บทคัดย่อ

การผลิตสารเบตา-เอคไดโซนโดยการเพาะเลี้ยงเซลล์แขวนลอยต้นไข่เน่าด้วยการศึกษา ปัจจัยต่างๆ ได้แก่ สูตรอาหาร สารควบคุมการเจริญเติบโตและความหนาแน่นของเซลล์เริ่มต้นต่อ การเจริญและการผลิตสารเบตา-เอคไดโซน พบว่าเซลล์ที่เพาะเลี้ยงเจริญและผลิตสารเบตา-เอคไดโซนสูงสุดในอาหารสูตร Gamborg's B5 ที่เสริมด้วย BAP 2.0 มิลลิกรัมต่อลิตร และ 2,4-D 1.0 มิลลิกรัมต่อลิตร โดยใช้ความหนาแน่นของเซลล์เริ่มต้น 20 เปอร์เซ็นต์ ให้ผลผลิตเบตา-เอคไดโซน เท่ากับ 1.1 มิลลิกรัมต่อลิตรต่อวัน การเพิ่มผลผลิตของเบตา-เอคไดโซน โดยการศึกษาชนิดของ สารต้นตอ (precursor) ต่อการเจริญและการผลิตสารเบตา-เอคไดโซน พบว่าโคเลสเตอรอลที่ ความเข้มข้น 100 และ 200 มิลลิกรัมต่อลิตร ยั้บยั้งการเจริญและมีผลทำให้การผลิตสารเบตา-เอคไดโซนลดลง ในขณะที่สาร 7-ดีโฮโดรโคเลสเตอรอล และเออร์โกสเตอรอล สามารถเพิ่มผลผลิตเบตา-เอคไดโซนได้ โดยเซลล์ที่เพาะเลี้ยงในอาหารที่เติม 7-ดีโฮโดรโคเลสเตอรอล 10 มิลลิกรัมต่อลิตร ผลิตสารเบตา-เอคไดโซนสูงสุดเท่ากับ 1.31 มิลลิกรัมต่อลิตรต่อวัน

เซลล์พืชไข่เน่าที่คัดเลือกได้มีการเจริญและผลิตสารเบตา-เอคไดโซนสูง ใช้เป็นแหล่งใน การศึกษาเอนไซม์เอคไดโซนทเวนตีโมโนอ๊อกซิจีเนส (ecdysone 20-monooxygenase) พบว่า โคลนที่คัดเลือกได้สามารถผลิตสารเบตา-เอคไดโซนสูง เท่ากับ 0.047% DW การพัฒนาวิธีการวัด แอคติวิตีของเอคไดโซนทเวนตีโมโนอ๊อกซิจีเนส จากไมโครโซมที่แยกได้จากเซลล์ไข่เน่าเพาะเลี้ยง ซึ่งคัดเลือกได้ โดยใช้เครื่องโครมาโตกราฟีของเหลวสมรรถนะสูง (HPLC) พบว่าเอนไซม์ที่แยกได้ สามารถเร่งปฏิกิริยาการเปลี่ยนอัลฟา-เอคไดโซนเป็นเบตา-เอคไดโซนได้ โดยปริมาณสารเบตา-เอคไดโซนที่เกิดขึ้นจากการทำงานของเอนไซม์ มีความสัมพันธ์กับระยะเวลาที่ใช้ในการบ่มและ ปริมาณโปรตีนที่เพิ่มขึ้น การศึกษาคุณสมบัติของเอคไดโซนทเวนตีโมโนอ๊อกซิจิเนส อุณหภูมิที่เหมาะสมต่อการเร่งปฏิกิริยาของเอนไซม์ เท่ากับ 32 ⁰C พีเอช (pH) ที่เหมาะสมต่อการ เร่งปฏิกิริยาของเอนไซม์ เท่ากับ 7.2 นอกจากนี้ยังพบว่า NADPH และก๊าซอ๊อกซิเจนจำเป็นต่อการ ทำงานของเอนไซม์ คาร์บอนมอนน็อกไซม์ (CO) และสารยั้บยั้งเอนไซม์ในกลุ่มไซโตโครม พี-450 โมโนอ็อกซิจีเนส (cytochrome P450 monooxygenase) ได้แก่ cytochrome c, azadirachtin และ plumbagin ยั้บยั้งการทำงานของเอนไซม์ได้ด้วย จากคุณสมบัติของเอนไซม์ดังกล่าวแสดงให้ เห็นว่า เอคไดโซนทเวนตีโมโนอ๊อกซิจีเนส เป็นเอนไซม์ในกลุ่มไซโตโครม พี-450 โมโนอ็อกซิจีเนส

การศึกษาผลของฟีโนบาร์บิทอลซึ่งเป็นสารซักนำการทำงานของเอนไซม์ในกลุ่มไซโตโครม พี-450 โมโนอ็อกซิจีเนส ต่อการเจริญและผลิตสารเบตา-เอคไดโซนพบว่า สารฟีโนบาร์บิทอล เข้มข้น 10 มิลลิกรัมต่อลิตร มีผลทำให้เซลล์ไข่เน่าเจริญ และผลิตสารสารเบตา-เอคไดโซนสูงขึ้น 7.5 เท่า การโคลนยีนที่ควบคุมการสังเคราะห์เอนไซม์เอคไดโซนทเวนตีโมโนอ๊อกซิจีเนส ด้วย เทคนิคพีซีอาร์ (PCR) โดยใช้เอ็มอาร์เอ็นเอ (mRNA) ที่แยกได้จากเซลล์ไข่เน่าเพาะเลี้ยงที่เติม สารฟิโนบาร์บิทอลเป็นต้นแบบในการสังเคราะห์ cDNA ผลการทดลองพบว่า partial cDNA ที่แยก ได้ คือ VGP450-1 มีลำดับกรดอะมิโนที่อยู่ในบริเวณอนุรักษ์ (conserved region) ของยีนในกลุ่ม ใชโตโครม พี-450 โมโนอ็อกซิจีเนส จากการศึกษาความสัมพันธ์ระหว่างการแสดงออกของยีน VGP450-1, แอคติวิตี้ของเอนไซม์เอคไดโซนทเวนตีโมโนอ๊อกซิจีเนส และการผลิตสารเบตา-เอคไดโซนในเซลล์ใช่เน่าที่เติมสารซักนำฟิโนบาร์บิทอล พบว่าการแสดงออกของยีน VGP450-1 มี ความสัมพันธ์กับแอคติวิตีของเอนไซม์เอคไดโซนทเวนตีโมโนอ๊อกซิจีเนส และการสะสมสารเบตา-เอคไดโซนที่เพิ่มขึ้น จึงเป็นไปได้ว่าการสังเคราะห์สารเบตา-เอคไดโซนอาจถูกควบคุมด้วยการ ทำงานของยีน VGP450-1 และยีน VGP450-1 อาจเป็นยีนที่ควบคุมการสังเคราะห์เอนไซม์ ecdysone 20-monooxygenase

ABSTRACT

The effects of the cultivation media, plant growth regulators and inoculum size on the growth and 20-hydroxyecdysone production of suspension cultures of *Vitex glabrata* R.Br. were investigated. The cell growth and maximum 20-hydroxyecdysone production reach the highest when cultured cells in the Gamborg's B5 medium supplemented with 2.0 mg l⁻¹ BAP and 1.0 mg l⁻¹ 2,4-D. The maximum 20-hydroxyecdysone productivity of about 1.1 mg l⁻¹ day⁻¹ was observed in the culture with 20% PCV of inoculum size. Enhancement of 20-hydroxyecdysone by precursor feeding on cell growth and 20-hydroxyecdysone production of *V. glabrata* suspension cultures were studied. The addition of cholesterol inhibited growth and decreased the level of 20-hydroxyecdysone. Feeding of 7-dehydrocholesterol and ergosterol increased 20-hydroxyecdysone production. The maximum 20-hydroxyecdysone productivity of about 1.31 mg/l/day was observed in the culture with 10 mg/l 7-dehydrocholesterol added.

Cell lines selection following single cell cloning or cell aggregate cloning was carried out to select cell lines capable of fast growing and high producing level of beta-ecdysone. This maximum level of beta-ecdysone, 0.047%DW could be obtained from the highest selective clones. The selective cell lines was selected for further investigation on ecdysone 20-monooxygenae activity. The microsomal fraction isolated from suspension cells of *V. glabrata* culture was able to catalyse alphaecdysone to beta-ecdysone. The HPLC assay was validated with respect to the incubation time and the amount of protein. To characterize the ecdysone 20-monooxygenase, a pH optimum of 7.2 and a temperature optimum of 32 °C were determined. It was dependent of NADPH and molecular oxygen. The enzymatic reaction was inhibited by carbon monoxide as well as by several cytochrome P450 inhibitors, cytochrome c, azadirachtin and plumbagin. This data indicating that ecdysone 20-monooxygenase is a cytochrome P450 monooxygenase.

Effect of phenobarbital on the growth and 20-hydroxyecdysone production were investigated. Phenobarbital (10 mg/L) increase of both cell growth and 20-hydroxyecdysone production. Using PCR strategies based on the conserved amino acid sequences, P450 cDNA fragments were isolated from phenobarbital-treated *V*.

glabrata suspension-cultured cells. The mRNA was isolated from phenobarbital-treated *V. glabrata* cultured cells, as a template for cDNA synthesis. One partial cDNA clones, VGP450-1 contained the heme-binding domain which is highly conserved among plant cytochrome P450s. Expression of VGP450-1 genes as well as accumulation of ecdysone 20-monooxygenase activity was highly correlated with 20-hydroxyecdysone production in phenobarbital-treated *V. glabrata* cultured cells, suggesting that 20-hydroxyecdysone biosynthesis is regulated at the transcriptional level of the VGP450-1 gene.