

รายงานการวิจัยฉบับสมบูรณ์

โครงการ “การใช้โปรแกรมคอมพิวเตอร์ในการจำลองลักษณะการดูดซึม
ของยาเม็ดไซเมทีนชนิดออกฤทธิ์ทันทีที่ได้โดยการรับประทาน”

โดย

ศาสตราจารย์ ดร. สมพล ประคงพันธ์
นายเอกรัตน์ จันทร์พิทย์

กรกฎาคม 2548
เดือน ปี ที่เสร็จโครงการ

รายงานการวิจัยฉบับสมบูรณ์

โครงการ “การใช้โปรแกรมคอมพิวเตอร์ในการจำลองลักษณะการดูดซึมของยาเม็ดไซเมทีนชนิดออกฤทธิ์ทันทีที่ได้โดยการรับประทาน”

ศาสตราจารย์ ดร. สมพล ประคงพันธ์
นายเอกสารัตน์ จันทรารัตน์
สังกัด ภาควิชาเคมี คณะเคมีศาสตร์
มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สก. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง “การใช้โปรแกรมคอมพิวเตอร์ในการจำลองลักษณะการดูดซึมของยาเม็ดไชเมทิดีนชนิดօอกฤทธิ์ทันทีที่ให้โดยการรับประทาน” นี้ได้รับทุนอุดหนุนโครงการวิจัยจาก สำนักงานกองทุนสนับสนุนการวิจัย (ฝ่ายวิชาการ) Grant number: BGJ47K0011 โดยมีระยะเวลาดำเนินการทั้งสิ้น ประมาณ 1 ปี 6 เดือน (ตั้งแต่วันที่ 1 ธันวาคม 2547 ถึงวันที่ 31 กรกฎาคม 2548) นักวิจัยขอขอบพระคุณ สำนักงานกองทุนสนับสนุนการวิจัยมา ณ โอกาสนี้

การวิจัยในครั้งนี้นับว่าเป็นส่วนหนึ่งของวิทยานิพนธ์ในระดับปริญญาเอกของข้าพเจ้า ซึ่งมีบุคลกรรมภายทั้งในประเทศไทยและในต่างประเทศ ที่ให้โอกาสและความช่วยเหลืออันเป็นประโยชน์ ทำให้งานวิจัยนี้สำเร็จลุล่วงไปได้ด้วยดี ได้แก่

ศาสตราจารย์ ดร. สมพล ประคงพันธ์ อาจารย์ที่ปรึกษา ผู้ชี้งให้ความเมตตา และความ平坦นาดีต่อศิษย์คนนี้เสมอมา

สำหรับ Professor Dr. Jennifer B. Dressman จาก the Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University เมือง Frankfurt am Main ประเทศเยอรมันนี ผู้ซึ่งให้โอกาสอันยิ่งใหญ่ รวมทั้งเข้าใจสุดและซึ้ง ทั้งในด้านการวิจัยและการใช้ชีวิต เพื่อนๆ ของข้าพเจ้า ทั้งที่คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล และเพื่อนชาวเยอรมันที่ให้ความเป็นมิตร ความช่วยเหลือ และกำลังใจตลอดระยะเวลาที่ทำการวิจัยที่ผ่านมา

ท้ายสุดนี้ ผู้วิจัยขอขอบพระคุณ บิดา แมรดา ตลอดจนน้องชายของข้าพเจ้าที่ให้օสร่างแก่ ข้าพเจ้าในการตัดสินใจในการดำเนินชีวิต

นายเอกรัตน์ จันทร์ทิพย์

นักศึกษาผู้ทำวิจัย

31 กรกฎาคม 2548

ABSTRACT

Project Code: BGJ47K0011

Project Title: Computational Simulation for Prediction of Orally Administered Immediate-Release Cimetidine Absorption Characteristics

Investigators: Prof. Dr. SOMPOL PRAKONGPAN and Mr. EKARAT JANTRATID

Department of Pharmacy, Faculty of Pharmacy, Mahidol University

E-mail Address: pyspk@mahidol.ac.th

Project Period: one and a half years (from December 1, 2003 to July 31, 2005)

Bioavailability and bioequivalence studies have long been employed as tools for appraisal of clinical drug efficacy in several steps of drug research and development. It is, however, time-consuming and relatively exorbitant. As such, several attempts have been established to simulate human gastrointestinal tract milieu *in vitro* and *in silico* to set as a surrogate of *in vivo* studies, particularly in human. The aim of this work was to evaluate computational prediction of immediate-release products containing the BCS Class III compounds, employing cimetidine as a model drug. Tagamet[®], the innovator of cimetidine tablet available commercially as well as cimetidine tablets formulated with Eudragit[®] RS PO, a release-modifying agent, was determined by *in vitro* dissolution tests and *in vivo* in human volunteers. WinNonlin[®] program was applied for pharmacokinetic parameter evaluation and for *in vitro*-*in vivo* correlation (IVIVC) analysis. Also in this study, *in silico* prediction of cimetidine absorption was performed using two computational simulation programs, PK-Sim[®] and STELLA[®]. The predicted absorption behaviors of cimetidine tablets were evaluated and compared with the data acquired from the comparative BA study in accordance with drug physicochemical properties and the dissolution profiles obtained experimentally. The IVIVC analysis showed that only the cimetidine tablets containing 26% Eudragit[®] RS PO exhibited dissolution rate-limited absorption. Computational simulations showed fair correlation as compared to *in vivo* and some further adjustments are required in order to perform simulation effectively.

KEY WORDS: BCS; bioavailability; bioequivalence; IVIVC; *in silico*

บทคัดย่อ

รหัสโครงการ: BGJ47K0011

ชื่อโครงการ: การใช้โปรแกรมคอมพิวเตอร์ในการจำลองลักษณะการดูดซึมของยาเม็ดไซเมทีดีนชนิดօอกฤทธิ์ทันทีที่ให้โดยการรับประทาน

ชื่อนักวิจัย: ศ.ดร.สมพล ประคงพันธ์ และ นายเอกวัฒน์ จันทราริทัย
ภาควิชาเภสัชกรรม คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล

E-mail Address: pyspk@mahidol.ac.th

ระยะเวลาโครงการ: 1 ปี 6 เดือน (ตั้งแต่วันที่ 1 กันยายน 2546 ถึง วันที่ 31 กรกฎาคม 2548)

การศึกษาชีวประสิทธิผล และชีวสมมูลนั้นนับว่าเป็นหลักการที่มีการใช้ในการทดสอบประสิทธิภาพทางคลินิกในชั้นตอนต่างๆ ของการวิจัยและพัฒนาผลิตภัณฑ์ยาเป็นเวลานานมาแล้ว อย่างไรก็ตามการศึกษาดังกล่าวใช้ระยะเวลา lange นิยมทั้งค่าใช้จ่ายในแต่ละครั้งก็ค่อนข้างสูง ด้วยเหตุนี้จึงได้มีการศึกษาวิจัยต่างๆ ในการที่จะจำลองระบบทางเดินอาหารของมนุษย์ขึ้น โดยใช้การทดลองในหลอดทดลอง และการใช้โปรแกรมคอมพิวเตอร์ เพื่อที่จะทดสอบการศึกษาในสิ่งมีชีวิต โดยเฉพาะอย่างยิ่งในมนุษย์ วัตถุประสงค์ใน การศึกษาวิจัยในครั้งนี้ก็คือการประเมินการทำนายเภสัชภัณฑ์ที่ออกฤทธิ์ทันทีที่มีตัวยาในกลุ่มที่ 3 ตามคุณสมบัติทางด้านชีวเภสัชกรรมโดยการใช้โปรแกรมคอมพิวเตอร์ โดยใช้ไซเมทีดีนเป็นตัวยาต้นแบบ การทดลองทำโดยการทดสอบยาเม็ด Tagamet[®] ซึ่งเป็นยาเม็ดไซเมทีดีนต้นแบบที่มีร่างจำหน่ายในท้องตลาด และยาเม็ดไซเมทีดีนที่ผลิตขึ้นโดยใช้ Eudragit[®] RS PO เป็นสารปรับอัตราการละลาย ในด้านอัตราการละลาย รวมทั้งทดสอบยาเม็ดในอาสาสมัครที่มีสุขภาพดีด้วย การประเมินค่าทางเภสัชจลนศาสตร์และการทดสอบโดยใช้ *in vitro-in vivo correlation (IVIVC)* analysis นั้นใช้โปรแกรม WinNonlin[®] นอกจากนี้ยังมีการทำนายการดูดซึมของยาเม็ดไซเมทีดีนที่ได้ ได้รับการเปรียบเทียบกับข้อมูลที่ได้จากการศึกษาชีวประสิทธิผลเบรียบเทียบโดยใช้คุณสมบัติทางด้านเคมีภysis ของตัวยา และข้อมูลด้านอัตราการละลายของยาเม็ดที่ได้จากการทดลองเป็นหลัก การวิเคราะห์โดยใช้ IVIVC analysis แสดงให้เห็นว่าเฉพาะยาเม็ดไซเมทีดีนที่มี Eudragit[®] RS PO อยู่ 26% เท่านั้นที่มีอัตราการละลายเป็นชั้นตอนที่สำคัญ ส่วนผลการจำลองสถานการณ์โดยใช้โปรแกรมคอมพิวเตอร์พบว่า เมื่อเปรียบเทียบกับผลการศึกษาในมนุษย์ มีความสัมพันธ์กันพอสมควรระหว่างผลทั้งคู่ ซึ่งอาจจะต้องมีการปรับเปลี่ยนปัจจัยต่างๆ ของโปรแกรมเพื่อที่จะทำนายผลที่ได้อย่างมีประสิทธิภาพมากยิ่งขึ้น

คำหลัก: BCS; ชีวประสิทธิผล; ชีวสมมูล; IVIVC; การทดสอบโดยใช้โปรแกรมคอมพิวเตอร์

เนื้อหาางานวิจัย

“การใช้โปรแกรมคอมพิวเตอร์ในการจำลองลักษณะการดูดซึม
ของยาเม็ดไซเมทีดีนชนิดออกฤทธิ์ทันทีให้โดยการรับประทาน”

บทนำ

นับจากอดีตจนถึงปัจจุบันเภสัชภัณฑ์ที่ได้รับความนิยมและมีความสำคัญมากที่สุดก็คือ ยาทั่วไป โดยเฉพาะอย่างยิ่ง ยาเม็ดและยาแคปซูล เนื่องจากความสะดวกในการผลิต รวมทั้งการบริหารยาให้กับผู้ป่วย อย่างไรก็ได้ความเข้าใจในสิ่งที่เกิดขึ้นในระบบทางเดินอาหารหลังจากการให้ยา นั้นอาจจะกล่าวได้ว่ายังไม่สมบูรณ์ กล่าวคือ มีข้อมูลอีกมากที่จำเป็นต้องทำการศึกษาวิจัยเพิ่มเติม เนื่องจากกระบวนการที่เกิดขึ้นในระบบทางเดินอาหารจากการรับประทานยานั้นค่อนข้าง слับซับซ้อน ทั้งในแง่ของคุณสมบัติทางด้านเคมีภysis (physicochemical properties) ของตัวยาเอง ปัจจัยจากส่วนประกอบของสูตรตัวรับ (formulation factors) รวมทั้งคุณสมบัติทางกายภาพและชีวภาพ (physiological and biological properties) ของระบบทางเดินอาหาร ซึ่งสิ่งเหล่านี้ส่งผลต่อค่าชีวประสิทธิผล (bioavailability) ของตัวยาที่ให้แก่ผู้ป่วย⁽¹⁾

การศึกษาประสิทธิภาพของผลิตภัณฑ์ยาในปัจจุบันยังมีความจำเป็นที่จะต้องอาศัยการศึกษาทดสอบในมนุษย์เป็นขั้นตอนที่สำคัญ เช่น การศึกษาชีวประสิทธิผล (bioavailability study) ซึ่งเป็นการพิจารณาอัตราเร็วและปริมาณในการดูดซึมของตัวยาสำคัญ รวมทั้งการศึกษาชีวประสิทธิผลเปรียบเทียบ หรือที่เรียกว่า การศึกษาชีวสมมูล (bioequivalence study) ซึ่งเป็นการศึกษาชีวประสิทธิผลของผลิตภัณฑ์ยาที่จะทำการทดสอบเทียบกับผลิตภัณฑ์ยาต้นแบบ นักวิทยาศาสตร์ได้พยายามที่จะหาวิธีการศึกษาทดลองที่น่าเชื่อถือเพียงพอในการที่จะใช้ทดสอบการทดสอบประสิทธิภาพของตัวยาในมนุษย์รวมทั้งในสัตว์ทดลอง เพื่อที่จะลดจำนวนการทดลองในสิ่งมีชีวิตที่ไม่จำเป็นลงไป⁽²⁻⁶⁾

จากแนวคิดดังกล่าว�ักวิทยาศาสตร์ได้พยายามที่จะเข้าใจข้อมูลที่ได้จากการทดลองในห้องปฏิบัติการ (*in vitro*) โดยเฉพาะอย่างยิ่ง การทดสอบอัตราการละลาย (dissolution testing) ของตัวยา มากความสัมพันธ์กับระดับของตัวยาสำคัญที่ถูกดูดซึมเข้าสู่ร่างกายจากการให้ยา หรืออาจเรียกว่า *in vitro-in vivo correlation (IVIVC)*⁽⁷⁻⁹⁾ ซึ่งต่อมาก็ได้มีการพัฒนาเทคนิคในการหาความสัมพันธ์ดังกล่าวไปเป็น *in vitro-in vivo relationship (IVIVR)*^(10,11) ซึ่งเป็นการอธิบายความสัมพันธ์ดังกล่าวในกรณีที่เป็นความสัมพันธ์แบบไม่เป็นเส้นตรง

การทดสอบอัตราการละลายของเภสัชภัณฑ์แต่เดิมมีบทบาทเพียงเพื่อการรับรองคุณภาพของผลิตภัณฑ์ยาที่ผลิตได้ว่าได้มาตรฐานตามที่กำหนดหรือไม่ รวมทั้งใช้ในการพัฒนาสูตรตัวรับยาต่างๆ ดังจะเห็นได้จากข้อกำหนดในเภสัชตัวรับ ซึ่งส่วนใหญ่จะระบุการทดสอบอัตราการละลายให้เป็นส่วนหนึ่งในการทดสอบที่จำเป็นสำหรับเภสัชภัณฑ์^(12,13) อย่างไรก็ตาม ต่อมาก็ได้มีการพัฒนาวิธีการทดสอบอัตราการละลายให้สามารถสื่อถึงลักษณะการละลายของเภสัชภัณฑ์ที่เกิดขึ้นในร่างกายของมนุษย์ได้ใกล้เคียงมากยิ่งขึ้น โดยเฉพาะในกรณีของยาเม็ดรับประทาน ทว่าการศึกษาดังกล่าวไม่อาจทำได้โดย

ง่าย อีกทั้งยังไม่สามารถนำมาใช้ได้กับยาทั่วไปทุกประเภท ทั้งนี้เนื่องจากหากสภาวะที่ใช้ในการศึกษาทดลองไม่เหมาะสม กล่าวคือ แตกต่างจากสภาวะในระบบทางเดินอาหาร ผลการทดลองที่ได้ก็ไม่อาจที่จะสื่อถึงกระบวนการที่เกิดขึ้นจริงในร่างกายได้⁽¹⁴⁻¹⁸⁾

จากหลักการของ Biopharmaceutics Classification System (BCS)⁽¹⁹⁻²²⁾ ที่แบ่งตัวยาสำคัญออกเป็น 4 กลุ่มตามคุณสมบัติอัตราการละลาย (dissolution) และขีดการละลาย (solubility) และการซึมผ่าน (permeability) ของตัวยาสำคัญ ทำให้ทราบถึงขั้นตอนที่สำคัญที่มีผลต่อการดูดซึมของตัวยา ขั้นจะมีผลต่อชีวประสิทธิผลของตัวยา ซึ่งอาจจะนำมาใช้เป็นแนวทางในการเลือกการทดสอบตัวยาดังกล่าวที่เหมาะสมต่อไป นอกจากนี้ Food and Drug Administration ของประเทศไทยได้ออกเกณฑ์ “Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system”⁽²³⁾ เพื่อที่จะให้ข้อมูลที่จำเป็นในการที่จะผู้ผลิตจะขอยกเว้นการทำชีวสมมูลในสิ่งมีชีวิตในผลิตภัณฑ์ที่เข้าเกณฑ์ที่กำหนด อย่างไรก็ตาม ในปัจจุบันผลิตภัณฑ์ยาที่เตรียมจากตัวยาสำคัญในกลุ่ม BCS Class I เท่านั้นที่มีคุณสมบัติตรงตามเกณฑ์ดังกล่าว ซึ่งตัวยานอกกลุ่มนี้จัดว่าเป็นส่วนน้อยเมื่อเทียบกับตัวยาที่มีอยู่ในท้องตลาด ด้วยเหตุนี้จึงเป็นการเหมาะสมที่จะทำการศึกษาเพิ่มเติมในตัวยาสำคัญกลุ่ม BCS อื่นๆ เพื่อที่จะพิจารณาถึงความเป็นไปได้ว่าจะสามารถใช้การทดสอบผลิตภัณฑ์yan อย่างไร ซึ่งมีชีวิตทดสอบการศึกษาในสิ่งมีชีวิตได้หรือไม่ และอย่างไร โดยเฉพาะตัวยานอกกลุ่ม BCS Class III เนื่องจากตัวยานอกกลุ่มนี้มีคุณสมบัติใกล้เคียงกับตัวยาในกลุ่ม BCS Class I กล่าวคือ มีค่าการละลายที่ดีแต่ยากลุ่มนี้มีค่าการดูดซึมที่ไม่ดี ด้วยเหตุนี้ขั้นตอนการดูดซึมผ่านผนังลำไส้เล็กจึงเป็นขั้นตอนที่มีความสำคัญต่อชีวประสิทธิผลของเภสัชภัณฑ์นั้นๆ มากกว่าการปลดปล่อยตัวยาออกจากเภสัชภัณฑ์ ดังนั้นอาจจะเป็นไปได้ว่ายาในกลุ่มนี้สามารถที่จะได้รับการยกเว้นการศึกษาชีวสมมูลได้เช่นเดียวกันกับตัวยาในกลุ่ม BCS Class I⁽²⁴⁾

แนวทางหนึ่งในการศึกษาจลนศาสตร์ของตัวยาในร่างกายคือการนำเข้าแบบจำลองทางเภสัชจลนศาสตร์ (pharmacokinetics models) มาใช้ในการพิจารณาสภาวะที่เกิดขึ้นจริงในร่างกาย มนุษย์จากการให้ยาในรูปแบบต่างๆ โดยเฉพาะอย่างยิ่งรับประทาน^(25,26) ตัวอย่างของแบบจำลองที่ใช้ในการศึกษาการดูดซึมของตัวยา เช่น Compartmental Absorption and Transit (CAT) model⁽⁴⁾ ที่อาศัยสมการทางคณิตศาสตร์มาช่วยในการหาปริมาณของตัวยาที่ถูกดูดซึมเป็นส่วนๆ จากระบบทางเดินอาหาร ซึ่งต่อมาก็ได้มีการพัฒนามาเป็น Advanced Compartmental Absorption and Transit (ACAT) model หรืออีกตัวอย่างหนึ่งของแบบจำลองทางเภสัชจลนศาสตร์ที่นิยมใช้คือ Physiology Based Pharmacokinetic (PBPK) model ที่เป็นการพิจารณาระบบทางเดินอาหารอย่างต่อเนื่องเป็น

ระบบเดียว⁽²⁷⁾ ซึ่งตัวอย่างของแบบจำลองที่กล่าวมานี้ได้มีการนำมาเป็นพื้นฐานในการพัฒนาโปรแกรมคอมพิวเตอร์ที่ใช้ในการทำนายการดูดซึมของผลิตภัณฑ์ยาด้วย ได้แก่ โปรแกรม PK-Sim^{TM(27)} และโปรแกรม STELLA[®]

ด้วยความก้าวหน้าทางด้านเทคโนโลยีคอมพิวเตอร์ในปัจจุบันทำให้นักวิทยาศาสตร์สามารถดำเนินงานวิจัยได้สะดวกและรวดเร็วขึ้นในหลาย ๆ ด้าน เช่นเดียวกันกับในด้านเภสัชศาสตร์ โดยที่มีการนำเอาโปรแกรมคอมพิวเตอร์มาใช้ประโยชน์ในแบบต่าง ๆ ซึ่งการใช้โปรแกรมคอมพิวเตอร์ที่สามารถทำนายลักษณะการดูดซึมของตัวยาที่ให้โดยการรับประทานนั้นได้รับความสนใจมากขึ้นเนื่องจากเหตุผลที่ว่าหากจากจะเป็นการประยุกต์เวลาที่จะต้องเสียไปในการทดสอบผลิตภัณฑ์ยาได้อย่างมากแล้ว ยังมีส่วนในการลดจำนวนการทดลองในมนุษย์และสัตว์ทดลองลงไปได้บางส่วน⁽²⁸⁾ อย่างไรก็ตามมีความจำเป็นอย่างยิ่งที่จะต้องมีข้อมูลสนับสนุนที่เพียงพอในการที่จะพิสูจน์ว่าการนำเอาโปรแกรมคอมพิวเตอร์มาใช้ในการจำลองสถานการณ์ที่จะเกิดขึ้นในระบบทางเดินอาหารนั้นมีความน่าเชื่อถือ และมีความสอดคล้องกับสิ่งที่เกิดขึ้นในความเป็นจริงมากน้อยเพียงใด

การศึกษาทดลองในครั้งนี้มีวัตถุประสงค์เพื่อประยุกต์ใช้ของศึกษาวิธีการทดสอบเภสัชภัณฑ์ตามคุณสมบัติทางชีวเภสัชศาสตร์ โดยพิจารณาถึงความเป็นไปได้รวมทั้งความเหมาะสมในการลดจำนวนการทดลองในสิ่งมีชีวิตที่ไม่จำเป็นลงไป โดยได้เลือกศึกษาตัวยาสำคัญในกลุ่ม BCS Class III และใช้ตัวยาไซเมทีดีน (cimetidine) เป็นยาต้นแบบ การศึกษาโดยการเตรียมให้เป็นยาเม็ดที่มีอัตราการละลายที่แตกต่างกัน จากนั้นทำการทดสอบอัตราการละลายที่สภาวะต่างๆ แล้วทำการศึกษาถึงลักษณะการดูดซึมของตัวยาสำคัญจากยาเม็ดที่เตรียมได้ในอาสามัคร ทั้งนี้เพื่อที่จะทดสอบถึงความเป็นไปได้และขีดจำกัดในการพิจารณาการยกเว้นการศึกษาชีวสมมูลในมนุษย์ของยาในกลุ่มนี้ โดยการเปรียบเทียบและหาความสัมพันธ์ระหว่างผลการทดลองที่ได้จากการทดสอบอัตราการละลายกับจนศาสตร์การดูดซึมของตัวยาไซเมทีดีนในมนุษย์ และเปรียบเทียบผลที่ได้กับผลจากโปรแกรมคอมพิวเตอร์ โดยจะทำการจำลองสถานการณ์โดยใช้โปรแกรม PK-SimTM และโปรแกรม STELLA[®]

วิธีการทดลอง

1. การพัฒนาและการทดสอบสูตรตัวรับยาเม็ดไซเมทีดีน

จากผลการวิจัยในขั้นต้น คณะกรรมการพัฒนาได้เลือกยา Eudragit[®] RS PO มาใช้เป็นส่วนประกอบของยาเม็ดไซเมทีดีนที่เตรียมขึ้น และใช้ D(+)-glucose monohydrate เป็นสารเพิ่มปริมาณของเม็ดยา ตารางที่ 1 แสดงสูตรตัวรับยาเม็ดไซเมทีดีนที่เตรียมขึ้น

ตารางที่ 1 สูตรตัวรับยาเม็ดไซเมทีดีนที่มีส่วนผสมของ Eudragit® RS PO ในปริมาณต่างๆ กัน

	7.5% Eudragit® RS PO	15% Eudragit® RS PO	26% Eudragit® RS PO			
	in tablet (mg)	% in formulation	In tablet (mg)	% in formulation	In tablet (mg)	% in formulation
Cimetidine	400	40	400	40	400	40
Eudragit® RS PO	75	7.5	150	15	260	26
Dextrose	477	47.7	402	40.2	292	29.2
Aerosil® 200	8	0.8	8	0.8	8	0.8
Talcum	25	2.5	25	2.5	25	2.5
Mg stearate	15	1.5	15	1.5	15	1.5
Total	1000	100	1000	100	1000	100

ส่วนประกอบต่างๆ ดังที่ระบุไว้ในตารางได้รับการผ่านแร่และผสมให้เข้ากัน จากนั้นนำเข้าส่วนผสมที่ได้มาตอกเป็นเม็ดด้วยวิธีตอกตรง โดยที่แต่ละเม็ดมีไซเมทีดีนเป็นส่วนประกอบในปริมาณ 400 มิลลิกรัม ซึ่งคาดว่าอัตราการละลายที่ได้นั้นจะแตกต่างกันอย่างมีนัยสำคัญในแต่ละสูตรตัวรับ

ยาเม็ดที่เตรียมได้ ได้รับการทดสอบทางด้านเคมีและกายภาพ ตามข้อกำหนดที่ระบุอยู่ใน เกสัชตัวรับของสหรัฐอเมริกา (the United States Pharmacopeia, USP)⁽¹²⁾ โดยทำการทดสอบน้ำหนักของยาเม็ดที่ได้ (tablet weight) รูปร่าง ลักษณะ (diameter and thickness) รวมทั้งความแข็งของเม็ดยา (tablet hardness) ความกร่อนของเม็ดยา (friability) การแตกตัว (disintegration) ปริมาณของตัวยาสำคัญในยาเม็ดที่เตรียมได้ (content uniformity) และอัตราการละลายของยาเม็ด (dissolution)

การพิจารณาอัตราการละลายของยาเม็ดที่เตรียมขึ้นนั้น ทำโดยการทดสอบในสารละลายต่างๆ ดังที่แสดงอยู่ในตารางที่ 2 ได้แก่ 0.01 N HCl ที่มีค่า pH 2.0, phosphate buffer ที่มีค่า pH 4.5, Simulated Intestinal Fluid without pancreatin ที่มีค่า pH 6.8 และ Fasted State Simulated Intestinal Fluid (FaSSIF) ที่มีค่า pH 6.5 โดยใช้ปริมาตรของสารละลาย 500 มิลลิลิตรต่อ 1 หลุมทดสอบอัตราการละลาย (dissolution vessel) ใช้ USP Apparatus II (Paddle method) ในการทดสอบ โดยใช้ความเร็วของอยู่ที่ 75 รอบต่อนาที (rpm) การทดสอบทำที่อุณหภูมิ $37 \pm 0.5^{\circ}\text{C}$ โดยทำการสุ่มตัวอย่างสารละลายมาทำการวิเคราะห์ตัวยาไซเมทีดีนตามช่วงเวลาที่กำหนด

ตารางที่ 2 ส่วนประกอบต่างๆ ของสารละลายน้ำที่ใช้ในการทดสอบอัตราการละลายของยาเม็ดที่เมทีเดนที่เตรียมขึ้น

Medium	Composition (for 5 liters)	
0.01 N hydrochloric acid, pH 2.0	Fuming hydrochloric acid (37%)	4.9 g
	Deionized water qs ad	5 l
Phosphate buffer, pH 4.5	Potassium dihydrogen phosphate	34 g
	Deionized water qs ad	5 l
Simulated intestinal fluid without pancreatin (SIF _{sp}), pH 6.8	Potassium dihydrogen phosphate	34 g
	Sodium hydroxide	4.5 g
	Deionized water qs ad	5 l
Fasted state simulated intestinal fluid (FaSSIF) (blank), pH 6.5	Sodium hydroxide pellets	1.74 g
	Sodium dihydrogen phosphate monohydrate	19.77 g (or 17.19 g of anhydrous form)
	Sodium chloride	30.93 g
	Deionized water qs ad	5 l

* ทำการปรับค่า pH ของสารละลายที่ได้ด้วยสารละลาย 0.1 N sodium hydroxide หรือสารละลาย 0.1 N hydrochloric acid

การวิเคราะห์ตัวยาไซเมทิดินในเชิงปริมาณ ใช้เครื่องมือ UV spectrophotometer หรือ High Performance Liquid Chromatography (HPLC) ตามความเหมาะสม โดยในการวิเคราะห์ด้วย UV spectrophotometer นั้นเลือกใช้ความยาวคลื่นที่ 218 นาโนเมตร ในขณะที่การวิเคราะห์โดยใช้ HPLC ซึ่งใช้กับสารละลายตัวอย่างที่ทดสอบใน FaSSIF เลือกความยาวคลื่นที่ 228 นาโนเมตร เพื่อที่จะหลีกเลี่ยงการรบกวนจากส่วนประกอบของ FaSSIF ในระหว่างการวิเคราะห์

2. การศึกษาวิจัยทางคลินิก

จากยาเม็ดไซเมทีดินที่เตรียมໄได้ และได้รับการทดสอบแล้วว่ามีอัตราการละลายที่แตกต่างกัน ก็ได้นำมาทำการทดสอบในอาสาสมัครคนไทยเพศชายที่มีสุขภาพดีจำนวน 12 คน โดยมี Tagamet® tablet ซึ่งเป็นยาเม็ดไซเมทีดินที่มีจำนวนยาในท้องตลาดในขนาด 400 มิลลิกรัม และ Tagamet® injection ที่มีตัวยาไซเมทีดิน 300 มิลลิกรัม/ 2 มิลลิลิตร เป็นสูตรคำรับอ้างอิง

ตารางที่ 3 แบบแผนการให้ยาไซเมทีดีนแบบ Williams

Square	Sequence	Treatment Period				
		I	II	III	IV	V
1	1	A	E	B	D	C
	2	B	A	C	E	D
	3	C	B	D	A	E
	4	D	C	E	B	A
	5	E	D	A	C	B
2	1	C	D	B	E	A
	2	D	E	C	A	B
	3	E	A	D	B	C
	4	A	B	E	C	D
	5	B	C	A	D	E

Key,

A = Tagamet® tablets

B = 7.5 % Eudragit® RS PO cimetidine tablets

C = 15 % Eudragit® RS PO cimetidine tablets

D = 26 % Eudragit® RS PO cimetidine tablets

E = Tagamet® injection, 300 mg/2 ml

ทำการคัดเลือกอาสาสมัครที่มีสุขภาพดีจำนวน 12 คน ที่มีอายุตั้งแต่ 18-45 ปี โดยที่ 10 คนได้รับยาแต่ละสูตรตัวรับ รวมทั้งสิ้น 5 สูตร ตามแผนการให้ยาแบบ Williams ดังที่แสดงในตารางที่ 3

และเมื่อวันที่ 2 คุณที่เข้ารับการให้ยาเช่นเดียวกับคุณสัมบุคคลที่ 1 และ 2 โดยที่เว้นระยะเวลาห่างของการให้ยาแต่ละครั้ง 1 สัปดาห์ จากนั้นทำการวัดระดับตัวยาในพลาสมากับตัวอย่างที่เก็บตามเวลาที่กำหนดโดยใช้ HPLC ที่ติดตั้งด้วย UV detector โดยใช้ค่าความยาวคลื่นที่ 228 นาโนเมตร ซึ่งวิธีที่ใช้ในการวิเคราะห์ด้วย HPLC นั้นได้รับการตรวจสอบความถูกต้อง (validation) แล้ว

ค่าทางเภสัชจุนศาสตร์ที่ทำการวัด ได้แก่ ค่าพื้นที่ใต้กราฟความสัมพันธ์ระหว่างระดับความเข้มข้นของยาไซเมทิดีนในพลาสมากับเวลาที่วัดจากเวลาตั้งต้นจนถึงเวลาสุดท้ายที่ทำการเก็บตัวอย่าง ($AUC_{0-\text{last}}$) ค่าพื้นที่ใต้กราฟความสัมพันธ์ระหว่างระดับความเข้มข้นของยาไซเมทิดีนในพลาสมากับเวลาที่วัดจากเวลาตั้งต้นจนถึงเวลาอนันต์ ($AUC_{0-\infty}$) ค่าชีวประสิทธิผล (bioavailability) ค่าความเข้มข้นสูงสุดของระดับยาในพลาสma (C_{max}) และค่าเวลาคงอยู่โดยเฉลี่ย (mean residence time, MRT) ของสูตรคำนวณต่างๆ การวิเคราะห์ทางสถิติทำโดยใช้ two-way analysis of variance (ANOVA) และจากนั้นหากความแตกต่างที่ได้โดยใช้ multiple comparison analysis วิธี least significant difference (LSD)

3. การใช้โปรแกรมคอมพิวเตอร์ในการวิเคราะห์ข้อมูลและจำลองสถานการณ์ที่เกิดขึ้นในร่างกาย

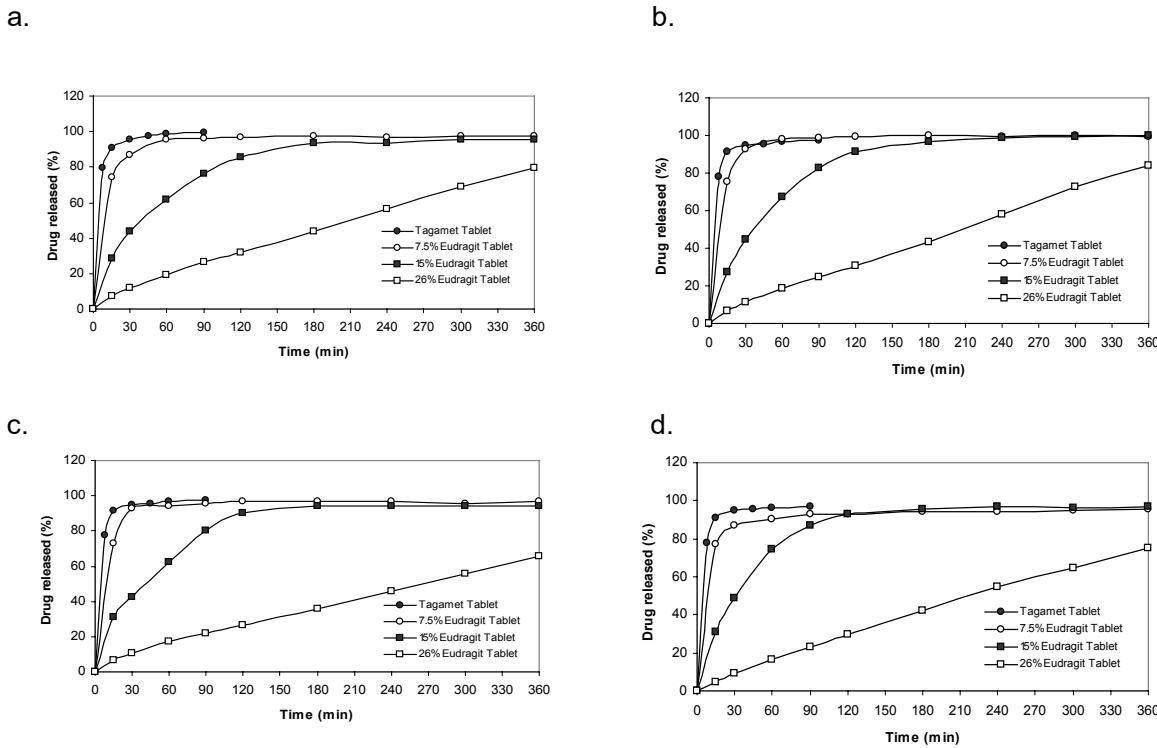
จากข้อมูลที่ได้จากการศึกษาทดลองในมนุษย์ ได้นำเอาหลักการของ *in vitro-in vivo* correlation (IVIVC) analysis มาใช้ในการวิเคราะห์ โดยจากการแสดงความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไซเมทิดีนในพลาสมากับเวลา สามารถที่จะทำการเปลี่ยนแปลงให้อยู่ในรูปของสัดส่วนของยา (fraction drug absorbed, F_a) ที่ดูดซึมต่อเวลาโดยใช้หลักการ deconvolution ซึ่งจะต้องอาศัยโปรแกรมคอมพิวเตอร์ WinNonlin[®] ในการวิเคราะห์ จากนั้นนำมาเปรียบเทียบกับข้อมูลอัตราการละลายของยาเม็ด ที่เวลาเดียวกัน

ส่วนในการจำลองสถานการณ์ที่เกิดขึ้นในร่างกายนั้นใช้โปรแกรมคอมพิวเตอร์ PK-Sim[®] และ STELLA[®] โดยอาศัยข้อมูลทางด้านเคมีภysis ของตัวยาไซเมทิดีน ตัวอย่างเช่น ค่าการแตกตัวของยา (acid dissociation constant, K_a) ค่าความซึมไขมัน (lipophilicity) ค่าการจับกับโปรตีนในพลาสma (plasma protein binding) และข้อมูลด้านอัตราการละลายของยาเม็ดที่ทดสอบ ซึ่งผลการดำเนินการที่ได้ถูกนำไปเปรียบเทียบกับผลที่ได้จริงจากการศึกษาในมนุษย์

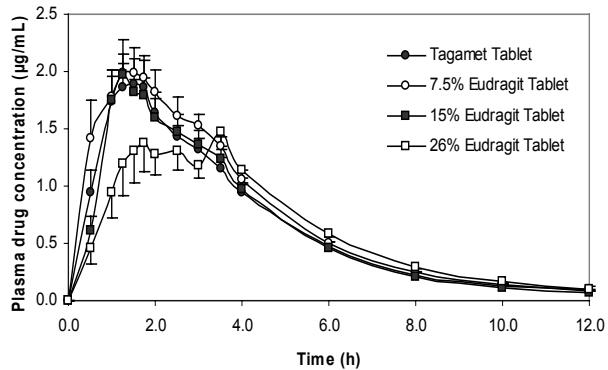
ผลการทดลองและอภิปรายผลการทดลอง

ยาเม็ดไชเมทิดินที่เตรียมขึ้นจาก Eudragit® RS PO ในปริมาณต่างๆ กัน

จากผลการทดลองเบื้องต้นทำให้คุณผู้วิจัยเลือกยาเม็ดไชเมทิดินที่มีส่วนประกอบของ Eudragit® RS PO ซึ่งทำหน้าที่ปรับเปลี่ยนอัตราการละลายของยาเม็ดในปริมาณ 7.5%, 15% และ 26% มาทำการทดสอบ เนื่องจากพบว่าสูตรตัวรับทั้ง 3 นี้ให้ค่าอัตราการละลายที่แตกต่างกันอย่างมีนัยสำคัญ ซึ่งปัจจัยนี้มีความสำคัญต่อการประเมินผลของสูตรตัวรับเหล่านี้ในทางคลินิก


รูปที่ 1 แสดงอัตราการละลายของยาเม็ดไชเมทิดินที่เตรียมขึ้นในสารละลายทดสอบต่างๆ ซึ่งจะเห็นได้ว่าลักษณะในการลดปล่อยตัวยาสำคัญของยาเม็ดเหล่านี้มีความคล้ายคลึงกันมากไม่ว่าจะทำการทดสอบด้วยสารละลายทดสอบใด โดยที่ยาเม็ดที่มีส่วนประกอบของ Eudragit® RS PO ในปริมาณ 7.5% ให้ค่าอัตราการละลาย 85% ภายในระยะเวลา 30 นาที ซึ่งถือว่าอยู่ในเกณฑ์ตัดสินของ FDA ของสหรัฐอเมริกา⁽²³⁾ ว่าผลิตภัณฑ์นั้นๆ มีอัตราการละลายที่เร็วหรือไม่ นอกจากนี้การที่พบว่าอัตราการละลายของยาเม็ดในสารละลายต่างๆ ไม่แตกต่างกันนักแสดงให้เห็นว่าการละลายของยาเม็ดในระบบทางเดินอาหารน่าที่จะเป็นไปในรูปแบบเดียวกันด้วย

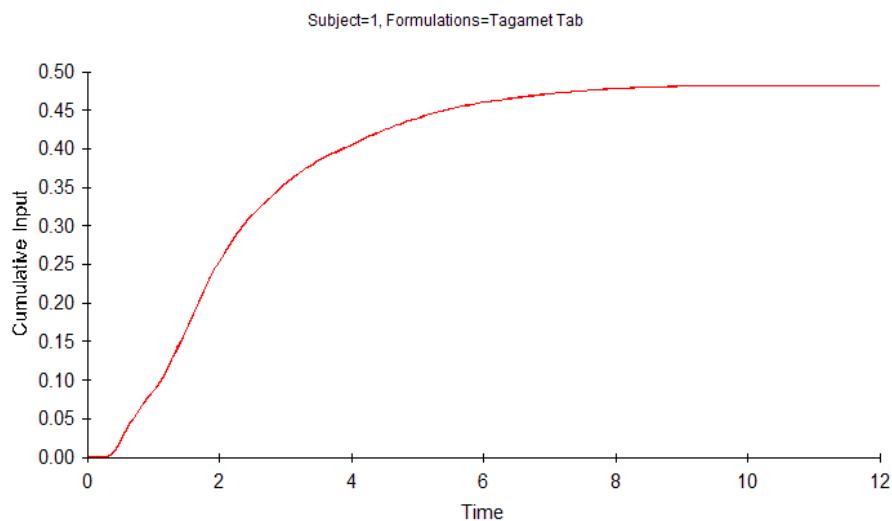
ในด้านคุณสมบัติของยาเม็ดที่ได้พบว่าเม็ดยา มีความแข็งที่ค่อนข้างคงที่และสม่ำเสมอ และมีความกว่อนน้อยกว่าที่กำหนดไว้ในเกสซ์ตัวรับ นอกจานี้ปริมาณของตัวยาไชเมทิดินในยาเม็ดที่เตรียมได้ก็อยู่ในช่วงที่ยอมรับได้ คือ $100 \pm 5\%$


การศึกษาวิจัยทางคลินิก

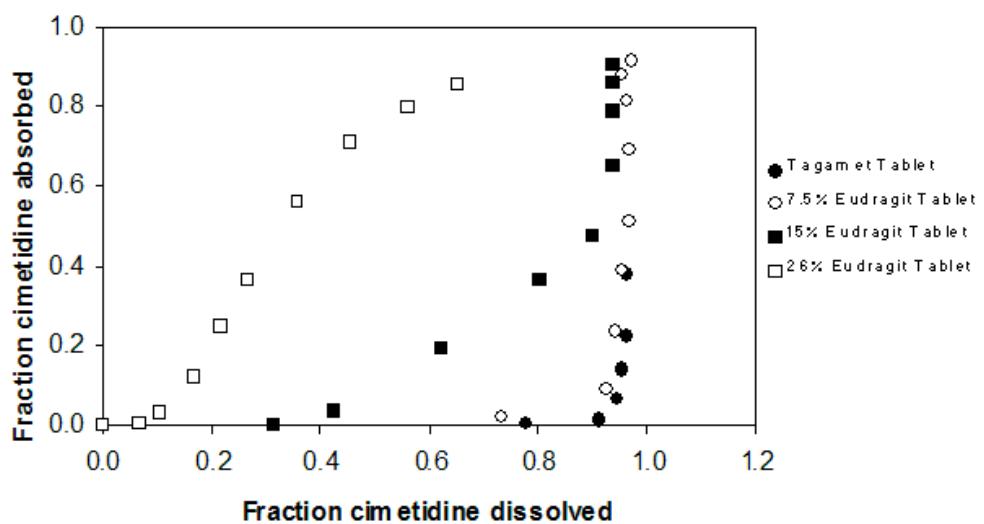
ยาเม็ดที่เตรียมขึ้นถูกนำมาทำการศึกษาเชิงประสิทธิผลเปรียบเทียบในอาสาสมัครชายไทยที่มีสุขภาพดีจำนวนทั้งสิ้น 12 คน โดยทำการสูบให้สูตรตัวรับยาเม็ดที่เตรียมขึ้น ยาเม็ด Tagamet® หรือยาฉีด Tagamet® สปเดาท์ล 1 สูตรตัวรับ ซึ่งค่าครึ่งชีวิตของยานี้มีค่าประมาณ 2 ชั่วโมง ด้วยเหตุนี้การวัดระยะเวลาในการให้ยาแต่ละสูตรเป็นระยะเวลา 1 สปเดาท์จึงเพียงพอที่จะลดผลกระทบให้ยาครั้งก่อนหน้านี้ได้

รูปที่ 2 แสดงกราฟความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไชเมทิดินในพลาสมากับเวลา ซึ่งได้จากการให้ยาตัวรับประทานในสูตรตัวรับต่างๆ ซึ่งจากการที่ได้จะเห็นได้ว่าสูตรตัวรับยาเม็ดไชเมทิดินที่มีปริมาณของ Eudragit® RS PO อยู่ 26% เท่านั้นที่ให้ผลแตกต่างจากสูตรตัวรับอื่นๆ อย่างชัดเจน แต่อย่างไรก็ตามจากการทดสอบทางสถิติโดยใช้ two-way ANOVA ร่วมกับ LSD ก็พบว่าสูตรตัวรับทุกสูตรมีค่าพื้นที่ $AUC_{0-\text{last}}$ และ $AUC_{0-\infty}$ ไม่แตกต่างกันอย่างมีนัยสำคัญ

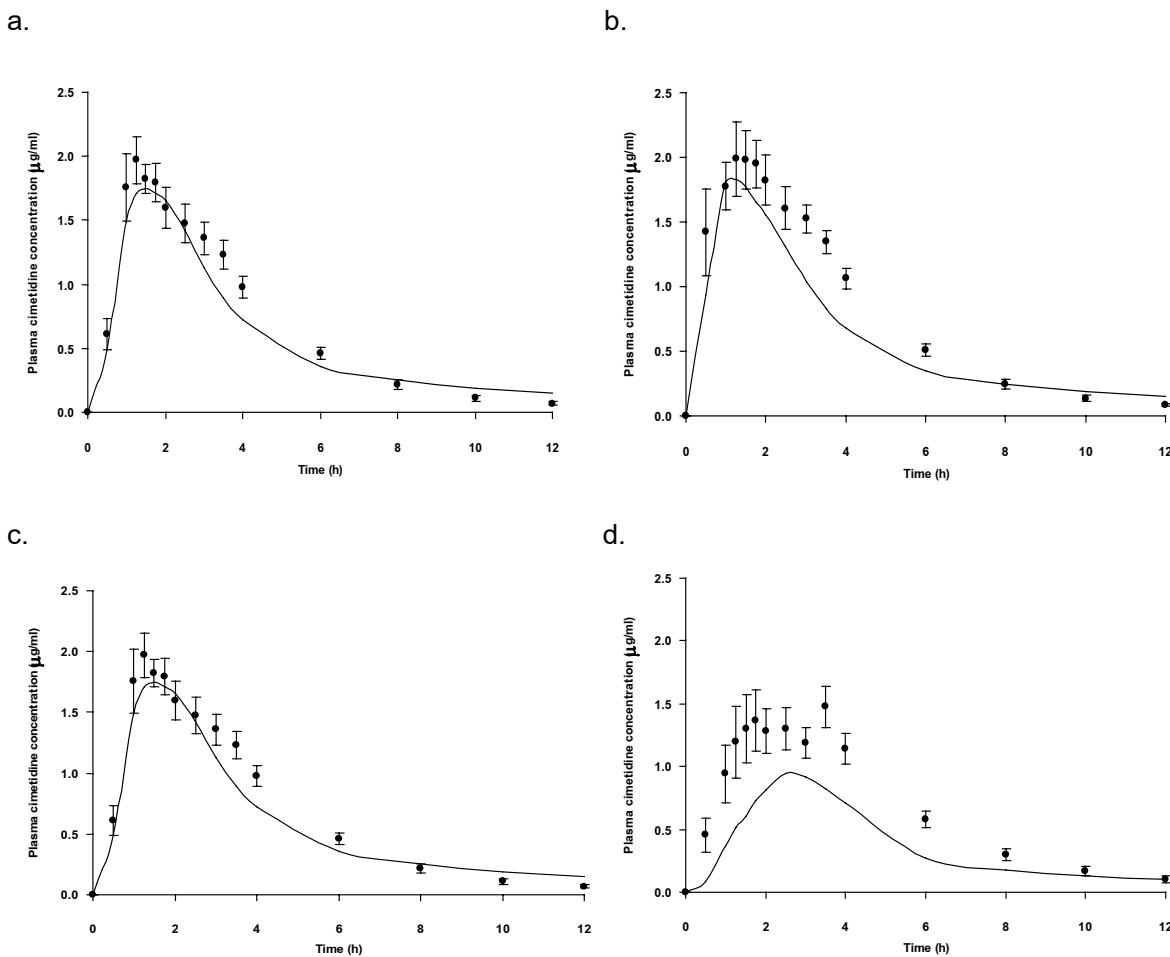
รูปที่ 1 กราฟเปรียบเทียบแสดงอัตราการละลายของยาเม็ดไซเมทิดินที่เตรียมขึ้นจาก Eudragit[®] RS PO ในปริมาณต่างๆ กัน ในสารละลายทดสอบ 4 ชนิด ได้แก่ ใน 0.01 N HCl, pH 2.0 (a.), ใน phosphate buffer, pH 4.5 (b.), ใน SIFsp, pH 6.8 (c.) และใน FaSSIF, pH 6.5^{*} (d.), n = 6


รูปที่ 2 กราฟเปรียบเทียบแสดงความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไซเมทิดินในพลาสมากับเวลาที่ได้จากการให้อาสาสมัครรับประทานยาเม็ด Tagamet[®] และยาเม็ดไซเมทิดินที่เตรียมขึ้นจากการใช้ Eudragit[®] RS PO ในปริมาณต่างๆ กัน

ส่วนค่า C_{max} นั้น เนื่องจากพบว่ากราฟความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไม่ใช่เมทิดีนในพลาสม่าและเวลาที่ได้นั้นมีลักษณะที่เรียกว่า double peak phenomenon กล่าวคือ มีจุดที่สูงที่สุดของกราฟตั้งแต่ 2 จุดขึ้นไป ด้วยเหตุนี้จึงไม่สามารถนำเอาค่าเฉลี่วมาพิจารณาในการศึกษาเชิงประสิทธิผลเปรียบเทียบได้ในกรณีนี้ มีเพียงค่าเวลาคงอยู่โดยเฉลี่ย (mean residence time, MRT) ของสูตรตัวรับที่มี Eudragit® RS PO อยู่ 26% เท่านั้นที่ต่างจากสูตรตัวรับอื่นๆ อย่างมีนัยสำคัญ ซึ่งจากกราฟความสัมพันธ์ระหว่างระดับความเข้มข้นของยาในพลาสมากับเวลา และจากการวิเคราะห์ทางสถิติทำให้สรุปได้ว่าสูตรตัวรับที่มี Eudragit® RS PO อยู่ 26% นั้นไม่มีความนูลดเมื่อเปรียบเทียบกับสูตรตัวรับอื่นๆ และยาเม็ดตันแบบ

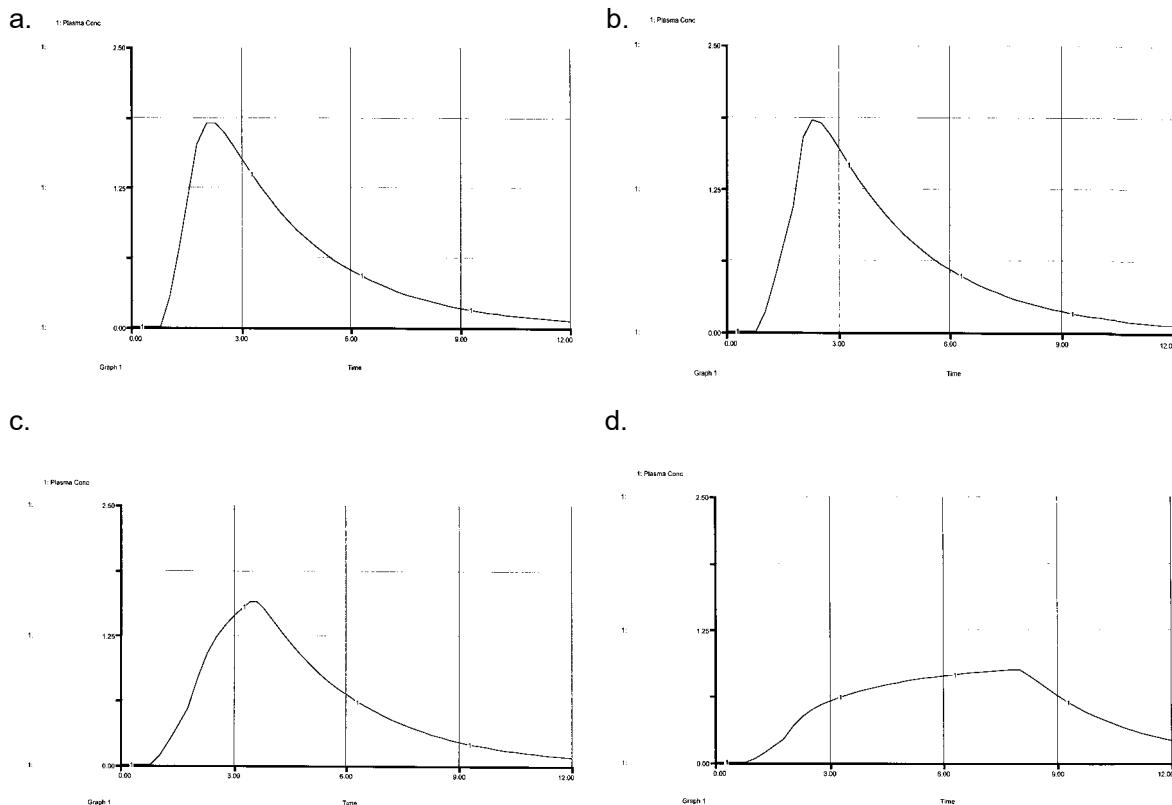

ในการวิเคราะห์โดยใช้ IVIVC analysis นั้น ขั้นแรกทำโดยการคำนวณสัดส่วนของตัวยาดูดซึ่งกับเวลาที่ทดสอบโดยใช้โปรแกรม WinNonlin® ในการทำ deconvolution ซึ่งรูปที่ 3 แสดงตัวอย่างของผลจากการคำนวณที่ได้จากอาศรมคุณที่ 1 หลังจากที่ได้รับประทานยาเม็ด Tagamet® จากนั้นนำผลเฉลี่ยที่ได้จากการ deconvolution มาเปรียบเทียบกับผลการทดสอบอัตราการละลายของผลิตภัณฑ์ยา ซึ่งก็พบความสัมพันธ์ดังแสดงในรูปที่ 4 โดยจะพบว่ามีเพียงสูตรตัวรับที่มี Eudragit® RS PO อยู่ 26% เท่านั้นที่มีความสัมพันธ์ค่อนข้างเป็นเส้นตรง ซึ่งแสดงถึงการที่อัตราการละลายเป็นขั้นตอนที่สำคัญในการดูดซึ่งของยาเม็ดไม่ใช่เมทิดีน

การจำลองสถานการณ์ที่เกิดขึ้นในร่างกายโดยใช้โปรแกรมคอมพิวเตอร์


ในการประเมินประสิทธิภาพของการนำยาดูดซึ่งของยาเม็ดไม่ใช่เมทิดีนในร่างกายโดยใช้โปรแกรมคอมพิวเตอร์นั้นจะต้องนำมาเปรียบเทียบกับผลที่ได้จริงจากการทดลองในมนุษย์ ซึ่งรูปที่ 5 และรูปที่ 6 แสดงผลการจำลองความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไม่ใช่เมทิดีนในพลาสมากับเวลาโดยใช้โปรแกรม PK-Sim® และ STELLA® ตามลำดับ จากการให้ข้อมูลด้านเคมีภysis ของตัวยา และข้อมูลด้านอัตราการละลาย ซึ่งจะเห็นได้ว่าโปรแกรม PK-Sim® ให้ผลที่ใกล้เคียงกับความเป็นจริงมากกว่าโปรแกรม STELLA® ดังจะเห็นได้ชัดเจนจากสูตรตัวรับยาเม็ดไม่ใช่เมทิดีนที่มี Eudragit® RS PO 15% และ 26% แต่อย่างไรก็ตามทั้งคู่แสดงให้เห็นถึงแนวโน้มที่เป็นไปได้ของ การดูดซึ่งของตัวยาไม่ใช่เมทิดีนในมนุษย์ ซึ่งอาจจะต้องมีการปรับเปลี่ยนปัจจัยต่างๆ ที่ให้กับโปรแกรมคอมพิวเตอร์ รวมทั้งให้ข้อมูลที่จะเป็นเพิ่มเติมแก่โปรแกรม เพื่อที่ว่าจะสามารถนำเอาโปรแกรมดังกล่าวมาใช้ได้จริงในการดัดกรองผลิตภัณฑ์ยาในระดับอุตสาหกรรมที่จำเป็นต้องอาศัยความถูกต้องและรวดเร็วในการประเมินประสิทธิภาพต่างๆ ก่อนที่จะทำการทดสอบในขั้นตอนอื่นๆ ต่อไป

รูปที่ 3 กราฟตัวอย่างแสดงความสัมพันธ์ระหว่างสัดส่วนของตัวยาไซเมทีนที่ถูกดูดซึมเทียบกับเวลาที่ทำการทดสอบจากอาสาสมัครคนที่ 1 ที่ได้รับประทานยาเม็ด Tagamet[®]

รูปที่ 4 กราฟแสดงความสัมพันธ์ *in vitro-in vivo* correlation (IVIVC) ระหว่างสัดส่วนของตัวยาไซเมทีนที่ถูกดูดซึมกับสัดส่วนของตัวยาไซเมทีนที่ละลายออกจากยาเม็ด


รูปที่ 5 กราฟจำลองความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไซเมทีดีนในพลาสมากับเวลาของยาเม็ดไซเมทีดีนสูตรต่ำรับต่างๆ ที่ได้จากการคำนวณโดยใช้โปรแกรม PK-Sim[®]

a. ยาเม็ดไซเมทีดีนตันแบบ Tagamet[®]

b. ยาเม็ดไซเมทีดีนที่มีส่วนผสมของ Eudragit[®] RS PO อยู่ 7.5%

c. ยาเม็ดไซเมทีดีนที่มีส่วนผสมของ Eudragit[®] RS PO อยู่ 15%

d. ยาเม็ดไซเมทีดีนที่มีส่วนผสมของ Eudragit[®] RS PO อยู่ 26%

รูปที่ 6 กราฟจำลองความสัมพันธ์ระหว่างระดับความเข้มข้นของตัวยาไซเมทิดินในพลาสมากับเวลาของยาเม็ดไซเมทิดินสูตรตัวรับต่างๆ ที่ได้จากการคำนวณโดยใช้โปรแกรม STELLA®

- ยาเม็ดไซเมทิดินตันแบบ Tagamet®
- ยาเม็ดไซเมทิดินที่มีส่วนผสมของ Eudragit® RS PO อยู่ 7.5%
- ยาเม็ดไซเมทิดินที่มีส่วนผสมของ Eudragit® RS PO อยู่ 15%
- ยาเม็ดไซเมทิดินที่มีส่วนผสมของ Eudragit® RS PO อยู่ 26%

บทสรุป

เป็นที่ยอมรับเป็นมาตรฐานมานานแล้วว่าเภสัชภัณฑ์หลาย ๆ รูปแบบ โดยเฉพาะอย่างยิ่งรูปแบบยาทั่วไปที่จะต้องได้รับการศึกษาในด้านประสิทธิภาพ และความปลอดภัย ก่อนที่จะมีการวางจำหน่ายในท้องตลาด ซึ่งเภสัชกรก็ได้ใช้การทดสอบชีวประสิทธิผล (bioavailability) สำหรับการทดสอบผลิตภัณฑ์ยาต้นแบบ (innovator) เพื่อเป็นการทดสอบในเชิงอ้อมกว่า ยาที่รับประทานนั้นให้ระดับยาในกระแสเลือด หรือในพลาสมาได้เท่าไร เพียงพอแก่การออกฤทธิ์ของยา หรืออาจทำให้เกิดพิษของยาได้หรือไม่ ส่วนผลิตภัณฑ์ยาเลียนแบบ หรือที่เรียกว่าจักรกันในเรื่อง generic drugs นั้นก็มีการนำเอาหลักการชีวสมมูล (bioequivalence) มาใช้ในการทดสอบ ทั้งนี้เพื่อที่จะมั่นใจได้ว่า ผลิตภัณฑ์ยาตั้งกล้ามีประสิทธิภาพเทียบเคียงกับผลิตภัณฑ์ยาต้นแบบที่ผ่านการทดสอบชีวประสิทธิผลมาแล้ว

แนวความคิดในการแบ่งตัวยาสำคัญออกเป็นกลุ่มตามคุณสมบัติทางด้านชีวเภสัชกรรม (Biopharmaceutics Classification System, BCS) นั้น นับว่ามีผลกระบวนการอย่างมากต่อมาตรฐานการทดสอบข้างต้น ซึ่งแนวคิดของ BCS ยังได้ขยายไปยังการขยายเว้นการทดสอบชีวสมมูล (biowaiver) ของตัวยาในกลุ่มที่ 1 ด้วย หลักการนี้ได้รับการยอมรับเป็นมาตรฐานในปัจจุบัน โดยที่ประโยชน์ที่เห็นได้อย่างชัดเจนก็คือ การลดค่าใช้จ่ายและระยะเวลาที่ใช้ในการศึกษาผลิตภัณฑ์ในมนุษย์ลงไปได้อย่างมาก

การศึกษาในครั้งนี้พิจารณาความเป็นไปได้ในการขอ biowaiver ให้กับตัวยาในกลุ่มที่ 3 ของระบบ BCS โดยใช้ข้อมูลที่ได้จากการทดสอบในหลอดทดลอง ควบคู่กับข้อมูลที่ได้จากการใช้โปรแกรมคอมพิวเตอร์ ในการคำนวณการดูดซึมของยาเม็ดไซเมทีดินในร่างกายของมนุษย์ ซึ่งผลการศึกษาที่ได้แสดงให้เห็นอย่างชัดเจนว่า ผลิตภัณฑ์ยาไซเมทีดิน และอาจรวมไปถึงตัวยาใน BCS กลุ่มที่ 3 ที่มีลักษณะในการดูดซึมคล้ายคลึงกันกับไซเมทีดิน สามารถที่จะขยายเว้นการทดสอบชีวสมมูลได้ โดยใช้เกณฑ์การทดสอบของผลิตภัณฑ์ยาที่มีส่วนประกอบของยาในกลุ่ม BCS กลุ่มที่ 1 ส่วนผลการจำลองสถานการณ์ที่เกิดขึ้นในร่างกายสิ่งมีชีวิตโดยใช้โปรแกรมคอมพิวเตอร์นั้นพบว่า ผลที่ได้แสดงถึงแนวโน้มที่จะเกิดขึ้นจริงในสิ่งมีชีวิต แต่ยังไม่สามารถที่จะคำนวณผลทั้งหมดได้ตรงกับผลการทดสอบที่ได้จริงจากอาศรม ด้วยเหตุนี้จึงอาจมีความจำเป็นที่จะต้องกำหนดเกณฑ์ที่ใช้ในการกำหนดหรือให้ข้อมูลแก่โปรแกรมมากยิ่งขึ้น เพื่อที่จะเพิ่มประสิทธิภาพของโปรแกรมในการคำนวณให้รวมการศึกษาทดลองในหลอดทดลองที่ใช้กันอยู่ในปัจจุบัน

เอกสารอ้างอิง

1. Yu LX, Lipka E, Crison JR, Amidon GL. *Transport approaches to the biopharmaceutical design of oral drug delivery system: prediction of intestinal absorption*. Adv Drug Deliv Rev 1996;19:359-76.
2. Gan LSL, Eads C, Niederer T, Bridgers A, Yanni S, Hsyu PH, et al. *Use of Caco-2 cells as an in vitro intestinal absorption and metabolism model*. Drug Dev Ind Pharm 1994;20(4):615-31.
3. Gan LSL, Thakker DR. *Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium*. Adv Drug Del Rev 1997;23:77-98.
4. Yu LX, Amidon GL. *A compartmental absorption and transit model for estimating oral drug absorption*. Int J Pharm 1999;186:119-25.
5. Agoram B, Woltosz WS, Bolger MB. *Predicting the impact and biochemical processes on oral drug bioavailability*. Adv Drug Del Rev 2001;50:S41-S67.
6. Camenisch G, Alsenz J, Waterbeemd H, Folkers G. *Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drug lipophilicity and molecular weight*. Eur J Pharm Sci 1998;6:313-9.
7. O'Hara T, Hayes S, Davis J, Devane J, Smart T, Dunne A. *In vivo-in vitro correlation (IVIVC) modeling incorporating a convolution step*. J Pharmacokinetics and Pharmacodynamics 2001;28(3):277-98.
8. Uppoor VRS. *Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations*. J Controlled Release 2001;72:127-32.
9. Dressman JB, Reppas C. *In vitro-in vivo correlations for lipophilic, poorly water-soluble drugs*. Eur J Pharm Sci 2000;11(Suppl2):S73-S80.
10. Ginski MJ, Polli JE. *Prediction of dissolution-absorption relationships from a dissolution/Caco-2 system*. Int J Pharm 1999;177-25.
11. Polli JE, Crison JR, Amidon GL. *Novel approach to the analysis of in vitro-in vivo relationships*. J Pharm Sci 1996;85(7):753-60.

12. The United States Pharmacopeia USP 26-NF 21. The United States Pharmacopeia-The National Formulary, editor. Rockville, MD 2085. The United States Pharmacopeial Convention, Inc.
13. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry: *Dissolution Testing of Immediate Release Solid Oral Dosage Forms*. August 1997 BP 1
14. Dressman JB, Amidon GL, Reppas C, Shah VP. *Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms*. Pharm Res 1998;15(1):11-22.
15. Jinno J, Oh DM, Crison JR, Amidon GL. *Dissolution of ionizable water-insoluble drugs: the combined effect of pH and surfactant*. J Pharm Sci 2000;89(2):268-74.
16. Hörter D, Dressman JB. *Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract*. Adv Drug Dev 2001;46:75-87.
17. Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C. *Forecasting the In Vivo Performance of Four Low Solubility Drugs from Their In Vitro Dissolution Data*. Pharm Res 1999;16(12):1876-82.
18. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. *Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs*. Pharm Res 1998;15(5):698-705.
19. Amidon GL, Lennernäs H, Shah VP, Crison JR. *A theoretical basis for a biopharmaceutic drug classification the correlation of in vitro drug product dissolution and in vivo bioavailability*. Pharm Res 1995;12(3):413-20.
20. Löbenberg R, Amidon GL. *Modern bioavailability, bioequivalence and biopharmaceutics classification system; new scientific approaches to international regulatory standards*. Eur J Pharm Biopharm 2000;50:3-12.
21. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. *Biopharmaceutics classification system: the scientific basis for biowaiver extensions*. Pharm Res. 2002;19(7):921-5.

22. Kanfer I. *Report on the international workshop on the biopharmaceutics classification system (BCS): scientific and regulatory aspects in practice.* J Pharm Pharmaceut Sci 2002;5(1):1-4.
23. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). *Guidance for Industry: Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System.* August 2000 BP
24. Blume HH, Schug BS. *The biopharmaceutics classification system (BCS): Class III drugs – better candidates for BA/BE waiver?* Eur J Pharm Sci 1999;9(2):117-21.
25. Norris DA, Leesman GD, Sinko PJ, Grass GM. *Development of predictive pharmacokinetics simulation models for drug discovery.* J Controlled Release 2000;65:55-62.
26. Stoll BR, Batycky RP, Leipold HR, Milstein S, Edwards DA. *A theory of molecular absorption from the small intestine.* Chem Eng Sci 2000;55:473-89.
27. PK-SimTM User Manual. Bayer Technology Services GmbH
28. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. *Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.* Adv Drug Del Rev 1997;23(1-3):3-25.

Output ที่ได้จากการวิจัย

- ผลงานตีพิมพ์ในวารสาร

ชื่อผู้แต่ง: Ekarat Jantratid, Sompol Prakongpan, Gordon L. Amidon and Jennifer B. Dressman

ชื่อเรื่อง: Feasibility of Biowaiver Extension to Biopharmaceutics Classification System Class III Drug Products – Cimetidine

ชื่อวารสาร: Clinical Pharmacokinetics (accepted for publication)

- การเสนอผลงานในที่ประชุมวิชาการ

Ekarat Jantratid, Sompol Prakongpan, Jennifer B. Dressman. Feasibility of Biowaiver for Biopharmaceutics Classification System Class III Drugs: Cimetidine. The 32nd Annual Meeting and Exposition of the Controlled Release Society, June 18-22, 2005, Miami Beach, Florida, USA. (Poster Presentation)

ภาควิชาคณิตศาสตร์

Manuscript entitled:
“Feasibility of Biowaiver Extension to Biopharmaceutics
Classification System Class III Drug products – Cimetidine”
(accepted for publication in Clinical Pharmacokinetics)

และ

บทความสำหรับการเผยแพร่

Feasibility of Biowaiver Extension to Biopharmaceutics Classification System Class III Drug Products – Cimetidine

Ekarat Jantratid,^{1,2} Sompol Prakongpan,² Gordon L. Amidon³ and Jennifer B. Dressman¹

1 Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University,
Frankfurt am Main, Germany

2 Faculty of Pharmacy, Mahidol University, Bangkok, Thailand

3 College of Pharmacy, The University of Michigan, Ann Arbor, Michigan

Running Title: Biowaiver extension to BCS Class III drug-cimetidine

Acknowledgements

Financial support from the Thailand Research Fund (TRF) through the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0005/2543) as well as the Basic Research Grant for Royal Golden Jubilee Ph.D. Program (Grant No. BGJ47K0011) and the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD) are gratefully acknowledged. The authors also wish to thank Dr. Klaus Langer for his valuable advice with respect to tablet formulation.

Correspondence and offprints: Professor Dr *Jennifer B. Dressman*, Institute of Pharmaceutical Technology, Johann Wolfgang Goethe University, Marie-Curie-Str. 9, Biozentrum, D-60439, Frankfurt am Main, Germany.

E-mail: dressman@em.uni-frankfurt.de

Abstract

Background: The extension of biowaivers (drug product approval without a pharmacokinetic bioequivalence study) to drugs belonging to Class III of the biopharmaceutics classification system (BCS) is currently a subject of much discussion.

Objectives: To assess the relationship between *in vitro* dissolution characteristics and *in vivo* absorption performance of immediate release (IR) products containing cimetidine, a BCS Class III compound, in human subjects. To evaluate the feasibility and appropriateness of an extension of the biowaiver concept to BCS Class III compounds.

Study design and participants: BCS-conform dissolution tests were carried out on 10 marketed cimetidine products from Thailand and Germany as well as cimetidine tablet formulations containing 400mg cimetidine manufactured by direct compression using methacrylate copolymer (Eudragit[®] RS PO) as a release-retarding agent to yield three batches with significantly different release profiles. Twelve healthy male subjects were enrolled in a randomized, open-label, single-dose schedule based on a five-way Williams design balanced for carryover effects. Subjects received each of the following treatments with one-week washout periods between: (i) Tagamet[®] tablet 400mg; (ii) 7.5% methacrylate copolymer cimetidine tablet; (iii) 15% methacrylate copolymer cimetidine tablet; (iv) 26% methacrylate copolymer cimetidine tablet; and (v) Tagamet[®] (300 mg/2mL) intravenous injection. The area under the concentration-time curve from zero to twelve hours (AUC₀₋₁₂) and that from zero to infinity (AUC_{0-∞}), maximum observed plasma concentration (C_{max}), absolute bioavailability (F), and mean residence time (MRT) were evaluated and statistically compared among formulations. *In vitro-in vivo*

correlation (IVIVC) analysis was then applied to elucidate the overall absorption characteristics of each tablet formulation.

Results: The release properties of the ten marketed cimetidine products were shown to comply with current FDA criteria for rapidly dissolving drug products. As expected, the *in vitro* dissolution profiles of the cimetidine tablets containing different percentages of methacrylate copolymer differed considerably from one another. However, *in vivo* results showed no significant difference in AUC_{0-12} , $AUC_{0-\infty}$, C_{max} and F between the tablets manufactured with methacrylate copolymer and the innovator. However, the MRT values obtained from 26% methacrylate copolymer tablets were significantly longer than for the other two methacrylate copolymer formulations or for Tagamet® tablets. Further, IVIVC analysis showed that the 26% methacrylate copolymer tablets exhibited dissolution rate-limited absorption, whereas the other formulations showed permeability rate-limited absorption.

Conclusion: Results indicated the absorption of cimetidine from IR tablets is in general limited by permeability rather than dissolution. IVIVC analysis demonstrated that only when the release was deliberately retarded (tablets containing 26% methacrylate copolymer), did the dissolution represent the rate-limiting step to drug absorption. On the *in vitro* side, it seems that 85% dissolution within 30 minutes, as currently required by the FDA Guidance, is more than sufficient to guarantee bioequivalence of IR cimetidine products. For cimetidine and other Class III drugs with a similar intestinal absorption pattern, application of the biowaiver concept seems to present little risk of a wrong biowaiver decision.

Introduction

Since it was first proposed in 1995^[1] and revised in 2000,^[2] the Biopharmaceutics Classification System (BCS) has been adopted as a very useful tool in drug design and development worldwide, particularly in terms of regulatory standards. The classification scheme arranges drug substances into four categories based on their biopharmaceutical properties. The concept of the BCS is that drug products containing the same dose of the same drug substance and having the same dissolution and gut wall permeation profiles *in vivo* will be bioequivalent. The application of this concept in the regulatory setting is to allow the use of *in vitro* dissolution tests as a surrogate for *in vivo* bioequivalence studies for certain classes of drugs.

In 2000, the US FDA launched the Guidance for Industry, 'Waiver of *in vivo* bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system'.^[3] According to this Guidance, biowaivers can only be requested for drug substances belonging to BCS class I (highly soluble-highly permeable) and housed in rapidly dissolving immediate release (IR) products, i.e. more than 85% of active ingredient must be dissolved within 30 minutes. A further stipulation is that the drug *per se* does not have a narrow therapeutic index. As these criteria are very restrictive, they can only be met by a small percentage of drug products. Thus, it seems worthwhile to investigate the feasibility of extending the biowaiver of *in vivo* studies to other BCS classes, with attendant savings in terms of time as well as financial investment required in drug development. Among the other BCS classes, Class III compounds (highly soluble–poorly permeable) seem to be the most promising for application of the biowaiver concept as they too are characterized as highly

soluble. Since this class of compounds accounts for approximately 40% of orally applied drugs appearing on the WHO model list of Essential Medicines,^[4] extending biowaivers to this class would have profound regulatory and financial consequences. In terms of biopharmaceutical aspects, permeability of drug substances through gut wall, rather than release behavior of drug products, is the rate-determining step for the overall absorption process of this class of drugs, i.e. formulation effects are expected to play a less important role in drug absorption.^[1,2] Consequently, it appears to be appropriate to consider BCS Class III drugs as biowaiver candidates.

The FDA criteria^[3] were originally invoked to ensure that drug substance is completely released within the time-frame of gastric emptying. However, it has not been demonstrated to date that when these rather strict criteria are not met, the “slow” release would affect the absorption of highly soluble compounds. In other words, the relationship between dissolution characteristics and overall drug absorption behavior has not yet been fully characterized.

Recently, there have been some studies evaluating the appropriateness of BCS Class II and III drugs as biowaiver candidates.^[5-7] Nonetheless, the cutoff at which the dissolution properties of drug products becoming rate-limiting to the overall absorption of class III drugs has not yet been adequately defined. Blume et al.^[5] confirmed bioequivalency of two indomethacin (Class II) products with different release profiles. Similarly, Polli et al.^[6] reported superimposable plasma concentration-time profiles obtained from ranitidine (Class III) products with different release rates. It was suggested in the latter report that BCS Class III compounds should also be eligible for biowaivers because permeability rather than drug release properties is the rate-controlling step for

drug absorption. Recently, Cheng et al.^[7] proposed an extension of the biowaiver to BCS Class III drugs on the bases of a comparison of marketed metformin IR products in terms of their *in vitro* dissolution characteristics and *in vivo* performance. They found that dissolution profiles of two products were similar and, hence, unsurprisingly, that the *in vivo* plasma drug profiles were nearly the same.

The main objective of our investigations was to appraise the biopharmaceutical characteristics of the BCS Class III drug, cimetidine, by determining the relationship between *in vitro* dissolution properties and *in vivo* human absorption using formulations with a broad spectrum of release characteristics.

Cimetidine, N''-cyano-N-methyl-N'-[2 ([(5-methyl-1H-imidazol-4-yl) methyl] thio) ethyl] guanidine), an H₂-receptor antagonist which has long been used for the treatment of duodenal and gastric ulcers, was adopted as a model drug for BCS class III in this study for the following reasons:^[8,9]

- (a) Its lowest aqueous solubility is about 6 mg/mL at 37°C in the pH range of 1-8, leading to a dose to solubility ratio of about 133mL based on 800mg (the highest dose strength available).^[1,8] The absolute bioavailability of cimetidine in healthy subjects is roughly 60%^[9] and human permeability was measured to be 0.35×10^{-4} cm/sec, corresponding to the fraction absorbed of approximately 0.5,^[8] thus confirming cimetidine to be a BCS Class III drug.
- (b) In terms of benefits and safety for clinical trial, cimetidine is considered to have a wide therapeutic index.^[9] The elimination half-life of cimetidine is rather short (about 2 hours) in healthy adults with normal kidney and hepatic

function.^[9] Adverse effects caused by cimetidine are generally infrequent and just a few are of clinical significance.^[9]

(c) Moreover, plasma cimetidine concentration can be efficiently analyzed using simple reverse phase high performance liquid chromatographic methods.^[10-12]

In order to achieve the goals of the study, ten randomly selected commercially available cimetidine products from Thailand and Germany were evaluated for their dissolution characteristics. Since these formulations all proved to be rapidly dissolving in this study, several formulations of cimetidine tablets containing 400mg cimetidine with deliberately different release were manufactured by means of direct compression technique. A methacrylate copolymer (Eudragit® RS PO), a pH independent polymer, was selected as a release-retarding agent. Among these formulations, three were chosen for a comparative bioavailability study in human volunteers. Tagamet® tablet 400mg, the innovator product and Tagamet® injection (300mg/2mL) were also included in the bioavailability study as a reference and to enable determination of absolute bioavailability.

Materials and Methods

Chemicals - Cimetidine raw material (lot 20030128) was kindly donated from Helm Mahaboon Co.,Ltd., Thailand. Cimetidine standard (lot 088H1317) and sodium taurocholate (lot 15H5001) were obtained from Sigma Aldrich GmbH, Steinheim, Germany. The marketed IR cimetidine products used in this study were directly purchased from Thailand and Germany pharmacies (product list is shown in table I.).

Ranitidine standard (lot BL0222M06) was kindly donated from Biolab, Thailand. Colloidal silicon dioxide (Aerosil® 200, control number 0365) was obtained from Degussa, Germany. Egg-phosphatidylcholine (Lipoid EPC®) (lot 12091-1) was a donation from Lipoid GmbH, Ludwigshafen, Germany. Poly - (ethylacrylate – methyl methacrylate – trimethylammonio - ethyl methacrylate chloride) copolymer (Eudragit® RS PO) (lot 0410838099) was obtained as a gift from JJ-Degussa Chemicals, Thailand. Dichloromethane, 85% ortho-phosphoric acid and triethylamine were purchased from Fluka Chemie AG, Buchs, Switzerland. D(+)–glucose monohydrate (lot K26967346011), acetonitrile, 37% hydrochloric acid (HCl), 70% perchloric acid (HClO₄), magnesium stearate, potassium dihydrogen phosphate, sodium chloride, sodium dihydrogen phosphate monohydrate, sodium hydroxide pellets and talcum were all of analytical grade and purchased from E. Merck, Darmstadt, Germany.

Cimetidine Tablets Formulations and Manufacture

Preparation of cimetidine tablets

Cimetidine tablets were manufactured employing direct compression technique. The formulations selected for the bioequivalence study are indicated in table II. Briefly, all the ingredients were sieved through number 4 sieves and subsequently mixed in the glass mixing container using a Turbula mixer (Schatz®, Basel, Switzerland) for approximately 15 minutes at high rotational speed. The mixture was subsequently compressed to tablets using a single punch tabletting machine (Korsch®, Berlin, Germany) equipped with a punch and die with a diameter of 16mm. Tablet weight as well as tablet

hardness were checked continually throughout the process to confirm the consistency of tablets obtained.

Physical tests

Tablet weight variation, tablet hardness and content uniformity were evaluated according to current compendial standards.^[13]

Dissolution Tests

The dissolution conditions used for both commercially available cimetidine products and cimetidine tablets containing methacrylate copolymer consist of the following; paddle method (USP apparatus II), 500mL dissolution media (degassed and pre-warmed prior to the tests), revolution speed of 75 rpm, test temperature of $37 \pm 0.5^\circ$ C. Dissolution media used for the dissolution tests are listed in table III. Aliquots of the samples were removed, filtered and diluted appropriately before analyzing the cimetidine concentration by UV spectrophotometry or high performance liquid chromatography (HPLC). The dissolution profiles were constructed from the average of the concentrations from six vessels over the test duration.

Commercially available cimetidine products

The products from Thailand and Germany were examined for dissolution behavior in 0.01 N HCl and SIFsp. Samples were taken at 7.5, 15, 30, 45, 60 and 90 minutes.

Cimetidine tablets containing methacrylate copolymer

Three formulations of cimetidine, containing 7.5%, 15% and 26% methacrylate copolymer were evaluated by dissolution testing in 0.01 N HCl, pH 4.5 phosphate buffer, SIFsp, and FaSSIF to determine the robustness of these formulations to various pH

conditions as well as to bile salts and to confirm that the formulations had dissolution characteristics distinct from one another. Dissolution samples were taken at 15, 30, 60, 90, 120, 180, 240, 300 and 360 minutes. The model independent methods utilizing similarity factor (f_2) and difference factor (f_1) were adopted for dissolution profile comparison.^[15]

Analytical Methods

UV spectrophotometry The amount of cimetidine released in dissolution tests were assayed by UV spectroscopy except for those in FaSSIF. The absorbance measurements were performed at a wavelength of 218nm.

The HPLC system The samples obtained from dissolution tests in FaSSIF were determined quantitatively by HPLC at ambient temperature. The HPLC system consisted of a Merck Hitachi L 7110 LaChrome pump, a Merck Hitachi L 7200 Autosampler, a Merck Hitachi L 7400 UV Spectrophotometer, an Integrator (C-R5A, Shimadzu), and a RP-18 column 5 μ m LiChroCART 125 \times 4, LiChroSphere 100 (Lot. L497017). The chromatograms were evaluated with EZChrom Elite[®] Version 2.8 software. The mobile phase comprised 5.5% acetonitrile, 0.2% triethylamine, adjusted to appropriate volume with 0.04M potassium dihydrogen phosphate and pH of the mobile phase was then adjusted to 3.0 using 85% ortho-phosphoric acid with the flow rate of 1.2 mL/min. The injection volume was 5 μ L. The detection wavelength was set at 228nm and the run time was 10 minutes.

Comparative Bioavailability Study

Study design

Twelve subjects completed a single-dose five-way Williams design^[16] balanced for carryover effects and with a one-week washout period between treatments (see table IV). After fasting overnight (not less than ten hours) each subject received either one 400mg dose of one of the tablet formulations of cimetidine or a 300mg dose of the Tagamet® injection (300 mg/2mL). Tablets were always taken with one glass of water (approximately 250mL). Four hours after dosing the subjects were provided with a standard meal. Five mL of blood samples were withdrawn into heparinized Vacutainer® tubes at time 0 (just before the cimetidine dose) and 30, 60, 75, 90, 105, 120, 150, 180, 210, 240, 360, 480, 600 and 720 minutes after administration of cimetidine tablets. Two further samples were collected at 960 and 1440 minutes for the tablets formulated with 15% and 26% methacrylate copolymer. For the treatment with Tagamet® injection, blood samples were withdrawn at 0, 10, 20, 30, 45, 60, 75, 90, 120, 150, 180, 210, 240, 360 and 480 minutes. Blood samples were centrifuged immediately at 5000 rpm for 10 minutes at 25°C. Plasma was collected as rapidly as possible and subsequently stored at -20°C prior to assay.

Study population

The number of subjects required for the study was calculated from PS: Power and Sample Size interactive program version 2.1.31^[17] based on data from the literature.^[18] Healthy Thai male volunteers between 18-45 years of age were recruited via advertisement by the Bioequivalence Test Center, Faculty of Pharmaceutical Sciences,

Naresuan University, Phitsanulok, Thailand. They were screened physically and laboratory parameters were assessed from blood samples. In total, twelve subjects were recruited in accordance with subject acceptance and exclusion criteria for the study. Ten subjects were required for the schedule design and the other two were added to compensate for possible subject(s) drop out.

Ethical and legal standards

The study was carried out in accordance with the Declaration of Helsinki. Documentary Proof of Ethical Clearance No. 83/2004 issued by The Committee on Human Rights Related to Human Experimentation, Mahidol University, Bangkok, Thailand was obtained prior to the beginning of the study. Study objectives and details were explained in verbal and written form to all subjects before the informed consent statements were signed and prior to participation in the trial.

Analysis of cimetidine in plasma samples

Cimetidine plasma assays were performed after plasma protein precipitation with HClO₄ using HPLC analysis with UV detection. In brief, 400µL of plasma sample was added in a 1.5mL Eppendorf® tube to 100µL of 40 µg/mL ranitidine solution (internal standard, IS) prepared in ultra-purified water (Milli Q®, Millipore Corp., Milford, USA). The mixture was then vortexed for 30 seconds. After that, 100µL of 23.8% HClO₄ was added. The mixture was vortexed again for 1 minute. The tubes were centrifuged at 11300 g for 5 minutes. The supernatant (400µL) was transferred into a HPLC sample vial and 100µL aliquots were injected into the HPLC system. The concentration of cimetidine in plasma was determined based on the calibration curves constructed by plotting peak height ratio between cimetidine and IS against cimetidine concentrations in plasma.

The HPLC system The HPLC system used for plasma samples analysis consisted of a Merck Hitachi L-6220 LaChrome pump, a Merck Hitachi L 7200 Autosampler, a Waters Lambda-Max Model 481 LC Spectrophotometer, an Integrator (C-R5A, Shimadzu), and a Waters Spherisorb[®]S5 ODS2 4.6 × 250mm analytical column connected with a guard column, Javelin Guard BDS-C18 m 10 × 4mm. The chromatograms were evaluated with PC Integration Pack software (Kontron Instruments, Softron GmbH). The mobile phase contained 11% acetonitrile, 0.2% triethylamine, adjusted to appropriate volume with 0.05M potassium dihydrogen phosphate and pH of the mobile phase was then adjusted to 3.0 using 85% ortho-phosphoric acid with the flow rate of 0.9 mL/min. The detection wavelength was set at 228nm and the run time was 10 minutes.

Pharmacokinetic evaluation

Pharmacokinetic parameters determination was performed with WinNonlin[®] Professional Edition version 4.1 software (Pharsight Corporation, CA, USA) and Microsoft Excel[®] 97 was used for statistical evaluation of the data. Plasma cimetidine concentrations were evaluated to determine the following pharmacokinetic parameters: area under the concentration-time curve from zero to twelve hours (AUC₀₋₁₂) and from zero to infinity (AUC_{0-∞}) (μg/mL.h), absolute bioavailability (F) (%), maximum observed plasma concentration (C_{max}) and mean residence time (MRT) (h). The AUC₀₋₁₂, AUC_{0-∞} and the area of the first moment of the concentration-time curves extrapolated to infinity (AUMC_{0-∞}) were calculated using the linear trapezoidal method. The AUC and AUMC for the region from the 12 hour concentration measurement to infinity were calculated by

extrapolating the last measured concentration based on the apparent terminal elimination rate constant (λ_z). Non-linear regression was applied for calculation of elimination rate constant (k_{el}) and elimination half-life ($t_{1/2}$) values based on intravenous data. The C_{max} values were determined directly from the plasma concentration-time profiles for each subject/administration. The MRT was determined as a result of the ratio between $AUMC_{0-\infty}$ and $AUC_{0-\infty}$. Two-way analysis of variance (ANOVA) and subsequent multiple comparison analysis based on the least significant difference (LSD) method were employed for the comparison of $AUC_{0-\infty}$, F , C_{max} and MRT at the probability level of 0.05. The 90% confidence limits for the ratio of AUC_{0-12} , $AUC_{0-\infty}$ and C_{max} were evaluated for bioequivalency of cimetidine products based on log transformation of the data.

For *in vitro-in vivo* correlation (IVIVC) analysis, according to which the fraction cimetidine dissolved (F_d) was correlated with the fraction cimetidine absorbed (F_a) on the same time basis, the values for F_a were calculated by a numerical deconvolution method using WinNonlin® program. The unit impulse responses were obtained via polyexponential analysis of individual intravenous data using SigmaPlot® version 5.00 software (SPSS Inc.). The F_d values were taken directly from the *in vitro* dissolution profiles. The ratio of the apparent first-order absorption rate constant to the first-order dissolution rate constant (α) were evaluated for each formulation.

Results and Discussion

Properties of Manufactured Cimetidine Tablets

Cimetidine tablets comprising 7.5%, 15% and 26% methacrylate copolymer were chosen for the study. Results for tablet weight variation, content uniformity and hardness values for these cimetidine tablets are presented in table V. It can be concluded that the tablet compression process was facilitated by increasing the proportion of methacrylate copolymer in the formulation, as the most consistent hardness values were obtained with the 26% copolymer tablet formulation. This is in agreement with the flow properties of the mixture: the flowability of 26% polymer formulation was found to be the best among those tested (data not shown). However, tablet weight values obtained and cimetidine content uniformity in all three formulations were consistent and within the acceptance range.^[13]

Dissolution Tests

Dissolution test conditions applied in this study were based on BCS criteria,^[3] which are different from those prescribed in the pharmacopeia.^[13] The USP method utilizes apparatus I (basket method) with 900mL of 0.01 N HCl stirred at 100 rpm and a 15 minute testing time.^[13] In this study, the USP apparatus II (paddle method) was applied for all investigations and 500mL dissolution media were employed. The media used (see table III) were selected to comply with the pH test requirements of the BCS and the stirring rate of 75 rpm was used to circumvent any coning problems. FaSSIF was used additionally as a biorelevant medium to verify a lack of bile salt effects on the release of cimetidine from the various products.

Commercially available cimetidine products

The dissolution characteristics of the ten marketed cimetidine products tested were similar and rapid in 0.01 N HCl and SIFsp. More than 85% of cimetidine was released from the tablets within 30 minutes in each case (data not shown). The results indicated that these randomly selected cimetidine IR products are likely to dissolve completely within the time-frame of gastric emptying and further suggested that the intestinal membrane permeability is the limiting process to cimetidine absorption rather than drug solubility or release from the dosage form.

Cimetidine tablets containing methacrylate copolymer

The dissolution profiles obtained from testing the tablets manufactured with varying percentages of methacrylate copolymer in the different dissolution media along with the similarity factors (f_2) and the difference factors (f_1) for the profile comparisons are expressed in figure 1 and table VI. As expected from the high solubility of cimetidine over the pH range studied and the lack of pH dependency in the release properties of the excipients chosen, all three formulations showed similar dissolution profile patterns in the various dissolution media indicating their robustness in terms of conditions extant in the upper gastrointestinal tract milieu. The 7.5% methacrylate copolymer tablets demonstrated ambiguous results when compared with Tagamet[®] tablets. Whereas f_1 values indicated similarity of the profiles in all media, f_2 values in 0.01 N HCl and SIFsp indicated differences in the profiles. Based on these results, it can be concluded that the 7.5% methacrylate copolymer tablets exhibit dissolution characteristics that have borderline similarity to those of Tagamet[®]. According to the US FDA criteria,^[3] the

release characteristic of 7.5% methacrylate copolymer tablets must also be considered borderline, since just about 85% of cimetidine was dissolved within 30 minutes. For 15% methacrylate copolymer tablets, a release of about 85% in 120 minutes was obtained while the 26% methacrylate copolymer tablets reached roughly 80% release only after six hours. For these two formulations, the f_1 and f_2 analysis showed clear differences in dissolution from Tagamet® and it goes without saying that both failed to meet the BCS criterion of 85% dissolution in 30 minutes.

Comparative Bioavailability Study

All twelve volunteers completed the study. Their average age was 21.7 years (20-24 years) and average weight was 59.5 kg (52.5-67.5 kg) and all were within 10% of their ideal body weight.

Interpretation of pharmacokinetic parameters

The mean plasma cimetidine concentration-time profiles after single oral dose administration of cimetidine tablets and the profile obtained from Tagamet® injection administered intravenously are shown in figures 2 and 3, respectively. Mean pharmacokinetic parameters obtained and ANOVA tables are expressed in table VII and table VIII. It should be noted that the AUC up to 12 hours after cimetidine administration was determined for all oral formulations even though blood samples were also taken at 960 minutes (16 hours) and 1440 minutes (24 hours) for the 15% and 26% methacrylate copolymer tablets. This is due to the fact that the cimetidine concentration in samples taken after 12 hours was below the limit of detection using the chromatographic methods applied in this study. The AUC_{0-12} , $AUC_{0-\infty}$, C_{max} and F of the oral formulations, including Tagamet® tablets, were not statistically different from each other based on two-

way ANOVA ($p > 0.05$). Although the 90% confidence intervals (90% CI) of C_{max} obtained from cimetidine tablets containing methacrylate copolymer lay outside the range of 80-125% that of Tagamet® tablets (see Table IX), the presence of double/multiple peaks in many of the individual profiles may have confounded the evaluation. Consequently, more emphasis was placed on the $AUC_{0-\infty}$ values for the evaluation of bioequivalence. The average values of F and $t_{1/2}$ were both in agreement with previously reported values.^[9] Multiple comparison based on the LSD method showed that the mean MRT value obtained from 26% polymer formulation was significantly longer than those of the other oral formulations ($p < 0.05$).

In Vitro-In Vivo Correlation (IVIVC) Analysis

Although in general the concept of *in vitro-in vivo* correlation (IVIVC) is applied to modified release dosage forms, Polli et al. have also applied Level A IVIVC analysis to determine the relative contribution of dissolution to IR product's overall absorption kinetics.^[25,26] In this study, the IVIVC was established by correlating the F_a and F_d values obtained at the same time point after single oral dose administration of cimetidine tablets and in dissolution tests, respectively. The relationship of F_a and F_d can be described by the following equation:

Equation 1:

$$F_a = \frac{1}{f_a} \left(1 - \frac{\alpha}{\alpha-1} (1 - F_d) + \frac{1}{\alpha-1} (1 - F_d)^\alpha \right)$$

where F_a is the fraction of the total amount of drug absorbed at time t , f_a is the fraction of the dose absorbed at $t = \infty$, α is the ratio of the apparent first-order permeation rate constant ($k_{p,app}$) to the first-order dissolution rate constant (k_d), and F_d is the fraction of drug dose dissolved at time t . From the equation, the relative relationship between *in vitro* and *in vivo* characteristics was evaluated with α values of 0.05, 0.21, 0.31 and 5.91 for Tagamet[®], 7.5%, 15% and 26% methacrylate copolymer cimetidine tablets, respectively. All formulations, with the exception of the 26% methacrylate copolymer tablets, exhibited permeability rate-limited properties, as reflected by the reverse L appearance of the F_a - F_d relationships. For the 26% methacrylate copolymer formulation an essentially linear relationship was attained ($r^2 = 0.9685$), indicating that for this formulation dissolution was limiting to cimetidine absorption. Figure 4 illustrates the mean fraction cimetidine absorbed obtained from numerical deconvolution for each oral formulation and the comparison plot of F_a against F_d is shown in figure 5. Figure 6 presents the 80-125% range around the Tagamet[®] tablet's $AUC_{0-\infty}$ and the 90% confidence intervals (CI) for the $AUC_{0-\infty}$ of the formulations tested *in vivo*. Clearly, the 90% CI for three formulated slow release cimetidine products fall within the 80-125% range around the mean $AUC_{0-\infty}$ of the reference product. Moreover, the 90% confidence limits for the mean % ratio of AUC_{0-12} and that of $AUC_{0-\infty}$ of cimetidine tablets containing methacrylate copolymer and Tagamet[®] tablets were within 80-125% (table IX). Given the erratic C_{max} behavior (multiple peaks) and the ensuing lesser emphasis on C_{max} comparisons, it seems reasonable to conclude that these products are bioequivalent.

Biowaiver Extension Feasibility to BCS Class III Compounds

In terms of the BCS concept it could be expected that Class III compounds (highly soluble-low permeable) would behave similarly *in vivo*, provided that dissolution from the drug product is rapid under all physiological pH conditions and that the excipients used exert no effect on upper GI motility or compound permeability. Nevertheless, to date, there have been few studies directed at determining how slow the release from the dosage form would need to be to affect the absorption of these compounds.

Several previous investigations evaluating the appropriateness of BCS Class III drugs as biowaiver candidates have been conducted.^[5-7] In these studies the drug products were found to be bioequivalent in all cases although in some reports the dissolution patterns of the products were rather different. In the current study, the formulations were conceived to cover release behavior ranging from “rapid enough to facilitate absorption” through to “slow enough to retard or even possibly reduce absorption”. The results of this study clearly revealed that a dissolution specification for cimetidine, a Class III compound, of 85% drug release in 30 minutes under BCS-conform conditions would result in comparable pharmacokinetic parameters and permeability-limited absorption. In fact, only when release was slower than 85% in 120 minutes did the influence of dissolution on the IVIVC become apparent. Although some studies have demonstrated that oral absorption of BCS Class III drugs are affected by excipients which alter GI motility and absorption^[27-29], the excipients used in this study were all used in amounts approved by the US FDA.^[30] The extension of the biowaiver concept to IR drug products containing cimetidine thus seems to be feasible and appropriate, provided that a prudent selection of excipients is made. The questions of excipient choice/amount and the

therapeutic risks associated with extending the biowaiver to approval of cimetidine products will be further addressed in an upcoming article.

Conclusions

In this study, possible application of the biowaiver concept was evaluated for the BCS Class III compound, cimetidine. Based on the US FDA criteria^[3], the ten cimetidine IR products randomly selected from the Thai and German markets exhibited rapid release behavior, indicating that permeability, rather than dissolution properties of the drug products, is rate-determining to absorption. The results of the pharmacokinetic study with cimetidine tablets formulated to have various release behaviors showed that the release rate first becomes limiting to the overall absorption rate when the product releases less than 85% of cimetidine in 120 minutes. These results suggest that the current biowaiver criteria for product dissolution^[3] would be sufficient to guarantee bioequivalence of orally administered formulations of cimetidine and would not pose a risk in terms of an incorrect biowaiver decision and its consequences for the patient. By analogy, it is likely that the biowaiver concept can also be applied to other BCS Class III drugs with a similar intestinal absorption pattern - provided that any influence of excipients and/or the manufacturing process on the permeability can be excluded. Still, similar studies with further BCS Class III drugs are needed to assess whether biowaivers should be generally applied to this class of compounds.

References

1. Amidon GL, Lennernäs H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of *in vitro* drug product dissolution and *in vivo* bioavailability. *Pharm Res* 1995; 12 (3): 413-20
2. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system; new scientific approaches to international regulatory standards. *Eur J Pharm Biopharm* 2000; 50: 3-12
3. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry: waiver of *in vivo* bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system [online]. Available from URL: <http://www.fda.gov/cder/guidance/3618fnl.pdf> [Accessed 2004 Nov 27]
4. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. *Eur J Pharm Biopharm* 2004; 58: 265-78
5. Blume HH, Schug BS. The biopharmaceutics classification system (BCS): Class III drugs - better candidates for BA/BE waiver? *Eur J Pharm Sci* 1999; 9 (2): 117-21
6. Polli JE. *In vitro*-*in vivo* relationships of several “immediate” release tablets. *Adv Experimental Med Bio*; 423: 191-8
7. Cheng CL, Yu LX, Lee HL, et al. Biowaiver extension potential to BCS Class III high solubility-low permeability drugs: bridging evidence for metformin immediate-release tablet. *Eur J Pharm Sci* 2004; 22 (4): 297-304

8. Amidon GL. The rationale for a biopharmaceutics drug classification: Princeton, NJ, May 17, 1995. In: Capsugel symposia series. Biopharmaceutics drug classification and international drug regulation. Capsugel library, 1998:179-94
9. Somogyi A, Gugler R. Clinical pharmacokinetics of cimetidine. Clin Pharmacokinet 1983; 8: 463-95
10. Randolph WC, Osborne VL, Walkenstein SS, et al. High-pressure liquid chromatographic analysis of cimetidine, a histamine H₂-receptor antagonist, in blood and urine. J Pharm Sci 1977; 66 (8): 1148-50
11. Iqbal T, Karyekar CS, Kinjo M, et al. Validation of a simplified method for determination of cimetidine in human plasma and urine by liquid chromatography with ultraviolet detection. J Chromatogr B 2004; 799: 337-41
12. Kunitani MG, Johnson DA, Upton RA, et al. Convenient and sensitive high-performance liquid chromatography assay for cimetidine in plasma or urine. J Chromatogr 1981; 224: 156-61
13. United States Pharmacopeia 27 and National Formulary 22. Rockville, MD: United States Pharmacopeial Convention, 2004
14. Marques M. Dissolution media simulating fasted and fed states. Dissol Tech 2004 May; 11 (2): 16
15. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry: dissolution testing of immediate release solid oral dosage forms [online]. Available from URL: <http://www.fda.gov/cder/guidance/1713bp1.pdf> [Accessed 2004 Nov 27]

16. Chow SC, Liu JP, editors. *Design and analysis of bioavailability and bioequivalence studies*. 2nd rev. ed. New York: Marcel Dekker; 2000
17. Dupont WD, Plummer WD, Jr, Vanderbilt Medical Center. PS: power and sample size [online]. Available from URL: <http://www.mc.vanderbilt.edu/prevmed/ps/> [Accessed 2004 Jun 11]
18. Pederson PV, Miller R. Pharmacokinetics and bioavailability of cimetidine in humans. *J Pharm Sci* 1980; 69: 394-8
19. Langguth P, Lee KM, Spahn-Langguth H, et al. Variable gastric emptying and discontinuities in drug absorption profiles: dependence of rates and extent of cimetidine absorption on motility phase and pH. *Biopharm Drug Dispos* 1994; 15: 719-46
20. Takamatsu N, Welage LS, Hayashi Y, et al. Variability in cimetidine absorption and plasma double peaks following oral administration in the fasted state in humans: correlation with antral gastric motility. *Eur J Pharm Biopharm* 2002; 53: 37-47
21. Mummaneni V, Amidon GL, Dressman JB. Gastric pH influences the appearance of double peaks in the plasma concentration-time profiles of cimetidine after oral administration in dogs. *Pharm Res* 1995; 12 (5): 780-6
22. Yin OQP, Tomlinson B, Chow AHL, et al. A modified two-portion absorption model to describe double-peak absorption profiles of ranitidine. *Clin Pharmacokinet* 2003; 42 (2): 179-92
23. Marzo A, Reiner V. Open questions on bioequivalence: the case of multiple peak phenomenon. *J Pharm Pharmacol* 2004; 56: 281-2

24. Witcher JW, Boudinot FD. Applications and simulations of a discontinuous oral absorption pharmacokinetic model. *Pharm Res* 1996; 13 (11): 1720-4
25. Polli JE, Crison JR, Amidon GL. Novel approach to the analysis of in vitro-in vivo relationships. *J Pharm Sci* 1996; 85 (7): 753-60
26. Polli JE. IVIVR vs IVIVC. *Dissol Tech* 2000; 7 (3): 6-16
27. Adkin DA, Davis SS, Sparrow RA, et al. The effect of mannitol on the oral bioavailability of cimetidine. *J Pharm Sci* 1995; 84 (12): 1405-9.
28. Basit AW, Podczeck F, Newton JM, et al. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. *Pharm Res* 2002; 19 (9):1368-74.
29. Koch KM, Parr AF, Tomlinson JJ, et al. Effect of sodium acid pyrophosphate on ranitidine bioavailability and gastrointestinal transit time. *Pharm Res* 1993; 10 (7): 1027-30.
30. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). About the inactive ingredients database. Available from URL: <http://www.fda.gov/cder/iig/iigfaqWEB.htm> [Accessed 2005 Jun 12]

Table I. Commercially available immediate-release cimetidine products used in this study

Products from Thailand		Products from Germany	
Trade name	Distributor	Trade name	Distributor
Cimetidine-400 [®] (lot L909)	Plaza Dispensary	Tagamet [®] 400 mg (lot 503)	GlaxoSmithKline
Siamidine 400 [®] (lot 922741)	Siam Baesach	H2Blocker-ratiopharm [®] 400 mg (lot D06877)	Ratiopharm
Ulsamet 400 [®] (lot 58139)	Burapha Dispensary	Cimetidin STADA [®] 400 mg (lot 3823)	STADA
Cimulcer Tablets [®] (400 mg) (lot T23177)	Biolab	Cimehexal 400 [®] (lot 23DN77)	Hexal
Cimidine 400 [®] (lot 030511)	Berlin Pharmaceutical Industry	DuraH2 400 [®] (lot 72011)	Merck Dura

Table II. Formulations of cimetidine tablets

Composition	7.5% methacrylate copolymer tablet		15% methacrylate copolymer tablet		26% methacrylate copolymer tablet	
	in tablet (mg)	% in Rx	in tablet (mg)	% in Rx	in tablet (mg)	% in Rx
Cimetidine	400	40	400	40	400	40
Methacrylate copolymer	75	7.5	150	15	260	26
Dextrose	477	47.7	402	40.2	292	29.2
Aerosil® 200	8	0.8	8	0.8	8	0.8
Talcum	25	2.5	25	2.5	25	2.5
Magnesium stearate	15	1.5	15	1.5	15	1.5
Total	1000	100	1000	100	1000	100

Table III. Dissolution media used for the dissolution tests

Dissolution media	pH	Reference
0.01 N HCl	2.0	-
Phosphate buffer	4.5	-
Simulated intestinal fluid without pancreatin (SIFsp)	6.8	USP 24
Fasted state simulated intestinal fluid (FaSSIF)	6.5	14

Table IV. Assignment schedule for cimetidine treatment based on a Williams design

Square	Sequence	Treatment Period				
		I	II	III	IV	V
1	1	A	E	B	D	C
	2	B	A	C	E	D
	3	C	B	D	A	E
	4	D	C	E	B	A
	5	E	D	A	C	B
2	1	C	D	B	E	A
	2	D	E	C	A	B
	3	E	A	D	B	C
	4	A	B	E	C	D
	5	B	C	A	D	E

Key, A = Tagamet® tablets

B = 7.5% methacrylate copolymer cimetidine tablets

C = 15% methacrylate copolymer cimetidine tablets

D = 26% methacrylate copolymer cimetidine tablets

E = Tagamet® injection, 300 mg/2 mL

All tablets used in this study contained nominally 400mg cimetidine.

Table V. Physical test results of cimetidine tablets containing methacrylate copolymer^a

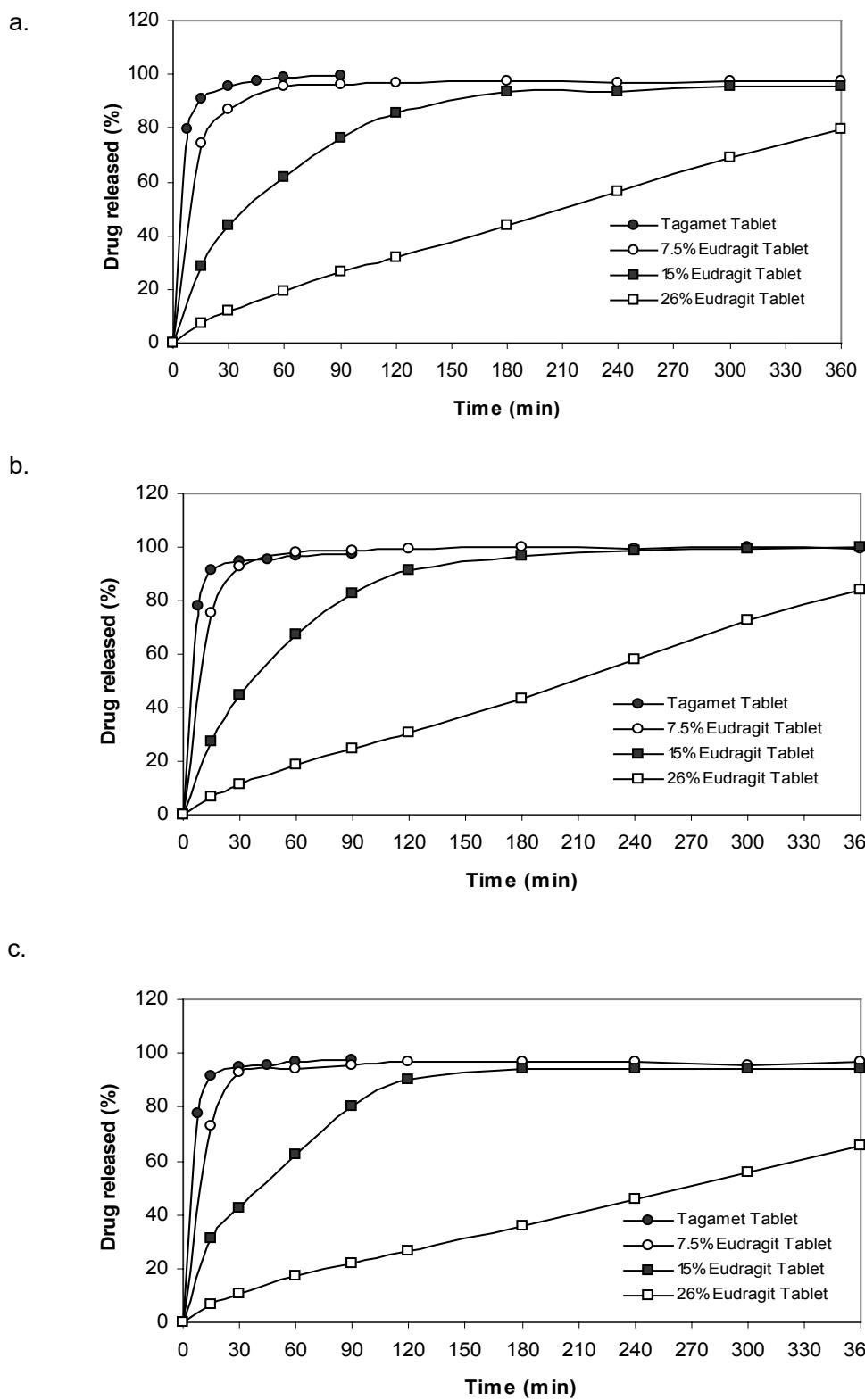
Tablet	7.5% methacrylate copolymer tablet	15% methacrylate copolymer tablet	26% methacrylate copolymer tablet
Hardness (N)	84.10 [20.14] (23.94%)	102.20 [19.17] (19.29%)	116.40 [11.47] (9.86%)
Weight (mg)	992.48 [17.10] (1.72%)	988.33 [11.55] (1.17%)	992.93 [5.38] (0.54%)
Drug content (%)	98.83 [1.14] (1.15%)	95.91 [0.67] (0.70%)	96.26 [1.09] (1.14%)

^a Data shown as arithmetic mean [standard deviation] (coefficient of variation, %), n = 10.

Table VI. Similarity factor (f_2) and difference factor (f_1) calculated from dissolution profiles of cimetidine tablets containing methacrylate copolymer and Tagamet[®] tablets

Dissolution media	7.5% methacrylate	15% methacrylate	26% methacrylate			
	copolymer tablet- Tagamet [®] tablet	copolymer tablet- 7.5% methacrylate	copolymer tablet- 15% methacrylate			
	f_1	f_2	f_1	f_2	f_1	f_2
0.01 N HCl	10.38	47.35	28.86	25.63	48.79	20.60
Phosphate buffer	7.00	51.32	32.59	23.20	50.53	18.53
SIFsp	8.09	48.63	32.12	23.92	58.11	16.83
FaSSIF	9.11	52.47	24.47	27.16	55.68	16.37

Table VII. Mean pharmacokinetic parameters obtained after cimetidine administrations^a


	Tagamet [®] tablet	7.5% methacrylat e copolymer tablet	15% methacrylat e copolymer tablet	26% methacrylat e copolymer tablet	Tagamet [®] injection tablet
AUC ₀₋₁₂ (μ g.h/mL)	8.0265 [1.8022]	8.9685 [1.7617]	7.8585 [1.8099]	7.6287 [2.4079]	10.97 [1.89]
AUC _{0-∞} (μ g.h/mL)	8.4149 [2.0037]	9.2527 [1.8397]	8.1769 [1.8426]	8.2019 [2.5960]	11.3207 [1.97]
Range ^b	(6.7319- 10.5186)	(8.3792- 10.1262)	(7.3020- 9.0518)	(6.9692- 9.4346)	(10.3853- 12.2561)
BA (%)	57.65 [17.44]	63.41 [17.00]	55.06 [13.14]	55.33 [18.07]	100.00 -
t _{1/2} (h)	- -	- -	- -	- -	1.92 [0.50]
C _{max} (μg)	2.2026 [0.7523]	2.5154 [0.8971]	2.3490 [0.5960]	1.9994 [0.8220]	11.2099 [1.5424]
Range ^b	(1.7621- 2.7533)	(2.0894- 2.9414)	(2.0660- 2.6320)	(1.6091- 2.3897)	(10.4775- 11.9423)
MRT (h)	4.00 [0.75]	3.73 [0.58]	3.88 [0.90]	5.11 [2.05]	1.42 [0.59]

^a Data shown as arithmetic mean [standard deviation], n = 12.

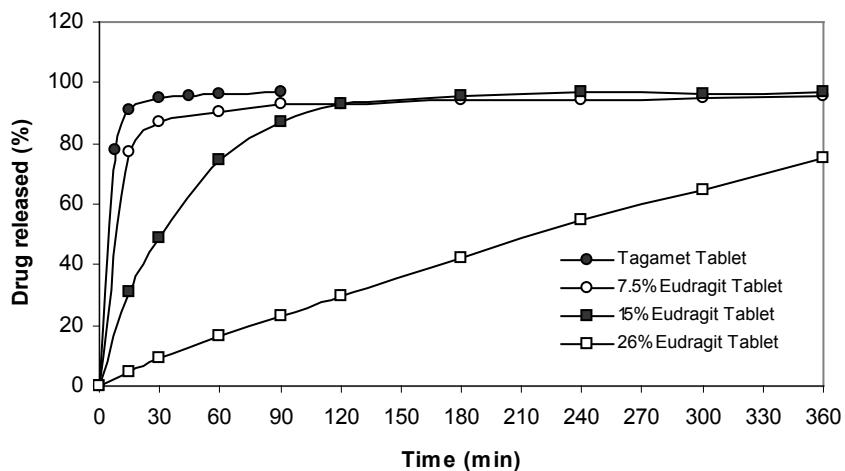
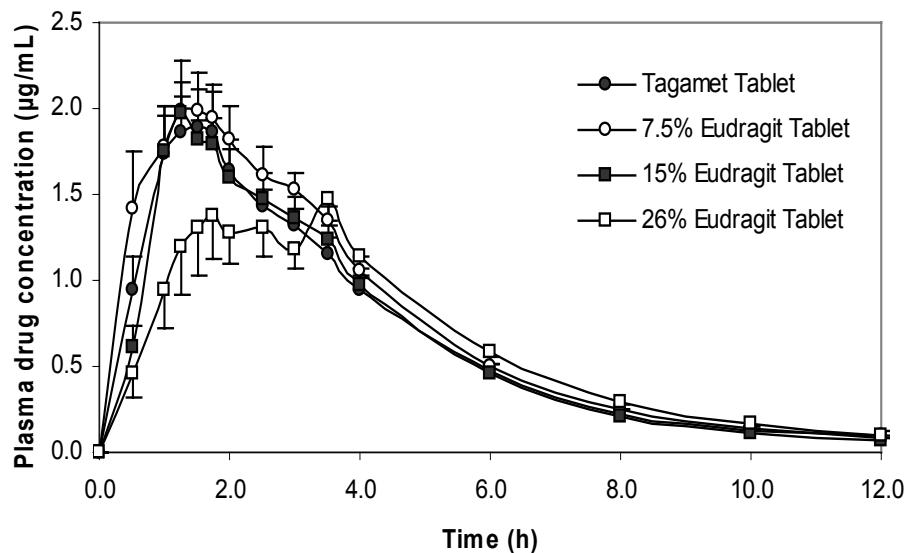

^b The ranges are expressed as 80-125% for Tagamet[®] tablets and as 90% confidence intervals (CI) for the other tablet formulations.

Table VIII. ANOVA tables for $AUC_{0-\infty}$, F , C_{\max} and MRT. The values indicate mean square and F values in parentheses.

Pharmacokinetic parameters	$AUC_{0-\infty}$	F	C_{\max}	MRT
Treatment	3.07 (0.75)	180.27 (0.96)	0.58 (2.45)	4.75 (3.70)
Subject	5.27 (1.29)	528.96 (2.82)	1.69 (7.19)	2.06 (1.61)
Error	4.09	187.70	0.24	1.28



d.

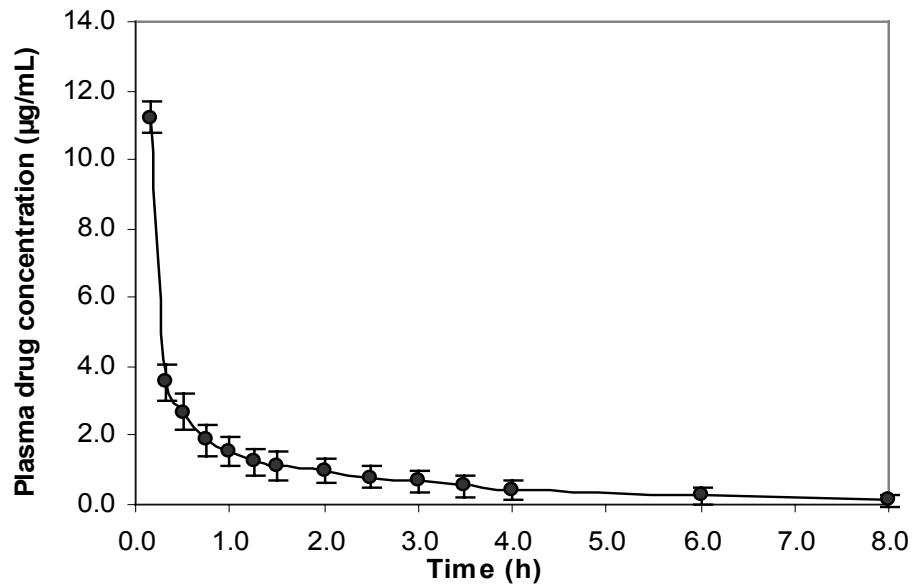
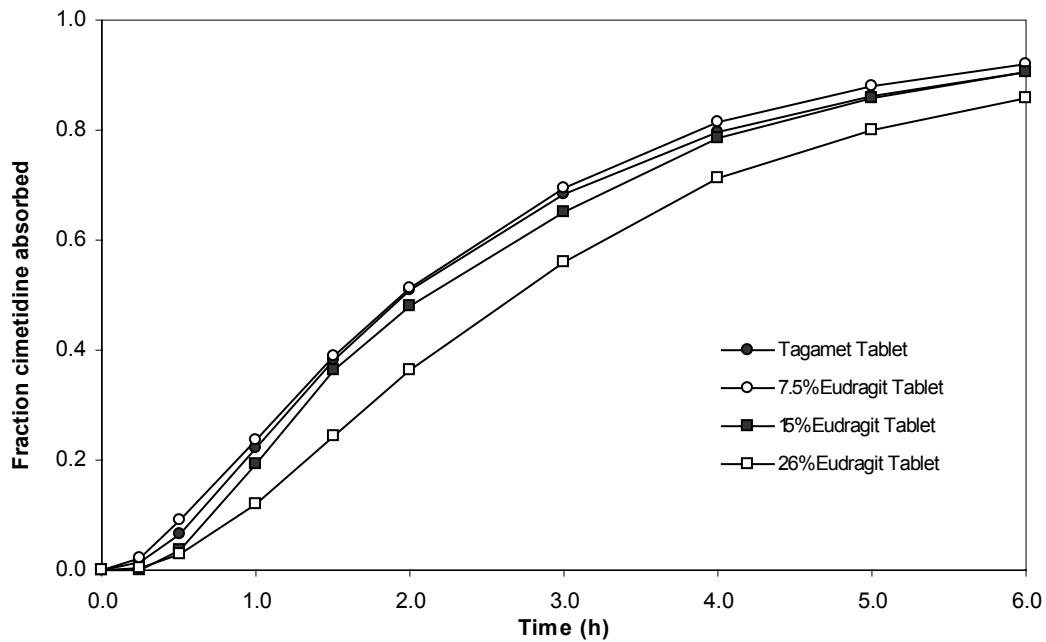
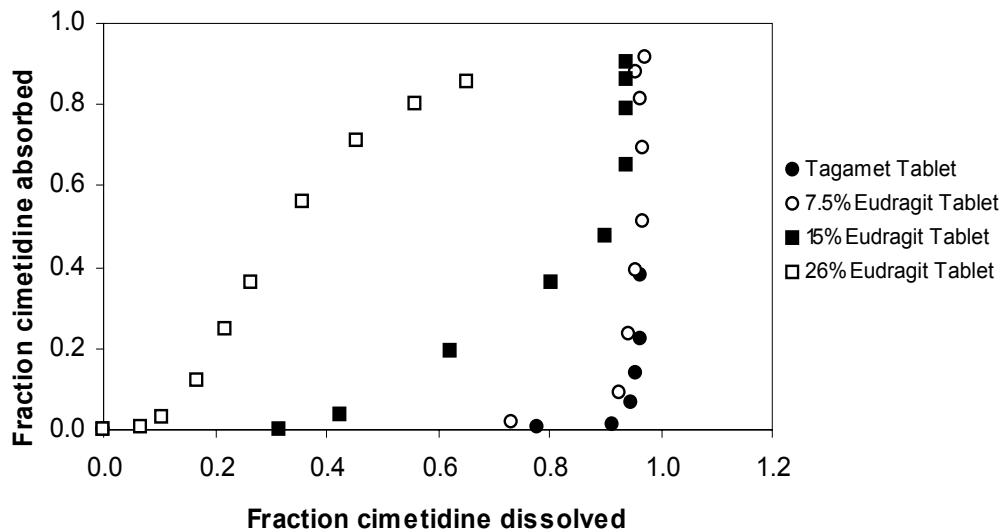


Fig. 1. Mean cimetidine released-time profiles comparison obtained from dissolution testing of cimetidine tablets containing methacrylate copolymer and Tagamet[®] tablets in 0.01 N HCl, pH 2.0 (a.), in phosphate buffer, pH 4.5^{*} (b.), in SIFsp, pH 6.8 (c.) and in FaSSIF, pH 6.5^{*} (d.), n = 6.


* Data of Tagamet[®] tablets was obtained from dissolution testing in SIFsp.


Fig. 2. Mean plasma cimetidine concentration-time profiles comparison obtained from a single oral dose administration of cimetidine tablets containing methacrylate copolymer and Tagamet[®] tablets. Each point represents the mean plasma cimetidine concentration ($\pm\text{SE}$) from twelve subjects.

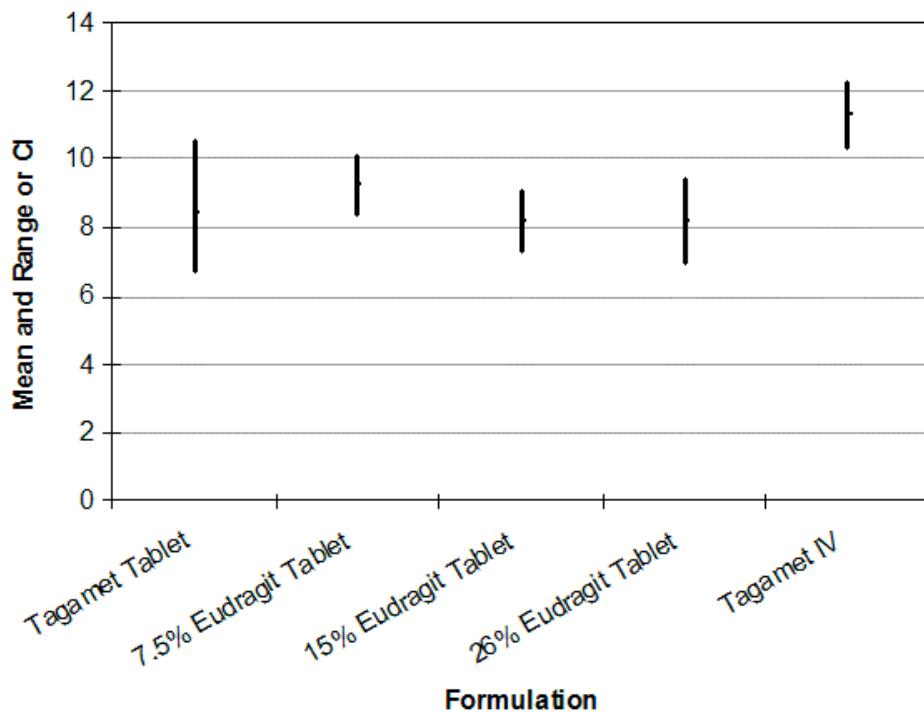

Fig. 3. Mean plasma cimetidine concentration-time profiles obtained from an intravenous administration of Tagamet® injection. Each point represents the mean plasma cimetidine concentration (\pm SE) from twelve subjects.

Fig. 4. Mean fraction absorbed obtained using numerical deconvolution method after cimetidine administrations, $n = 12$.

Fig. 5. Plot of mean fraction cimetidine dissolved ($n = 6$) and mean fraction cimetidine absorbed ($n = 12$) obtained after administration of Tagamet® tablets and cimetidine tablets containing methacrylate copolymer.

Fig. 6. The areas under the concentration-time curve from zero to infinity ($AUC_{0-\infty}$) presented as 90% confidence intervals (CI) for cimetidine tablet formulations and Tagamet[®] injection and as 80-125% interval for Tagamet[®] tablets.

From: "Journal CPK" <cpk@adis.co.nz>
To: "ekarat_jantratid@yahoo.com" <ekarat_jantratid@yahoo.com>
Subject: Article for Clinical Pharmacokinetics
Date: Tue, 26 Jul 2005 14:44:46 +1200

Dear Dr Jantratid

Further to my last e-mail message regarding your revised manuscript on **Feasibility of Bioequivalence Extension to Biopharmaceutics Classification System Class III Drug Products: Cimetidine**, we have now assessed the manuscript and it has been accepted for publication in *Clinical Pharmacokinetics*, subject to your consideration of any points or queries we may need to bring to your attention during our inhouse copy and technical edit. We will get back to you with our own editorial comments in due course.

When we do send you the editorial comments or proofs, we would welcome the addition of any important new findings that may have been published in the literature during this interim period. However, we often request a very short turnaround time for your reply to ensure that we meet our editorial deadlines. Consequently, I would ask you to continue to monitor the literature related to the topic. In this way, the incorporation of any new data may be made expeditiously when we contact you again.

Meanwhile, thank you for the obvious time and effort you have put into the preparation and revision of this article.

Kind regards

Claire Marsden on behalf of
Carol Milligan
Publication Manager
Clinical Pharmacokinetics

Adis International Limited
Wolters Kluwer Health
41 Centorian Drive
Auckland 1311
New Zealand
Ph: +64 9 477 0700
Fax: +64 9 477 0781
E-mail: cpk@adis.co.nz

บทความสำหรับการเผยแพร่

โดย นายเอกรัตน์ จันทร์พิทย์
ภ.บ. เกียรตินิยมอันดับหนึ่ง
ปร.ด. (เภสัชกร)

ทุกวันนี้วิธีชีวิตของคนเราเปลี่ยนแปลงไปจากที่เคยมีมาในอดีตอย่างมาก และมีแนวโน้มที่จะก้าวไปอย่างรวดเร็วควบคู่ไปกับวิทยาการสมัยใหม่ ในขณะเดียวกันโรคภัยต่างๆ ที่คุกคามมนุษย์มาจากการดีดีควบคุณปัจจุบันก็มีการพัฒนาตามไปด้วยเช่นกัน มนุษย์พยายามที่จะต่อสู้กับโรคภัยเหล่านั้นด้วยวิทยาการต่างๆ หนึ่งในนั้นก็คือ การวิจัยและพัฒนายาใหม่ ซึ่งประสิทธิภาพและความปลอดภัยนับว่าเป็นสิ่งที่สำคัญอย่างมากที่จะต้องคำนึงถึงในขั้นตอนของการวิจัยและพัฒนาเภสัชภัณฑ์ ทำให้ที่ผ่านมา เราไม่สามารถที่จะหลีกเลี่ยงการทดสอบตัวยาในมนุษย์ หรือสิ่งมีชีวิตอื่นๆ ได้ ถึงแม้ว่าจะมีการคัดค้านจากหลายๆ ฝ่ายในเรื่องของจริยธรรมก็ตาม

นักวิจัยพยายามที่จะค้นหาวิธีการทดสอบผลิตภัณฑ์ยาที่มีประสิทธิภาพเทียบเคียงกับการทดสอบในมนุษย์ ซึ่งในอดีตก็ไม่ประสบความสำเร็จเท่าที่ควร อย่างไรก็ตาม เมื่อมีการคิดค้นระบบการจัดแบ่งตัวยาออกเป็นกลุ่มตามคุณสมบัติทางด้านชีวเภสัชกรรม (Biopharmaceutics Classification System หรือ BCS) ซึ่งพิจารณาถึง คุณสมบัติของตัวยาสำคัญ รูปแบบยาเตรียม และร่างกายของสิ่งมีชีวิต ควบคู่กันไป ทำให้การพิจารณาการทดสอบตัวยาที่เหมาะสมทำได้ง่ายและสะดวกยิ่งขึ้น

การทดสอบเภสัชภัณฑ์ชนิดรับประทานที่มีความสำคัญอย่างมากก็คือ การทดสอบอัตราการละลาย (dissolution test) ซึ่งในเภสัชฯ ได้รับการทดสอบนี้ไว้สำหรับยาแต่ละตัว โดยที่เป็นเครื่องที่ได้รับมาจากการทดสอบที่ทำในผลิตภัณฑ์ต้นแบบที่ใช้ในการขึ้นทะเบียน ดังนั้นการทดสอบดังกล่าวจึงนับว่าเป็นการทดสอบเพื่อควบคุมคุณภาพเท่านั้น แต่ต่อมาก็มีการทดสอบอัตราการละลายได้รับการพัฒนาให้มีความใกล้เคียงกับสภาพในระบบทางเดินอาหารมากยิ่งขึ้น (biorelevant) และสามารถสืบถึงสิ่งสิ่งที่เกิดขึ้นจริงในสิ่งมีชีวิตโดยเฉพาะในมนุษย์มากยิ่งขึ้นด้วย ดังที่จะเห็นได้จากการใช้หลักการ *in vitro-in vivo correlation* (IVIVC) ในการที่จะหาความสัมพันธ์ระหว่างอัตราการละลายและการดูดซึมของยาในร่างกาย เพื่อที่จะลดการทดสอบตัวยาในมนุษย์ลงไปได้ในอนาคต

หลักการของ BCS ก็เน้นถึงการทดสอบอัตราการละลายเพื่อที่จะใช้ทดสอบการประเมินประสิทธิภาพของเภสัชภัณฑ์ในมนุษย์ โดยมีใจความว่า หากผลิตภัณฑ์นั้นๆ ซึ่งอาจจะเป็นยาเม็ด หรือยา

แคปซูล มีอัตราการลละลายที่เร็วมากพอก และมีการดูดซึมที่ดีในระบบทางเดินอาหาร ตามเกณฑ์ BCS กลุ่มที่ 1 ก็อาจจะเทียบได้กับการที่เรารับประทานยาน้ำใสเข้าไป ซึ่งจากเกณฑ์มาตรฐานในปัจจุบัน ยาน้ำใสนั้นไม่จำเป็นที่จะต้องทำการทดสอบในมนุษย์ ทำให้ยาเม็ดหรือแคปซูลที่เข้าเกณฑ์ดังกล่าวจึงไม่จำเป็นที่จะต้องผ่านการทดสอบในมนุษย์ด้วย หลักการของ BCS นี้ทำให้สามารถลดค่าใช้จ่ายในการวิจัยและพัฒนาผลิตภัณฑ์ยาลงไปได้อย่างมาก ซึ่งจะมีผลโดยตรงต่อต้นทุนในการผลิต และส่งผลกระทับต่อผู้ป่วยโดยตรง และในกรณีของประเทศไทย ซึ่งเป็นประเทศที่กำลังพัฒนา ประโยชน์ในส่วนนี้นับว่าสำคัญอย่างมาก

อย่างไรก็ตามตัวยาที่ไม่ต้องผ่านการทดสอบในมนุษย์ที่กำหนดโดย BCS ในปัจจุบันนั้นมีเพียงกลุ่มเดียวเท่านั้น ในภาคีกษาครั้งนี้ คณบัญชีวิจัยจึงได้เลือกเอาตัวยากลุ่มที่ 3 ของ BCS ซึ่งมีการลละลายที่ดีเหมือนในกลุ่มที่ 1 แต่มีการดูดซึมที่ไม่ดี มาทำการทดสอบเพื่อที่จะประเมินว่าจำเป็นหรือไม่ที่ผลิตภัณฑ์ยาในกลุ่มนี้จะต้องทำการทดสอบในมนุษย์ เนื่องจากยาในกลุ่มนี้มีปริมาณค่อนข้างมากโดยคิดเป็นร้อยละ 40 จากรายชื่อตัวยาที่จำเป็นที่ระบุโดยองค์กรองนามัยโลก

จากการศึกษาวิจัยในครั้งนี้ก็พบว่าตัวยาในกลุ่มที่ 3 ของ BCS นี้ก็สมควรที่จะได้รับการยกเว้นการทดสอบในมนุษย์เข่นเดียวกัน โดยสามารถที่จะใช้เกณฑ์เดียวกันกับตัวยาในกลุ่มที่ 1 ได้ โดยที่ผลที่ได้มาจากการทดสอบในหลอดทดลองและการทดสอบโดยใช้โปรแกรมคอมพิวเตอร์ เทียบกับผลการทดสอบจริงที่ได้จากอาศรมสัมคร ซึ่งก็พบว่าโปรแกรมคอมพิวเตอร์ที่ใช้ ซึ่งได้แก่ PK-Sim[®] และ STELLA[®] นั้นให้ผลเป็นที่น่าพอใจพอสมควร แต่ยังไม่สามารถที่จะนำมาใช้เพียงลำพังโดยปราศจาก การทดลองในหลอดทดลองด้วยได้ ซึ่งคาดว่าหากมีการพัฒนาต่อไปในอนาคต เรายังจะสามารถใช้โปรแกรมคอมพิวเตอร์ในการทดสอบเภสัชภัณฑ์แบบครบวงจร โดยที่ไม่จำเป็นที่จะต้องทำการทดลองกับมนุษย์หรือสิ่งมีชีวิตอื่นๆ อีกต่อไป