รายงานโครงการวิจัย
เรื่อง การศึกษาการดูดกลื่นและการเปล่ง
แสงของสารไวโอแลนโทรนในขบวนการ
เคมีไฟฟ้า

โดย

คร. ขนิษฐา หาญสูงเนิน หัวหน้าโครงการวิจัย

TRF: Grant No. BRG4080001

รายงานโครงการวิจัย เรื่อง การศึกษาการดูดกลื่นและการเปล่ง แสงของสารไวโอแลนโทรนในขบวนการ เคมีไฟฟ้า

โดย

คร. ขนิษฐา หาญสูงเนิน หัวหน้าโครงการวิจัย

TRF: Grant No. BRG4080001

กิตติกรรมประกาศ

โฟโตเคมีมีความสำคัญในชีวิตประจำวันของมวลมนุษย์ ตลอคจนสิ่งมีชีวิตทั้ง
หลาย ขบวนการที่สำคัญที่เรารู้จักกันคี คือ ขบวนการสังเคราะห์แสงในพืชสีเขียวใน
เวลากลางวันที่ได้รับแสงจากควงอาทิตย์ และสามารถ เปลี่ยนแก๊สคาร์บอนไดออกไซค์
และน้ำให้กลายเป็นแป้งและน้ำตาลได้ มวลมนุษย์ และสัตว์ได้อาศัยพืชเพื่อการคำรงชีพ
แสงจากควงอาทิตย์ช่วยให้ความอบอุ่นแก่โลก และช่วยให้เรามองเห็นสิ่งต่างๆได้ชัคเจน
ดังนั้นจะเห็นได้ชัดเจนว่า แสงมีความจำเป็นต่อการคำรงชีพของสิ่งมีชีวิตเป็นอย่างยิ่ง

ในปัจจุบันงานวิจัยทางค้านโฟโตเคมีมีการศึกษากันมากมายในต่างประเทส และ การศึกษาและการวิจัยในแขนงคังกล่าวทำกันอย่างต่อเนื่องมาเป็นเวลานาน ตลอคจนมี การพัฒนากระบวนการศึกษาและการวิจัย เพื่อนำผลจากการวิจัยมาใช้ให้เกิดประโยชน์ โดยอาศัยองค์ความรู้ของวิทยาศาสตร์ขั้นพื้นฐานเป็นสำคัญ ขณะเดียวกันการศึกษาและ การวิจัยทางค้านโฟโตเคมีในประเทศไทยมีจำนวนน้อยมาก คังนั้นทางคณะผู้คำเนิน การวิจัยมีความเห็นว่าควรจัดให้มีการศึกษาและการวิจัยในแขนงคังกล่าวขึ้น จึงได้ เสนอโครงการวิจัยเพื่อเน้นทางค้านโฟโตเคมี ต่อสำนักงานกองทุนสนับสนุนการวิจัย (สกว) ในชื่อเรื่อง "การศึกษาการดูคกลืนและการเปล่งแสงของสารไวโอแลนโทรนใน ขบวนการเคมีไฟฟ้า" ทั้งนี้เพื่อมุ่งเน้นว่า ผลที่ได้รับจากการศึกษาและการวิจัยตลอคจน เครื่องมือและอุปกรณ์ต่างๆที่ได้รับการสนับสนุนจาก สกว สามารถนำไปใช้ประโยชน์ ในงานวิจัยเรื่องอื่นๆที่เกี่ยวข้องในทางโฟโตเคมี และทางไฟฟ้าเคมีต่อไป

คิฉันในฐานะหัวหน้าโครงการวิจัย ขอขอบพระคุณ สกว ที่ให้ความสนับสนุน ในทุกค้านเกี่ยวกับงานวิจัยนี้ และขอขอบพระคุณ ภาควิชาเคมี คณะวิทยาศาสตร์ ตลอด จนมหาวิทยาลัยสงขลานครินทร์ มา ณ ที่นี้ค้วย ที่มีส่วนช่วยเหลือและสนับสนุนให้งาน สำเร็จลุล่วงตามวัตถุประสงค์ไปได้ด้วยดี

> คร. ขนิษฐา หาญสูงเนิน หัวหน้าโครงการวิจัย

TITLE: ELECTROCHEMICAL STUDIES OF VIOLANTHRONE IN VARIOUS SOLVENTS

ABSTRACT

Electrochemical studies of violanthrone in dimethylformamide (DMF), acetonitrile (MeCN), dimethyl sulfoxide (DMSO), and dichloromethane (CH₂Cl₂) showed that the compound behaved differently in these solvents. Three couples of reduction waves were observed in DMF, two in dichloromethane and one each in DMSO and in MeCN. Among these solvents, violanthrone was the most easily reduced in DMSO and with difficulty in dichloromethane. This could be due to the solvent effects on stabilization of the radical anions produced electrochemically. In addition, the direction of scanning and potential limits also affected the forming of reactive species.

KEYWORDS: Violanthrone, electrochemical studies, solvent effects.

ชื่อเรื่อง: การศึกษาทางเคมีให่ฟ้าของสารไวโอแลนโทรนในตัวทำละลายชนิดต่างๆ

บทกัดย่อ

จากการศึกษาทางเคมีให่ฟ้าของสารไวโอแลนโทรนในตัวทำละลายที่เป็น aprotic solvents เช่น dimethylformamide (DMF) acetonitrile (McCN) dimethyl sulfoxide (DMSO) และ dichloromethane (CH_2CI_2) พบว่ามีพฤติกรรมที่แตกต่างกันในตัวทำ ละลายแต่ละชนิด เช่น ใน DMF cyclic voltammogram มี 3 couples ใน CH_2CI_2 มี 2 couples ใน DMSO และ MeCN มีอย่างละหนึ่ง couple เท่านั้น สารไวโอแลนโทรนถูก รีดิวซ์ได้ง่ายที่สุดใน DMSO และ ถูกรีดิวซ์ได้ยากที่สุดใน CH_2CI_2 ทั้งนี้เนื่องจากว่าตัวทำ ละลายสามารถ stabilize ตัว radical anions ที่ได้จากปฏิกิริยาเคมีไฟฟ้าได้ไม่เท่ากัน นอก จากนี้ทิศทางของ scanning และ potential limits ก็มีผลต่อการเกิด reactive species ด้วย

กำหลัก: Violanthrone, electrochemical studies, solvent effects.

TITLE: THE LUMINESCENCE QUENCHING OF VIOLANTHRONE BY AZOBENZENE IN APROTIC SOLVENTS

ABSTRACT

The quenching reaction of violanthrone by azobenzene was investigated in aprotic solvents such as chloroform, dichloromethane, and acetone. The polarity of solvents also have some effects on the excited states of violanthrone via solute-solvent interaction. In addition, the Stern-Volmer constants, $K_{\rm sv}$ in the different media are reported. The quenching rate constants, kq, were obtained from emission intensity and emission lifetime studies. It is found that azobenzene in chloroform gives the greatest value of quenching rate constants. The mechanism of quenching reaction of violanthrone by azobenzene occurred through the energy transfer process predominantly.

KEYWORDS: Liminescence quenching, violanthrone, azobenzene, energy transfer

ชื่อเรื่อง: ปฏิกิริยาการระงับของสารไวโอแลนโทรนโดยใช้ azobenzene ในตัวทำ ละลายแบบ aprotic solvents

บทกัดย่อ

ปฏิกิริยาการระงับของสารไวโอแลนโทรนโดยใช้ azobenzene ได้ทำการศึกษาใน aprotic solvents คือ chloroform, dichloromethane และ acetone ความเป็นขั้วของตัวทำ ละลายมีผลต่อโมเลกุลของไวโอแลนโทรนที่อยู่ในสถานะ excited state โดยผ่าน ปฏิกิริยาระหว่าง solute-solvent ได้มีการหาค่า $K_{\rm sv}$ หรือ Stern-Volmer Constant ในตัว ทำละลายทั้ง 3 ชนิด เราสามารถหาค่า $k_{\rm q}$ หรือค่า biomolecular quenching rate constant เมื่อเราทราบค่า $K_{\rm sv}$ และค่า emission lifetime ค่า $k_{\rm q}$ ใน chloroform มีค่ามากที่สุด ปฏิกิริยาการระงับการเปล่งแสงของสารไวโอแลนโทรน โดย azobenzene น่าจะเป็น ขบวนการแบบ energy transfer

กำหลัก: Liminescence quenching, violanthrone, azobenzene, energy transfer

TITLE: ELECTROGENERATED CHEMILUMINESCENCE OF VIOLANTHRONE IN DIMETHYL SULFOXIDE

ABSTRACT

Violanthrone is an anthraquinone vat dye, which is resistant to photochemical damage. Most previous work has concentrated on its chemiluminescence properties. In this report, electrogenerated chemiluminescence (ECL) of violanthrone has been investigated in dimethtyl sulfoxide with 0.1 M of tetraethylammonium bromide as electrolyte. Violanthrone luminesces in the potential range between 0.0 V and -4.0 V. At the sweep rate 1000 mV/s, the intensity of the violanthrone ECL is about 2 % of that of tris(2,2'-bipyridine)ruthenium(II) ion under the same conditions. It was found that bromine was also produced during the experiment, leading to the conclusion that the luminescence arises from the reaction between radical anion of violanthrone and molecular bromine. The mechanism is discussed in detail.

KEYWORDS: Violanthrone, electrogenerated chemiluminescence, bromine molecule

ชื่อเรื่อง: การเปล่งแสงของสารไวโอแลนโทรนในตัวทำละลาย dimethyl sulfoxide

บทคัดย่อ

สารไวโอแลนโทรนเป็นสีข้อมผ้าชนิคหนึ่ง ที่มีความทนทานต่อการถูกทำลายโคยแสง แคค ก่อนหน้านี้มีงานวิจัยหลายชิ้นได้กล่าวถึง การเปล่งแสงของสารนี้โคยเกิดจาก ปฏิกิริยาเคมี โคยในงานวิจัยชิ้นนี้จะกล่าวถึงการเปล่งสารของสารไวโอแลนโทรนโคย ขบวนการไฟฟ้าเคมีในตัวทำละลาย dimethyl sulfoxide และสารละลายที่เป็น supporting eletrolyte คือ tetraethylammonium bromide เข้มข้น 0.1M. สารละลายไวโอ แลนโทรนเปล่งแสงได้ในช่วงเปลี่ยนแปลงสักย์ไฟฟ้าระหว่าง 0.0V-4.0V โดยใช้ sweep rate 1000 mV/s ความเข้มของแสงที่ได้มีค่าประมาณ 2 เปอร์เซนต์ของแสงที่ได้จาก Ru(bpy)₃²⁺ (bpy = 2,2'-bipyridine) ในสภาวะการทคลองที่เหมือนกัน นอกจากนี้ยัง พบว่ามีโบรมีนเกิดขึ้นด้วย กลไกของการเปล่งแสงของไวโอแลนโทรน อาจเกิดจาก ปฏิกิริยาระหว่าง สารไวโอแลนโทรนแอนไอออน ทำกับโบรมีนโมเลกุล ซึ่งกลไกของ การเกิดปฏิกิริยาจะกล่าวในรายละเอียดต่อไป

คำหลัก: Violanthrone, electrogenerated chemiluminescence, bromine molecule

สารบัญ

		หน้า
• í	กิตติกรรมประกาศ	
• 1	บทคัดย่อทั้งภาษาไทยและภาษาอังกฤษ (พร้อมคำหลัก)	
• 1	บทที่ 1 การศึกษาทางเคมีไฟฟ้าของสารไวโอแลนโทรน	1-5
• 1	บทที่ 2 การเปล่งแสงของสารใวโอแลนโทรน	6-14
• 9	บทที่ 3 การเปล่งแสงของสารไวโอแลนโทรนในขบวนการเคมีไฟฟ้า	15-19
• 1	หนังสืออ้างอิง	20
• (OUTPUT	21-38
• ;	ภาคผนวก	39-40

บทที่ 1 การศึกษาทางเคมีไฟฟ้าของสารไวโอแลนโทรน

1.1 บทนำ

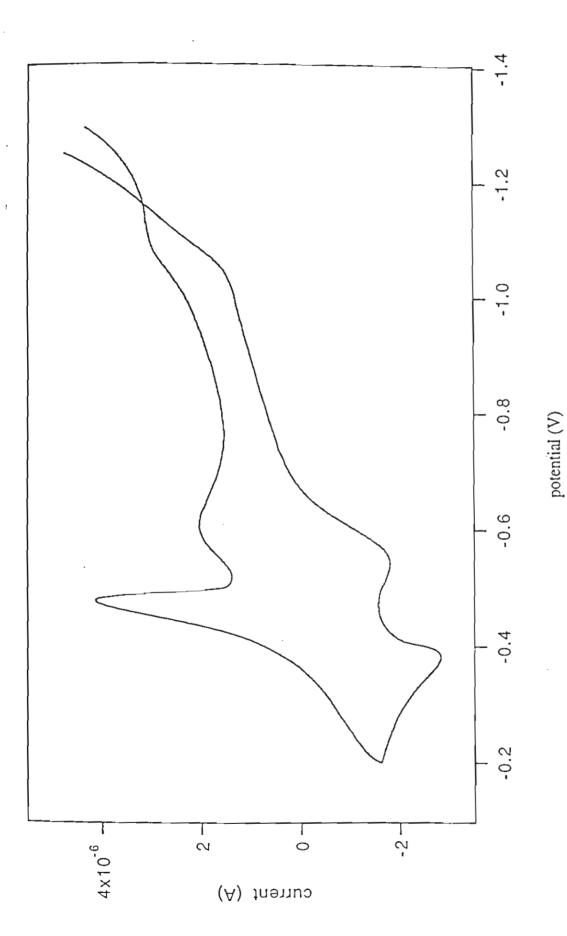
การศึกษาเรื่องเคมีไฟฟ้าของสารไวโอแลนโทรนในเบื้องต้นของงานวิจัย จะช่วย ทำให้เกิดความเข้าใจเกี่ยวกับปฏิกิริยาเคมีที่เกิดขึ้นในสารละลายได้ดีขึ้น ปฏิกิริยาเคมีที่ เกิดขึ้นเป็นปฏิกิริยารีดอกซ์ กล่าวคือ มีปฏิกิริยาออกซิเดชัน และ รีดักชัน เทคนิคที่ใช้ใน การศึกษาเคมีไฟฟ้าของสารนี้ คือ cyclic voltammetry ผลที่ได้จากทดลองนี้จะบอกให้ เราทราบว่า สารไวโอแลนโทรนมีการเปลี่ยนแปลงอย่างไรบ้าง ในตัวทำละลายต่างๆ เมื่อได้รับกระแสไฟฟ้าเพื่อก่อให้เกิดปฏิกิริยาออกซิเดชัน และ ปฏิกิริยารีดักชัน นอก จากนี้ยังช่วยทำให้เราทราบว่าไอออนที่ได้มีความเสถียรหรือไม่(ในช่วงที่ทำการทดลอง)

1.2 สารเคมีและเครื่องมือที่ใช้

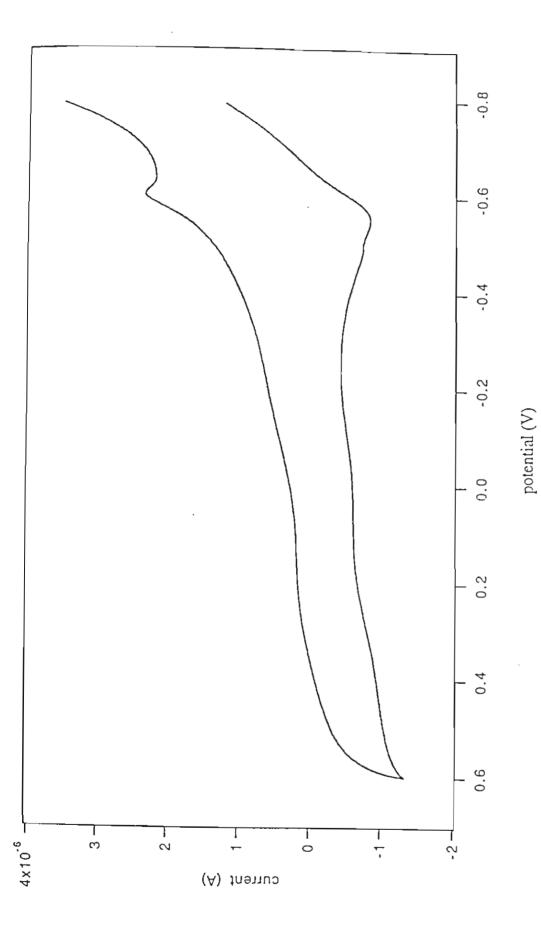
สารเคมีที่ใช้คือ สารไวโอแลนโทรนได้จาก BASF ตัวทำละลายมี acetonitrile ซื้อจาก Merck N,N-dimethylformamide (DMF) dimethyl sulfoxide (DMSO) และ dichloromethane ซื้อจาก Carlo Erba tetrabuthylammonium bromide ซื้อจาก Fluka สารตัวนี้ใช้เป็น supporting electrolyte เพื่อช่วยในการนำไฟฟ้า

เครื่องมือที่ใช้ศึกษาเรื่องเคมีไฟฟ้ามี เครื่อง potentiostat และ MacLab unit จาก ADInstruments Pty Ltd ควบคุมโดยเครื่องคอมพิวเตอร์ Power Macintosh 7200/120 และใช้ Echem Program version 1.3.2 electrode มี 3 ชนิคคือ working electrode เป็น platinum disk (1.66-mm disk) และ platinum wire เป็น auxillary electrode ส่วน reference electrode เป็น Ag/AgCl ซึ่งใค้ปรับค่า potential ให้เท่ากับ Saturated Calomel electrode (SCE) แล้ว

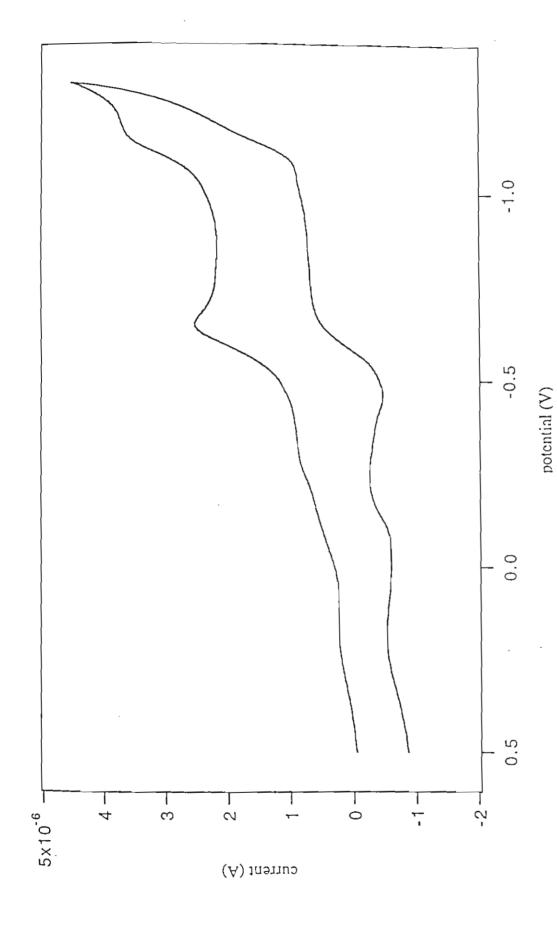
1.3 ผลการทดลอง


จากการศึกษาเคมีใฟฟ้าของสารไวโอแลนโทรนในตัวทำละลายทั้ง 4 ชนิค คือ dimethylformamide (DMF) dimethyl sulfoxide (DMSO) acetonitrile และ ใน dichloromethane มีรายละเอียคคังนี้

Cyclic voltammogram ของสารไวโอแลนโทรนในตัวทำละลาย DMF มี 3 couples คังแสคงในรูปที่ 1.1 couple แรกมีค่า cathodic potential หรือ $E_{pc}=-0.49~V$ ส่วนค่า anodic potential หรือ $E_{pa}=-0.39~V$ (SCE เป็น reference) couple ที่สองมีค่า $E_{pc}=-0.62~V$ และ $E_{pa}=-0.53~V$ ส่วน couple ที่สามมีค่า $E_{pc}=-1.09~V$ และ $E_{pa}=-1.02~V$ ในการ scan ครั้งแรกนั้น couple แรกค่อนข้าง broad แต่เมื่อ scan ครั้งที่สอง reduction peak แหลมมากขึ้น นอกจากนี้ถ้าเรา scan เริ่มจากค่า potential เป็นลบ (โดย เริ่มจาก -0.7 V หรือมากกว่า)ไปยัง potential เป็นบวก จะเห็นแค่สอง couple เท่านั้น


ในรูปที่ 1.2 แสดงภาพ cyclic voltammogram ของสารไวโอแลนโทรนในตัวทำ ละลาย acetonitrile พบว่ามีเพียง couple เคียวในช่วง potential ที่มีค่าเป็นลบ ส่วนรูป ร่างของ voltammogram ก็กล้ายกลึงกับในสารละลาย DMF ตำแหน่งของ E_{pc} และ E_{pa} มีค่า -0.61 V และ -0.56 V ตามลำคับ แต่ couple นี้ใน acetonitrile ไม่เสถียรนัก มีการ เปลี่ยนแปลงเมื่อเวลาผ่านไป แต่ถ้าเราเติมสารที่เตรียมใหม่ลงไป ก็จะเห็น couple เดิม กลับคืนมา แสดงว่า reduced product ที่เกิดโดยปฏิกิริยาเคมีไฟฟ้าในตัวทำละลาย acetonitrile นั้นสามารถเกิดปฏิกิริยาต่อไป และผลที่ได้ไม่เป็น electroactive species ต่อไป จึงไม่มีสัญญาณเกิดขึ้น

ในตัวทำละลาย DMSO cyclic voltammogram เห็นเพียง couple เดียวเท่านั้น มี ค่า E_{pa} = -0.45 V และ -0.39 V ตามลำดับ ขณะที่ในตัวทำละลาย CH_2Cl_2 cyclic voltammogram ของสารละลายไวโอแลนโทรน (คังแสดงในรูปที่ 1.3) เห็นสอง couples แต่สัญญาณที่เห็นก่อนข้างอ่อน couple แรกมี E_{pa} = -0.45 V และ E_{pa} = -0.47 V (เมื่อเปรียบเทียบกับ SCE) couple ที่สองมี E_{pc} = -1.15 V และ E_{pa} = -1.08 V ถ้าเรา ต้องการ couple ทั้งสองได้ชัดเจนขึ้น ต้อง scan จาก positive potential ไปยัง negative potential ถ้าทิศทางของการ scan กลับกับข้างต้นจะทำให้ รูปร่างของ reduction wave เปลี่ยนแปลงไปด้วย


ในตารางที่ 1.1 สรุปค่า peak potentials ในตัวทำละลายทั้ง สี่ชนิด จากค่า peak separation หรือ ΔE_p บ่งชี้ว่า cathodic process หรือ ปฏิกิริยา reduction ใน MeCN และ DMSO เกี่ยวข้องเพียงหนึ่งอิเล็กตรอนเท่านั้นคังสมการ

TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัดที่ scan rate รูปที่ 1.1 แสดง cyclic voltammogram ของสารไวโอแลนโทรนใน DMF มี 0.1 M 200 mV/s (การวัด potential มี SCE เป็นตัวอ้างอิง)

รูปที่ 1.2 แสดง cyclic voltammogram ของสารใวโอแลนโทรนใน McCN มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัดที่ scan rate 200 mV/s (การวัค potential มี SCE เป็นตัวอ้างอิง)

รูปที่ 1.3 แสดง cyclic voltammogram ของสารไวโอแลนโทรนใน CH₂Cl₂. มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัดที่ scan rate 200 mV/s (การวัด potential มี SCE เป็นตัวอ้างอิง)

ตารางที่ 1.1 แสคงข้อมูลจาก Cyclic voltammogram ของสารไวโอแลนโทรน ในตัว ทำละลายชนิคต่างๆ และมี 0.1 M TEAB เป็น supporting electrolyte ค่าของ sweep rate เท่ากับ 100 mV/s. การวัคทุกอันมี SCE เป็นตัวอ้างอิง

Solvents	Couple 1 (V)		Couple 2 (V)		Couple 3 (V)				
	E _{pc}	E _{pa}	ΔE _p			ΔE_p		E _{pa}	ΔE_p
DMF	-0.49	-0.39	0.104	-0.62	-0.53	0.090	-1.09	-1.02	0.068
MeCN	-0.61	-0.56	0.057						
DMSO	-0.45	-0.39	0.058						
CH ₂ Cl ₂	-0.65	-0.47	0.189	-1.15	-1.08	0.072			

หลังจากที่เกิด ปฏิกิริยา reduction อันแรกแล้วนั้น สารไวโอแลนโทรนที่อยู่ในสภาพ radical anion ได้รับอิเล็กตรอนต่อไป กลายเป็น dianion ใน couple ที่สอง ซึ่ง dianionนี้ มีความเสถียรมากพอ และเป็น electroactive species เห็นได้ชัดเจนในตัวทำละลาย DMF และ $\mathrm{CH_2Cl_2}$ ตัวทำละลายทั้งสองสามารถ stabilize dianion ที่เกิดขึ้นได้ดีกว่าตัว ทำละลายชนิดอื่น

จากค่า E_{pc} ใน couple แรกของตัวทำละลายทุกชนิด สารไวโอแลนโทรนในตัว ทำละลาย DMSO เกิดปฏิกิริยา reduction ได้ง่ายที่สุด เพราะมีค่า E_{pc} น้อยที่สุด (-0.45 V) ในขณะที่ สารไวโอแลนโทรนเกิดปฏิกิริยา reduction ได้ยากที่สุดในตัวทำละลาย CH_2Cl_2 (-0.65 V) ทั้งนี้ ขึ้นอยู่กับว่าตัวทำละลายนั้นสามารถ stabilize intermediate ที่ เกิดขึ้นได้มากน้อยเพียงไร สมบัติของตัวทำละลายที่มีส่วนช่วยใน interaction ดังกล่าว อาจเป็น ค่า dielectric constant ของตัวทำละลาย เราพิจารณาค่าของ dielectric constant ของตัวทำละลายทั้งสี่ชนิด ่

<u>ตัวทำละลาย</u>	dielectric constant
DMSO	46.68
DMF	36.71
MeCN	37.5
CH ₂ Cl ₂	8.93

ตัวทำละลายที่มีค่า dielectric constant สูงมีความสามารถ stabilize radical anion ที่เกิด ขึ้นได้ดีกว่า ตัวทำละลายที่มีค่า dielectric constant ต่ำ

นอกจากนั้นค่าของ ΔE_p ใน DMF และใน CH_2Cl_2 จาก couple แรกมีค่ามาก กว่า 0.1 V แสดงว่า redox reactions ที่เกี่ยวข้องในตัวทำละลายทั้งสองมีความซับซ้อน มากกว่าในกรณีของ MeCN และ ใน DMSO การที่ค่า ΔE_p ใน couple แรกของ MeCN และใน DMSO มีค่าน้อยกว่าในของ DMF ยังเป็นการแสดงให้เห็นว่า electron transfer reaction เกิดขึ้นใน MeCN และ ใน DMSO ได้อย่างรวดเร็วกว่าใน DMF และ reaction เป็นแบบ reversible ด้วย

การที่ค่า E_{pc} ใน couple สองอันแรก มีค่าใกล้เคียงกัน เช่น ใน DMF ค่า E_{pc} ทั้ง สองใกล้เคียงกัน ทั้งนี้เนื่องมาจากว่าในสารไวโอแลนโทรนมี carbonyl group สองตัว และมีโอกาสรับอิเล็กตรอนได้เท่ากัน เมื่อตัวหนึ่งรับอิเล็กตรอนไป กลายเป็น radical anion carbonyl group ตัวที่สองรับอิเล็กตรอนได้อีกหนึ่งตัว ทำให้สารไวโอแลนโทรน กลายเป็น dianion เมื่อมีการเติมอิเล็กตรอนเข้าไปในระบบอีก ส่วน couple ที่ 3 มาจาก ส่วนของ conjugated aromatic part ของโมเลกุลมีส่วนในการรับอิเล็กตรอน เมื่อมีการ เติมอิเล็กตรอนต่อไป แต่ anion ที่เกิดขึ้นนี้ไม่ค่อยเสถียรมากนัก สังเกตได้จากสัญญาณ ที่ได้มีกระแสต่ำและรูปร่าง broad มากขึ้น

1.4 บทวิจารณ์

จากการศึกษาใฟฟ้าเคมีของสารไวโอแลนโทรนในตัวทำละลาย DMF MeCN DMSO และ $\mathrm{CH_2Cl_2}$ ไวโอแลนโทรนถูก reduced ได้ง่ายใน DMSO นอกจากนี้การเกิด electron transfer reaction ใน MeCN และ DMSO เกิดได้เร็วกว่าใน DMF และ $\mathrm{CH_2Cl_2}$ เมื่อ สารไวโอแลนโทรนถูก reduced ได้ intermediate เกิดขึ้นซึ่งความเสถียรของมันขึ้น

อยู่กับความสามารถในการ stabilze intermediate นี้ของตัวทำละลายชนิดนั้น สมบัติที่ สำคัญของตัวทำละลายที่เกี่ยวของ คือค่าของ dielectric constant ตัวทำละลายที่มีค่า dielectric constant สูงมักจะ stabilze ions ที่เกิดขึ้นได้คืกว่า ตัวทำละลายที่มีค่า dielectric constant ต่ำ

อนึ่งผลจากการศึกษาเรื่องเคมีไฟฟ้าของสารไวโอแลนโทรน นี้เป็นส่วนสำคัญ ต่อการเลือกตัวทำละลายที่ใช้ในการศึกษาการเปล่งแสงของสารไวโอแลนโทรนใน ขบวนการเคมีไฟฟ้า หรือ ที่เรียกว่า electrogenerated chemiluminescence หรือ ECL เนื่องจากได้มีผู้ทำการศึกษาการเปล่งแสงของสารไวโอแลนโทรนในขบวนการเคมีไฟฟ้า ในตัวทำละลาย DMF แล้ว คังนั้นคณะผู้ดำเนินการวิจัยจึงเห็นว่า ควรทำการศึกษา การเปล่งแสงของสารไวโอแลนโทรนในขบวนการเคมีไฟฟ้าในตัวทำละลาย DMSO จะเป็นเรื่องที่เหมาะสมกว่าในตัวทำละลายชนิคอื่น นอกจากนี้แล้วยังค้องคำนึงถึงเรื่อง สำคัญอีกอย่างหนึ่งก็คือ สารที่ใช้ในการทคลองทาง ECL ควรเปล่งแสงได้ที่อุณหภมิ ห้องค้วยเพื่อง่ายต่อการติดตามผล รายละเอียดของการทคลองที่เกี่ยวกับการศึกษาเรื่อง การเปล่งแสงของสารไวโอแลนโทรนในขบวนการเคมีไฟฟ้าจะกล่าวไว้ในบทที่ 3

บทที่ 2 การเปล่งแสงของสารไวโอแลนโทรน

2.1 บทนำ

สารไวโอแลนโทรนเป็นอนุพันธ์ของเบนซีน ประกอบค้วยวงแหวนเบนซีนหลาย วงเชื่อมต่อกัน การศึกษาเกี่ยวกับการเปล่งแสงของสารไวโอแลนโทรนในตัวทำละลาย ชนิดต่างๆเป็นเรื่องสำคัญ เพราะผลจากการทดลองสามารถทำให้เราทราบว่า การทดลองเกี่ยวกับ ECL ของสารไวโอแลนโทรนมีความเป็นไปได้ในตัวทำละลายชนิดใดบ้าง ณ ที่อุณหภูมิห้อง

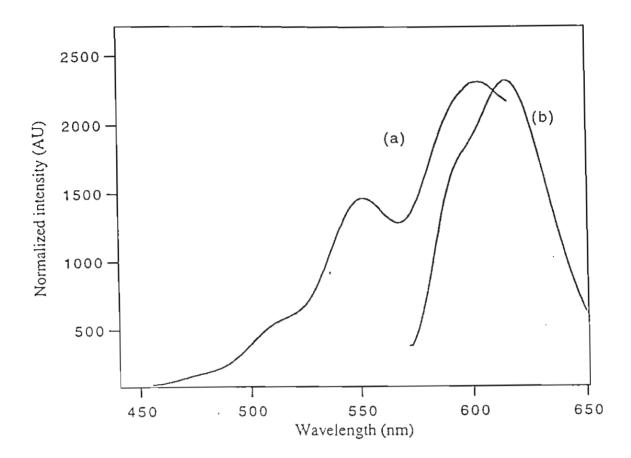
2.2 สารเคมีและเครื่องมือที่ใช้

สารไวโอแลนโทรนได้จาก BASF ตัวทำละลายมี acetonitrile ซื้อจาก Merck dichloromethane ซื้อจาก Carlo Erba acetone และ chloroform ซื้อจาก Lab-Scan tetrahydrofuran (THF) ซื้อจาก Baker และ azobezene จาก AJAX

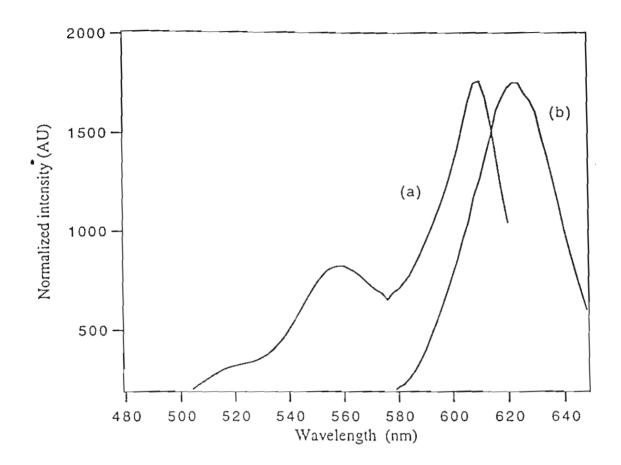
เครื่องมือที่จำเป็นคือ Hewlett Packard 8452A Diode Array Spectrophotometer สำหรับวัค Absorption spectra และเครื่อง JASCO FP-777 Spectrofluorometer สำหรับวัค emission spectra

การหา emission lefetime ใช้เครื่องมือที่ห้องปฏิบัติการของ Prof. Azumi ที่ ประเทศญี่ปุ่น nitrogen laser ที่ความยาวคลื่น 337 nm เป็น exciting wavelength และ streak camera เป็นส่วนช่วยวัคความเข้มของแสงที่เปล่งออกมา

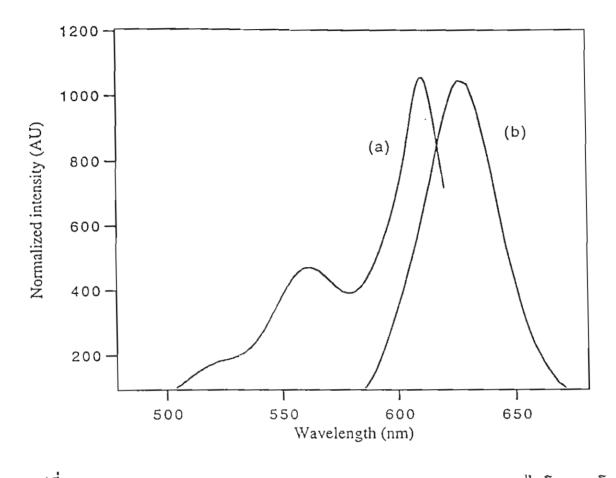
2.3 วิธีการทดลอง


การทคลองแบ่งเป็น 2 ตอนคือ

- 1. ทำการวัค emission spectra ของสารไวโอแลนโทรนในตัวทำละลายหลาย ชนิดและทำการวัค excitation spectra ด้วย
- 2. การศึกษาปฏิกิริยาการระงับของสารไวโอแลนโทรนโคยใช้ azobenzene ใน ตัวทำละลายบางชนิด


2.4 ผลการทดลอง

การศึกษา absorption spectra และ emission spectra ของ สารไวโอแลนโทรนมี
ผลการทดลองดังแสดงในตาราง สิ่งที่สำคัญจากการวัด absorption spectra คือค่าความ
ยาวคลื่นของการดูดกลืนแสงที่พลังงานด่ำสุด เมื่อกระตุ้นสารละลายไวโอแลนโทรนที่
ความยาวคลื่นค่าหนึ่ง (exciting wavelength) ที่ก่อให้เกิดการเปล่งแสงของสารไวโอ
แลนโทรน และตรวจวัดความความยาวคลื่นของการเปล่งแสงที่ค่าความเข้มสูงสุดได้ด้วย
เครื่องมือ spectrofluorometer ความยาวคลื่นของการเปล่งแสงนี้แสดงถึงค่าของระดับ
พลังงาน singlet excited stae ของสารในตัวทำละลายแต่ละชนิด โดยค่าของความยาว
คลื่นของการเปล่งแสงย่อมมีพลังงานต่ำกว่าค่าพลังงานต่ำสุดที่ได้จาก absorption spectra


นอกจากนี้เพื่อยืนยันว่า emission spectra ที่วัดได้เป็นการเปล่งแสงที่ได้จากสาร ไวโอแลนโทรนมิใช่เป็นของสารปนเปื้อน เราต้องทำการวัด excitation spectra ด้วย เปรียบเทียบผลจาก excitation spectra กับ absorption spectra ถ้าเราทำการวัดถูกต้อง spectra ทั้งสองชนิดในตัวทำละลายชนิดเดียวกันควรจะต้องเหมือนกัน ใน รูป 2.1 แสดง normalized excitation และ emission spectra ของสารไวโอแลนโทรนใน acetone จะเห็นได้ว่า สารนี้มีการเปล่งแสงที่มีความเข้มสูงสุดที่ความยาวคลื่น 616 nm และ excitation spectrum ก็ให้กำใกล้เกียงกับค่าที่ได้จาก absorption spectrum ในตัวทำละลายชนิดเดียวกัน รูป 2.2 แสดง normalized excitation และ emission spectra ของ สารไวโอแลนโทรนใน CH_2Cl_2 สารไวโอแลนโทรนเปล่งแสงและมีความเข้มสูงสุดที่ความยาวคลื่น 624 nm นอกจากนี้ใน รูป 2.3 แสดง normalized excitation และ emission spectra ของสารไวโอแลนโทรนใน $CHCl_3$ และพบว่า สารเปล่งแสงและมีความเข้มสูงสุดที่ความยาวคลื่น 626 nm ซึ่งเป็นพลังงานต่ำสุดในตัวทำละลายทั้งสาม ชนิด ข้อมูลนี้สะท้อนให้เห็นว่า ระดับพลังงาน singlet excited state ใน $CHCl_3$ อยู่ ใกล้ระดับพลังงาน ของ ground state มากที่สุด

รูปที่ 2.1 แสคง normalized excitation และ emission spectra ของสารไวโอแลนโทรน ใน acetone

รูปที่ 2.2 แสดง normalized excitation และ emission spectra ของสารไวโอแลนโทรน ใน $\mathrm{CH_2Cl_2}$

รูปที่ 2.3 แสคง normalized excitation และ emission spectra ของสารไวโอแลนโทรน ใน CHCl_3

ตารางที่ 2.1 แสดงค่าความยาวคลื่นของการเปล่งแสงของสารไวโอแลนโทรนในตัวทำละลายหลาย ชนิด

Solvents	^a λ _{ex} (nm)	^b λ _{em} (nm)	
MeOH	343	463	
acetonitrile	370	616	
acetone	370	616	
THF	380	616	
CH ₂ Cl ₂	370	624	
CHCl ₃	370	626	

ใ $\lambda_{\rm ex}$ (nm) หมายถึงความยาวคลื่นที่ใช้กระคุ้น (exciting wavelength) เพื่อให้ได้ความเข้มของการ เปล่งแสงสูงสุด

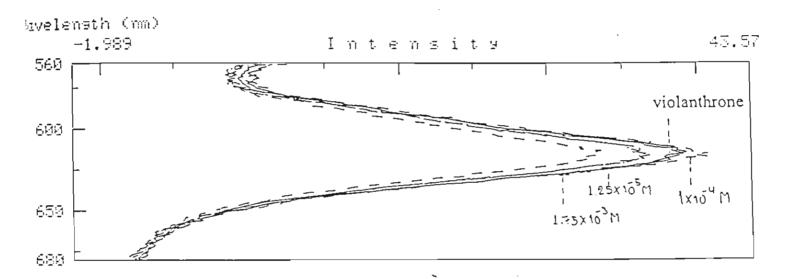
 $^{^{}b}\lambda_{em}$ (nm) หมายถึงความยาวคลื่นของการเปล่งแสงของสารไวโอแลนโทรนที่มีความเข้มสูงสุด และ spectra ที่ได้เป็นแบบ uncorrected spectra

ตารางที่ 2.2 แสดงค่า I_o/I กับค่าความเข้มข้นต่างๆของ azobenzene ในตัวทำละลายทั้งสามชนิด

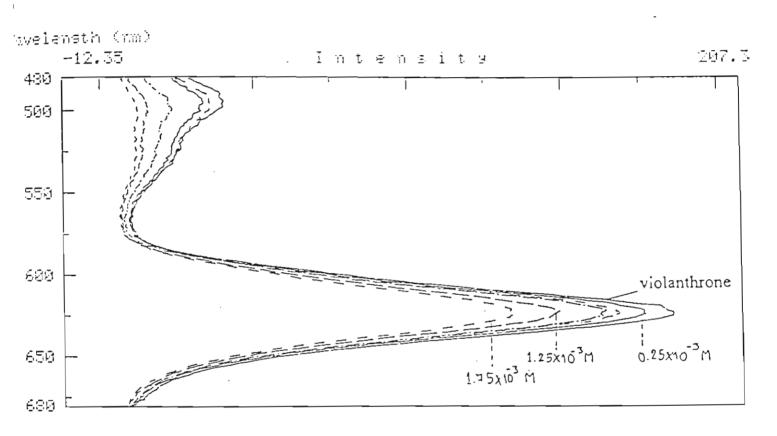
		I_{\circ}/I		
[Q]	acetone	CH ₂ Cl ₂	CHCl ₃	
0.10 x 10 ⁻³	0.998	1.10	1.06	
0.25×10^{-3}	0.997	1.04	1.05	
0.75×10^{-3}	1.08	1.13	1.27	
1.25 x 10 ⁻³	1.16	1.25	1.48	
1.75 x 10 ⁻³	1.22	1.38	1.70	

เมื่อโมเลกุลได้มีการดูดกลืนแสง และขึ้นไปสู่ สถานะ excited state หลังจากนั้น มันจะปลดปล่อยพลังงานที่ได้รับออกไป และตกกลับลงมาสู่สถานะ ground state พลัง งานที่ปล่อยออกมาอาจอยู่ในรูปพลังงานความร้อน บางครั้งอาจเป็นแสงหรือโฟตอนซึ่ง เราเรียกว่า มี emission หรือการเปล่งแสงเกิดขึ้น ในกรณีที่โมเลกุลมีการเปล่งแสง ถ้า เราเติม quencher หรือตัวระงับลงไป จะเกิดการชนกันของโมเลกุลนั้นกับตัวระงับ และ ผลที่ตามมาก็คือ จำนวนโมเลกุลในสถานะ excited state มีจำนวนลดลง ความเข้มของ แสง หรือ emission intensity จะลดลง ซึ่งปรากฏการณ์ดังกล่าว เรียกว่า bimolecular quenching reaction ถ้าพล็อตอัตราส่วนของความเข้มของแสงที่ไม่มีตัวระงับกับความ เข้มของแสงที่มีตัวระงับกับความเข้มของแสงที่มีตัวระงับกับความเข้มของแสงที่มีตัวระงับกับความเข้มข้นของตัวระงับ ควรให้ความสัมพันธ์เป็นแบบ เส้นตรง ตามสมการ Stern-Volmer

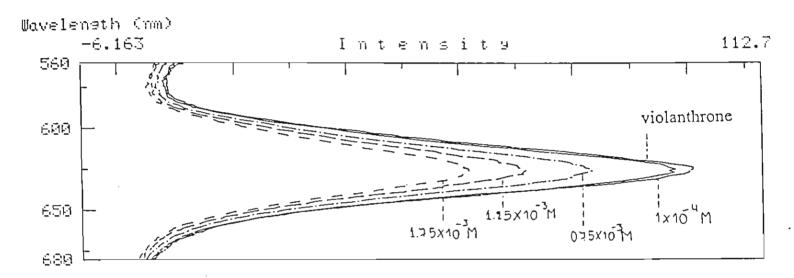
$$I_o/I = I + K_{sv}[Q]$$


เมื่อ

I_o/I คือ อัตราส่วนของความเข้มของ emission ของสารละลายเมื่อไม่มี quencher ต่อความเข้มของ emission เมื่อมี quencher หรือตัวระงับ (โดยทำการวัดค้วยวิธีการ เหมือนกันทุกประการ)


[Q] คือค่าความเข้มข้นต่างๆของตัวระงับ

K_{sv} คือค่า Stern-Volmer constant ซึ่งได้จาก slope นั่นเอง


จากการศึกษาปฏิกิริยาการระงับของสารไวโอแลนโทรนโคยใช้ azobenzene (ตัวระงับ) ในตัวทำละลาย acetone dichloromethane ($\mathrm{CH_2Cl_2}$) และ chloroform ($\mathrm{CHCl_3}$) โคยใช้ค่าความเข้มข้นของ azobenzene ในช่วง $1 \times 10^{-4}\,\mathrm{M} - 1.75 \times 10^{-3}\,\mathrm{M}$ ในรูป 2.4 - รูป 2.6 แสดง emission spectra ของสารไวโอแลนโทรนใน ในตัวทำละลาย acetone $\mathrm{CH_2Cl_2}$ และ $\mathrm{CHCl_3}$ ตามลำคับ เมื่อเพิ่มความเข้มข้นของ azobenzene (quencher) มาก ขึ้น พบว่า fluorescence intensity ของสารไวโอแลนโทรนยิ่งลดลงไปด้วย ในตาราง ที่ 2.2 แสดงค่าอัตราส่วนของความเข้มของ emission เมื่อไม่มี quencher ต่อความเข้มของ emission เมื่อมี quencher ($\mathrm{I}_{\mathrm{o}}/\mathrm{I}$) และความเข้มข้นต่างๆของ azobenzene ในตัวทำ ละลาย acetone $\mathrm{CH_2Cl_2}$ และ $\mathrm{CHCl_3}$

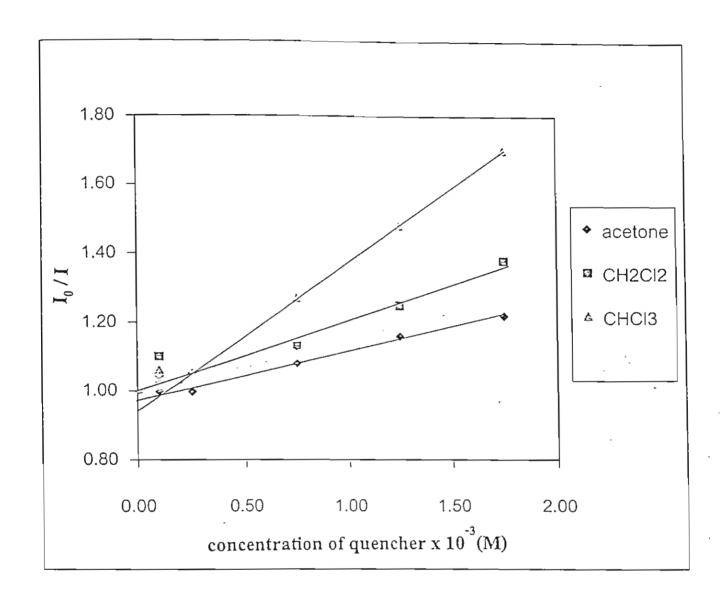
รูปที่ 2.4 แสคง emission spectrum ของ สาร violanthrone โดยมี azobenzene ที่ความ เข้มข้นแตกต่างกันใน acetone

รูปที่ 2.5 แสคง emission spectrum ของ สาร violanthrone โคยมี azobenzene ที่ความ เข้มข้นแตกต่างกันใน $\mathrm{CH_2Cl_2}$

รูปที่ 2.6 แสดง emission spectrum ของ สาร violanthrone โดยมี azobenzene ที่ความ เข้มข้นแตกต่างกันใน CHCl₃

ถ้าเราทราบค่า emission lifetime ของสารในทำละลายที่ต้องการแล้ว เราสามารถ หาค่า k_a ได้ดังสมการ

$$K_{sv} = k_q \tau$$


เมื่อ T คือค่า emission lifetime (ns)

k_q คือค่า quenching rate constant (M s)

เมื่อนำสารละลายไวโอแลนโทรนในตัวทำละลายทั้ง 4 ชนิค และเติมตัวระงับที่ความ เข้มข้นต่างๆกัน โดยใช้ exciting wavelength ที่ 370 nm สำหรับสารละลายทุกตัว และ ติดตามความเข้มของการเปล่งแสงตามชนิดของตัวทำละลายคังนี้

ใน acetone $\lambda_{\rm em} = 616 \, {\rm mm}$ ใน ${\rm CH_2Cl_2}$ $\lambda_{\rm em} = 624 \, {\rm mm}$ และ ใน ${\rm CHCl_3}$ $\lambda_{\rm em} = 626 \, {\rm mm}$

นอกจากนี้รูป 2.7 เป็นกราฟแสดงค่า I_o/I พล็อตกับค่าความเข้มข้นของ azobenzene ในตัวทำละลายทั้งสามชนิค ผลการทคลองเป็นไปตามสมการของ Stern-Volmer โคย ที่ intercept มีค่า = 1 ส่วน slope ที่ได้คือค่าของ K_{sv} คังแสดงในตารางที่ 2.3

รูปที่ 2.7 กราฟแสดงการพล็อตระหว่าง I_{o}/I กับค่าความเข้มข้นของ azobenzene ในตัว ทำละลาย acetone, $CH_{2}Cl_{2}$, $CHCl_{3}$

ตารางที่ 2.3 แสดงค่าความสัมพันธ์ของ quenching reaction ของสารละลายไวโอแลน โทรน โคยมี azobenzene เป็นตัวระงับในตัวทำละลายทั้ง 3 ชนิด

	acetone	CH ₂ Cl ₂	CHCl ₃
$\lambda_{ ext{abs}}$	584	602	606
λ_{abs} λ_{ex} λ_{em}	370	370	370
$\lambda_{\tt em}$	616	624	626
R	0.9958	0.9965	0.9954
SD	0.0105	0.0117	0.0310
K _{sv}	155	253	380
Intercept	0.9739	0.9629	0.9807
τ (ns)	3.81	4.93	5.31
$K_q \times 10^{-9} (M^{-1} s^{-1})$	40.76	51.29	71.65

2.5 บทวิจารณ์

จากการศึกษาสเปกตรัมของการดูดกลื่นแสงและการเปล่งแสงของสารไวโอแลน โทรนพบว่า จากค่าของ Z-value ชึ่งเป็น empirical solvent parameter เกี่ยวข้องกับ polarity หรือความเป็นขั้วของตัวทำละลาย ถ้าตัวทำละลายมีค่าของ Z-value สูง ความ เป็นขั้วของตัวทำละลายก็สูงด้วย ค่าของ Z-value ของ CHCl₃ CH_2Cl_2 และ acetone มีค่าเท่ากับ 63.2 64.2 และ 65.7 kcal/mole ตามลำคับ คังนั้นเมื่อเรียงลำคับความเป็น ขั้วของตัวทำละลายเพิ่มขึ้นจากน้อยไปมากคังนี้

 $CHCl_3 < CH_2Cl_2 < acetone$

จากตารางที่ 2.3 จะเห็นได้ว่าการเปล่งแสงของสารไวโอแลนโทรนที่มีความเข้มสูงสุด เกิดที่ความยาวคลื่นที่ยาวกว่าความยาวคลื่นของการดูดกลืนในตัวทำละลายชนิดเคียวกัน ลักษณะเช่นนี้เรียกว่า Stokes shift ใน acetone ค่า Stokes shift เท่ากับ 889 cm ใน CH_2Cl_2 ค่า Stokes shift เท่ากับ 586 cm และใน $CHCl_3$ เท่ากับ 528 cm คังนั้นจะ เห็นได้ว่าเมื่อความเป็นขั้วของตัวทำละลายเพิ่มขึ้น ระดับพลังงานของ the emitting state เพิ่มขึ้นด้วย ลักษณะของ the excited state เป็น แบบ $n \longrightarrow \pi^*$ นอกจากนี้เมื่อ พล็อตค่าพลังงานที่ได้จากการดูดกลืนแสง หรือค่าพลังงานที่ได้จากการเปล่งแสงกับค่า Z-value กราฟที่ได้เป็นเส้นตรง (ค่า r=0.971 และ 0.976 ตามลำคับ) แต่ slope ของ การดูดกลืนแสง มีค่า = 255 ส่วน slope ของการเปล่งแสงมีค่า = 107 ผลที่ได้นี้ แสดงให้เห็นว่า ความเป็นขั้วของตัวทำละลายมีผลกระทบกับค่าระดับพลังงานที่ได้จาก การดูดกลืนแสง มากกว่าในกรณีของระดับพลังงานที่ได้จากการเปล่งแสง

นอกจากนี้สารละลายไวโอแลนโทรนในตัวทำละลาย CHCl₃ CH₂Cl₂ และ acetone มีค่า lifetime เท่ากับ 5.31 ns 4.93 ns และ 3.81 ns ตามลำคับ สารไวโอแลน โทรนในสถานะ excited state ถูก stabilized ได้ดีในตัวทำละลาย chloroform มากกว่า ตัวทำละลาย ชนิคอื่นจึงทำให้มี lifetime ยาวกว่า ตัวทำละลายที่มีความเป็นขั้วสูง เช่น acetone ย่อมมี solute-solvent interaction ได้คีกว่า เป็นผลให้โมเลกุลใน excited state ถูก deactivated ได้ง่ายกว่า ทำให้มี lifetime สั้นลง

เมื่อเติมตัวระงับ หรือ quencher ในสารละลายไวโอแลนโทรน มีผลทำให้ โมเลกุล ใน excited state ถูก deactivated และมีจำนวนน้อยลง ทำให้ความเข้มของการ เปล่งแสงลคลงเป็นสัคส่วนกับปริมาณของตัวระงับที่เติมลงไป ปฏิกิริยาการระงับของ สารละลายไวโอแลนโทรนโดย azobenzene เป็นแบบ bimolecular quenching reaction ตามสมการของ Stern-Volmer และมี intercept = 1 ในคัวทำละลายทั้งสาม โดยที่ก่า k_q หรือ quenching rate constant มีก่า $40.76\,\mathrm{M}^3\,\mathrm{s}^3$ (acetone) $51.29\,\mathrm{M}^3\,\mathrm{s}^3$ (CH_cCl_p) และ $71.65\,\mathrm{M}^3\,\mathrm{s}^3$ ($CHCl_p$) สารไวโอแลนโทรนมีคลอโรฟอร์มเป็นตัวทำละลายมี lifetime ที่ยาวที่สุดในบรรคาตัวทำละลายทั้งสามชนิค เมื่อโมเลกุลใน excited state อยู่ ใต้นานกว่า โอกาสที่จะทำปฏิกิริยากับตัวระจับก็มีมากขึ้น ดังนั้นจึงทำให้ค่าของ k_p มีค่า มากที่สุด ส่วนสารไวโอแลนโทรนมี acetone เป็นตัวทำละลาย มี lifetime เพียง $3.81\,\mathrm{ms}$ เท่านั้น ระยะเวลาที่โมเลกุลอยู่ใน excited state มีน้อย โอกาสที่จะทำปฏิกิริยากับตัว ระจับก็น้อยลงเช่นกัน ค่าของ k_q จึงมีค่าน้อยที่สุด ลักษณะของปฏิกิริยาการระจับการ เปล่งแสงของสารไวโอแลนโทรน คาคว่าน่าจะเป็นแบบการถ่ายโอนพลังงาน กล่าวคือ เมื่อโมเลกุลที่อยู่ใน excited state ชนกับตัวระจับ จะมีการถ่ายโอนพลังงานไปยังตัว ระจับ ส่วนโมเลกุลที่อยู่ใน excited state นั้นเมื่อสูญเสียพลังงานไป มันจะตกกลับลงมา ที่สถานะพื้น

บทที่3 การเปล่งแสงของสารไวโอแลนโทรนในขบวนการเคมีไฟฟ้า

3.1 บทนำ

ในขบวนการไฟฟ้าเคมี สารถูกเปลี่ยนให้เป็น radical anion หรือ radical cation ขึ้นอยู่กับ potential ที่ใช้ การรวมกันของไอออนทั้งสองชนิค ทำให้เกิดโมเลกุลใน สถานะ excited state มันอาจจะปล่อยพลังงานที่ได้รับออกมาในรูปของแสง ถ้าสาร นั้นสามารถเกิดการเปล่งแสงได้ หรือปล่อยพลังงานออกมาในรูปของพลังงานความ ร้อนก็ได้ ปรากฏการณ์ที่สารมีการเปล่งแสงเมื่อผ่านขบวนการไฟฟ้าเคมีนั้น เรา เรียกขบวนการนี้ว่า electrogenerated chemiluminescence

สารไวโอแลนโทรนในตัวทำละลายบางตัว สามารถเปล่งแสงได้ที่อุณหภูมิห้อง เมื่อได้รับแสงกระตุ้นที่ความยาวคลื่นที่เหมาะสม ทำให้โมเลกุลขึ้นไปอยู่ใน สถานะ excited state และปล่อยพลังงานแสงออกมาเพื่อกลับมาสู่สถานะ ground state วิธีการที่ทำให้โมเลกุลขึ้นไปอยู่ในสถานะ excited stateได้ อาจใช้ขบวนการ ไฟฟ้าเคมี ดังสมการ 3.1 –3.4

$$A + e \longrightarrow A$$
 (3.1)

$$A \longrightarrow A^{+} + e^{-} \tag{3.2}$$

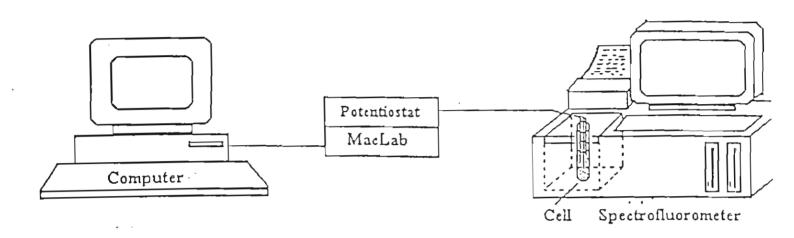
$$A^{T} + A^{T} \longrightarrow 2A^{*}$$
 (3.3)

$$A^* \longrightarrow A + hV \tag{3.4}$$

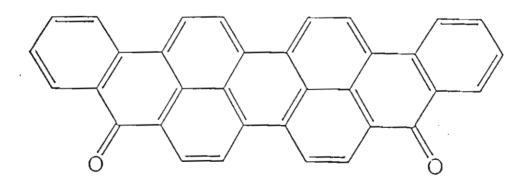
ในบทที่ 2 ได้กล่าวถึงการเปล่งแสงของสารไวโอแลนโทรนในตัวสารละลายหลายชนิด แต่เมื่อทำการทดลองกับเครื่องมือในห้องปฏิบัติการแล้ว พบว่า การศึกษาการเปล่งแสง ของสารไวโอแลนโทรนในขบวนการ เคมีไฟฟ้าในตัวสารละลาย dimethyl sulfoxide ให้ผลการทดลองดี ดังนั้นในรายงานนี้จะกล่าวถึงเฉพาะการทดลองในตัวทำละลาย dimethyl sulfoxide เท่านั้น

3.2 สารเคมีและเครื่องมือที่ใช้ในการทดลอง

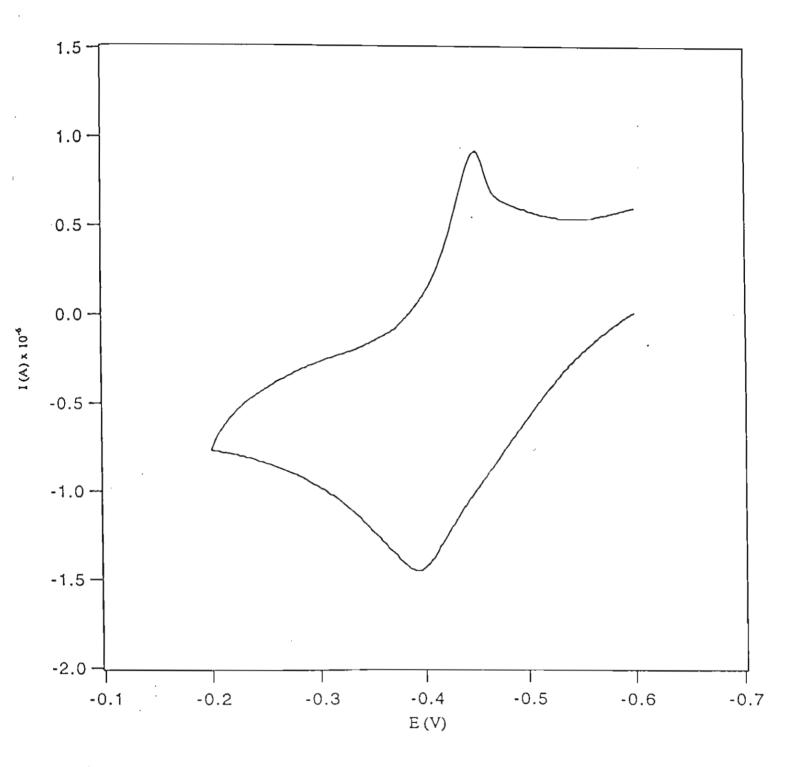
สารไวโอแลนโทรนได้จาก BASF และ ตัวทำละลาย dimethyl sulfoxide ได้ จาก Carlo Erba reagent tetraethylammonium bromide (TEAB) จาก Aldrich


เครื่องมือที่สำคัญคือ เครื่องมือที่ใช้ในการทำปฏิกิริยาไฟฟ้าเคมีเทคนิค cyclic voltammetry เครื่อง MacLab potentiostat MacLab/4e จาก ADInstrument Pty Ltd. ต่อเข้ากับ Macintosh PowerPC Performa 7300/120 computer โปรแกรมที่ใช้คือ EChem program version 1.3.2 electrode ที่ใช้ทั้งสามชนิคคือ platinum foil (พื้นที่ 1.4 cm x1.5 cm) เป็น auxilliary electrode working electrode เป็น platinum foil มีพื้นที่ 0.9cm x0.5 cm) และ platinum wire เป็น quasi-reference electrode สารละลายทุกตัว ไล่ออกซิเจนออกไปด้วยแก๊สอาร์กอน ความเข้มของแสงที่เกิดจาก ECL วัดด้วย เครื่อง JASCO FP-777 Spectrofluorometer เปรียบเทียบค่าความเข้มของแสงที่เกิดจาก ECL ของสารไวโอแลนโทรนกับค่าที่ได้จากการใช้สาร [Ru(bpy)3](PF6)2 (bpy คือ 2,2'-bipyridine) ภายใต้สภาวะการทดลองที่เหมือนกัน

3.3 วิธีการทดลอง

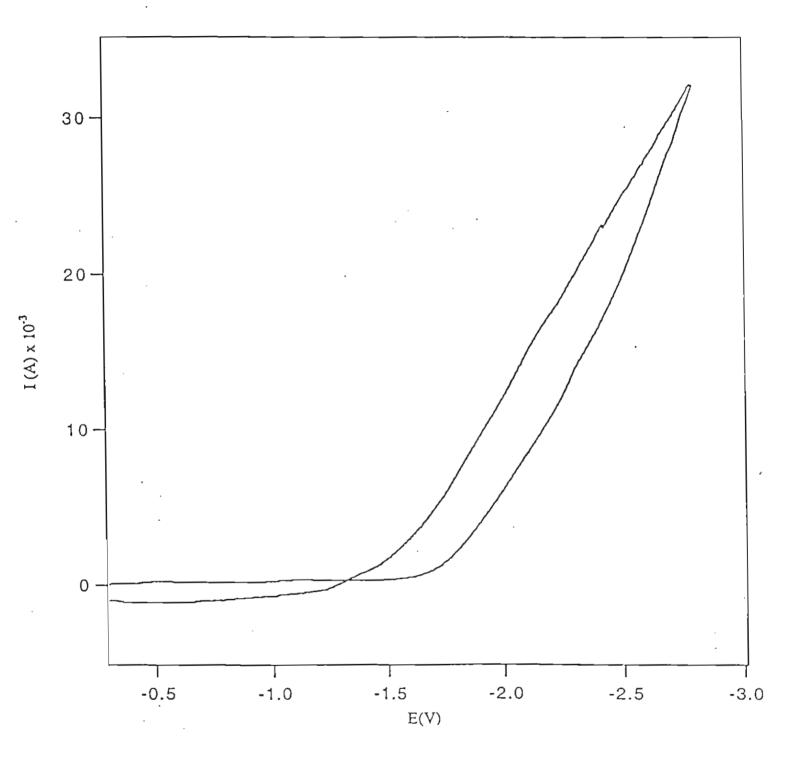

ในการทคลองเกี่ยวกับ ECL เพื่อสะควกต่อการวัคแสง จึงทำการทคลองใน หลอค quartz ขนาคพอคีกับช่องที่ใส่ cuvette สำหรับวัค emission ใส่สารละลาย 3 mL ในหลอค quartz ใส่ในเครื่อง spectrofluorometer ต่อสายไฟกับ electrodes เพื่อ ทคลองการเกิดปฏิกิริยาเคมีไฟฟ้า โคย cycle potential ในช่วง 0.00 V ถึง -4.00V scan rate 1000 mV/s ขณะทำการวัคแสงที่เปล่งได้จากสารไวโอแลนโทรน

3.4 ผลการทดลอง

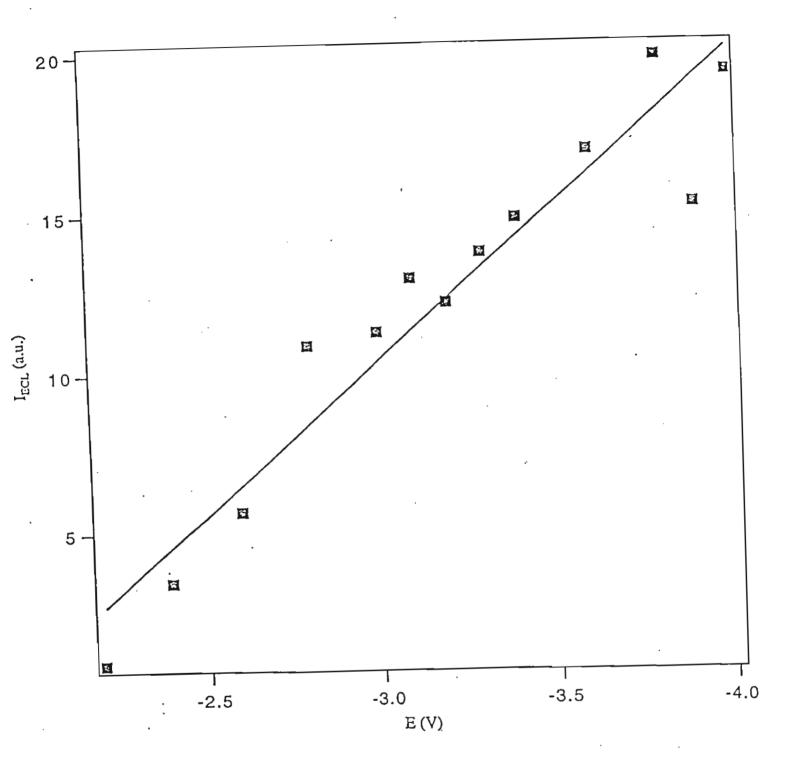

ในตัวทำสารละลาย dimethyl sulfoxide (DMSO) สารไวโอแลนโทรนให้ การ เปล่งแสงที่ความยาวคลื่น 626 nm ส่วนในรูป 3.1 แสดงภาพ cyclic voltammogram ของสารตัวนี้ จะเห็นว่า มี reduction wave E_{pc} เกิดที่ -0.45 V และมี E_{pa} เกิดที่ -0.39 V โดยที่ค่านี้เทียบกับ saturated calomel electrode

รูปแสดงใคอะแกรมการจัดเครื่องมือสำหรับการทดลอง ECL

รูปแสคงโมเลกุลของสารไวโอแลนโทรน


รูปที่ 3.1 แสคง cyclic voltammogram ของสารไวโอแลนโทรนใน DMSO มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัคที่ scan rate 200 mV/s (การวัค potential มี SCE เป็นตัวอ้างอิง)

เมื่อใช้ working electrode เป็น Pt-foil Pt-wire เป็น quasi-reference electrode และเป็น counter electrode ด้วย ในขบวนการเคมีไฟฟ้าเมื่อทำการทดลองเกี่ยวกับ ECL โดย cycle ค่า potential ระหว่าง 0.0 V ถึง -4.0 V และมี 0.1 M TEAB เป็นสาร supporting electrolyte จะเห็นการเปล่งแสงของไวโอแลนโทรนเกิดขึ้น ต่อมารูปร่าง ของ cyclic voltammogram จะเปลี่ยนไปเมื่อมีกระแสไฟฟ้ามากขึ้น ดังแสดงในรูปที่ 3.2 มีการเปลี่ยนแปลงค่า potentialระหว่าง 0.0 V ถึง --3.0 V


ได้มีการศึกษาการเปล่งแสงของสารไวโอแลนโทรนแบบ ECL ในตัวทำสาร ละลาย N,N-dimethylformamide (DMF) โดยให้การเปลี่ยนแปลงค่า potential ระหว่าง +4.0 V ถึง -4.0 V กลไกของการเกิด ECL ใน DMF คาดว่ามาจาก การชนกันของ radical anion กับ radical cation ของสารไวโอแลนโทรนตามสมการ 3.1-3.4 ข้างต้น แต่ในการทดลองโดยใช้ DMSO เป็นตัวทำละลาย แม้ให้มีการเปลี่ยนแปลงค่า potential ระหว่าง +4.0 V ถึง -4.0 V ก็สังเกตเห็น ECL ถ้าให้การเปลี่ยนแปลงค่า potential ระหว่าง 0.0 V ถึง -4.0 V ก็ยังเห็น ECL ค้วยเช่นกัน ดังนั้นจึงอาจกล่าวได้ว่า กลไกที่ เกี่ยวข้องกับการเกิด ECL ที่แตกต่างกันกับกรณีของใน DMF

ในการศึกษาการเปล่งแสงของสารไวโอแลนโทรนแบบ ECL ใน DMSO นั้น เพื่อให้เครื่อง spectrofluorometer วัคแสงได้สอดคล้องกับการเปล่งแสงที่เกิดขึ้นที่ electrode เราใช้ scan rate หลายค่า ตั้งแต่ 500 mV/s ถึง 2000 mV/s แต่ค่า scan rate 1000 mV/s ให้ผลการวัดแสงที่ดีที่สุด จึงใช้ค่า scan rate 1000 mV/s ตลอดการ ทคลอง

ในรูป 3.2 แสคงถึง voltammogram ของไวโอแลนโทรนขณะเกิด ECL ในช่วง potential 0.0 V ถึง -3.0 V จากภาพระหว่างเปลี่ยน potential 0.0 V ถึง -1.7 V ค่าของ กระแสไฟฟ้า (แกน Y) ต่ำมาก แต่ค่ากระแสไฟฟ้าเพิ่มขึ้นเมื่อ potential มากกว่า -1.7 V ค่าของกระแส (cathodic current) เพิ่มขึ้นตามค่าของ negative potential limit ที่เพิ่มขึ้น ค้วย ในรูป 3.3 เป็นกราฟแสดงถึงความสัมพันธ์ระหว่าง potential limit กับความเข้ม ของ ECL ที่เกิดขึ้น ลักษณะของกราฟเป็นเส้นตรง คังนั้นจึงแสดงว่าความเข้มของแสง ที่ได้จาก ECL ขึ้นอยู่กับจำนวนไอออนที่เกิดขึ้นด้วย มีไอออนเพิ่มขึ้น กระแสก็มีเพิ่ม มากขึ้น

รูปที่ 3.2 แสคง cyclic voltammogram ของสารไวโอแลนโทรนใน DMSO มี 0.1 M TEAB เป็น supporting electrolyte (Pt-foil เป็น working electrode) วัคที่ scan rate 1000 mV/s โคย cycle potential ในช่วง 0.0 V ถึง -3.0 V

รูปที่ 3.3 กราฟแสดงการพล็อตระหว่าง potential limits กับค่าความเข้มของ ECL ที่ได้ จากการ cycle potential ในช่วง 0.0 V ถึง -4.0 V มี 0.1 M TEAB เป็น supporting electrolyte (Pt-wire เป็น quasi-reference electrode) วัดที่ scan rate 1000 mV/s

ในปฏิกิริยาไฟฟ้าเคมี ที่ working electrode เราใช้ potential ที่ค่าเป็นลบ จึงเป็น การเติมอิเล็กตรอนให้กับสารไวโอแลนโทรน internmediate ที่เกิดขึ้นคือสารไวโอแลน โทรนแอนไออน คังแสคงในสมการ 3.5 นอกจากนี้ผลการทดลองยังพบว่ามีสาร โบรมีน (Br₂) เกิดขึ้นด้วย

3.5 บทวิจารณ์

จากการสังเกตขณะทำการทคลองพบว่ามีสารสีเหลืองอยู่กันหลอดทคลอง สาร คังกล่าวก็คือโบรมีนนั่นเอง คังนั้นจึงมีข้อคิคว่าเพราะเหตุอะไร กระแสในขณะทำ ECL จึงเปลี่ยนไปมากเมื่อเปรียบเทียบกับการทคลองปกติ ในขณะที่ cycle potential 0.0 V ถึง -1.7 V ในสารละลายคงมีแต่ Br เป็นส่วนใหญ่ แต่เมื่อ potential สูงขึ้น มากกว่า -1.7 V เป็นต้นไป Br อาจเกิคปฏิกิริยา oxidation ได้เป็น Br₂ คังสมการ 3.6

$$2Br \longrightarrow Br_2 + 2e$$
 (3.6)

ในขณะที่สารไวโอแลนโทรนเกิดปฏิกิริยารีคักชันที่ working electrode bromide ion เกิดปฏิกิริยาออกซิเคชันที่ auxilliary electrode ได้เป็น Br₂ และ โบรมีนโมเลกุล สามารถเป็นตัว oxidizing agent ที่คีสามารถจะ oxidize ไวโอแลนโทรนที่เป็น radical anion ทำให้มันกลายเป็นโมเลกุลที่เป็นกลางแต่อยู่ในสภาพของ excited state ซึ่งต่อมาปล่อยพลังงานออกไปในรูปของพลังงานแสงคังสมการ 3.7-3.8

$$2Violanthrone + Br_2 - 2Violanthrone + 2Br$$
 (3.7)

นอกจากนี้ความเข้มข้นของ supporting electrolyte เป็น 0.1 M นับว่ามีความเข้มข้นสูง คังนั้นความเข้มข้นของ Br สูงมากเมื่อเปรียบเทียบกับความเข้มข้นของสารไวโอ แลนโทรน (10^{-5} M) ในขณะที่มี Br และ Br₂ เกิดขึ้น ทำให้ความเข้มข้นของไอออน

สูงมาก จะเห็นว่ากระแสไฟฟ้าเพิ่มขึ้นสูงมาก เมื่อเปรียบเทียบกับ cyclic voltammogram ตามปกติ

ในการเกิด ECL ของสารไวโอแลนโทรน ในตัวทำละลาย DMSO เป็นผลจาก ปฏิกิริยาไฟฟ้าเคมี โดยที่เราควบคุมให้โมเลกุลของไวโอแลนโทรนเกิดปฏิกิริยารีดักชัน ก่อน แล้วจึงเกิดปฏิกิริยาออกซิเดชันกับสารที่เป็นตัวออกซิไดซ์ในที่นี้คือ โบรมีน โมเลกุล ซึ่งเกิดจากปฏิกิริยาออกซิเดชันของ bromide ion โดยขบวนการไฟฟ้าเคมี เมื่อมี การชนกันของทั้งสอง species ทำให้มีการแลกเปลี่ยนอเล็กตรอน ไวโอแลนโทรนกลาย เป็นกลางแต่มีพลังงานสูงกว่า ground state และเมื่อมันปล่อยพลังงานที่มากเกินพอออก ไป โมเลกุลกลับสู่ ground state พร้อมกับเปล่งแสงออกมา ความเข้มของแสงที่ได้ราว สองเปอร์เซนต์ของความเข้มของแสงที่ได้จาก [Ru(bpy)3](PF6)2

หนังสืออ้างอิง

- 1. Sawyer, D.T., Sobkowiak, A., and Roberts, J.L. Jr. *Electrochemistry For Chemists* (1995), JOHN WILEY & SONS, Inc., New York pp. 330-332.
- 2. Quichkenden, T.I., Hansongnern, K. (1995) J. Biolumin Chemilumin 10, 103-6.
- 3. Gordon, A.J. and Ford, R.A. *The Chemist's Companion* A Handbook of Practical Data, Techniques, and References (1972), JOHN WILEY & SONS, Inc., New York pp. 23

OUTPUT

ในส่วนนี้รวม Output ที่ได้ทั้งหมด 3 ฉบับ

1. 1509: Electrogenerated Chemiluminescence of Violanthrone in Dimethyl Sulfoxide

ผู้เขียน: K. Hansongnern, P. Chooto, and P. Amormpitoksuk

Department of Chemistry, Faculty of Science,

Prince of Songkla University, Hat-Yai, Songkla 90112

Thailand

ผลงาน: ได้นำเสนอในที่ประชุมทางวิชาการ ณ ต่างประเทศแบบโปสเตอร์

The 5th International Conference On SOLAR ENERGY STORAGE AND

APPLIED PHOTOCHEMISTRY [SOLAR'99] & The 2nd International training working on ENVIRONMENTAL PHOTOCHEMISTRY

[ENPHO'99] ที่กรุงไกโร ประเทศอียิปต์ ระหว่างวันที่ 30 มีนาคม - 4 เมษายน 1999 เลขที่โปสเตอร์ 41

2. เรื่อง: The Luminescence Quenching of Violanthrone by Azobenzene in Aprotic Solvents

ผู้เขียน: K. Hansongnern, S. Techapermphol, and N. Leesakul
Department of Chemistry, Faculty of Science,
Prince of Songkla University, Hat-Yai, Songkla 90112
Thailand2.

ผลงาน: เครียมส่ง manuscript ไปที่ Journal of Photochemistry and Photobiology
A: Chemistry

3. เรื่อง: Electrochemistry of Violanthrone in Various Solvents ผู้เขียน: K. Hansongnern, P. Chooto, and P. Amormpitoksuk

Department of Chemistry, Faculty of Science,

Prince of Songkla University, Hat-Yai, Songkla 90112 Thailand

ผลงาน: ไค้ส่ง manuscript ไปที่ Journal of Science Society of Thailand นอกจากนี้ได้แนบ manuscript ทั้งสามฉบับมาด้วย Title: Electrochemical Studies of Violanthrone in Various Solvents

Authors

Kanidtha Hansongnern*, Pipat Chooto, and Pongsaton Amornpitoksuk

Department of Chemistry, Faculty of Science, Prince of Songkla University,

Hat-Yai, Songkla 90112, Thailand.

* To whom correspondence should be addressed at: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla 90112, Thailand. E-mail: hkanidth@ratree.psu.ac.th and the fax no. (074)212918.

ELECTROCHEMICAL STUDIES OF VIOLANTHRONE IN VARIOUS SOLVENTS

KANIDTHA HANSONGNERN, PIPAT CHOOTO, AND PONGSATON AMORNPITOKSUK

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla 90112, Thailand.

ABSTRACT

Electrochemical studies of violanthrone in dimethylformamide (DMF), acetonitrile (MeCN), dimethyl sulfoxide (DMSO), and dichloromethane (CH₂Cl₂) showed that the compound behaved differently in these solvents. Three couples of reduction waves were observed in DMF, two couples in dichloromethane and one couple in DMSO and MeCN. Among these solvents, violanthrone was the most easily reduced in DMSO and with difficulty in dichloromethane. This could be due to the solvent effects on stabilization of the radical anions produced electrochemically. In addition, the direction of scanning and potential limits also affected the forming of reactive species.

INTRODUCTION

Violanthrone is an interesting anthraquinone vat dye (Fig.1). It gives the blue color and has been used in fabrics for a long time. Besides the resistant properties to photochemical damage, it has been also used as a blue toner in electrophotography¹. This compound has some interesting fluorescent properties. For example, a solution of hydrogen peroxide and violanthrone in pyridine can undergo some reactions with chlorine and produced a bright red chemiluminescence². In addition, it can produced electrogenerated chemiluminescence in dimethylformamide when a cycle potential was applied to platinum electrodes³. However, the electrochemical studies of violanthrone itself in other solvents have received little attention.

The aim of the present study was to investigate the electrochemical behaviors of violanthrone in different solvents such as dimethyl sulfoxide and acetonitrile in order to obtain more information about its electrochemistry.

MATERIALS AND METHOD

Materials. Violanthrone was obtained from BASF and used without further purification. N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and dichloromethane were pure RPE grade and purchased from Carlo Erba. Acetonitrile (MeCN) was obtained from Merck. All solvents were used without further purification. Tetrabutylammonium bromide (TEAB) was obtained from Fluka and used as supporting electrolyte in all experiments.

Apparatus. The electrochemical technique was cyclic voltammetry. All cyclic voltammetric measurements were carried out with potentiostat and MacLab Unit, from AdInstruments Company, controlled by Power Macintosh 7200/120 with EChem program version 1.3.2. Three electrodes were used. A working electrode was a platinum disk and a platinum wire as a counter electrode. The reference electrode was Ag/AgCl which calibrated with the saturated calomel electrode (SCE), therefore all potential measurements were reported versus SCE.

RESULTS AND DISCUSSION

Violanthrone consisted of conjugated unsaturated hydrocarbons and also two carbonyl groups. The electrochemical study was studied in DMF. Three couples were observed as shown in Fig. 2. The first couple gave the cathodic potential, E_{pc} -0.49V and the anodic potential, E_{pa} -0.39 V versus SCE. It was observed that the cathodic peak was very sharp. In the second couple, the cathodic peak potential and the anodic peak potential occurred at -0.62 V and -0.53 V versus SCE, respectively. The third couple was also observed with E_{pc} -1.49V and E_{pa} -1.02 V versus SCE. It was noted that in the first scan, the reduction of the first couple was broad and the scanning direction was from positive to negative potentials. However, in the second scan this reduction peak became distinctively sharp. If the first potential scan was performed from negative to positive values with the initial potential -0.7 V or greater, two consecutive anodic peaks were only observed. From this result it indicated that the reduced forms of violanthrone could undergo some further reactions and were not electroactive. However, some of reduced forms of violanthrone can be oxidized back to the violanthrone molecules.

Fig. 3 illustarated the cyclic voltammogram of violanthrone in acetonitrile. It showed only one couple in the reduction wave potential. The shape was similar to that of violanthrone in DMF solution. The position of E_{pc} and E_{pa} were -0.61 V and -0.56 V versus SCE, respectively. It was found that the reduction peak in acetonitrile was not stable during the time scale of experiment. If the measurements were carried out many cycles consecutively, then the current and the shape of this couple werechanged with time. However, if the fresh sample was added in the reaction container, then the former couple appeared again, exactly at the same position with the same shape. This indicated that the reduction product in acetonitrile can undergo some further reactions and those intermediates were not electroactive species any longer.

In DMSO only one stable couple was observed in cyclic voltammogram, with E_{pc} -0.45 V and E_{pa} -0.39 V versus SCE. Meanwhile, in dichloromethane violanthrone gave two couples (as shown in Fig. 4). The first couple occurred at E_{pc} -0.65 V and E_{pa} -0.47 V versus SCE. The second one was observed at E_{pc} -1.15 V and E_{pa} -1.08 V versus SCE. Furthermore, the two couples in dichloromethane were similar to those last two couples in DMF. In order to observe those couples clearly, the positive potential limit had to be applied first. If the potential scan was carried out from negative to positive potential limits, the reduction waves were deformed.

Table 1 summarized the values of the peak potentials in all four solvents. From the values of ΔE_p in Table 1 indicated that the first cathodic processes in MeCN and DMSO corresponded to the electrochemical reactions which involved one

electron transfer. After the first reduction, the violanthrone radical anions were produced in all solvents (in the first couple) and became reduced further to produce the dianions in the second couple. The dianions were stable only in DMF and dichloromethane. According to this result, it implied that the violanthrone dianions were stabilized in these solvents more than in MeCN and DMSO. In other words, the dianions were more reactive in DMF and dichloromethane therefore they underwent some further reactions and gave unelectroactive products under time scale of experiment.

From E_{pc} values, it was noted that the violanthrone molecules were easily reduced in DMSO which occurred at -0.45 V compared to results in other solvents. This meaned that DMSO was able to facilitate the reduction of violanthrone to some extent. Meanwhile, violanthrone were hardly reduced in dichloromethane (E_{pc} -0.65 V). This could be due to how well the stabilization of the intermediates which were produced during electrochemical reactions by solvent molecules. The dielectric constants of solvents could play the importan role in this interaction. DMSO has the value of dielectric constant, 46.68 whereas, dichloromethane has the value of 8.93 (DMF 36.71 and MeCN 37.5)⁴. The solvent with high dielectric comstant can stabilize radical anion much better than the ones with low values.

In addition, the values of ΔE_p in DMF and in dichloromethane from the first couple were greater than 0.1 V, this implied that the redox reactions in both solvents involved more complicated reactions than those in MeCN and DMSO. From the fact that the ΔE_p of the first couples in MeCN and DMSO were less than that in DMF, it indicated that the electron transfer reactions were faster in the former solvents than in DMF. The couples became electrochemically reversible⁵. It should be noted that the Epc of the first two couples were very close in values, it could be rationalized on the structure of violanthrone molecule. Violanthrone contained two carbonyl groups which were almost equally susceptible to be reduced. The first reduction occurred at one ketone group and molecule became radical anion. Then the other one was reduced further and molecule became dianions. If violanthrone dianion was reduced further. Violanthrone is a large molecule with many conjugated double bonds and two ketone groups. In the case of the third couple, which was seen in DMF, occurred at the most negative potential. It was possible to state that this radical anion could be generated from the conjugated aromatic part in violanthrone molecule. At this point, the radical anions produced were not stable enough and were able to react further. Meanwhile, this corresponded to weak signal and the shape was broader.

CONCLUSION

From the investigation of electrochemical behavior of violanthrone in DMF, MeCN, DMSO and dichloromethane, it showed that violanthrone can be reduced to the radical anion in DMSO easily because $E_{\rm pc}$ was the smallest compared to others. This could be due to the property of solvent, high dielectric constant, which can stabilize the radical anion of violanthrone very well compared to other solvents. The electron transfer reactions of the first couples in MeCN and DMSO were faster than those in DMF and in dichloromethane. In addition, if violanthrone was reduced first, it gave rise to stable anions during the time scale of experiment and redox reaction

involved were reversible. However, if the compound became oxidized frist it gave rise to some intermediates via complexed reactions which were irreversible and it was noticed that the reduction potential waves were deformed. Therefore, violanthrone was quite senitive to the direction of the applied potentials.

ACKNOWLEDGEMENT

The authors would like to thank the Thailand Research Fund for all supports via Grant No. BRG408001.

REFERENCS

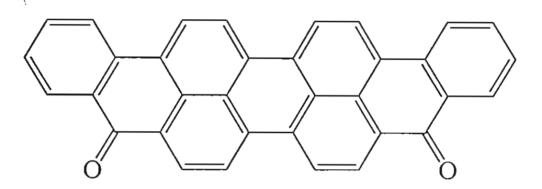
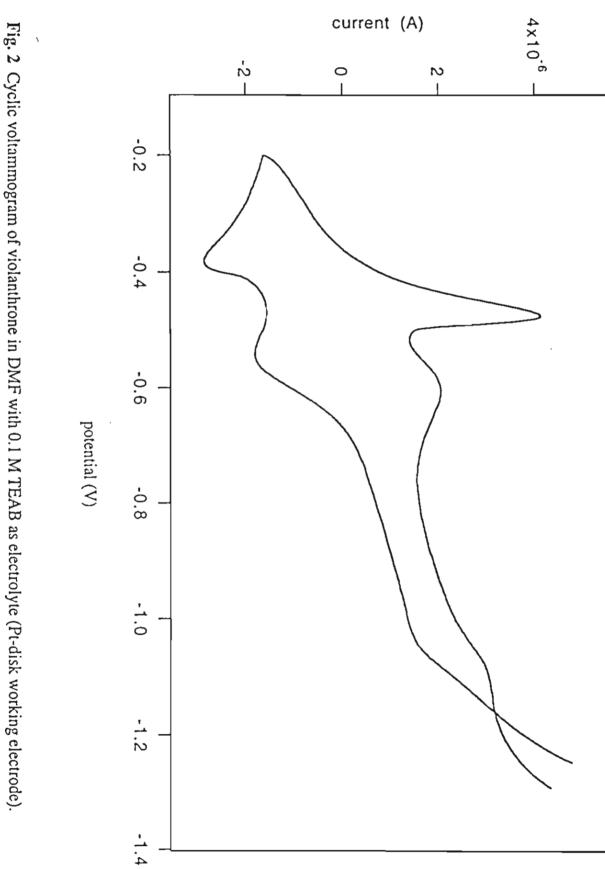
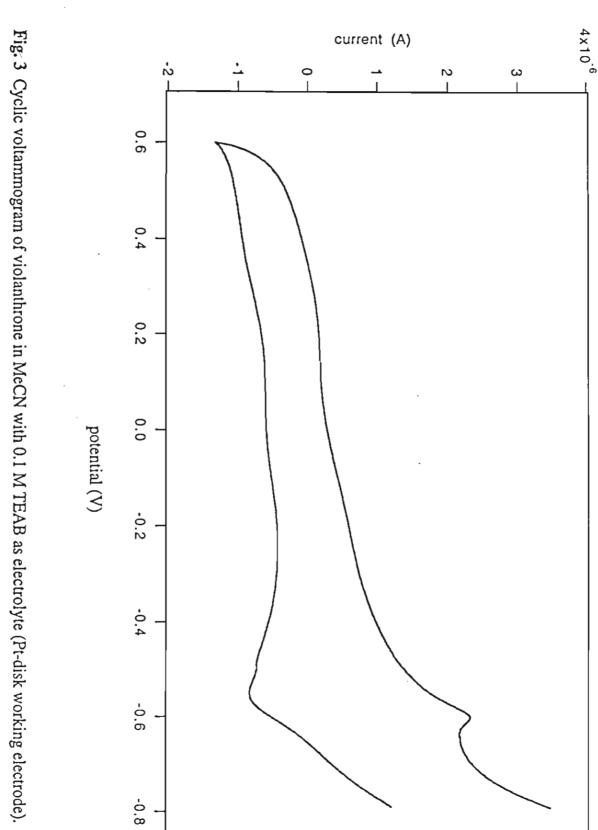
- 1. Koizumi, Y., Yamazaki, H., Takahashi, J., Matsubara, A., and Kawakami, S. Patent, *Japannese Patent Office (Tokyo)* (1988) No. 63 02, 075.
- 2. Ogryzlo E.A., Pearson, A.E. (1968) J. Phys. Chem. 72, 2913-2916.
- 3. Quichkenden, T.I., Hansongnern, K. (1995) J. Biolumin Chemilumin 10, 103-6.
- 4. Sawyer, D.T., Sobkowiak, A., and Roberts, J.L. Jr. *Electrochemistry For Chemists* (1995), JOHN WILEY & SONS, Inc., New York pp. 330-332.
- 5. Richard P. Baldwin, K. Ravichandran and Ronda K. Johnson. (1984) J. Chem. Edu. 61, 9, 822

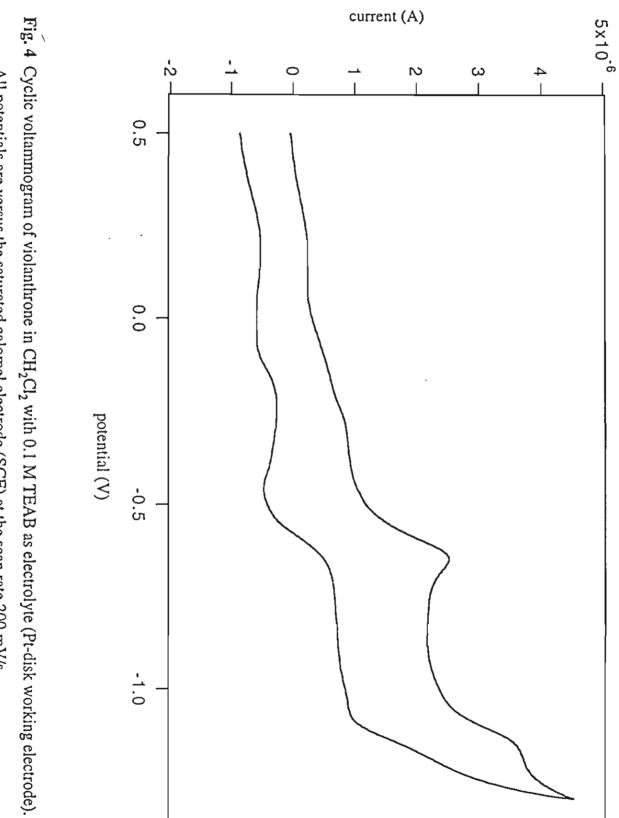
บทคัดย่อ

จากการศึกษาทางเคมี ไฟฟ้าของสารไวโอแลนโทรนในตัวทำละลายที่เป็น aprotic solvents เช่น dimethylformamide (DMF) acetonitrile (MeCN) dimethyl sulfoxide (DMSO) และdichloromethane (CH_2Cl_2) พบว่ามีพฤติกรรมที่แตกต่างกันใน ตัวทำละลายแต่ละชนิค เช่นใน DMF cyclic voltammogram มี 3 couples ใน CH_2Cl_2 มี 2 couples ใน DMSO และ MeCN มีอย่างละหนึ่ง couple เท่านั้น สารไวโอแลนโทรนถูก รีคิวซ์ได้ง่ายที่สุดใน DMSO และ ถูกรีคิวซ์ได้ยากที่สุดใน CH_2Cl_2 ทั้งนี้เนื่องจากว่าตัวทำละลายสามารถ stabilize ตัว radical anions ที่ได้จากปฏิกิริยาเคมีไฟฟ้าได้ไม่เท่ากัน นอก จากนี้ทิศทางของ scanning และ potential limits ก็มีผลต่อการเกิด reactive species ด้วย

Table 1 Cyclic voltammetric data of violanthrone in various solvents with 0.1 M TEAB electrolyte. The sweep rate was 100 mV/s. All measurements are versus SCE.

Solvents	Couple 1 (V)			Couple 2 (V)			Couple 3 (V)		
	E_{pc}	E_{pa}	ΔE_{p}		E_{pa}			E_{pa}	ΔE_p
DMF	-0.49	-0.39	0.104	-0.62	-0.53	0.090	-1.09	-1.02	0.068
MeCN	-0.61	-0.56	0.057						
DMSO	-0.45	-0.39	0.058						
CH ₂ Cl ₂	-0.65	-0.47	0.189	-1.15	-1.08	0.072			


Fig. 1 The structure of violanthrone.

All potentials are versus the saturated calomel electrode (SCE) at the scan rate 200 mV/s.

All potentials are versus the saturated calomel electrode (SCE) at the scan rate 200 mV/s.

All potentials are versus the saturated calomel electrode (SCE) at the scan rate 200 mV/s.

Title: The Luminescene Quenching of Violanthrone by Azobenzene in aprotic solvents

Authors

Kanidtha Hansongnern*, Sirirat Techapermphol and Naraluk Leesakul

Department of Chemistry, Faculty of Science, Prince of Songkla University,

Hat-Yai, Songkla 90112, Thailand.

* To whom correspondence should be addressed at: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla 90112, Thailand. E-mail: hkanidth@ratree.psu.ac.th and the fax no. (074)212918.

THE LUMINESCENCE QUENCHING OF VIOLANTHRONE IN APROTIC SOLVENTS

KANIDTHA HANSONGNERN, SIRIRAT TECHAPERMPHOL, AND NARALUK LEESAKUL

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla 90112, Thailand

Abstract:

The quenching reaction of violanthrone by azobenzene was investigated in aprotic solvents such as chloroform, dichloromethane, and acetone. The polarity of solvents also have some effects on the excited states of violanthrone via solute-solvent interaction. In addition, the Stern-Volmer constants, K_{sv} in the different media are reported. The quenching rate constants, kq, were obtained from emission intensity and emission lifetime studies. It is found that azobenzene in chloroform gives the greatest value of quenching rate constants, k_q . The mechanism of quenching reaction of violanthrone by azobenzene occurred through the energy transfer process predominantly.

INTRODUCTION

Violanthrone is a vat dye which used in fabics industry.[1] The fluorescent properties has been studied by the singlet oxygen [2] and it was found that violanthrone can give emission via electrogenerated chemiluminescence indimethylformamide [3]. However, the quenching reactions of this compound with other solvents have not been studied. In this report, the quenching reactions before of violanthrone in aprotic solvents such as chloroform, dichloromethane, and acetone were investigated in order to get the information of the properties of the excited state of violanthrone.

MATERIAL AND METHODS

Material. Violanthrone was obtained from BDAF and used as received. Acetone and chloroform were purchased from Lab-Scan whereas dichloromethane was from Carlo erba. Azobenzene was obtained from AJAX and recrystallization 2 times before used as quencher.

Absorption spectra of violanthrone were recorded at room temperature with a Hewlett Packard 8452A Diode Array spectrophotometer. Uncorrected emission spectra were obtained with a JASCO FP-777 spectrofluorometer. Solutions for the emission intensity were deaerated by argon gas for 15 minute prior to measurement of fluorescence intensity. The emission and excitation slits were set such that the bandwidths were 5 nm. In addition, solutions containing violanthrone and azobenzene were excited at the wavelength which both compounds have minimum absorbance (A <0.05) in order to prevent self-absorption. The emission intensities were monitored at

the (uncorrected) wavelength of maximum emission of violanthrone in each solvent (> 600 nm). No correction for absorbance of azobenzene was necessary at these wavelengths.

Lifetimes were determined by photocounting equipment. The nitrogen laser (1 = 337 nm) is an exciting source and streak camera for detection of light intensity.

RESULTS AND DISCUSSION

The absorption and emission spectra of violanthrone

The absorption spectrum of violanthrone in acetone shows an absorption band at 584 nm. In dichloromethane the absorption spectrum consistes of two bands at 558 nm and 602 nm. Violanthrone in chloroform also gives similar spectrum to that of Violanthrone in dichloromethane with two bands which occur at 560 nm and 606 nm. The lowest absorption bands were shifted to higher energy with increasing polarity of solvents.

The emission spectrum recorded for the violanthrone in acetone shows weak emission band at 616 nm. In dichloromethane and in chloroform, the emission bands were observed at 624 nm and 626 nm respectively. The normalized excitation and emission psectra of violanthrone in dichloromethane, chloroform, and acetone were shown in Figure 1-3 respectively. The Stokes shift in acetone was observed to be the greatest value (889 cm⁻¹) compared to that in dichloromethane (586 cm⁻¹) and that in chloroform (528 cm⁻¹). The solvent parameter, Z-values give the scale of solvent polarity. Acetone has the Z-value 65.7 kcal/mole, dichloromethane 64.2 kcal/mole, and chloroform 63.2 kcal/mole respectively. Among three solvents, acetone has the greatest polarity.

The emission lifetimes of violanthrone in solvents were measured. In acetone the lifetime is 3.8 ns, in chloroform 4.93 ns, and in chloroform 5.31 ns respectively. It is noted that when the polarity of solvent increases the lifetime decreases. This indicated that in acetone there was strong interaction between the solvents and the molecules of violnathrone in the excited states therefore this increased the rate constant of radiationless pathway therefore, the lifetime is shortest. There is less interaction between solvent-solute molecules in the excited states in chloroform, then violanthrone has the longest lifetime, 5.31 ns.

Quenching reaction

When azobenzene was added to the solution of violanthrone, the fluorescence intensity was decreased. The fluorescence quenching of violanthrone was observed in acetone, dichloromethane and chloroform. The relative fluorescence intensity follows a linear Stern-Volmer plot (see Figure 4).

A Stern-Volmer analysis of photochemical kinetics involves a competition between a unimolecular reaction decay of A* and a bimolecular quenching by Q:

$$\begin{array}{ccc} & A^* & \longrightarrow & A \\ A^* + Q & \longrightarrow & A + Q \end{array}$$

where Q is the quencher which is azobenzene and A^* is the molecule of violanthrone in the excited state.

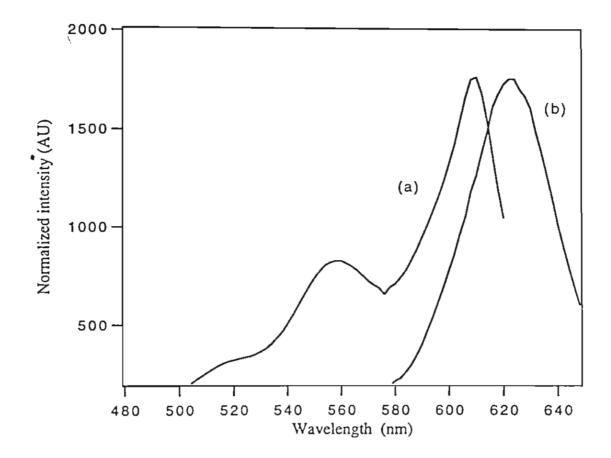


Fig. 1. Normalized excitation (a), and emission (b) spectra of violanthrone in dichloromethane.

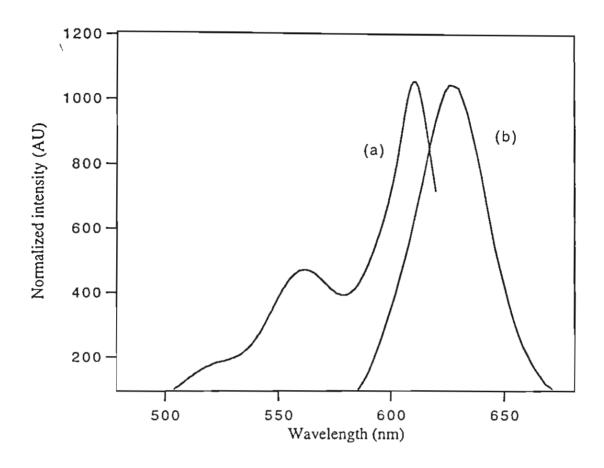


Fig. 2. Normalized excitation (a), and emission (b) spectra of violanthrone in chloroform.

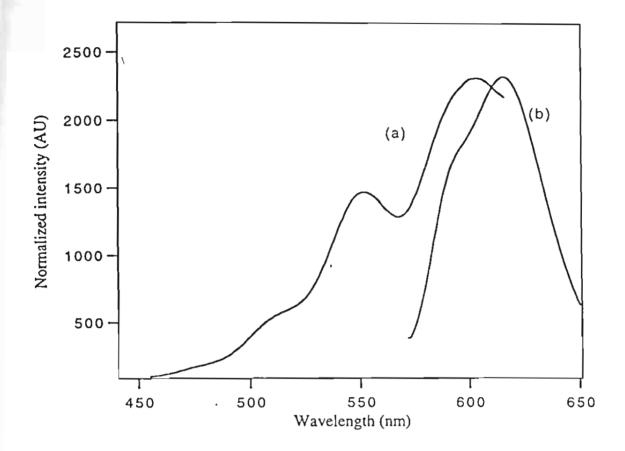


Fig. 3. Normalized excitation (a), and emission (b) spectra of violanthrone in acetone.

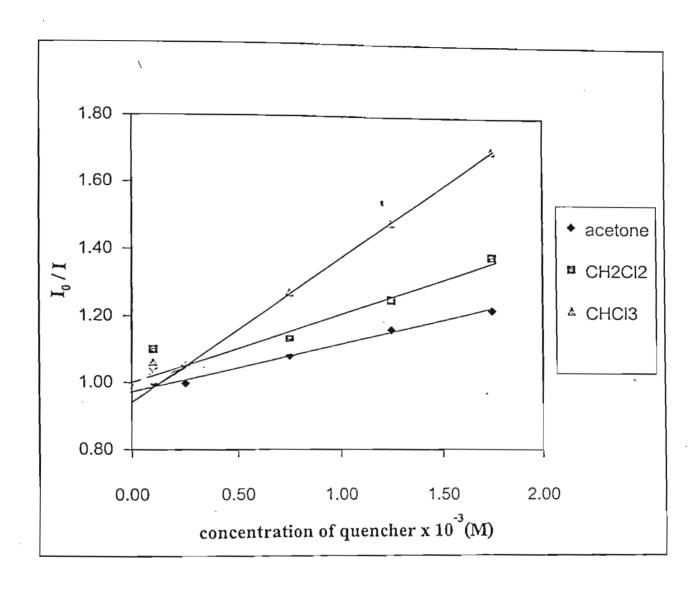
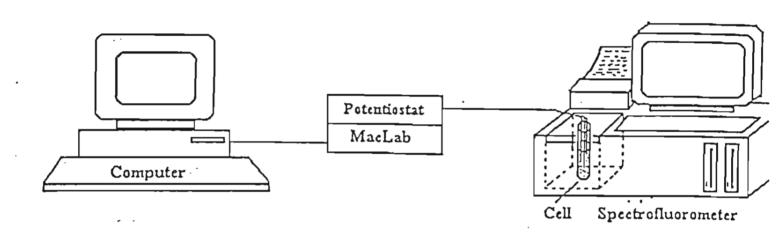


Fig. 4. Plot between I_0/I and the concentrations of azobenzene in acetone, CH_2Cl_2 , and $CHCl_3$.


The slope of the plots is the Stern-Volmer constants, K_{sv} . K_{sv} is equal to $k_q\tau$, where k_q is the second-order luminescence quenching rate constant and τ is the fluorescence lifetime of violanthrone in solution without quencher. The values of K_{sv} were calculated from the slope of the plots in all three solvents. Then, the second-order luminescence quenching rate constants were also ontained and given in Table 1. The values of k_q were $20.7 \times 10^9 \, \text{M}^1 \text{s}^{-1}$, $51.3 \times 10^9 \, \text{M}^1 \text{s}^{-1}$ and $71.7 \times 10^9 \, \text{M}^1 \text{s}^{-1}$ in acetone, dichloromethane and chloroform respectively. Since the molecules of the excited state violanthrone in chloroform had longest lifetime, then they could be quenched by azobenzene easily. This gave rise to the greatest value of k_q . The mechanism of quenching reaction should be energy transfer reaction. When the azobenzene was added in the solution of violanthrone, the luminescence intensity was decreased without new bands observed. The azobenzene itself did not emit therefore when it received the extra energy and passed it to solvent and surroundings.

CONCLUSION

The excited state of violanthrone showed less solvent effects on the emission energies than the absorption energies. For quenching reaction, azobenzene was a good quencher for luminescence of violathrone in chloroform, dicloromethane, and acetone. The quenching rate constant, k_q in chloroform was the greatest value among three solvents. This corresponded to the longest lietime of violanthrone in the same solvent. The mechanism for quenching reaction occurred through the energy transfer process.

REFERENCES

- [1]. Kurtz, R.B. (1954) Trans New York Acad Sci 16, 399-407
- [2]. Ogryzlo, E.A. and Pearson, A.E. (1968) J. Phys. Chem. 72, 2913-16
- [3]. Quickenden, T.I. and Hansongnern, K. (1995) J. Biolumin Chemilumin. 10 103-6

Schematic diagram of the instrumentation used for ECL experiments.

Figure 1. The structure of violanthrone.

Title: Electrogenerated Chemiluminescence of Violanthrone in Dimethyl Sulfoxide

Authors

K. Hansongnern*, P. Chooto, and P. AmornpitoksukDepartment of Chemistry, Faculty of Science, Prince of Songkla University,Hat-Yai, Songkla 90112, Thailand.

* To whom correspondence should be addressed at: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla 90112, Thailand. E-mail: hkanidth@ratree.psu.ac.th and the fax no. (074)212918.

ELECTROGENERATED CHEMILUMINESCENCE OF VIOLANTHRONE IN DIMETHYL SULFOXIDE

KANIDTHA HANSONGNERN, PIPAT CHOOTO, AND PONGSATON AMORNPITOKSUK

Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkla 90112, Thailand.

Abstract

Violanthrone is an anthraquinone vat dye, which is resistant to photochemical damage. Most previous work has concentrated on its chemiluminescence properties. In this report, electrogenerated chemiluminescence (ECL) of violanthrone has been investigated in dimethtyl sulfoxide with 0.1 M of tetraethylammonium bromide as electrolyte. Violanthrone luminesces in the potential range between 0.0 V and -4.0 V. At the sweep rate 1000 mV/s, the intensity of the violanthrone ECL is about 2 % of that of tris(2,2'-bipyridine)ruthenium(II) ion under the same conditions. It was found that bromine was also produced during the experiment, leading to the conclusion that the luminescence arises from the reaction between radical anion of violanthrone and molecular bromine. The mechanism is discussed in detail.

INTRODUCTION

Chemiluminescence of some reactions have been studied and it was found that the excited states are generated by electron-transfer processes and the light was observed at the electrode surfaces. This is called electrogenerated chemiluminescence [1]. One route to ECL is via an ion-annihilation reaction mechanism. For example, the reactions between radical anions and cations of 9,10-diphenylanthracene have been studied in acetonitrile, propylene carbonate or the mixtures of solvents [2]. Some involved the reactions between strong reductants (A) and strong oxidants (D) which are generated electrochemically such as the ECL of the $[Ru(bpy)_3]^{2+}$ $S_2O_8^{2-}$ system in acetonitrile-water solutions [3]. The excited state $[Ru(bpy)_3]^{2+}$ is generated via oxidation of $[Ru(bpy)_3]^{4-}$ by SO_4^{-1} . ECL of violanthrone has been investigated in dimethylformamide at sweep rate 80 V/s with tetrabuthylammonium bromide (TEAB) as electrolyte, in the potential range -4.0 V to -4.0 V [4]. The mechanism was proposed to be the result of annihilation of the radical anions and radical cations of violanthrone produced electrochemically.

In this work we investigated the ECL of violanthrone in dimethyl sulfoxide, but in the potential range 0.0 V to -4.0 V with TEAB as electrolyte. The luminescence was found to be produced via a route different from that previously reported.

EXPERIMATAL SECTION

Materials. The ECL of violanthrone was studied using a deoxygenated solution in dimethyl sulfoxide (Carlo Erba reagent) with a supporting electrolyte of tetraethyl- ammonium bromide (TEAB, Aldrich) at a concentration of 0.1 mol/L. Violanthrone was obtained from BASF and used as received.

Electrochemical measurements. Cyclic voltammetric investigations of violanthrone at a platinum electrode were done in dimethyl sulfoxide containing 0.1 M TEAB. The electrochemical measurements were carried out using MacLab /4e, MacLab potentiostat from ADInstrument Pty Ltd., connected to Macintosh PowerPC Performa 7300/120 computer, with the EChem Program version 1.3.2 to control the applied potentials for electrochemical reactions. Platinum disk is a working electrode. Pt wire is an auxiliary electrode and the reference is a Ag/AgCl electrode which was calibrated to the saturated calomel electrode (SCE). Then all potentials are reported to SCE and the sweep rate is 200 mV/s

Electrogenerated chemiluminescence measurements. For all ECL experiments, the sweep rate was set at 1000 mV/s in the potential range 0.0 V to -4.0 V. The Scope Program was used to generate the waveform within a given period of time. The area under each waveform was determined by the Peak Program supplied by the ADInstru ment Pty Ltd. The 3 mL of solution was transferred to the quartz cell, with diameter of 1 cm. All three electrodes were immersed in the cell. The working electrode is Pt foil, 0.9x0.5 cm., total area, 0.45 cm². The auxiliary is also Pt foil, 1.4x1.5 cm. total area 2.1 cm². Pt wire was used as a quasi-reference electrode. All solutions were degassed with argon and carried out at room temperature, 25 °C. The relative ECL intensity measurements were performed using Jasco FP-777 spectrofluorometer. Integration of the ECL intensity over finite periods of time was accomplished using the program supplied by Jasco Company. The ECL intensity from violanthrone was compared to that of [Ru(bpy)₃](PF₆)₂ under the same conditions.

RESULT AND DISCUSSION

Violanthrone is a vat dye, used in fabrics and is known for its resistant to photochemical damage. It is a aromatic hydrocarbon with a lot of conjugated systems of double bonds as shown in Figure 1. Violanthrone gives emission in many nonaqueous solvents such as dimethyl sulfoxide and the maximum wavelength of luminescence is 626 nm. The electrochemistry of violanthrone was studied in dimethyl sulfoxide with 0.1 M TEAB as electrolyte. The cyclic voltamogram is shown in Figure 2. One couple in the reduction wave occurred with the $E_{pc} = -0.45$ V and the $E_{pa} = -0.39$ V at a Pt electrode. The potentials are vs. the saturated calomel electrode.

For ECL experiments, the electrodes used are differrent form normal cyclic votammetry mentioned above. Pt foil, the auxiliary electrode, has greater surface area than that of the working electrode (Pt foil) and Pt wire was used as quasi-reference electrode. This setup is a requirement for the ECL experiments in order to generate the large amount of the radical anions produced electrochemically. In the previous work we studied the ECL experiments of violanthrone in dimethylformamide in the potential range +4.0 V to -4.0 V [4]. However, in this work we confine the investigation of ECL study to the electrical measurement in the potential range 0.0 V to -4.0 V in order to obtain more information about mechanism. The

luminescence from ECL was detected using the spectrofluorometer. The emission maximum of violanthrone in DMSO is 626 nm therefore, the spectrofluorometer was set to monitor the light intensity at this wavelength for measurement of the ECL intensities.

No emission was detected from the DMSO solution of violanthrone unless the potential applied to the working electrode must be cycled from 0.0~V to a sufficiently negative value that the ECL intensity can be detected by spectrofluorometer. The scan rate was kept constant at 1000~mV/s because the detector of spectrofluorometer gives the best signal at that speed. In addition, when cycling the potentials between 0.0~V to -2.5~V and beyond, molecular bromine was also seen as yellow liquid at the bottom of the quartz cell.

Figure 3 illustrates the behavior of violanthrone during the ECL experiments. During cycling the voltage ranges from 0.0 V to -3.0 V. Between 0.0 V and -1.7 V, a residual current was observed to be very low, when the applied potential was greater than -1.7 V, the cathodic current increased markedly with the negative potential limit increased. This indicated that there were some reactions involved to cause the increase of cathodic current. Figure 4 showed that the potential limits had effect on the intensity of the ECL produced by cycling the working electrode. The light intensity was still increasing with the increasing potential limits. The correlation between the potential limits and the emission gave linear relationship. This indicated that intensity of ECL was subject to the amount of ions produced, more ions caused greater current and generated more light intensity. The ECL of violanthrone should be due to the combination of ions to each other in the given potential range.

As seen from Figure 3, only a small residual current was observed until the potential limit reached -1.8 V, beyond this potential the current increased significantly. The reason for this behavior is that prior to this value, only Br was present, while beyond that both Br₂ and Br were present. The reaction at the cathode was the reduction of violanthrone. This species was the precursor of radical anion of the emitter. Meanwhile, bromide ions can undergo oxidation at the auxiliary electrode. A possible sequence for the new mechanism can be written as follows:

Violanthrone + e
$$\longrightarrow$$
 Violanthrone $\stackrel{\cdot}{}$ (1)
 $2Br \longrightarrow Br_2 + 2 e \stackrel{\cdot}{}$ (2)

At working electrode, the reduction of violanthrone occurred, whereas the bromide ions were oxidized as bromine at the auxiliary electrode. Then the bromine molecules can act as an oxidizing agent which oxidized the radical anions of violanthrone to be the molecules in the excited state.

In addition, the concentration of supporting electrolyte, TEAB, is 0.1 M therefore the bromine concentration is quite high compared to the concentration of violanthrone (10-5 M). In the presence of the species, Br₂ and Br the reactions above can carry substantial current between electrodes as seen in Figure 3. This ECL mechanism of violanthrone was involved the reductive oxidation.

CONCLUSION

Violanthrone can produce the electrogenerated chemiluminescene in dimethyl sulfoxide by reductive oxidation. The radical anion of violanthrone was generated and reacted with the oxidizing agent, bromine molecule produced electrochemically. Results from this work will be applied to other fluorescent compounds within similar conditions and these studies are currently under investigation.

ACKNOWLEDGEMENT

The authors gratefully acknowledge Thailand Research Fund (Grant No. BRG 4080001) for supporting this research.

REFERENCES

- [1] Faulker, L. R., Bard, A. J. "Electroanalytical Chemistry"; Bard, A.J., Ed.; Marcel Dekker: New York, (1977). 10. pp 1-95
- [2] Maness, K. M., J. E. Bartelt, and Wightman, R. M. (1994) J. Phys. Chem. 98 3993
- [3] White, H. S. and Bard, A. J. (1982) J. Am. Chem. Soc. 104, 6891
- [4] Quickenden, T.I., Hansongnern, K. (1995) J. Biolumin. Chemilumin 10, 103



Figure 2. Cyclic Voltammetry of violanthrone in dimethyl sulfoxide with 0.1 M TEAB as electrolyte (Pt-disk working electrode). All potentials are vs. the saturated calomel electrode (SCE) at the scan rate of 200 mV/s.

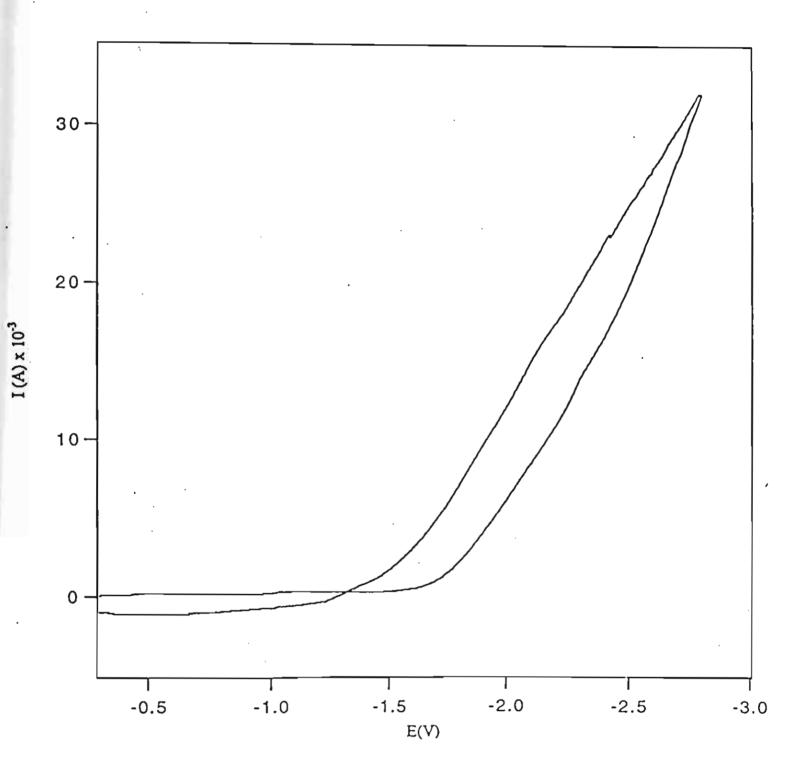


Figure 3. Cyclic Voltammetry of violanthrone during ECL experiment (Pt-foil working electrode). The potentials were cycled between 0.0 V and -3.0 V, relative to the Pt quasi-reference electrode, at the scan rate 1000 mV/s. The supporting electrolyte is 0.1 M TEAB.

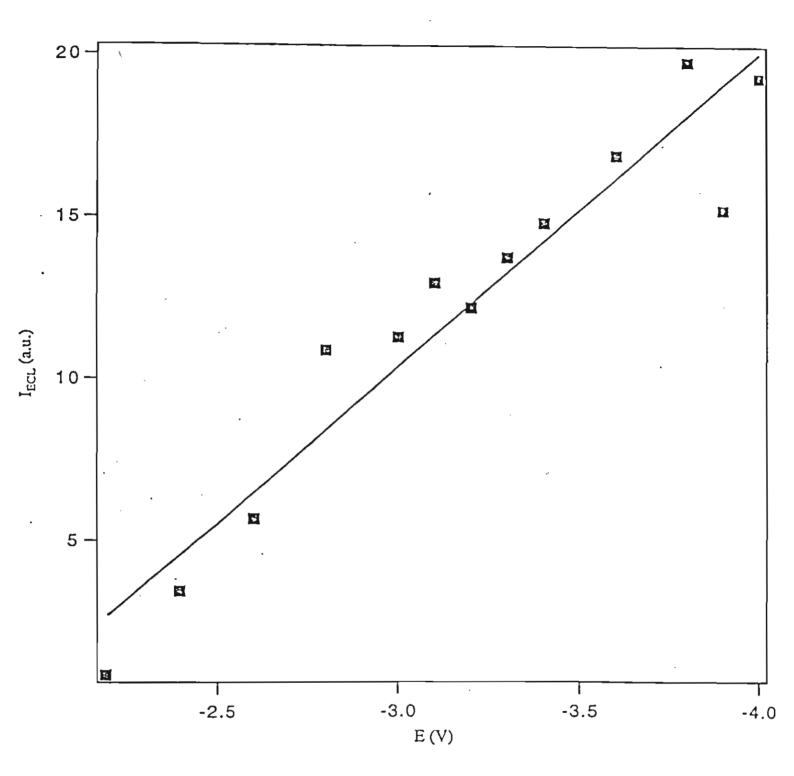


Figure 4. The effect of the potential limits on the intensity of the electrogenerated chemiluminescence, I_{ECL}, produced by cycling the working electrode in the potential range 0.0 V to -4.0 V. All potentials are relative to the Pt quasi-reference electrode at the scan rate of 1000 mV/s in 0.1 M TEAB.

ภาคผนวก

ข้อมูลเกี่ยวกับรูปในรายงาน

รูปที่ 1.1 แสคง cyclic voltammogram ของสารไวโอแลนโทรนใน DMF มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัคที่ scan rate 200 mV/s (การวัค potential มี SCE เป็นตัวอ้างอิง)

- รูปที่ 1.2 แสคง cyclic voltammogram ของสารไวโอแลนโทรนใน MeCN มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัคที่ scan rate 200 mV/s (การวัค potential มี SCE เป็นตัวอ้างอิง)
- รูปที่ 1.3 แสดง cyclic voltammogram ของสารไวโอแลนโทรนใน CH_2Cl_2 มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัดที่ scan rate 200 mV/s (การวัด potential มี SCE เป็นตัวอ้างอิง)
- รูปที่ 2.1 แสดง normalized excitation และ emission spectra ของสารไวโอแลนโทรน ใน acetone
- รูปที่ 2.2 แสดง normalized excitation และ emission spectra ของสารไวโอแลนโทรน ใน $\mathrm{CH_2Cl_2}$
- รูปที่ 2.3 แสคง normalized excitation และ emission spectra ของสารไวโอแลนโทรน ใน CHCl₃
- รูปที่ 2.4 แสคง emission spectrum ของ สาร violanthrone โดยมี azobenzene ที่ความ เข้มข้นแตกต่างกันใน acetone
- รูปที่ 2.5 แสดง emission spectrum ของ สาร violanthrone โดยมี azobenzene ที่ความ เข้มข้นแตกต่างกันใน $\mathrm{CH_2Cl_2}$

รูปที่ 2.6 แสคง emission spectrum ของ สาร violanthrone โดยมี azobenzene ที่ความ เข้มข้นแตกต่างกันใน CHCl₃

รูปที่ 2.7 กราฟแสดงการพล็อตระหว่าง I_0/I กับค่าความเข้มข้นของ azobenzene ในตัว ทำละลาย acetone, CH_2Cl_2 , $CHCl_3$

รูปที่ 3.1 แสคง cyclic voltammogram ของสารไวโอแลนโทรนใน DMSO มี 0.1 M TEAB เป็น supporting electrolyte (Pt-disk เป็น working electrode) วัคที่ scan rate 200 mV/s (การวัค potential มี SCE เป็นตัวอ้างอิง)

รูปที่ 3.2 แสคง cyclic voltammogram ของสารไวโอแลนโทรนใน DMSO มี 0.1 M TEAB เป็น supporting electrolyte (Pt-foil เป็น working electrode) วัคที่ scan rate 1000 mV/s โคย cycle potential ในช่วง 0.0 V ถึง -3.0 V

รูปที่ 3.3 กราฟแสคงการพล็อตระหว่าง potential limits กับค่าความเข้มของ ECL ที่ได้ จากการ cycle potential ในช่วง 0.0 V ถึง -4.0 V มี 0.1 M TEAB เป็น supporting electrolyte (Pt-wire เป็น quasi-reference electrode) วัคที่ scan rate 1000 mV/s