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Abstract

Strongly nonlinear impulsive evolution equations are investigated. Existence of solutions
of strongly nonlinear impulsive equations is proved and some properties of the solutions are
discussed.

These results are applied to Lagrange problem of optimal control and we proved
existence results. For illustration, an example of a quasi-linear impulsive parabolic differential
equation and the corresponding optimal control is also presented.

Keywords: Nonlinear impulsive evolution equations; Nonlinear monotone operator; evolution

triple.
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Consider the following impulsive controlled system.

X (@) + Ax (@) = g(x@)+B@u(@), t>0,t=+t, (1a)
x(0) = x, (1b)
Ax(t;) = F; (x(1;), (1)
where 0O0<f<t,<...<t,<T, Ax(4;)=xE")-x(t7), i=L2...,n. A4 is

nonlinear monotone operator, g is a nonmonotone perturbation, B(¢), and F;’s are some operators.
The impulsive condition (Ic) represents the jump in the state x at time ¢,; with F, determining the
size of jump at ¢, .

The first research problem is on proving that the impulsive controlled system (1) has a solution.

Moreover, we define a cost function as follows:

T
2
J(xu) = j L(t,x(6),u(0))dt )
0 where L is measurable in the
variable ¢, semicontinuous function in the variable x, and a convex function in the variable u . The
second research problem is to prove that there is a control function # and a trajectory x which

satisfies equation (1) and minimize the cost function J(x,u) .

This is the optimal control problem.


mailto:pairote@ccs.sut.ac.th

anuafyveatlym
Impulsive control is important in the case of the plant has at least one “impulsively”
changeable state variable or when the plant has impulse effects.

We give some examples of plants whose state variables, can be changed instantaneously.

Example 1. In a financial system, we suppose that one state variable is the amount of money in a
market and the other state-variables are saving rates of a central bank. As it always occurs, the former

can be controlled to a desired value by changing the latter instantaneously.

Example 2. In a nanoscale electronic circuit consisting impulsive capacitor called single-electron
tunnel junctions (SETJ). In the SETJ device, electron can tunnel through the barrier in a time period
of order of 107" s and causes the voltage of the junction capacitor a jump in the order of 107 V.
Since the junction capacitor voltage is a state variable of the SETJ model, it is practical to model
SETJ using impulsive differential equations. Since SETJ has been used in many nanoelectronic
circuit models, the impulsive control theory becomes a very important tool for designing and

programming nanodevices which will be the building black for the next generation of computers.

The above two examples emphasize the important of impulsive control system which is the

main problem for investigation in this project.

Jd

agszasn
The purpose of this project is to study the existence of the classical solutions of the
impulsive evolution equations 1(a) — 1(c) and optimal control where the operator A is nonlinear

monotone operator. We will solve this problem by using monotone operator approach.

= AadAa v
ILIVEUIBIVY
1. For the construction of a classical solution, we propose to use the Schauder fixed point
theorem on a suitable Banach space

2. For the construction of an optimal control pair, we propose to use Balder’s result about

strong-weak lower semicontinuity of integral functionals.

HAUMSAVHHNUIY

1) Study the existence of a classical solution of the impulsive evolution equation.
2) Study the existence of an optimal pair of the control of the impulsive system.
3) Give some examples for an illustration.



Operation Plan

Activities Duration / Month

1. Try to prove existence of

solution of the impulsive [

evolution equations.

2. Try to prove the existence < >

of an optimal pair.

3. Give some examples. —P

1" 4" month 5"_ 8" month 9"_ 10" month | 11"— 12" month

4. Writing a paper >

HAVDINTIINAADY
We can proved the following two main Theorems
Theorem 1. Under some suitable conditions on the operators A4,g,F;’s and B, the controlled

system (1) has a solution (See, Theorem C, in the Appendix for the detail of the proof).

Theorem 2 (Existence of an optimal control pair)
Under some suitable condition on the operator 4,g,F;’s, B, and L, the optimal control problem

(1) together with (2) has a solution (See, Theorem D, in the Appendix for the detail of the proof).

Finally, we apply our model to a quasi-linear parabolic differential equation in the Euclidean space
R". By utilizing Theorem 2, we can prove that such a quasi-linear problem has a solution (see
Theorem E, in the Appendix for the detail of the proof).

voayil:

By using our impulsive model, we can continue to investigate relaxation of the impulsive system

and periodic impulsive system which are also important models in finance and nanoelectronic.

End of Executive Summary
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We consider the following strongly nonlinear impulsive evolution

x(t) + A(t,x(2)) g(t, x(0)) ,
x(0) = x,eH, 2)
Ax(t)=F,(x(t,)),i=12,...,n.

By using the technique of evolution triple, monotone operator, and Schauder’s fixed point

theorem, we proved that the (2) has a solution.

Next, we consider the following impulsive controlled system

x(#) + Az, x(1)) g(t, x(2)) + B(t)u(?) ,
x(0) = x,eH, 3)
Ax(t,) = F.(x(1,)),i=1,2,...,n.

(0<t, <t,<...<t,<T) where the control function u(¢) is an element of space U, . We proved
that, for each u, one can find a trajectory x such that the admissible pair (x,u) is a solution of (3).

Now, let us define a Lagrange cost function

T
J(xu) = J L(t, x(0),u(0))dt
0
where L is a convex function in the variable u . By using Balder’s result, we can prove that there

is an admissible pair (x,,u,) such that

J(xy,uy)= 1inf J(x,u)

(x,u)ed,y

This prove the existence of an optimal control pair.
Finally, we apply our model to a quasi-linear partial differential equation in R" and proved

that such a model in R" has an optimal pair.

Out put HlAanlAsams

We proved the following four main theorems

Theorem B Under assumptions (A), (G) and (F), system (2) has a solution (see Appendix page
1012).



Theorem C Assume that hypotheses (A), (G), (B) and (U) hold. Then the admissible set 4, # &

and X, isboundedin PW, (I)"PC (I,H) (see Appendix page 1014).

Theorem D Assume that hypotheses (A), (G), (U), (B) and (L) hold. There exists an admissible

control pair (x.,u.) such that J(x.,u.)=m (see Appendix page 1015).

Theorem E Assume that hypotheses (G") and (") hold and x,(-) € L, (Q),u(-,-) € L, (I xQ),
then the quasi linear parabolic problem has a solution x € L (1 ,PWOI”’ (Q)NPC,L,(Q)) such

that ox/ote L, (I, W(Q)). (see Appendix page 1019).
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Abstract

Strongly nonlinear impulsive evolution equations are investigated. Existence of solutions
of strongly nonlinear impulsive equations is proved and some properties of the solutions are
discussed.

These results are applied to Lagrange problems of optimal control and we proved existence
results. For illustration, an example of a quasi-linear impulsive parabolic differential equation
and the corresponding optimal control is also presented.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let I =: (0,7) be a bounded open interval of the real line and let the set D =:
{t1,t,...,t,} be a partition on (0,7) such that 0 <#; <t <--- <t, <T. A strongly
nonlinear impulsive system can be described by the following evolution equation:

X(t) + At x(1)) = g(t,x(2)), tE€I\D, (la)
x(0) = xo, (1b)
Ax(t) =Fi(x(t)), i=12,...,n, (Ic)

* This work was supported by Thailand Research Fund Grant BRG 47 2004.
E-mail addresses: pairote@ccs.sut.ac.th, elsolitario22@hotmail.com (P. Sattayatham).

0362-546X/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2004.03.025
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where A is a nonlinear monotone operator, g is a nonlinear nonmonotone perturbation
in Banach spaces, Ax(4;) = x(¢;7) — x(t;7) = x(t7) — x(4;), i = 1,2,...,n, and F;’s are
some operators. The impulsive condition (1c) represents the jump in the state x at time
t;; with F; determining the size of the jump at time ¢ (for definition of the operators
A, g, and F; will be given in Section 2). Interesting examples of impulsive systems
are found in the dynamic of populations subject to abrupt changes caused by diseases
or harvesting [7].

For impulsive evolution equations with an unbounded linear operator A of the form

X(t) + A(t,x(¢)) =g(t,x(t)), t>0,t#¢
x(0) =x¢

Ax(t,-)zFi(x(ti)), 1= 1,2,...,7’[

have been considered in several papers by Ahmed [1], Liu [6], and Rogovchenko [7].
The questions of existence and regularity of solutions have been discussed. Ahmed
applied these results to study Bolza and Lagrange problem of optimal control. However,
these questions are still open when the operator 4 is nonlinear.

The purpose of this paper is to study the existence of classical solutions of the
strongly nonlinear impulsive evolution equations (la)—(1c) on (0,7) and we will apply
these results to study Lagrange optimal control problem.

2. System description

The mathematical setting of our problem is the following. Let H be a real separable
Hilbert space, V' be a dense subspace of H having structure of a reflexive Banach
space, with the continuous embedding V' <— H — V*, where V'* is the topological dual
space of V. The system model considered here is based on this evolution triple. Let
the embedding V' <— H be compact.

Let (x, y) denote the paring of an element x € V'* and an element y € V. If x, y € H,
then (x, y) = (x, y), where (x, y) is the scalar product on H. The norm in any Banach
space X will be denoted by | - ||x-

Let 0<s<T < +o00,l, =(s5,T),lp =1=1(0,T), and let p,q > 1, be such that
1/p+1/g =1 where 2 < p < + oo. For p,q satisfying the preceding conditions, it
follows from reflexivity of V that both L,(/,V') and L,(/,V*) are reflexive Banach
spaces and the paring between L,(/,V') and L,(/,V™*) denoted by <, >.

Define

Wog(L)) = Wpy(s, T) = {x : x €L, (I, V), %€ Ly(Is, V*)},

¢,y = 1N,y + 1] 2y
and

Woe(s,u) ={x :x€L,((s,u), V), x€Ly((s,u),V")}, 0<s<t<u<T,
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where x denotes the derivative of x in the generalized sense. Furnished with the norm
| - I, ) the space (Wypu(Ls),| - |lw,,u,)) becomes a Banach space which is clearly
reflexive and separable. Moreover, the embedding W, (/) — C(I,,H) is continuous.
If the embedding V' — H is compact, the embedding W ,,(I;) — L,(;,H) is also
compact (see Problem 23.13(b) of [9]). Consider the following impulsive evolution
equation:

X))+ A, x(t)) = g(t,x(¢)), t€lI\D, (2a)
x(0)=xg €H, (2b)
Ax(t)=Fix(t;)), i=1,2,....n and 0<t, <th < ---<t,<T, (2¢)

where the operators A:1 X V — V*, g:I x H — V* and F;:H — H. For a partition
0<ti<tb<---<t,<T on(0,7T), we define the set PW,,(0,T)={x € Wp(ti,ti11),
i=0,1,2,...,n where =0, #,,1=T}. For each x € PW ,,(0, T), we define ||x||pw,,0.r) =:
S0 I1xllw,ta ). As a result, the space (PW,q(0,T), || - ||pw,,0.r)) becomes a Banach
space. Let PC([0,T],H)={x:x is a map from [0, 7] into A such that x is continuous
at every point ¢ # f;, left continuous at ¢ = ¢;, and possesses right-hand limit x(#;") for
i=1,2,...,n}. Equipped with the supremum norm topology, it is a Banach space.
By a (classical) solution x of problem (2), we mean a function x € PW,,(0,7) N
PC([0,T],H) such that x(0)=x( and Ax(t;)=F;(x(¢;)) for i=1,2,...,n which satisfies

(1), v) + {A(t,x),v) = (9(£,x), )

for all ve V' and p-a.e. on I , where p is the Lebesgue measure on /.
We need the following hypothesis on the data of problem (2).

(A) A:1 xV — V* is an operator such that
(1) t — A(t,x) is weakly measurable, i.e., the functions ¢ — (A(f,x),v) is u-
measurable on 7, for all x,ve V.
(2) For each t €1, the operator A(¢):V — V* is uniformly monotone and hemi-
continuous, that is, there is a constant ¢; > 0 such that

(A(t,x1) — A(t,x2),x1 — x2) = ci|lxi — x| )

for all xy,x, € V, and the map s — (4(t,x + sz), y) is continuous on [0, 1] for
all x, y,ze V.

(3) Growth condition: There exists a constant ¢, > 0 and a nonnegative function
ai(-) € Ly(I) such that

40|l < an(t) + el 27!

for all xe V, for all t€1.
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(4) Coerciveness: There exists a constant ¢3 > 0 and ¢4 > 0 such that
(A(t,x),x) = cs||x|| —cs for all xe V, for all €L

Without loss of generality, we can assume that 4(z,0) = 0 for all £ € 1.
(G) g:1 x H— V* is an operator such that
(1) t — g(t,x) is weakly measurable.
(2) g(t,x) is Holder continuous with respect to x with exponent 0 <o <1 in H
and uniformly in ¢. That is, there is a constant L such that

||g(tax1) - g(t’xz)‘ V= < L”'xl - sz?‘[

for all x;,x, € H and for all # € /. This assumption implies the map x — g(¢,x)
is continuous.

(3) There exists a nonnegative function /() € L,(/) and a constant ¢s > 0 such
that

e < hi(t) + osx|) !

llg(z,x)]

forall xeV, te€l, where 1 <k < p is constant.
(F) F;:H — H is locally Lipschitz continuous on H, i.e., for any p > 0, there exists
a constant L;(p) such that

|Fi(x1) — Fi(x2)||lz < Li(p)llx1 — x2||u

for all ||x1||a, [|x2llg <p (i=1,2,...,n).
It is sometimes convenient to rewrite system (2) into an operator equation. To do
this, we set X =L ,(/, V') and hence X* = L,(I,V'*). Moreover, we set
{ A(x)(1) = A(1,x(2)), 3)
Gx)(1) = g(1,x(1))

for all x€X and for all 1€ (0,7). Then the original problem (2) is equivalent to the
following operator equation (see [9, Theorem 30.A]):

X+ Ax = G(x),

x(0) =xo €EH, (4)

Ax(t)=Fi(x(t)), i=12,....,n and O0<f<tr<---<t, <T
Remark. It follows from Theorem 30.A of Zeidler [9] that Eq. (3) defines an operator
A:X — X* such that 4 is uniformly monotone, hemicontinuous, coercive, and bounded.

Moreover, by using hypothesis (G)(3) and using the same technique as in Theorem
30.A, one can show that the operator G:L,(/,H) — X* is also bounded and satisfies

1G(w)]

ve <My Myl

forall ueL,(lH).
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3. Preliminaries

In order to get a solution of Eq. (2) in the space PW,,(I), we firstly show that the
following Cauchy problem

{x(t) +AGx(1)=g(t,x(t)), 0<s<t<T,

5
x(s)=x,€H )

has a solution in the space W,,(s,T). To prove this we need some lemmas.

Lemma 1. Under assumption (G), the operator G:L,(I,H) — L,,V*) is Holder
continuous with exponent 0,0 <o <1, and G(x,) — G(x) in L,(I,V*) whenever
Xp—x in Wpe(I).

Proof. The proof is the same as in Lemma 1 of [§8, p .101]. [

Lemma 2. Let X; be the set of solution of Eq. (5) where 0 <s <T. Then X; is
bounded in Wy, (1), i.e., |x|lw,u) <M and, moreover, x|/« < M, Vx € X;.

Proof. Let x€X,, then x can be considered as an element in W,,(/) by defining
x(t) =0 on (0,s). Let X =L,(L, V) and X* = L,(I, V™), it follows from Eq. (5) that

((%,x)) + ((A(x),x)) = ((G(x),x)).
Since A is coercive (hypothesis (A)) then

asllxllf = ea < ((G(x),x)) — ((,x)).
By using integration by part, Holder inequality, and hypothesis (G), we get

1
asllxlf < ea + {((G(x).x)) — E[IIX(T)H%: = [lx(0)1l7]

T 1/q T
<C4+(/0 ||g<t,x>||‘1*dr) (/ ||x(r>|';)

1
— SR = 2]

lp

T 1/q
_ o
<cot ([ o+ eslaolly yar) (el +
0
for some constants o > 0. After, some simplification, we finally get
esllxllf < o+ Bllxll + vl (6)

for some constants o, 5,7 > 0. Multiply both sides of (6) by Hx||}fp and using the fact
1<k < pand p=>2, we can ecasily see that

[lx[[x < M (7)
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for some constant M; > 0 and for all x € X;. Next, we shall show that

[¥|lx- <My for all x € X,.

Let x€X, and ¢ €X then it follows from Eq. (5) that
(&, 9)) + ((4(x), ) = ((G(x), b))

Applying Holder inequality, we get
K(P) < [AC) x| @llx + |G L= [Pl

Referring to the Remark at the end of Section 2, we know that the operators 4 and G
are bounded. Thus,

X* X*

() < (ot BllxlZ" + 9+ 8]

b allelx (8)

for some positive constants o, 3,7, and é. Since the embedding L (1, V) — L,([,H) is
continuous then Eqgs. (7) and (8) imply

%]

x* <M C))

for some positive constant M.
Hence, by Egs. (7) and (9), we get

I llw,, ) = llxllx + X[l < My + My = M;.

Hence X; is bounded in W, (/). )
Finally, we note that the embedding W,,(/) < C[/,H] is continuous; then

¢l er7. iy < nllxlw,,)

and hence
||x||C[f,H] S My

for some positive constants #,M; and for all x € X;. Choosing M = max{M;, M4}
the assertion follows. [

Theorem A. Under assumptions (A) and (G), the Cauchy problem (5) has a solution
XEWpy(s,T).

Proof. Let [,;=(s,T). Define a mapping H : L ,(I;, H)x[0,1] = L,(I;, H) by H(u,0)=w
where w is the solution of the following problem:
X+Ax)=0G(u), 0<s<t<T,
(10)
x(s) =o0x; € H.
Here the operators A:L,(I, V) — Ly, V*) and G:L,([,H) — Ly(,V*) are
assumed to be satisfied hypotheses (A) and (G) on the interval (s,T'), respectively.
It follows from Theorem 30.A of Zeidler [9], for each u€L,(I;,H), problem (10)
has a unique solution w € W ,,(/;). Hence H is well defined. Similar to the proof of
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Theorem 3 in [8], one can show the map H : L ,(l;,/{)x[0,1] — L,(I;, H) is continuous
and compact.

We try to use Leray—Schauder fixed point theorem. Hence, firstly, we must show
that the set

{ueL,(I,H):u=H(u,0) for some 0 <o <1}

is bounded in L, (I, ). Let u€ L,(l;,H) and u = H(u,0), for some o €[0,1]. Then
u € Wp(ls) and satisfies the problem
u+ A(u) = aG(u),
u(s) = ox;.

(11)

By Lemma 2, we get |ullw, ) <M. Moreover, since the embedding W,,(I) —
L,(I,H) is compact, then

lull, ) < B and hence ||ul|r,m) < B

for some positive constant B.
Secondly, we shall show that

H,0)=0 forall ueL,(,H).
For any u e L,(l;,H), set H(u,0) =w where w satisfies
w+Aw) =0,
(12)
w(s)=0€H.
By uniqueness of the solution of Eq. (12), we get from 4(0) = 0 (see hypothesis
(A)(4)) that
w=0in Wy,(I) C W,(I).
Since the embedding W,,(I) < L,(I,H) is continuous, we get
w=01in L,(/,H) and hence w=0 in L,(/;,H).

That is H(u,0) =0 for all ue L,(/;,H).
Finally, we can invoke the Leray—Schauder fixed point theorem (see [4, p. 222]) in
the space L,(I;, H), there is one fixed point x € L ,(/,, H) such that
x=H(x,1)

and x € Wy, (I;) N Ly(Ls, H). That is x is a solution of problem (10). Since problem
(10) is equivalent to problem (5), hence there exists a solution for nonlinear evolution
equation (5). [

4. Impulsive evolution equation

In this section, we would like to investigate the classical solutions of Eq. (2).
By virtue of Theorem A, we have the following theorem.
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Theorem B. Under assumptions (A), (G) and (F), system (2) has a solution.

Proof. Let 0 <t <t <---<t, <T be a partition of (0,7).

Case 1: Find a solution of Eq. (2) on the interval (0,¢;). By Theorem A, Egs. (2a)
and (2b) have a solution x € W,,(0,T). Let x; be the restriction of x on the interval
(0,#1). It is obvious that x; € W,,(0,#;) and x;(0) = xo. Hence, x; is a solution of
Eq. (2) on the interval (0,#).

Case 2: Find a solution of Eq. (2) on the interval (0,%,). Since x; € W,,(0,¢) and
Wpq(0,t1) — C([0,#;],H). Then the left-hand limit x(¢,") exists in // and we define
x1(t1) =x1(¢; ) € H. Moreover, define

x1(67) = x1(t1) + Fi(xi(t)).

By Hypothesis (F), we see that x;(¢") € H. Now, consider the following equation:

J’(t)+A(tsJ’(t)):g(t,y(t)), te(tl»T): (13)
(1) =xi1(t]).
Again, Theorem A implies that system (13) has a solution y € W,,(#,T). Let x, be
the restriction of y onto the interval (#1,%) then x, € Wp,(t1,52) and xa(t) = y(t) =
x1(t1) + F1(x1(t;)). Hence, x; is the solution of Eq. (2) on the interval (¢,%,).
Now define a function x on (0,%,) as follows:

{ x1(1);1€(0,4],
x(t) =
x(t);t €(t, ).

We see that x € PW,,(0,1,) N PC([0,%,], H) and x satisfies Eq. (2a). Moreover, since
x(0)=x1(0)=xo and Ax(t;) = x(67) —x(1; )=x1(t1) + Fi1(x1(11)) —x1(11) =F1(x1 (1)) =
F1(x(t1)). Thus, x is the solution of Eq. (2) on the interval (0, #,). Continue this process
through the interval (0,7). We get that system (2) has a solution x € PW,4(0,T) N
PC([0,T],H). O

5. Admissible trajectories and optimal control

In this section, we study the existence of optimal solutions for a Langrange optimal
control problem which is governed by a class of impulsive strongly nonlinear evolution
equation.

We model the control space by a separable reflexive Banach space E. By P/(E)
(Psc(E)) we denote a class of nonempty closed (closed and convex) subsets of E,
respectively. Let 7 =(0,7). Recall (see, for example, [5]) that a multifunction I": 1 —
P(E) is said to be graph measurable if

G.I = {(t,v) el xE:vel(t)} €Bl) x B(E),

where B(/) and B(E) are the Borel o-field of / and E, respectively. For 2 < ¢ < oo,
we define the admissible space U,q to be the set of all L,(/, E)-selections of I'(-), i.e.,

U ={u€Ly(LLE):u(t)eI'(t)u-ae. on I},
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where u is the Lebesgue measure on /. Note that the admissible space U, # ¢
if I':1 — Py(E) is graph measurable and the map ¢ — |I'(¢)| =: sup{||v||z:ve ' (¢)} €
Ly(I) (see [5, Lemma 3.2, p. 175]).

The Lagrange optimal control problem (P) under consideration is the following:

T
infJ(x,u) = / L(t,x(t),u(t))dt = m, (14a)
0
X(t) + A(t,x(1)) = g(t,x(¢)) + B(t)u(t), (14b)
x(0) =xo € H, (14c)
Ax(t)=Fi(x(%)), i=12,....n (0<ty<t<---<t,<T). (14d)

Here, we require the operators A,g and F;’s of Eq. (14) satisfy hypotheses (A), (G)
and (F), respectively, as in Section 2. We now give some new hypotheses for the
remaining data.

(U) I':1 — Ps.(E) is a measurable multifunction such that the map
t = [F(0)] = sup{[|v[lg:ve (1)}

belongs to L,(/).
(B) BeL(I, Y(E,H)), where ¥ (E,H) is the space of all bounded linear operators
from E into H.
(L) L:I xV xE — RU{+o0} is an integrand such that
(1) (t,x,u) — L(t,x,u) is measurable;
(2) (x,u) — L(t,x,u) is sequentially lower semicontinuous;
(3) u > L(t,x,u) is convex;
(4) there exists a nonnegative bounded measurable function ¢(-)€ L;(0,7) and
a nonnegative constant c¢s such that

L(tx,u) = ¢(t) — co([lxl[y + [lull)

for all most t€/, all xeV, and all u€E.

By using the same notation as in Eq. (4), we can rewrite the control system
(14b)—(14d) into an equivalent operator equation as follows:

X+Ax)=Gx)+Bu), 0<t<T, (15a)
x(0)=xy €H, (15b)
Ax(t)=Fix(%)), i=1L2,....n(0<f<thy<---<t,<T), (15¢)

where the operators 4,G, and F;(i = 1,2,...,n) are the same as in Eq. (4). We set
B(u)(t) = B(t)u(t). This relation defines an operator B:L,(I,E) — L,(I,H) which is
linear and continuous.
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It follows immediately from hypothesis (U) that the admissible space U, # ¢ and
Usq 1s a bounded closed convex subset of L,(/, E'). Any solution x of Egs. (15a)—(15¢)
is referred to as a state trajectory of the evolution system corresponding to u € U, and
the pair (x,u) is called an admissible pair. Let

Aad = {(x,u) EPW (1) X Uyq : (x,u) is an admissible pair},

Xog = {x €PWpy(I):Fu € Uy such that (x,u) € Aaq}.

By using the preceding notation, our optimal control problem (14a)—(14d) can be
restated as follows.

Problem (P). Find (x.,u.) € 4,q such that

J(xe,u )= min J(x,u)=m.
(xsu)eAad

If such a pair (x.,u,) exists, then (x.,u,) is called an optimal control pair.

Theorem C. Assume that hypotheses (A), (G), (B) and (U) hold. Then the admissible
set Auq # ¢ and Xaq is bounded in PW ,,(1) N PC(I,H).

Proof. Let u € Uy, define

9u(t,x) = g(&,x) + B(1)u(?).

Since B € Loo(I, £(E,H)), then one can see that g,:/ x H — V* satisfies hypothesis

(G). Hence, by virtue of Theorem B, Eq. (15) has a solution. Next, we shall show

that X,q is bounded in PW,,(I) by considering in each case separately. Let x € Xyq.
Case 1: t€(0,t;). By Lemma 2, ||x|| is bounded in W,,(0,7 ). Hence,

[1x[lw,y00) <My and  |lx[|cqonye) < M.
Case 2: t € (t1,12). Since ||x(0)||z and ||x(t1)||z < M; then, by hypothesis (F), we have
(Ol < @Dl + 111G
< Mi[1+ 2Ly(M1)] + [|F1(x(0))][

where L(M,) is a real constant depending on M,. Hence, ||x(#;")||x is bounded.

Using Lemma 2 again, we have
1010 < M2, and[|xlleqn.nnm) < Mo
After a finite step, there exists M > 0 such that
||x||PW,;q(0,T) <M and ||x||C(f,H) <M.

Hence, X,q is bounded in PW,,(0,T)NPC(I,H). [
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6. Existence of optimal controls

Theorem D. Assume hypotheses (A), (G), (F), (U), (B), and (L) hold. There exists
an admissible control pair (x.,u,) such that J(x.,us) = m.

Proof. By Theorem C, we get Ayq # ¢. If m = +o00, then every control is admissible.
Now suppose that m < +oco. Choose a minimizing sequence {(x,u;)} C Aaq such that

lim J(xg,u;) =m.
k—+o00

Since, for each k, (xi,u;) € Aag then (xi,u;) must satisfy the operator equation

X4+ AGg) = Glx) + Bwy), 0<t<T, (16a)
x:(0) =xo € H, (16b)
Axi(t) = Fi(x(t), i=1,2....n 0<ti<t<---<t,<T) (16¢)

(k=1,2,3,...). Since Uy is bounded, the sequence {u;} is bounded in the reflexive
Banach space L,(/,E). By passing to a subsequence if necessary, we may assume that

wpu,  in L(LE) as k — oo. (17)

Moreover, since U,q is a closed convex subset of L,(/,E). So, by Mazur’s theorem
(see [2, p. 7]), Uy is weakly closed and hence u, € Uy.

Next, we shall find x, € X,q such that (x,,u.) € 4,9. We shall do this by considering
in each case separately.

Case 1: Find x, on the interval (0,¢).

For notational convenience, we let /; = (0,#1), X1 =L,(I1,V), and X" = L,(I;, V™).
We note that X1 =L ,(/;, V") can be considered as a closed subspace of X=L,(I, V). Let
x} and u,} be the restriction of the functions x; and u; on the interval /;, respectively
(k=1,2,3,...). Since {x}} is the sequence of solution of Eq. (16) on the interval
(0,#1), then by Theorem C, {x}} is bounded in W,,(I;). By reflexivity of W,,(I)),

there is a subsequence of {x;}, again denoted by {x;}, such that
xpox'in Wy(l)  as k — oo. (18)

Since the embedding W ,,(/1) < X is continuous, the embedding W, (1) < L (11, H)
is compact, and the operator 4 :.X; — X" maps bounded sets to bounded sets, it follows
from (18) that there is a subsequence of {x}}, again denoted by {x}}, such that

x5xt in Xy, Xl 5xN in X7
151 1w oy
x;—x in L,(I;,H), and Ax;—z in X
as k — oo. It follows from Lemma 1 that

G(x})) — G(x') in X}
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Hence,
(GGa).xi))y = ((GM).x'))x,  as k — oo (19)

Moreover, since B:L,(I1,E) — L,(I;,H) is linear and continuous. Hence, we get from
Eq. (17) that

BupBul in L,(I),H) as k — oo.
Since x;$x1 in L,(I1,H) (here, we identify /' = H*). Then
((Bu},x}))x, — ((Bul,x"))y, as k — oo. (20)
We note from Eq. (16a) that
(A x))x = ((AG)x ) — (Gxg —x'),
+ (Gl —x"))x + (Bugoxp —x'))x,. (21)
From the integration by part formula, we have

(G —x))x = (G —x)y,

1
+ 5 () = (@)l = (0) = x'(0)7). (22)

Substituting (22) into (21) and note that the second term on the right-hand side of
(22) is always nonnegative, then we get

({AGLx0)x < (A x" ) ) — (Exg —x"))x + [Ixp(0) —x'(0)17
+ ((Gxp),xp — x"))x, + ((Bup.xp —x"))x,.

By Eq. (18), x,llml in W,(0,#) and hence x,liml in C([0,#,], H). This means that
x}(0)5x'(0) in H. Referring to the initial condition (16a), we have x}(0) = xo € H
(k=1,2,3,...). Hence, by the uniqueness of weakly limit, we get x}(0) =x!(0) =xo
for all k. Therefore

Jim (4G, xeh)x < ((x'h)x. (23)

Since 4:X; — X;° is monotone and hemicontinuous on the reflexive Banach space
X1 =L,(I;,V) then by Example 27.2(a) [9, p. 584], we have

z=Ax".
That is
A BAG")  in X7
For any ¢ € X, we have
{0tk @) + (A, 6))x = (GO D)) + (B, )

Letting £ — oo, we have

<<xl’¢>>X1 + <<A(x1)y ¢>>X1 = <<G(x1)a ¢>>X1 + <<B(u1)v ¢>>X1'
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Hence, x' is the solution of the following system:

WA =6 +Bw), 0<t<ut,

x'(0) = xo. (24)

Moreover, one can show that x}(¢;) — x'(#1) in H as k — oo. To see this we note
that

(i — X —x" Ny = — (Al —x"),xp —x"))y,
+ ((Gxp)—G(x"),xp—x") ), +((B(up)—B(u' ), xp —x") ),

By using integration by parts and noting that the operator 4 is monotone, we have
1
St = @l = x0) = ¥ (0)7) < (G0x) = GOt ),x —x'h),

+ ((Buw) — Bu")xp —x"))x,.

Since x} 5x' in Xj, then the right-hand side the above inequality tend to 0 as k — oc.
Thus, we have just proved

xi(t1) — x'(#)) in H as k — oo. (25)

This proves that x! satisfies Egs. (15a)—(15c) on the interval (0,7;) and x' is the
required x, on (0,7).

Case 2: Find x, on the interval (#{,2).

The proof is similar to case 1. Here, let L=(t1,),Xo=L (>, V') and X;' =L, (L, V'™").
Let x? and u? be the restriction of the functions x; and u; on the interval ,, respectively
(k=1,,2,3,...). It follows from Eq. (16) that the sequence (x7,u?) satisfies the operator
equation

X2 — A} = G(x}) + B(up), t<t<t, (26a)

() =x(7) + Fi(q (), (26b)

where x2(¢;) =x3(t1) =x(t1) (k=1,2,3,...). By using the same proof as in case I,
we get that

xpoxtin Wyt ) and  xp5x*  in C([t, 6], H),

which implies that x7(;") — x*(#) in H as k — oo and moreover, x* satisfies the
operator equation

AR =G +BW?), t<t<t.

We are left to verify the initial condition at ;. To see this, we note that the expression
on the right-hand side of Eq. (26b) converges to x'(#;) + Fi(x'(#1)) as k — oo (see
Eq. (25) and hypothesis (F)). On the other hand, the left-hand side x2(¢") — x*(#;)
in H as k — oo. Hence, x*(¢;)=x'(t;)+ F1(x'(t1)) = x*(t; )+ F1(x*(t2)). This proves
that x? satisfies Eqs. (15a)—(15c) on the interval (t,t,) and x* is the required x,
on (t,5).
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Continue this process, we can find x, satisfies (15a)—(15¢) on the interval (0, 7).
This proves that (x.,u,) € Aaq-

Finally, we shall show that (x,,u,) is an optimal pair. Let (x,u;) be the minimizing
sequence as above, i.c.,

X 5xlin Wo(I;) and  wSu, in L(LE),

where x{{ and x| are the restriction functions of x; and x, onto the interval [; =:
(ti—1,t) (j=1,2,...,n), respectively, and lim_,oJ (x;, u; ) = m. Since the embedding
Wpq;) = L,(;,H) is compact then, by passing to a subsequence if necessary, x,’{imi
in L,(;,H) as k — oo. By piecing them together from j =1 to n and taking into
account the impact of jumps, one can conclude that

Xeox. in Ly(LH) as k — oo.
Since the embedding L ,([,H) — Li({/,H) and L,({,E) — Li(/,E) are continuous, then
xp>x, in Li(LH) and wSu in Li(1E)

as k — oo.
It follows from hypothesis (L) and Theorem 2.1 of Balder [3] that

T

T
J(x*,u*):/o L(t,x.(2),u.(2))dt </0 kli)rroloL(t,xk(t),uk(t)) < m.

Hence (x.,u,) is an optimal control pair. [

7. Example

Let I =(0,7) and Q C RY be a bounded domain with C! boundary Q. For p =2
and 0 > 0, we consider the following optimal control problem:

(P")
I 0 ("
J(x,u)zf/ /|x(t,z)—y0(z)|2dzdt+f/ /|u(t,z)|2dzdt—>inf:m,
2 Jo Ja 2o Ja

such that

N
gx(tsz) - ZDi(|Di-x(taz)|p72Dix([’Z))s

i=1

N

- ZD,-f,-(t,z,x(t,z)) + fo(t,z,x(t,z)) + b()u(t,z) ae. on I x Q, @n
i=1

Xlixeo =0, x(0,z) =x0(z), |u(t,z)| <r(t,z) ae. on Q,

Ax(tiaz):Ff(x(tiyz)): i:1927"'7n)

where (0 <t; <t; <---<t, <T).
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Here the operator D; = 0/0x; (i =1,2,...,N). We need the following hypotheses
on the data of (27).
(G fi:lxQ2xR—R (i=0,1,...,N) are functions such that
(1) for every x e R, (t,z) — f;i(t,z,x) is measurable;
(2) for all (t,z)el x Q and for all x;,x; € R, we have fi(t,z,x) is Holder con-
tinuous with respect to x and exponent 0 < o < 1; that is, there is a constant
L; > 0 such that

‘f;'(taz:xl) - f;'(tazax2)| < Li|xl _-XZ‘“a
(3) for almost all (t,z,x)€l x Q x R, we have
|fitz.0)| < at,z) + pifx|!

with 1 <k < p, a(-,-)eL,(I x Q), and y; > 0.
(F) Fi:Ly(Q) — Ly(Q) (i =1,2,...,n) are operators such that for any p > 0 there
exists a constant L;(p) > 0 such that

|Fi(x1) — Filx2)[200) < Li(p)|Ix1 — %210

for all [lxi[|z,@). [[x2llz.@) < p ((=1,2,....n).
(B") b(-) € Loc ().
(R") r(-,-) €Ly x Q).

In order to study the existence for optimal control problem (P"), we firstly consider
the existence of solutions for the impulsive quasi-linear control systems.

Theorem E. If hypotheses (G") and (F") hold and xo(-) € Ly(Q), u(-,-) € Lo(I xQ), then
problem (27) has a solution x ELP(I,PWOI’I’(Q)) NPC(I,Ly(2)) such that 0x/0t € L,
(LW=1(Q)).

Proof. In this problem, the evolution triple is V = Wol’p (Q2), H=1L,(Q), and V* =
W—14(Q). All embedding are compact (Sobolev embedding theorem). Define an
operator A:1 X V — V* by

N
(A(t.x). y)r = /Q 3 1D P D)D) dz. (28)

i=1

One can easily check that A(z,x) satisfies hypothesis (A) in Section 2. The uniform
monotonicity of A(z,-) is a consequence of the result of Zeidler [9, p. 783].
Next, by using the time-varying Dirichlet form f:/ x H x V' — R by

N
f(t,x,y):/Q;f[(t,z,x)Diydz—i—/Qfo(t,z,x)ydz.

Then, for each t €/ and x € H, the map y — f(4x,y) is a continuous linear form on
V. Hence, there exists an operator g:/ X H — V* such that

f(taxay): <g(t:x))y>V' (29)
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By using hypothesis (G"), we obtain that g satisfies hypothesis (G) of Section 2. Using
the operator 4 and g as defined in Egs. (28) and (29), one can rewrite Eqgs. (27) in
an abstract form as in Eq. (15). So apply Theorem C, problem (27) has a solution.

Finally, consider the optimal control problem (P’). Let E = L,(Q), V = Wol’p and
L:I xV xE— R with

1 0
L(t,x,u) = 3 / |x(t,z)—yo(t,z)\2 dz + 3 / \u(t,z)|2 dz,
Q Q

where u€L,(LL,(RQ)), r:I x  — RT with reL,(I x Q), and yo(-) € Lr(Q).
Let I':1 — Ps.(E) be defined by

()= {vely (Q): vl < )@}

Then, it is easy to see that, with these definitions, problem (P’) satisfies all the
hypothesis of Theorem D. Hence (P’) has at least one optimal pair. [
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