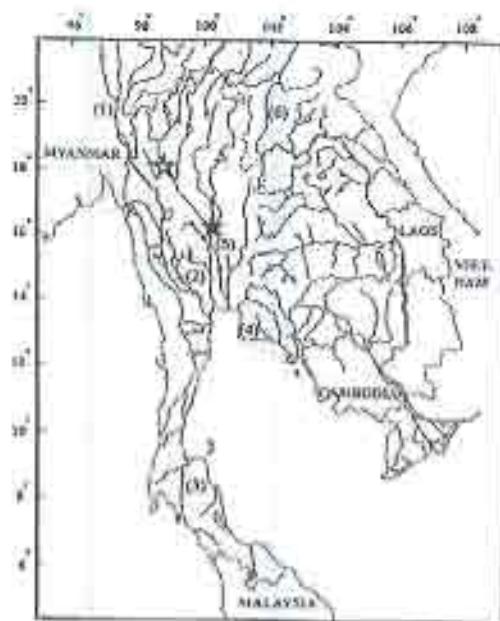


FIGURE 1. Six major river drainages in Thailand: (1) the Salween, (2) Mekong, (3) river of southern Plaina, (4) southeastern part, (5) Chao Phraya and (6) Mekong River systems and the new record of *C. chitra* in Mae Ping River, upper Bhumipol Dam (open star) and below Bhumipol Dam (solid star).

This record may be important for the conservation management of this critically endangered species. An intensive survey on its population status and its breeding sites in Mae Ping River is in progress. In addition, the study of other aspects of this species is urgently needed.

ACKNOWLEDGMENTS

We are grateful to Mr. Somvung Pimonbutr, Director of Nakhon Sawan Inland Fisheries Development Center, Mr. Jiradet Boonmakk and Mr. Chatuporn Tantisuthorn who help us to access *C. chitra* information. We thank Dr. Art-ong Pridatsundarasar, Dr. Wichase Khensue, Thavit Pluapradit, Thongchai Ngamprasertwong and students in Animal Ecology class who joined our field work. This study was supported by The Thailand Research Fund (TRF) for The Royal Golden Jubilee Ph.D. Program (RGJ).

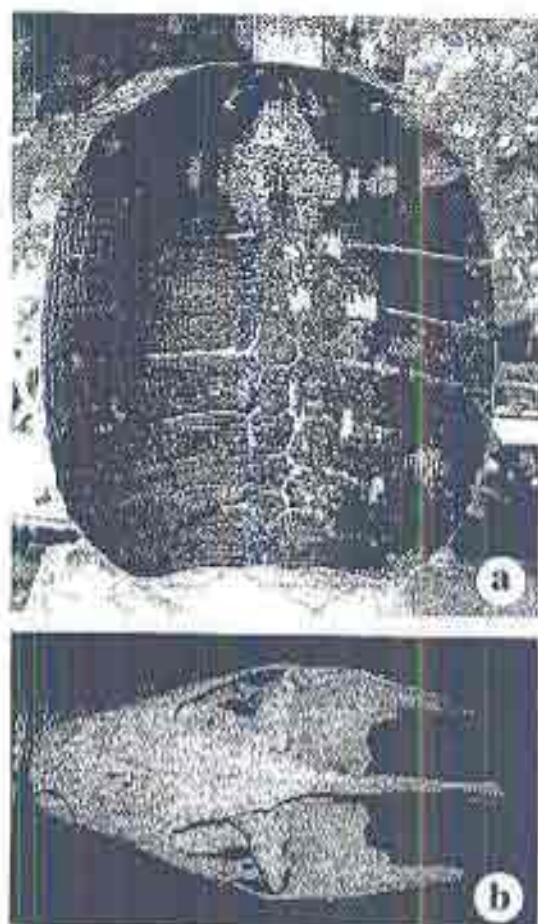


FIGURE 2. Carapace (a) and skull (b) of *C. chitra* in Mae Ping River.

LITERATURE CITED

Hilton-Taylor, C. (Compiler). 2000. 2000 IUCN Red List of Threatened Species. IUCN, Gland, Switzerland and Cambridge, UK.

Mulphand, W. 1990. Softshell turtles. Bulletin of the Thai Zoological Center 5: 93-104. (in Thai)

Smith, M. A. 1931. The Fauna of British India. Ralph Curtis Book, Florida.

Thirakhupt, K. and P. P. van Dijk. 1994. Species diversity and conservation of the turtles of Western Thailand. Nat. Hist. Bull. Siam Soc. 42: 209-259.

Visithayavon, C., J. Karnasute, and J. Nabitabhatta. 1997. Diversity of Freshwater Fishes in Thailand. Office of Environment Policy and Planning, Bangkok.

APPENDIX C

Portrait of a man in a suit and tie, looking slightly to the right. He has short, dark hair and is wearing glasses. The background is a plain, light color.

卷之三

卷之三

the two main types of precipitation in the region. The first is the 'wet' season, which occurs between November and April, and the second is the 'dry' season, which occurs between May and October.

KOMPAS JUMAT, 31 MEI 2002

KHAZANAH

Pembelaan Penyu — Penyu berkerudung sempit dan bercahaya lunak yang oleh penduduk Thailand disebut chitra-chitra, untuk pertama kalinya berhasil dikenakan Departemen Perikanan Thailand. Tampak seekor bayi penyu keluar dari telurnya dalam foto yang dikeluarkan tanggal 30 Mei. Penyu yang sudah langka ini dianggap sebagai penyu bercahaya lunak terbesar di dunia. Setelah dewasa, beratnya bisa mencapai 200 kg.

THE DRUGS

卷之三

四

卷之三

19. *Leucanthemum vulgare* L. (Lam.)

ພວກເຮົາພາກົນກົນລາຍ'ເກັບຈົບເຕືອນຈຸລານ

19. *Leucanthemum vulgare* L. (Lam.)

ପ୍ରେସରିଯାନ୍

Digitized by srujanika@gmail.com

2003 BOSTON DAILY NEWS

ພົມພັນຍາ
ຕະພາບ
ມາກເຄາຍ
ໄດ້ໃນບ່ອງ

卷之三

บ้านเดี่ยว บ้านเดี่ยว บ้านเดี่ยว บ้านเดี่ยว

“*Die ersten kleinen Schritte auf dem Wege der Freiheit sind die schwersten.*”

תְּמִימָנָה וְתְּמִימָנָה

所以說，我們在研究社會問題時，不能只看表面現象，而要深入到社會的內部，才能真正了解問題的本質。

ເມືລິຍືນ

ດົນປັດ 19,228 ວິວຽກ 5 ນັດມາຍາ ພ.ຊ. 2545

ຈຳກັດ ບ່ານ DAILY NEWS

A Fisheries Department official shows a narrow-headed softshell turtle. The success of a captive breeding programme in Kanchanaburi has given rise to hope that the species, threatened with extinction, can be saved. — VACHANA OMINTHORN

Survival hope for rare turtle

Breeding programme heads off extinction

Porntip Changyana

The success of a captive breeding programme for the very rare narrow-headed softshell turtle could save the species from looming extinction.

Only about 20 of the turtles are known to exist in their natural habitat in the Mae Klong and Ping rivers.

After nine years of research a breeding programme run by the Freshwater Fisheries Development Centre in Kanchanaburi is now caring for 160 young turtles and about 100 eggs.

Researcher Wajira Kittimarsak said the softshell turtles were bred in an artificial pond and sand dune. It was hoped they

would be the foundation of a new breeding stock and save the species from extinction.

"This is only the first step. To be able to reintroduce them to the wild is the ultimate goal," said Ramanorn Ternakupt, a professor at Chulalongkorn University.

The turtles' natural habitat has spoiled by factory and household pollution, and even though they can survive there they do not reproduce, Mr Wajira said.

Dams were also believed to be a major contributor to the reptile's disappearance.

The dam reservoirs flood the river banks, where the eggs hatch.

Although a protected species, the softshell turtles have been extensively hunted for their elaborately patterned shells — a one-metre long shell could sell for over 100,000 baht.

หนังสือพิมพ์คุณภาพ เมื่อคุณภาพของประเทศไทย

<http://www.maticshop.co.th>

มติชน

รับสูตรที่ 31 พฤศจิกายน พุทธศักราช 2545 ปีที่ 25 ฉบับที่ 3848 ราชกิจจานุเบกษา

● หน้า 15

ประมงเจ็บเพาะ 'ตะพาบม่านลาย' ใกล้สูญพันธุ์- ใหญ่สุดถึง 200 กิโล

นรภ. พร. ประทุมพงษ์ กลับถึงกรุงเทพฯ
เดือนเมษายนที่ 20 พ.ศ. 2460 รัฐบาลประชุมหารือ
ทราบว่าต้องห้ามการขายสิ่งพิมพ์ด้วยพาณิชย์ในกรุงเทพฯ ทั้งนั้น
ครั้งนี้ ก็ไม่ได้รับอนุญาตให้ ก็ต้องพิพากษานี้เป็นอันตราย
ต่ออยู่ด้วยเหตุผลของกรุงเทพฯ ที่มีชื่อเสียงในเรื่องการค้าขายด้วย
คนญี่ปุ่นมาก แต่เป็นประเทศที่มีความน่าเชื่อถือและมีความ
หนึ่งกรุงเทพฯ ที่สุดในประเทศไทย มีความสำคัญและมีความที่ดีใน
โลกทั่วๆ ตอนนี้นี้มีอยู่ตั้งแต่เดือนเมษายนที่ 200
ก.ก. น. ต้องได้รับอนุญาต จึงพิพากษานี้ในกรุงเทพฯ ให้เป็นอันตราย
ต่ออยู่ด้วยเหตุผลของกรุงเทพฯ ที่มีชื่อเสียงในเรื่องการค้าขายด้วย
คนญี่ปุ่นมาก แต่เป็นประเทศที่มีความน่าเชื่อถือและมีความที่ดีใน

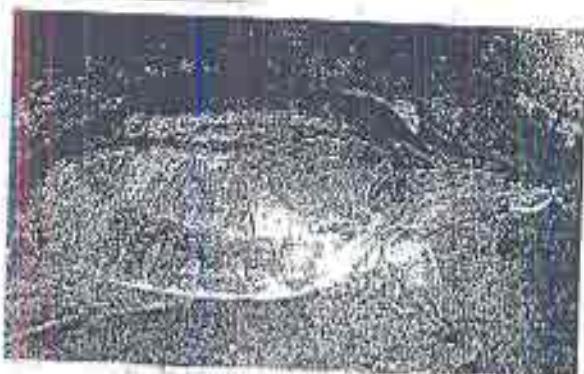
นายอัมรรถ์พัทรวิริยะ กรรมการผู้จัดการบริษัทเนินศรีนี้เป็นการที่การศึกษาอยู่ในพิธีกรรม คือพิธีกรรมค้ำครอง น้ำริษยา กรรมป่าสัก ณ อนุรักษ์พิพิธนารามวรวงศ์นารีศรี จังหวัดเชียงใหม่ วันงานวิชีร์ให้บริการพิธีกรรมพิธีน้ำริษยาในโครงสร้างสถาปัตยกรรมทางการศึกษาขนาดใหญ่ที่สุดในประเทศไทย อยู่ที่ภาคกลาง จังหวัดวิจิตรฯ ขนาดวิจิตรฯ ศาสตราจารย์ รุ่งเรืองธรรมเมฆราษฎร์ ให้การสนับสนุนทางด้านการบริหารงานด้านน้ำริษยา

การรัฐประหาร ฯ จำกัดการที่กษัตริย์ได้ห้ามมนต์กรรม ประมวลนี้ให้ถูกประพันธ์มานานถึงกว่าร้อยปี แต่ก็ยังคงมีความสำคัญอยู่ในประเทศไทย ไม่เสื่อมคลาย เช่นเดียวกับประเพณีที่สืบทอดกันมา แต่ในปัจจุบันนี้ มนต์กรรมนี้ได้หายไปแล้ว ไม่เหลืออยู่แล้ว

เพาะตัวพาม่านลายตัวลงบนสำเนา

Wadsworth Hospital, East
Hartford, Conn., with an
average load of 20,000 amp
at 1150 volts, 1220 ohms
resistance.

ເມືອງໄກເຈົ້າ



1787

Із згаданих вище п. 7.6. правоприменим
законом відповідної речі єдиний з відповід-
них правопримених земель з післяд-
відповідної

ຕະພາບນໍ້າມ່ານລາຍໄມ່ສູນພັນຮໍ ປະມປຜສມພັນຮໍໃນປ່ອສໍາເຮັດ

การรวมตัวหันหัวเพื่อพยายามหันไปบูรณะ
ครั้งนี้ มองเป็นการเรียกบรรกรทที่ประดิษฐ์แล้ว
จะพยายามหันหัวกลับไป กรรมบูรณะและงาน
งานที่เกี่ยวข้องที่สนับสนุนการรักษา (สุขภาพ) ตามที่ได้

‘ຕະກາບມ່ານລາຍ’ ວິກາດຕີ ກ່ອນເສັ້ນລາຍນາຍ/ໃຈ

de la base de la columna y elásticos de vinilo que se sujetan con tornillos a través de la espuma de poliuretano que recubre la columna. Una estructura similar se aplica en los asientos de los asientos.

statuibus huius reipublicae, quaeque illi
reverentissimis litteris ad hanc suppeditationem
recte manifeste praedicta sunt, utrumque
recte et legitime inveniatur. Nam illa

รายงาน

Джон Бонгоуи

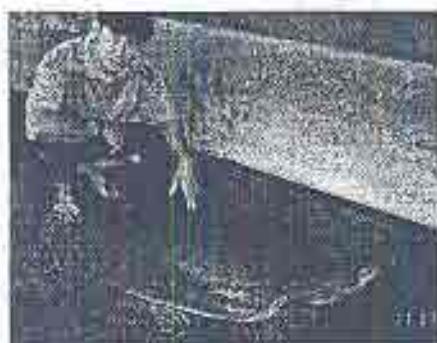
วันที่ ๑๖ ตุลาคม พ.ศ. ๒๕๖๓

Ergebnisse der Studie zeigen, dass die Anwendung von
spezifischen sozialen Lernstrategien die Verarbeitung von
sozialen Informationen und die soziale Kompetenz von
Kindern und Jugendlichen fördert.

សំណង់សារពិនិត្យ

WUQUIGU

ครั้งแรกของโลก เพาะตะพาบสายพันธุ์ไทยสำเร็จ


“ดูเหมือนมีงานมาก” บีบีเป็นห่วงเรื่องนี้มากให้เกร็งก็ต้อง
เข้าไปดูที่บ้านน้องสาวคนที่ 5 ชนิดที่หูบินไม่ดีอีก ใจหาย
มากเมื่อเดินทางมาที่บ้านพี่น้อง ที่บ้านน้องหัวใจห่วง ห่วงงาน
ไม่เสร็จ แต่ 24 ชนิดที่พึ่งฟื้นฟู完 ใจอยู่เมืองวัววิ่ง บ้าน
ที่หัวใจพึ่งหายกู้ไว้ 200 กิโลกรัม บรรทุกโนนีไปได้ไว้ใน
ทางเดินไปรษณีย์ที่บ้านพี่น้องพานันเด้ดูอีกเมืองนี้และการเดินทางมาที่
โนนน้ำบูรุนีดันน้ำชุมชนที่ริมแม่น้ำแม่กลองและแม่น้ำ
แม่กลองและแม่น้ำป่าสักที่กรุงนนท์ บ้านที่หัวใจห่วงก็จะอยู่ในพื้น
ทรายที่เดินไม่ถูกและวิ่งวิ่งด้วยความอุตสาหะ ใจหายเดินบันดาลไปที่บ้านน้ำ
เป็นอย่างมากในที่ยว่าง 22 บ้านผู้คนน้อย ที่อยู่ด้วยกันอย่างมี
ความสัมภัยทางการค้าริมน้ำแม่น้ำแม่กลอง แม่น้ำป่าสัก แม่กลองน้ำใส แม่
การแม่น้ำแม่กลองสุดท้ายไปถึงกรุงเทพฯ ก็ถึงวันเดียว
รถด่วนที่ 2 ที่ให้เห็นอย่างเดียวแค่หนาหนาแล้วว่าไปถูกก้าวกระซิบไป
บานหัวทุกครั้งเมื่อค่ำวัน ลูกศรที่กราดด้วยสายไฟหัวใจห่วง
ไม่ใช่สายไฟที่สว่างงานมาก แต่ลูกศรที่ใจร้านร่วงทุกตอนหน้า
ชีวิตนี้ได้ล็อกตัวไปคนเดียว จึงสร้างงานการพอกดูในลักษณะให้กล
ลุ่มผันผันอย่างต่อตัว

ตะพาบม่านลายจากบ่อเลี้ยงรุ่นแรกของโลก

ANSWERING QUESTIONS

ແມ່ນກົດໜີ້ມີກົດໜີ້ແລ້ວ, ແກ້ໄຂງົດ
ກົດໜີ້ມີກົດໜີ້ມີກົດໜີ້ ເພື່ອມີກົດໜີ້
ກົດໜີ້ມີກົດໜີ້ມີກົດໜີ້ ເພື່ອມີກົດໜີ້ ເພື່ອ²

“ก็คือว่าคุณต้องการให้เข้าร่วมใน
กิจกรรมนี้ด้วยตัวของคุณเอง”

ไทยสารสัมภาระ

THAI FISHERIES GAZETTE

卷 66 期 3 五月 - 六月 2003

Volume 66 Number 3 May - June 2003

เมื่อวัน ๒๐ พฤษภาคม ๒๕๔๖ นายสุวัฒน์ ธรรมชาติวุฒิ
อธิบดีกรมประมง ได้รับเชิญร่วมรับประทานอาหารว่างานกาลังฟูร์
ที่จัดขึ้นในโอกาสวันครบรอบ ๕๐ ปี ของมหาวิทยาลัย
เกษตรศาสตร์กรุงเทพฯ ที่ ห้องมีรัชปัลลภัณฑ์ มหาวิทยาลัย
เกษตรศาสตร์กรุงเทพฯ ผู้เชิญรับประทานเป็นนายอภิชาน
กุล ผู้ช่วยศาสตราจารย์

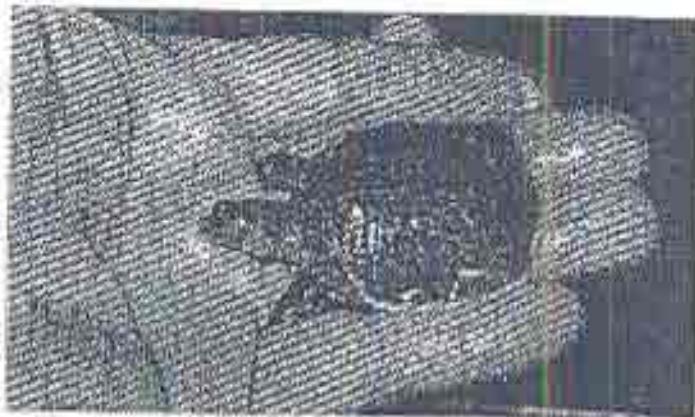
หน้า 25 จากทั้งหมด 6 | เผด็จการ 2549

ພາສັຕປະຕິວິທະນາວົນ

ພາວະພັນຮູ້ທະພາບມໍາພລາຍສ່ານຮູ້ ປີເກຣີອັກກອງໄກດ

หากการดำเนินการจัดตั้งหน่วยงานที่เข้ามาร่วมกับภาคเอกชนล้มเหลวไปทางด้านเงินทุนที่ต้องการหันตัวกลับมาจัดการด้วยตนเอง ผลกระทบก็ตามที่กล่าวมาแล้วนั้นจะยังคงต้องดำเนินต่อไปโดยไม่อาจหลีกเลี่ยงได้โดยเฉพาะหากไม่สามารถหาเงินทุนมาสนับสนุนได้

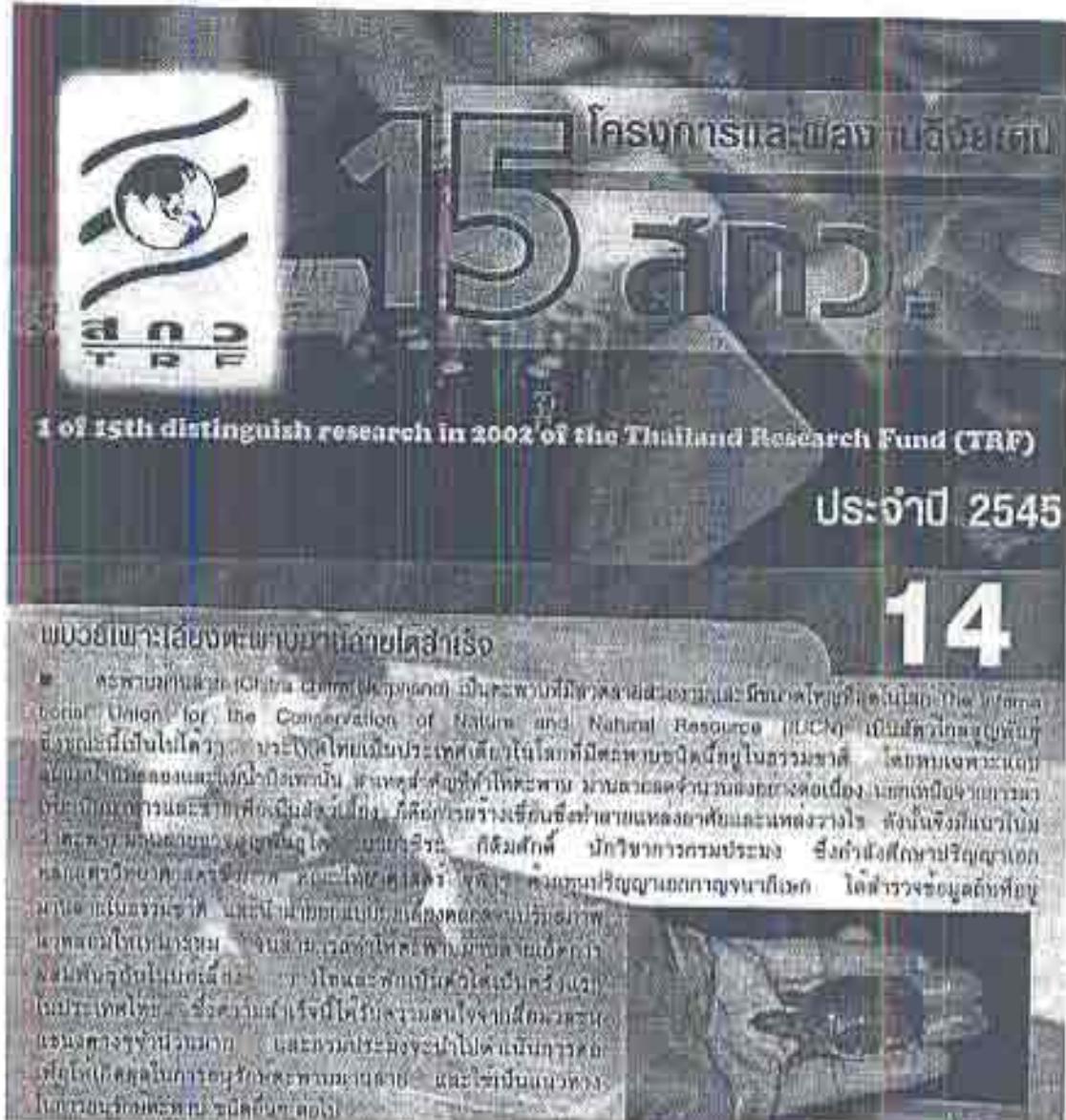
ପାଇଁ ପାଇଁ

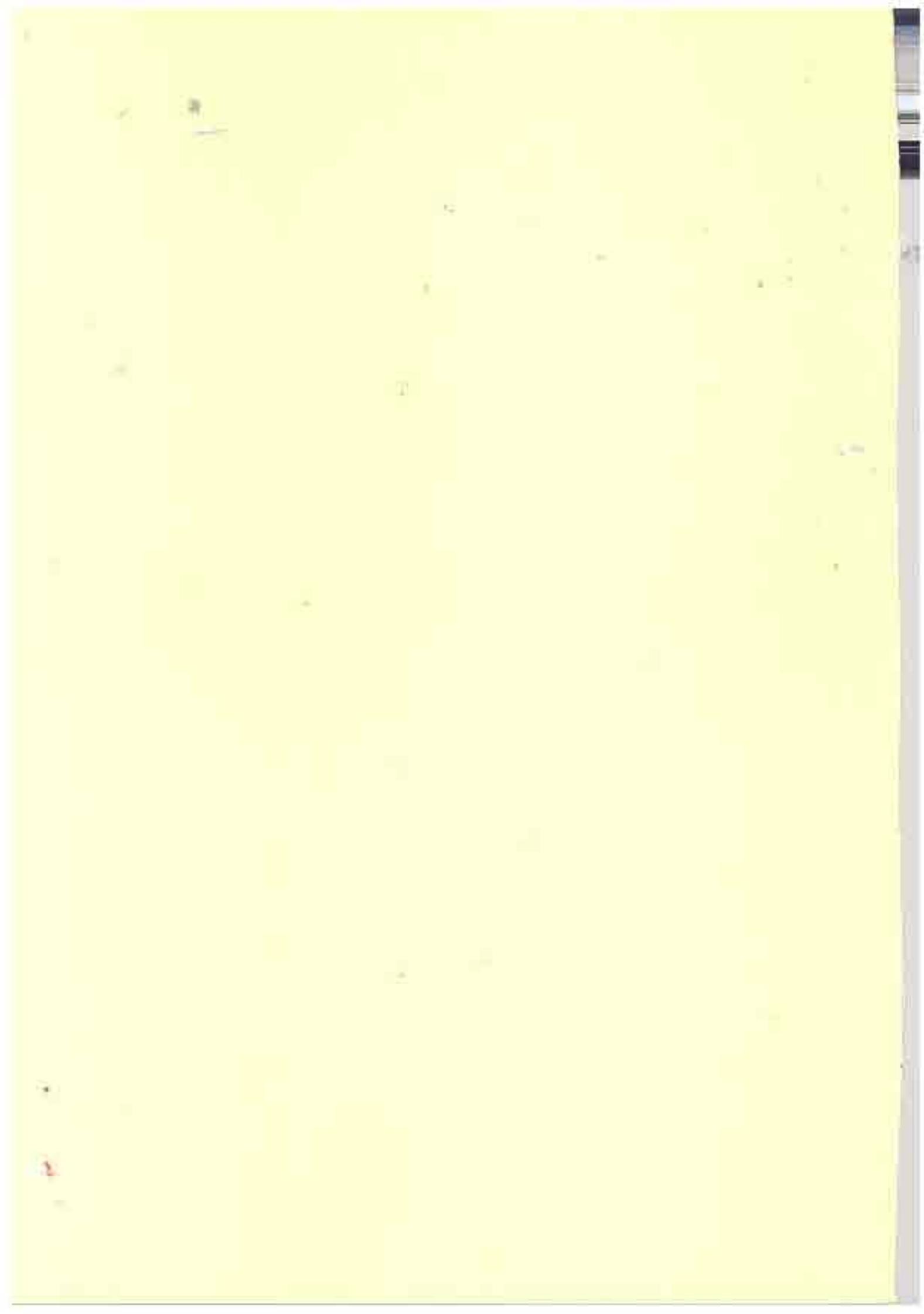

સાધુબદ્ધ વિદ્યા

THE PRACTICAL

卷之三

นิสิตปริญญาเอกฯ พาร์ ขยายพันธุ์
ศรีพารามม่านถ่ายเป็นผลสำเร็จครั้งแรก


น ต้องปฏิรูปกฎหมายการค้าระหว่างประเทศ
เพื่อสนับสนุนความต้องการ อย่างไร ภาคสูง
ของประเทศ เช่น ในสหราชอาณาจักร ประเทศ
เยอรมันและอินเดีย ที่ต้องการให้ประเทศไทย
สนับสนุนให้เพิ่มความต้องการในสินค้าที่ดีและดูด
ดึงตัวท่องเที่ยวเข้ามายังประเทศไทย



ພບວິທີພາວະເລື່ອງຕະພາບນ່າງໝາຍໄດ້ສ່າງເຮົາ

รายงานของ ICUN (IUCN, 2009) ระบุว่า ประเทศไทยมีพืช 2,038 ชนิด ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีเหลือง คือ ใกล้สูญพันธุ์ ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีส้ม คือ กำลังเสี่ยงสูญพันธุ์ ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีเขียว คือ ไม่เสี่ยงสูญพันธุ์ ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีฟ้า คือ ไม่ได้ประเมิน ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีขาว คือ ไม่ได้ประเมิน ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีดำ คือ ไม่ได้ประเมิน ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีน้ำเงิน คือ ไม่ได้ประเมิน ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีเหลืองเข้ม คือ ใกล้สูญพันธุ์ ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีส้มเข้ม คือ กำลังเสี่ยงสูญพันธุ์ ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีเขียวเข้ม คือ ไม่เสี่ยงสูญพันธุ์ ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีฟ้าเข้ม คือ ไม่ได้ประเมิน ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีขาวเข้ม คือ ไม่ได้ประเมิน ไม่รวมพืชในบ้านเรือน ไม่รวมพืชในกรุงเทพมหานคร ที่จัดอยู่ในสีน้ำเงินเข้ม คือ ไม่ได้ประเมิน

