Abstract

Introduction: Since potassium-magnesium citrate (PMC) causes the increase in urinary citrate excretion. Chronic potassium (K) depletion cause hypocitrauria, which is associated with adaptive increases in the activities of renal cortical cytosolic ATP citrate lyase (ACL) and mitochodrial aconitase (aconitase). The present studies examined leucocyte ACL and mitochondrial aconitase activity at before and after the treatment of renal stone patients with PMC.

Method: Twenty male renal stone patients were treated twice daily, with PMC (containing 42 mEq K, 21 mEq Mg, and 63 mEq citrate per day) for a period of one month. Two 24 hour urine and 15-ml heparinized blood samples were collected from each subject at both before and after the treatment. Urine samples were analyzed for relevant biochemical compositions. Leucocytes were separated from blood samples by centrifugation and assayed for ACL and mitochondrial aconitase activity. Urine and blood samples collected from ten age-matched healthy males were also studied and used as reference values.

Results: The results showed that after the treatment with PMC, significant increases were observed for urinary pH (p<0.005) and excretions of K (p<0.001), Mg (p<0.011) and citrate (p<0.001). The activity of both ACL and aconitase were 83.7% (p<0.004) and 60.4% (p<0.02) decreased, respectively. These decreased values were, however, still higher than that of the reference values. The decrease in activity of the two enzymes were inversely correlated with the increase in urinary K and citrate.

Conclusion: Our results indirectly suggest that citrate metabolism in leucocyte and renal tubular cells were in parallel. Though ACL and mitochondrial aconitase activity decreased after the treatment with PMC, to reach normal values it probably needs longer period of treatment.

บทคัดย่อ

บทน้ำ

เนื่องจากยาโพแทสเซียม แมกนีเซียมซิเทรด (potassium-magnesium citrate, PMC) มีผลทำให้เกิดการ เพิ่มขึ้นของระดับสารซิเทรด (citrate) ในปัสสาวะ และเป็นที่ทราบกันดีว่าสาเหตุอันหนึ่งของการเกิดภาวะปัสสาวะมี ซิเทรดน้อย (hypocitraturia) ดังกล่าว คือการขาดโพแทสเซียมของร่างกายซึ่งจะพบร่วมกับการมีอัตราทำงานที่เพิ่ม ขึ้นของเอนไซม์ ACL (ATPcitrate lyase) และ aconitase เสมอ ดังนั้นในโครงการวิจัยนี้จึงได้ทำการศึกษาการ ทำงานของเอนไซม์ทั้งสองดังกล่าวเมื่อก่อนและหลังการรักษาผู้ป่วยนิ่วไดด้วยยา PMC วิธีการ

ทำการศึกษาโดยการนำผู้ป่วยนิ่วไดเพศชายจำนวน 20 คน มารับประทานยา PMC วันละ สองครั้ง เช้าเย็น (ได้รับโพแทสเซียม, แมกนีเซียม และซิเทรดวันละ 42, 21 และ 63 mEq ดามลำดับ) เป็นระยะเวลาหนึ่งเดือน
โดยได้ทำการเก็บปัสสาวะ 24 ชั่วโมง และเลือด 15 มล. ใส่หลอดเฮพาริน (heparin) จากผู้ป่วยนิ่วไดทุกคนทั้งก่อน
และหลังการได้รับยา PMC ตัวอย่างปัสสาวะนำไปวิเคราะห์หาค่าองค์ประกอบทางชีวเคมีที่สำคัญ ส่วนดัวอย่าง
เลือดนำไปแยกเอาเม็ดเลือดขาวออกมาโดยการปั่นเหวี่ยว (centrifuge) จากนั้นนำไปวัดค่าการทำงานของเอนไซม์
ACL กับ aconitase นอกจากนี้ยังได้ทำการเก็บดัวอย่างปัสสาวะและเลือดจากคนปกดิที่ไม่เป็นิ่วเพศชายที่มีอายุใกล้
เคียงกัน จำนวน 10 คน มาศึกษาเปรียบเทียบด้วย

ผลการศึกษา

ผลการศึกษาได้แสดงให้เห็นว่าหลังจากที่ผู้ป่วยนิ่วไดได้รับยา PMC แล้วมีค่าต่าง ๆ ในปัสสาวะเปลี่ยน แปลงเพิ่มขึ้นอย่างมีนัยสำคัญ คือ pH (p<0.005), โพแทสเซียม (p<0.001), แมกนีเซียม (p<0.011) และซิเทรด (p<0.001) ส่วนอัตราการทำงานของทั้งเอนไซม์ ACL กับ aconitase ก็ลดลงจากเดิมอย่างมีนัยสำคัญร้อยละ 83.7 (p<0.004) และร้อยละ 60.4 (p<0.02) ตามลำดับ อย่างไรก็ตามค่าอัตราการทำงานที่ลดลงของเอนไซม์นี้ก็ยังมีค่าสูง กว่าค่าของคนปกติที่ไม่เป็นนิ่ว นอกจากนี้ยังพบว่าค่าอัตราการทำงานของเอนไซม์ที่ลดลงนี้ด่างมีความสัมพันธ์เชิง ลบกับปริมาณโพแทสเซียมและซิเทรดที่เพิ่มขึ้นในปัสสาวะ

สรุป

ผลการศึกษาของเราซี้แนะทางอ้อมว่าเมแทบอลิซึมของซิเทรตในเม็ดเลือดขาวมีความคล้ายคลึงกับในเซลล์ หลอดฝอยไต โดยมีอัตราการทำงานของทั้งเอนไซม์ ACL กับ aconitase ลดลงหลังได้รับยา PMC แต่เพื่อให้มีค่าลด ลงจนถึงระดับการทำงานเอนไซม์ในของคนปกติที่ไม่เป็นนิ่ว บางทีอาจต้องให้ได้รับยา PMC เป็นระยะเวลาที่นาน กว่านี้