รายการแสดงจำนวนเอกสารที่ส่ง			
ชื่อรายการ	บัญชี	1	
ชื่อรายการ	รูปแสคง	1	
ชื่อรายการ	บทสรุป	1	
เลขที่ใบมอบฉันทะ	0016073		
เลขที่ใบมอบฉันทะ	0200257		
เลขที่ใบมอบฉันทะ	0200273		
เฉขที่ใบมอบฉันทะ	0115231		
เลขที่ใบมอบฉันทะ	0115230		
ความจำเป็นในการรับการ	จำเป็น		

[Document Name] Specification

[Title of the Invention] NONIONIC VESICLE AND USE THEREOF [Claims]

 A nonionic vesicle comprising a compound shown by the following formula (1) as a major component:

$$A-(CH_2)_0-H$$

wherein A represents a hydrophilic group selected from the following groups,

$$H^{-}(OC_{2}H_{4})_{w}^{-}O = (C_{2}H_{4}O)_{x}^{-}H$$

$$O^{-}(C_{2}H_{4}O)_{y}^{-}H$$

$$O^{-}(C_{2}H_{4}O)_{z}^{-}$$

wherein w, x, y, and z represent integers of which the sum is

5

0 to 100, and n is an integer from 5 to 30.

- 2. The nonionic vesicle of claim 1, further comprising a cholesterol compound and/or other steroid compounds.
- 3. A drug carrier comprising a water phase in which the nonionic vesicle of claim 1 or claim 2 is enclosed and a water-soluble drug component included in the water phase.
- 4. A drug carrier comprising a lipid soluble drug component included in a bilayer membrane of the nonionic vesicle of claim 1 or claim 2.
- 5. The drug carrier of claim 3 or claim 4, which is kojic acid or its ester, vitamin C or its derivative, or vitamin E or its derivative.
- 6. The drug carrier of any one of claims 3 to 5 which is to be added to external preparations.

[Detailed Description of the Invention]
[Field of the Invention]

The present invention relates to a nonionic vesicle formed from nonionic compounds.

20 [Prior Art]

5

10

15

Phospholipids have been known to associate to form a bilayer membrane when suspended in water and form vesicles (small sacs) encapsulating a water phase. Vesicles are also called liposomes and have attracted attention as a biomembrane model and a drug carrier.

More recently, efforts to discover artificial lipids having vesicle-forming capabilities have been undertaken. As

a result, di-long-chain alkyl dimethyl ammonium possessing two long-chain alkyl groups, for example, has been found.

However, most conventionally available artificial lipids possessing vesicle-forming capabilities have been ionic lipids of which the use was sometimes limited. A vesicle-forming compound having no ionic properties was necessary to expand the use range of vesicles.

[Problems to be Solved by the Invention]

The present invention has been completed in view of this situation and has an object of providing a nonionic vesicle formed from nonionic compounds.

[Means for Solving the Problems]

To achieve the above object, the inventors of the present invention have focussed attention on nonionic surfactants which are amphipathic in properties and have investigated vesicle-forming capabilities. As a result, the inventors have found that nonionic surfactants having a specific structure possess vesicle-forming capabilities and that a nonionic vesicle formed by combining such a nonionic surfactant and a cholesterol exhibits high stability.

Accordingly, the present invention provides a nonionic vesicle formed from the compound shown by the following formula (1) as a major component:

$$A-(CH_2)_0-H \qquad (1)$$

wherein A represents a hydrophilic group selected from the

5

10

15

20

36

following groups,

$$H-(OC_2H_4)_w-O$$
 $O-(C_2H_4O)_x-H$
 $O-(C_2H_2O)_y-H$
 $O-(C_2H_4O)_z$

wherein w, x, y, and z represent integers of which the sum is 0 to 100, and n is an integer from 5 to 30.

The present invention also provides a nonionic vesicle further comprising a cholesterol compound and/or other steroid compounds.

[Preferred Embodiment of the Invention]

The compounds that form the nonionic vesicle of the present invention (hereinafter referred to as "vesicles") are compounds shown by the above formula (1). All these compounds are known as nonionic surfactants and can be manufactured by known methods.

4

5

Specifically, among the compounds of the above formula (1) the compound having the following group for A and n=17 is sorbitan monostearate, which is commercially available under the trademark Span 60; and

the compound having the following group for A and n=17 is polyoxyethylene sorbitan monostearate, which is commercially available under the trademark Tween 61;

$$H^{-}(OC_{2}H_{4})_{w}^{-}O = O^{-}(C_{2}H_{4}O)_{x}^{-}H = O^{-}(C_{2}H_{4}O)_{y}^{-}H = O^{-}(C_{2}H_{4}O)_{z}^{-}H = O^{}$$

wherein w, x, y, and z represent integers of which the sum is 20.

Furthermore, the compound having the following group for A and n=18 is polyoxyethylene (2) stearyl ether, which is commercially available under the trademark Brij 72; and

$$HO - (C_2H_4O)_2 - O -$$

20

15

5

38

the compound having the following group for A and n=17 is glyceryl monostearate (GMS).

The length n of the ethylene chain (-CH₂-) in the compound (I) is very important for the vesicle-forming capabilities of the compound. Specifically, at least 13-polyethylene chain (n) is necessary. If the length n is less than 12, vesicle cannot be formed. For example, Tween 20 having an ethylene chain length of 11, but otherwise having the same structure as Tween 61, has no vesicle-forming capabilities.

In addition, the compound is different from conventional vesicle-forming compounds in that only one alkyl group is formed from an ethylene chain. For instance, no vesicle can be formed from glyceryl distearate which is only different from glyceryl monostearate in that the former has two alkyl groups.

Although the above compound (I) alone can form a vesicle, a more stable vesicle can be formed if other compounds such as a cholesterol, for example, are added. In this instance, the ratio of the compound (I) and cholesterol is preferably from 9:1 to 1:9, and particularly preferably from 9:1 to 5:5.

The method of Bangham can be principally followed for

5

10

15

forming a vesicle from the compound (I) described above or a combination of the compound (I) and cholesterol or other steroids. Specifically, the compound (I) or a mixture of the compound (I) and cholesterol or other steroids (hereinafter referred to as "vesicle forming compounds) is dissolved in a suitable solvent and charged into a vessel such as an eggplant flask to form a thin membrane under reduced pressure. After completely removing the solvent, an aqueous solvent is added to the vessel and the mixture is vigorously stirred using a boltex mixer. The mixture becomes clouded when a multilamella vesicle (MLV) is formed, whereupon the reaction is terminated.

MLV thus obtained is a bilayer membrane with an average size from about 0.05 μm to 100 μm , having an outwardly arranged hydrophilic group A of vesicle-forming compound and inwardly arranged alkyl groups formed from ethylene chains. A small unilamellar vesicle (SUV) can be obtained if MLV is treated with supersonic waves (20-1,000 kHz).

In the preparation of vesicles, the product is incorporated into the vesicle together with various drug components. Specifically, the vesicle-forming compound can be maintained in the space between alkyl groups of bilayer membrane if a lipid soluble drug component is dissolved in a suitable solvent together with the vesicle-forming compound. In this instance, the vesicle is preferably in the form of MLV.

On the other hand, if a water soluble drug component is added to an aqueous medium to be added after removal of the solvent and the mixture is subjected to ultrasonic treatment,

10

15

20

it is possible to incorporate such a water soluble drug component into SUV. In this instance, it is desirable to separate the aqueous medium not incorporated into the SUV by centrifugation or other means.

Among the above drug components, as lipid soluble drug components, kojic acid esters, such as kojic acid ester and kojic acid diester, vitamin E, vitamin E derivative, and the like can be given. As water soluble drug components, kojic acid, vitamin C, vitamin C derivatives, and the like can be given.

The vesicle containing the above drug components can be used as a drug carrier, which can be used for various applications, For instance, such a vesicle can be used as an additive for external preparations, such as drugs for external application and cosmetics, and drug delivery media for anticancer drugs, antituberculous agents, antileishmaniasis agents, antiinflammation agents, hormone preparations, per oral vaccines, and the like.

When the vesicle of the present invention is used as a drug carrier for cosmetics for external application, kojic acid and kojic acid esters are given as preferable drug components. Of these, kojic acid is used as a water soluble drug component and kojic acid esters are used as a lipid soluble drug component.

[Examples]

The present invention will be described in more detail by way of Examples which should not be construed as limiting the present invention.

5

10

15

20

Example 1

5

10

15

Experiment for confirming vesicle formation (1)

Formation of vesicles (MLV) by Bangham's method using the following nonionic surfactants was confirmed.

Specifically, nonionic surfactants dissolved in an organic solvent such as chloroform were put into an eggplant flask with a ground-in stopper and the solvent was evaporated under reduced pressure using a rotary evaporator. The evaporation under reduced pressure was continued for some time after the solvent had disappeared. Next, an aqueous solution was added to make the concentration of nonionic surfactant 0.01-500 mM. Then, the internal atmosphere of the flask was replaced with nitrogen. After stoppering the flask, the mixture was stirred for about one hour using a Boltex blender. MLV was judged to have been formed if the solution in the flask turned milky-white after stirring. Formation or non-formation of MLV for each tested surfactant is shown in Table 1.

(Nonionic surfactant)

Sorbitan monostearate (Span 60)

20 Sorbitan monooleate (Span 80)

Polyoxyethylene (20) sorbitan monolaurate (Tween 20)

Polyoxyethylene (20) sorbitan monostearate (Tween 61)

Polyoxyethylene (2) stearyl ether (Brij 72)

Glycol monostearate (GMS)

25 Glycol distearate (GDS)

[Table 1]

Nonionic surfactant (abbreviated name)	Formation or non-formation of MLV*
Span 60	0
Span 80	X
Tween 20	×
Tween 61	
Brij 72	o l
GMS	Ö
GDS	×

^{*} O: MLV was formed, X: MLV was not formed.

Example 2

Experiment for confirming vesicle formation (2)

Vesicle formation was examined in the same manner as in Example 1 when cholesterol was added in various proportions to four nonionic surfactants on which the formation of MLV was confirmed in Example 1. The results are shown in Table 2.

[Table 2]

10

Ratio of	Nonionic surfactants			
cholesterol**	Span 60	Tween 61	Brij 72	GMS
30:10	Ö	0	0	0
9:1		0	0	0
8:2	10	0	0	0
7:3	0	0	0	0
6:4	0	0	0	0
5:5		. 0	. 0	0
4:6		0	0	0
3:7		0	0	0
2:8		0	0	0
1:9	0.	O	<u> </u>	0

^{**}Ratio of nonionic surfactant to cholesterol

15 Example 3

43

Experiment for confirming vesicle's entrapment efficiency

The vesicle's efficiency for entrapping other compounds was examined as follows using the vesicles prepared from the four nonionic surfactants used in Example 2 and the same amount of cholesterol. The entrapment efficiency of a water-soluble fluorescent marker, calcein, was determined by a spectrofluorophotometer. The calcein concentration used to prepare the vesicle was 0.1 mM. The vesicle was diluted to 1:50,000 with purified water and the total fluorescent intensity The calcein in an aqueous bulk phase was measured (Itotal). was quenched by complexation with cobalt ions using 0.013 $\mu g/ml$ cobalt chloride. Then, the total fluorescent intensity was measured (Iin). Subsequently, the vesicle membrane was ruptured by Triton X-100, while Itx was consequently obtained. The entrapment efficiency was calculated according to the following equation. The results are shown in Figure 1.

Entrapment efficiency (%) = $[(l_{in} - l_{tx} \times r)/(l_{total} - l_{tx} \times r)] \times 100$

20 wherein r indicates a volume correction coefficient.

The results confirmed that vesicles made from surfactants possessing a stearyl chain (Tween 61, Span 60, Brij 72, and glyceryl monostearate (GMS)) and cholesterol exhibited calcein entrapment efficiency with an increase in concentrations of the nonionic surfactants and cholesterol. Particularly, Tween 61 exhibited the highest entrapment efficiency among the

25

5

10

44

surfactants having a stearyl chain.

Example 4

5

10

20

25

Experiment on vesicle's microviscosity change according to temperature change

The relationship between temperature and microviscosity was examined on the four nonionic surfactants used in Example 2 with varied cholesterol proportions. A solution of 1 mM 1,6-diphenyl-1,3,5-hexatriene (DPH; fluorescence probe) in tetrahydrofuran was added to a dispersion of vesicles and the mixture was incubated for one hour at 37°C. The molar ratio of surfactant/cholesterol to DPH was 300:1. Fluorescence polarization (P) was determined according to the following equation.

15
$$P = (I_p - GI_v)/(I_p + GI_v)$$

wherein I_p and GI_v indicate a strength of fluorescent light when an excitation light is polarized respectively to the parallel direction and vertical direction, and G is a grid correction coefficient.

 I_p and I_v for vesicles obtained by various surfactant/cholesterol combinations at different temperatures were measured by a spectrofluorophotometer. The value P was calculated using the measured results. The results are shown in Figure 2. Excitation and fluorescence wavelength were respectively 350 nm and 450 nm.

As a result, vesicles formed from surfactants with a stearyl chain exhibited an increase in the fluorescence polarization (P) with the increase in the amount of cholesterol, indicating an increase in the microviscosity (or a decrease in membrane flowability) of vesicle bilayer membrane (hydrophobic part). Particularly, in Tween 61, a vesicle formed from only a surfactant, which has a gel-liquid crystal transition temperature within the measured range, the gel-liquid crystal transition temperature has disappeared with an increase in the amount of cholesterol. In any case, the increased amount of cholesterol resulted in vesicle bilayer membrane exhibiting high microviscosity (low flowability). The vesicle became stronger, indicating that the results correspond to entrapment efficiency.

15 Example 5

5

10

20

25

Preparation of vesicle entrapping kojic acid ester

A vesicle entrapping kojic acid ester was formed by combination of Bangham's method and ultrasonic wave treatment. Specifically, a nonionic surfactant dissolved in an organic solvent such as chloroform, cholesterol, and kojic acid ester were charged in an eggplant flask with a ground-in stopper and the solvent was evaporated under reduced pressure using a rotary evaporator. Nonionic-surfactants used were Span 60 and Tween 61, the ratio of the surfactant and cholesterol was 1:1, the total concentration of the surfactant and cholesterol in the aqueous solution was 20 mM, and the total concentration of the kojic acid ester in the aqueous solution was a 2-4 mM. The

46

evaporation under reduced pressure was continued for some time after the solvent had disappeared.

Next, purified water was added and the internal atmosphere of the flask was replaced with nitrogen. After stoppering the flask, the mixture was stirred for about one hour using a Boltex blender. The aqueous solution was further treated with ultrasonic waves (20 kHz, about 3 minutes) to obtain a milky-white aqueous solution. The aqueous solution contained a vesicle entrapping ko-ic acid ester.

10 [Effect of the Invention]

5

15

The vesicle of the present invention is basically a nonionic compound (1) or is formed from the nonionic compound (I) and cholesterol, which also has nonionic properties.

Therefore, the vesicle has properties different from the properties possessed by conventional vesicles that are ionic in properties. Therefore, the vesicle can be used to advantage together with a drug component which is not preferably used with an ionic compound.

The nonionic compound (I) is less expensive than

conventional vesicle-forming compounds. In addition, it is

possible to prepare a vesicle possessing desired target

properties.

[Brief Description of the Drawings]

25 Fig. 1 is a graph showing the vesicle's entrapment efficiency.

Fig. 2-1 shows the relationship between temperature and

microviscosity when the ratio of nonionic surfactants and cholesterol is changed. In the figure, A indicates a vesicle prepared from Span 60 and B indicates a vesicle prepared from GMS.

Fig. 2-2 shows the relationship between temperature and microviscosity when the ratio or nonionic surfactants and cholesterol is changed. In the figure, C indicates a vesicle prepared from Tween 61 and D indicates a vesicle prepared from Brij 72.

10

[Document Namel Abstract

[Abstract]

[Subject] The present invention provides a nonionic vesicle formed from nonionic compounds, which can expand the area of vesicle application.

[Means for the Solution] A nonionic vesicle comprising the compound shown by the following formula (1) as a major component:

$$A-(CH_2)_n-H$$

10

5

wherein A represents a hydrophilic group selected from the following groups,

H-
$$(OC_2H_4)_w$$
-O $O-(C_2H_4O)_x$ -H $O-(C_2H_4O)_y$ -H $O-(C_2H_4O)_z$

wherein w, x, y, and z represent integers of which the sum is 0 to 100, and n is an integer from 5 to 30.

2002年8月19日

東京理科大学 理工学部工業化学科 阿部正彦先生

特許出願書類控御送付の件

「非イオン性ペシクルおよびその利用」 (Your Ref. : Our Ref. 0210059)

拝 啓 時下益々御清栄の段大慶に存じ上げます。

さて、予てより御高嘱の首題の件に関し、下記のとおり特許庁へ出願致しましたので、ここにその控を同封し御報告申し上げます。

敬具

記

出願番号:特願2002-236530

出 願 日:2002年(平成14年)8月14日 審査請求期限:2005年(平成17年)8月14日

添付書類:出願書類控 1通

平成14年 8月14日 特許庁長官

識別番号

100086324

氏名 (名称)

小野 信夫

段

提出日

平成14年 8月14日

以下の暬類を受領しました。

項番 書類名

整理番号 受付番号 出願番号通知(事件の表示)

1 特許願

0210059 50201209911 特願2002-236530

以上

整理番号=0210059

提出日 平成14年 8月14日 特願2002-236530 頁: 1/ 3

【書類名】

特許願

【整理番号】

0210059

【提出日】

平成14年 8月14日

[あて先]

特許庁長官 殿

【発明の名称】

非イオン性ベシクルおよびその利用

【請求項の数】

6

【発明者】

【住所又は居所】

千葉県野田市大殿井58-71

【氏名】

阿部 正彦

【発明者】

【住所又は居所】

神奈川県鎌倉市玉縄2-17-30

【氏名】

酒井 秀樹

【発明者】

【住所又は居所】

埼玉県草加市手代町50-134

【氏名】

湯浅 真

【発明者】

【住所又は居所】

千葉県野田市山崎2641 株式会社日本ポロン内

【氏名】

武林 敬

【発明者】

【住所又は居所】

タイ国、50200 チェンマイ、ムアン区、ファイ

カエウ ロード 239、チェンマイ大学 薬学部内

[氏名]

アラーニャ・マノスロイ

【発明者】

【住所又は居所】

タイ国、50200 チェンマイ、ムアン区、ファイ

カエウ ロード 239, チェンマイ大学 薬学部内

【氏名】

ジラディー・マノスロイ

【発明者】

【住所又は居所】

タイ国、50200 チェンマイ、ムアン区、ファイ

カエウ ロード 239, チェンマイ大学 薬学部内

整理番号=0210059

提出日 平成14年 8月14日 特願2002-236530 頁: 2/ 3

【氏名】

パウィーナ・ウォングトラクル

【特許出願人】

【識別番号】

598069939

【氏名又は名称】

阿部 正彦

【特許出願人】

【識別番号】

501490818

【氏名又は名称】

湯浅 真

【特許出願人】

【識別番号】

501370945

【氏名又は名称】

株式会社日本ポロン

【代理人】

【識別番号】

100086324

【弁理士】

【氏名又は名称】

小野 信夫

【選任した代理人】

【識別番号】

100115842

【弁理士】

【氏名又は名称】

秦 正則

【手数料の表示】

【予納台帳番号】

007375

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書

【包括委任状番号】

0016073

【包括委任状番号】

0200257

【包括委任状番号】

0200273

【包括委任状番号】

整理番号=0210059

提出日 平成14年 8月14日 特願2002-236530 頁: 3/ 3

【包括委任状番号】 0115230

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 非イオン性ペシクルおよびその利用

【特許請求の範囲】

【請求項1】 次の式(1)

【化1】

$$A-(CH_2)_n-H$$

[式中、Aは次の基

[化2]

$$H-(OC_2H_4)_w-O$$
 $O-(C_2H_4O)_x-H$
 $O-(C_2H_4O)_y-H$
 $O-(C_2H_4O)_z$

(式中 W、X、yおよびzの合計は、0から100の数を示す)

から選ばれる親水性基を示し、nは、5から30の数を示す]

で表される化合物を主成分として構成される非イオン性ベシクル。

【請求項2】 更に、コレステロールおよび/または他のステロイド類を含む請求項第1項記載の非イオン性ペシクル。

【請求項3】 請求項第1項または第2項記載の非イオン性ベシクルの閉鎖された水相に、水溶性薬効成分を含有せしめてなる薬物担体。

【請求項4】 請求項第1項または第2項記載の非イオン性ペシクルの二分 子膜内に、脂溶性薬効成分を含有せしめてなる薬物担体。

【請求項5】 薬物が、コウジ酸もしくはそのエステル、ピタミンCもしくはその誘導体またはピタミンEもしくはその誘導体である請求項第3項または第4項記載の薬物担体。

[請求項6] 外用剤配合用のものである請求項第3項ないし第5項の何れ かの項記載の薬物担体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、非イオン性物質で形成される非イオン性ベシクルに関する。

[0002]

【従来の技術】

以前より、リン脂質を水に懸濁させると、このリン脂質が会合して二分子膜を 形成し、水相を閉じこめたペシクル (小胞体)を形成することが知られている。 このペシクルは、リボソームとも呼ばれ、生体膜のモデルとしてや、薬物担体と して注目を集めた。

[0003]

その後、ベシクル形成能を有する人工脂質を見出す努力が行われ、2本の長鎖 アルキル基を有する、例えばジ長鎖アルキルジメチルアンモニウム等が見出され ている。

[0004]

提出日 平成14年 8月14日 特願2002-236530 頁: 3/13

しかしながら、従来提供されているペシクル形成能を有する人工脂質は、イオン性を有するものがほとんどで、その利用が制限される場合もあり、イオン性を有さないペシクル形成物質の提供が、ペシクルの利用範囲を拡張する上で必要とされていた。

[0005]

【発明が解決しようとする課題】

本発明は、上記実情においてなされたものであり、イオン性を有さない物質に よる非イオン性ペシクルを提供するものである。

[0006]

【課題を解決するための手段】

本発明者らは、上記課題を解決すべく、両親媒性である非イオン性界面活性剤に着目し、それらのペシクル形成能を検討していたところ、特定の構造を有するものについてのみペシクル形成能が認められることおよびこのものとコレステロールを組み合わせて形成した非イオン性ペシクルは安定性が高いことを見出し、本発明を完成した。

[0007]

すなわち本発明は、次の式(1)

【化3】

A-(CH₂)_n-H

【式中、Aは次の基

【化4】

$$H^{-}(OC_{2}H_{4})_{w}^{-}O$$
 $O^{-}(C_{2}H_{4}O)_{x}^{-}H$
 $O^{-}(C_{2}H_{4}O)_{y}^{-}H$
 $O^{-}(C_{2}H_{4}O)_{z}^{-}$

$$HO^{--}(C_2H_4O)_2^{--}O^{--}$$

$$CH_2-O$$
 I
 $CH-OH$
 I
 CH_2-OH

(ここで、w、x、yおよびzの合計は、0から100の数を示す)
から選ばれる親水性基を示し、nは、5から30の数を示す]
で表される化合物を主成分として形成される非イオン性ペシクルを提供するものである。

[0008]

また本発明は、更にコレステロールおよび/または他のステロイド類を含む上 記非イオン性ペシクルを提供するものである。

[0009]

【発明の実施の形態】

提出日 平成14年 8月14日 特願2002-236530 頁: 5/13

本発明の非イオン性ペシクル(以下、「ペシクル」という)を形成する化合物は、上記式(I)で表される化合物であるが、この化合物(I)は、何れも非イオン性界面活性剤として公知であるか、公知化合物に準じて製造できるものである。

[0010]

具体的には、上記化合物(I)のうち、基Aが次の式

[化5]

で示され、nが17であるものは、スパン60の商品名で販売されているソルビ タンモノステアレートであり、基Aが次の式

[化6]

$$H-(OC_2H_4)_w-O$$
 $O-(C_2H_4O)_x-H$
 $O-(C_2H_4O)_y-H$
 $O-(C_2H_4O)_z$

(式中、w、x、yおよびzの合計は、20である) で示され、nが17あるものは、ツィーン61の商品名で販売されているポリオ キシエチレンソルピタンモノステアレートである。

[0011]

更に、基Aが次の式

【化7】

$$HO - (C_2H_4O)_2 - O -$$

で示され、nが18であるものは、プリジ(Brij)72の商品名で市販されているポリオキシエチレン(2)ステアリルエーテルであり、基Aが次の式 【化8】

で示され、nが17であるものは、グリセリルモノステアレート (GMS) である。

[0012]

上記化合物(I)において、エチレン鎖($-CH_2-$)部分の長さnは、ベシクルを形成するか否かの上で極めて重要である。すなわち、このポリエチレン鎖の長さ(n)が12未満では、ベシクルを形成することができず、少なくとも13以上の長さが必要である。例えば、上記ツィーン61と比べ、エチレン鎖のみが11と短く、他は同じであるツィーン20にはベシクル形成能を有さない。

[0013]

また、従来のベシクル形成物質と異なり、エチレン鎖で形成されるアルキル基が1本であることが必要である。例えば、アルキル基が2本である点のみでグリセリルモノステアレートと異なるグリセリルジステアレートではベシクルは形成されない。

[0014]

上記の化合物(I)は、これ単独でもペシクルを形成させることができるが、 他の物質、例えばコレステロールを加えることにより、安定なペシクルを形成さ せることができる。この場合の化合物 (I) とコレステロールの比は、9:1から1:9程度とすることが好ましく、特に、9:1から5:5とすることが好ましい。

[0015]

以上説明した化合物(I)から、あるいはこれとコレステロールないしは他のステロイド類の組合せからベシクルを形成させるには、基本的にはバンガム(Bangham)の方法に従えばよい。すなわち、化合物(I)やこれとコレステロールないしは他のステロイド類の混合物(以下、「ベシクル形成物質」という)を適当な溶媒に溶かし、これをナス型フラスコ等の容器中で減圧して薄膜を形成させる。溶媒が完全に除去された後、容器中に水性溶媒を加え、ボルテックスミキサーで激しく攪拌する。この溶液中に多層膜ベシクル(MLV)が形成すると白濁するのでこれを目安に反応を終了させる。

[0016]

このようにして得られたMLVは、平均0.05から 100μ m程度の二分子 膜 (ベシクル形成物質の親水性基Aが外側を向き、エチレン鎖で形成されるアルキル基同士が内側を向いた二分子膜)を有するものであるが、これを超音波処理 ($20\sim1000$ kHz) すると単層ベシクル (SUV) が得られる。

[0017]

上記のベシクルの製造に当たっては、種々の薬効成分を加え、これをベシクル中に含有せしめることができる。すなわち、上記製造法において、脂溶性薬効成分をベシクル形成物質とともに適当な溶媒に溶かし込めば、二分子膜のアルキル基の間の空間に保持することができる。この場合のベシクルの形態は、MLVであることが好ましい。

[0018]

一方、上記製造方法において、溶媒が除去された後に加える水性溶媒中に水溶性の薬効成分を加え、更に超音波処理を行うことにより、SUV中に当該成分を含有させることができる。この場合は、遠心分離等の手段で、SUV中に取り込まれなかった水性溶媒を分離することが好ましい。

[0019]

平成14年 8月14日 百: 8/ 13

上記の薬効成分のうち、油溶性薬効成分としては、コウジ酸エステル、コウジ酸ジエステル等のコウジ酸エステル類やビタミンEまたはその誘導体等が、水溶性薬効成分としては、コウジ酸やビタミンCまたはその誘導体等が挙げられる。

[0020]

上記の薬効成分を含有したベシクルは、薬物担体として使用することができ、 極々の用途に使用可能である。例えば、外用医薬や化粧品等の外用剤の配合成分 として使用することや、抗癌剤、抗結核剤、抗リューシュマニア症剤、抗炎症剤 、ホルモン剤、経口ワクチン等のドラッグデリバリーに使用することができる。

[0021]

本発明のベシクルを外用化粧品用の薬物担体として使用する場合、好ましい薬 効成分としては、コウジ酸やそのエステルが挙げられる。このうち、コウジ酸は 水溶性薬効成分として、コウジ酸エステルは脂溶性薬効成分としてそれぞれ使用 することができる。

[0022]

【実施例】

次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらにより何 ら制約されるものではない。

[0023]

実施例 1

ペシクルの形成確認試験(1):

バンガム (Bangham) 法により、下記の非イオン界面活性剤について、ベシクル (MLV) の形成を確認した。すなわち、クロロホルム等の有機溶媒に溶解した非イオン界面活性剤を共栓付ナス型フラスコに取り、ロータリーエバボレータで溶媒を減圧除去した。溶媒が見かけ上なくなった後もしばらての間減圧除去操作を行った。次に、非イオン界面活性剤が0.01~500mMとなるように水溶液を加え、フラスコ内を窒素ガスで置換した。共栓をしてから、ボルテックスミキサーで約1時間攪拌した。攪拌後、フラスコ内の溶液が乳白色になった場合、MLVが形成したと判断した。各界面活性剤についてのMLVの形成の有無を表1に示す。

特願2002-236530

63

[0024]

< 非イオン界面活性剤 >

ソルピタンモノステアレート(スパン60)

ソルピタンモノオレエート(スパン80)

ポリオキシエチレン(20)ソルビタンモノラウレート(ツィーン20)

ポリオキシエチレン(20)ソルビタンモノステアレート(ツィーン61)

ポリオキシエチレン(2)ステアリルエーテル(ブリジ72)

グリコールモノステアレート (GMS)

グリコールジステアレート (GDS)

[0025]

【表1】

非イオン界面活性剤(略称)	MLV生成の有無・	
スパン60	0	
スパン80	` ×	
ツィーン20	×	
ツィーン6 1	0	
ブリジフ 2	0	
GMS	0	
GDS	×	

* O:MLVの形成、×:MLVは形成しない。

[0026]

実施例 2

ペシクルの形成確認試験(2):

実施例1でMLVの形成が確認された4種の非イオン界面活性剤について、種 々の比率でコレスロールを加えた場合のペシクルの形成を、実施例1と同様にし て調べた。この結果を表2に示す。

[0027]

【表2】

コレステロール との比率 **	非イオン界面活性剤			
	スパン60	ツィーン6 1	ブリジ72	GMS
10:0	0	. 0	0	0
9:1	0	0	0	0
8:2	0	0	0	0
7:3	0	0	0	0
6:4	0	0	0	o l
5:5	0	0	0	o l
4:6	0	0	0	o l
3:7	0	0	O	0
2:8	0	0	0	o l
1:9	0	0	0	ŏ

** 非イオン界面活性剤:コレステロール

[0028]

実施例 3

ペシクルの保持効率試験:

実施例2で試験を行った4種の非イオン界面活性剤について、コレステロールを等量使用して調製したベシクルの他物質の保持効率を次のようにして確認した。すなわち、水溶性蛍光物質マーカーであるカルセインの保持効率は、蛍光分光光度計を用いて測定した。ベシクルの調製に当たってのカルセイン濃度は0.1 mMとした。このベシクルは、精製水により1:50,000に希釈し、この時の蛍光強度を測定した(I_{Lotal})。バルク状態の水相中のカルセインを、 $0.013 \mu g/m1$ 塩化コバルトをコバルトイオンとする複合体化によりクエンチし、この時の蛍光強度を測定した(I_{Lotal})。続いて、ベシクル膜をトリトンX-100により壊し、 I_{Lx} 値を求めた。これらの数値から保持効率は次の式により求めた。この結果を図1に示す。

[0029]

【数1】

[0030]

この結果から、ステアリル鎖の界面活性剤[ツィーン61、スパン60、ブリジ72およびグリセリルモノステアレート(GMS)]とコレステロールよりなるペシクルにおいて、界面活性剤とコレステロールの濃度の増加と共にカルセインの保持効率は増加した。特に、ステアリル鎖の界面活性剤の中でツィーン61は最も高い保持効率を示した。

[0031]

実施例 4

ベシクルの温度に対する局部粘性変化試験:

実施例2で試験を行った4種の非イオン界面活性剤について、コレステロールとの比率を変化させた場合の温度と微小粘度の関係を調べた。試験は、1mM 1,6ージフェニルー1,3,5ーヘキサトリエン(DPH;蛍光プローブ)のテトラヒドロフラン溶液をベシクル分散液に加え、37℃で1時間インキュペートした。また、界面活性剤/コレステロールとDPHの配合モル比は、300:1 とした。そして、下記式で求められる蛍光偏光度(P)で定めた。

[0032]

【数2】

$$P = \frac{Ip - GIv}{Ip + GIv}$$

(ここで、Ip およびIv は、励起光をそれぞれ平行および垂直方向に偏光した放射光に対する蛍光強度、Gは格子補正係数を示す)

[0033]

種々の温度における、種々の界面活性剤とコレステロールの組合せで得たベシクルのIpおよびIvを蛍光分光光度計で測定し、この測定値からPの値を算出した。この結果を図2に示す。励起および蛍光波長は、それぞれ350nmおよび450nmとした。

[0034]

この結果から、ステアリル鎖の界面活性剤より形成されるベシクルにおいて、コレステロールの配合比の増加により、蛍光偏光度(P)の増加、すなわち、ベシクル二分子膜(疎水部)の局部粘性の増大(または、膜流動性の低下)が生じた。特に、界面活性剤単独成分のベシクルにおいて測定範囲内にゲルー液晶転移温度のあるツィーン61では、コレステロールの配合比の増加によりゲルー液晶転移温度が消失した。いずれにせよ、コレステロールの配合比の増加により、ベシクル二分子膜は高い局部粘性(低い流動性)を示して強固となり、保持効率と対応する結果になった。

[0035]

実施例 5

コウジ酸エステル包埋ベシクルの調製:

パンガム法および超音波処理法の併用により、コウジ酸エステルを包埋したべシクルを調製した。すなわち、クロロホルム等の有機溶媒に溶解した非イオン界面活性剤、コレステロールおよびコウジ酸エステルを共栓付ナスフラスコに取り、ロータリーエバポレーターで溶媒を減圧除去した(使用非イオン性界面活性剤は、スパン60およびツィーン61であり、界面活性剤とコレステロールの比は1:1で、水溶液中での界面活性剤とコレステロールの合計濃度は、20mM、水溶液中でのコウジ酸エステルの総濃度は、2~4mMである)。溶媒が見かけ上なくなった後もしばらくの間減圧除去操作を行った。

[0036]

次に精製水を加え、フラスコ内を窒素ガスで置換した。共栓をしてから、ボルテックスミキサーで約1時間攪拌し、更に、この水溶液を窒素雰囲気下で超音波処理し(20kHz、約3分)、乳白色の水溶液を得た。この水溶液は、コウジ酸エステルを包埋するベシクルを含むものであった。

[0037]

【発明の効果】

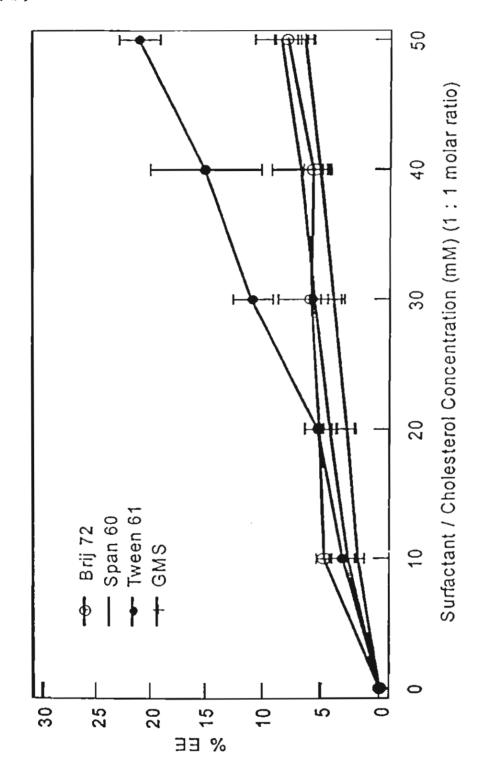
本発明のベシクルは、基本的には、非イオン性である化合物(I)で、または これと同じく非イオン性であるコレステロールにより構成されるものである。

[0038]

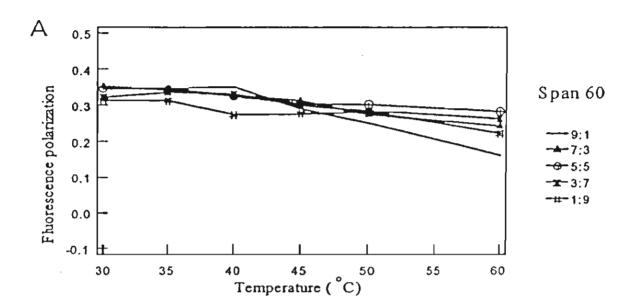
従って、イオン性を有する従来のベシクルと異なる性質を有するものであり、 イオン性物質をの使用が好ましくない薬効成分を含有せしめる場合等に有利に使 用することができるものである。

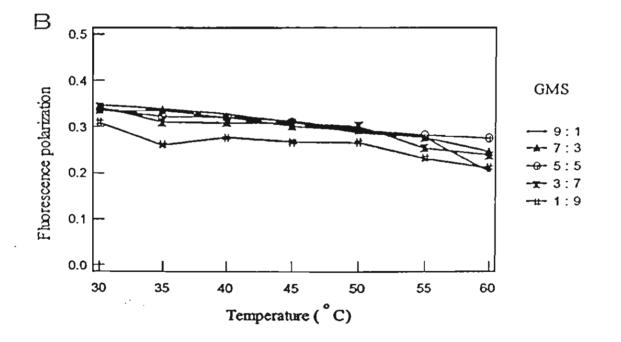
[0039]

また、非イオン性化合物(I)は、従来のベシクル形成物質に比べてコストが安く、また、必要に応じた性質を有するベシクルを調製することが可能となる。

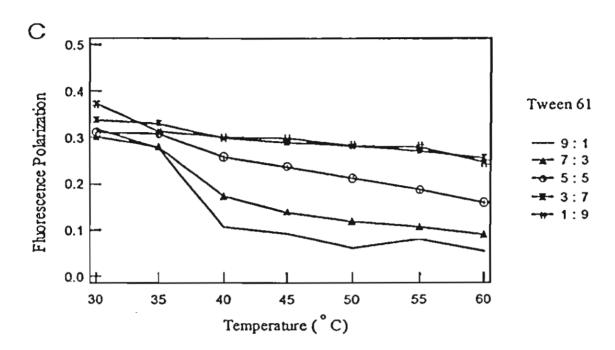

【図面の簡単な説明】

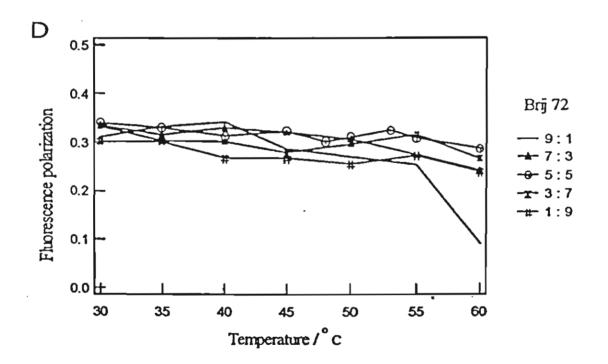
- 【図1】 ベシクルの保持効率を示す図面である。
- 【図2-1】 非イオン界面活性剤とコレステロールとの比率を変化させた 場合の、温度と局部粘性の関係を示す図面である。図中、Aはスパン60、Bは GMSを使用して調製されたペシクルを示す。
- 【図2-2】 非イオン界面活性剤とコレステロールとの比率を変化させた場合の、温度と局部粘性の関係を示す図面である。図中、Cはツィーン61、Dはプリジ72を使用して調製されたペシクルを示す。


以 上


【書類名】 図面

[図1]




[図2-1]

. [図2-2]

【書類名】 要約書

【要約】

【課題】 ベシクルの利用範囲を拡張するための、イオン性を有さない物質による非イオン性ベシクルを提供すること。

【解決手段】 次の式(1)

【化1】

$$A-(CH_2)_n-H$$

[式中、Aは次の基

[化2]

$$H^{-}(OC_{2}H_{4})_{w}^{-}O$$
 $O^{-}(C_{2}H_{4}O)_{x}^{-}H$
 $O^{-}(C_{2}H_{4}O)_{y}^{-}H$
 $O^{-}(C_{2}H_{4}O)_{z}^{-}H$

$$HO - (C_2H_4O)_2 - O -$$

平成14年 8月14日 頁: 2/ 2

(ここで、w、x、yおよびzの合計は、0から100の数を示す) から選ばれる親水性基を示し、nは、5から30の数を示す] で表される化合物を主成分として形成される非イオン性ペシクル 【選択図】 なし