

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ฤทธิ์ทางชีวภาพของสารประกอบจากพืชวงค์ Guttiferae และ Schisandraceae

โดย รองศาสตราจารย์ ดร. จีรเดช มโนสร้อย และคณะ

30 มิถุนายน **254**9

สัญญาเลขที่ BGJ48K0001

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ฤทธิ์ทางชีวภาพของสารประกอบจากพืชวงค์ Guttiferae และ Schisandraceae

คณะผู้วิจัย

- 1. รองศาสตราจารย์ ดร. จีรเดช มโนสร้อย
- 2. ร้อยเอกหญิง รุจิดา วิไลรัตน์

มหาวิทยาลัยเชียงใหม่

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

Table of contents

	Page
Abstract (English)	1
Abstract (Thai)	4
Executive summary	7
Introduction	8
Research methodology	
1. Sample selection	9
2. Preparation of the crude extracts	15
3. Bioactivities screening of the crude extracts	
3.1 Free radical scavenging activity (DPPH assay)	15
3.2 An antitumor activity (SRB assay)	16
4. Isolation and purification of the compounds from the crude extracts	
4.1 Hypericum hookerianum	17
4.2 Schisandra verruculosa	17
5. Structure elucidation of isolated compounds	18
6. Bioactivities studies of the isolated compounds	
6.1 Tumor cell growth assay	18
6.2 Human lymphocytes proliferation assay	19
6.3 Free radical scavenging activity	19
Results	
1. Preparation of the crude extracts	20
2. Bioactivities screening of the crude extracts	
2.1 Free radical scavenging activity (DPPH assay)	21

2.2 An antitumor activity (SRB assay)	22	
3. Purification of the compounds from the crude extracts		
3.1 Isolated compounds from H. hookerianum	26	
3.2 Isolated compounds from S. verruculosa	28	
4. Bioactivities studies of the isolated compounds		
4.1 Tumor cell growth assay	32	
4.2 Human lymphocytes proliferation assay	34	
4.3 Free radical scavenging activity	36	
Conclusion	38	
References	41	
Appendix	43	

Abstract

The objectives of this study were 1) to screen the bioactivities of the crude extracts from the selected Guttiferae and Schisandraceae plants, 2) to purify and elucidate the structures of the isolated compounds, and 3) to determine the bioactivities of the isolated compounds. Leaves, wood of *Hypericum hookerianum*, *Garcinia speciosa*, *Garcinia xanthochymus*, *Cratoxylum formosum* ssp. *pruniflorum*, *Calophyllum polyanthum* and *Schisandra verruculosa* and the fruit of *G. xanthochymus* collected from Chiang Mai Province, Thailand were carried out to extract and screen for determining the free radical scavenging and antitumor activities. DPPH assay and SRB assay towards human cancer cell lines were performed. The methanol wood extract of *G. speciosa* exhibited the highest scavenging activity with an IC₅₀ value of 9.75 µg/ml. *H. hookerianum*, *S. verruculosa*, *C. formosum* ssp. *Pruniflorum*, *G. xanthochymus* and *C. polyanthum* showed the IC₅₀ value of 19.08, 23.34, 23.96, 32.10 and 44.29 µg/ml, respectively. For the fruit of *G. xanthochymus*, methanol extract and chloroform fraction of the methanol extract showed no significant IC₅₀.

Chloroform fraction of the methanol extract of *G. speciosa* showed also the potent inhibitory effect with the GI₅₀ value of 4.0, 6.6 and 3.7 µg/ml from the leaves and 9.9, 15.7 and 8.1 µg/ml from the wood against HeLa (cervical), KB (epidermoid) and B16F10 (melanoma) tumor cell lines, respectively. The chloroform fraction of the methanol extracts of *H. hookerianum* and *G. xanthochymus* showed the inhibitory effect on cell growth with GI₅₀ value less than 20 µg/ml.

H. hookerianum and S. verruculosa were selected for the study of phytochemistry since the chemical constituents have not been reported and H.

hookerianum showed also good results both of free radical scavenging activity and antitumor activity. The chloroform fraction of the methanol wood extract of *H. hookerianum* furnished 5-hydroxy-2-methoxyxanthone (HH1), 2-hydroxy-3-methoxy xanthone (HH2), the xanthonolignoid *trans*-kielcorin (HH3), as well as two cinnamate ester derivatives, betulinic acid-3β-yl caffeate (HH5) and the new compound 4-hydroxy-3-methoxyphenyl ferulate (HH4). The chloroform fraction of the methanol wood extract of *S. verruculosa* gave vanillic acid (S1), abscisic acid (S2), methyl 4-hydroxybenzoate (S3), 4-hydroxy benzaldehyde (S4), methyl 3,4-dihydroxybenzoate (S5), 1-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one (S6), 1,2-bis-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one (S7) and 4-hydroxybenzoic acid (S8). Spectroscopic methods, especially ¹H, ¹⁵C NMR, COSY, NOESY, HMBC, HSOC and HRMS were used to elucidate the structures of these compounds.

In vitro effect of these compounds on the growth of human cancer cell lines: MCF-7 (breast), NCI-H 460 (lung), SF-268 (CNS) and UACC-62 (melanoma) and the effect of these compounds on the proliferation of human lymphocyte from the mitogenic effect of phytohemagglutinin (PHA) were evaluated. Cinnamate ester derivatives from *H. hookerianum* showed the strong inhibitory effects against MCF-7, NCI-H460, SF-268 and UACC-62 with the GI₅₀ value of 15.1, 18.7, 15.9 and 21.2 μM for the new compound 4-hydroxy-3-methoxyphenyl ferulate (HH4) and 12.2, 19.6, 24.3 and 31.8 μM for betulinic acid-3β-yl caffeate (HH5), respectively, while from *S. verruculosa*, only methyl 3,4-dihydroxybenzoate (S5) gave the moderate activity with the GI₅₀ value of 78.9, 38.8 and 93.8 μM toward MCF-7, NCI-H460 and SF-268, respectively. Compound 4-hydroxy-3-methoxyphenyl ferulate (HH4), betulinic acid-3β-yl caffeate (HH5) and methyl 3,4-dihydroxybenzoate (S5) showed

antiproliferative activity with IC₅₀ value of 26.1, 40.8 and 58.58 μM, respectively. All of the isolated compounds were also determined for the free radical scavenging activity. Methyl 3,4-dihydroxy benzoate (S5) from *S. verruculosa* showed a strong activity with the IC₅₀ value of 6.4 μM, while both of cinnamate ester derivatives from *H. hookerianum* gave the moderate activities with the IC₅₀ value of 48.2 and 15.6 μM for 4-hydroxy-3-methoxyphenyl ferulate (HH4) and betulinic acid-3β-yl caffeate (HH5), respectively. The results from this study suggested a potential of the selected plants with significant biological activities for further study and development to new drugs.

บทคัดย่อ

คารพคลองนี้มีวัตถุประสงค์เพื่อ 1) ศึกษาถทธิ์ทางชีวภาพของสารสกัดหยาบจากพืชวงค์ Guttiferae และ Schisandraceae 2) ทำให้สารบริสทฐิ์และศึกษาโครงสร้างของสารประภอบที่ สกัดแยก และ 3) ประเมินฤทธิ์ทางชีวภาพของสารที่สกัดแยกได้ พืชที่เลือกนำมาศึกษาคือ บัวทอง (Hypericum hookerianum) พะว้าหรือสารกีป่า (Garcinia speciosa), มะคะหลวงหรือมะคะ (Garcinia xanthochymus) ทิ้วขนหรือติ้วเหลือง (Cratoxylum formosum ssp. Pruniflorum) พะองหรือมะแทนคอย (Calophyllum polyanthum) และ Schisandra verruculosa ซึ่งเกี่บใน พื้นที่จังหวัดเชียงใหม่ ในการทดลองได้สกัดสวรสกัดหยาบจากใบ เนื้อไม้ของพืชเหล่านี้และผล จากนั้นนำสารสกัดหยาบที่ได้มาหคสอบถทธิ์ ของมะคะหลวงโดยใช้เมธานอลและคลอโรฟอร์ม ในการจับอนมูลอิสระและฤทธิ์ในการยับยั้งการเจริญเติบโตของเซลล์มะเร็ง ผลการศึกษาพบว่าสาร สกัดจากเนื้อให้โดยเมธานอลของ G. speciosa แสดงฤทธิ์สูงสุดในการจับอนุมูลอิสระโดยมีค่า ความเข้มข้นที่สามารถจับอนุมูลอิสระได้ 50 เปอร์เซ็นต์ (IC50) เท่ากับ 9.75 ใมโครกรัมต่อ มิลลิลิตร H. hookerianum, S. verruculosa, C. formosum ssp. Pruniflorum, G. xanthochymus และ C. polyanthum แสดงค่า IC50 เท่ากับ 19.08, 23.34, 23.96, 32.10 และ 44,29 ใมโครกรัมต่อมิลลิลิตร ตามลำคับ สารสกัดหยาบส่วนคลอโรฟอร์มของสารสกัดเมธานอล ผลของ G. xanthochymus แสดงคำ ICso ไม่แตกต่างกัน นอกจากนั้นสารสกัดหยาบส่วน คลอโรฟอร์มของสารสกัคเมษานอลของ G. speciosa ขังออกฤทธิ์สูงสุดในการยับยั้งการเจริญ เติบโตของเซลล์มะเร็งปากมดลูก (HeLa) เซลล์มะเร็งในช่องปาก (KB) และเซลล์มะเร็งผิวหนัง (B16F10) โดยจากส่วนของใบมีค่าความเข้มข้นที่สามารถยับยั้งการเจริญเติบโตของเซลล์ มะเร็ง

ได้ 50 เปอร์เซ็นต์ (GI₅₀) เท่ากับ 4.0. 6.6 และ 3.7 ไมโครกรัมต่อมีลลิลิตร และจากส่วนของเนื้อ ไม้มีค่าเท่ากับ 9.9, 15.7 และ 8.1 ไมโครกรัมต่อมีลลิลิตรตามลำดับ สารสกัดส่วนคลอโรฟอร์ม ของสารสกัดเมชานอลจาก H. hookerianum และ G. xanthochymus แสดงฤทธิ์ในการยับยั้งการ เจริญของเซลล์มะเร็งทั้งสามชนิดโดยมีค่า GI₅₀ น้อยกว่า 20 ไมโครกรัมต่อมิลลิลิตร ได้คัดเลือก H. hookerianum และ S. verruculosa ในการศึกษาโครงสร้างทางเคมี เนื่องจากยังไม่มีรายงาน การศึกษาในเรื่องนี้ อีกทั้ง H. hookerianum ยังแสดงฤทธิ์ที่ดีจากการทดสอบฤทธิ์ในการจับอนุมูล อิสระและฤทธิ์ในการยับยั้งการเจริญเติบโดของเซลล์มะเร็ง

จากการสกัดแขกเนื้อให้ของต้น *H. hookerianum* ส่วนคลอโรฟอร์มของสารสกัดเมธา นอลได้สารทั้งสิ้น 5 ตัวคือ 5-hydroxy-2-methoxyxanthone (HH1), 2-hydroxy-3-methoxy xanthone (HH2), xanthonolignoid *trans*-kielcorin (HH3), betulinic acid-3β-yl caffeate (HH5) และสาร เหม 4-hydroxy-3-methoxyphenyl ferulate (HH4) สวนสารท เด็จากการ สกัดแขกเนื้อให้ของต้น *S. verru- culosa* มีจำนวนทั้งสิ้น 8 ตัวคือ vanillic acid (S1), abscisic acid (S2), methyl 4-hydroxy benzoate (S3), 4-hydroxybenzaldehyde (S4), methyl 3, 4-dihydroxybenzoate (S5), 1-(4-hydroxy-3-methoxy-phenyl) -3- hydroxy-propan-1-one (S6), 1, 2- bis-(4-hydroxy-3-methoxyphenyl)-3-hydroxypropan-1-one (S7) และ 4-hydroxybenzoic acid (S8)

ในการศึกษาฤทธิ์ของสารที่แยกได้ต่อการเจริญของเซลล์มะเร็งเด้านม (MCF-7) เซลล์ มะเร็งปอด (NCI-460) เซลล์มะเร็งระบบประสาทส่วนกลาง (SF-268) และเซลล์มะเร็งผิวหนัง (UACC-62) รวมถึงฤทธิ์ต่อการเพิ่มจำนวนของลิมโฟซัยท์ จากผลการทดลองพบว่าสารใหม่ 4hydroxy-3-methoxyphenyl ferulate (HH4) และ betulinic acid-3β-yl caffeate (HH5) จาก H. hookerianum มีฤทธิ์สูงในการยั้นยั้งการเจริญเติบโตของเซลล์มะเร็ง โดย4-hydroxy-3-

methoxy phenyl ferulate (HH4) มีค่า GI₅₀ เท่ากับ 15.1, 18.7, 15.9 และ 21.2 ใมโครโมการ์ และ betulinic acid-3β-yl caffeate (HH5) มีค่า GI₅₀ เท่ากับ 12.2, 19.6, 24.3 และ 31.8 ใน โคร โมลาร์ ในระหว่างที่ methyl 3,4-dihydroxybenzoate (S5) จาก S. verruculosa แสดง ฤทธิ์ปานกลางในการขั้นขั้งการเจริญเติบโตของเซลล์มะเร็งเซลล์มะเร็งเต้านม (MCF-7) มะเร็งปอด (NCI-460) และมะเร็งระบบประสาทส่วนกลาง (SF-268) โดยมีค่า GI₅₀ เท่ากับ 78.9, 38.8 ในการขับยั้งการเพิ่มจำนวนของถิ่มโพ่ซัยท์ 4-hydroxy-3-93.8 ในโครโมลาร์ methoxyphenyl ferulate (HH4) betulinic acid-3β-yl caffeate (HH5) unz methyl 3,4dihydroxy benzoate (S5) มีค่าความเข็มข้นที่สามารถขับขั้งการเพิ่มจำนวนลิมโฟซัยท์ได้ 50 เปอร์เซ็นต์ (IC50) เท่ากับ 26.1, 40.8 และ 58.58 ใมโครโมลาร์ ตาม สำคับ ในการทคสอบฤทธิ์ใน การจับอนุมูลอิสระ methyl 3,4-dihydroxy benzoate (S5) แสคงฤทธิ์ที่สูงใกล้ เคียงกับวิตามิน ซีโดยมีค่า IC₅₀ เท่ากับ 6.4 ใมโครโมลาร์ 4-hydroxy-3-methoxy phenyl ferulate (HH4)และ betulinic acid-3β-yl caffeate (HH5) แสดงฤทธิ์ปานกลางโดยมีค่า IC50 เท่ากับ 48.2 และ 15.6 ใมโครโมลาร์ ตามลำคับ จากผลการศึกษาครั้งนี้ชี้ให้เห็นว่าพืชที่ทำการศึกษานี้มีศักยภาพที่จะ สามารถพัฒนาเพื่อเป็นยาใหม่ได้ต่อไป

Executive Summary

Six Thai Guttiferae and Schisandraceae plants (Hypericum hookerianum, Garcinia speciosa, G. xanthochymus, Cratoxylum formosum ssp. Pruniflorum, Calophyllum polyanthum and Schisandra verruculosa) were collected from Chiang Mai, Thailand and extracted by methanol and chloroform. The extracts were screened for free radical scavenging activity using DPPH assay and the effect on the growth of B16F10, HeLa and KB human tumor cell lines using SRB assay. All extracts showed free radical scavenging activity with a dose dependent activity relationship. The lowest IC₅₀ value was observed in the methanol extracts from wood of G. speciosa. The chloroform fraction of methanol extract from leave of G. speciosa gave the most potent inhibition of cancer cell growth with the GI₅₀ value of 4, 6.6 and 3.7 μg/ml in HeLa (cervical), KB (epidermoid) and B16F10 (melanoma) cell lines, respectively.

Purification of *H. hookerianum* furnished 5-hydroxy-2-methoxyxanthone (HH1), 2-hydroxy-3-methoxyxanthone (HH2), *trans*-kielcorin (HH3), betulinic acid 3β-yl caffeate (HH5) and the new compound 4-hydroxy-3-methoxyphenyl ferulate (HH4). Compounds HH1-HH5 were evaluated for their effect on the *in vitro* growth of three human cancer cell lines: MCF-7 (breast), NCI-H460 (lung) and SF-268 (CNS). Cinnamate esters HH4 and HH5 exhibited strong inhibitory effect against all three cell lines; that of *trans*-kielcorin (HH3) was moderate while the inhibitory effect of xanthones HH1 and HH2 were only weak. The effect of compounds HH1-HH5 on the mitogenic response of human lymphocytes to PHA was also evaluated. Xanthones HH1 and HH2 exhibited weaker antiproliferative effects than cinnamate esters HH4 and HH5 while *trans*-kielcorin (HH3) was devoid of activity.

Vanillic acid (S1), abscisic acid (S2), methyl 4-hydroxybenzoate (S3), 4-hydroxybenzaldehyde (S4), methyl 3,4-dihydroxybenzoate (S5), 1-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one (S6), 1,2-bis-(4-hydroxy-3-methoxyphenyl) 3-hydroxy-propan-1-one (S7) and 4-hydroxybenzoic acid (S8) were isolated from *S. verruculosa*. All the compounds were evaluated for their antitumor, antiproliferative and antioxidant activities. Only compound S5 exhibited moderate activity against three human cancer cell lines and human lymphocyte proliferation as well as strong inhibitory activity for DPPH free radicals, only slightly less than ascorbic acid. This study demonstrated the potential in the development of these plants to new drugs.

"Bioactive Compounds from Family Guttiferae and Schisandraceae Plant"

Introduction

Plants are important sources of lead compounds for research and development of new drugs. Numbers of substances from plants can be used as alternatives for the treatment of several life threatening diseases especially for cancer and HIV, for example paclitaxel (Taxol[®]) for the treatment of cancer and calanolides, coumarin derivatives from *Calophyllum lanigerum*, which possess anti-HTV activity (Kashman et al., 1992). These successes have spurred an effort in many areas of biological and therapeutic interest to continue the discovery of novel natural products with a higher level of activity or reduced toxicity (Grzybek et al., 1997). In the plant kingdom, only few numbers of plants were investigated. The rest which is a large number of plants wait for further studies with high potential to be used as therapeutic agent.

Phytochemical study of South-East Asian plants as a source of bioactive natural products led to the isolation and structural elucidation of novel compounds. Compounds from various parts of the world have been screened and exhibited significant activities. The Guttiferae, mainly found in tropical and northern temperate regions, is well known to be rich in secondary metabolites such as xanthonoid, biflavonoid and triterpenoid (Xu et al., 1998). Some have been used as traditional medicine. Novel bioactive compounds from these plants with cytotoxic activity have been reported (Cao et al., 1998; Kosela et al., 1999).

Plants in the Schisandraceae family grow wild mainly in China, Japan, the Himalayas and Jawa. Over 19 species are wildly use in Chinese traditional medicine. Much attention has been focused on the family Schisandraceae because the lignans

isolated from this family show various biological activities. In recent years, several species have been reported to contain triterpenoids. Some triterpenoids showed anti-HIV, hepatotoxicity and antioxidant activities (Hancke *et al.*, 1999; Li *et al.*, 2003).

In this study, some Thai Guttiferae and Schisandraceae plants were selected for the extraction, purification, elucidation and investigation of their biological activities which may be further developed to pharmaceutical products.

Research Methodology

1. Sample selection

Five plants (Hypericum hookerianum Wight et Arn, Garcenia speciosa Wall, Garcinia xanthochymus Hook, f. ex. T. Anderson, Cratoxylum formosum ssp. pruniflorum (Kurz) Gogel, Calophyllum polyanthum Wall ex Choisy) from Guttiferae and the one from Schisandraceae families (Schisandra verruculosa Gagnap) were selected focusing on the evidence of cytotoxicity and antioxidant activity. The plants were collected from Chiang Mai Province, Thailand in November and December 2002. The plant samples were authenticated by the Department of Biology, Faculty of Science and Faculty of Pharmacy, Chiang Mai University, Thailand, and the voucher specimens were deposited at the herbarium of the department. The details are as follows.

1) Hypericum hookerianum Wight et Am (Fig. 1.1)

Local name: Bua Thong

Location: Doi Inthanon National Park, Jom Thong, Chiang Mai

Note: Shrub; branchlets light green and turning brown; pedicels sepals green; petals 5, anthers, filaments yellow; entire pistil light green; blades dull green, light green underneath.

Use in traditional medicine: The tribal people of the Shola forest (Tamilnadu, India) use the aerial parts for treating burns and wounds (Mukherjee *et al.*, 2001).

Figure 1.1 Hypericum hookerianum Wight & Arn

2) Garcinia speciosa Wall (Fig. 1.2)

Local name: Phawa, Saraphi Pa

Location: Doi Suthep, Muang, Chiang Mai

Note: tree; bark thin, roughly cracked and flaking, black; sap yellow; elder branchlets gray-brown, younger parts green: fruits hard, green, blades dark glossy green above, pale light greenish underneath

Figure 1.2 Garcinia speciosa Wall

3) Garcinia xanthochymus Hook, F. ex T. Anderson (Fig. 1.3)

Local name: Mada Luang, Mada

Location: Doi Suthep, Muang, Chiang Mai

Note: tree; bark thick, slightly roughened, brown, sap light yellow; fruiting pedicels, sepals, immature fruits green, mature fruits light yellowish, soft, juicy, with yellow sap; aril yellow. Slightly sour and edible; blades dark green above, green underneath

Use in traditional medicine: fruit has been used widely for bilious condition, diarrhea and dysentery in Thailand.

Figure 1.3 Garcinia xanthochymus Hook, F. ex T. Anderson

4) Cratoxylum formosum ssp. pruniflorum (Kurz) Gogel (Fig. 1.4)

Local name: Tiew Khon, Tiew Leung

Location: Doi Suthep, Muang, Chiang Mai

Note: tree, bark thin, roughly flaking, trunk with spin-like short branches; pedicels and fruits calyx gray-light greenish; capsules greenish to maroon-brown; blades dark green above, gray-greenish underneath

Figure 1.4 Cratoxylum formosum ssp. pruniflorum (Kurz) Gogel

5) Calophyllum polyanthum Wall ex Choisy (Fig. 1.5)

Local name: Pha Ong, Ma Nhae Doi

Location: Doi Suthep, Muang, Chiang Mai

Note: tree, scattered in disturb area in gallery montane forest, by roadside,

leaves shin dark green above, young fruits light green sap yellow

Figure 1.5 Calophyllum polyanthum Wall ex Choisy

6) Schisandra verruculosa Gagnap (Fig. 1.6)

Local name: -

Location: Doi Mawn Ngaw, Mae Tang, Chiang Mai

Note: everygreen woody climber, basal diameter 5-6 cm. deeply and roughly cracked, brown; branchlets, peduncles brown, individual fruits light green, dull dark green above, dull light green underneath

Figure 1.6 Schisandra verruculosa Gagnap

2. Preparation of the crude extracts

Wood, leaves from the six selected plants and the fruit of *G. xanthochymus* were separately reduced to small pieces, dried at 40°C in a hot oven and comminuted to powder. The dried powder samples (100-300 g) were macerated in methanol for 48 h. The solvent was evaporated under reduced pressure by a rotary evaporator. The residues were re-extracted with chloroform and concentrated by partial evaporation under reduced pressure. Twenty-four extracts were obtained, and the percentage yields were calculated.

3. Bioactivities screening of the crude extracts

3.1 Free radical scavenging activity (DPPH assay)

The free radical scavenging activities of all extracts and the standards (ascorbic acid and α-tocopherol) were determined by a modified DPPH assay of Tachibana *et al.* (2001). DPPH was used as a stable free radical. Briefly, 75 μl of the methanol extracts (1 mg/ml-6.25 μg/ml) and 75 μl of 200 μM ethanol solution of DPPH were put into each well of a 96-well microplate. The reaction mixtures were allowed to stand for 30 min at room temperature, and the absorbance was measured at 570 nm by a Well Reader against a blank (ethanol without DPPH). The experiments were done in triplicates. The DPPH free radical scavenging activity was calculated according to the following equation:

DPPH free radical scavenging activity (%)

$$= \underbrace{\left(\text{absorbance of the control - absorbance of the sample}\right)}_{\text{absorbance of the control}} \times 100$$

The scavenging activity was plotted against concentrations. The concentration which showed 50% DPPH scavenging activity (IC 50) was determined.

3.2 An antitumor activity (SRB assay)

Stock solutions of extracts were prepared in DMSO and stored at -20 °C. The frozen samples were diluted with cell culture medium prior to the assay. The concentration ranges of the extracts were 3 μg to 250 μg .

The effect of extracts on the growth of human cancer cell lines were evaluated according to the procedure of the NCI for the in vitro anticancer drug screening using the protein-binding dye, SRB to assess cell growth (Skehan et al., 1990). Three human cancer cell lines, B16F10, HeLa and KB, were used. Cells were routinely maintained as adherent cell cultures in DMEM medium supplemented with 10% heatinactivated FCS and 50 µg/ml of gentamicin at 37°C in a humidified air incubator containing 5% CO₂. Each cell line was plated at a density of 1.0 × 10⁵ cells/ml for B16F10 and KB; 2.0 × 105 cells/ml for HeLa in 96-well plates and allowed to attach overnight. Cells were then exposed to five serial concentrations of extracts for 48 hours. After incubation, the adherant cells were fixed in situ, washed and dyed with SRB. The bound dye was solubilized and the absorbance was measured at 492 nm in a microplate reader. The dose-response curves were generated and the GI₅₀, corresponding to the concentration of compounds that inhibit 50% of the cell growth was determined as described (Monks et al., 1991). Doxorubicin hydrochloride was used as positive control.

4. Isolation and purification of the compounds from the crude extracts

4.1. Hypericum hookerianum

The chloroform fraction of the methanol extract from woody stem of *H. hookerianum* was prepared according to the process of the preparation of the crude extracts to keep the adequate quantity for the isolation. The crude extract was loaded on the silica gel G60 (0.2-0.5 mm), in a column, and eluted with the different polarity of solvent mixture (Petrol-CHCl₃, CHCl₃-acetone) with the flow rate 1 ml/min. Fractions of 100-300 ml of were collected for each fraction. All fractions were mornitored by analytical TLC and combined, according to their composition. Fractions which showed complicated spots under UV light were refractionated in the small column and subfractions were also collected. The interesting subfractions were purified by PTLC to give the isolated compounds.

4.2 Schisandra verruculosa

Dried and powdered stem wood of S. verruculosa was also prepared for the adequate quantity of crude chloroform extract.

One part of the crude chloroform fraction of the methanol extract was dechlorophyllated following the method described by Herz and Gregor (1962) before fractionation. Another part of the crude extract was applied to Silica gel 60 column and eluted with the different polarity of solvent mixture (Petrol- CHCl₃, CHCl₃, CHCl₃-acetone) with the flow rate I ml/min. Fractions of 100-500 ml were collected for each fraction. All fractions were combined according to their composition as revealed by analytical TLC. Fractions which showed complicated spots under UV

light were refractionated in the small column. Subfractions were collected and purified by PTLC to give the isolated compounds.

5. Structure elucidation of isolated compounds

Spectroscopic techniques ¹H, ¹³C NMR, COSY, HSQC, HMBC and NOESY and High Resolution Mass Spectrometry (HRMS) were used to elucidate the structure of the isolated compounds.

6. Bioactivities studies of the isolated compounds

6.1 Tumor cell growth assay

Stock solutions of compounds prepared in DMSO were freshly diluted with the different culture medium prior the assays. Final concentration of DMSO (≤ 0.25%) did not interfere with the biological activities tested. Four human cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), SF-268 (CNS cancer), UACC-62 (melanoma), were used. Cells were routinely maintained as adherent cell cultures in RPMI-1640 medium supplemented with 5% heat-inactivated FBS, 2 mM glutamine and 50 μg/ml of gentamicin at 37°C in a humidified air incubator containing 5% CO₂. Each cell line was plated at a density that ensured exponential growth throughout the experimental period according to their growth profiles (7.5 × 10⁴ cells/ml for NCI-H460, 1.0 × 10⁵ cells/ml for UACC-62, and 1.5 × 10⁵ cells/ml for MCF-7 and SF-268) in 96-well plates and allowed to attach overnight. Cells were then exposed for 48 hours to five serial concentrations of compounds. Following this incubation period, the adherant cells were fixed *in situ* washed and dyed with SRB. The bound stain was solubilized and the absorbance was measured at 492 nm in a microplate reader. For each test compound and for each cell line a dose-

response curve is generated and the growth inhibition of 50% (GI₅₀), corresponding to the concentration of compound that inhibits 50% of the net cell growth was determined as described (Monks *et al.*, 1991). Doxorubicin was used as positive control.

6.2 Human lymphocytes proliferation assay

The effect of compounds on the mitogenic response of human lymphocytes to PHA were evaluated using a modified colorimetric MTT assay (Mosman, 1983) previously described by Gonzalez *et al* (1999). Human mononuclear cells were isolated from heparinized peripheral blood of healthy volunteers by Histopaque-1077 density centrifugation and were adjusted to 2-3 x 10⁶ cells/ml in RPMI-1640 supplemented with 10% FBS, 2 mM glutamine and 50 µg/ml of gentamicin. Mononuclear cells in 96-well plates were exposed for 4 days to seven serial concentrations of compounds. Following this period MTT solution (1 mg/ml) was added and plates were incubated for more 4 h. The water insoluble formazan dye was solubilized overnight at 37 °C. The absorbance of the colored solution was then measured in a microplate reader at 550 nm. The concentration giving 50% inhibition in the test system (IC₅₀) was calculated. Cyclosporin A was used as positive control.

6.3 Free radical scavenging activity

The isolated compounds were evaluated for the free radical scavenging activity using DPPH assay. The concentration which showed 50% DPPH scavenging activity (IC 50) was determined.

Results

1. Preparation of the crude extracts

Table 1 The percentage yields and moisture contents of methanol and chloroform fraction of the methanol extracts from various parts of the selected Thai plants in family Guttiferrae and Schisandraceae.

		Yield (%)						
		Wood		Leaf		Fruit		
Plants	Moisture content (%)	МсОН	CHC)	McOH	CHCI	MeOH	CBC) ₃	
Guttiferae								
H. hookerianum	8.65	7.36	2.01	ND	ND	ND	ND	
G. speciosa	39.90	12.18	0.66	8.61	4.33	ND	ND	
G. xanthochymus	41.80	19.04	1.02	12.45	1.67	23.60	9.69	
C. formosum ssp. prwiflori	um 38.39	3.77	1.01	14.60	4.50	ND	ND	
C. polyanthum	48.18	4.46	2.65	11.10	8.50	ND	ND	
Schisandraceae								
S. verruculosa	31.61	1.77	1.22	4.14	3.94	ND	ND	

Note: MeOH = methanol extract; CHCl₃ = chloroform fraction of the methanol extract; ND = not determined

The percentage yields and moisture contents of the methanol and chloroform fraction of the methanol extracts from different parts of each plant were shown in Table 1. Methanol extracts of all plants showed higher percentage yield than the chloroform-fractioned methanol extracts. This might be due to the presence of more polar compounds in the plants which are more soluble in methanol than in chloroform.

2. Bioactivities screening of the crude extracts

2.1 Free radical scavenging activity study of crude extracts (DPPH assay)

Table 2 The IC₅₀ values of the selected Thai plant extracts.

Wood MeOH	СНСЬ	Leaf	CHCl ₃	Fruit MeOH	
	СНСЬ	МеОН	CHCl ₃	McOH	
					CHCl ₃
19.08	65.42	-	-	-	-
9.75	142	65 13	168	-	~
32.10	89.56	58.69	59.83	25.58	26.68
23.96	91.04	93.28	162.34	-	-
44.29	242.25	51.88	69.41	-	-
23.34	127.34	130.00	162.18	-	
	32.10 23.96 44.29	32.10 89.56 23.96 91.04 44.29 242.25	32.10 89.56 58.69 23.96 91.04 93.28 44.29 242.25 51.88	32.10 89.56 58.69 59.83 23.96 91.04 93.28 162.34 44.29 242.25 51.88 69.41	32.10 89.56 58.69 59.83 25.58 23.96 91.04 93.28 162.34 - 44.29 242.25 51.88 69.41 -

Note: MeOH = methanol extract; CHCl3 = chloroform fraction of the methanol extract

IC 50; the concentration of extract which showed 50% DPPH scavenging activity

Table 2 demonstrated the IC₅₀ of the extracts. All methanol extracts gave lower IC₅₀ values than the chloroform fraction of the methanol extracts. In comparing the extract from wood and leaf of each plant, the scavenging activity of methanol wood extract of all plants exhibited higher scavenging activity than their leaves. This might be due to the higher content of the total polyphenolic compounds in the wood than in leaves. The highest scavenging activity was found in the methanol wood

extract of *G. speciosa* with an IC₅₀ value of 9.75 μg/ml which were 2.5 and 5.3 folds more potents than the standard antioxidant, ascorbic acid and α-tocopherol, respectively. *H. hookerianum*, *S. verruculosa*, *C. formosum* ssp. *pruniflorum*, *G. xanthochymus*, and *C. polyanthum* gave the IC₅₀ values of 19 08, 23.34, 23.96, 32.10 and 44.29 μg/ml, respectively. In fact, some of these values were less than those obtained from standard antioxidants, ascorbic acid and α-tocopherol (the IC₅₀ values of ascorbic acid and α-tocopherol were found to be 24.01 and 52.04 μg/ml respectively). For *G. xanthochymus*, the IC₅₀ values of methanol and chloroform fraction of the methanol extract were not significant by differrent in fruits (25.58 and 26.68 μg/ml) and leaves (58.69 and 59.83 μg/ml). The extracts from *G. xanthochymus* using polar and non-polar solvents appeared to give equi-potency of the free radical scavenging activity.

2.2 An antitumor activity study of crude extracts (SRB assay)

The effect of extracts on the growth of human cancer cell lines using SRB assay were evaluated. The GI_{50} (the concentrations of extracts that cause 50% inhibition of cancer cell growth) of extracts on HeLa, KB and B16F10 cell lines, were shown in Table 3 - 4 (Calculation data are in appendix B). Final concentration of DMSO ($\leq 0.25\%$) did not interfere with the biological activities tested. Extracts exhibited a dose dependent growth inhibitory effect on all the cancer cell lines and each extract gave the GI_{50} values which were not significant different in three cell lines.

Table 3 Effect of methanol and chloroform fraction of the methanol extracts from wood of the selected Thai plants in family Guttiferrae and Schisandraceae on the growth of human cancer cell lines.

			GI ₅₀ (µg/ml))
Plant species		HeLa	KB	B16F10
Guttiferae				
il. hookerianum	М	42.3 ± 1.5	46.3 ± 1.5	51.0 ± 8.5
	C	19.7 ± 1.2	19.3 ± 1.5	14.5± 0.7
G. speciosa	M	67.3 ± 2.5	75.0 ± 0.6	82.0 ± 4.2
	С	9.9 ± 1.2	15.7 ± 0.6	8.1 ± 0.1
G. xanthochymus	М	130.0	123.3 ± 5.8	105.0 ± 7.1
	c	13.3 ± 1.5	19.0 ± 1.0	11.5 ± 0.7
C. formosum ssp. pruniflorum	М	> 250	193.3 ± 5.8	> 250
	С	41.3 ± 1.5	37.3 ± 0.6	44.5 ± 2.1
C. polyanthum	М	216.7 ± 5.8	156.7 ± 25.2	160.0 ± 28.3
	С	90.3 ± 3.1	74.7 ± 3.2	52.5 ± 3.5
Schisandraceae				
S. verruculosa	M	170.0 ± 10	70.7 ± 6.4	200.0 ± 14.1
	С	136.7 ± 5.7	98.0 ± 2.7	70.0 ± 1.4

Note: M = methanol extract; C = chloroform fraction of the methanol extract; ND = not determined Results are expressed as GI_{50} that are arithmetical means \pm SD of 3 independent experiments performed in duplicate.

Dexorubicin was used as positive control (GI₅₀ Hela = 300 ± 0.9 nM ; GI₅₀ KB = 330 ± 0.9 nM; GI₅₀ B16F10 = 26 ± 0.2 nM)

Table 4 Effect of methanol and chloroform fraction of the methanol extracts from leaves of the selected Thai plants in family Guttiferrae and Schisandraceae on the growth of human cancer cell lines.

			Gl ₅₀ (μg/ml)
Plant species		HeLa	КВ	B16F10
Guttiferae				
H. hookerianum	М	NID	ND	ND
	C	ND	ND	ND
G. speciosa	М	34.7 ± 2.3	23.7 ± 0.6	25.7 ± 0.6
	C	4.0 ± 0.3	6.6 ± 0.2	3.7 ± 0.4
G. xanthochymus	M	223.3 ± 11.6	116.7 ± 5.8	160.0
	С	17.0 ± 1.0	29.3 ± 0.6	37.7 ± 4.0
C. formosum ssp. pruniflorum	М	> 250	> 250	> 250
	С	223.3 ± 20.1	180.0 ± 10	> 250
C. polyanthum	M	> 250	> 250	> 250
	С	19.0 ± 2.7	13.3 ± 0.6	11.0 ± 1.1
Schisandraceae				
S. verruculosa	М	> 250	> 250	> 250
	С	160.0 ± 10	> 250	183.3 ± 11

Note: M = methanol extract; C = chloroform fraction of the methanol extract; ND = not determinedResults are expressed as GI_{50} that are arithmetical means \pm SD of 3 independent experiments performed in duplicate.

Doxorubicin was used as positive control (GI₅₀ HeIa = 300 ± 0.9 nM ; GI₅₀ KB = 330 ± 0.9 nM; GI₅₀ BI6FI0 = 26 ± 0.2 nM)

The chloroform fraction of the methanol leaves extract of *G. speciosa* showed the most potent inhibitory effect with GI₅₀ values of 4.0, 6.6 and 3.7 µg/ml on HeLa, KB and B16F10 cell lines, respectively. These values were 13, 20 and 142 folds less potent than doxorubicin, the positive control, which gave the GI₅₀ values of 300 nM, 330 nM and 26 on HeLa, KB and B16F10 cell lines, respectively. The strong growth inhibitory effects were also detected in the chloroform fraction of the methanol leaves extract of *C. polyanthum* with GI₅₀ value of I3.3, 19.0 and 11.0 µg/ml.

From the wood, the chloroform fraction of the methanol extract of *G. speciosa* also showed strong cell growth inhibition with the GI₅₀ values of 9.9, 15.7 and 8.1 μg/ml on B16F10, HeLa and KB cell lines, respectively. Chloroform fraction of the methanol extracts of *H. hookerianum*, and *G. xanthochymus* were also exhibited the inhibitory effect on cell growth with GI₅₀ value less than 20 μg/ml. The stronger inhibitory effects of most of the chloroform fraction of the methanol extracts comparing to the methanol extracts might be due to the presence of more active compounds, non polar compounds which are more soluble in chloroform.

Moderate inhibitory effect were found in the methanol leaves extract of G. speciosa, the chloroform fraction of the methanol leaves extract of G. xanthochymus, the chloroform fraction of the methanol wood extract of C. formosum ssp. Pruniflorum and the methanol wood extract of H. hookerianum. Both of the methanol and chloroform-fractioned methanol leaves extracts of C. formosum ssp. Pruniflorum, and S. verruculosa showed inhibitory activity with GI₅₀ value more than 100 µg/ml.

The results from this study suggested a potential for the plants with significant growth inhibitory activity for possible further study and development of pure compounds in the crude extracts to new pharmaceuticals.

3 Purification and structure elucidation of the selected plants

3.1 Isolated compounds from H. hookerianum

(HH1) 5-hydroxy-2-methoxyxanthone ($C_{14}H_{10}O_4$, MW=242)

(HH2) 2-hydroxy-3-methoxyxanthone ($C_{14}H_{10}O_4$, MW= 242)

(HH3) trans-kielcorin $(C_{24}H_{20}O_8,MW\cdot436)$

(HH4) 4-hydroxy-3-methoxy phenylferulate ($C_{17}H_{16}O_6$, MW= 316)

This compound has not been described previously.

$$HO$$
 HO
 HO
 HO
 CH_2
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(HH5) Betulinic acid 3β -yl caffeate (C₃₀H₄₇O₂, MW= 618)

3.2 Isolated compounds from S. verruculosa

(S1) 4 Hydroxy-3-methoxybenzoic acid (Vanillic acid)

(S2) Abscisic acid

(S3) Methyl 4-hydroxybenzoate

(S4) 4-Hydroxybenzaldehyde

(S5) Methyl 3,4-dihydroxybenzoate

(S6) 1-(4-Hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one

(S7) 1,2-bis- (4-hydroxy-3-methoxyphenyl)-3-hydroxy- propan-1-one

(S8) 4-Hydroxybenzoic acid

4. Bioactivities of the isolated compounds

4.1 Tumor cell growth assay

The effect of compounds from *H. hookerianum* on the *in vitro* growth of MCF-7, NCI-H460, SF-268, and UACC-62 cell lines, given in concentration that were able to cause 50% of cell growth inhibition (GI₅₀) after a continuous exposure of 48 h, is shown in Table 5. All the compounds exhibited a dose dependent growth inhibitory effect against all the tumor cell lines tested. Compounds HH4 and HH5 exhibited stronger growth inhibitory effects than compounds HH1 and HH2 While the formers exhibited activities of the same magnitude, compounds HH1 and HH2 showed to be more active against UACC-62.

Table 5 The GI₅₀ of compounds from *Hypericum hookerianum* on the growth of human cancer cell lines

	GI ₅₀ (μM) ^a						
Compounds	MCF-7	NCI-H460	SF-268	UACC-62			
НН1	98.1 ± 8.5	108.5 ± 15.3	134.3 ± 9.9	49.6 ± 0			
НН2	100 ± 17.5	178.7 ± 17.2	144.6± 25.8	67.5 ± 1.4			
ннз	55.1 ± 2.3	49.7 ± 3.0	40.5 ± 1.5	ND			
НН4	15.1 ± 1.6	18.7 ± 2.3	15.9 ± 2.7	21.2 ± 0.7			
нн5	12.2 ± 2.4	19.6 ± 2.3	24.3 ± 2.5	31.8 ± 0.5			
Doxorubicin ^b	42.8 ± 8.2	94.0 ± 8.7	93.0 ± 7.0	94.0 ± 0.9			

^{*}Results show means ± SEM of 3-4 independent experiments performed in duplicate.

[&]quot;Data from the positive control doxorubicin are expressed in nM.

Table 6 The GI₅₀ of compounds from *Shisandra verruculosa* on the growth of human cancer cell lines

		GI ₅₀ (μΜ) ^a				
Compounds	MCF-7	NCI-H460	SF-268			
S1	174.6 ± 8.5	> 200	> 200			
S2	> 189.4	> 189.4	> 189.4			
S3	172.7 ± 8.2	176.3 ± 4.4	180.9 ± 5.7			
S4	> 200	> 200	> 200			
S 5	78.9 ± 6.1	38.8 ± 3.3	93.8 ± 7.9			
S 6	> 200	> 200	> 200			
S 7	> 157.2	> 157.2	> 157.2			
\$8	> 200	> 200	> 200			
Doxorubicin ^b	42.8 ± 8.2	94.0 ± 8.7	93.0 ± 7.0			

^aResults show means ± SEM of 3-4 independent experiments performed in duplicate.

The GI₅₀ of the compounds isolated from *S. verrucolosa* on MCF-7, NCI-H460 and SF-268 were shown in Table 6. From the results, only compounds S5 exhibited the moderate growth inhibitory effect against three cell lines and to be more active against NCI-H460.

^aData from the positive control doxorubicin are expressed in nM.

4.2 Human lymphocytes proliferation assay

Table 7 Effect of compounds from *Hypericum hookerianum* on proliferation of human lymphocytes

Compounds	IC ₅₀ (μM) ^a
HH1	168.8 ± 4.1
HH2	171.6 ± 11.7
нн3	> 114.7
НН4	26.1 ± 3.6
нн5	40.8 ± 4.9
Cyclosporin A	0.34 ± 0.04

Results show means ±SEM of 3-4 independent experiments performed in duplicate.

The effect of compounds from *H. hookerianum* on the mitogenic response of human lymphocytes to PHA, was also studied and the results, given in concentrations that were able to cause 50% inhibition of proliferation (IC₅₀), are shown in Table 7. All compounds inhibited in a dose dependent manner the proliferation of lymphocytes. Compounds HH1 and HH2 showed once again to be weaker inhibition than compounds HH4 and HH5. HH3 showed no antiproliferative activity even at the maximum concentration tested.

Table 8 The IC₅₀ of compounds from *Shisandra verruculosa* on proliferation of human lymphocytes assay

Compounds	IC ₅₀ (μM) ³
S1	> 200
\$2	> 189.4
§ 3	> 200
S4	> 200
S 5	58.58 ± 5.6
\$6	> 200
S 7	> 157.2
S8	> 200
Cyclosporin A	0.34 ± 0.04

Results show means ±SEM of 3-4 independent experiments performed in duplicate.

The effect of compounds on the mitogenic response of human lymphocytes to PHA, was also studied with the compound isolated from *S. verrucolosa* and the results, given in concentrations that were able to cause 50% inhibition of proliferation (IC₅₀), are shown in Table 8. Compound S5 showed once again a moderate antiproliferative activity while the other compounds were devoid of activity even at the maximum concentration tested.

4.3 Free radical scavenging activity

The concentration of isolated compounds from *H. hookerianum* and *S. verruculosa*, which showed 50% DPPH scavenging activity (IC₅₀) were reported in table 9 and table 10, respectively.

The results showed that compound S5 has a strong scavenging activity for DPPH free radical with IC50 value close to the positive control, ascorbic acid. Compounds HH4 and HH5 showed also moderate scavenging activity.

Table 9 The IC₅₀ of compounds from *Hypericum hookerianum* on DPPH free radical scavenging activity assay

Compounds	IC ₅₀ (μM)
HH1	> 100
нн2	> 100
Н Н3	> 100
HH4	48.2 ± 6.1
нн5	15.6 ± 0.8
Ascorbic acid	5.3 ± 0.2

Results show means ±SEM of 3-4 independent experiments performed in triplicate.

Table 10 The IC₅₀ of compounds from *Shisandra verruculosa* on DPPH free radical scavenging activity assay

Compounds	IC ₅₀ (μM)
S1	> 100
S2	> 100
S3	> 100
S4	> 100
\$5	6.4 ± 0.2
S6	> 100
S 7	> 100
S8	> 100
Ascorbic acid	5.3 ± 0.2

Results show means ±SEM of 3-4 independent experiments performed in triplicate.

Conclusion

The Guttiferae species (Hypericum hookerianum, Garcinia speciosa, Garcinia xanthochymus, Cratoxylum formosum ssp. pruniflorum, Calophyllum polyanthum) and the Schisandraceae specie (Schisandra verruculosa) from the northern part of Thailand were studied. The crude extracts were screened for free radical scavenging and antitumor activity. No previous reports on chemical constituents of H. hookerianum and S. verruculosa. H. hookerianum exhibited high activities on the screening test. So, both of them were selected for isolation, purification and tested for the bioactivities. The results from this study can be concluded as the following:

- 1) H. hookerianum, G. speciosa, G. xanthochymus, C. formosum ssp. pruniflorum, C. polyanthum and S. verruculosa were extracted by methanol and chloroform. The extracts were screened for free radical scavenging activity using DPPH assay. All extracts showed a dose dependent antioxidant activity. The most potent with the lowest IC₅₀ values were observed in the methanol extracts from the wood of G. speciosa which were 2.5 and 5.3 folds more potent than the two standard antioxidants, ascorbic acid and α-tocopherol, respectively. Free radical scavenging activities ranging from moderate to high were observed in both methanol and chloroform fraction of the methanol extracts from H. hookerianum, C. formosum ssp. pruniflorum, G. xanthochymus, S. verruculosa and C. polyanthum.
- 2) The extracts were tested for antitumor activity on HeLa, KB and B16F10 human cancer cell lines using SRB assay. All extracts showed the effect on the growth of human cancer cell lines with a dose response relationship. The chloroform fraction of the methanol extracts from leave of G. speciosa gave the most potent with

the lowest concentration that cause 50% inhibition of cancer cell growth (GI₅₀) of 4, 6.6 and 3.7 µg/ml on HeLa, KB and B16F10 cell lines respectively.

- 3) The chloroform fraction of the methanol extraction of the woody stems of *H. hookerianum* furnished 5-hydroxy-2-methoxyxanthone (HH1), 2-hydroxy-3-methoxyxanthone (HH2), the xanthonolignoid *trans*-kielcorin (HH3) and two cinnamate ester derivatives, 4-hydroxy-3-methoxyphenyl ferulate (HH4) and betulinic acid-3β-yl caffeate (HH5). 4-Hydroxy-3-methoxyphenyl ferulate (HH4) have not been reported for the chemical constituents previously.
- 4) Schisandra verrucolosa also has not been studied for the chemical constituents earlier. One part of the chloroform fraction of the methanol wood extract was eliminated of chlorophyll, fractionated and purified to give vanillic acid (S1) and abscisic acid (S2). Another part of the crude extract was isolated and purified to give methyl 4-hydroxybenzoate (S3), 4-hydroxybenzaldehyde (S4), methyl 3,4-dihydroxybenzoate (S5), 1-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one (S6), 1,2-bis-(4-hydroxy-3-methoxyphenyl)-3-hydroxy-propan-1-one (S7) and 4-hydroxybenzoic acid (S8).
- 5) The effect of compounds HH1-HH5 from H. hookerianum was investigated against the growth of human cancer cell lines. The results showed that cinnamate esters HH4 and HH5 exhibited strong inhibitory effects (GI₅₀<20 μ M) against four cancer cell lines; that of trans-kielcorin HH3 was moderate while the inhibitory effects of xanthones HH1 and HH2 were only weak (GI₅₀>100 μ M).
- 6) The effect of compounds HH1-HH5 on the mitogenic response of human lymphocytes to phytohemagglutinin (PHA) was also evaluated and the concentrations able to cause 50% inhibition of proliferation were calculated. Again xanthones HH1

and HH2 exhibited weaker antiproliferative effects than cinnamate esters HH4 and HH5 while *trans*-kielcorin was devoid of activity.

- 7) The compounds \$1-S8 from *S. verruculosa* were also evaluated for their capacity to inhibit growth of human tumor cell lines as well as on the proliferation of human lymphocyte. The results showed that only compound \$5 exibited moderated inhibitory activity on three cell lines and on human lymphocyte proliferation.
- 8) All of the isolated compounds were determined for the free radical scavenging activity. Only compound S5 from S. verruculosa was showed a strong activity while compound HH4 and HH5 gave moderate activity.

The results from this study suggested a potential of the selected plants with significant biological activities for further study and development to new pharmaceuticals.

References

- Cao S.G., Wu X.H., Sim K.Y., Tan B.K.H., Pereira W.H.W., Hew N.F., Goh S.H.
 Novel cytotoxic polyprenylated xanthonoids from *Garcinia gaudichadii*(Guttiferae). Tetrahedron Letters. 1998; 39:3353-3356.
- Gonzalez M.J., Nascimento M.S.J., Cidade H.M., Pinto M.M.M., Kijjoa A., Anantachoke C., Silva A.M.S., Herz W. Immunomodulatory activity of xanthone from Calophyllum teysmannii var. inuphylloide. Planta Med. 1999; 65: 368-370.
- Grzybek J., Wongpanich V., Greenwood E.M., Angerhofer C.K., Pezzuto J.M., Cordell G.A. Biological evaluation of selected plants from Poland. Inter. J. Pharmacognosy. 1997; 35: 1-5.
- Hancke J.L., Burgos R.A., Ahumada F. Schisandra chinensis (Turcz.) Bill.
 Fitoterapia. 1999; 70: 451-471.
- Herz W., Gregor H. Ivalin, a new sesquiterpene lactone. *Phytochemistry*. 1962; 27: 905-910.
- Kashman Y., Gustafson K.R., Fuller R.W., Cardllina I.J.H., Mcmahon J.B., Currens M.J., Buckheit J.R.W., Hughes S.H., Cragg G.M., Boyd M.R. The calanolides, a novel HIV-inhibitory class of cooumarin derivatives from the tropical rainfotest tree Callophyllum lanigerum. J. Med. Chem. 1992; 35: 2735-2743.
- Kosela S., Cao S.G., Wu X.H., Vittal J.J., Sukri T., Masdianto, Goh, S.H., and Sim, K.Y. Lateriferone, a cytotoxic spiroxalactone with a novel skeleton, from Garcinia lartiflora Bl. Tetrahedron Letters. 1999; 40: 157-160.

- Li R.T., Li S.H., Zhao Q.S., Lin Z.W., Sun H.D., Lu Y., Wang C., Zheng Q.T. Lancifodilactone A, a novel bisnortriterpenoid from Schisandra lancifolia.

 Tetrahedron Letters. 2003; 44: 3531-3534.
- Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro W.A., Gray G.M., Campbell H., Mayo J., Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. NCI. 1991; 83: 757-765.
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. *J. Immono. Methods*. 1983; 65: 55-63.
- Mukherjee P.K., Saritha G.S., Suresh B. Antibacterial spectrum of *Hypericum hookerianum*. Fitoterapia. 2001; 72: 558-560.
- Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Varren J.T., Bokesch H., Kenney S., Boyd M. New colorimetric cytotoxicity assay for anticancer-drug screening. J. NCI. 1990; 82: 1107-1112.
- Tachibana Y., Kikuzaki H., Lajis H.N., Nakatani N. Antioxidative activity of carbazoles for Murraya koenigii leaves. J. Agric. Food Chem. 2001; 49: 5589- 5594.
- Xu Y.J., Cao S.G., Wu X.H., Lai Y.H., Tan B.H.K., Pereira S.H., Venkatraman G., Harrison L.J., Sim K.Y. Griffipavixanthone, a novel cytotoic bixanthone from Garcinia griffithii and G. pavifolia. Tetrahedron Letters. 1998; 39: 9103-9106.

Appendix

1. Publication

- 1.1 Jiradej Manosroi, Rujida Wilairat, Anake Kijjoa, Aranya Manosroi. Free radical scavenging activity of extracts from Thai plants in Guttiferae and Schisandraceae families. *Pharm Bio.* 2005; 43: 324-329.
- 1.2 Rujida Wilairat, Jiradej Manosroi, Aranya Manosroi, Anake Kijjoa, Maria São José Nascimento, Madalena Pinto, Artur M.S. Silva, Graham Eaton and Werner Herz. Cytotoxixities of xanthones and cinnamate esters from Hypericum hookerianum. Planta Med. 2005; 71: 680-682.
- 1.3 Jiradej Manosroi, Rujida Wilairat, Aranya Manosroi. In vitro antitumor activity of extracts from Thai plants in Guttiferae and Schisandraceae families on human cancer cell lines. RTA. Med. J. 2006; 59 (inpress).

2. Presentation

- 2.1 Jiradej Manosroi, Rujida Wilairat, Anake Kijjoa and Aranya Manosroi. The screening of free radical scavenging activity of extracts from Thai medicinal plants in Guttiferae and Schisandraceae family. 30th Congress on Science and Technology of Thailand, Impact Exhibition and Convention Center, Muang Thong Thani, Bangkok, Thailand, October 19-21, 2004. (Poster presentation, H0021)
- 2.2 Rujida Wilairat, Jiradej Manosroi, Aranya Manosroi, Madalena Pinto, Maria São José Nascimento and Anake Kijjoa. Cytotoxicity and inhibition of lymphocyte proliferation of xanthones and cinnamate esters from *Hypericum hookerianum*. 53rd Annual Meeting of the society for Medicinal Plants Research. Florence, Italy, August 21-25, 2005. (Poster presentation, P 457)

2.3 Jiradej Manosroi, Rujida Wilairat, Anake Kijjoa and Aranya Manosroi. *In vitro* antitumor activity of extracts from Thai plants in Guttiferae and Schisandraceae families on human tumor cell lines. RGJ-Ph.D. Congress VII. Pattaya, Chonburi, April 20-22, 2006. (Poster presentation, S3-P42)

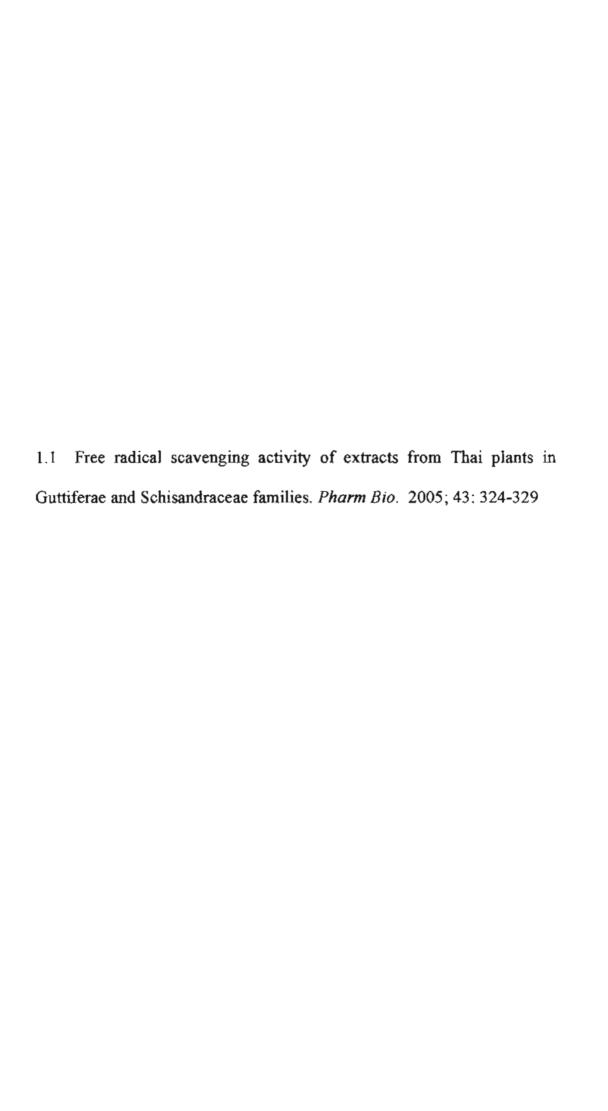
Appendix

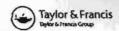
1. Publication

- 1.1 Jiradej Manosroi, Rujida Wilairat, Anake Kijjoa, Aranya Manosroi. Free radical scavenging activity of extracts from Thai plants in Guttiferae and Schisandraceae families. *Pharm Bio.* 2005; 43: 324-329. 15 2604: 0.6041
- 1.2 Rujida Wilairat, Jiradej Manosroi, Aranya Manosroi, Anake Kijjoa,

 Maria São José Nascimento, Madalena Pinto, Artur M.S. Silva, Graham Eaton and

 Werner Herz. Cytotoxixities of xanthones and cinnamate esters from Hypericum


 hookerianum. Planta Med. 2005; 71: 680-682.
- 1.3 Jiradej Manosroi, Rujida Wilairat, Aranya Manosroi. *In vitro* antitumor activity of extracts from Thai plants in Guttiferae and Schisandraceae families on human cancer cell lines. *RTA. Med. J.* 2006; 59 (inpress).


Report of May 18 1 1 1 1 1

2. Presentation

- 2.1 Jiradej Manosroi, Rujida Wilairat, Anake Kijjoa and Aranya Manosroi. The screening of free radical scavenging activity of extracts from Thai medicinal plants in Guttiferae and Schisandraceae family. 30th Congress on Science and Technology of Thailand, Impact Exhibition and Convention Center, Muang Thong Thani, Bangkok, Thailand, October 19-21, 2004. (Poster presentation, H0021)
- 2.2 Rujida Wilairat, Jiradej Manosroi, Aranya Manosroi, Madalena Pinto, Maria São José Nascimento and Anake Kijjoa. Cytotoxicity and Inhibition of Lymphocyte Proliferation of Xanthones and Cinnamate Esters from Hypericum hookerianum. 53rd Annual Meeting of the society for Medicinal Plants Research. Florence, Italy, August 21-25, 2005. (Poster presentation, P 457)

2.3 Jiradej Manosroi, Rujida Wilairat, Anake Kijjoa and Aranya Manosroi. *In vitro* antitumor activity of extracts from Thai plants in Guttiferae and Schisandraceae families on human tumor cell lines. RGJ-Ph.D. Congress VII. Pattaya, Chonburi, April 20-22, 2006. (Poster presentation, S3-P42)

Free Radical Scavenging Activity of Extracts from Thai Plants in Guttiferae and Schisandraceae Families

Manosroi^{1,2}, R. Wilairat¹, A. Kijjoa³, and A. Manosroi^{1,2}

Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand; ²Pharmaceutical Cosmetic Raw Materials and Natural Products Research and Development Center (PCRNC), Institute for Science and Technology Research and Development (IST), Chiang Mai University, Chiang Mai, Thailand; ³Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal

Abstract

Five Thai plants from the Guttiferae (Hypericum hookeranum Wight & Arn, Garcinia speciosa Wall, Garcinia vanthochymus Hook f. ex. T. Anderson, Cratoxylum formosum ssp. pruniflorum (Kurz) Gogel, and Calophyllum polyanthum Wall ex Choisy) and one from the Schisandraceae (Schisandra verruculosa) were extracted by methanol and chloroform. The extracts were screened for free radical scavenging activity using the DPPH assay. All extracts showed a dose-dependent antioxidant activity. The most potent with the lowest IC50 values were observed in the methanol extracts from the wood of 6. speciosa, which were 2.5- and 5.3-fold more potent than the two standard antioxidants, ascorbic acid and aaccopherol, respectively. Free radical scavenging activities ranging from moderate to high were observed in both methanol and chloroform extracts from H. hookerianum, C. formosum ssp. pruniflorum, G. xanthochymus, S. verneulosa and C. polyanthum. The information from this study can explain the traditional use and the further development of these extracts into new pharmaceuticals.

Keywords: DPPH, free radical scavenging activity, Guttiferae, Schisandraceae.

Introduction

Free radicals play an important role in the development of tissue damage and other pathological events such as cancer, aging, inflammation, and some degenerative diseases. The antioxidative properties of plant extracts and their isolated compounds which have free radical scavenging activity receive considerable attention for possible use in protection of cells and organs against oxidative damage (Siddhuraju et al., 2002; Velazquez et al., 2003). Natural antioxidants can be found in different plant tissues, including wood, bark, stem, leaf, root, flowers, and seeds. Many plant-derived antioxidants of free radical scavenging agents are phenolic or polyphenolic compounds (Zin et al., 2002). Several methods such as the ferric thiocyanate method and the thiobarbituric acid test are available for evaluating antioxidative activity. The free radical scavenging activity assay using DPPH (1,1-diphenyl-2-picrylhydracyl), a stable free radical, has been widely used to assess the free radical scavenging activity of antioxidants (Choi et al., 2002), as it is a simple and less time consuming method.

Compounds in plants from various parts of Southeast Asian have been screened and have exhibited significant biological activities. Garcinia and Hypericum species (Guttiferae) were found to be rich in secondary metabolites such as xanthonoids, biflavonoids, and triterpenoids (Xu et al., 1998). Some of these plants have been used in traditional medicines. For example, H. geminiflorum (Hernsl), an endemic plant in Taiwan, is a Chinese folk medicine for the treatment of several bacterial infections, infectious hepatitis, gastrointestinal disorder, and tumor. Two new oxygenated xanthones and constituents with antiplatelet and anti-inflammatory activity have been found in these plants (Chung et al., 2002). For plants in the Schisandraceae family, more than 19 species are widely use in traditional Chinese medicine. These plants have proved to be rich in lignans and triterpenoids with various biological activities (Li et al., 2004). Some triterpenoids

Accepted: February 24, 2005

Address correspondence to: 1. Manosroi, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand, Tcl.: + 66-53-844338/894806; Fax: +66-53-894169; E-mail: pmpti006@chiangmai.ac.th

DOI: 10.1080/13880200590951720 @ 2005 Taylor & Francis Ltd.

Tuble 1. The percentage yield of methanol and chloroform extracts from various parts of the selected Thai plants in the Guttiferrae and Schisandraceae.

	Wood Leaf		eaf	Fr			
Plant family	Local name	МеОН	CHCl ₃	McOH	CHCl ₃	MeOH	CHCl ₃
Guttiferae							
Hypericum hookerianum Wight & Acu	Bua Thong	7.36	2.01	ND	ND	ND	ND
Garcinia speciosa Wall	Phawa, Saraphi Pa	12.18	0.66	8.61	4.33	ND	ND
Garcinia xanthochymus Hook, f. ex, T. Anderson	Mada Luang, Mada	19.04	1.02	12.45	1.67	23.60	9,69
Crotoxylum formosum ssp. pruniflorum (Kutz) Gogel	Tiew Khon, Tiew Leung	3.77	1.01	14.60	4.50	ND	ND
Calophyllum polyanthum Wall ex Choisy	Pha Ong, Ma Nhae Doi	4.46	2.65	\$1,10	8.50	ND	ИŊ
Schisandraceae							
Schisandra verruculosa Gagnap	_	1.77	1.22	4.14	3.94	ND	ND

McOH, methanol extract; CHCl3, chloroform extract; ND, not determined.

showed anti-HIV, antitumor, antihepatitis, and antioxidant activity (Hancke et al., 1999; Li et al., 2003). The antioxidative activity of polyphenols and phloroglucinol derivatives isolated from some Hypericum species and dibenzocyclooctene lignans isolated from Schisandraceae have been studied (Lu & Liu, 1992; Couladis et al., 2002; Heilmann et al., 2003). The six selected plants in this study have never been previously investigated for antioxidative activity. The methanol and chloroform extracts from the wood, leaves, and fruit of six Thai plants (Hypericum hookerianum Wight & Arn, Garcinia speciosa Wall, G. xanthochymus Hook, f. ex. T. Anderson, Crotoxylum formosum ssp. pruniflorum (Kurz) Gogel, Calophyllum polyanthum Wall ex Choisy and Schisandra verruculosa Gagnap) were screened for free radical scavenging activity and their potential to be developed into pharmaceutical products.

Materials and Methods

Chemicals

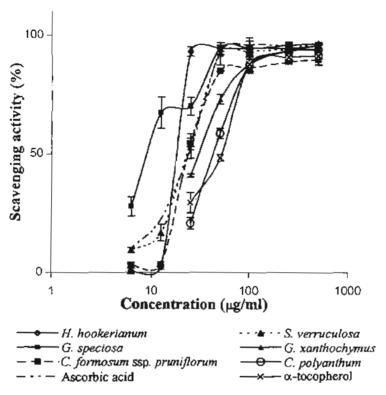
DPPH (1,1-diphenyl-2-picrylhydrazyl), ascorbic acid, and α-tocopherol were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Ethanol and chloroform were obtained from Merck Ltd. (Darmstadt, Germany) and Labscan Asia Co., Ltd. (Bangkok, Thailand), respectively.

Plant samples

Six plants were collected from Chiang Mai Province, Thailand, in November and December 2002 (Table 1). The plant samples were authenticated by the Department of Biology, Faculty of Science and Faculty of Pharmacy, Chiang Mai University, Thailand, and the voucher specimens were deposited at the herbarium of the department.

Preparation of the extracts

Wood, leaves, and fruits from the plants were separately reduced to small pieces, dried at 40°C in a hot air oven and comminuted to powder. The dried powder samples (100-300 g) were macerated in methanol for 48 h. The solvent was evaporated under reduced pressure by a rotary evaporator. The residues were re-extracted with chloroform and concentrated by partial evaporation under reduced pressure. Twenty-four extracts were obtained, and the percentage yields were calculated.


DPPH free radical scavenging assay

The free radical scavenging activities of all extracts and the standards (ascorbic acid and α-tocopherol) were determined by a modified DPPH assay of Tachibana et al. (2001). DPPH was used as a stable free radical. Briefly, 75 μl of the methanol extracts (6.25–1 mg/ml) and 75 μl of 200 μM ethanol solution of DPPH were put into each well of a 96-well microplate (Nalge Nunc International, NY, USA). The reaction mixtures were allowed to stand for 30 min at room temperature, and the absorbance was measured at 570 nm by a Well Reader (Seikagaku Corporation, Tokyo, Japan) against a blank (ethanol without DPPH). The experiments were done in triplicate. The DPPH free radical scavenging activity was calculated according to the following equation.

DPPH free radical scavenging activity (%)

$$= \left(\frac{\text{(absorbance of the control})}{-\text{absorbance of the sample)}} \times 100$$

The scavenging activity was plotted against concentrations. The concentration that showed 50% DPPH scavenging activity (IC₅₀) was determined.

igure 1. Comparison of free radical scavenging activity (%) of the methanol wood extracts of the six selected Thai plants and the andard antioxidants. Vertical bars represent the standard deviation of three replicates.

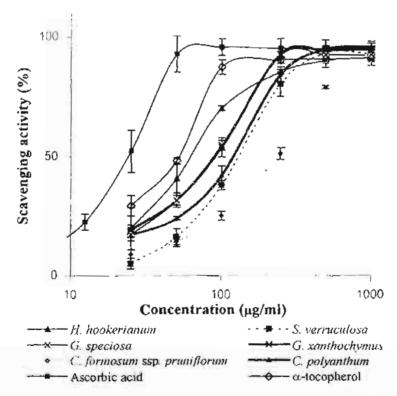


Figure 2. Comparison of free radical scavenging activity of the chloroform wood extracts of the six selected Thai plants and the tandard antioxidants. Vertical bars represent the standard deviation of three replicates.

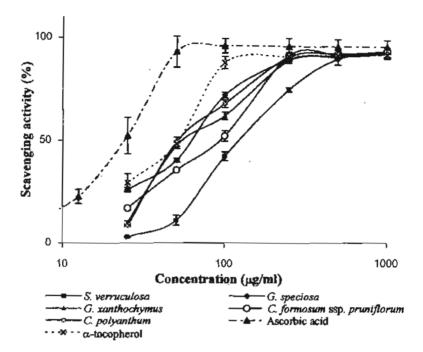


Figure 3. Comparison of free radical scavenging activity (%) of the methanol leaves extracts of the six selected Thai plants and the standard antioxidants. Vertical bars represent the standard deviation of three replicates.

Results and Discussion

The percentage yields of the methanol and chloroform extracts from different parts of each plant are shown in Table 1. Methanol extracts of all plants showed higher percentage yield than the chloroform extracts. This might be due to the presence of more polar compounds in the plants, which are more soluble in methanol than in chloroform.

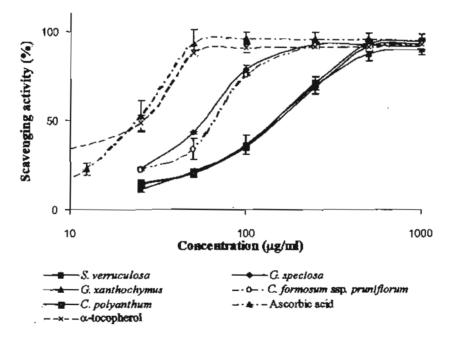


Figure 4. Comparison of free radical scavenging activity (%) of the chloroform leaves extracts of the six selected Thai plants and the standard antioxidants. Vertical bars represent the standard deviation of three replicates.

Table 2. The ICso values of the selected Thai plant extracts.

			JC ₅₁₁ (µg/ɒl)			
	W	Wood		Leaf		Fruit	
Plant species	МеОН	CHCl ₃	MeOH	CHCl ₃	MeOH	CHCl ₃	
Guttiferae			_	_			
H. hookeriamm	19 08	65.42	_	_		_	
G. speciosu	9.75	142	65.13	168	=-		
G. xanthochymus	32.10	89.56	58.69	59.83	25.58	26.68	
C. formosum ssp. pruniflorum	23.96	91.04	93.28	162.34	_		
C polyanthum	44.29	242.25	51.88	69.41	-		
Schisandraceae							
S. verruculosa	23.34	127.34	130	162.18	~	_	

MeOH, methanol extract; CHCl₃, chloroform extract; IC₅₀, the concentration of extract that showed 50% DPPH scavenging activity. The IC₅₀ values of ascorbic acid and α -tocopherol was 24.01 and 52.04 µg/ml, respectively.

For scavenging activity, hydrogen donating ability of the extract to the free radical (DPPH) was determined. When DPPH is scavenged, the deep violet color turns to pale yellow, which can be determined spectrophotometrically. All extracts showed scavenging activity in a concentration-dependent pattern (Figs. 1–4). Table 2 demonstrates the IC_{50} of the extract. All methanol extracts gave lower IC_{50} values than the chloroform extracts. These results agree with the previous study of Moure et al. (2000) indicating the dependence of antioxidant activity of the plant extracts on the polarity of extracting solvents.

In comparing the extract from wood and leaf of each plant, the scavenging activity of methanol wood extract of all plants exhibited higher scavenging activity than their leaves. This might be due to the higher content of the total polyphenolic compounds in the wood than in leaves. These polyphenolic compounds include flavonoids, anthraquinones, anthocyanidins, xanthones, and tannins. These compounds have been reported to scavenge free radicals, superoxide and hydroxyl radical by single electron transfer (Ho et al., 1999; Choi et al., 2002). The highest scavenging activity was found in the methanol wood extract of G. speciosa with an IC50 value of 9.75 µg/ml, which was 2.5- and 5.3-fold more potent than the standard antioxidants, ascorbic acid and y-tocopherol, respectively. H. hookerianum, S. verruculosa, C. formosum ssp. pruniflorian, G. xanthochymus, and C. polyanthum gave 1C₅₀ values of 19.08, 23.34, 23.96, 32.10, and 44.29 µg/ml, respectively. In fact, some of these values were less than those obtained from the standard antioxidants ascorbic acid and α-tocophero! (the IC₅₀ values of ascorbic acid and α-tocopherol were found to be 24.01 and 52.04 µg/ml, respectively). For G. xanthochynus, the ICso values of methanol and chloroform extract were not significantly different in fruits (25.58 and 26.68 µg/ml) and leaves (58.69 and 59.83 µg/ml). The extracts from G. xunthochymus using polar and nonpolar solvents appeared

to give equipotency of the free radical scavenging activity. The results from this study suggest not only antioxidant activity use but also the potential of these selected plants to be developed into new pharmaceuticals. Further studies on other biological activities and elucidation of the active compounds of the extracts are warranted.

Acknowledgments

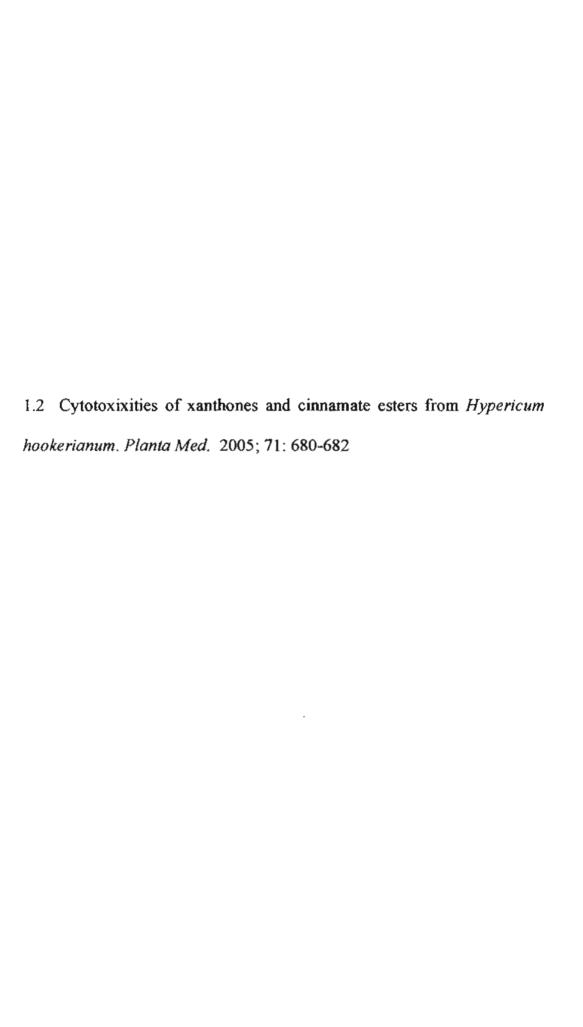
This work was partly supported by the Thailand Research Fund (TRF) under the RGJ-PhD program.

References

Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK (2002): Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci 163: 1161-1168.

Chung M, Weng JR, Teng CM, Lin CN (2002): Two new oxygenated xanthone from leaves of *Hypericum geminiflorum*. Planta Med 68: 25-29.

Couladis M, Baziov P, Verykokidou E, Lovkis A (2002): Antioxidant activity of polyphenols from Hypericum triquetrifolium. Phytother Res 16: 769-770.


Hancke JL, Burgos RA, Ahumada F (1999). Schisandra chinensis (Turez.) Bill. Fitoterapia 70: 451-457.

Heilmann J, Winkelmann K, Sticher O (2003): Studies on the antioxidative activity of phloroglucinol derivatives isolated from Hypericum species. Planta Med 69: 202-206.

Ho KY, Huang JS, Tsai CC, Lin TC, Hsu YF, Lin CC (1999): Antioxidant activity of tannin components from Vaccinum vitis-idaea L. J. Pharm Pharmacol 51: 1075–1078.

Li RT, Li SH, Zhao QS, Lin ZW, Sun HD, Lu Y, Wang C, Zheng QT (2003): Lancifodilactone A, a novel bisnortriterpenoid from Schisandra lancifolia. Tetrahedron Lett 44: 3531-3534.

- Li RT, Shen Y, Xiang W, Sun H (2004): Four novel nortriterpenoids isolated from Schisandra henriyi var. yunnanensis. Eur J Org Chem 4: 807-811.
- Lu H, Liu GT (1992): Antioxidant activity of dibenzocyclooctene lignans isolated from *Schisandra* species. *Planta Med 58*: 311-313.
- Mouse A, Franco D, Sineiro J, Dominquez H, Nunez MJ, Lema JM (2000): Evaluation of extracts from *Gevuina* avellana hulls as antioxidants. *J Agric Food Chem 48*: 3890-3897.
- Siddhuraju P, Mohan PS, Becker K (2002): Studies on the antioxidant activity of Indian Laburnum (Cassia fixtula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem 79: 61-67.
- Tachibana Y. Kikuzaki H, Hj N, Nakatani N (2001): Antioxidative activity of carbazoles from *Murraya koenigii* leaves. *J Agric Food Chem 49*: 5589-5594.
- Velazquez E, Tournier HA, Buschiazzo PM, Saavedra G, Schinella GR (2003): Antioxidant activity of Paraguayan plant extracts. Fitoterapia 74: 91-97.
- Xu YJ, Cao SG, Wu XH, Lai YH, Tan BHK, Pereira SH, Venkatraman G, Harrison LJ, Sim KY (1998). Griffipavixanthone, a novel cytotoxic bixanthone from Garcinia griffithii and G. pavifolia Tetrahedron Lett 39: 9103-9106.
- Zin M, Hamid AA, Osman A (2002): Antioxidant activity of extracts from Mengkudu (Morunda citrifolia L.) root, fruit and leaf. Food Chem 78: 227-231.

Cytotoxicities of Xanthones and Cinnamate Esters from Hypericum hookerianum

Rujida Wilairat^{1, 2}, Jiradej Manosroi², Aranya Manosroi², Anake Kijjoa^{1, 3}, Maria São José Nascimento⁴, Madalena Pinto⁵, Artur M. S. Silva⁶, Graham Eaton⁷, Werner Herz⁸

Abstract

5-Hydroxy-2-methoxyxanthone (1), 2-hydroxy-3-methoxyxanthone (2), trans-kielcorin (3), 4-hydroxy-3-methoxyphenyl ferulate (4) and 3β -O-caffeoylbetulinic acid (5) were isolated from Hypericum hookerianum. Compounds 1–5 were tested against the growth of three human tumor cell lines, MCF-7, NCI-H460 and SF-268. Compounds 4 and 5 exhibited significant inhibitory activity effects against all three; Gl_{50} values for 4 were 15.1 \pm 1.6, 18.7 \pm 2.3 and 15.9 \pm 2.7 and for 5 12.2 \pm 2.4, 19.6 \pm 2.3 and 24 3 \pm 2.5. Compound 3 was less active with Gl_{50} values of 55.1 \pm 2.3, 49.7 \pm 3.0 and 40.5 \pm 1.5, while 1 and 2 exhibited only weak effects. Compounds 4 and 5 were moderately effective in influencing the mitogenic response to human lymphocytes to hemoagglutinin, with IC values of 26.1 \pm 3.6 and 40.8 \pm 4.9, respectively.

The literature contains numerous articles on the chemistry of members of the large genus Hypericum (Clusiaceae), in part because of their use in traditional systems of medicine. Common constituents are xanthones, phloroglucinols and flavonoids. Hypericum hookerianum Wight et Arn., one of approximately 20 species occurring in India where it is said to be a traditional tribal wound-healing agent [1], is the only species occurring in Thailand and has not been examined chemically although Mukherjee et al. [2] have reported on the antibacterial activity of extracts from various parts of the plant.

In this letter we describe our investigation of the chemical constituents of H. hookerianum from the high mountain area of Northern Thailand and their effect on the growth of three human tumor cell lines and on the proliferation of lymphocytes. Chloroform extraction of the woody stems furnished 5-hydroxy-2methoxyxanthones (1), 2-hydroxy-3-methoxyxanthone (2), the xanthonolignoid trans-kielcorin (3) and two cinnamate ester derivatives, 3B-O-caffeoylbetulinic acid (5) and 4-hydroxy-3-methoxyphenyl ferulate (4). Xanthone 1 has been reported previously from Hypericum androsaemum [3], H. inodorum [4], and H. roeperanum [5] and xanthone 2 from H. mysorense [6] while 3 [7], [8], [9], first reported from Kielmeyera rubriflora [8], has subsequently been isolated from a number of Hypericum species, inter al. H. ericoides [10], H. reflexum [11], and H. canariensis [12]. Information on melting point and rotation of caffeate 5 from Betulo species [13]. (14) was not readily accessible; however, its ¹H- and ¹³C-NMR spectra have appeared in the more recent literature [15], [16]. The remaining constituent 4-hydroxy-3-methoxyphenyl ferulate (4) has not been described previously.

The *in vitro* cytotoxicity of compounds 1-5 was investigated against three human cancer cell lines. The results are shown in Table 1. Cinnamate esters 4 and 5 exhibited strong inhibitory effects ($Gl_{50} < 20~\mu\text{M}$) against three cancer cell lines; that of transkielcorin (3) was moderate while the inhibitory effects of xanthones 1 and 2 were only weak ($Gl_{50} > 100~\mu\text{M}$). The effect of compounds 1-5 on the mitogenic response of human lymphocytes to phytohemagglutinin (PHA) was also evaluated and is depicted in Table 2 which shows the concentrations able to cause 50% inhibition of proliferation. Again xanthones 1 and 2 exhibited weaker antiproliferative effects than cinnamate esters 4 and 5 while 3 was devoid of activity.

Material and Methods

Plant material: Aerial parts of Hypericum hookerianum Wight et Arn., a woody shrub, were collected at 2500 m altitude at Doi Inthanon, Chiang Mai, Thailand in June 2003 and were identified by Dr. J. F. Maxwell. A voucher specimen (N 91 – 776) was deposited in the CMU Herbarium, Faculty of Pharmacy. Chiang Mai University. Thailand, Leaves and green branches were removed and the remaining woody stems were air dried in the shade prior to extraction.

General experimental procedures: ¹H- and ¹³C-NMR spectra were recorded at ambient temperature in CDCl₃ on a Bruker AMC instrument operating at 300.13 and 75.47 MHz, respectively, or a Bruker DRX instrument operating at 500 and 125 MHz, respectively. El mass spectra were measured on a Hitachi Perkin-Elmer RMV-GM instrument. HR mass spectra were measured on a Kratos Concept II 2 sector mass spectra were silica gel for chromatography was silica gel 60 (0.2-0.5 mm Merck), for analytical and for preparative TLC silica gel 60 GF 254 Merck.

Extraction and isolation: Dried and powdered woody stems of Hypericum hookerianum (5.5 kg) were percolated by MeOH (3×10 L) at room temperature. The solution was evaporated at reduced pressure and the crude residue (81 g) was dissolved in CHCl₃ (3×500 mL) under sonication. The CHCl₃ extracts were combined and evaporated at reduced pressure. The residue (62 g) was applied to a silica gel column (300 g) and eluted with pet-

Affiliation: ¹ ICBAS-Instituto de Cièncias Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal · ² Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand · ¹ CIIMAR-Centro Interdisciplinar de Investigação Maritima e Ambiental, Universidade do Porto, Porto, Portugal · ² Laboratório de Microbiologia, Faculdade de Farmácia e Centro de Estudos de Química Orgânica, Fitoquímica º Farmacologia da Universidade do Porto (CEQOFFUP), Universidade do Porto, Porto, Portugal · ² Laboratório de Química Orgânica, Faculdade de Farmácia e Centro de Estudos de Química Orgânica, Fitoquímica e Farmacologia da Universidade do Porto (CEQOFFUP), Universidade do Porto, Portugal · ² Department de Química, Universidade de Aveiro, Aveiro, Portugal · ² Department of Chemistry, Leicester University, Leicester, UK · ¹ Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA

Correspondence: Prof. Werner Herz - Department of Chemistry and Boochemistry - Florida State University - Talbahassee - FL32306-4390 - Fax; •1-850-644-8281 - E-mail: jdulin@chem.fso.edu

Received: September 3, 2004 - Accepted: April 2, 2005

Bibliography: Planta Med 2005; 71: 680-682 · O Georg Thieme Verlag KG Stattgart - New York · A. J. 10.1055/s-2005-871276 · ISSN 0032-0943

rol-CHCl3, CHCl3, and CHCl3-acetone, 250 mL fraction being collected as follows: Frs. 1 - 133 (petroi-CHCl3, 7:3), 134 - 263 (petrol-CHCl₃, 1:1), 264 - 365 (petrol-CHCl₃, 1:4), 366 - 464 (CHCl₃acetone, 9:1), 465 - 487 (CHCl3-acetone, 7:3), Frs. 101 - 138 (1.3 g) were combined, placed on a silica gel 60 column (30 g) and eluted with petrol-CHCl₃, 300 mL subfractions being collected as follows: Subfrs. 1-40 (petrol-CHCl₃, 7:3), and 41-55 (petrol-CBCl₃, 3 ; 1), Purification of Subfrs. 6 - 12 (163 mg) by TLC (silical gel, CHCl3-petrol-HCO2H, 95:5:0.1) gave yellowish crystals of 1 (79 mg). Sbfrs. 13-23 (87 mg) were combined and purified by TLC (silica gel, CHCl₃-acetone-HCO₃H, 95:5:0.1) to give yellow needles of 2 (38 mg). Frs. 139 - 172 (2.1 g) were combined, placed on a silica gel 60 column (40 g) and eluted with petrol-CHCl₃, 250 mt subfractions being collected as follows: Sbfrs. 1-33 (petrol-CHCl₃, 1:1), 34-80 (petrol-CHCl₃, 3:7) and 81-95 (petrol-CHCl₃, 1:9). Sbfrs, 4-11 (134 mg) were combined and purified by TuC (silica gel, CHCl3-acetone-HCO2H, 90:10:0.1) to give 2 (41 mg). Sbfrs. 14-21 (39 mg) were combined and similarly purified by TLC to give 5 (35 mg). Purification of Sbfrs. 46 - 50 (189 mg) by TLC (silica gel, CHCl3-acetone-HCO2H, 85:15:0.1) afforded 4 (44 mg). Frs. 265 - 272 (89 mg) were also combined, placed on a silica gel 60 column (15 g) and eluted with petrol-CHCl₃, 100 mL subfractions being collected as tollows: Sbfrs. 1 – 41 (petrol-CHCl $_3$, 1:1), and Sbfrs. 42 – 60 (petrol-CHCl $_3$, 1:4). Purification of Sbfrs. 26 – 45 (125 mg) by TEC (silica gel, CHCl $_3$ -acetone-HCO $_2$ H, 95:5:0.1) afforded 3 (35 mg). Frs. 316 – 330 (100 mg) were purified by TLC (silica gel, CHCl $_3$ -EtQAC-acetone-HCO $_2$ H, 85:10:5:0.1) to give 5 (10 mg) while purification of Frs. 331 – 350 (556 mg) by TLC (silica gel, CHCl $_3$ -acetone-HCO $_2$ H, 95:5:0.1) afforded 3 (52 mg) and 5 (72 mg).

The structures of the known compounds 1-3 and 5 and the previously unreported 4 were established by mass, ¹H- and ¹³C-NMR spectrometry, COSY, HMBC and in the case of 4, also NOESY.

Compound 1 had m.p. 247 - 249 C (CHCl₃), lit. [5] m.p. 245 - 248 C; EI-MS (electrospray); $m/z = 243 \text{ [M + H^*]}$.

Compound 2 had m.p. 173 - 175 C (CHCl₃). lit. [6] m.p. 174-175 C; EI-MS (electrospray): $m/z = 243 \text{ [M + H^*]}$.

Compound 3 was optically inactive and had m.p. 248-250 C (CHCl₃), lit. [7] m.p. 250-251 C; FAB-HR-MS: $m/z = 437.12370 \text{ [M + H^+]}$ (calcd. for $C_{24}H_{21}O_8$: 437.12364).

Compound 5 was a colorless solid, m.p. 262 – 264 C, m.p. and rotation not reported in the available literature; EI-MS (electrospray): $m/z = 617 \text{ [M - H^*]}; |\alpha|_0^{30}$: 138 (CHCl₃, c 0.145 g/100 mL); ¹H- and ¹³C-NMR spectra were as reported [15], [16].

4-Hydroxy-3-methoxyphenyl ferulate (4): Yellowish gum; HRMS: m/z=315.08691 [M \sim H $^{+}$] (calcd. for $C_{12}H_{16}O_{6}\sim$ H $^{+}$: 315.08686). The loss of a proton from a hydroxyl-containing compound in El spectrometry is relatively common. 1 H-NMR (300 MHz, CDCl $_{2}$): δ=3.77 (3H, s, 3-OMe), 3.92 (3H, s, 3-OMe), 5.52 (1H, brs, 4-OH), 5.93 (1H, brs, 4-OH), 6.29 (1H, d, J=15.9 Hz, H-8), 6.54 (1H, s, H-2'), 6.61 (1H, d, J=8. H-6'), 6.81 (1H, d, J=8 Hz, H-5), 6.91 (1H, d, J=8.2 Hz, H-5), 7.01 (1H, s, H-2), 7.07 (1H, d, J=8.2 Hz, H-6), 7.59 (1H, d, J=15.9 Hz, H-7); 13 C NMR (125.77 MHz, CDCl $_{3}$); δ=167.28 (C-9), 148.05 (C-4), 146.76 (C-3), 146.43 (C-3'), 145.17 (C-7), 143.87 (C-4'), 13).68 (C-1'), 126.81 (C-1), 123.09 (C-6), 121.71 (C-6'), 115.15 (C-8), 114.72 (C-5), 114.13 (C-5'), 113.22 (C-2'), 109.42 (C-2), 55.96 (3-OMe), 55.73 (3'-OMe). Assignments are based on COSY, HSQC and HMBC experiments.

Table 1	Effect of compound	ls from Hypericum hookerianu	um on the growth of human cancer cell lines	i
---------	--------------------	------------------------------	---	---

Compounds	Gl _{so} (μM)°		
	MCF-7 (breast)	NCI-H460 (lung)	SF-268 (CNS)
1	98.1 ± 8.5	108.5 ± 15.3	134,3 ± 9.9
2	100 ± 17.5	178.7 ± 17.2	144,6 ± 25.8
3	55.1 ± 2.3	49.7 ± 3.0	40.5 ± 1.5
4	15.1 ± 1.6	18.7 : 2.3	15.9 ± 2.7
5	. 12.2 ± 2.4	19.6 ± 2.3	24.3 ± 2.5
Doxorubicin ¹	42.8 ± 8.2	94.0 1 8.7	93.0 ± 7.0

^{*}Results show means a SEM of 3 - 4 independent experiments performed in duplicate.

⁶ Data from the positive control doxorobicin are expressed in 6M.

Table 2 Effect of compounds 1 – 5 on proliferation of human lymphocytes

Compounds	IC ₅₀ (μM)°	
1	168.8 ± 4.1	
2	171.6 ± 11.7	
3	> 114.7	
4	26.1 ± 3.6	
5	40.8 ± 4.9	
Cyclosporin A	0.34 ± 0.04	

^{*} Results show means 1 SEM of 3 - 4 independent experiments performed in duplicate.

Cytotoxicity assays: Reagents and procedures were those described earlier [17]. Doxorubicin hydrochloride of approximately 98% purity by TLC was purchased from Sigma-Aldrich Co.

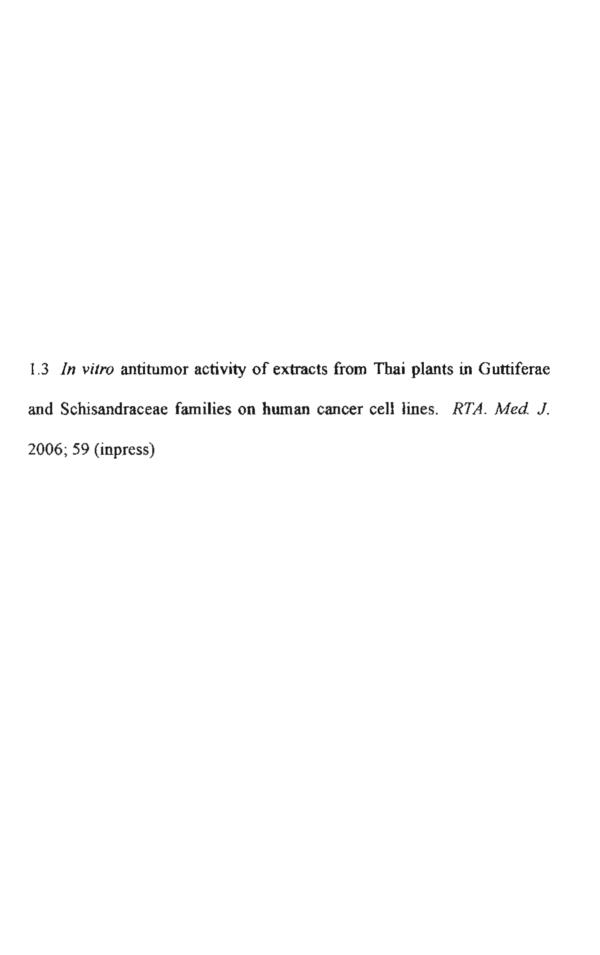
Human lymphocytes proliferation assays: The effect of compounds 1-5 on the mitogenic response of human lymphocytes to PHA was evaluated using reagents and procedures described earlier [18]. Cyclosporin (minimum purity 95%) was purchased from Sigma-Aldrich Co.

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnología (FCT) of Portugal (Unidade de I&D 226/94), POCTI (QCA III) and FEDER. Rujida Wilairat thanks the Thailand Research Fund (TRF) for a fellowship under the RGJ-Ph.D program.

References

- Mukherjee PK, Suresh B. The evaluation of wound-healing potential of Hypericum hookerianum. J Altern Complement Med 2000; 6: 61 - 9
- Mukherjee PK, Saitha GS, Suresh B. Antibacterial spectrum of Hypericum hookerionum. Fitoterapia 2001; 72: 558 – 60
- ³ Nielson H, Arends P, Xanthone constituents of Hypericum androsaemuni. J Nat Prod 1979; 42: 301 – 4
- 4 Cardona E, Fernandez I, Pedro JR. Xanthone constituents of Hypericum inodorum. Heterocycles 1992; 34: 479 82
- S Rath C, Potterat O, Mayi S, Hostettmann K. Xanthones from Hypericum
- roeperanum. Phytochemistry 1996; 43: 513 20 6 Gunafilaka AAL, Fernandez I, Pedro JR. Minor xanthones of Hypericum
- mysorense Wight et Arn. Phytochemistry 1982; 21: 1751 3


 Pinto MMM, Mesquita AAL, Gottlieb OR, Xanthonolignoids from
- Kielmeyera coriacea. Phytochemistry 1987; 26: 2045 8

 8 Gottlieb OR, Mesquita AAL, Nagem TJP. Chemistry of Brazilian Guttiferae XXVII. Xanthones from Kielmeyera rubriflora. Phytochemistry
- 1971; 10: 2253-5

 Sousa EP, Silva AMS, Pinto MMM, Pedro MM, Cerqueira FAM, Nascimento MSJ. Isomeric kielcorins and dihydroxyxanthones. Synthesis, structure elucidation and inhibitory activities of growth of human cancer cell lines and on the proliferation of human lymphocytes in
- vitro. Helv Chim Acta 2002; 85: 2862 7

 10 Cardona ML, Seoan E. Flavonoids and xanthonolignoids of Hypericum ericoides. Phytochemistry 1982; 21: 2759 60
- ¹¹ Cardona ML, Fernandez I, Pedro JR, Serrano A. Xanthones from Hypericum reflexum. Phytochemistry 1990; 29: 3003 - 6
- ¹² Cardona ML, Fernandez I, Seoan E, Vidal E. Additional new xanthones and xanthonolignoids from *Hypericum canariensis*. J Nat Prod 1986; 49: 95-100

- 13 Ekman R, Sjoholm R. Betulinol 3-caffeate in outer bark of Betulg verrucosa. Finn Chem Lett. 1983; 5:134; Chem Abstr 1984; 100: 117827a
- ¹⁴ Ohara S, Yagatay M, Bayashi Y, Utilization of wood extractives, I. Extractions from the herb of Betula plutyphylla Sukatchev var. japonica. Makuzai Gakkoishi 1986; 32, 266; Chem Abstr 1986; 105: 99363s
- 15 Pan H, Ludgren LN, Anderson R. Triterpene caffeates from bark of Betula pubescens. Phytochemistry 1994; 37: 795-9
- ¹⁶ Chen B, Duan H, Takaishi Y. Triterpene caffeoyl esters and diterpenes from Celastrus stephanolifolius. Phytochemistry 1999: 51: 683 – 7
- ¹⁷ Cidade HM, Nascimento MSJ, Pinto MMM, Kijjoa A, Silva AMS, Herz W. Artelastocarpin and carpelastofuran, two new flavones, and cytotoxicities of prenylflavonoids from Artocarpus elasticus against three cancer cell lines. Planta Med 2001; 67: 867–70
- ¹⁸ Gonzalez MJ, Nascimento MSJ, Cidade HM, Pinto MMM, Kijjoa A, Anantachoke C, Silva AMS, Herz W. Immunomodulatory activity of xanthones from Calophyllum teymannii var. inophylloide. Planta Med 1999; 65: 368-71

In vitro Antitumor Activity of Extracts from Thai Plants in Guttiferae and Schisandraceae Families on Human Cancer Cell Lines.

Jiradej Manosroi^{1,2,*}, Rujida Wilairat ^{1,3}, Aranya Manosroi^{1,2}

¹Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand

²Pharmaceutical Cosmetic Raw Materials and Natural Products Research and Development

Center (PCRNC), Institute for Science and Technology Research and Development (IST),

Chiang Mai University, Chiang Mai, Thailand

³Department of Pharmacy, Phramongkutklao Hospital, Bangkok, Thailand

* Corresponding author. Tel.: +66-53-944338/894806; fax: +66-53-894169.

E-mail address: pmpti006@chiangmai.ac.th (J. Manosroi)

-

Abstract

Purpose: To screen the in vitro antitumor activity of extracts from the selected Guttiferae and Schisandraceae plants. Materials and Methods: Twenty-two methanol and chloroform extracts from Guttiferae and Schisandraceae families collected from the northern region of Thailand were tested for antitumor activity on HeLa (cervical carcinoma), KB (epidermoid carcinoma) and B16F10 (melanoma) human tumor cell lines using the sulforhodamine B (SRB) binding assay. Results: All extracts showed an antitumor activity with a dose response relationship. The chloroform extract of *G. speciosa* showed the potent inhibitory effect with the 50% growth inhibition (Gl₅₀) value of 4.0, 6.6 and 3.7 μg/ml from the leaves and 9.9, 15.7 and 8.1 μg/ml from the wood against HeLa, KB and B16F10 tumor cell lines, respectively. Chloroform extracts of *H. hookerianum* and *G. xanthochymus* showed the inhibitory effect on cell growth with GI₅₀ value less than 20 μg/ml. Conclusion: The information from this study can support the use of these plants in Thai traditional medicine and the further development of these extracts to new pharmaceuticals.

Keywords: Guttiferae; Schisandraceae; SRB assay; Antitumor activity; Thai plants; Extracts

Introduction

The Guttiferae, mainly found in tropical and northern temperate regions and well known to be rich in secondary metabolites such as xanthonoid, biflavonoid and triterpenoid are widely used in traditional medicine. These plants have been screened and found to exhibit significant pharmaceutical activity. Hypericum hookerianum, a traditional tribal wound healing agent, have been evaluated for antibacterial activity and cinnamate esters isolated by our group exhibited significant inhibitory effect against MCF-7, NCI-H460 and SF-268 tumor cell lines, and were moderately effective in influencing the mitogenic response of human lymphocytes to phytohemagglutinin. Garcinia speciosa have been studied for antiviral activity and effects on apoptosis 4-5. Compounds isolated from wood of G. xanthochymus which had NGF-potentiating activity also have been reported. Wood of C. formosum ssp. Pruniflorum was found to contain quercetin, hyperoside, xanthones, mangiferin and isomangifin but the biological activities of these compounds were not known.

For plants in the Schisandraceae family, the winding stem twist around the trunks of trees and climb to their top, over 19 species have been widely used in Chinese traditional medicine. These plants have been proved to be rich in lignans and triterpenoids with various biological activities⁸. Isolated compounds from *Schisandra propinqua* fruit, seed and stem, exhibited the antihepatotoxic, antioxidant and antitumor activities⁹.

In the framework of our chemical and biological investigations on plant species, the methanol and chloroform extracts from wood and leaves of the six Thai plant species in the Guttiferae (Hypericum hookerianum Wight & Am, Garcinia speciosa Wall, G. xanthochymus Hook f ex T. Anderson, Cratoxylum formosum ssp. pruntflorum (Kurz) Gogel and Calophyllum polyanthum Wall ex Choisy) and Schisandraceae (Schisandra verruculosa Gagnap) were studied for free radical scavenging activity. In the present work, these

extracts were found to possess *in vitro* antitumor properties against three human tumor cell lines, HeLa (cervical carcinoma), KB (epidermoid carcinoma) and B16F10 (melanoma).

Materials and Methods

Plant material.

The plants materials in the present investigation were collected from Chiang Mai Province, Thailand in November-December 2002. Voucher specimens were authenticated and deposited at the herbarium of Biology Department, Faculty of Science and Faculty of Pharmacy, Chiang Mai University, Thailand.

Preparation of the extracts and stock solution.

The extracts and stock solutions were prepared by a modified method of Wilairat et al.³. Wood and leaves from the plants were separately chopped to small pieces, dried at 40°C in a hot air oven and ground to powder. The dried powder samples (100 – 300 g) were macerated in methanol for 48 h. The solution was evaporated under reduced pressure by a rotary evaporator. The residues were re-extracted with chloroform and concentrated by partial evaporation under reduced pressure.

Stock solutions of methanol and chloroform extracts were prepared in DMSO (Sigma Chemical Co., MO, USA) and stored at -20 °C. The frozen samples were diluted with cell culture medium prior to the assay. The concentration ranges of the extracts were 3 to 250 µg/ml.

Cell lines and culture medium.

HeLa, KB and B16F10 cell lines used in the experiments were kindly provided by National Cancer Institute, Bangkok, Thailand. Cells were routinely maintained as adherent cell cultures in DMEM medium (Sigma Chemical Co., MO, USA) supplemented with 10%

heat-inactivated FCS (Gibco BRL, Canada) and 50 μg/ml of gentamicin (Sigma Chemical Co., MO, USA) at 37 °C in a humidified air incubator containing 5% CO₂.

Treatment of cells with extracts.

When the cultures reached approximately 80% to 90% confluency they were subcultured by treating with 0.25% trypsin, and cell viability was tested by the tryphan blue dye exclusion method. Cell counts were performed in quadruplicated on a haemocytometer. The cell viability was always found to be greater than 98%. Each cell line was plated at a density of 2.0×10^5 cells/ml for HeLa and 1.0×10^5 cells/ml for KB and B16F10 in 96-well plates and allowed to attach overnight. The following day, cells were exposed to five serial concentrations of extracts. Doxorubicin hydrochloride (Dabur Pharma Ltd, UK) was used as positive control. The plates were incubated at 37° C for 48 h.

SRB assay.

The effect of extracts on the growth of human tumor cell lines were evaluated according to the procedure of the National Cancer Institute (NCI, USA) for the *in vitro* anticancer drug screening using the protein-binding dye, SRB to assess cell growth¹¹. After incubation period, the adherant cells were fixed *in situ*, washed and dyed with SRB (Sigma Chemical Co., MO, USA). The bound dye was solubilized and the absorbance was measured at 492 nm in a microplate reader. The dose-response curves were generated for each extract tested and for each cell line, and the GI₅₀, corresponding to the concentration of compounds that inhibit 50% of the cell growth was determined as described by Monks et al.¹².

Results

The effect of the methanol and chloroform wood and leaves extracts on HeLa, KB and B16F10 cell lines were shown in Table 1 and 2, respectively. Final concentration of DMSO (≤ 0.25%) did not interfere with the biological activities tested. All extracts exhibited

a dose dependent growth inhibitory effect with no significant difference in GI₅₀ in the three cell lines understudied.

The chloroform leaves extract of *G. speciosa* showed the most potent inhibitory effect with GI₅₀ values of 4.0, 6.6 and 3.7 μg/ml on HeLa, KB and BI6F10 cell lines, respectively. These values were 13, 20 and 142 folds less potent than doxorubicin, the positive control, which gave the GI₅₀ values of 300 nM, 330 nM and 26 nM on HeLa, KB and B16F10 cell lines, respectively. The strong growth inhibitory effects were also detected in the chloroform leaves extract of *C. polyanthum* with GI₅₀ value of 13.3, 19.0 and 11.0 μg/ml.

From the wood, the chloroform extract of *G. speciosa* showed the strong cell growth inhibition with the GI₅₀ values of 9.9, 15.7 and 8.1 µg/ml on HeLa, KB and B16F10 cell lines, respectively. Chloroform extracts of *H. hookerianum*, and *G. xanthochymus* also exhibited the inhibitory effect on cell growth with GI₅₀ value less than 20 µg/ml.

Moderate inhibitory effect were found in the methanol leaves extract of G. speciosa, the chloroform leaves extract of G. xanthochymus, the chloroform wood extract of C. formosum ssp. Pruniflorum and the methanol wood extract of H. hookerianum. Both of the methanol and chloroform leaves extracts of C. formosum ssp. Pruniflorum, and S. verruculosa showed no inhibitory activity at any concentration ($GI_{50} > 100 \mu g/ml$).

Discussion

For the *in vitro* primary screening of anticancer drug, an assay using the proteinbinding dye sulforhodamine B (SRB) is used by the NCI. The SRB binds to the basic amino acids of cellular macromolecules and the solubilized stain is measured spectrometrically to determine relative cell growth in treated and untreated cells¹¹.

In Guttifeare family, the aerial part of *H. empetrifolium* that was collected from different locations in Greece were tested on brine shrimps, human colon carcinoma (Caco-2)

and human hepatoma cell lines (HepG2) for cytotoxic activities. The results showed that methanol extract of H. empetrifolium exhibited high activities on cell lines with the 50% cell killed or 50% lethal concentration (LC50) values ranging from 25 to 46 mg/ml and moderate activities on brine shrimps, ranging from 22 to 150 mg/ml¹³. Griffipavixanthone, a novel bixanthone with cyclized prenyl groups providing the xanthone-xanthone linkage isolated from bark of Malaysian plants, G. griffithii and G. pavifolia showed high in vitro cytotoxicity against mouse leukemia (P388), mouse Lewis lung carcinoma (LL/2) and mouse fibrosarcoma (Wehil 64) cell lines with the 50% effective dose (ED₅₀) of 3.40, 6.80 and 4.60 ug/ml, respectively¹⁴. Coumarins isolated from bark of Myanmar plant, Kayea assamica (Clusiaceae), have been evaluated for their cytotoxicity on human cancer cell lines using SRB assay. They exhibited strong cytotoxicity activity againts Col2 (colon), KB (epidermoid) and LNCaP (lung) human cancer cell lines with the 50% inhibition concentration (IC50) values in the range 3.5-13.1 μ M¹⁵. Ethanol extract of the stems of Taiwanese plants, Schisandra arisanensis which was useful as an antirheumatic, exhibited cytotoxicity against KB in vitro. Bioassay-directed fraction of this extract led to the isolation and characterization of four unique C19 homo lignans with a 5,4'-butano-2, 4-cyclohexadienone-6-spiro-3'(2;-3'dihydrobenzo[b]furan) skeleton: schiarisanrin A-C, and the biological evaluation of them demonstrated cytotoxicity against KB, colon carcinoma (COLO-205), hepatoma (HEPA) and cervix (HELA) cancer cells 15.

In our study, all of plant extracts which were in the genus related to the aforementioned studies also showed antitumor activity on HeLa, KB and B16F10 cell lines. The chloroform extracts from wood and leaves of all plants showed stronger inhibition than the methanol extracts. This might be due to the presence of more active non polar compounds which are more soluble in chloroform.

The results from this study supported that the selected plants from Guttiferae and Schisandraceae family had significant growth inhibitory activity. Further study on the mechanism of action and isolation of pure compounds in the extracts for potential uses as new pharmaceuticals should be encouraged.

Acknowledgements

This work was partly supported by the Thailand Research Fund (TRF) under the RGJ-PhD program.

References

- 1. Xu YJ, Cao SG, Wu XH, et al. Griffipavixanthone, a novel cytotoxic bixanthone from Garcinia griffithii and G. pavifolia. Tetrahedron Lett 1998, 39: 9103-9106.
- 2. Mukherjee PK, Saitha GS, Suresh B. Antibacterial spectrum of *hypericum hookerianum*. Fitoterapia 2001, 72: 557-560.
- 3. Wilairat R, Manosroi J, Manosroi A, et al. Cytotoxicities of xanthones and cinnamate esters from *Hypericum hookerianum*. Planta Med 2005, 71: 680-682.
- 4. Rukachaisirikul V, Pailee P, Hiranrat A, et al. Anti-HIV-I protostane triterpenes and digeranylbenzo phenone from trunk bark and stems of *Garcinia speciosa*. Planta Med 2003, 69: 1141-1146.
- Vieira MML, Kijjoa A, Wilairat R, et al. Bioactive friedolanostanes and 11(10-8) Abeolanstanes from the bark of *Garcinia speciosa*. J Nat Prod 2004, 67: 2043-2047.
- 6. Chanmshasathien W, Li Y, Satake M, Oshima Y, Ruangrungsi N, Ohizumi Y. Prenylatedxanthones with NGF-potentiating activity from *Garcinia xanthochymus*. Phytochemistry 2003, 64: 981-986.

- 7. Nguyen HDL, Harrison JL. Triterpenoid and xanthone a constituents of *Cratoxylum cochinchinese*. Phytochemistry 1988, 50: 471-476.
- 8. Li RT, Shen Y, Xiang W, Sun H. Four novel nortriterpenoids isolated from *Schisandra henriyi* var. *yunnanensis*. Eur J Org Chem 2004: 807-811.
- 9. Chen YG, Qin GW, Cao L, Leng Y, Xie YY. Triterpenoid acids from *Schisandra* propinqua with cytotoxic effect on rat luteal cell and human decidual cells in vitro. Fitoterapia 2001, 72: 435-437.
- Manosroi J, Wilairat R, Kijjoa A, Manosroi A. Free radical scavenging activity of extracts from Thai plants in Guttiferae and Schisandraceae families. Pharm Bio 2006, 43:324-329.
- 11. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990, 82: 1107-1112.
- 12. Monks A, Scudiero D, Skehan P, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 1991, 83: 757-765.
- 13. Couladis M, Badisa RB., Baziou P, et al. Antioxidant and cytotoxicity activities of Hypericum sp. on brine shrimps and human cancer cell lines. Phytother Res 2002; 16: 719-722.
- 14. Xu YJ, Cao SG, Wu XH, et al. Griffipavixanthone, a novel cytotoic bixanthone from *Garcinia griffithii* and *G. pavifolia*. Tetrahedron Letters 1998; 39: 9103-9106.
- 15. Lee K.H., Chai H.B., Tamez P.A., et al. Biologically active alkylated coumarins from *Kayea assamica*. Phytochemistry 2003; 64: 535-541.
- 16. Kuo YH, Kuo LMY, Chen CF. Four new 19 homolignans, Schiarisanrins A, B and D and cytotoxic Schiarsanrin C, from Schizandra arisanens. J Org Chem 1997; 62: 3242-3245.

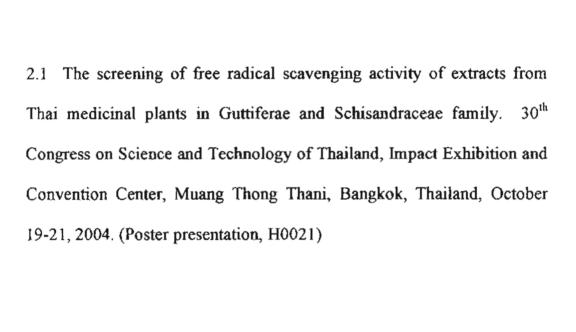
Table 1 Effect of methanol and chloroform extracts from wood of the selected Thai plants in family Guttiferrae and Schisandraceae on the growth of cell lines.

			GI ₅₀ (μg/ml)
Plant species		HeLa	КВ	B16F10
Guttiferae				
H. hookerianum	M	42.3 ± 1.5	46.3 ± 1 5	51.0 ± 8 5
	С	19.7 ± 1.2	19.3 ± 1.5	14.5± 0.7
G. speciosa	M	67.3 ± 2.5	75.0 ± 0.6	82.0 ± 4.2
	С	9.9 ± 1.2	15.7 ± 0.6	8.1 ± 0.1
G. xanthochymus	M	> 100	> 100	> 100
	С	13.3 ± 1.5	19.0 ± 1.0	11.5 ± 0.7
C. formosum ssp. prunistorum	М	> 100	> 100	> 100
	С	41.3 ± 1.5	37.3 ± 0.6	44.5 ± 2.1
C. polyanthum	М	> 100	> 100	> 100
	c	90.3 ± 3.1	74.7 ± 3.2	52.5 ± 3.5
Schisandraceae				
S. verruculosa	М	> 100	70.7 ± 6.4	> 100
	С	> 100	> 100	70.0 ± 1.4

Note: M = methanol extract; C = chloroform extract

Results are expressed as GI_{50} that are arithmetical means \pm SD of 3 independent experiments performed in duplicate.

Doxorubicin was used as positive control (GI₅₀ Hela = 300 ± 0.9 nM ; GI₅₀ KB = 330 ± 0.9 nM; GI₅₀ B16F10 = 26 ± 0.2 nM)


Table 2 Effect of methanol and chloroform extracts from leaves of the selected Thai plants in family Guttiferrae and Schisandraceae on the growth of cell lines.

		GI ₅₀ (μg/ml)			
Plant species		HeLa	КВ	B16F10	
Guttiferae					
H. hookerianum	M	ND	ND	ND	
	С	ND	ND	ND	
G. speciosa	М	34.7 ± 2.3	23.7 ± 0.6	25.7 ± 0.6	
	С	4.0 ± 0.3	6.6 ± 0.2	3.7 ± 0.4	
G. xanthochymus	М	> 100	> 100	> 100	
	c	17.0 ± 1.0	29.3 ± 0.6	37.7 ± 4.0	
C. formosum ssp. pruniflorum	М	> 100	> 100	> 100	
	С	> 100	> 100	> 100	
C. polyanthum	М	> 100	> 100	> 100	
	С	19.0 ± 2.7	13.3 ± 0.6	11.0 ± 1.3	
Schisandraceae					
S. verruculosa	M	> 100	> 100	> 100	
	С	> 100	> 100	> 100	

Note: M = methanol extract; C = chloroform extract; ND = not determined

Results are expressed as GI_{50} that are arithmetical means \pm SD of 3 independent experiments performed in duplicate.

Doxorubicin was used as positive control (GI₅₀ Hela = 300 ± 0.9 nM; GI₅₀ KB = 330 ± 0.9 nM; GI₅₀ B16F10 = 26 ± 0.2 nM)

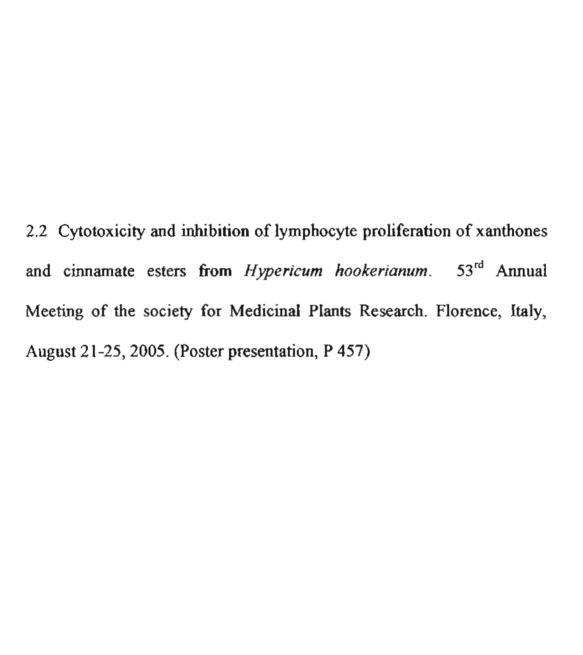
THE SCREENING OF FREE RADICAL SCAVENGING ACTIVITY OF EXTRACTS FROM THAI MEDICINAL PLANTS IN GUTTIFERAE AND SCHISANDRACEAE FAMILY

Jiradej Manosroi^{1,2}, Rujida Wilairat¹ Anake Kijjoa³ and Aranya Manosroi^{1,2}

- ¹ Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Pharmaceutical-Cosmetic Raw Materials and Natural Products Research and Development Center (PCRNC)
- Institute for Biomedical Sciences Abel Salazar, University of Porto, Portugal

Abstract: The objective of this study was to screen free radical scavenging activity of extracts from Thai medicinal plants in family Guttiferae and Schisandraceae. Six Thai medicinal plants (Hypericum hookerianum, Garcinia speciosa, G. xanthochymus, Cratoxylum formosum ssp. Pruniflorum, C. polyanthum and Schisandra verruculosa) were extracted by methanol and chloroform. The extracts were screened for free radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl) as a stable radical. All extracts showed a dose dependence activity relationship with the lowest IC_{50} value of the methanol extracts from wood of G. speciosa. This IC_{50} value was less than those of the standard antioxidants (ascorbic acid and α -tocopherol) of 2.5 and 5.3 folds, respectively. Similar free radical scavenging activities were also observed for extracts from other plants. This study indicated the potential of these plants for further development as pharmaceuticals. We are now in the process of isolation of bioactive compounds from these extracts.

Methodology: Five plants from family Guttiferae and one plant from family Schisandraceae were selected and collected from Chiang Mai Province, Thailand. Their wood, leaves and fruits were extracted by methanol and chloroform. The extracts were tested for free radical scavenging activity using DPPH assay. Vitamin C and α-tocopherol were used as standard references. The scavenging activity was calculated and plotted against concentrations of the extracts. The concentrations which showed 50% DPPH scavenging activity (IC₅₀) were determined. IC₅₀ values were compared. The experiment was done in triplicate.


Result, Discussion and Conclusion: Among the wood and leaf parts of the plants, the scavenging activity of methanol wood extract of all plants exhibited higher scavenging activity than leaves. The highest scavenging activity was found in the methanol extract of wood from G. speciosa with an IC_{50} value of 9.75µg/ml. For other plants, the IC_{50} values were in the range of 19.08 to 44.29 µg/ml. Some of these values were less than those obtained from the standard antioxidants, ascorbic acid and α -tocopherol. The IC_{50} values of ascorbic acid and α -tocopherol were 24.01 and 52.04 µg/ml respectively. For G. xanthochymus, IC_{50} values of methanol and chloroform extract were similar in fruits (25.58 and 26.68 µg/ml) and leaf (58.69 and 59.83 µg/ml). This study suggested the potential for the application of these plants to be developed as new drugs.

Acknowledgement: This work was supported by the Thailand research Fund (TRF) under the RGJ-PhD program in Thailand and Pharmaceutical-Cosmetic Raw Material and Natural Products Research and Development Center (PCRNC), Institute for Science and Technology Research and Development (IST), Chiang Mai.

References:

- 1. Choi, C.W., Kim, S.C., Hwang, S.S., Choi, B.K., Ahn, H.J., Lee, M.Y., Park, S.H., Kim, S.K., 2002. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science 163, 1161-1168.
- Moure, A., Franco, D., Sineiro, J., Dominquez, H., Nunez, M.J., Lema, J.M., 2000. Evaluation of extracts from Gevuina avellana hulls as antioxidants. J Agric Food Chem. 48, 3890-3897.
- 3. Velazquez, E., Tournier, H.A., Buschiazzo, P.M., Saavedra, G., Schinella, G.R., 2003. Antioxidant activity of Paraguayan plant extracts. Fitoterapia 74, 91-97.
- 4. Xu, Y.J., Cao, S.G., Wu, X.H., Lai, Y.H., Tan, B.H.K., Pereira, S.H., Venkatraman, G., Harrison, L.J., Sim, K.Y., 1998. Griffipavixanthone, a novel cytotoxic bixanthone from *Garcinia griffithii* and *G. pavifolia*. Tetrahedron Letters 39, 9103-9106.

Keywords: Guttiferae; Schisandraceae; Free radical scavenging activity; DPPH

53rd Annual Meeting of the society for Medicinal Plants Research. Florence, Italy.

August 21-25, 2005

Cytotoxicity and inhibition of Lymphocyte Proliferation of Xanthones and Cinnamate Esters from Hypericum hookerianum

Rujida Wilairat **, J. Manosroi*, A. Manosroi*, M. Pinto ** M. Nascimento de and A. Kijjoa* f

- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
- Department of Pharmaceutical Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Laboratório de Química Orgânica, Faculdade de Farmácia do Porto, Rua Aníbal Cunha 164, 4050-047 Porto, Portugal
- de CEQOFF-Centro de Estudos de Química Orgânica, Fitoquímica e Farmacologia da Universidade do Porto, Rua Aníbal Cunha
 164, 4050-047 Porto. Portugal
- Laboratório de Microbiología, Faculdade de Farmécia do Porto, Rua Anibal Cunha 164, 4050-047 Porto, Portugal
 ICIIMAR- Centro Interdisciplinar de Investigação Marítima e Ambiental, Rua dos Braga 177, Porto, Portugal

Hypericum hookerianum Wight et Am., one of approximately 20 species occurring in India where it is said to be a traditional tribal wound-healing agent (1) is the only species occurring in Thailand. Though its extract was claimed to possess the antibacterial activity (2), it has not been previously investigated chemically. Now, we want to report the isolation of 5-hydroxy-2-methoxyxanthone (1), 2-hydroxy-3-methoxyxanthone (2), trans-kielcorin (3), betulinic acid 3β-yl caffeate (4) and 4-hydroxy-3-methoxyphenyl ferulate (5) from the chloroform extract of the stem wood of Hypericum hookerianum collected from the North of Thailand. Compounds 1-5 were evaluated for their effect on the *in vitro* growth of three human cancer cell lines: MCF-7 (breast), NCI-H460 (lung) and SF-268 (CNS). The results showed that cinnamate esters 4 and 5 exhibited strong inhibitory effect against all three cell lines; that of trans-kielcorin (3) was moderate while the inhibitory effect of xanthones 1 and 2 were only weak. The effect of compounds 1-5 on the mitogenic response of human lymphocytes to PHA was also evaluated. Again, xanthones 1 and 2 exhibited weaker antiproliferative effects than cinnamate esters 4 and 5 while trans-kielcorin (3) was devoid of activity.

Acknowledgements: FCT (Unidade de I&D nº 226/94), FEDER, POCTI (QCA III), NCI (USA), Thailand Research Fund (TRF) under the RGJ Ph.D Program.

Reference: 1. Mukherjee, P. et al. (2000) J. Altern. Complement. Med. 6, 61. 2. Mukherjee, P. et al. (2001) Fitoterapia 72, 558.

2.3 In vitro antitumor activity of extracts from Thai plants in Guttiferae and Schisandraceae families on human tumor cell lines. RGJ-Ph.D. Congress VII. Pattaya, Chonburi, April 20-22, 2006. (Poster presentation, \$3-P42)

In vitro Antitumor Activity of Extracts from Thai Plants in Guttiferae and Schisandraceae Families on Human Tumor Cell Lines

Jiradei Manosroi, a,b Rujida Wilairat, a Anake Kijjoa, Aranya Manosroi a,b

Objective

To screen the in vitro antitumor activity of the extracts from Thai plants in Guttiferae and Schisandraceae Families on human tumor cell lines using SRB assay.

Methods

The plants from Guttiferae (Hypericum hookerianum, Garcinia speciosa, G. xanthochymus, Cratoxylum formosum ssp. pruniflorum and Calophyllum polyanthum and Schisandraceae (Schisandra verruculosa) were extracts with methanol and chloroform. The effect of extracts on the growth of human tumor cell lines were evaluated according to the procedure of the NCI for the in vitro anticancer drug screening using the protein-binding dye, SRB to assess cell growth. The Gl₅₀, the concentration of the extracts that inhibit 50% of the cell growth was determined. The three human tumor cell lines were used; HeLa (cervical carcinoma), KB (epidermoid carcinoma) and B16F10 (melanoma).

Results

All extracts showed an antitumor activity with a dose response relationship. The chloroform extracts from leaves of G. speciosa gave the most potent with the lowest concentration that caused 50% inhibition of cancer cell growth (GI_{50}) of 4.0, 6.6 and 3.7 μ g/ml in HeLa, KB and B16F10 cell lines, respectively. The strong growth inhibitory effects were also detected in the chloroform leave extract of G. polyanthum and the chloroform wood extracts of G. hookerianum, G speciosa and G xanthochymus with GI_{50} value less than 20 μ g/ml.

Conclusion

Methanol and chloroform extracts from Thai plants in Guttiferae and Schisandraceae Families collected from the northern region of Thailand showed an antitumor activity. The information from this study can confirm the use of these plants in Thai traditional medicine and the further development of these extracts to new pharmaceuticals.

Keywords: Guttiferae, Schisandraceae, SRB assay, Antitumor activity

Selected References:

- 1. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronisc, P., Vaigro, W.A., Gray, G.M., Campbell, H., Mayo, J., Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. *J. Natl. Cancer Inst.*, 83, 757-765.
- 2. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Varren, J.T., Bokesch, H., Kenney, S., Boyd, M. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. *J. Natl. Cancer Inst.*, 82, 1107-1112.

^aFaculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand

^bPharmaceutical Cosmetic Raw Materials and Natural Products Research and Development Center (PCRNC), Institute for Science and Technology Research and Development (IST), Chiang Mai University, Chiang Mai, 50200, Thailand

^eInstituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal