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Abstract

Ti\is research project 'employs Declarative Progran;n theory to develbp a theoretical foundation for
Deductive Object-Oriented Databases (DOODs) which coveré deduction, hierarchical classification,
inheritance and implicit information. In order to apply the concepts gained, this research project also
develops a theoretical framework for XML document databases, which are a kind of DOOD. The
framework permits representation of XML documents, modeling of XML DTDs and formulation as well as

evaluation of XML queries. .
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Abstract. The proposed data model for XML documents, based on Declararive Description (DD} theory,
formally generalizes the definition of an XML element to an XML expression by incorporation of variables for
representation of inherent implicit information and enhancement of its expressive power. An XML element is
simply modeled as a variable-free XML expression, while an XML document — a set of XML elements — as
an XML declarative description (XML-DD) which consists of clauses describing those elements in the
document, their relationships as well as integrity constraints. Selective and complex queries, formulated as
sets of clauses, about explicit information satisfying certain specified constraints as well as derivable
information which is implicit in the documents, become then expressible and computable. Similarly, an XML
DTD is modeled as a corresponding set of clauses which can be employed in order to validate an XML
document with respect to that DTD. The proposed model thereby serves as an effective and well-founded
XML document database management framework with succinct representational and operational uniformity,
reasoning capabilities as well as complex and deductive query supports.

Key words.  data model, document modeling, specialization system, XML declarative description, XML
document, XML element, XML expression.

1 Introduction

Extensible Markup Language (XML) [9], a W3C recommendation which has recently emerged as a standard for
data representation and interchange among various Web applications, is a simpler and convenient subset of
Standard Generalized Markup Language (SGML). XML provides simple means for a more meaningful and
understandable representation of Web content. In contrast to HTML, XML does not require a predefined fixed
set of tags; it provides instead a facility to define new tag sets as well as structural relationships of tags via tag
element nesting and referencing, whence it is self:describing and extensible.

An XML document is only required to be well-formed, i.e., its tags must be properly nested, but need not
conform to a particular Document Type Definition (DTD) — a grammar defining restrictions on tags, attributes
and content models. Hence, XML is considered as a variation of semistructured data — data that may be varied
and are not restricted to any particular schema or structure; they are at times referred to as schemaless data [13].
Management of semistructured data by a highly-structured modeling technique, such as relational and object-
oriented models, not only results in a very complicated logical schema, but also requires much efforts and
frequent schema modifications. This difficulty has obstructed the use of such approaches to XML data modeling
and management. Consequently, development of an appropriate and efficient data model for XML documents
has become an active research area with major current models based on trees (7], directed edge-labeled graphs
[8,10.11,13.,19], tree automata theory [15,17,18] and functional programming [12].

" This paper is a substantially expanded version of [5].
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A declarative description data model for XML documents [5) is developed by employment of Declarative
Description (DD) theory [1,2,3], which has been developed with generality and applicability to data structures of
a wide variety of domains, each characterized by a mathematical structure, called a specialization system. Based
on the formulation of an appropriate specialization system for XML expressions, a framework for their
representation, computation and reasoning is constructed. The definition of XML expressions introduced here is a
formal extension of XML elements which allows representation of both explicit and implicit information by
means of variables. In the proposed model, conventional XML elements are represented directly as ground
(variable-free) XML expressions, without need for translation. An XML declarative description (XML-DD)
comprises a set of XML expressions, formulated as unif clauses, and a (possibly empty) set of their relationships,
formulated as non-unit clauses. The meaning of such an XML-DD will not only yield all the explicit
information, represented in terms of unit clauses, but will also include all the implicit information derivable by
application of non-unit clauses to the set of unit clauses, whence complex queries about this implicit information
[4] can be formulated and executed. Non-unit clauses not only represent relationships among XML elements but
can also be used to define integrity constraints which are important in a document, such as data integrity, path
and type constraints [11]. Moreover, in order to check whether an element conforms to a given DTD or not, one
can similarly apply the same convention, i.e., simply translate the DTD into a corresponding set of clauses, and
then verify the validity of the element against the clauses. Such a validation process is usually applied when an
element is inserted or updated.

Section 2 reviews major approaches to modeling semistructured/SGML/XML documents, Section 3 recalls
fundamental definitions of DD theory, Section 4 develops a declarative description data model for XML
documents, Section 5 presents an approach to modeling XML documents, Section 6 compares the proposed new
approach with existing ones, and Section 7 draws conclusions and presents suggestions for future research.

2 Review of Data Models for Semistructured/SGML/XML Documents

Three important approaches to the modeling of semistructured/SGML data prior to 1995, i.e., traditional
information retrieval, relational model and object-oriented approaches, have been reviewed in [20]. A review
and evaluation of more recent work follows.

2.1 Tree-Based Approach

Based on the lexical structure of XML data, an XML document can be viewed as a free corresponding to a
document’s text representation. An example of this approach is Document Object Model (DOM) for XML [7].

In XML, an element can have an attribute of type /D the value of which provides a unique identifier,
referencable by other elements through attributes of type IDREF and IDREFS. However, by simply treating
attributes of these types as nothing more than text strings, the tree-like representation of an XML document
encounters a serious problem in capturing cross-link or referential relationships among XML elements. If this

approach is employed, a query language itself must provide a means to associate these related elements.
Otherwise, users cannot issue queries with referential relationships.

2.2 Graph-Based Approach

Since XML can be viewed as a variation of semistructured data, several models for semistructured data have
been maodified and extended to fully support such data [11,13]. Many of these semistructured data models, such
as Object Exchange Model (OEM) or Lore data model [19] and deterministic data model [10], are intuitively
based on directed, edge-labeled graphs.

In graph-based models, a collection of XML documents is represented as a directed, edge-labeled graph
(8,10,11,13,19]. A non-leaf node in the graph, associated with a sequence of zero or more attribute-value pairs,
represents an XML element, while a leaf node represents an XML element’s textual content. An edge, pointing
from a parent element to a child element and labeled with the child element's tag name, represents an element-
subelement relationship. An IDREF(S) attribute is represented by an edge pointing from the referring element to
the referred element and labeled with the attribute name.

The graph model can be viewed as an enhancement of the tree model with an attempt to represent and handle
the referential relationships among arbitrary tree nodes, defined by means of attributes of the types ID and
IDREF(S). Although a graph-based mode! provides an effective and straightforward way to handling XML data,
it encounters difficulties in restricting XML data to a given DTD. For instance, the proposal [8] only provides a
way to querying XML data but does not facilitate a means to represent the structure imposed by a DTD. The
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» model requires substantial extension o overcome this difTiculty. For example, by application of firss-order logic
theory, the proposal [11] has incorporated an ability to express path and fpe constrainis for the specification of
the structure of XML data; the integration of these nwo different formalisms also yiclds an ability 1o reason about
path constraints. However, other forms of integrity constraints have not yet been included 1n addition. the
complex notions of model and implication in first-order logic tend to complicate the syntax and semantics of
path constraints and make their understanding difTicult.

Besides introducing walidaring parsers 1o restict XML data to a particular DTD, Lore’s XML model has
proposcd the use of DaraGuides [19) ~ a graph describing the structure of documents stored in Lore's database -

to capture the structure of documents imposed by a DTD. Apant from providing a computational mechanism,
Lore’s XML modcl does not possess a capability for reasoning about XML clements.

2.3 Hedge Automaton Approach

By mcans of hedge automaton theory [16) (aka. tree automaton and forest automaton theory {181), developed by
employment of the basic idcas of string automaton theory, the proposals [ 17,18] have constructed an approach to
formalization of XML documents and their DTDs. A hedge is a sequence of trees or, in XML terminology. a
sequence of XML ¢lements. A document is therefore represented by a hedie and a sct of documents conforming
to a DTD by a regular hedge language (RHL), expressible by a regulur hedye cxpression (RHE)Y or a regular
hedge grammar (R}MHG). A RHG is a quintuple (L, A\ N, P, 1),
where - L : asetof symbols,
X : asct of variables,

~ N :asctofl non-terminals,

-~ P asctof production rules, and

— r7:aregular expression over the non-terminals.
Each production rule is of the form n — xor n — <a> r </a>,
where ~  n: a non-terminal in N,

- x:avanablein X,

- a:asymbolin X, and

-~ r: arcgular expression over the non-terminals

This formalism allows a DTD to be easily translated into a comesponding RHG, which describes a RHI, or in

this context, a set of documents conforming to the DTD. A hedge aquromaton can be employed to determine
whether & document conforms to a given grammar (representing some particular DTD) or not. This approach
also provides a mechanism to transform XML documents and their DTDs [17,18) However, it docs not provide
a means for incorporation of knowledge into those signmificant operations

2.4 Functlonal Programming Approach

The proposal {12] has developed a funcrional programming approach 1o modehing XML documents and
formalizing operations upon them by introduction of user-defined typed feature term, called node, as it
undertying data structure. Nodes can be grouped into the three types text, element and reference, which conain
a characier string, a list of child nodes, and a referential relationship to another node, respectively  In the model,
an XML clement is represented as an clement node, a sequence of ity child elements as a hist of child nowdes and 4
tentual content of an clement as a tent node Attnbutes are abvo mimdeled as clement nodes the names of which
hegin with "’ An clement node representing an attnibute of type CDATA containy exactly one chrld tent nende.
while a node reprosenting an annbute of tvpe IDREY or IDRIES comprises a number of child reference nodes

referencing to the referred clement nondes Apparenthy, this data madel o comparable to the praph-bhased dats
maxde |

Based on this data model, an algebea for XML quenes eaprovaed in terms of isr romprehennions an the
furnctronal programmung paradigm, has alse been corntructed [12] U ung Tond comprehenyions, s arueas binds of
XML query opcrnatwons, such as navigation, ooding, groudpeng amd omrs can be oapresswed Hoswever, this
appraach has comuderabic limations, as 11 docs et peeascsy an abudity to rredel an WML DD, wherec a
mexhanium to venify whether an XML dow ument conforms to a groen DT om0 mest reatidy ey ined

Y Declarative Description Theon

Fhavy s immn revalie coriam lurmdamsenial Setorot
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3.1 Speclalization Systems

A specialization sysiem is an abstract structure derived from the generalization of substitutions in conventional
logic program theory, and defined in terms of certain very simple axioms.

Definition 1 [Specialization System]

A specialization system is a quadruple I' = (_4, ¢, S, wyof three sets _4 & S and a mapping ufrom S to the
sct of all partial mappings on _4 such that:

1. Ws.s5:€ S 35 € S:45)= 165) ° 1452),

2. 3se SVae 4 i{s)a)=a,

3. G A
where 24s,) °z4s;) is the composite mapping of the partial mappings z4s,) and z(s;). The set §is called the

interpretation domain, and the clements of _{ Gand Sare called objects, ground objects, and specializations,
respectively. O

When g is clear from the context, for 8 € X g4 A(a) will be written simply as a6. If there exists & such that a@
= b, 0 is said to be applicable to a, and a is specialized to b by 6. Given a € _{ let rep(a) denote the sct of all

ground objects which can be specialized from a, ic, for g € G, g € rep(a) iff there exists a specialization € in §
such thata@l= g.

3.2 Dceclarative Descriptions

Declarative Descriptions (DDs) and other related concepts can now be defined in terms of a specialization
system I = (4, §, S, 1.

Let A" be a sct of constraint predicates. A constraint on T is a formula g(ay, ... , a,), where g is a constraint
predicate tn A"and a, an object in . & Given a ground constraint g(g,, ... , €,), g € @ its truth and falsity are
assumed to be predetermined. Denote the set of all true ground constraints by Tcon. A specialization & is
applicable to a constraint g(a,, ... , a,) if #is applicable to ay, ..., a,. The result of the application g(ay, ..., a.)@
is the constraint g(a, 0, ..., a,0); and g(a,, ..., a,) is said to be spccialized 10 g(a\ 6, ..., a,0) by 6.

The notion of constraints introduced above is useful for defining restrictions on objects in _4

Definitlon 2 [Declarative Description]

A clause on s a formula of the torm:
H < B, B .. B, (n

where n 2 0, # is an objectin | Yand 8, an object in _Jor a constraint on I'. H is called the Aead and (8,, By, ...
8.) the body of the clause. A declarative description (DD) on T is a (possibly infinite) set of clauseson ™. [0

Let C be aclause (# « By, By, ..., B,). 1f n = 0, uch a clause C, is called a wnir clause, and, if # > 0, a non-unit
clause. The head of C will be denoted by head(C) and the set of all objects and constraints in the body of C by
obect(O) and con{O), respectively. Let bodi C) = object(Q) w con(C). A clause Cis an instance of C iff there is
a specialization @ € Nsuch that ¢is applicable w #, 8, 8,, .., B,and C'= C& = (HO « B0, B0, ... B.0). A

clause C s a ground clause Y C compnses only ground objects and ground constraints. When it is clear from
the context, a declarative descaption on U s simply called a description.

XA Semantics of Declarative Description

Ihe mapping Tr. 252+ Jdefined for a declarative description £ on I, will be used to define the declarative
semantics of £an Detinmition 4

Definition 3 [Mapping 1)

L et £ be adeclarative descniphion on B The definstion of the mapping Tp: 25— 2" follows:
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_ 'err each X < G an XML clement g is contained in Tx(X) iff there exist a clause C € Pand a specialization @ € .S

such that C@ is a ground clause the head of which is g and all the objects and constraints in the body of which
‘belong 10 X and Tcon, respectively, i.e.:

THX) = {head(CO)| Ce P, 6€S, C# isaground clause, object(CO c X, con(C6) < Tcon '} (2)
a

Definition 4 [Semantics of Declarative Description]

Let P be a declarative description on I'. The meaning of P, denoted by AP}, is defined by

sPy= | JI7p1"(2) 3

n=]

where @ is the empty set and [T5]"(D) = TH[T]" (D). O

3.4 Egquivalent Transformations

| Equivalent Transformation (ET) [3] is a new computational model based on semantics preserving

transformations (or equivalent transformations) of declarative descriptions. Basically, a declarative description
P, is said to be transformed equivalently into a declarative description P, if they have exactly the same meaning,
i.e., MP) = A(P;). In the ET model, computation is defined by means of equivalent transformation rules (ET
rules) to be applied to the components — objects and constraints — of a target clause.

4 Declarative Description Data Model for XML Documents

By means of DD theory, an XML data model is formulated. Subsection 4.1 specifies the format and structure of
conventional XML elements, Subsection 4.2 gives formal definitions of XML expressions, Subsection 4.3 defines
specialization operations for XML expressions, and Subsection 4.4 formulates a specialization system for XML
expressions, denoted by I'y=(_4, Gk, Sx, ux), XML Declarative Descriptions and other related concepts.

4.1 Conventional XML Elements

By convention, XML elements are ground, i, they contain no variable, and assume formally the forms:

\. empty element: <elem_type atri=val, ... attr,=~val./>
2. simple element: <elem_type attr\=val| ... attr,=val,>val,., </elem_type>
3. nested element: <elem_type attr\=val, ... atir,=val,> e, ... e, </elem_type>

where -~ n,mz0,

— elem_pype : an element type (or tag name),

~ attr; : distinct attribute names,

— wval; : literals, and

— g : XML elements.
However, in order to express inherent implicit information and enhance its expressive power, the definition of an
XML element will be formally extended by incorporation of variables, and then called an XML expression.

4.2 XML Expressions

Let Qx be an alphabet comprising the symbols in the following sets:

Z : aset of characters

N : a set of names (which could be element nypes or auribute names)
NVAR : a set of name-variables (or N-variables)

SVAR : a set of string-variables (or S-variables)

PVAR : aset of attribute-valtue-pair-variables (or P-variahies)
EVAR : aset of XML-expression-variables (or F-variabios)

N
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7. IVAR : a set of intermediate-expression-variables (ot I-variables).

N-, S-, P-, E- and I-variables introduced here are uscful for representation of implicit information’contained in
XML expressions. Intuitively, an N-variable will be instantiated to an element type or an attribute name in N and
an S-variable to a string in I°, while a P-variable will be specialized 10 a sequence of attribute-value pairs, an E-
variable to a sequence of XML expressions and an [-variable to a part of an XML expression. A detailed
explanation of the specializations of these variables is provided in the next subsection. In order to distinguish
between elements of the above sets, let:

I. Every element in NVAR begin with “$N:", in SVAR with “$5:", in PVAR with “$P:", in EVAR with “$E:”
and in /VAR with “$1:".
2. No element in N begin with “$N:" and ‘$* ¢ I.
Based on the alphabet Q, the formal definition of an XML expression is now given:

Definition 5 {XML expression]

An XML expression on £y takes one of the following forms:

1. evar
2. <elem_type aury=val, ... attry=val, pvar, ... pvar, />
3. <elem_type attr\=val, ... anry=valy pvar, ... pvar, > valy, <elem_type>
4. <elem_type attry=val, ... aury=val, pvar, ... pvar, > e, ... e, <Jelem type>
5. <ivar>e, ... e, <ivar>
where - evar € EVAR,
- k,mnz0,
— elem _type, attr. € (N W NVAR),
— pvar; € PVAR,

- val,e (Z°U SVAR),
— ivar € IVAR, and
— ¢;are XML expressions on Q.

The order of pvar; (P-variables) and that of pairs attr= val, (pairs of attribute name and value) are immaterial.
|

By its definition, an XML expression is either an E-variable (XML-expression-variable) in EVAR or a tagged
expression containing the following four components:

1. A tag name which could be a name in N, an N-variable (name-variable) in N¥4R or an [-variable
(intermediate-expression-variable) in fV4R;
2. A sequence of zero or more P-variables (attribute-value-pair-variable) in PVAR;
3. A sequence of zero or more attribute-value pairs, where an attribute could be either a name in N or an N-
variable in NV4R, and a value be a string in &° or an S-variable (string-variable) in SFAR;
4. An expression content which could be a string value (cf. Definition 5-3) or a sequence of zero or more
subexpressions (cf. Definition 5-4, 5-5).
When an expression’s tag name is represented by an /[-variable, it must contain a sequence of zero or more
subexpressions but neither a P-variable nor an attribute-value pair (cf. Definition 5-5). Intuitively, an [-variable
is employed to represent an XML expression when its structure or nesting pattern is not fully known. For

example, the expression <ivar> e ... e, </ivar>, where ¢; are XML expressions, represents the XML expressions
which contain the subexpression sequence e, ... e, to an arbitrary depth.
Note:

1. The XML expressions without variable will be precisely called ground XML expressions or XML

elements, while those with variables non-ground XML expressions.
2. An expression having the form

<elem_type attr\=valy ... altry=valy pvar, ... pvar,> val </elem_type>
or

<elem_type alir\=val, ... attir,=val, pvary ... pvar,>e, ... e,</elem_type>
is often referred to as elem_rype expression, while an expression

<fvar=e, ... e,</ivar>
as ivar expression. For example, the expression

<Person SSN=$5:55N>
$E:PersonData
<Mother>Mary Smith</Mother>
</Person>
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is referred to as Person expression, while the subexpression <Mother>Mary Smith</Mother> nested inside
that Person expression is referred to as Mother expression.

3. Anexpression
<elem_type attry=val, ... attry=valy pvar, ... pvar, > </elem_type>
is considered to be identical to the empty-form expression
<elem_type attry=val, ... attry=val; pvar, ... pvar,/>.

4. The paris
<elem_type attry=val, ... attry=val, pvar, ... pvar, >,

</elem_type>
and

<elem_type attry=val, ... attry=val, pvar| ... pvar, />
will be simply called fags or, more specifically, start-tag, end-tag and empty-element-tag, respectively.

Definition 6 [_4, the set of XML expressions)
Ay is the set of all XML expressionson Qy. O

Example 1 As an example of non-ground XML expressions in _4, consider the following expression

<$l:Parent>
<Father>Peter Smith</Father>
<f$I:Parent>

Note that in this example:

— The given $I:Parent expression is intended to represent a class of XML expressions which encodes
information about all the individuals having Peter Smith as their father. However, the exact structure,
including tag names, list of attribute-value pairs and the nesting pattern of the expression containing the
subexpression <Father>Peter Smith</Father> which encodes the individuals’ father information, is
unknown and represented by an I-variable $I:Parent.

— Father is a name in N.

— Peter SmithisastringinE’. O

Definition 7 [y, the set of ground XML expressions)
Gx is that subset of _4 which consists of all ground XML expressions in _4. ]

Example2 As an example of ground expressions in (%, consider the following XML expression encoding
information about the individual with the name John Smith:

<Person ssn="99999">
<Name>Jlohn Smith</Name>
<Father>Peter Smith </Father>

<Mother>Mary Smith</Mother>
<fPerson>

where — Person, ssn, Name, Father, and Mother are names in .
- "99999", John Smith, Peter Smith and Mary Smith are strings in Q". [J

Example 2 shows that mappings between conventional XML elements and ground expressions in Gy are

apparently straightforward, as no translation or modification is needed. Example | has demonstrated the the
employment of various types of variables in XML expressions for the representation of a group or a class of
XML elements with some common attributes or subelements.
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[ w4 basic specialization mapping]

8

Let Gy be (NVAR x NVARYU (SVAR x SVARY W (PVAR x PVAR) U (EVAR x EVAR) W (IVAR x IVAR) U
(PVAR x (NVAR x SVAR x PVAR)) W (EVAR x (EVAR x EVAR)) W ((PVAR w EVAR W IVAR) x {e}) U
(NVAR x N) U (SVAR x ') U (EVAR x _4) U (IVAR x (NVAR x PVAR x EVAR x EVAR x IVAR)).

Elements of ( are called basic specializations. Let a € _4. The basic specialization mapping vy G —

partial_map(_+4) is defined in Table 1. O

Table 1. The basic specialization mapping +x.

Type -

i

‘Basic Specialization ¢ In (x

Applicability
Condition

{c)(a) is Obtalned
from a by

o

1. Variable Renamiing

PR

c = (var,, var;)

€ (NVAR x NVARY W (SVAR »
SVARY W (PVAR x PVAR)Y W (EVAR x
EVARY W (JVAR x [VAR)

Replacement of all
occurrences of var; in a by
var;.

e - B A TP
‘2. Variable Expansion
o T =

Ciay el

2.1 P-variable .
T el

%3

¢ = (pvar,, (nvar, svar, pvary))
€ PVAR < (NVAR x SVAR < PV4AR)

Forevery tagina
containing pvar,
that tag does not
contain nvar as one
of its attribute name

Replacement of all
occurrences of pvar) in a by
the sequence of the pair
nvar=svar and the P-variable
pvar,.

:,QLQ_E—.varf;i(l_ﬁ‘{g;_‘r
LT R R

¢ = (evar, (evar,, evary))
€ EVAR x (EVAR =~ EVAR)

Replacement of all
occurrences of evar in a by the
sequernce evar, evary.

“3XVariable Removal -_

B h Y

¢ = (var, £)
€ (PVAR w EVAR) x {&},
where € denotes the null symbol

Remaoval of all occurrences of
varina.

c={(ivar,g) € IVAR = e},
where £ denotes the null symbol

Removal of all occurrences of
<jvar> and </fvar> in a.

4. Variable Intantiation

4.1. N-variable-

c=(mvar,nye NVAR » N

Forevery tagina
containing svar as
one of its attribute
name, that tag does
not contain an
attribute named n

Replacement of all
occurrences of nvar in a by n.

4.2.5- and E-variable

¢ = (var, val)

€ (SVAR x ZY W (EVAR x _4)

Replacement of all
occurrences of var in a by val.

4.3. I-variable

¢ = (ivary, (nvar. pyar, evar,, evars,
fvary))) € JTVAR x (NVAR x PVAR =
EVAR x EVAR » [VAR)

Replacement of each
occurrence of the ivar,
expression nested in a by the
expression of the form
<nvar pvar>

evar,

<fvar,> content </ivary>

evar,
</nvar>
where content represents the
content of that occurrence of
ivar expression.

By the definitions of (k and the basic specialization mapping vy, which is used to determine the application of
each basic specialization ¢ € ( to an expression a € 4., there are four types of basic specializations:

1. Rename variables.

Expand a P- or an E-variable into a sequence of variables of their respective types.
Remove P- or E-variables.

Instantiate variables to some vatues which correspond to the types of the variables.

PESR VA ]
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'Definition 9 [ .S, the set of specializations, and the specialization mapping )

Let S = G, i.c., the set of all sequences on (. Based on vy, the specialization mapping uy. Si —
partial_map{(_4) is defincd by:

HdAXa) = a, where 4 denotes the null sequence,

e - sXa) = (s vlcXa)), where ¢ € G, s € Scand a € _4.
Note that u{s}a) is defined only if all elements in s are successively applicable toa. [

Example 3 This example demonstrates that the expression shown in Example 1 can be specialized to the one
given in Example 2 by means of the specialization operator uy. Let @ € S be the sequence (¢, ¢; ¢; ... ¢9),
I defined in Table 2, and a, denote the expression in Example 1. Table 2 illustrates the derivation of the expression
a.&

b
Table 2. Application of &to a,.

" Delinition of Baslc Speclalization ¢; € (x ’ Application of Resulting XML Expression

a; = <$N:Person $P:PersonAttrl>
¢; = ($1:Parent, ($N:Person, $P:PersonAttrl, $E:PersonDatal
$E:PersonDatal, $P:PersonData2, <$l:Parent2>
, $1.Parent2)) wvc)) to g <Father>Peter Smith</Father>
€ IVAR x (NVAR x PVAR x EVAR x EVAR x </$1:Parent2>
[ IVAR) $E:PersonData?2
3, </Person>

\ ay = <$N:Person $P:PersonAtirl>
<Name>John Smith</Name>
¢y = ($E:PersonDatal, <$l:Parent2>
<Name>John Smith</Name>) vi{ci) 10 &y <Father>Peter Smith</Father>
€ EVAR x _4 <f$1:Parent2>
$E:PersonData2
</Person>

ay = <$N:Person $P:PersonAttrl>
<Name=>John Smith</Name>
¢3 = ($E:PersonData2, <$l:Parent2>
<Mother>Mary Smith</Mother>) vilcy) to ay <Father>Peter Smith</Father>
€ EVAR x _4, </$I:Parent2>
<Mother>Mary Smith</Mother>
[ </Personz>

| as = <$N:Person $P:PersonAttrl>
<Name>John Smith</Name:>
cs = ($L:iParent2, €) € fVAR x (g} v{cs) to ay <Father>Peter Smith</Father>

<Mother>Mary Smith</Mother>
</Person>

ag = <Person $P:PersonAttri>
<Name>John Smith</Name>
s = ($N:Person, Person) € NVAR x N vi{cs) to as < Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
</Persgon>

ar = <Person $N:SSN=%$S:SSN $P:PersonAttr2 >
¢ = ($P:PersonAttrl, ($N:SSN, $S:SSN, <Name>John Smith</Name>
$P:PersonAttr2)) vl Cs) 1O ag <fFather>Peter Smith</Father>
€ PVAR < (NVAR x SVAR x PVAR) <Mother>Mary Smith</Mother>
</Person>

ag = <Person ssn=%5:5S5N $P:PersonAttr2>
<Name>John Smith</Name>
€7 = ($N:SSN, ssn} € NVAR x N vi{e7) to as <Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
</Person>

aq = <Person ssn="99999" $P:PersonAttr2>
<Name>John Smith</Name>
€y = ($5:55N, "99999") € SVAR x C* v{cs) 10 ag <Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
</Person>

ayp = <Person s55n="99999">

<Name>John Smith</Name:>
€y = ($P:PersonAttr2, £) € PVAR = (¢} Vo) 10 Wy <Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
- </Person>
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In other words, by successive applications of the members of €10 ), one obtains the element g, 8 = a,,, which
is the one shown in Example 2. Also, note that &is not the only specialization that can specialize a; o ayo. For
ample, analtemative is @ = (G G cici G osad €S O

4.4 Specialization System for XML Expressions and XML Declarative Description

In the sequel, et Ty = {_h Seop). The definitions of W, Gr. Sy and g readily show that Ty
specialization svstem since it satisties the three requirements of specialization systems.

—
w

Definition 10 [Specialization system for XML expresstons]
The speciaizarion svstem for XML expressions s Uy = AL a0 Sy . O
Proposition 1 The specialization system for XML expressions in Definition [0 satisfies the three requirements
of specialization svstems, 1.¢.,
oo ¥sn 828 NG 38 € S ads)Y =l sy) T ads:),
A F N N
3. g‘.\ [—_— v!\ O

Proer

L aw s = a

LooLetsy =4 7 oo d0and s = 0 G L0 dL be clements of NIt follows immediately trom the definitions
of Sypand o that there exists s = (3030 00 J ) s L such that gl ) = ads) © andss )
-

20 Obvioushy, i ANaY = a0 foreach ¢ € © A, where ©is the null sequence.
3. By Definition 7, (g isasubsetof 4. =

Afler the spunla:.\tmn svitem for XML c\prcssiom s Jdefined, the definitions of VML clawses, VML
fons (AVML-DDY and the Jdecdararive semenrics of an XML declarative deseription are
obtained directiy from the DD theory (of. Seenon 3.

Joclaranve Jdosor

53 XML Document Modeling

NAML-DD theory, fomulated in Section 4, will be applicd to the management of NMU Jocuments

A comeentional XMU element s represented directly as a ground XML expression in (i A class of XML
clements, swhich share certain similar components and structures, can also be represented as an XML expression
with vanables. These variables are used to represent unknown or similar compoenents (which could be tag names
lists of attrnibute-value pairs, subclements or nesting structures) shared by the elements in the class. For instance,
in order to represent a set of XMLU elements encoding intormation about individuals born in 1973, one can
simply construct an XML expresston with a Person tag name containing a BirthYear subexpression, the content
of which s 1975 Other information that may vary, such as their Names, Parents and SSNs, is expressed
implicitly through the use of variables. Thus, an XML document, comprising a set of # XML elements, is
directy mapped into a set of 21ounit clauses. cach of which desceribes its corresponding XML element in the
document. Besides this simple and straightfors and representation of XML clements, the proposed approach also
pormits o define io terms of non-unit clauses e conseraenrs, ¢l data integriny, path and type constraints
LEE]L as well as vrowdedee and complen relanonshys among XML elements, e, referential relationship.

A celiccton of XML documents, each of which contains a sequence of XML elements probably contonming
to diterent DTDs can be modeled by a deseription £ eonsisting of gedn Clauses and non-wenr clauses. Intuitivels,
for ¢ « S oand a unit clause in £ ot the torm (M «— 3.0 He s a ground XML expression, then AHd will be
meluded in the meaning ot £, white a non-unit clause in £ ot the form (M «— By .., B0 > 1L s interpreted as
foltows for even ¢ ¢ Sgthat makes Bl oL o true with respect to the meaning of £, the expression Hed will
be dernved and meluded in the meaning of P In other words, tor eveny binding of variables contained in such a
clause that makes all the constraints and relationships specified in the body of that clause satistied. an expresston
represented by the head of the clause will be included in the meaning of % Theretore. the declarany e meaning of
Fovaclds all the directly represented XML elements in the decument collection, e, those evpressed by unit
clases, tovether wath all the derived ones. which man be restricted by constraints, Thus, in additon w the
o s s whech e ony based on oy pattern mtching, ore can also asue seloctinve, comploy Juenes

Ahont s oo ey mnenmatien (4] Moo er, By omcoporation of sot-ot references, the proposed approach
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readily enables formulation and evaluation of group-by and aggregate queries. Detailed discussions on the
formulation and the processing of XML queries under the proposed approach are presented in [4].

It is important to emphasize that the proposed approach also provides simple means for a restriction of XML
data to those which satisfy a given DTD. They are materialized by directly translation of a DTD into a

corresponding set of clauses for the checking of the validity of an XML document with respect to the DTD. The
theoretical details of such formalization are available in [4].

<IELEMENT Person  (Name, BirthYear, Parent?}>
<IATTUST Person  ssn ID #REQUIRED
state IDREF #REQUIRED
gender {Male | Female) #REQUIRED >
<!ELEMENT  Name {#PCDATA)>
<IELEMENT  BirthYear (#PCDATA)>
<IELEMENT Parent EMPTY>
<|ATTLIST Parent  father IDREF #IMPUED
mother IDREF #IMPLIED >
<IELEMENT  State (Name)>
<IATTUST State id ID #REQUIRED>

Fig. 1. An XML DTD example

Example4 Let P be a description which represents an XML document encoding demographic data and
conforming to the DTD given in Fig. 1. Assume that such a document contains three Person elements and a State
element and P comprises the following nine clauses, denoted by C, — Co:

Ci: <Person ssn="99999" state="NY" gender="Male">
<Name:>John Smith</Name>
<BirthYear>1975</BirthYear>
<Parent mother="55555" />

</Person> — .

C,: <Person ssn="55555" state="NY" gender="Female">
<Name>Mary Smith</Name:>
<BirthYear>1950</BirthYear>
<Parent father="11111"/>

</Person> «— .

(3. <Person ssn="11111" state="NY" gender="Male">
<Name>Tom Black</Name:>
<BirthYear>1920</Birthvear>

</Person> «

Cs <State id="NY">

<Name>New York</Name>
</State> «—

Cs:  <ValidPerson ssn=4$5:PersonSSN state=$S:Stateld $P:PersonAttr>
$E:PersonData
</ValidPerson>
« <Person ssn=$S:PersonSSN state=$S:Stateld 4$P:PersonAttr>
$E:PersonData
</Person>,

<ValidState id=45:Stateld>
$E:StateData
</ValidState >,

Cs: <Ancestor ancestor=$S:FatherSSN descendent=$S:PersonSSN/>
«— <ValidPerson ssn=$S:PersonSSN $P:PersonAttr>
$E:PersonSubelement

<Parent father=%$S:FatherSSN $P:ParentAttr/>
</ValidPerson:>.
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Cr  <Ancestor ancestor=$S:MotherSSN  descendent=4$5:PersonSSN/ >
« <ValidPerson ssn=%5:PersonSSN $P:PersonAttr>
$E:PersonSubelement
<Parent mother=4$5:MotherSSN $P:ParentAttr/>
</ValidPerson>.

Cs: <Ancestor ancestor=$S:FatherSSN  descendent=$5:DescendentSSN/ >
«— <Ancestor ancestor=%$S:AncestorSSN
descendent=%$5S:DescendentSSN/ >,

<ValidPerson ssn=4%5S:AncestorSSN $P:PersonAttr>
$E:PersonSubelement
<Parent father=$S:FatherSSN $P:ParentAttr/>
<fValidPerson>.

Cy:  <Ancestor ancestor=$S:MotherSSN  descendent=$5S:DescendentSSN/ >
<« <Ancestor ancestor=%$S:AncestorSSN
descendent=$S:DescendentSSN/ >,

<ValidPerson ssn=%$5:AncestorSSN $P:PersonAttr>
$E:PersonSubetement
<Parent mother=$5:MotherSSN $P:ParentAttr/>
<fValidPerson>.

Clauses C, — C; and C, represent Person and State elements in the document, respectively; clause Cs defines an
integrity constraint on the Person elements; and clauses C¢ — Cq represent knowledge about ancestor relationship.

The given DTD shows that the state atiribute belonging to the Person element is an attribute of type IDREF
intended to refer to a State element. With respect to such a referential integrity constraint, clause Cs specifies
that a Person element is valid if the value of the state attribute matches the id of some particular valid State
element. In addition to referential integnrity constraints, other kinds of integrity constraints can be similarly
defined; for instance, to restrict that

(i) the values of the father and mother attributes in a Parent element match the ssn of two particular Person

elements,

(ii) a Person must be younger than his/her Parents, i.e., to assure that such Person’s BirthYear must be

greater than the Parents’ BirthYears, and

(iii) the gender of a Person referred to as a father must be Male and a mother Fernale.

Clauses C4 — Cy derive ancestor relationships among the individuals in the collection. Clauses Cg and C;
specify that both father and mother of an individual are ancestors of such an individual. Clauses Cg and Cy
recursively specify that the father and the mother of an individual’s ancestors are also the individual’s ancestors.
This ancestor relationship represents an example of complex, recursive relationships which can be simply
expressed in the proposed approach. Synonym relationships can be dealt with in a similar manner.  [J

6 Comparisons

Compared with other models, e.g., those based on graphs, hedge automaton and functional programming, the
proposed data model for XML documents provides a more direct and succinct insight into computation of and
reasoning with XML data.

From the reasoning point of view, employment of an existing deductive database approach [14, 21], such as
Datalog, and some of its extensions, e.g., LDL and Relationl.og, to XML document modeling may be proposed.
However, since such an approach provides inexpressive flat structures and cannot directly support the complex,
nesting structure common in XML syntax, it exhibits a significant problem in modeling and representing XML
data. An XML element must be translated and expressed in terms of its permitted representations only,e.g., asa
set of atomic formulas in Datalog. Identical XML elements may have several corresponding representations
depending on the employed translational scheme. Moreover, the difficulties encountered during application of
the refational approach to modeling XML data remain inherent in deductive database approaches. In addition, it
is difficult to express a query when the document schema, element tag name or the nesting level at which the
required element occurs is unknown. Such an approach therefore trades the structural information and the
expressive power underlying in XML documents for an application of an existing theory.

Table 3 detiberately compares several important aspects of XML data management.



Table 3. Comparison of approaches to XML data management.
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retles/ _1 N s “ Approaches . .
gu::ﬁonahﬁav e Grnph Based " Hedge "~ Functional -- _ Datalog Declarative
B L - | Automaton- Programming : ‘Description
X »__f.l'au_s &% ? Rooted, cdgc- Hedges Typed feature Atomic formulas XML
re'prueai ition » 17| labeled graphs terms or relations expressions
7 Yes, by integration No No Yes, by means of Yes, by means of
Laad 4| of first-order logic built-in predicates | constraints in the
| theory. However, description
the support is theory
limited to only for
£l path and type

constraints.

Yes Yes Yes, by means Yes, but rather Yes, by means of
of list difficult to deal equivalent
comprehension with very transformation of
evaluation complicated XML-DDs

structured data
DTPb valldnﬂon md No Yes, by No Yes, by means of Yes, by means of
"Tuhjcﬂou luppor'f"'-. means of the Datalog programs | descriptions
’-"v l:.- :J'A-'.- i hedgc
automaton

Yes, but limited to Yes, by Yes, by means Yes Yes

only reasoning means of the of list

about path and type | hedge comprehension

A constraints automaton evaluation
Yes No Yes Indirect support by | Indirect support

employment of by employment
variables and of variables and
recursions in recursions in

e T Datalog rules clauses

Provlslon of suec!.nc No No No No Yes

. representation and .

-operation o!' JCML

data

7 Conclusions

An expressive, declarative data model has been developed, founded on a theoretical basis upon which
representation and computation of as well as reasoning with XML data can be carried out in a uniform and
succinct manner. Integration of the proposed data model with an appropriate computational paradigm, e.g.,
Equivalent Transformation (ET) (3], allows efficient manipulation and transformation of XML documents, query
evaluation and validation of XML data against some particular DTDs.

In order to help demonstrate and evaluate the effectiveness of the proposed approach, XML-ETC Engine — an
casy-to-use, Web-based XML processor — has been implemented under ETC - a compiler for programming in
ET paradigm. The systern has been tested against a small XML database with good performance; a more
thorough evaluation of the system with a large collection of XML documents is underway.

Acknowledgement

This work was supported in part by Thailand Research Fund.

References

1.  Akama, K.: Declarative Semantics of Logic Programs on Parameterized Representation Systems. Advences in Softwure
Science and Technology, Vol. § (1993) 45-63

2. Akama, N.:

Declarative Deseniption with Rererences and Eguivalent Transformanten of Nepatine Keterenoe.

Report, Department of Information Engineening. Hokhaido University . Japan (1995)

/VL't Al e




A Foundation for XML Document Databases: Data Model 14

Akama, k., Shimitsu, T., Miyamoto, E. Solving Problems by Equivalent Transformation of Declarative Programs.
Journal of the Japanese Society of Artificial Intelligence, Vol. 13, No. 6 (1998) 944-952 (in Japanese).

Akama, K., Anutariya, C., Wuwongse, V. and Nantajeewarawat, E.: A Foundation for XML Document Databases:
Query Formulation and Evaluation. Technical Report, Computer Science and Information Management Program, Asian
Institute of Technology, Thailand (1999)

Anutariva, C., Wuwongse, V., Nantajeewarawat, E. and Akama, K.: Towards a Foundation for XML Document
Databases. Proceedings of I¥ International Conference on Electronic Commerce and Web Technologies (EC-Web
2000), London, UK. Lecture Notes in Computer Science, Springer Verlag (2000) (to appear)

Anutariya, C., Wuwongse, V., Akama, K. and Nantajeewarawat, E.: A Foundation for XML Document Databases: DTD
Modeling. Technical Report, Computer Science and Information Management Program, Asian Institute of Technology,
Thailand (1999)

Apparao, V., Et Al: Document Object Model (DOM) Level 1 Specification Version 1.0, October 1998. W3C
Recommendation (1998) Available at httpi//www. w3 org/TR/AREC-DOM-Level-1/

Beech, D., Malhotra, A., Rys, M.: A Formal Data Mode! and Algebra for XML. B3C XML Query Working Group Note,
September 1999 (1399)

Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML) 1.0, February 1998. W3C
Recommendation (1998) Available at http:/www. w3 org/ TR/REC-xml

Buneman, P., Deutsch, A, Tan, W.C.: A Deterministic Model for Semi-Structured Data. Workshop on Query
Processing for Semistructured Data and Non-Siandard Data Formats (1998)

Available at http://db.cis.upenn.edwDL/icdl.ps.gz

Buneman, P., Fan, W., Weinstein, S.: Interaction between Path and Type Constraints. Proc. ACM Symposium on
Principles of Database Systems, PODS (1999} Available at fip://fip.cis.upenn.edu/pub/papers/db-research/pods99.ps.gz
Fernandez, M., Siméon, J., Suciu, D. and Wadler, P.: A Data Mode! and Algebra for XML Query. Draft Manuscript
(1999) Available at http://www.cs.bell-labs.com/~wadler/topics/xml html#algebra

Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the Lore Data Model and Query
Language. Proc. 2nd International Workshop on the Web and Databases, WebDB '99, Philadelphia, Pennsylvania
(1999)

Liu, M.: Deductive Database Languages: Problems and Solutions. ACM Computing Surveys, Vol. 31, No. 1 (1999)
Murata, M.: Forest-regular Languages and Tree-regular Languages. Technical Report, Fuji Xerox Information Systems
(1995) Available at http://www peocities.com/ResearchTriangle/Lab/6259/prelim1.pdf

Murata, M.: Hedge Automata: A Formal Model for XML Schemata. Technical Report, Fuji Xerox Information Systems,
(1995) Available at http://www geocities.com/ResearchTriangle/1.ab/6258/hedee nice.pdf

Murata, M.: Transformation of Documents and Schemas by Patterns and Contextual Conditions. Principles of Document
Processing, Proc. 3rd International Workshop (1996)

Available at hup//www.peocities.com/ResearchTriangle/Lab/6259/podp96.pdf

Murata, M. DTD Transformation by Patterns and Contextual Conditions. Proc. SGML/XML '97 Conference (1997)
Avaitable at http://www fxis.co jp/DMS/spml/xml/sgmlixmi97 htm!

McHugh, J., Abiteboul, S., Goldman, R., Quass, D. and Widom, J.; Lore: A Database Management System for
Semistructured Data. SIGAMOD Record, Vol. 26, No. 3 (1997) 54-66

Availabie a1t fip;/‘db stanford edu/pub/papersilore97.ps

Sacks-Davis, R., Amold-Moore, T., Zobel, J.: Database Systems for Structured Documents. [E/CE Transactions on
Informarior and System, Vol E78-D, No. 11 (1995) 1335-1341

Ullman, J. D.: Principles of Database and Knowledge-Base Systems. Computer Science Press, Maryland (1988)




A Foundation for XML Document Databases: DTD Modeling 2

set of directed edges and vertices) needs to be defined. On the other hand, if a document’s semantics is taken into
account, the document is then represented as a set of related tuples contained in their comresponding relations;
different documents are probably modeled differently, whence resulting in a very complex and huge database
schemas. A DTD is then formalized as a set of Datalog rules, where predicates contained in each rule have
structures corresponding to the selected document’s relational representation.

A new approach is presented to the modeling of XML DTDs by employment of XML Declarative Description
(XML-DD) theory (6,17] which serves as a foundation for the representation and computation of as well as
reasoning with XML data. In this approach, an XML DTD is represented as an XML-DD which comprises a set
of clauses, to be referred specifically as DTD clauses. Such an XML-DD is obtained directly by translation of
each of the element type and attribute-list declarations contained in the DTD into a corresponding set of DTD
clauses and consequence combination of these sets. This formalism also facilitates the development of a simple
mechanism for convenient determination of whether a given XML element/document conforms to the grammar
imposed by the DTD or not. Besides providing means for restriction of a document’s syntactical constraints, this
formalism can also be applied to enforce various kinds of integrity constraints which are not expressible in terms
of DTDs but are extremely important in query evaluation [5] and optimization, e.g., atomic typing (char, integer,
float, etc.) and restrictions on the type of IDREF(S).

Section 2 summarizes the XML-DD theory developed in [6,17] and presents its extension for dealing with
references, Section 3 develops a formalism for modeling XML DTDs, Section 4 presents an approach to
validation of an element/document against a particular DTD, and Section 5 concludes and outlines future
research.

2 XML Declarative Description Theory

2.1  Declarative Description Data Model for XML Documents

In the declarative description data model for XML documents [17], developed by employment of Declarative
Description (DD) theory (1,3,4], the definition of an XML element is formally extended by incorporation of
variables in order to represent inherent implicit information and enhance its expressive power. Such extended
XML elements, referred to as XML expressions, have a similar form to XML elements except that they can carry
vaniables. XML expressions without variable will be called ground XAl expressions or XML elements, those
with variables non-ground XML expressions. There are several kinds of variables useful for the representation of
implicit information contained in XML expressions: name-variables (N-variables), siring-variables (S-
variables), attribute-value-pair-variables (P-variables), XML-expression-variables (E-variables) and
intermediate-expression-variables (f-variables). Every variable is preceded by ‘$” together with a character
specifying its type, i.e,, ‘$N’, *$5°, *$P°, *$E’ or *$I°.

An XML expression alphabet 2y comprises the symbeols in the following sets: X (a set of characters), N (a set
of names), NVAR (a set of N-variables), SVAR (a set of S-variables), PVAR (a set of P-variables), EVAR (a set of
E-variables} and IVAR (a set of I-variables).

Intuitively, an M-variable will be instantiated to an element type or an attribute name, an S-variable to a string
on L', a P-variable to a sequence of attribute-value pairs, an E-variable to a sequence of XML expressions, an /-
variable to a part of an XML expression. Such variable instantiations are defined by means of basic
specializations each of which is a pair of the form (var, val), where var is the variable to be specialized and va/ a
value or tuple of values describing the resulting structure. There are four types of basic specializations:

rename variables,

1.
2. expand a P- or an E-variable into a sequence of variables of their respective types,
3. remove P-, - or /-vaniables, and

4. instantiate variables to some values which correspond to the types of the variables.

Let _4 denote the set of all XML expressions on Qy, G the subset of _4 which comprises all ground XML
expressions in _4., Cx the set of basic specializations and vy : G — partial_map(_+4) the mapping from (i to the
set of all partial mappings on _#4 which determines for each basic specialization ¢ in ( the change of elements
in _+4 caused by c. Let Ay = (_4. Gy, G, v&) be a specialization generation system, which will be used to define
a specialization svstem characterizing the data structure of XML expressions and sets of XML expressions.

Let I"be a set of ser variahles,

A= AN 0= G 2%, O oo (e 2R,
and
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v: C— partial_map(_4
the mapping from Cto the set of all partial mappings on _¢which determines for each basic specialization e in
the change of objects in _dcaused by ¢ such that

1. Ifce G anda e _4,
then YcKa) = vy (c)(a).
2. Ifce(C-G)andae _4,
then WcXa) = a.
3. Wce GuS={a,....aun, Vi, ....Va} € (A~ _4).a, € Acand v; € V,
then YcXS) = {w{c)a)),..., videXa, ), vi, ..., va)
4. Ifc=(.R) e (C-Gland S={x,...,x,, v} € (_A- 4,
then W(c)}(S) = {x;, ..., x, } W R.

In order to distinguish a set variable from other types of variables, every set variable in ¥ will be preceded by
‘$V’. In the sequel, let

F=(AG S u (h

be a specialization system for XML expressions with Slat sets, where S = " and y: S— partial_map{_ 4 such
that, fora € _4

K A)a) = a, where A denotes the null sequence,

M - s¥a) = (hs}(Ac)a)), wherec e Cand s € &

Elements of _{ Jand Sare called objects, ground objects and specializations, respectively. The mapping 4 is
called the specialization mapping. Note that when 4 is clear from the context, for @ € S 14 &(a) will be written
simply as a6, and, for X € ¥, a singleton {X} will be written as X,

The definition of XML declarative description with references together with its related concepts can be given
intermsof ' =(_4 ¢ S ).

2.2 XML Declarative Description with References

An XML declarative description on T, simply called an XML-DD or a description, is a (possibly infinite) set of
clauses on T, each in the form

H(—BhB:,...,B,.,. {2’

where n 2 0, # is an XML expression in _4, and B8, an XML expression in _4, a constraint or a reference on |
H is called the head and (B, B, ..., B,) the body of the clause. Such a clause, if n = 0, is specifically called a unir
clause, and, if n > 0, a non-unit clause. .

Let X be a set of constrains predicates. A constraint on I' is a formula g(e, ... . a,), where n > 0, g 's 4
constraint predicate in A"and a, an object in _< Given a ground constraint g(g,. ..., g.). g, € G its truth or fal?my
is assumed to be predetermined. Denote the set of all true ground constraints by Tcon. The notion of constraints
introduced here is useful for defining restrictions on objects in .4 t.e., both on XML expressions in <4 and on
sets of XML expressions in X 4% 4

Let Fbe the set of all mappings: 2% — 2% the elements of which are called reference Sunctions. A reference on
Iisatriple r = (a, /, P) of an object g in _« a reference function fin Fand a description £, which will bf' called
the referred description of r. A reference (g, f, P)is a ground reference \fY g € (, Such a notion of rc!crcncc.ﬂ
introduced here together with appropriate definitions of id-, idrefs and idfefs-reference functions in F (ct
Definition 9, Subsection 3.2) will be employed to restrict wnigueness and referential constraints imposed by
attributes of types ID and IDREF(S), respectively (cf. Definition T, Subsecuion 3.2) For instance, given an
XML element identified by x. in order to ensure the uniqueness of such an identifier x with respect to a paricular
XML document represented by a description P, an id reference (<id value=x/>, id,,. F)is formulated _

Given a specialization # e application of #to a constraint gla,, . a.) s the construint gf{a, £, Lanth, o
a reference {a. f. Py the reference {a. f. Py = (ad [ P)and o aclause (M « B, K., |, B.ythe clause (/& «-
B\6. B:6, ... B.®. The head of a clause € will be denoted by headiC) and the set of all objects (XML
CXPressions), constraints and references in the bondy of 0 by heel i ) coni 0 and e T, respectinely ot
bO\f_\(C‘) = obyecnCy G U L om0 N clause O s o Kroend e it Conipnises o Ieareung oo
Rround constraints and ground references
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Let C be a clause (cither unit or non-unit clause) and P a description on I'. The Acight of C and P, denoted by
het(Cyand hgn(P), respectively, are defined as follows: )

1. The height of the clause C is zero if C contains no reference, i.c., if reffC) = .

2. If the clause C contains references, its height is equal to the maximum height of the all referred
descriptions contained in its body plus one.

3. The height of the description £ is the maximum height of all the clauses in P,

Let P be a description on [, The meaning of P, denoted by 44 P), is defined inductively as follows:

1. Given the meaning, 44(2), of a description @ with the height m, a reference r = (g, f, () is a true
reference T g € AAAQ)). For any m 2 0, define Tref{lm) as the set of all true references the heights of
the referred desceiption of which are smaller than or equal to m, e

Trefim) = ((@fiR) | € G fe £ hgtRYSm, g € f(AR) ) 3)

rJ

The meaning, A4, of the description £ with the height m + 1 is a set of ground XML expressions
detined by

an

andy = | i 17o) 4)

LA

where O is the empty set, [Tp](O) = TA[Tr]7'(O)) and the mapping Tp: 2552%1s defined as follows:
Foreach Vo (v e TAV) it there exist a clause C e P and a specialization € € Ssuch that C6 is a
ground clause the head of which is g and all the objects, constraints and refercnces in the body of
which belong to X, Teen and Tref{n), for some 11 £ m, respectively, i.e.:

TN = {head( CH | C e P, eX, C8 isaground clause,
objecCH < X, con(COH < Teon, (%)
relCOh e TreAm, nsm '}

Intuitively, given a deseription P, its meaning, AAF), is a set of all the ground XML expressions which can be
derived from the clauses in P. In other words, givena clause C= (H « 8, B;, ... B), n2 0, in P, furevery 8 &

Sthat makes B 6, 8.6, ..., B¢ true with respect to the meaning of P, the expression H6 will be derived and
included in the meaning ot £,

3 XML DTD Modcling

This section employs the XML-DD theory, formulated in Section 2, to model XML DTDs.

3.1 Element Type and Attribute-List Declarations

Element tvpe and atribere st declarations are two essental declarations contained in an XML DTD, used to
define the ordering and structuring of elements in a document. An element type declaration tvpically specifies
the clement’s content model In other words, it provides a gramimar regulating the structure of the clement’s
content which could be empty, character data or a valid sequence of the allowed types of child elements. An
attribute-list declaration specifies the names, data oypes as well as default values (it any) of attributes associated
with a given element type.

NML elements” content models can be cateorized into three classes: emprv, simple and complex (or nested)
comtent models. An clement type has empty content it elements of that type are empty, i.c., they are encoded by
empty -clement tags onby, it has simple content if clements of that type contain merely character data, and it has
complen content it elements of that type contain a sequence of one or more child elements. For these three
classes of content models, there are also three corresponding forms of clement type declarations: empty, simple
and complex forms, Each form is used to declare element tvpes with the respective content model, i.¢., an empty-
content clament tvpe s dechired byoan empty Stomucd Jdechirative, o simple-content element tape by g simple-
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,formed declaration and a complex-content element type by a complex-formed declaration which employs
content particles (simply referred to as particles) to constrain the element’s content.

Given below is the formal definition of content particles which will be used in the definition of complex-
formed element type declarations (cf. Definition 2-3).

Definition 1 [Content particles]

A content particle on a set of names N takes one of the forms:

1. Ungqualified content particle

1.1. atomic form: elem-type
1.2. choice-list form: (cpi]---lepn)
1.3. sequence-list form: (cpy,...,cpn)

2. Qualified content particle:

2.1. ?-form: cp?

2.2. +-form: cp +

2.3. *-form: cp*
where — “elem-fype is an element type in N,

- n>1,

— cp;is a content particle,
— ¢p is an unqualified content particle.

Let CP be the set of all content particleson N. [

Apparently, a content particle is simply a regular expression over element types in V.

Definition 2 [Element type declarations]
An element type declaration on N assumes one of the forms:

1. empty form: <IELEMENT elem-type EMPTY >
2. simple form:  <IELEMENT elem-type (#PCDATA) >
3. complex form: <IELEMENT elem-type content-particle >

where — elem-type € N specifies the element type being declared
— content-particle € CP describes the element’s content model.

Let ETD be the set of all element type declarationson N. O
From the definition of element type declarations, an element type having a very complex content model can

be simply described by a content particle which is formed by combinations of nested content particles and
occurrence qualifiers ¢?°, ‘“+” or **’.

Definition 3 [Attribute-list declarations]

An attribute-list declaration has the form:

<IATTUST elem-type attr-name, attr-type, attr-default,

attr-name,, attr-lype, attr-default, >
where

nzl,
elem-type & N specifies the type of element that will be associated by the specified set of attributes,
the attr-name; e N are distinct attribute names,
= attr-type; € {CDATA, ID, IDREF, IDREFS}
U {(value, | ... | value,) | value; € L* are distinct enumerated values},
— atir-default; ¢ {#REQUIRED, #IMPUED}
 {#FIXED jfixed-value | fixed-value € L*}
w

Let ALD be the set of all attribute-list declarations. O



A Foundation for XML Document Databases: DTD Modeling 6

Definition 4 |Document type declarations]

A document type declaration is a sequence d, d} ... d,, where d, € (ETD w ALD). Let DTD = (ETD w ALD)*,
i.c., the set of all sequences on (ETD w ALD), be the sct of all document type declarations. O

3.2 XML DTD Translation

In the proposed approach, an XML DTD is modeled as a description comprising a set of clauses. Such clauses,
precisely referred to as DTD clauses, are obtained directly by translation of each of the element type and
attribute-list declarations contained in the DTD into a corresponding set of clauses and then combination of these
sets. The numbers of clauses formulated for an ¢lement type declaration and for an attribute-list declaration
depend solely on the complexity of the element type's content model and on the number of the declared
attributes, their specified types and default values, respectively. The more complex is an element’s structure, the
greater a number of DTD clauses is obtained.

There are two classes of DTD clauses, namely, those that restrict element types’ content model and those that
constrain associated lists of attributes. The tag name of the head expression of each DTD clause starts simply
with the name of the translated DTD, concatenated with the name of the element type being restricted. Such a
head expression only describes certain particular restrictions on the element type's content model and merely
specifies a general pattern of associated attribute list. Additional restrictions on the element’s content model
(e.g., descriptions of valid sequences of child elements) and on its associated attribute list (e.g., attribute type and
default value constraints) are defined by appropriate specifications of XML expressions, constraints and
references in a clause’s body. An XML expression contained in a clause's body will be further restricted by the
other DTD clauses the head of which can be matched with that XML expression. Constraints and references in a
clause’s body are used to impose conditions on attribute types and default values.

An XML element is valid with respect to a given DTD, if such an element can successfully match with the
head of some clause translated from the DTD and all the restrictions specified in the body of such a clause are
satisfied.

Let XClause denote the set of all clauses on I'. Given next is the formal definition of the mapping 7cp to be
used for the definition of the element-type-declaration translator, rg (cf. Definition 6). Intuitively, 7cp recursively
translates a given pair (cp, cp-specification) into a corresponding set of clauses, where ¢p is a content particle
and cp-specification an underscored separated element type in N having the form dtd_elem-type_position, where
dtd specifies the translated DTD, elem-type the declared element type and position the location that ¢p occurs in
the declaration of elem-fype. In the sequel, assume that the DTD being translated is denoted by “drd™.

Definition 5 [ rcp, the content-particle translaror)

Let ¢p € CP and cp-spec € N. The content-particle transiator tcp: (CP x N) — 2™ is defined by Table 1.
O

Table 1. rcp, the content-particle translator.

“Types of Content Particles Content Particle cp € CP 1ccp, cp-spec)

1. Unqualified Content Particle

reelep, cp-spec) = {C}, where
C: <cp-spec>
. cp = (elem-npe), $E:subexp
I.1. Atomic Form where elem-nipe € N </ep-spec> - <dtd_elem-iype>
$E:subexp
</dtd_elem-tvpe>.

n

recp, cp-spec) = U Tep (€pn cp-spec_i)w {Ci. ..., Cah

i=l

= here, foreach i e {1, ..., n},
ico-li ep=(cpil...|cpa) where,
1.2 Choice-List For .
oic m where n> 1, cp, € CP Cr Qp-;éesz> -
</cp-spec> — <cp-spec_I>

$E:subexp
</cp-spec_i>.




A Foundation for XML Document Databascs: DTD Modeling 7

" "Types of Content Particles ° | Content Particle cpeCP | T - Yerepyepspec) T R e e

rerlep, cp-spec) = U Tcp (epi cp-spec_i) U (C}, where
i=1

C: <cp-spec>
$E:subexp_1
1.3. Sequence-List Farm p h= (cps. l +CPa ), $E:subexp_n
wherenz21,¢cp, € CP <lep-spec> - <cp-spec_1>
$E:subexp_1
<fep-spec_1>,
<cp-spec_i>
$E:subexp_n
</cp-spec_i>.

2. Qudlified Content Particles

teplep, cp-spec) = teplepy, cp-spec_1) v {C,, C;}, where

Cy: <ep-spec>
$E:subexp
2.1. ?2-Form P =(cp?), </cp-spec> “— <¢p-spec_l>
where ¢py € CP $E:subexp
<cp-spec_1>.
Gy <cp-spec>
</cp-spec> «~

teAcp, ep-spec) = tepepy, cp-spec_l)w {C,, Gy}, where

C: <cp-spec>
$E:subexp
<Jcp-spec> «— <cp-spec_1>
$E:subexp
<lep-spec_1>.
2.2. +-Form cp=(cpi+) Cr: qp:gii;ex
: p_1
where ¢cp; € CP $E-subexp_ 2
<Jep-spec> «— <¢p-spec_l1>
$E:subexp_1
<fep-spec_1>,
<cp-spec>
$E:subexp_2
<lcp-spec>.
teplcp, cp-spec) = teplcpy, cp-spec_1) v {Cy, Gy}, where
Cy: <cp-spec>
$E:subexp_1
$E:subexp_2
<fcp-spec> — <cp-spec_l>
2.3 *-Form cp=(ep * ), $E:subexp_1
where c¢p, € CP <cp-spec_1>,
<cp-spec>
$E:subexp_2
<Jep-spec>.
Cy: <cp-spec>
</cp-spec> «—
Example 1 Given a content particle c¢p = (Organizer+ | Sponsor*) together with its specification

myDTD_Conference_1_ 2 which describes that cp occurs in the declaration of Conference element type of myDTD,

by means of the translator Tep, the pair (cp, myDTD_Conference_1_2) can be translated into a corresponding set
of clauses:

. 7ep((Organizer+ | Spoensar*), myDTD_Conference_1_2)
= rcp{Organizer+, myDTD_Conference_1_2_1)

 re{Sponsor*, myDTD_Conference_1_2_2)
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A {Clu CI}
where
C;: <myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2> «— <myDTD_Conference_1_2_1>

$E:subexp
</myDTD_Conference_1_2_1>.

C;: <myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2> « <myDTD_Conference_1_2_2>
$E:subexp
</myDTD_Conference_1_2_2>.

tcp(Organizer+, myDTD_Conference_1_2_1)
= tcp{Organizer, myDTD_Conference_1_2_1_1)

u {CJ| C‘l}
where
C;: <myDTD_Conference_1_2_1>
$E:subexp
<fmyDTD_Conference_1_2 1> «— <myDTD_Conference_1_2_1 1>

$E:subexp
<myDTD_Conference_1_2_1 1>.

Cs: <myDTD_Conference_1 2 1>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1_2_1> « <myDTD_Conference_1_2_1_1>
$E:subexp_1
<myDTD_Conference_1_2_1_1>,

<myDTD_Conference_1_2_1>
$E:subexp 2
</myDTD_Conference_1_2_1>.

tcp(Organizer, myDTD_Conference_1_2_1_1)
= {Cs)

where
Cs: <myDTD_Conference_1_2_1_1>
$E:subexp
</myDTD_Conference_1_2_1_1> « < myDTD_Organizer>

$E:subexp
</myDTD_Organizer>.

tep{Sponsor*, myDTD_Conference_1_2_2)
= 1cp(Sponsor, myDTD_Conference_1_2_2_1)
'\J {Cﬁv CT}

where

Ce: <myDTD_Conference_1 2 2>
$E:subexp 1
$E:subexp_2
</myDTD_Conference_1_2_2> «— <myDTD_Conference_1 2 2 1>
$E:subexp_1
</myDTD_Conference_1_2_2_ 1>,

<myDTD_Conference_1_2_2>
$E:subexp_2
</myDTD_Conference_1_2_2>.

Cy;: <myDTD_Conference_1_2_2>

</myDTD_Conference_1_2 2> “—

8
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15. 1ep(Sponsor, myDTD_Conference_1_2_1_1)
= {GCs}

where

Cy: <myDTD_Conference_1_2_2 1>
$E:subexp
</myDTD_Conference_1_2_2_1> «

<myDTD_Sponsor>

$E:subexp

</myDTD_Sponsor>,

Then, let Py = rcp{cp, myDTD_Conference_1_2) = {C,,

v Cg). O

Based on the definition of the content particle translator 7cp, the definition of element-type-declaration

|
I ], translatar t¢ is now given.

Let d € ETD be an element type declaration. The element-type-declaration translator tg: ETD — 2XC4e

defined by Table 2. 0O

Table 2. 1, the element-type-deciaration translator.

Definition 6 [, the element-type-declaration translator)

15

where elem-type e N

'*.;;I‘yges of Element ;| -Element Type Declaration : P - ol

iType Declarations o deETD ™. S =(d) . R
r{d) = {C}, where

1. Empty Form <JELEMENT elem-type EMPTY>, C: <did_elem-type>

<elem-type $P:attrlist/>
</dtd_elem-type>

«— <did_elem-type_attrlist_1 $P:attrlist/>.

<IELEMENT elem-rype (#PCDATA)>,

2. Simple F
‘mpie Form where elem-type € N

r{d) = {C}, where

C: <drd _elem-type>
<elem-type $P:attrlist>
$S:pcdata
</elem-type>
</dtd_elem-type>

« <dtd elem-type_attriist_1 $P:attrlist/>.

<IELEMENT elem-type cp>,

3. Complex Form
where cp e CP

t{d) = tcplep, drd_elem-nype _1)w {C), where

C: <did_elem-type>
<elem-rype $P:attriist>
$E:subexp
<felem-rype>
<did_elem-type>
«— <did _elem-type_attrlist_1 $P:attrlist/>,

<did_elem-type_l1>

$E:subexp
</did_elem-type_1>.

Example 2 Denote the DTD of Fig. 1| by myDTD. This example demonstrates a transiation of Conference
element type declaration g, into a corresponding set of clauses.

d: <IELEMENT Conference {(Name, (Organizer+ | Sponsor*))>

dy: <!ATTLIST Conference url ID #REQUIRED
type (International | Local) #REQUIRED
chair IDREF #IMPLIED>

dy: <!ELEMENT Name (#PCDATA)>

dy: <!ELEMENT Organizer (#PCDATA)>

dy: <!ELEMENT Sponsor (# PCDATA)>

dy: <!ELEMENT Person (#PCDATA)>

dy: <VATTLIST Person ssn ID #REQUIRED >

Fig. 1. An XML DTD Example.
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1. dd\) = rp((Name, (Organizer+ | Sponsor*)), myDTD_Conference_1)
w {GCo}
where
Co:  <myDTD_Conference>

<Conference $P:attrlist>
$E:subexp

</Conference:

</myDTD_Conference> “«— <myDTD_Conference_attriist_1 $P:attrlist />,

<myDTD_Conference_1>
$E:subexp
</myDTD_Conference_1>,

2. rep{(Name, (Organizer+ | Sponsor*)), myDTD_Conference_1)
= rep{Name, myDTD_Conference_1_1)
W re{(Organizer+ | Sponsor*), myDTD_Conference_1_2)

W {Co}
where
Cio: <myDTD_Conference_1>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1> «— <myDTD_Conference_1_1>

$E:subexp_1
</myDTD_Conference_1_1>,

<myDTD_Conference_1_2>
$E:subexp_2
</myDTD_Conference_1_2>.

3. rep{Name, myDTD_Conference_1_1)

= {Cu}
where
Ci: <myDTD_Conference_1_1>
$E:subexp
</myDTD_Conference_1_1> - <myDTD_Name>

$E:subexp
</myDTD_Name>,

4. r-p({Organizer+ | Sponsor*), myDTD_Conference_1_2)
= Pl
= [C[ asay Cg}

These four steps yield P, = t(d\) = {Cs, Cip. C11} W Py.

Clause Cy imposes some restrictions on the Conference element. Its head specifies that every conforming
Conference element must contain a list of associated attribute-value pairs as well as a sequence of subelements,
represented by the P-variable $P:attrtist and the E-variable $E:subexp, respectively. Its first and second body
elements indicate that the validity of the attribute list and the subelement sequence will be determined by clauses
with the heads: myDTD_Conference_attrList_1 and myDTD_Conference_1 elements, i.e., by those clauses
obtained by translation of the declaration of Conference's attributes (cf. Example 3) and by clause Cios
respectively.

Clause C)q divides the subelement sequence of a Conference element into arbitrary two subelement sequences
and then specifies that restrictions on the first sequence are defined by means of the myDTD_Conference_1_1
expression (i.e., by clause C,; obtained from r-ps(Name,myDTD_Conference_1_1))) while restrictions on the
second sequence by myDTD_Conference_1_2 expression (i.e., by clauses C, and C; in description P, obtained
from zep{(Organizer+ | Sponsor*), myDTD_Conference_1_2)). Clause C), simply constrains that such a first
sequence must contain exactly one element conforming to the grammar defined for the Name element type, ie.,
it must satisfy the clauses the head of which are myDTD_Name expressions.

Clauses C,; and C; demand that the second sequence must conform to the restriction defined by clauses C3—Cs
or by clauses Cs—Cs, respectively. Clauses C; and C, together specify that such a sequence may consist ofone_‘ or
more sub-scquences each sub-sequence of which is restricted by clause Cs, i.e., it must contain a valid Organizer
element. Alternatively, clauses C, and €5 indicate that such a second sequence of a Conference element may



A Foundation for XML Document Databases: DTD Modeling 11

lcomp_rise zero or more sub-sequences each of which is constrained by clause Gy, i.e., each sub-sequence must
contain a valid Sponsor element. 0O

In the sequel, let $S:id be an S-variable in SFAR.

Definition 7 [Mapping EID]

A mapping ElementID : DTD — 24 is
EiD(dtd) =Y < _4; such that
the XML expressions
<$l:anExpression>
<elem-type, attr-name;=%$5:id $P:attrList>
$S:content
<felem-type,>
</$l:anExpression>
and
<$1l:anExpression>
<elem-type;, attr-name,=%5:id $P:attrlist>
$E:subexp
</elem-type,>
</$I1:anExpression>

where $1:anExpression € IVAR, $S:content € SFAR, $P:attrlist € PVAR, $E:subexp € EVAR,
will be contained in Y iff

<IATTUST elem-type name, Hpe, defaulr
name; 1D defaulr,

name, n'pe, default,>
is an attribute-list declaration in drd. O3

Given did € DTD, EID(dtd) returns a set of non-ground XML expressions in _4, which represent classes of
XML elements having associated attributes of type 1D, defined by the given dtd.

Definition 8 [Mapping Ger/D]
Based on the mapping EID, let Ger/D: (2% x 2°™)y 5 2% be

Given X' € G, did € DTD, (6)
GellD(X,dtd) = {<id value=3%S:id/> 8| a e EID(did), 8 € Sy, ab e A}
O

Intuitively, given a subset X of (, and dtd in DTD, GetID(X, drd) is a set containing XML elements, each of
the form <id value=elem-id/>, where elem-id € T* is an identity of an XML element in X.

Definition 9 [id-, idref-, idrefs-reference functions]
Given dtd € DTD, let idyy 2% — 29, idrefuy © 2% — 2% and idrefsgy : 2% —» 2% be reference functions in £

defined in terms of the mapping Ger/D as follows:
Foreach X ¢ (G,

idydX) = Gy — GetlD(X, did) 7
idrefuAX) = GetID(X, dtd) (8)
idrefs A X) = 200 A ()

idag, idrefs, and idrefs,,; will be referred to as id-, idref- and idrefs-reference functions. O

Nme that references {(a, id,,. R, {(a, idrefy, R) and (S, idrefs.;. R) will be called id, idref and 1drefs
references, respectively, iff

- a=<d value=efcm-id!> € A of the form <id value=clem-1di>, where elem-wd € (5% 0 SUAR),
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~ Se VorS={a ... a.} © A&, where a has the form <id value=elem-id/> and elem-id, € (L* U SVAR),

— dtd € DTD,
~ R is a description on I' specifying an XML document upon which a given XML element will be validated
against.
Such cogncepts of id and idref{s) references defined here are useful for specification of uniqueness and referential
constraints defined by attributes of types 1D and IDREF(S), respectively.
The definition of true references in Section 2.2 shows that the conditions specified in Table 3 must hold for a
particular id and idref{s) references to be true references.

Table 3. Satisfiability conditions for true id and idref(s) references

_ .Reference : Satisfiability Conditions
1. id reference (g, idys R, The value specified by elem-id does not occur as an 1D of
where g = <id value=elem-id/> € Gy any XML elements in AAR)
2. idref reference (g, iduas R), There exists an XML element in AfR) the ID of which is
where g = <id value=elem-id/> € G elem-id.
3. idrefs reference {X, idsq4 R), where For each i € {1, ..., n}, there exists an XML element in
X ={g1, .... g.} and g, = <id value=elem-id/> € Gx AR) which is uniquely identified by elem-id..

In the sequel, let R be a description on ', which specifies an XML document against which a given XML
element will be validated.

Definition 10 [Equal, IsMemberOf and IdrefsSplitUp constraints)

Let Equal, IsMemberOf and IdrefsSplitUp be constraint predicates in &7 The constraints Equal, IsMemberOf and
IdrefsSplitUp on I are:

1. Equal(a,, a;), where a,, a; e _4
2. IsMemberOf(a, X), where a € _4, X € 2\4%",
3. IdrefsSplitUp(<idrefs value=string/>, X), where string € SVAR U X" and X € 2(4%1,

Such constraints are true constraints in Teon iff they assume the forms:

1. Equal(g, g), where g € G

2. IsMemberOf(g, X), wherege G, X e 2% and g€ X,

3. IdrefsSplitUp(<idrefs value="string"/>, X),
where string € SVAR and X = {<id value="string,"/>, ..., <id value="string,"/>} € 2% such that srring is
the white-spaced separated sequence of string,, strings, ..., string,,.

0
Intuitively,
1. Foray, a; € _4 a constraint Equal(a,, a;) is used to ensure that the objects a, and a; are identical.

2. Fora e _4and X € 2*“", a constraint IsMemberOf(a, X) ensure that the XML element represented by a
is a member of the set .X.

3. Forsmring € SVAR W X" and X € 2%V a constraint IdrefsSplitUp(<idrefs value=string/>, X) ensure that
X is specialized to a set {<id value="string,"/>, ..., <id value="string,"/>} € 2% such that string is the
white-spaced separated scquence of siring,, string,, ..., string,.

Definition 11 [z, the attribute-list-declaration translator]

Let z,: ALD — 2% denote attribute-list-declaration translator. For an attribute-list declaration d € ALD
defined in the DTD dtd and having the form

<!ATTUST elem-type name, type, defaulr,

name, ype, default,>, wheren=1,
7,(d) is a set comprising m+1 clauses, where n < m < 2n.

An algorithm describing the formulation of such i+ 1 clauses follows:
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e
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13:
14:

15:

16:
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18;

19:
20:

21:

22:

23:

24:

25:
26:
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[Formulation of the first mr clauses)
For (i=1; i<m; i=i+1)
Letj=i+1.
If (default; is #REQUIRED)
Then
Letm=1.
Formulate clause C,,, where
Cy: <did_elem-type_attrlist i name,=%S:value $P:attriist />

«— <did_elem-type_attrlist j $P:attriist />,
Else-If (default, is #IMPLIED)

Then
Letm=2.
Formulate clauses C;; and Cp, where
Ch: <dtd_elem-type_attrlist i $P:attrlist />
«— <dtd_elem-type_attrlist j $P:attrList />.
Ca:  <did _elem-type_attrlist i name=%S:value $P.attrlist />

“— <dtd_elem-type_attrlist j $P:attrList />,
Else-1f (default; is #FIXED fixed-value)
Then

Letm=1.
Formulate clause C;,, where
Ch:  <did_elem-type_attrlist_i name~$S:value $P:attrList />
“«— <dtd_elem-type_attrlist_j $P:attrlist />,
Equal{<Value>$5S:value</NValue>,
<Value>fixed value</Value>).
Else-If (default, is fixed-value)
Then
Letm=2.
Formulate clauses C;; and Cj, where
Ch: <dtd _elem-type_attrlist_i $P:attrList />
“— <dtd_elem-type_attrList_j $P:attrlList />.
Ca:  <did_elem-type_attrlist_i name=$S:value $P:attriist />

«— <did_elem-type_attrlList ; $P:attriist />.
End-If.

If (type; is ID)
Then

For (k=1; k<m; k=k+1)
Add the reference (<id value= $S:value />, f4.44, R) 10 the body of clause C,,

End-For.
Else-If (nvpe, is IDREF)
Then
For (k=1; ksm; i=k+1)
Add the reference {(<id value= $S:value />, f 4 44 R) to the body of clause C,
End-For.
Else-If (ipe, is IDREFS)
Then
For (k=1; k<m; k=k+1)
Add the constraint IdrefsSplitUp( <idrefs value= $S:value />, $V:5etOflds) and
the reference ($V:SetOflds, fis.n a0 R) 10 the body of clause C,
End-For.
Else-1f (fype, is an enumeration (value, | ... | value,))
Then
For (k=1; k<m; k=k+1)
Add the constraint
IsMemberOf{ <Value>$S:value</Value>,
{<Value>value,</Vatue>, . . <Value>value,</Value>})
to the body of clause C,
End-For.
End-If.

End-For.

13
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Step 2: [Formulation of the (m+1)" clauses]
2T Letj=n+1. "
28: Formulate clause C,.,, where
Car:  <did_elem-type_attrUst j /> <«
O

In order to determine the validity of a list of attribute-value pairs associated with an element of elem-fype,

these m+1 clauses, n < m < 2n, work in rr+1 steps:

— In the i step, | S i < n, the validity of the specification of the attribute name, is verified by means of
clause Cy. If such specification is valid, the pair of that attribute name, and its value is removed from the
list and the next step, i.e., the (i+1)™ step, is taken. Otherwise, the verification fails.

— In the last step, i.e., the (n+1)® step, clause C,., verifies that no undeclared attribute can appear in the list,
i.e., the list of attribute-value pairs must now be empty.

Note that when there is no attribute-list declaration provided for elem-type, the following clause must be
forrnulated instead:

<dtd elem-type_attrlist_1 /> «—

Such clause merely restricts that elements of elem-type cannot have an associated list of attribute-value pairs.

Example3 As an example of the translation of an attribute-list declaration, let P; be a description obtained by
translation of o3, the declaration of attributes associated with Conference element (Fig. 1). In other words, P; =
14(d2) comprises the following five clauses, denoted by C); — Cy¢:

Cy2: <myDTD_Conference_attrlist_1 ur=$S:value $P:attrList />
«— <myDTD_Conference_attrList_2 $P:attrlist />,
(<id value= $5:value />, fis mpom. R).

Ci3: <myDTD_Conference_attrlist_2 type=$S:value $P:attriist />
— <myDTD_Conference_attrlist_3 $P:attrlist />,
IsMemberOf{ <Value>$S:value</Value>,
{<Value>International</Value>, <Value>Local</Value>}).

Ci4: <myDTD_Conference_attrlist_3 chair=$S:value $P:attrlist />
«— <myDTD_Conference_attrlist_4 $P:attrlist />,
(<id value= $S:value />, fisremor R)-

C\s: <myDTD_Conference_attrlist_3 $P:attrList />
— <myDTD_Conference_attrlList_4 $P:attrList />,

Cis: <myDTD_Conference_attrList_4 /> “—

Clause C,; specifies constraints imposed on the list of attribute-value pairs associated with a Conference
element. It ensures that the list contains a specification of url attribute, while the other attributes, represented by
$P:attrlist, wiil be additionally constrained by a clause the head of which is myDTD_Conference_attrList_2
expression, i.c., clause C\3. Moreover, the id reference contained in the body of C); specifies that the value of url
attribute, represented by $S:url, must be unique with respect to description R, i.e., $S:url does not occur as an 1D
for any element defined in description R.

Clause C); imposes that a Conference element must contain also a type attribute the value of which must be
cither International or Local. Clauses C4 and C;s then enforce that the element may optionally contain a chair
attribute. The idref reference contained in the body of C,4 specifies that the value of chair attribute, represented
by $S:value, is a reference to another element defined in description R and having the same value as its ID.

Clause Cy¢ specifies that the Conference element cannot contain attributes other than the url, type and chair
attributes. O

Definition 12 [zp7p, the document-rype-declaration translator)

The element-tvpe-and-atiribute-list-declaration translator tegq: (ETD \w ALD) — 27X is:
Teald) = teld). ifd € ETD,
tea dy = t{d). ifd € ALD.
Let did = (d\ ... d,) € DTD. The document-type-declaration transiator tprp: DTD — 2N Clause s



A Foundation for XML Document Databases: DTD Modeling 15

Torp{dtd) = U Teaa(d))

i=1

U {<did_elem-type_attrlist_1/> <« . | <IELEMENT elem-type content-model> € did,

<IATTUST elem-type name, type, default, ... name, type, default,> & did}.
O

Example 4 This example demonstrates a translation of myDTD (Fig. 1). into a corresponding set of clauses. Let
Q be a description obtained from translating myDTD. Then,

Q= tprp(myDTD) =P, Pyu Py U P,

where P, comprises the six clauses Cy7 — Cys:
Ci7: <myDTD_Name>
<Name $P:attrList>

$S:pcdata
</Name>
</myDTD_Name> - <myDTD_Name_attrlist_1 $P:attrList />.
Cs: <myDTD_Name_attrList_1 /> “«—

C9: <myDTD_Organizer>
<Organizer $P:attrlist>
$S:pcdata
</Organizer>
</myDTD_Qrganizer> “«— <myDTD_Organizer_attrlist_1 $P:attrList />.
Cyo: <myDTD_Organizer_attrlist_1 /> «

Cy1: <myDTD_Sponsor>
<Sponsor $P:attrlist>
$S:pcdata

</Sponsor>
</myDTD_Sponsor> “— <myDTD_Sponsor_attrList_1 $P:attriist />.
Ca: <myDTD_Sponsor_attriist_1 /> «—

Cz: <myDTD_Person $P:attrlist>
<Person $P:attrlList>

$S:pcdata
</Person>
</myDTD_Person> «— <myDTD_Person_attrlist_1 $P:attrlist />.
Ciq: <myDTD_Person_attrList_1 ssn=$S:value $P:attrlist/>
— <myDTD_Person_attrlist_2 $P:attrList />,
{<id value=$S:value />, fis myom, R)-
Cys: <myDTD_Person_attrList_2 /> “—

3.3 DTD Translation Optimization

Since this is an attempt to outline a general translation scheme for all possible XML DTDs, it may be pointed out
that the number of DTD clauses obtained from modeling some particular DTD is rather large and could lead to
an inefficient approach. This limitation can be alleviated by application of the optimization algorithm (cf.

Appendix) which rewrites and removes redundant DTD clauses. For example, clauses Cyq and Cys of Example 4
can be replaced by the clause:

<myDTD_Person_attrlist_1 ssn=$S:value/> “— (<id value=$S:value />, fi7 myom. R).

Appendix also gives a description Q obtained by application of the developed optimization algorithm 1o
description O of Example 4.
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4 XML Element Validity Checking

*,

Given an XML DTD represented by a description P, in order to determine the validity of an XML element, say
x, with respect to such DTD, a single clause D is formulated:

D:a « <did_elem-type> x </dtd_elem-type>. (10)

The head of D, represented by a, is an XML expression in _4 which will be derived if the given element x is
valid. The body of D contains a single XML expression with a tag name of the form dtd_elem-type, where did is
the name of the DTD to be checked and elem-fype the type of the validated element. Such a body expression
contains the validated element x as its only child element. If x is valid, the element represented by a will be
derived from or contained in the meaning of the description (P« {D}). More precisely, to say that x is valid,
such a description (P v {D}) must be able to be transformed equivalently and successively into the description
(P {D?%), where D’is an ground unit clause of the form

v at «— . (1)

Example 5 Referring to description Q of Example 4 which represents myDTD, in order to determine whether
the Conference element:

<Conference uri="http://www.cs.ait.ac.th/smarthet39/™ type="International® chair="12345">
<Name>SmartNet'99</Name>
<Organizer>Asian Institute of Technology </Organizer>
<Organizer>International Federation Information Processing</Organizer>
<0Organizer>Telecommunication of Thailand </Organizer>

</Conference>

conforms to myDTD or not, the following clause is formulated:

D:  «<Vvalid_XML ur="http://www.cs.ait.ac.th/smartnetod/" />
«— <myDTD_Conference>
<Conference ur="http://www.cs.ait.ac.th/smartnet99/"
type="International” chair="12345">
<Name>SmartNet'99</Name>
<Organizer>Asian Institute of Technology </Organizer>
<Organizer>Intermational Federation Information Processing</Organizer>
<Organizer>Telecommunication of Thailand </Organizer>
</Conference>
</myDTD_Conference>

Suppose that the referred description R, which represents an XML document to be validated against, comprises
the two clauses E, and £;:

E,: <Conference url="http://www.cs.ait.ac.th/ijwdI98/" type="International">
<Name>International Joint Workshop on Digital Libraries</Name>
<Organizer>Asian Institute of Technology</Organizer>

</Conference> - .

E.: <Person ssn="12345">Vilas Wuwongse</Person> «—

Since the description (Q ' {D}) can be successively transformed into the description (Q w {D}), where
D <Valid_XML url="http://www.cs.ait.ac.th/smartnet99/" /> “ -

the given Conference element is valid with respect to myDTD. Validating other Conference elements is similar.
a

5 Conclusions

An approach 1o the determination of the grammatical correctness of a given XML element/document with
respect to a particular DTD has been developed, by incorporation of the expressiveness and efficient
computational mechanism facilitated by Declarative Description theory and Equivalent Transformation (ET}
paradigm, respectively. It represents an XML DTD as a corresponding set of DTD clauses, which describe valid
elements’ content models as well as restrictions on associated lists of auributes, e.g., uniqueness, referential and
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type constraints. Thus, the developed approach is complete with respect to XML DTD modeling and document
. validating,.

Research on an extension of XML-ETC Engine, a Web-based XML processor developed under Equivalent
Transformation Compiler (ETC) environment, by integration of supports for DTD modeling and validation is
continuing. Moreover, formalisms for D7D transformation and combination, e.g., union, concatenation,

intersection and complement, are envisaged, in order to provide a complete support for DTD and document
processing.
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Appendix

An optimization algorithm for the developed DTD translation scheme is sketched.

Let aDTD be an XML DTD and P = {C,, ..., Ca} a description obtained by translation of aDTD into a
corresponding set of DTD clauses, i.e., P = 1prp{aDTD). An algorithm which can reduce the complexity of such a
description P by removal and rewriting of some redundant DTD clauses contained in P follows:

1: Let Q= {C, 8, .... Cala}, where 8, ..., 8, are specializations in Swhich rename variables in Cy, ..., C,,
respectively, such that C, 4, ..., Cafa do not have any variable name in common.

2 Repeat

3: Find a clause C = (H « B, B, ..., By) € Q that satisfies the following two conditions:

— head(C)’s tag name has the form
aDTD_elem-type_level
or
aDTD_elem-type_attrlist_level
where elem-type is an element type declared in aDTD and Jevel is a sequence of number
separated by underscores, e.g., 1_2_1.

— TThere is no clause D € @ such that head{D)'s tag name is the same as head(C)'s tag name.

4; If (such a clause C (in Step &) is found)
Then ’

5: Let 0= Q@ — {C}, i.e,, remove clause C from description Q.
6: For each (clause D =(H « B\, B3, ..., Bi1, Bi, Biav,..., B.) € O, where u 2 0)
7 If (there exists & € Ssuch that B8 = H)

Then
8: Let D'=(H 8« B\6,B36, ..., B1,0,B,, By, ..., By, Bir16,..., B.O).
9: Let 0= Q- {D} v {DY, i.e., replace clause D in @by D"

End-If.

End-For-each.

End-If.
10: Until (such a clause C is not found in Q).

Based on the above algorithm, let O be a description obtained by optimization of description Q of Example 4
and containing the following 13 DTD clauses, denoted by €| — C5:
C': <myDTD_Conference>
<Conference url=$S:value type=$S:.valuel $P:attrlist>
$E:subexp_1
$E:subexp_2
</Conference>
</myDTD_Conference > «— <myDTD_Conference_attrlist_3 $P:attrlist />,

(<id value= $S:value />, fis moro. R),

IsMemberOf( <Value:>$S:valuel </Value>,
{<Value>Intemational</Value>,
<Value>Local</Value>})

<myDTD_Name>
$E:subexp
</myDTD_Name>,

<myDTD_Conference_1_2>
$E:subexp_2
</myDTD_Conference_1_2>.
C5: <myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2> «— <myDTD_Conference_1_2_1>
$E:subexp

</myDTD_Conference_1_2_1>.



Cy

Ce

C'si

Ce

Cy:
Che:

Ce:

C'm:

C‘“:

C-”:

<myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2>

<myDTD_Conference_1_2_1>
$E:subexp
</myDTD_Conference_1_2_1>

<myDTD_Conference_1_2_1>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1_2_1>

<myDTD_Conference_1_2_2>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1_2_2>

<myDTD_Conference_1_2_2>
</myDTD_Conference_1_2_2>

*—

—
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<myDTD_Conference_1_2_2>
$E:subexp
</myDTD_Conference_1_2_2>.

<myDTD_Organizer>
$E:subexp
</myDTD_Crganizer>.

<myDTD_Organizer>
$E:subexp_1
</myDTD_Organizer>,

<myDTD_Conference_1_2_1>
$E:subexp_2
</myDTD_Conference_1_2_1>.

<myDTD_Sponsor>
$E:subexp_1
</myDTD_Sponsor>,

<myDTD_Conference_1_2_2>
$E:subexp_2
</myDTD_Conference_1_2_2>.

<myDTD_Conference_attriist_3 chair=$5:value/>

<myDTD_Conference_attrlist_3/>

<myDTD_Name>
<Name>
$S:pcdata
</Name>
</myDTD_Name>

<myDTD_Organizer >
<O0rganizer>
$S:pcdata
</Organizer>
</myDTD_Organizer>

: <myDTD_Sponsor>

<Sponsor>
$S:pcdata
</Sponsor>
</myDTD_Sponsor>

<myDTD_Person ssn=%$S:value>
<Person>
$S:pcdata
</Person>
</myDTD_Person>

—

+—

(<id value= $S:value />, fiurermyotos K).

(<id value=%S:value />, f; mom. B).
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Abstract

Typed substitution provides a means of capturing inheritance in logic de-
duction systems. However, in the presence of method overriding and multi-
ple inheritance, inheritance is known to be nonmonotonic and the semantics
of programs becomes a problematic issue. This paper attempts to provide
a general framework, based on Dung'’s argumentation theoretic framework,
for developing a natural semantics for programs with dynamic nonmenotonic
inhentance. The relationship between the presented semantics and perfect
model (with overriding) semantics, proposed by Dobbie and Topor (1995},
is investigated. [t is shown that for inheritance-stratified programs, the two
semantics coincide. However, the proposed semantics also provides correct

skeptical meanings for the programs which are not inheritance-stratified.

Key words: nonmonotonic inheritance, argumentation, skeptical semantics,
inhentance stratification, deductive object-oriented systems, dynamic method

resolution
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1 Introduction

Deduction and inheritance are two important reasoning mechanisms in deductive
object-oriented database (DOOD) systems. Most DOOD languages provide these
two mechanisms in certain ways. However, there are subtle differences in their
interpretation and realization, e.g., datalog™¢** (Abiteboul, Lausen, Uphoff and
Waller 1993) captures inheritance by transforming subclass relationships into rules
of the form class(X) « subclass{X), LOGIN (Ait-Kaci and Nasr 1986) and LIFE
(Ait-Kaci and Podelski 1993) incorporate inheritance into unification algorithms,
F-logic (Kifer, Lausen and Wu 1995) considers inheritance as implicit implication on
an interpretation domain, and Gulog (Dobbie and Topor 1995) models inheritance
by means of typed substitutions. This paper focuses on the interaction between
deduction and the inheritance that is realized through typed substitutions, and its

effects on program semantics.

1.1 Motivation

Most DOOD languages support inclusion polymorphism (or subtyping), i.e., the
extension of one type (the set of all individuals belonging to the type) can be defined
to be a subset of the extension of another type. With inclusion polymorphism,
inheritance can be captured in an intuitive way by means of typed substitutions.
To illustrate, suppose that ait is an object of type int(ernational)-school and int-

school is a subtype of school. Then, given a program clause:
C1l: X:school[medium-of-teaching — thai] if X[located-in — thaifand],

which is intended to state that for any object X of type school, the medium of
teaching at X is thai, if X is located in thailand; one can obtain by the application

of the typed substitution {X:school/ait} to C1 the ground clause:
G1:  ait[medium-of-teaching — thai] il ait[located-in — thailand].

Naturally, the clause C1 can be viewed as a conditional definition of the method

medium-of-teaching attached to the type {class!) schoo! and the clause 1 as a

definition of the same method inherited from the type school for the object ait.
However, under the usual way of defining program semantics, e.g., the minimal

model semantics, inasmuch as every single ground instance of a program is required

I this paper, the ters "type” and “class” are used interchangeabldy.



to be satisfied by the meaning of that program, the inheritance thus obtained is
inherently indefeastble, i.c., every inherited definition will be compulsorily used.?
Undeniably, indefeasible inheritance is not always most appropriate, Inheritance of
a property can reasonably be expected to be blocked owing to property overriding.

For example, let a unit clause:
C2: X:int-school[medium-of-teaching — english],

defining the method medium-of-teaching for the objects of type int-school, be also
given. Then, as int-school is a subtype of school, il is reasonable to suppose that

the definition of medium-of-teaching for ait obtained from C2, i.e.,
G2: ait[medium-of-teaching — english],

is more specific than the previous inherited definition G'1 and is likely to supersede
G1.

In the case of multiple inheritance, where there are several possible inherited
definitions none of which is more specific than the others, with indefeasible inheri-
tance all the definitions will be employed. This is again not always natural. Another
reasonable option is either to selectively use only some of those inheritable defini-
tions based on some resolution criteria and some additional information, leaving the
others ineflective, or even to skeptically discard all of them.

When some inherited information does not apply in the presence of more specific
information or some other eligible heritage, inheritance is said to be defeasible.
In general, the choice of the most suitable inheritance strategy (indefeasible or
defeasible) may seem to be a matter of opinion. However, indefeasible inheritance
tends to cause unintended inconsistency when methods are required to behave as
(partial) functions, i.e., when the invocation of a method on a particular object
15 required to vield a unique value whenever that invocation is defined. Referring
ta the clauses G1 and G2 above, for example, if the method medium-of-teaching is
supposed to return a single value for the object ait, then G1 conflicts with G2 when
they are both active. With such a functionality requirement, defeasible inheritance
is therefore particularly preferable. Furthermore, from the modelling viewpoint, it
has been widely recognized that defeasible inheritance appears to be more suitable

for reasoning about the behavioral aspect of objects.

Dk s ble inheritance is abao cidled steect inheritance,



Indefeasible inheritance is known as monotonic inheritance, because it always
increases derived information monotonically as the number of program clauses in-
creases, By contrast, defeasible inheritance typically causes ronmonolonic behav-
tor, t.e., addition of a new clause to a program may result in the withdrawal of
some conclusions which were previcusly derivable by inheritance from that pro-
gram. Coping with defeasible (nonmonotonic) inheritance is not simple. One pri-
mary problem is how to deal with situations wherein some inherited information
conflicts with some other information (possibly also inherited). This subject has
been intensively studied in artificial intelligence (Touretzky 1986; Horty, Thoma-
son and Touretzky 1990; Stein 1992; Thirunarayan and Kifer 1993; Dung and Son
1995); however, most of these studies discussed nonmonotonic inheritance not in

the context of rule-based deductive systems.

1.2 The Proposed Work

This paper applies Dung’s theory of argumentation (Dung 1995) to the development
of an appropriate declarative semantics for programs with defeasible inheritance. In
order to resolve inheritance conflicts, a binary relation on program ground clauses,
called the domination relation, which determines among possibly conflicting (inher-
ited) definitions whether one is intended to be preferable to another, i1s required.
The domination relation, for example, may provide the information that between
the clauses G1 and G2 given in Subsection 1.1, G2 is more suitable. A program will
be transformed into an argumentation framework, which captures the logical inter-
action between the intended deduction and domination; and, then, the meaning of
the program will be defined based on the grounded extension of this argumentation
framework.

Using this approach, conflict resolution is performed dynamically with respect
to the applicability of method definitions. That is, the domination of one method
definition over another is effective only if the antecedent of the dominating definition
succeeds. The appropriateness of dynamic method resolution in the context of
deductive rule-based systens, where the definitions of methods in a class are often
conditional and may be inapplicable to certain objects of the class, is advocated by
Abiteboul, Lausen, Uphoff and Waller (1993). In particular. with the possibility of

overriding. when the definitions in the most specific class are not applicable it is

ol



reasonable to endeavour to apply those in a more general class.

In order to argue for the correctness and the generality of the presented se-
mantics in the presence of method overriding, its relationship to the perfect model
(with overriding) semantics proposed by Dobbie and Topor (Dobbie and Topor
1993; Dobbie and Topor 1995) is investigated. The investigation reveals that these
two semantics coincide for inheritance-stratified programs. Furthermore, while the
perfect model semantics fails to provide natural meanings for programs which are
not inheritance-stratified, the presented semantics still yields their correct skeptical
meanings.

For the sake of simplicity and generality, this paper uses Akama’s axiomatic
theory of logic programs (Akama 1993), called DP theory (the theory of declarative
programs), as its primary logical basis. The rest of this paper is organized as fol-
lows. Section 2 recalls some basic definitions and results from Akama’s DP theory
and Dung’s argumentation-theoretic foundation. Section 3 describes the proposed
semantics. Section 4 formulates the notions of inheritance-stratified program and
perfect model with overriding based on DP theory. Section 5 establishes the rela-
tionship between the proposed semantics and the perfect model (with overriding)

semantics. Section 6 compares the presented approach with works on inheritance

networks.

2  Preliminaries

2.1 DP Theory

DP theory (Akama 1993) is an axiomatic theory which purports to generalize the
concept of conventional logic programs to cover a wider variety of data domains.
As an introduction to DP theory, the notion of a specialization system is reviewed

first. 1L is followed by the concepts ol declarative programs and their minimal model

semaintics on a specialization system.

Definition 1 (Specialization System) A spectalization system is a 4-tuple
(A.G. 8 1) of three sets 4,G and 8, and a mapping g from S to partial_.map(A)

(r.c., the sct of all partial mappings on 1), that satisfies the conditions:

1. (Vs,s' € 8)(3s" € 8) 1 pus” = (us’) o (jes).

6



2. (s € S)(Va € A) : (ps)a = a,
3. G6C A

The elements of A are called atoms; the set G is called the interpretation domain;
the elements of S are called spectalization parameters or simply specializations; and

the mapping u is called the specialization operator. A specialization s € S is said
to be applicable to a € A, ifl a € dom{us). O

By formulating a suitable specialization operator together with a suitable set
of specialization parameters, the typed-substitution operation can be regarded as
a special form of specialization operation. Throughout this subsection, let ' =
(A,G, S8, u) be a specialization system. A specialization in § will often be denoted
by a Greek letter such as 8. When there is no danger of confusion, a specialization
8 € S will be identified with the partial mapping zf and used as a postfix unary
(partial) operator on A, e.g., (uf)a will be written as af.

A declarative program on I' is defined as a set of definite clauses constructed
out of atoms in 4. Every logic program in the conventional theory can be regarded

as a declarative program on some specialization system.

Definition 2 (Definite Clause and Declarative Program) Let X be a subset

of A. A definite clause C on X is a formula of the form:

(43 — bl ----- bn
where n > 0 and a,b,,...,b, are atoms in X. The atom a is denoted by head(C)
and the set {b;,...,b,} by Body(C). A definite clause C such that Body(C) = 0 is

called a unif clause. The set of all definite clauses on X is denoted by Dclause(X).
An element of Dclause(G) is called a ground clause. A declarative program on T is

a (possibly infinite) subset of Dclause(A}. O

A declarative program will also be simply called a program in this paper.

Let C be a definite clause (a + b;,...,b,) on A. A definite clause C’ is an
instance of C, iff there exists # € & such that 0 is applicable to a,b,,...,6, and
C' = (af « b,8,...,b,0). Such an instance C* of C is denoted by C#8, and the

set of all instances of C by Instance(C). Given a declarative program P on T,

Gelause(P) denotes the set

LJ (Instance(CY N Delause (G)).
e



i.e., the set of all instances of clauses in P which are constructed solely out of atoms
inG.

An interpretation assigning truth values to the atoms in the interpretation do-
main G and the truth value of a definite clause on A with respect to a particular

interpretation are next defined:

Definition 3 (Interpretation) An interpretationis a subset of G. Given a definite

clause C on G, an interpretation [ is said to satisfy C, iff
(head(C) € I) or (Body(C) € I).
A definite clause C on A is said to be true with respect to an interpretation [/, iff

(VC' € (Instance(C) N Delause(G))) : [ satisfies C'. D

As in the conventional theory, an interpretation [ is a model of a declarative
program P on I, iff ali definite clauses in P are true with respect to [; and, the
meanting of P is defined as the minimal model of P, which is the intersection of all
models of P. A fixpoint characterization of this minimal model semantics is also
discussed in {Akama 1993).

Examples 1 and 2 below demonstrate how to regard conventional logic programs
and (simplified) typed logic programs with subtyping, respectively, as special forms

of declarative programs.

Example 1 Let an alphabet A = (V, K, F,R) be given, where V, K, F and R
are mulually disjoint sets of variables, constants, function symbols and predicate
symbols, respectively. Let a specialization system '} = (A, Gy, 51, 1) be defined
as follows: A, is the set of all first-order atoms over A; G, is the subset of .4; that
consists of all variable-free atoms in A;; S; is the set of all usual substitutions over
AL and, for each s € 8, and a € A,, (u,s)a is the result obtained by applying
the substitution s to a in the usual way. From the basic concepts and results®
for logic programming, it can be seen that ['; satisfies all the three conditions of
Definition 1. The declarative programs on I'y are conventional logic programs, and

their meanings according to DP theory are exactly their conventional meanings.

(.

TSRe, for example, the first chapter of (Lloyd 1987).



Example 2 This example illustrates one among several possible ways of formulat-
ing specialization systems for typed logic programs. To simplify the presentation,
only typed logic programs without function symbols will be considered. Let T be
set of types partially ordered by <. Let V, K and R be mutually disjoint sets of
variables, constants and predicate symbols, respectively. Assume that each variable
in VV as well as each constant in K has exactly one type in T, and each m-ary
predicate symbol in R has a unique type of the form r x --- x 7,,, where the =

belong to T. Let a specialization system I'; = (A2, G2, 82, u2) be defined as follows:

1. A; is the set of all typed atoms of the form p(t;,...,tm), wherte m > 1, p
is an m-ary predicate symbol in R having type n, x --- x 7, and for each
it € {1,...,m}, t; belongs to either V or K and if the type of ¢; is 7/, then

! < .

| R

2. G5 is the subset of A, that consists of all variable-free typed atoms in .4,.

3. &, is the set of all typed substitutions of the form {vy/ty,...,,va/tn}, where
the v; are distinct variables in V, each of the t; belongs to either V or K, and
for each j € {1,...,n}, v; #¢; and if v; has type 7; and {; has type r], then

! .
'rJ-SrJ.

4. For each s € &3, and a € 4., (p2s)a is the result obtained by applying the

typed substitution s to a in the usual way.

Given any s,s’ € S3, it is clear that if s denotes the composition, defined in the
usual way, of s and s', then (p25")a = ((m25) o (p25'})a, for each a € A;. So
I'> satisfies Condition 1 of Definition 1. Obviously, 'y also satisfies the other two
conditions of Definition 1. The declarative programs on I's are typed logic programs,

and the declarative semantics defined in DP theory yields their expected meanings.

O

2.2 Argumentation Framework

Based on the basic idea that a statement is believable if some argument supporting
the statement can be successfully defended against its counterarguments, Dung
has developed an abstract theory of arguminentation and demonstrated that many

of the major approaches to nonmonotonic reasoning in artificial intelligence can be



viewed as special forms of argumentation (Dung 1995). In this subsection, the basic

concepts and results from this theory are summarized.

Definition 4 (Argumentation Framework) An argumentation framework is a
pair (AR, attacks), where AR is a set and attacks is a binary relation on AR. The

elements of AR are called arguments. O

In the sequel, let AF = (AR,attacks) be an argumentation framework. An
argument a € AR is said to atlack an argument b € AR, iff (a,b) € attacks. A set
A C AR is said to attack an argument b € AR, ifl some argument in A attacks b.
An argument a € AR is said Lo attack a set B C AR, iff a attacks some argument

in B.
The concept of acceptability of argument and the notions of conflict-free and

admissible sets of arguments are now recalled.

Definition 5 (Acceptable Argument) An argument a € AR is said to be ac-
ceptable with respect to a set A C AR, ifl, for each b € AR, il b attacks a, then A

attacks b. o

Definition 6 (Conflict-Free Set and Admissible Set)

1. A set A C AR is said to be conflict-free, iff there do not exist arguments

a,b € A such that a attacks b.

2. Aset A C AR issaid to be admissible, ifl A is conflict-free and every argument

in A 1s acceptable with respect to 4. O

The credulous semantics and the stable semantics of AF are defined by the

notions of preferred extension and stable extension, respectively:

Definition 7 (Preferred Extension) A preferred ertension of AF is a maximal

(with respect to set inclusion) admissible subset of AR. O

Definition 8 (Stable Extension) A set A C AR is called a stable extension of

AL A is conflict-free and A attacks every argument in AR—A. 0O
Lemma 1A set A C AR 15 a stable extension of AF, iff

A= {ae AR A does not attack ). O

10



The grounded (skeptical) semantics of AF is defined (Definition 10) as the least

fixpoint of the characteristic function of AF, which is given below.

Definition 9 (Characteristic Function) The characteristic function of AF,

Faop:24R 4 24R 5 defined by

Farp(X) = {a|ais acceptable with respect to X},

foreach X CAR. 0O

Proposition 1 Fsr 1s monotonic with respect to set inclusion, but, in general, is
not continuous. However, if for each argument a € AR, there erist only finitely

many arguments in AR which attack a, then Fap is continuous. (]

Definition 10 {Grounded Extension}) The grounded ertension of an argumen-

tation framework AF is the least fixpoint of Fap. O
Extensions of the three kinds are illustrated by the next two examples.

Example 3 Let AF, = (AR;,attacks), where AR, = {a,b,c} and attacks =
{(a,b),(b,c)}. AF: has only one preferred extension, i.e., {a,c}, which is also
its only stable extension. Since Far, (0) = {a} and F}p (8) = {a,c} = F3g (0),

the grounded extension of AF) is also the set {a,c¢}. D

Example 4 Let AF;, = (AR3,attacks), where AR> = {a,b,¢,d} and attacks =
{(b,¢),(c,b),(b,d)}. Then, AF; has two preferred extensions, i.e., {a,b} and
{a,c,d}, which are also stable extensions. As Fap,(0) = {a} = F3p,(0), the

grounded extension of AFy is {a}. O

Well-foundedness of an argumentation framework, recalled next, is a sufficient
condition for the coincidence between the grounded semantics, preferred extension

semantics and stable semantics (Theorem 1).

Definition 11 (Well-Founded Argumentation Framework) An argumenta-
tion framework is well-founded, iff there exists no infinite sequence of arguments

@0, dy,...,qn,...such that for each i > 0, a,4 attacks a,. |}

Theorem 1 Every well-founded argumentation framework has eractly one pre-
ferred eztension and one stable extension. Moreover, its grounded extension, pre-

ferred extension and stable extension are equal to each other. O

Example 5 The argumentation framework AF, of Example 4 is not well-founded,

since the arguments b and ¢ attack cach other. 0O

11



3 The Proposed Semantics

In the sequel, let T = (A4,G,S, u) be a specialization system and P a declarative
program on [. Let dominates be a binary relation on Gdause(FP). A ground clause
C of P is said to dominate another ground clause C' of P, ifl (C, ) € dominates.
It will be assumed henceforth that the relation dominates priontizes the ground
clauses of P; more precisely, for any ground clauses C,C’ of P, C dominates C’,
iff C is preferable to C’ and whenever Body(C) is satisfied, C’ will be inactive.* It
should be emphasized that the domination of a ground clause C over another ground
clause €’ is intended to be dynamically operative with respect to the applicability
of C, ie., the domination is effective only if the condition part of C is satisfied.
The relation dominates will also be referred to as the domination relation of P.

A program is said 1o be domination-free, iff there do not exast any ground clauses

C,C' of the program such that C dominates C'.

3.1 Derivation Trees

The notion of a derivation tree of a program will be introduced first. A derivation
tree of P represents a derivation of one conclusion from P. It will be considered as

an argument that supports its derived conclusion. Every conclusion in the minimal

mode] of P is supported by at least one derivation tree of P,

Definition 12 (Derivation Tree) A dertvation tree of P is defined inductively

as follows:

1. If Cis a unit clause in Gelause{P), then the tree of which the root is C and

the height 15 0 is a derivation tree of P.

2.0 C = {a «— by, ... .b)) 15 a clause in Gelause(P) such that n > 0 and
T... .. 74 are derivation trees of P with roots C,. ..., C,, respectively, such
that

head{Cyy = &, .

forenchi = {1,.. _n}. then the tree of which the root is € and the immediate

<ubtrecs are exactiy Ty, .., Thn 15 a dervation tree of P.

“The retatin duminstes is inspiced partly by the relationship ~possibly overrides™ in (Dobbie

Al leazinr Uras [aobiie aced Toper 1735,
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d«ctb

\

cé—a c+a b —
a b
a ¢ a
T1 T?
T3 Ty

Figure 1: The derivation trees of the program P,.

3. Nothing else is a derivation tree of P.

The set of all derivation trees of P is denoted by Tree(P). O

Note that as the derivation trees are inductively generated, only well-founded
derivation trees are obtained. In the sequel, for any derivation tree T of P, let

root(T) and height{T) denote the root and the height, respectively, of T

Example 6 Let P, be a declarative program which consists of the following five

ground clauses:

L

b o«

c 4 a
d ¢« e,b
f « e

Then, P; has exactly four derivation trees, which are shown by Figure 1. Note

that the derivation trees 71,73, 73 and Ty in the figure depict the derivation of the

conclusions a, b, c and d, respectively. 0O

In the ensuing discussion, a derivation tree T" will be regarded as an argument

that supports the activation of the ground clause root(T) (and, therefore, supports

the conclusion head(root(T))).

3.2 Transformation into Argumentation Framework

In order to define the meaning of /7 with respect to the domination relation, the

progrvatn 1?2 will be transformed into an argumentation framework A (), which

13



d-c b

Cc - u Ct—a b -

i 4= [£ 3

IFigure 20 The argumentution frnimewaork for the progran 77

provides an approprinte strnctare for understanding the dynamic interaction of
the deduction process of 1 nond the apecified domination relation. Intuitively, one
argiment {decivabion tree) atincks another argument {derivation tree), when the
pround clavne aupported by the fortmer dominates some ground clanse used in the

conatruction of the latter.

Delinition 13 The argumentation frammework AF () = (AR attacka) is deflned

(L] !'n”nwu:
oAl Prec(l?)

LoVor any U o ARG attacks D voot (1) dominates some node of 7.

L1

Vixnmaplo 7 NHelerring, to the program 1) of Example 6, suppose that the ground
clanune a ¢ domiuntes the ground elause b =, and for any other two ground clauses
P one dosenob dominnte the other Then AR (IY) = (Pree(Ih), attackas), where
Pree{Py) comists of the Towr derivation trees depicted by Figure 1 and aftacks =
LCEL ) CF U ED T as vepresented by the arrows i Pigure 2, (Note that ) attnoks

s the vool of 2y donimates thie ripht leal ol 1) (1



a+ b c a ¢

T\ T T3 T Ts

Figure 3: The argumentation framework for the program Ps,.

Example 8 Let a declarative program P comprise the following ground clauses:

a ¢+
b«
L
d «— a
e «— b
[ « e

Let d «— a dominate & « and ¢ « b dominate f « ¢, and assume that for
any other two ground clauses in P;, one does not dominate the other. Then
AF,(P;) = (Tree(P2), attacks), where Tree(P2) consists of the six derivation trees

given in Figure 3 and attacks = {(74,T2,), (T4.T5),{Ts,T6)} as shown by the arrows

between the derivation trees in the figure. O

3.3 Grounded-Extension-Based Semantics

The meaning of a program is now defined as the set of all conclusions which are sup-

ported by some arguments in the grounded extension of the argumentation frame-

work for the program.

Definition 14 {(Grounded-Extension-Based Meaning) Let GE be the

grounded extension of AF,(P). Then the grounded-ertension-based meaning of P,

denoted by MEF, is defined by
MBS = {head(root(T)) | T ¢ GE}. 0

Example 9 Consider AF,(P;) of Example 7 (Figure 2). Let F be its characteristic

lunction (see Definition 9). Clearly, F(#) = {7}.T3) = F(F(¥)). Thus (@) is the

grounded extension of AF, (7)), and, then, MEE = {a, ¢} m]
. :

15



Example 10 Refer to Example 8 (Figure 3). Let F be the characteristic function
of AF._(P?), then F(@) = {Tl, T3,T4}, and F2(0) = {TI,T3,T4,T5} = Fa(g) Thus
F2(0) is the grounded extension of AF,(Pz), whence Mp: ={a,¢e,d,f}. O

Example 10 above also illustrates the dynamic conflict resolution in the proposed
approach, i.e., the domination of the ground clause e « & over the ground clause
f + c does not always prevent the activation of the latter.

The next example shows how to deal with the problem raised at the beginning

of the paper.

Example 11 Let ait be an instance of type int-school and int-school a subtype of

school. Let P; be a declarative program which consists of the following three clauses:

X: school[medium-of-teaching — thai] ¢+  X[located-in — thailand]
X:int-school[medium-of-teaching — english] +
ait{located-in — thailand] — .

For the sake of simplicity, assume that P35 has only three ground clauses:

G1: ait{medium-of-teaching — thai) ¢«  ait[located-in — thailand]

G2: aitfmedium-of-teaching — english] «

G3: ait[located-in — thailand] — .
As explained at the beginning of Section 1, G2 is supposed to override G1; there-
fore, let G2 dominate G1. Figure 4 depicts the resulting argumentation framework
AF (P3), where m-t, m-e and I-f denote the ground atoms ait{medium-of-teaching —
thai], ait[medium-of-teaching — english] and ait[located-in — thailand], respectively.
Now let F be the characteristic function of AF,(FP3). As F(B) = {T1,Ta,} = F?(0),
F(8) is the grounded extension of AF,(P3). Thus M is the set

{ait{located-in — thailand], aitimedium-of-teaching — english]},

m-t «— [-t
-t — -t « \ m-e
T T Ts

Frcuee 4 “Fhe argumentation framework for the program /.
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which is the expected meaningof P;3. O

The next two examples illustrate method resolution in case of multiple inheri-
tance. The first one shows how the proposed approach deals with the well-known

Nixon's Diamond. The second discusses the case when method definitions are con-

ditional.

Example 12 Let nixon be an individual both of type quaker and of type republican,

and P4 a declarative program consisting of the following two clauses:
Cl: X:quaker[policy — pacifist]
C2: X:republican[policy — hawk] « .

For simplicity, assume that C1 and C2 have as their ground instances only the

clauses G1 and G2, given below, respectively:

G1: nixon[policy — pacifist]

G2: nixon|[policy — hawk] — .
Suppose that being a quaker and being a republican are believed to neutralize each
other, and, consequently, that the domination relation is defined in such a way that
G1 and G2 dominate each other. Then, as the derivation trees of P4 attack each
other, it is clear that M is the empty set, which is the expected meaning of P4. On
the other hand, suppose that being a republican is believed to have more influence
than being a quaker, and, then, that G2 is considered to dominate 1 but not vice

versa. It is readily seen that ME7 now becomes the set {nixon[policy — hawk]},

which is, in this case, the desired meaningof Py. O

Example 13 Let tom belong both to type student and to type employee. Consider

a program Ps comprising the following five clauses:

Cl: X:student[residence — north-dorm]
X[lives-in — rangsit-campus],
X[sex — male]

C2: X:employee[residence — west-apartments]
X[lives-in —» rangsit-campus],
X[marital-status — rmarried]

C3: tom[lives-in — rangsit-campus]

C4: tom[sex — male] «

'3 tom[marital-status — married]  + .

17



= r, s-m rew &= l-r,m-m

S 2NN

I-r e PR R l-r + m-m ¢
T4 Ty
Figure 5: The argumentation framework for the program .

Asstine, for simplicity, that 1 and C2 have the clauses, given below, G1 and G2,

rexpectively, as their only ground instances:

-

(1 : tom|iesidence ~+ north-dorm] ¢
tom[lives-in — rangsit-campus],
tom[sex — male]
(2 tom|residence — west-apartments]
tom|lives-in — rangsit-campus],
tom{marital-status — married).
Suppose that students who are also employees usually prefer the accommodation
provided for employees, and, therefore, that (72 dominates G1. Figure 5 shows
the argumentation framework AF (), where ) s-m, me-m, ron and r~w denote
tomflives-in — rangsit-campus]. tomlsex — male], tom[marital-status — married),
tomlresidence - north-dorm] and tom|residence — west-apartments], respectively.
Obwiously, AT contains tomfresidence — west-apartments] but does not contain
tom[residence - north-dorm}, and provides the desired meaning of .

Neat, suppaose that the clause s removed from £%. Then, as 75 in Figure 5
1z now net a derivation tree of 1%, the domination of G2 over (01 is not effective.
As a result] instead of containing tomresidence — west-apartments], At} contains
tomfresidence -3 north dorms and, 1t stll viclds the coreect meaning of £ in this

(RN TR t

b weneral, VG s a subset of the minimal maodel of £ However, it s readily

seent that

roposition 2 {7 o donunation: froe, then A s the mmemal modet of . 0O

Prvool 108 domnnationsfree, then GE s the set of all derivation teees of 22, Thus

L .
AT s esaetly the ool neodel o 8 ]
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aeb a+ b

b a be—a bea

a+b a+b aeb aeb

be—a bi—l—a bea bea b—a

a a+ a|4— a a a
T T T3 T Ts Ts

Figure 6: Infinitely many derivation trees of FPs.

3.4 Computing on Equivalence Classes of Derivation Trees

An atom a is said to be self-dependent with respect to P, iff there exists a sequence of
(not necessarily distinct) clauses C),...,Cn, where n > 1, in Gelause(P) such that
head(C,) = a = head(C,) and for each t € {1,...,n — 1}, head(C;) € Body(Ci41).
The next example demonstrates that if there exists a self-dependent atom with
respect to P, then the set of all derivation trees of 7 may be infinite (even when

Geclause(P) is a finite set).

Example 14 Let Pg be a program consisting of the following three ground clauses:

a —
b &« a
a «— b

The atom a is self-dependent with respect to Ps. (So is the atom b.) Pg has infinitely

many derivation trees, as depicted by Figure 6. O

As a consequence, it is, in general, not possible to construct the set of all deriva-
tion trees of a given program entirely in finitely many discrete computation steps.
Moreover, since the number of nodes in a derivation tree is, in the worst case, ex-
ponential in the height of the tree, determining whether one derivation tree attacks

another by examining directly whether the root of the former dominates some node

of the latter is, in general, inellicient.

19



However, a closer examination of the interrelation among the derivation trees
in AF,(P) reveals that it is not always necessary to generate all the derivation
trees of P so as to determine Mp". Different derivation trees with the same root
and the same set of nodes, e.g., T3 and Ts in Figure 6, always support the same
conclusion, attack the same derivation trees, and, furthermore, are attacked by
the same derivation trees, Such derivation trees can therefore be considered to be
equivalent to each other in this sense, and it is therefore sufficient to use only one
of them in the computation of M3°. It will be seen in this subsection that when
Gclause{P) is a finite set, AMp" can always be determined by considering finitely
many equivalence classes of derivation trees.

The above idea will now be presented in a precise way. Let the set of all nodes of a
derivation tree T be denoted by Node(T). Let an equivalence relation ~ on Tree(P)
be defined as follows: T\ ~ T3 ifi root(T1) = root(T32) and Node(Ty) = Node(T:z). As
usual, let the equivalence class modulo ~ containing a derivation tree 7" be denoted

by (7], and the quotient set of Tree(P) modulo ~ (i.e., the set of all equivalence
classes of Tree(P) modulo ~) be denoted by Tree(P)/~.

Example 15 Refer to the program FPs of Example 14 and the derivation trees of Ps
shown in Figure 6. It is readily seen that (T1] and [T3] are singletons; [T3] and [T4]
are infinite sets, which include {73, 75} and {T4,T5s}, respectively; and, Tree(P)/~
is the set {[T1], [7%], [T3), [T4]}. O

Now, let AF,(P)/~ denote the argumentation framework (Tree(P)/~, attacks),
where for any [T1], [T2] € Tree(P)/~, [T1] attacks [T3] iff root(T}) dominates some
clause in Node(Tz). In the sequel, let F and F., denote the characteristic functions

of AF (P} and AF (P)/~, respectively. The next proposition follows immediately
from the definitions of AF,(P) an i AF (P}/~.

Proposition 3 Let T € Tree(P), B C Tree(P) and C = {[T'] | T' € B}. Then,
T € F(B), if [Tl e Fu(C). T

Corollary 1
1. If A 1s a firpoint of F_, then U[T]efx [T] 1s a firpoint of F.
2. If B 15 a furpoint of F, then {[T11 T e BY is a firpoint of F.. O
Proof The resolts tollow directly [rom, 'roposivion 3.
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Theorem 2 If A is the least firpoint of F.., then Uirjea[T] is the least fizpoint of
F. o

Proof Let A be the least fixpoint of F.. and B the set Uy 4[7]- By Result 1
of Corollary 1, B is a fixpoint of F. Suppose that B is not the least fixpoint of
F. Then, there exists a fixpoint B’ of F such that B ¢ B’. Let A’ be the set
{[TV] | T' € B'}. By Result 2 of Corollary 1, A’ is a fixpoint of F... As B ¢ B',
there exists U € B such that U ¢ B’. As U € B, [U] belongs to A. As U ¢ F(B’),
it follows from Proposition 3 that [U] ¢ F.(A'), and, thus, [U] ¢ A’. So A ¢ A’,

which is a contradiction. =

Theorem 2 implies that M3® can be obtained through the grounded extension
of AF,(P}/~, i.e.,

MSEE = {head(root(T)) | [T] € GE.},

where GE.. denotes the grounded extension of AF,(P)/~.

Computing M$EF on AF,(P)/~ has two important advantages. Firstly, since
for each T € Tree(P), Node(T) C Gelause(P), checking whether one equivalence
class modulo ~ attacks another is linear in the number of clauses in Gelause(P).
Secondly, when Gelause(P) is a finite set, the quotient set Tree(P)/~ is always
finite, and can be constructed incrementally as follows. For each unit clause
C € Gclause(P), construct the pair (C,{C}); and, then, perform the following

repetition:
Repeat

For each clause (a « b,,...,0,), where mn > 1, in Gelause(P)

If pairs (Cy,S51),--.,(Cm, Sm) such that
head(CY) = b;, for each i € {1,..., m}, have been constructed
before the current execution of the repeat-loop

then construct the pair

((la e=b1, .. bm). 51U - US,U{(eae—b1,....0m)})

unti} no new pair is constructed

It is simple to show that if T is a derivation tree of P, then the pair (root{T}),

Nade (1)) is constructed. by induction on the height of T, and, conversely, that if
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a pair (C,S) is constructed, then there exists a derivation tree T” of P such that
root(T’) = C and Node(T”) = §, by induction on the number of times the repeat-
loop has been executed when the pair (C, 5) is constructed for the first time. Now,
for any [T] € Tree(P)/~, let [T] be represented by the pair (root(T), Node(T)). It
follows that when Gelause(P) is a finite set, the above procedure always terminates
and generates exactly all the pairs representing the equivalence classes of Tree(P)
modulo ~.%

Once the argumentation framework AF,(P)/~ is constructed, its grounded ex-
tension can be computed using a usual iterative procedure for computing the least
¢

fixpoint of a monotonic function.® The next subsection discusses an alternative

way of reasoning about M3® by considering AF.(P)/~ as a logic program with

negation.

3.5 Meta-Interpreters for Argumentation Systems

Dung demonstrated in his paper {(Dung 1995) that argumentation can be viewed
as logic programming, and introduced a general method for generating meta-
interpreters for argumentation systems. This subsection first summarizes this
method and then explains its application to the presented work.

Given an argumentation framework AF = (AR, attacks), let the logic program
Pasr be defined as the union of two logic programs, AGU ¢ (argument generation

unit) and APL4r (argurnent processing unit}, where
AGUsr = {attazke(X.Y) « | (X,Y) € attacks},
and APU4r consists of the following two clauses:
1. acceptable(X) « —defeated(X)
2. defaated(X) - attacks(Y, X'}, acceptable(Y).

The clause €y means that an argument is acceptable if it is not defeated; and, the
clanse C5 means that an argurnent is defeated if it is attacked by some acceptable
arguinent. Fap s regarded as a metz-interpreter in the sense that it is independent

of any particular argument framework: the arguments in AF are considered as

“In particular, when no atemn is s«lf-dependent with respect to P, the number of times the

feprat-lonp s enscuted s beunded Ly the nuinber of clauses in Grlause{F) (since the height of a

Aerivatiun tree of 705 bounded Ly this numb=r).

T R S L0 LLCNNR | S o Uiy

ur= LET goen o 10700y Cioitbnt, aned (anea §irr).
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distinct clements in the Herbrand universe of Par. It is shown in (Dung 1995)

that:

Theorem 3 Let AF be an argumentation framework., Then, E is the grounded
ertension of AF, iff

AGUaf U {acceptable(X) | X € E}
U {defeated(Y) | Y is attacked by some element of E}
U {—defeated(Z) | Z € E}
is the well-founded model (Van Gelder, Ross and Schlipf 1988; Van Gelder, Ross
and Schlipf 1991) of Par. O

It follows directly from this theorem that if WFAMp,. denotes the well-founded

model of Psp, then the set
{X | acceptable(X) € WFMp,.}

is the grounded extension of AF. As a result, given a declarative program P, after
the argumentation framework AF,(FP)/~ is constructed, one can generate the logic
program P4, (p);~ and then use an evaluation procedure based on the well-founded
semantics of logic programs to determine whether an equivalence class of Tree(P)
modulo ~ belongs to the grounded extension of AF,{P)/~, and, thus, whether an

atom belongs to MEF.

4 Perfect Model (with Overriding) Semantics

Dobbie and Topor defined a deductive object-ortented language called Gulog {(Dob-
bie and Topor 1993; Dobbie and Topor 1995), in which inheritance is realized
through typed substitutions, and studied the interaction of deduction, inheritance
and overriding in the context of this language. The declarative semantics for Gulog
programs is based on Przymusinski’s perfect model semantics for logic programs
(Przymusinski 1988), but using the possibility of overriding instead of negation in
defining a priority relationship between ground atoms. This perfect model (with
overriding) semantics provides the correct meanings for the programs which are
inheritance-stratified.

In order to investigate the relationship belween the grounded-extension-based
semantics and the perfect model (with overriding) semantics, the notions of inher-

itance stratification and perfect model are reformulated in the framework of DP
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theory in this section. The relationship between the two kinds of semantics will be

discussed in Section 5.

4.1 Inheritance-Stratified Programs

According to (Dobbie and Topor 1995), a program is inheritance-stratified if there
is no cycle in any definition of a methed, t.e., a definition of a method does not
depend on an inherited definition of the same method. The notion of inheritance

stratification is reformulated based on DP theory as follows:

Definition 15 (Inheritance Stratification) A declarative program P on T is
said to be inheritance-stratified, iff it is possible to decompose the interpretation
domain G into disjoint sets, called strata, Go,G1,...,G+,..., where ¥ < d and 4 is

a countable ordinal, such that the following conditions are all satisfied.
1. For each C € Gelause{P), if head(C) € G, then

(a) for each b € Body(C), b € Uz, Go,

(b) for each C’ € Gclause(P) such that C' dominates C,
i. head(C') € Upea G,
ii. for each &' € Body(C'), b € | Uz, Go-

2. There exists no infinite sequence Co, Cy,...,Ch, ... of clauses in Gelause(P)

such that for each i > 0, Ci4, dominates C;.7

Any decomposition {Go, Gy, ....G,. ...} of § satisfying the above conditions is

called an mheritance stratification of . 0O

Two examples of non-inheritance-stratified programs are given in Subsection 5.2.
The next proposition 18 an important result. It illuminates the coincidence
hetween the grounded extension. preferred extenston and stable extension of the

argumentation framework for an inhernitance-stratified program (see Theorem 1).

PCroposition 4 [f P s mheritance-stratified. then AF, (P) ts well-founded. O

"Hy Condition 1 snlely, there niay exist an infinite sequence Cg, Cy.. .., Cn.... of clauses in
et U sch that far each o 2 O hea d (7)) and head(C, 4, ) belong to the same stratum and
e cbammates O The nonexistenee of such 4 sarquence is required by Propesition 4.



Proof Let P be inheritance-stratified. First observe that, by Conditions 1a and
1(b)i of Definition 15, for any derivation trees T, T¥ of P, if T attacks 7", then the
stratumn containing head(root(T)) can not be higher than the stratum containing
head(root(7T’)). Consequently, since the ordinals are well-founded, it suffices to
show that there exists no infinite sequence Ty, Ty, ..., Ty, ... of derivation trees of
P such that for each ¢ > 0, T4, attacks T; and head(root(T;)) and head(root(T;4,))
belong to the same stratum.

Suppose that such an infinite sequence exists. It will now be shown that for each
i > 0, root(T;4+1) necessarily dominates root(T;). Assume the contrary, i.e., there
exists j > 0 such that root(7} ;) does not dominate root(T;). Then root{(Tj+1) dom-
inates some node C of an immediate subtree of T;. As root(Tj) dominates some node
of Tj_1, it follows from Conditions 1a and 1(b)ii of Definition 15 that the stratum
containing head(C) is strictly lower than the stratumn containing head(root(T;_,)).
Then, by Condition 1(b)i of Definition 15, it is impossible that head(root(T;_1))
and head(root(Tj4+1)) belong to the same stratum. This is a contradiction.

As a result, the existence of such an infinite sequence implies that there exists
an infinite sequence of clauses root(T\), root(T3), ..., root(1,), .. . such that for each

i > 1, root(T;;1) dominates root(T;), which violates Condition 2 of Definition 15.

It follows immediately from Proposition 4 and Theorem 1 that:

Corollary 2 The grounded extension of AF,(P) is stable. D

4.2 Perfect Model (with Overriding) Semantics

With overriding, not every ground clause of a program is expected to be satisfied by
a reasonable model of that program. More precisely, a ground clause need not be
satisfied if 1t is overridden by some ground clause whose premise 1s satisfied. This

leads to the following notion of a model with overriding:

Definition 16 (Model with Overriding) An interpretation [ is a model with

overriding (for short, o-model) of P, iff for each C € Gclause(P), at least one of

the following conditions is satisfied:

1. I satisfies C.



9. There exists C' € Gclause(P) such that C' dominates C and Body(C’) C I.

(]

Notice that every model of P is also an o-model of P, but not vice versa. How-
ever, if P is domination-free, then an o-model of P is also a model of P.

A program may have more than one o-model. Following (Dobbie and Topor
1995), a priority relationship between ground atoms is defined based on the possi-
bility of overriding (Definition 17). This priority relationship will be used to deter-
mine a preference relationship between o-models (Definition 18). The meaning of
an inheritance-stratified program P is then defined as the o-model of P to which
none of other o-models of P is preferable, called its perfect o-model and denoted

by M. This meaning is uniquely determined for every inheritance-stratified pro-

gram (Theorem 4).

Definition 17 (Priority Relations <, and <,) Priority relations <, and <, on
G are defined by the following rules:

1. If C € Gelause(P), then

(a) for each b € Body(C), head(C) <, b,
{b) for each C’ € Gelause(P), if C' dominates C, then
1. head{C) <, head(C"),

ii. for each &' € Body(C’), head(C) <, ¥,

2. Ifa<,band b <, c, then a <, ¢,

3. If a <p b and b <, ¢ (respectively, d <, a), then a <p c {respectively, d <, b),
4. If a <, b, then a <, b,

5. Nothing else satisfies <, or <,. O

Definition 18 (Preference Relation <« and Perfect O-Model) Let M and N
be o-models of P. M is said to be preferable to NV, in symbols, A < N,iff M # N

and for each a € M — N, there exists b € N — Af such that « <p b. M is said to be

a perfect o-model of P, iff there exists no o-model of P preferable to M. O

The following results are analogous to and inspired by the corresponding results

tor anheritance-stratificd Gulog prosrats presented in (Dobbae and Topor 1993
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Dobbie 1994; Dobbie and Topor 1995). Their proofs, which are given completely

in (Nantajeewarawat 1997), are guided partly by (Przymusinski 1988) and (Dobbie
1994).

Lemma 2 [f P is a domination-free program, then the minimal model of P is the
unique perfect o-model of P. O

Theorem 4 Every inheritance-stratified program P has erxactly one perfect o-
model, which will be denoted by ME™, and for every other o-model N of P,
METN. O

5 Relationship between the Proposed Semantics

and Perfect Model Semantics

This section first shows that for inheritance-stratified programs, the grounded-ex-
tension-based semantics and the perfect model (with overriding) semantics coincide
with each other (Subsection 5.1). Then, it uses two simple examples to show that the
grounded-extension-based semantics also provides non-inheritance-stratified pro-
grams with their correct skeptical meanings, whereas the perfect model semantics

fails to provide sensible meanings for them (Subsection 5.2).

5.1 Coincidence between the Two Kinds of Semantics

Throughout this subsection, let {Go,...,G+....}, where v < §, be an inheritance
stratification of P, and GFE be the grounded extension of AF,(P), and assume that
the domination relation associated with P is transitive. It is important to note that
this transitivity requirement does not weaken the results of this subsection, because

the domination due to overriding is typically transitive. Also note that, though the

domination relation is transitive, the attack relation of AF,(FP) is not necessarily

transitive.

Lemma 3 Let T € GE. Then every subtree of T belongs to GE. O

Proof Assume the contrary, 1.e., there exists a subtree T’ of T such that 77 ¢ G£.

As (G E is stable (by Corollary 2), GE attacks T'. Then, obviously, GE also attacks

T. which is a contradiction. =
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The main result of this section 1is:
Theorem 6 Mp®* = Mp". 0

Proof The result follows immediately from Theorems 4 and 5. m

5.2 Generality of the Proposed Semantics

One approach to dealing with conflicts caused by inheritance is to discard all con-
flicting definitions. This approach is called the skeptical approach. The next two

examples show that for programs which are not inheritance-stratified, the proposed

semantics still provides their correct skeptical meanings.

Example 16 Let P; be a declarative program which consists of three ground

clauses:
a
b ¢« a
¢ « b

Assume that ¢ « b dominates b + a and for any other two clauses in P7, one does
not dominate the other. According to Definition 15, any inheritance stratification
of P; requires b to belong to a stratum which is lower than the stratum containing
b, which is impossible. So P; is not inheritance-stratified. Note that here the
dominating clause ¢ « b depends solely on the dominated clause & + a; thus, it
is unsound to use any of them. As a rcsult, neither & nor ¢ should be derived.
However, according to Definition 16, it is not difficult to see that every o-model of
P7 must contain a,b and ¢; and, therefore, no o-model of P; provides its sensible
meaning.

Now consider the grounded-extension-based meaning of P;. The argumentation
framework AF,(P7} is delineated in Figure 7. Note that, in the figure, T3 attacks

itself. Let F be the characteristic function of AF,(P7). Then, as F(@) = {n} =

F(F(2)), Mp is the set {a}, which is a correct skeptical meaningof P;. O

Example 17 Let tom be an instance of type gr(aduate)-student and gr-student is

A
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Figure 7: The argumentation framework for the program P;.

a subtype of student. Consider the following declarative program Fs:

X: student[math-ability — good] «—  X[math-grade — b]
X:student{major — math] —  X[math-ability — goed].
X[favourite-subject — math]
X: gr-student{math-ability —+ average] «  X[major — math].
X[math-grade — b]
tom[math-grade — b} —

tom(favourite-subject — math] — .

For the sake of simplicity, suppose that Ps has only five ground clauses:

G1l: tom|math-ability — good] +—  tom[math-grade — b]
G2: tomimajor — math] +«—  tom[math-ability — good],
tomifavourite-subject — math]

G3: tom|math-ability — average] +—  tom[major — math],

tom[math-grade — b]

G4 : tomimath-grade — b) —
G5 tom[favourite-subjeci — math] «— .

The eround clauses G1 and (3 are considered as definitions of the method math-
ability taken from the types student and gr-student, respectively. As gr-student is
more specific than student, G315 expected to dominate G1. Then. every inheritance
stratification of Ps requires that the ground atom tem{major — math] must be in
a stratum which is lower than the stratum containing it. which is a contradiction.
Hence Pz ots not inheritance-stratified.

Obsgerve that G dominates (71, but (3 also depends on G 1; more precisely, here,

ihe netivar e of G0 st the eetneation of GO which is supposed to override

A
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Figure 8: The argumentation framework for the program Ps.

G'1. Therefore, it is not reasonable to use any of them. As a consequence, none of the
ground atoms tom[math-ability — good], tom[major — math] and tom[math-ability —
average| should be derived. However, it can be shown that each o-model of Py
contains both tom[major —+ math] and tom[math-ability — average]. So every o-
model of Pg does not serve as its reasonable meaning.

Now consider the proposed semantics. The argumentation framework AF,(Fg)
is depicted by Figure 8, where a-g. a-a, m-m, g-b and f-m denote the ground
atoms tom]math-ability — good), tom[math-ability — average], tom{major — math],
tom[math-grade — b} and tom[favourite-subject —» math], respectively. Note that, in

Figure 8, Ty attacks itself. It is simple to see that M?;.f" is the set
{tom[math-grade — b], tom[favourite-subject — mathj},

which is the correct skeptical meaning of Pg (:.e., Lhe meaning obtained in the usual

way after discarding the conflicting clauses 1 and G3). O

6 Comparisons with Works on Inheritance Net-

works

Nonmonotonic inheritance has been studied intensively in the context of inheritance
networks (Touretzky 1986; Horty, Thomason and Touretzky 1990; Stein 1992). An

inheritance network is & directed acyelio graph with positive aned negative cdees A
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Figure 9: An example of inheritance networks.

vertex in the network represents an object (individual) or a kind of object. Posi-
tive and negative edges are intended to denote “is-a” and “is-not-a”, respectively.
A positive path from a vertex a to a vertex z, t.e., a sequence of positive edges
(a,51),(51,52)s--+{Sn~1,8n),{$n, 2), where n > 0, supports the inference “a is an
z”. On the other hand, a negative path from a to z, i.e., a sequence of positive
edges (a,s1), (51,52}, -, (Sm—1,5m) followed by a single negative edge from s, to
r, where m > 0, supports the inference “a is not an z”. When the network contains
paths that support conflicting conclusions, the topological properties of the network
will be employed to resolve the conflicts based on the principle that more specific
information is more directly relevant. For example, consider the inheritance net-
work in Figure 9. Let the vertices ¢, p, b and f denote “Tweety”, “penguin”, “bird”
and “flying thing”, respectively. This network then contains the information that
Tweety is a penguin, that penguins are birds, that birds fly, and that penguins do
not fiy. The positive path from ¢ (through p and b) to f enables the conclusion that
Tweety flies, while the negative path from t (through p) to f supports the opposite
conclusion. In terms of the topology of this network, since there is a path from ¢
through p to b, it is natural to suppose that p provides more specific information
about ¢t than b does. The positive path from ¢ to f is therefore considered to be

preempted, and an inheritance reasoner infers that Tweety does not fly.

In contrast with the works on inheritance networks, this paper assumes that
a hierarchy of types, partially ordered by the subtype relation (in other words,
partially ordered by the inclusion relation on the extensions of the types), is given.
The hierarchy itsclf does not contain any conflicting information, i.€., a type either

= or i~ not o Glivect or mndirect) subtype of another type, but not Loth, Method
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definitions (possibly conditional), expressed as definite clauses, are associated with
a type, and are inherited by an individual of the type. From a consistent type
hierarchy, conflicts between method definitions inherited form different types may
arise and can be resolved based on a specified domination relation on ground clauses.

In some cases, by using an appropriate kind of inheritance reasoner, method def-
initions can be encoded in an inheritance network. For example, the two definitions
of the method medium-of-teaching in Example 11 can be represented by the net-
work in Figure 10, where a, i, {;, m; and m. denote “AIT”, “international school”,
“school that is located in Thailand”, “school at which the medium of teaching is
Thai” and “school at which the medium of teaching is English”, respectively. As
there exists an uncontested path from a to m,, a skeptical inheritance reasoner will
infer from this network that the medium of teaching at AIT is English.

However, it is pointed ocut by Horty, Thomason and Touretzky (1990) that:

Of course, the process of drawing conclusions from a set of defeasi-
ble hypotheses through inheritance reasoning is quite different from the
process of drawing conclusions from (the set) through deduction. In-
heritance reasoning doesn’t depend on the interplay of connectives, for
example, since there aren’t really any connectives, to speak out, in cur

semantic nets ... (Horty, Thomason and Touretzky 1990)

The edges in an inheritance network are not connectives, since they apply to in-
dividuals and kinds rather than sentences. It is therefore not always possible to
represent a method definition expressed by a definite clause by an inheritance net-

work. For example, consider the definite clause defining the method math-ability for
my m
L 2 *

L J
a

e

f

Figure 10: The definitions of medium-of-teaching represented by an inheritance net-

work.
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Figure 11: An unsatisfactory representation of the clause a « m,b.

the individuals of type gr-student:

X: gr-student{math-ability — average] « X[major = math],
X[math-grade — b,

given in Example 17. The antecedent of this clause is a conjunction of two atoms
and the clause cannot be represented satisfactorily by the part of an inheritance
network shown in Figure 11, where a,b and m denote “graduate student whose
mathematical ability 1s average”, “graduate student whose mathematics grade is
B” and “graduate student whose major is mathematics”, respectively. (This part
of the network merely states that a graduate student whose mathematics grade
is B has average mathematical ability, and that a graduate student whose major
is mathematics has average mathematical ability.) Furthermore, as conditional
method definitions cannot, in general, be represented, dynamic method resclution
is not discussed in the context of inheritance networks.

Notwithstanding, the works on inheritance networks provide the presented ap-
proach with a foundation for determining the domination relation among ground
method definitions. The hierarchy of types together with the membership relation
associating individuals with their types can be represented as a network, and the
domination relation can then be determined based on the topological information
of the network. For example, if there exists a path from an individual a through a
type t to a type {' in the network, then the method definitions for the individual a

inherited from the type t can reasonably be considered to dominate those inherited

from the type ¢’

7 Conclusions

A framework for discussing a declarative semantics for declarative programs with

defeasible inhentance. Tised on Dung's argumentation framework (Dung 1995).
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is proposed. The framework requires a domination relation on program ground
clauses, specifying their priority, to be explicitly given as additional information.
In practice, when a hierarchy of types is given, a suitable domination relation with
respect to method overriding can be determined by syntactic examination of a
program. With a specified domination relation, a program is transformed into an
argumentation framework which provides an appropriate structure for analyzing
the dynamic interaction of the intended deduction and domination. The meaning
of the program is defined based on the grounded extension of this argumentation
framework. This paper not only shows that the proposed semantics and Dobbie and
Topor’s perfect model {(with overriding) semantics coincide for inheritance-stratified
programs (Theorem 6), but also claims that the proposed sermantics provides correct

skeptical meanings for non-inheritance-stratified programs.
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Abstract— In the presence of taxonomic information, there often exists implicit impli-
cation among atoms in an interpretation domain. A general framework is proposed for the
discussion of an appropriate semantics for declarative programs with respect to such im-
plicit implication. It is first assumed that the implicit implication can be predctermined
and represented by a preorder on the interpretation domain. Under the consequent con-
straint that every interpretation must conform to the implicit implication, an appropriate
model-theoretic sernantics as well as its corresponding fixpoint semantics for declarative pro-
grams is described. Based on &stler et al.’s foundation of fixpoint with subsumption, it
is shown that, if the implicit-implication relation is, in addition, assumed to be a partial
order, then the meaning of a program can be determined more efficiently by application of
an immediate-consequence operator which involves only reduced representations, basically

consisting only of their maxirnal elements, of subsets of the interpretation domain.

Index terms— Declarative program, implicit implication, subsumption, taxonomy, de-

ductive object-oriented database, model-theoretic semantics. fixpoint semantics

1 Imntroduction

Ontological categories of entities constitute an important part of knowledge. In order to
organize and simplify a knowledge base, the categories of things that exist in the domain
of interest are commonly arranged into taxonomic hierarchies according to levels of gener-
ality. The idea of such arrangement dates from ancient times [26, 28]: and generalization

taxonomies of categories have been constructed as parts of several modern knowledge-based

systems, e.q.. [16. 20. 30]. A general category covers a number of specialized categories

sharing some similarities. The intensional description of a general category captures the
commeoenalities. but suppresses the differences in the intensional descriptions of more spe-

cific categorics [3. 29]. Catlegories are also called classes, colleclions, concepts. kinds, types.



sorts, and concept types. The selection of categories determines the vocabulary used for
representing knowledge. In addition to containing facts about individual objects and their
interactions, a knowledge base usually contains general statements concerning categories;
and much of reasoning takes place at the level of categories [26, 31].

Logic as well as ontology is an essential foundation of virtually every knowledge repre-
sentation scheme. Logic provides forms of sentences, interpretation structures for specifying
the meanings of sentences, and rules of inferences. In logic-based deductive systems with
taxonomic information, such as deductive object-oriented systems, atomic formulae (atoms)
in an interpretation domain, which serve as basic sentences for describing objects, are usually
interrelated semantically, 1. e., some atom may implicitly imply others, based on their struc-
tures, their intended meanings and class/subclass information. In particular, in a system
which separates taxonomic schema declarations from data definitions’, such an interrelation
can, in general, be predetermined. For example, in a conceptual graph language [13, 15, 34).
if generalization lattices of concept types, relation types and markers are provided, irredun-
dant atomic conceptual graphs? can be partially ordered into a generalization hierarchy in
which a graph logically implies each of its more general graphs [25. 27]. Similarly, in descrip-
tion logics [7. 8, 6, 22, 32]. which are descendants of the KL-ONE language [9]. subsumption
relationships among structured descriptions, where a subsumee entails its subsumers, can be
derived automatically from their structures with respect to a given generalization taxonomy
of primitive descriptions. This kind of implication is implicit in the sense that it does not
need to be declared in the assertional parts of knowledge bases, but 1s embodied in the

systems’ reasoning apparatuses.

'In such a system, taxonamic information (e.g., class/subclass relation and class population) is treated
as part of the system schema, and is not defined by program clauses.
2 A conceptual graph is redundant if it is logically equivalent to some of its proper subgraphs. It is atomic

if it does not contain any context as its concept node [15).
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Figure 1: A partial hierarchy of concept types for digital systems
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Figure 2: A conceptual graph G1
1.1 A Motivating Example

Figure 1 illustrates a partial generalization hierarchy of concept Lypes in the domain of
digital system specifications and requirements, which is inspired by [10, 11]. The type
device encompasses all hardwar  elements. The types logic and memary embrace devices
tha! contain logic for data manipulation and devices that contain memory for storage of
values, respectively; and their common subtype, logicMemory, represents devices that are

both of type logic and of type memory. The type analog Transducer cavers devices that convert



microprocessor: #123 —( ropt ) (agnt )>—#] potentiometer: #088

Figure 3: A conceptual graph G2

digitalDevice: #123 +— rcpt ) (agnt)—»{ anatogTransducer

Figure 4: A conceptual graph G3

physical quantities into electrical analog quantities. The universal type. T, which is the most
general concept type, and the absurd type, 1, which is a subtype of every concept type, are
not shown in the figure.

Now consider the atomic conceptual graph Gl in Figure 2, which is intended to mean
“the potentiometer #088 supplies data to the microprocessor #123 when the robot arm
#226 moves from one point to another”. This graph is more specific than and hence im-
plicitly implies, for instance, the graph G2 in Figure 3. which states “the potentiometer
#088 supplies data to the microprocessor #123”. According to the hierarchy in Figure 1,
since microprocessor and potentiometer are subtypes of digitalDevice and analogTransducer,
respectively, the graph G2 in turn implicitly implies the graph G3 in Figure 4, which is
intended to mean “an analog transducer supphes data to the digital device #123”. This
kind of implicit implication between conceptual graphs can be determined by examining
their syntactic structures and components.

Then, consider a conceptual graph program which contains as its program clauses the
graph C in Figure 5 and the graph G1. The intended meaning of the conceptual graph C is
“if an analog transducer supplies data to a digital device. then an A/D converter is interfaced
to the digital device™. Since G1 implicitly implies G3. which satisfies the antecedent of C.
the clause C fires and thus yields the graph G4 in Figure 6. the intended meaning of which

is “an A/D converter is interfaced to the digital device #123" . as derived information.
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Figure 5: A conceptual graph C
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Figure 6: A conceptual graph G4

1.2 The Presented Work

The effect of such implicit implication on the declarative meanings of assertional knowledge
bases expressed as logic-programming-style definite programs is studied in this paper. It
is first assumed that there exists predetermined implicit implication among atoms in an
interpretation domain and this implicit implication can be described by a binary relation
on the domain. By the characteristics of implication. such a relation is typically a preorder
{quasi-order). r.e., it is reflexive and transitive. Under this assumption. an interpretation
must be closed with respect to the preorder. An appropriate model-theoretic semantics
for declarative programs together with its corresponding fixpoint semantics is developed

accordingly.

aguatece Je—(Gesya—| merace |
T
./@

| digitaiDevice: #123

Figure 7: A redundant conceptual graph G5



Next, a stronger assumption is considered, namely that the implicit-implication relation
is a partial order {antisymmetric preorder). To illustrate the practicality of this assumption,
consider the implicit implication on atomic conceptual graphs. This implicit implication is,
in general, a preorder but not a partial order [12, 25}; e.g., the conceptual graph G4 in Fig-
ure 6 and the redundant conceptual graph G5 in Figure 7 implicitly imply each other, and,
thus, the implicit implication is not antisymmetric. However, when consideration is only
given to irredundant conceptual graphs, which are actually used in practical applications,
the implicit implication is a partial order [25]. Under this stronger assumption, a legitirnate
interpretation can be represented equivalently by its reduced version which, intuitively, con-
sists only of its maximal elements with respect to the order. In addition, based on the
foundation of fixpoint iteration with subsumption [18, 19], the reduced representation of the
meaning of a program can be directly computed by an immediate-consequence operator on
a quotient set of the reduced interpretations.

For the sake of simplicity and generality, this paper uses as its primary logical basis
Akama’s axiomatic theory of logic programs [3]. i.e., DP (declarative programs) theory.
Section 2 recalls some basic definitions and results of DP theory. Section 3 discusses the
model-theoretic semantics together with the fixpoint semantics of a declarative program
under the preorder assumption. Section 4 recalls certain definitions and results related
to subsumption ordering [18, 19] and describes a more elegant fixpoint semantics under
the stronger assumption of partial order. Results concerning the continuous operators on

complete lattices, used in this paper, are given in the appendix.

2 DP Theory

Akama's DP theory [3] is an axiomatic theory which purports to generalize the concept

of conventional logic programs to cover a wider varicty of data domains. The theory sup-



presses the diflerences in the forms of {extended) atoms in various logic-programming-style
knowledge representation languages, and captures the common interrelations between atoms
and substitutions by a mathematical abstraction, called a specialization system. Despite its
simplicity, the specialization system provides a sufficient structure for defining declarative
programs together with their declarative meanings.

DP theory provides a template for developing a declarative semantics for declarative pro-
grams constructed out of atoms in any specific data domain. For example, in [4. 33], after
a concrete specialization system for RDF/XML elements is formulated, all the results of
DP theory can be employed to determine the meanings of RDF/XML declarative programs.
Likewise, as will be seen in Subsection 2.4, by formulating an appropriate specialization
system for atomic conceptual graphs, DP thecory provides a framework for discussing the
meanings of definite conceptual graph programs. In addition to program semantics, declar-
ative programs on such specific domains can inherit properties or findings related to DP
theory including the ones presented in this paper. Therefore, it is often more advantageous

to work on DP theory than to work on some specific declaratjve program {ramework.

2.1 Specialization Systems and Declarative Programs

The concepts of specialization systein and declarative program on a specialization system

are reviewed first.

Definition 1 [3]) (Specialization System) A specralization system 1s a 4-tuple (4. G, S, u)

of three sets A4 G and &, and a mapping ;1 from S to partial_map(A) (t.c.. the set of all

partial mappings on A}, that satisfics the conditions:
I (Vs', 8" € SYDs € 8) s = (js") o (1),
2. (3s € S)(Vae A): (ps)a = a,

3.6C A



The elements of A are called aloms, the sct G interpretation domain, the elements of S spe-
cialization paramelers or simply specializations, and the mapping u specialization operator.

A specialization s € § is said to be applicable toa € A, il a € dom(us). D

Throughout this section, let I' = (A, G, S, u) be a specialization system. A specialization
in S will often be denoted by a Greek letter such as ¢. In the absence of confusion, a
specialization # € § will be identified with the partial mapping p0 and used as a postfix
unary (partial) operator on A4, e.g., (u4f)a = afl.

A declarative program on [ is defined as a set of definite clauses constructed out of
atoms in A. Every logic program 1n the conventional theory can be regarded as a declarative

program on some specialization system.

Definition 2 [3] (Definite Clause and Declarative Program) Let X be a subset of A.

A definite clause C on X is a formula of the form:

a b[,...,b"

where n > Qand a,b;,...,b, are atoms in X. The atom a is denoted by head{C) and the set
{by.....b,} by Body(C). A definite clause C such that Body{C) = @ is called unit clause.
The set of all definite clauses on X is denoted by Dclause(X). A declarative program on T’

is a {possibly infinite) subset of Dclause(A4). O

Let C be a definite clause (@ « b;,....b,) on A. A definite clause C’ is an instance of C'.
iff there exists ¢ € & such that # is applicable to a, by, ...,6, and C' = (al « 5,0,...,6,0).
Denote by C0@ such an instance €' of C and by Instance(C) the set of all instances of C.

Given a declarative program P on [, denote by Gclause(P) the set

U (Instance(C) N Delause(G)),
cer

i.e.. the sel of all instances of clauses in P which are constructed solely out of atoms in ¢.



2.2 Model-Theoretic Semantics

FFor a discussion of the model-theoretic semnantics of a declarative program on I', an interpre-
tation assigning truth values to atoms in the interpretation domain G, the truth value of a
definite clause on A with respect to a particular interpretation, and a mode! of a declarative

program on " are given by:

Definition 3 [3] (Interpretation) An interpretation is a subset of G. A definite clause C

on A is ttue with respect to an interpretation I, iff
(YC' € Instance(C) N Dclause(G)) : ((head(C’) € I) or (Body(C') g I)}. O

Definition 4 [3] (Model) An interpretation [ is a model of a declarative program P on T,

iff all definite clauses in P are true with respect to [. 0O

As in the conventional theory. the model intersection property also holds for declara-
tive programs on I', and the semantics of a declarative program P on [ is defined as the

intersection of all models of P, called the minimal model of P and denoted by Mp.

Proposition 1 {3] (Model Intersection Property) The intersection of more than one

model of a declarative programm P on T is also a model of P.

Theorem 1 [3] Lvery declarative program P on T has the minimal model Mp, which is

the intersection of all models of P. 0

2.3 Fixpoint Semantics

Throughout this subsection, let / be a declarative program on I'. Associated with P are

the mappings Tp and N p on the complete lattice (29.C). the least fixpoints of which are

equal to the minimal model Mp. Ip and Np are given by:



Definition 5 [3] For each X C G,
Tp(X) = {head(C) | C € Gelause(P) & Body(C) CX}). o
Definition 6 [3] For each X C G,
Kp(X) = Tp(X)UX. O
Some important properties of the mappings Tp and Kp follow:
Proposition 2 [3] Tp and Kp are C-continuous. 0O
Theorem 2 [3] Let I be an interpretation. Then
1. I is a model of P, iff Tp(I) C 1,
2. Iisamodel of P, iff Kp(I)=1I. O

Theorem 3 [3] Mp =1ifp(Tp) =ifp(Kp). O

2.4 Examples

Examples 1 and 2 below demonstrate how to regard conventional logic programs and definite

conceptual graph programs [13. 15, 34], respectively, as special forms of declarative programs.

Example 1 Let an alphabet A = (V. K, F, R) be given, where V. K. I and R are mutually
disjoint sets of variables, constants, function symbols and predicate symbols. respectively.
Let a specialization system [y = (A,.G,,S;, 41) be defined as follows: A4, is the set of all
first-order atoms over A: G, i1s the subset of A, that consists of all variable-free atoms in
A1 &) is the set of all usual substitutions over A; and. for each s € &, and a € 4. (jys)a
is the result obtained by applying the substitution s to a in the usual way. From the basic

cencepts and results® for logic programming, it can be seen that 'y satisfies all the three

?See, for example, the first chapter of [21].



conditions of Definition 1. The declarative programs on I'y are conventional logic programs,

and their meanings according to DP theory are exactly their conventional meanings. O

Example 2 Let a concept universe i = ({T, <.). -, M, V, ::) be given, where (T;.,<.) is a
lattice of concept types with the maximum element T and the minimum element L, 7, is
a sct of relation types, M is a set of individual markers, V' is a set of variables?, and :: is a

binary relation from T, to M, called the conformity relation, satisfying the conditions:
e Forany s, €1, me M,
— ifs:mand s <. thent::m,
— if s = m, t ::m and u is the greatest lower bound of s and ¢, then u :: m.

e Forany me M, T ::m, but not L :: m.

An individual marker m € A is said to conform to a conceptual type t € T, iff £ =1 m.

In general, the sets 77 and M may be partially ordered. To simplify the presentation, the

partial orders on these two sets are not considered in this example.

An atomic conceptual graph on i{ is a bipartite, connected, finite, directed graph & =
(C. R, [ lab), where C and 1 are two classes of vertices. the elements of which are called

conecepls and conceptual relations. respectively, IZ is a set of edges. and {ab is a mapping that

associales with each vertex a label satisfying the conditions:

e For each ¢ € C, cither lab(c) is a concept type in T.. or lab(c) is of the form ¢ : r, where

t € 7; and r is either an individual marker in Af that conforms to { or a variable in V.
e lor cach r & . lab(r) is 2 ~elation tvpe in T,

Let a speciahization system 'y = (. G2 80 44 be defined as {ollows:

4 . .
In conceptual graphs, a variable is usually represented by the generic marker =, followed by an identifier

for indicating cross referenaes



1. A; is the set of all atomic conceptual graphs on (/.
2. G7 is the subsct of A, that consists of all variable-free atomic conceptual graphs.

3. Sz is the set of all substitutions of the form {vy/ry, ..., va/r,}, where the v; are distinct

variables in V', and for each j € {1,...,n}, r; € MUV and v; # ri.

4. Given s = {v)/r1,...,va/ra} € Sz and a € Aj;, if the result obtained from a by
simultaneously replacing each occurrence of v; in @ by r;, foreachi € {1,...,n},isa
conceptual graph on &/, then (u3s)a is defined to be that result, otherwise pus5 is not

applicable to a.

It is not difficult to see that I's satisfies the three conditions of Definition 1. A declarative
program P on I'; such that for each clause C € P, every variable occurring in head(C)
also occurs in Body(C) is a conceptual graph program; and, the semantics of declarative
programs with implicit implication. which will be developed in Sections 3 and 4, yields its

expected meaning. D

3 Implicit Implication as a Preorder

When a generalization taxonomy of types or classes is provided. an implicit-implication rela-
tion among the atoms in an interpretation domain can often be determined by examination
of their structures and intended meanings. For example. in a conceptual graph language
(13, 15, 34], since atomic conceptual graphs, in the linear notation, [t : 0] — (1) — [t* : o]
and [t : 6] = (r) — [t’] are intended to mean “there exist objects o of tvpe t and o' of type

t’ such that o has relation r to ¢'” and “there exists an object o of type ¢ such that o has

*This condition is satisfied iff for each concept ¢ in a and each binding v, /r, € s, if lab(c) = ¢ : v, and

ry € M, thent:r,.



relation r to some object of type ", respectively, the atomic conceptual graph
[microprocessor : #123] — (part) — [register : #001]

implicitly implies the atomic conceptual graph
[digitalDevice : #123] — (part) — [memory],

provided that the types microprocessor and register are more specific than the types digi-
talDevice and memory, respectively. In F-logic [17], as a signature expression cfm = s
intended to mean “if a method m for an object of class ¢ is defined or derived, then it must

return an object of class ¢'”, the signature expression
memory[content = digitalValue]

implicitly implies the signature expression
counter[content => value],

provided that the id-terms counter and digitalValue are subclasses of the id-terms memory

and value, respectively. Likewise, in KL-ONE-like languages [7, 8. 9. 22]. the conceptual

description

[device that receives data from at least one analogTransducer]

subsumes the conceptual description
[microprocessor that receives data from at least three thermistors}.

provided that the primitive concepts [device] and [analogTransducer] subsume the primitive
concepts [microprocessor] and [thermistor)], respectively; and. therefore. if an individual object
satisfies the latter description, the object will also satisfy the former description. This
kind of system-defined implicit implication should be separated from application-dependent
implication explicitly defined by definite clauses in application programs. and. as will be

described in Section 4, can be employed to enhance systems computation mechanisms.
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This section assumes that the implicit implication among the atoms in an interpretation
domain can be predetermined and explicitly represented by a preorder on the domain. More
precisely, in the sequel, it will be assumed that I't = (A,G, S, 4) is a specialization system
and C is a preorder on G such that for any g,¢' € G, ¢ C ¢, ifl ¢ is implicitly implied by
¢'. Under the constraint that every interpretation must conform to the implicit implication,
an appropriate model-theoretic semantics for declarative programs with respect to C along

with its corresponding fixpoint semantics will now be developed.

3.1 Model-Theoretic Semantics

In the original DP theory, an interpretation arbitrarily assigns truth values to the atoms
in an interpretation domain, whence every subset of the domain can serve as one possible
interpretation. Under the established assumption, in contrast, the truth values of the atoms
must be consistent with the implicit implication described by the preorder C. and thus
cannot be randomly assigned. Accordingly, not all of the original interpretations. but only
those which are closed with respect to C will be used henceforth to discuss the model-

theoretic semantics for declarative programs on I'c.
Definition 7 {C-Closed Interpretation) An interpretation [ is said to be C-closed. iff

(Veel)vg' €G): (¥Cg = g'€l) O

Lemma 1 The intersection of more than one C-closed interpretation 1s also a C-closed

tnterpretation. O

Proof Tor some index set J, let {1, | j € J} be anon-empty set of C-closed interpretations.
Let g € njeJ Ij and let ¢" € G such that ¢’ C g. For cach j € J. since y € [, and [, is

C-closed, it follows that ¢* € [, whence ¢’ € Njes 5 =
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The truth value of a definite clause on A with respect Lo a C-closed interpretation is still
defined as in the original DP theory (sce Definition 3). A C-closed model of a declarative
program P on I'c is defined in a straightforward manner as a C-closed interpretation which
is also a model (according to Definition 4} of P. The meaning with respect to C of a
declarative program P on I'c is then defined as the intersection of all C-closed models of P,
which is the minimal C-closed model of P (sce Proposition 3 and Theorem 4 below) and is

denoted by M5

I'roposition 3 (C-Closed-Model Intersection Property) The inlersection of more

than one C-closed model of a declarative program P on Ic s also a C-closed model of

P. 0O
Proof The proof follows immediately from Proposition 1 and Lemma . =

Theorem 4 Every declarative program P on Tc has the minimal C-closed model M%,

which 1s the intersection of all C-closed models of P. QO

Proof Since G is a model of every declarative program on I'c and is also C-closed, P has

at least one C-closed model. Then, by Proposition 3, .M,E-, is a C-closed model of P, which

is obviously minimal with respect to set inclusion. =

3.2 Fixpoint Semantics

In arder to provide fixpoint characterization of C-closed model semantics. the C-continuous
. > . 5 . . . :

mapping KN'p on the complete lattice (2%, C) is associated with a declarative program P on

I'c. An important virtue of this napping is that cach of its fixpoints determines a C-closed

model of 2 (Theorem §). Therefore. the minimal C-closed model M,;, can be obtained by

computing its least fixpoint (Theorem 7). Ilntreduce now the nation of expanded version

of a subsct of G with respeet Lo the preorder 2, which will be used in the definition of the

mapping KL

16



Definition 8 (Expanded Sct)® Let X C G. The ezpanded version of X, denoted by £(X)

is defined as:
E(X) = {9€CG|(BxeX):gC=z}. O

The next proposition links the notion of C-closed interpretation to that of expanded

version of an interpretation.
Proposition 4 An interpretation I s C-closed, if E(I)=1. 0O

Proof Note first that, by the reflexivity of C, £(/} D I. Thus

(Fgel(3g€G): 9 Cag & g ¢l <= ((FeG):9€lll)&yg¢l
— E(I)D1I
— E(I)# 1,

ie., I isnot Cclosed, if E(/} #1. =

Now, let P be a declarative program on I'c. Note that £(Adp). the expanded version of
the minimal model M p, is possibly not a model of P (since there may exist some ¢lause C €
Gclause(P) such that Body(C) € Mp and head(C) ¢ Mp, whereas Body(C) C £(Mp)
and head(C) ¢ £(Mp)). This clarifies that the minimal C-closed model M% is. in general.
not equal to £(AMp): and, accordingly, _M% cannot be obtained simply by expanding the

least fixpoint of K p. Next, consider the mapping h'5, the least fixpoint of which equals

C
ME:
Definition 9 The mapping I\'f;: 2¢ 5 29 is given by

Kp(X) = RKp(E(X)),

foreach X CG. 0O

5 . - R . . . .
This definition is an adaptation of that of an expanded set with respect to a partial order on a hasic

set, given in [19].



Proposition 5 and Theorems 5 and 6 below describe some properties of the mapping K'5.
Proposition 5 K& is C-continuous. O

Proof Considering £ as a mapping from 2% to 29, it will first be shown that £ is C-
continuous. Let X be a directed subset of 2¢, | JX and |JE(X) denote U;ex £ and
U.ex €£(z), respectively. Then
gefUX) <= (@delUX):9Cy¢

< (3ze€X)(3¢€=z):gCy¢g

— (3reX):g€£(z)

— gelUEWN).
Thus £(U X) = J£(X), t.e., £(ub(X)) = [ub(£(X)). whence £ is C-continuous. Then, it
follows from Proposition 2 and Result 1 of Lemma 3 in the appendix that K = Kpo £ is

C-continuous. ®
Theorem 5 pr(h'f;) = I\’f; tw. 0O

Proof The proof follows directly from Proposition 5 and Proposition 10 in the appendix.

Theorem G Lel [ be an inlerpretation, then KEUIY =1, iff I 15 a C-closed modet of P.

a

Proof It is clear that, for each X C G. Kp(X) 2 X and £(X) D X. Thus. for each

interpretation f,
Ke(l) = Kp(€()) =1 <= Kp(l)=18& £(1)=1.
Tle result then {ollows from Theorem 2 and Proposition 4. =

The main result of this subsection is:



Theorem 7 M5 =1fp(K§). O

Proof The result follows from Theorems 4 and 6. =

4 Implicit Implication as a Partial Order

As has been illustrated at the beginning of the last section, the implicit implication among
atoms in a particular system, whete their intended meanings are clearly known, can, in
general, be decided upon by examination of their forms and the generalization relationship
between the types or classes occurring at the corresponding positions in them. In a con-
ceptual graph language, for example, given two cancnical conceptual graphs G and /., &
is more specific than, and, thus, implicitly implies /1, iff there exists a projection’ from f{
to G [23, 25]. The existence of a projection, which is a kind of graph morphism. from one
conceptual graph to another depends solely on the syntactic structures of the two graphs and
the generalization hierarchies of conecept types, relation types and markers. An algorithm
for computing a projection from one conceptual graph to another was developed in {24, 25].
In particular, it is shown in [24, 25] that if G is a conceptual tree, t.e., a conceptual graph
without cycles, except for cycles created by multi-edges between a relation vertex and one
of its neighbours. then a projection from  to any conceptual graph can bhe computed n
polynomial time.®

A generalization hierarchy of types or classes commonly has a partial-order structure,

T A projection [27] is a graph morphism, preserving the order on edges and complying with some additional
rules on vertex labels.

® Trees scem to be very frequent in conceptual graph applications {25]. The irredundant atomic conceptual
graphs shown by the figures in this paper are all conceptual trees. A general algorithm for computing a
projection from one conceptual graph to another conceptual graph by converting the former into a tree
and then using the polynomial-time algorithm for computing a projection from a tree to a graph as a

preprocessing part is also described in [23].
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and consequently, the implicit-implication relation is often also a partial order. For instance,
the implicit implication on irredundant atomic conceptual graphs is a partial order. It will
now be assumed, in addition, that the implicit-implication relation on the interpretation
domain is a partial order, i.e., the preorder T in the last section is, in addition, assumed to
bLe antisymmetric. Under this stronger assumption, it applics Lhe results on fixpoint iteration
with subsumption provided by [18, 19] (Subsection 4.1) to describe more elegant fixpoint
semantics for declarative programs with respect to the implicit implication (Subsection 4.2).

Formally, throughout this section, let T'c = (A, G, 8, i) be a specialization system and
C a partial order on G such that for any ¢,¢' € G, ¢ C ¢’, iff ¢ is assumed to be implicitly

implied by ¢. All the definitions and results in the previous section apply in this section.

4.1 Basic Definitions and Results

Recall now some definitions and results from [18, 19], which will be used in Subsection 4.2.°

Based on the partial order C on G, the binary relation C on 2¥ is defined by
XCEY <= (VreX)(3yeY): zCy,

for any X,Y C G. This relation is a preorder on 2%, but nat necessarily a partial order.!?

Based on 1t, the equivalence relation ~ on 2% is defined by
A~Y +— NCY &LYCNXN,

for any X,Y € G. The preorder C on 29 is extended to the quotient set of 2¥ modulo ~

(r.e., 29/~) by

(NJC[Y] <= XxCVY

LR it < ; i ;
It should Le noted that it is only assumed in (1R, 19} that C s a partiad order on a basic set {in this

paper, the interpretation domain G), i.e., all the results presented in this subsection still hold without the
condition that the partial order T represents an implicit-implication relation on .

This preorder on 2% is usually called Hoare's vrdering.
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for any [X],[¥] € 29 /~. This extended rclation is a partial order on 26 /~.

Next, consider the notion of a reduced version of a subset of G

Definition 10 [19] (Reduced Set) Let X C G, C be the set of maximal (with respect to
set inclusion) chains!! of X, and, for each C € C, mazc(C) denote the maximum (with

respect to C} element, if it exists, of C. The reduced version of X, denated by R(X), is

defined by:

R(X) = |J ke

CeC

where

{mazc(C)}. if marc(C) exists.
e = - -
C, otherwise.

Denote by 2% the set of all reduced subsets of G. i.e., the set {R(X)| X €2¥}. O

For each X C G, the maximal chains in .\ without maximum elements'? are left un-
changed in R{X), while those with maximum elements are reduced to their maximum ele-
ments in R(X). Thus, if X is a finite set, then R{X) consists only of the maximal elements

of X. The next proposition interrelates reduced sets. expanded sets. set inclusion. and the

relations C and ~ on 29.
Proposition 6 [19] If X,Y C G, then
L X ~R(X)~E(X),

2 XCY = R(X)CR(Y) & E(X)CEY) O

"1 The maximal chains of a partially-ordered set X are the totalty-ordered subsets ol X that are maximal
with respect to sct inclusion. For example, let X = {a.b.c.d} be partially ordered by a C oL candald

Then the maximal chains of X are {a,b,¢c} and {a,d}.

20nly infinite chains may have no maximum clements.
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Using Result 2 of Proposition 6, 1t can be shown that:
Proposition 7 K is C-monotonic. O

Proof Let X,Y CG. Then
XCY = E(X)CE&Y) (by Result 2 of Proposition 6)
—  Kp(£(X)) C Kp(E(Y)) (as Kp is C-monotonic!?)
—  Kp(E(X))C Kp(E(Y)) (by the reflexivity of C)

— KE(X)T KE(Y).

It is shown in [19) that the partially-ordered set [2%/~, C) is a complete lattice, where the
top element is [R(G)], the bottom clement is (8] and tub{[X;] | j € J} = [R(U, ¢, Xj)]. Next,

recall the main theoretical results on fixpoint iteration on this complete lattice, provided by

(18, 19].

In the sequel, let ;2% 5 29

Definition 11 [19] If IV is C-monotonic. then the mappings Fr and [~ are defined by:

1. Fp:2% — 29 such that Fr(XN) = R{F(X)). for each X cq.

2. F~:2% [~ — 2% /~ such that F~([X]) = [Fr(N)]. for each [X] € 2%/~ O

Theorem 8 [19] If IF s C-monotonte, then 7~ has a least firpownt. 0O

Theorem 9 [19] If f7 is C-monotonic and C-continuous, then
LAfp(FT)=TF~ tw,
2ZRFtn))=F~tn=['"r1Tu)] foranyn < w.

AR p(EN]) = p(F)y=1ub{{I'r tn]|n < Wl 0O

'* K’ p is C-continuous, by Proposition 2, and, hence, C-monotonic.

"1t is shown in (19] that, fer any X,V € G, X ~ ¥ implies R{F[(X)) ~ R(F(¥Y}Y), and, thus, F~ is well

defined. Moreover, Fp and ™ are both C-monatonic.
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4.2 More Elegant Fixpoint Semantics

Under the assumption of this section, it follows from Propositions 4 and 6 that, for every
C-closed interpretation I, £(R(/)) = £(]) = I, i.e., every C-closed interpretation can be re-
captured from its reduced version by expansion. This suggests that C-closed interpretations
can be equivalently represented by their reduced versions. Moreover, for any declarative pro-
gram P on I'c, as Kf, 1s both C-continuous and C-monotonic {Propositions 5 and 7), Kﬁ
determines the mapping (KN5)™ on the complete lattice (2% /~,C) according to Definition

11, i.e., given [X] € 2%/~,

(KE)YW(IX]) = [R(KR(X)),

and it follows from Theorem 7 and Result 3 of Theorem 9 that

[RIMB)] = [REfP(KEN] = UfpUKE)).

Hence, if {fp{(K5)~) = [A], then, by Result 2 of Proposition 6, £(A) = £(R(M3)), and,
as M% is C-closed, then, £{A) = M,g, Therefore, the minimal C-closed model M% can be
obtained by expansion of any representative of the least fixpoint of (K5)™~.

At first glance, computing M% by application of (W£)™, described above. seems to be
efficient, in that (K'5)™ is a mapping on a quotient set of the reduced subsets of G. llowever.
on closer examination of Definitions 9 and 11, one finds that for any equivalence class [X]

in the quotient set 2% [~
(KEY“([X]) = [R(KE(X))] = [R(Kp(E(X)]. (1)

Thetefore. if (Kf,)“’([_\']) is evaluated directly according to Equation (1). i.r.. by means of
the mapping Kp. then the reduced set X must be expanded and the merit of computation
on reduced sets will be lost. It will next be shown that, instead ol using Lquation (1),

(K5)~([X]) can be computed by using another mapping ]\'%‘ which does not involve the

expanded version of X .
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In the sequel, let P be a declarative program on [c. The next definition associates with

P a mapping T on 2°, based on which the mapping K5 is defined.
Definition 12 For each X C G,
TE(X) = {head(C) | C € Gelause(P) & Body{C)C X}. O
Definition 13 The mapping K5:29 — 29 is defined by
K5(X}=T5(X)UNX,
foreach N CG. O

The next lemma and proposition assert some characteristics of the mappings TE and

K§.
Lemma 2 Let X C G, then
[N - g -
1. Te(E(X)) = T5 (X)),

2K

(X) 2 AF(N),

ot

2 KE(XN) ~ KE(X). O
Proof
1. By Definition § and the definition of C on 2¥, for any Y. Z cg,

Y CE(Z) = MveY):ve £(2)
— (\"ye‘t')(E:EZ):yg:

= YLC2Z

Then, it follows directly from the definitions of Te and T_E {Definitions 3 and 12) that

Te(8(X)) = TE(.X), for each X C ¢,



_.Vi--‘y

3 Let X, Y CG. Then
XCY = Kf.(,\') E l\'f,(\’) {by Proposition 7)

= KE(X)C KE(Y) (by Result 3 of Lemma 2).

As I\'E is always C-monotonic as well as C-continuous (Proposition B), the mapping
(l\'g)" on the complete lattice (2%/-».!;) is well-defined by Definition 11, ie., for each
1X] € 2% /~.

(KR (XD = [R(KE(O]
and (KE)™ has all the properties listed in Theorem 9. Proposition 9 below establishes the
equality between the mappings (KE)™ and (l\'%)""
Proposition 9 (RK£)~ = (KR)~. 0O

Froof By Result 3 of Lemma 2 and Result 1 of Proposition 6, R(KE(X)) ~ R(KF(X))

for each X C ¢. Henve, the mappings (K5)™ and (KE)” are equal.
As a result, given an equivalence class [X]in 2% /~, {K$)~{{X]) can be computed through
the mapping h,g by the equation:
(RRUND = (RRITIND = [RINE(O)L (2)

Observe that, in the evaluation of K%(.\')_ X is not expanded, but directly compared with
Body(C), based on the preorder C on ¥, for each C € Gelause(P).

The next theorem is the main result of this section. 1t intimates that the expanded
version of any arbitrary representative of the least fixpoint of{l\'g)“ 18 equal to the mimmal

L - closed maodel .\1?\
Theoren 10 {R(_\*I%}] = [RUFp(NEN = ff;\(\h'%]‘”)_ 0O
Prootl The result fallows from Theorewr 7, Result 3 of Theorem 9, and Proposition 9. ®
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4.3 Comparisons with Related Works

In [18, 19], Kostler et. al. augmented logic programming by incorporating semantic control
knowledge in the form of user-supplied subsumption information, which may be used to
expedite query evaluation process, and extended the classical theorems for least models and
least fixpoints accordingly. In their proposals, a user can provide a subsumption ordering
on the Herbrand base, by means of meta-rules, in order to specify that some ground atom
is semantically preferable to, or more intended than, or more useful than another ground
atom. For example, in the problem of computing shortest paths, as illustrated in [19], the
atom path(a, b, ¢;), asserting that there exists a path the cost of which is ¢; from a vertex a
to a vertex b, can be considered to subsume the atom path(a, b, c2) if ¢y 1s less than ¢3.

On condition that the conventional immediate consequence operator Tp Is monotonic
with respect to the subsumption ordering, {ostler et. al. succeeded in applying their elegant
theorem of fixpoint iteration with subsumption {Theorem 9) to the development of efficient
iteration schemes for bottom-up query evaluation with respect to the conventional semantics
of logic programs and the supplied subsumption information. As pointed out in [19}, however,
the operator Tp is, in general, not monotonic with respect to the subsumption ordering, and,
consequently, Theorem 9 does not always apply

This paper, in contrast, focuses on the implicit-implication relation due to taxonomic
information, and develops a natural semantics for declarative programs, which accounts for
the impact of the implicit implication. Under the practical assumption that the implicit-
implication relation can be determined in advance and represented by a partial order C
on the interpretation domain G, the operator W5. the least fixpoint of which determines
the proposed meaning M% as well as the operator 1\'%_ which is specifically devised lor
eflicient computation of .M% on reduced subsets of ¢, 1s always monotenic with respect

to C (Propositions 7 and 8), and Theorem 9 always applies. DBased on these results. the
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reduced representation ofM,g, can be computed clegantly by means of the operator (h‘%)""
an application of which compares a reduced subset of G directly, with respect to C, with
the bodies of ground program clauses. Such a comparison is especially suitable for dealing
with the implicit implication; and, as illustrated in the beginning of this section, it mainly
involves examination of the internal structures of atoms, and is often inexpensive in practice.
In their remarkable work [1], Ait-Kaci and Nasr introduced an extended form of first-
order terms, called i-terms, and incorporated the employment of taxonomic information
into y-term unification process. A y-term 1s a record-like type structure, which denotes a
set of objects. For example, the set of all IC gates in the TTL family may be denoted by
the y-term ic-gate[family => ttl], provided that the type ic-gate embraces all IC gates. One
t-term 1s considered to subsume another y-term if the set of objects denoted by the former
is a superset of that denoted by the latter. This subsumption relation is a partial order on
the set of y-terms. The unification of two given ¥-terms is the operation that computes
their greatest lower bound, which denotes the intersection of the sets of objects denoted by
the two y-terms. Tor instance, assuming that ic-gate is a subtype of device, the unification
of the y-terms device[family => tt!] and ic-gate yields the y-term ic-gate[family => ttl].
The unification of y-terms is used in [1]. instead of the usual unification of first-order

terms, in the goal-directed SLD-resolution mechanism of PROLOG. Suppose, for example.

that one has the query

? connect(X : device[family => ttl]. ¥ : device[family => cmos]),

asking for all TTL devices that are connected to some CMOS devices. Through the unifi-

cation of ¢-terms, the query cun unify with the head of the progratn clause

connect(X :ic-gate,Y :ic-gate) send(X, Z : value, Y},

stating that an IC gate X is connected to an IC gate Y if X sends some value Z to Y.

and can thus be resolved with this program clause. The unification coerces the y¥-terms
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Figure 8: A conceptual graph G

Figure 9: A conceptual graph G+

X :ic-gate and Y : ic-gate in the program clause to the y-terms X : ic-gate[family => ttl] and

Y :ic-gate[family => cmos], respectively, and the resolvent thus obtained is
send(X : ic-gate[family => ttl}, Z : value, Y : ic-gate[family => cmos]),

which becomes the new goal to be proven.

In comparison, the partial order in this paper represents the implicit-implication relation
on atoms in the interpretation domain. each of which does not denote a set of objects, but
a statement about objects. The greatest lower bound of two given atoms, if exists, is an
atomn which implicitly implies each of the two atoms; and, its existence does not, in general,
signify that the two atoms are relevant to and can unify with each other. Referring to the
hierarchy of concept types in Figure 1. for example, the conceptual graphs G¢ 1n Figure 8§
and G7 in Figure 9 have the conceptual graph Gg in I'igure 10 as their greatest lower bound.
Notwithstanding, the graph Gs is hardly relevant to the graph G+, and if one has Gs as a
goal conceptual graph, it is hardly useful to try to prove G by resolving it with a program
clause the head of which is G7.

By considering atoms in the interpretation domain as abstract entities. which are charac-
terized by their implicit-implication relationship with others, this paper provides a general
foundation for efficient bottom-up, forward-chaining evaluation of declarative programs. A
top-down, goal-driven proof procedure. on the other hand, usually depends on the syntax

and the internal structures of atoms. which vary with knowledge-representation languages,
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Figure 10: A conceptual graph Gsg

and is normally tailored for each individual language. For example, the unification algo-
rithms used in [1, 2] are designed specifically for atoms involving y-terms. TFor definite

conceptual-graph programs, a goal-directed proof procedure was developed in [14].

5 Summary

Atoms in an interpretation domain normally serve as basic statements which describe various
kinds of relationships among objects. When class/subclass information is provided, there
usually exists an implicit-implication relation among the atoms, which can be determined by
considering their forms and their intended meanings. In a system which regards taxonomic
information as schema information, atoms are not used to describe subclass relationships.
and, as a result, the implicit-implication relation does not depend on any particular inter-
pretation and can usually be determined in advance.

This paper first assumes that the implicit-implication relation among the atoms in an
interpretation domain is predetermined and described by a preorder C on the domain. The
meaning of a declarative program P with respect to the implicit implication is then defined
as the minimal C-closed model .M',;,, which can also be characterized as the least fixpoint
of the immediate-consequence operator A% on the power set of the interpretation domain
{Theorem 7). Afterwards, 1t is furthermore assumed that the implicit-implication relation
C is a partial order and it is shown that. under this stronger assumption. the meaning

C
M5B : . .
AME of any program 2 can be computed mare elegantly and more efficiently by expanding
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any representative of the least fixpoint of the immediate-consequence operator (K%)"‘ on a

quotient set of reduced subsets of the interpretation domain (Theorem 10).
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Appendix: Continuous Operators on Complete Lattices

Throughout this appendix, let (L, <) be a complete lattice, the minimal element of which
is L. Given T: L — L, let T(X) denote {T(z) | z € X} for each X C L, and Tt w denote
lub{T™(L) | n > 0}, where T®(z) =z and T (z) = T{(T" " Yz)) forn > 1 [3]. Aset X C L
is said to be directed, iff every finite subset of X has an upper bound in X [21]. A mapping
T:L — L is said to be <-continuous, iffl T(lub(X)) = lub(T(X)), for each directed subset
X of L, and is said to be <-monotonic, iff T(z) < T(y), forany z,y € L such that £ < y

[21]). For any mappings T, 7": L — L. let the mapping 7" + T: L — L be defined by
(T +T)(z) = ub{T'(r),T(z)}.
for each x € L [3).
Proposition 10 [21] /f T: L — L is a <-continuous mapping, then{fp(T) =T tw. O
Lemama 3 If T.T': L — L are both <-continuous mappings, then
I. T'oT is <-continuous,

2. T+ 7T is <-confinuous. 0
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Proof The first result of this lemma is well-known. Only the second result will be proven

here. Let X be a directed subset of L. Note first that, ifa € L, then
VeeX:a>(T"+T)(z) & VreX ca > lub{T'(z), T(z)}
= VzeX:a2T(z) & a>T(x)
= a>lub(T(X)) & a>lub(T(X)),
i.e.. a is an upper bound of (IV+T)(X), iff @ is an upper bound of {{ub(TV(X)),lub(T(X))}

Thus
lub((T" + TYX)) = lub{lub[T’(.\')],lub(T[X))}.

It follows that
(T + TY({ub(X))
= lub{T'{{ub(X)), T(lub(X))}

Lub{lub(T" (X)) {ub(T(X))} (as T’ and T are <-continuous)

= wh((T' + TH(X)).
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Abstract. Inheritance is a characteristic reasoning mechanism in sys-
tems with taxonomic information. In rule-based deductive systems with
inclusion polymorphism, inheritance can be captured in a natural way by
means of typed substitution. However, with method overriding and mul-
tiple inheritance, it is well-known that inheritance is nonmonotonic and
the semantics of inheritance becomes problematical. We present a gen-
eral framework, based on Dung's abstract theory of argumentation, for
developing a natural semantics for declarative programs with dynamic
defeasible inheritance. We investigate the relationship between the pre-
sented semantics and Dobbie and Topor's perfect model (with overriding)
sernantics, and show that for inheritance-stratified programs, the two se-
mantics coincide. The proposed semantics, nevertheless, still provides the
correct skeptical meanings for non-inheritance-stratified programs, while
the perfect model semantics fails to yield sensible meanings for them.

1 Introduction

One of the most salient features associated with generalization taxonomy is
inheritance. In logic-based deduction systems which support inclusion polymor-
phism (or subtyping), inheritance can be captured in an intuitive way by means
of typed substitutions. To illustrate this, suppose that tom is an individual of
type student. Then, given a program clause:

C1: X:student[residence — east-dorm] +—  X[lives-in — rangsit-campus],
X[sex — male],

which is intended to state that for any student X, if X lives in rangsit-campus and
X is male, then X’s residence place is east-dorm; one can obtain by the application
of the typed substitution {X:student/tom} to C1 the ground clause:

P.S. Thiagarajan, R. Yap (Eds.}: ASIAN'99, LNCS 1742, pp. 239-250, 1999,
© Springer-Verlag Berlin Heidelberg 1999
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G1: tom[residence — east-corm] = tom|lives-in — rangsit-campus],
tom[sex — male].

The clause C1 can naturally be considered 8s 8 conditional definition of the
method residence associated with the type (class') student and the clausc G1 as
a definition of the same method for tom inherited from the type student.
However, when a method is supposed to return a unique value for an ob-
ject, definitions of a method inherited from different types, tend to conflict. For
example, suppose that tom is also an individual of type employee and & clause:

C2: X:employee|residence — west-flats] +  X|lives-in — rangsit-campus],
X[marital-status — married],

defining the method residence for an employee is also given. Then, the definition
of residence for tom obtained from C2, i.e.,

G2: tom[residence — west-flats] «—  tomflives-in — rangsit-campus],
tom|marital-status — married],

conflicts with the previously inherited definition G1 when they are both ap-
plicable. In the presence of such conflicting definitions, the usual semantics of
definite programs, e.g., the minimal model semantics, does not provide satis-
factory meanings for programs; for example, if a program has both G1 and G2
above as its ground instances, then, whenever its minimal model entails each
atom in the antecedents of G1 and G2, it will entail the conflicting information
that tom’s residence place is east-dorm and is west-flats.

In order to provide appropriate meanings for programs with such conflicting
inherited definitions, a diflerent semantics that allows some ground clauses whose
antecedents are satisfied to be inactive is needed. This paper applies Dung’s the-
ory of argumentation [6] to the development of such a semantics. To resolve
inheritance conflicts, the proposed approach requires a binary relation on pro-
gram ground clauses, called the domination relation, which determines among
possibly conflicting definitions whether one is intended to defeat another. For
example, with additional information that students who are also employees usu-
ally prefer the accommodation provided for employees, G2 is supposed to defeat
G1l. With such a domination relation, a program will be transformed into an
argumentation framework, which captures the logical interaction between the
intended deduction and domination; and, then, the meaning of the program will
be defined based on the grounded extension of this argumentation framework.

Using this approach, conflict resolution is performed dynamically with re-
spect to the spplicability of method definitions. That is, the domination of one
method definition over another is effective only if the antecedent of the domi-
nating definition succeeds. The appropriateness of dynamic method resolution in
the context of deductive rule-based systems, where method definitions are often
conditional and may be inapplicable to certain objects, is advocated by (1]. In
particular, with the possibility of overriding, when the definitions in the most

! In this paper, the terms “type” and “class” are ' sed interchangeably.
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specific Lype are inapplicable, it is reasonable to try to apply those in a more
general type.

In order to argue for the correctness and the generality of the proposed seman-
tics in the presence of method overriding, its relationship to the perfect model
(with overriding) semantics proposed by Dobbie and Topor [5)] is investigated.
The investigation reveals that these two semantics coincide for inheritance-
stratified programs. Moreover, while the perfect model semantics fails to pro-
vide sensible meanings for programs which are not inheritance-stratified, the
presented semantics still yields their correct skeptical meanings.

For the sake of simplicity and generality, this paper uses Akama’s axiomatic
theory of logic programs (4], called DP theory (the theory of declarative pro-
grams), as its primary logical basis. The rest of this paper is organized as follows.
Section 2 recalls some basic definitions and results from Dung’s argumentation-
theoretic foundation and DP theory. Section 3 describes the proposed seman-
tics. Section 4 estabiishes the relationship between the proposed semantics and
the perfect model {(with overriding) semantics. Section 5 discusses other related
works and suminarizes the paper.

2 Preliminaries

2.1 Argumentation Framework

Based on the basic idea that a statement is believable if some argument sup-
porting it can be defended successfully against attacking arguments, Dung has
developed an abstract theory of argumentation (6] and demonstrated that many
approaches to nonmonotonic reasoning in Al are special forms of argumentation.
In this subsection, the basic concepts and results from this theory are recalled.

Definition 1. An argumentation framework is a pair (AR, attacks), where AR
is a set and attacks is a binary relation on AR. a

In the sequel, let AF = (AR, attacks) be an argumentation framework. The
elements of AR are called erguments. An argument a € AR is said to aftack
an argument b € AR, iff (a,b) € attacks. Let B € AR. B is said to attack an
argument b € AR, iff some argument in B attacks b. An argument a € AR is
said to be acceptable with respect to B, iff, for each b € AR, if b attacks a, then
B attacks b. B is said to be conflict-free, iff there do not exist arguments e, b € B
such that a attacks b. B is said to be admissible, iff B is conflict-free and every
argument in B is acceptable with respect to B.

The credulous semantics and the stable semantics of AF are defined by the
notions of preferred extension and stable extension, respectively:

Definition 2. A preferred extension of AF is a maximal (with respect to set
inclusion) admissible subset of AR. A set A C AR is called a stable extension of
AF, iff A is conflict-free and A attacks every argument in AR — A. (]
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To define the grounded (skeptical) semantics of AF (Dcfinition 3}, the {unc-
tion Far on 248 called the characteristic function of AF, is dcfined by:

Far{X) = {a| a is acceptable with respect to X}).
Clearly, F4r is monotonic (with respect to C), and, thus, hias the lcast fixpoint.
Definition 3. The grounded extension of AF is the least fixpoint of Far. O
The next example illustrates the three kinds of extensions.

Ezample 1. Let AF = (AR, attacks), where AR = {a,b,c,d,e} and attacks =
{{(a,b), (b,¢),(d,€), (e,d)}. Then, AF has two preferred extensions, i.e., {a,c, d}
and {a,c, e}, which are also stable extensions. As Fap(0) = {a} and F2.(0) =
{a,c} = F%(0), the grounded extension of AF is {a,c}. 0

Well-foundedness of an argumentation framework, recalled next, is a sufficient
condition for the coincidence between the three kinds of extensions.

Definition 4. AF is well-founded, iff there exists no infinite sequence of argu-
ments ag,dy,..-,an,--- such that for each 1 > 0, a,4 attacks a.. O

Theorem 1. If AF is well-founded, then it has exactly one preferred extension
and one stable extension, each of which is equal to its grounded extension. O

2.2 DP Theory

DP theory [4] is an axiomatic theory which purports to gencralize the concept
of conventicnal logic programs to cover a wider variety of data domains. As an
introduction to DP theory, the notion of a specialization system is reviewed first.
1t is followed by the concepts of declarative programs and their minimal model
semantics on a specialization system.

Definition 5. A specialization system is a 4-tuple (A, G, S, u) of three sets A, G

and S, and a mapping u from S to partial_map(A) (i.e., the set of all partial
mappings on A), that satisfies the conditions:

1. (Vs,s' € 8)(3s"” € 8) : pus"” = (us’)o (us),
2. (s € S){(Va € A) : (us)a = a,

3. 6C A 0
In the rest of this subsection, let I' = (A, G, S, i) be a specialization system. The
elements of A are called atoms; the set G is called the interpretation domain;
the elements of & are called specialization parameters or simply spec*iatlizaticnnsj
and the mapping u is called the specialization operator. A specialization s € S'
is said to be applicable to a € A, iff a € dom(us). By formulating a suitable spe-
cialization operator together with a suitable set of epecialization parameters, the
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typed-substitution operation can be regarded as a special form of specialization
opceration.

Let X be a subset of A. A definite clause C on X is a formula of the form
(@ «— bi,...,bn), where n > 0 and a,by,...,b, are atoms in X, The atom a
is denoted by head(C) and the set {b;,...,ba} by Body(C). When n = 0, Cis
called a unit clause. A definite clause C* is an instance of C, ifl thereexistss e S
such that s is applicable to a,8,,...,b, and C’ = ((us)a — (us)by, ..., (us)b,).
A definite clause on G is called a ground clause. A declarative programon [ is a
set of definite clauses on A. Given a declarative program P on I', let Gclause(P)
denote the sct of all ground instances of clauses in P. Conventional (definite)
logic programs as well as typed logic programs can be viewed as declarative
programs on some specialization systems.

An interpretation is defined as a subset of G. Let I be an interpretation.
If C is a definite clause on G, then I is said to satisfy C iff (head(C) € I) or
(Body(C) € 7). If C is a definite clause on A, then I is said to satisfy C iff
for every ground instance C’ of C, I satisfies . I is a model of a declarative
program P on I', iff I satisfies every definite clause in . The meaning of P is
defined as the minimum model of P, which is the intersection of all models of P.

3 The Proposed Semantics

In the sequel, let I" = (4,6, S, ;1) be a specialization system and P a declarative
program on I'. Let dominates be a binary relation on Gclause(P). A ground
clause C of P is szid to dominate another ground clause C’ of P, iff (C,C") €
domninates. It will be assumed lienceforth that the relation dominates prioritizes
the ground clauses of P; more precisely, for any ground clauses C,C’ of P, C
dominates C’, iff C is preferable to €' and whenever Body(C) is satisfied, C’
will be inactive. It should be emphasized that the domination of a ground clause
C over anotlier ground clause C' is intended to be dynamically operative with
respect to the applicability of C, 1.e., the domination is eflective only if the
condition part of C is satisfied. The relation dominates will also be referred to
as the domination relation of P.

3.1 Derivation Trees

The notion of a derivation tree of a program will be introduced first. A derivation
tree of P represents a derivation of one conclusion from P. It will be considered
as an argument that supports its derived conclusion. Every conclusion in the
minimum model of P is supported by at least one derivation tree of P.

Definition 6. A derivation tree of P is defined inductively as follows:

1. If C is a unit clause in Gclause(P), then the tree of which the root is C and
the height i1s 0 is a derivation tree of P.
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d—cb
c+—a co—a\b.—
a +— b‘-‘ |
a — a «—
T T2
T3 T

Fig. 1. The derivation trees of the program Pj.

2. If C = (a + by,...,b,) is a clause in Gclause(P) such that n > 0 and
T\, ...,Tn are derivation trees of P with roots Cy, ..., Cn, respectively, such
that head(C;) = b;, for each i € {1,....n}, then the tree of which the root

is C and the immediate subtrees are exactly T1,...,7Tx is a derivation iree
of P,
3. Nothing else is a derivation tree of P. D

Ezample 2. Let P, be a declarative program comprising the five ground clauses:
a +«— b o« € — a d — ¢,b f ~— ¢

Then, P, has exactly four derivation trees, which are shown by Figure 1. Note
that the derivation trees T),T%,Ta and Ty in the figure depict the derivation of
the conclusions a, b, ¢ 2nd d, respectively. a

In the sequel, the root of a derivation tree T will be denoted by root(T). A
derivation tree T will be regarded as an argument that supports the activation of
the ground clause root(T) (and, thus, supports the conclusion head(root(T))).

3.2 Grounded-Extension-Based Semantics

In order to define the meaning of P with respect tc the domination relation, the
program P will be transformed into an argumentation framework AF, (P), which
provides an appropriate structure for understanding the dvnamic interaction of
the deduction process of P and the specified domination relation. Intuitively, one
argument {derivation tree) attacks another argument (derivation tree), when the

ground clause supported by the former dominates some ground clause used in
the construction of the latter.

Definition 7. The argumentation framework AF,(P) = (AR, attacks) is de-
fined as follows: AR is the set of all derivation trees of P, and for any T, 77 € AR,
T attacks T’, iff root(T") dominates some node of T, O

Ezxample 3. Referring to the program P, of Example 2, suppose that the
ground clause @ « dominates the ground clause b «—, and for any other two
ground clauses in P;, one does not dominate the other. Then AF,(P) =
(ARp,,attacks), where ARp, consists of the four derivation trees in Figure 1
and attacks = {(T1,T2),(T1,T4)}. (Note that Ty attacks Ty as the root of T
dominates the right leaf of Ty.) O
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d—a e—1b J+—c

/ I B —
a +— b — C — a|o— b o— C —
Ts Ts T Ts T Tho

Fig. 2. The argumentation framework for the program P,.

The meaning of P is now defined as the set of all conclusions which are
supported by some arguments in the grounded extension of AF,(P).

Definition 8. The grounded-eztension-based meaning of P, denoted by AMSF,
is defined as the set {head(root(T)} | T € GE}, where GE is the grounded
extension of AF,(P). O

Four examples illustrating the proposed semantics are given below.

Ezample . Consider AF,(P,) of Example 3. Let F be the characteristic function
of AF,(P). Clearly, F(0) = {T\,T3} = F(F(®)). Thus F(0) is the grounded
extension of AF,(P), and, then, M§° = {a,c}. 0

Ezample 5. Let a declarative program P, comprise the six ground clauses:
a «— b Cc — d—a e—b fe—e

Let d «— a dominate b «— and e — b dominate f «— ¢, and assume that
for any other two ground clauses in P,, one does not dominate the other.
Then AF,(P2) = (ARp,,attacks), where ARp, consists of the six derivation
trees shown in Figure 2 and attacks = {(T%,Ts,),(Ts,T9), (Ts,T10)} as de-
picted by the darker arrows between the derivation trees in the figure. Let
F be the characteristic function of AF,(P;). Then F(@) = {Ts,T7,Ts}, and
F3(0) = {T5,T%,Ts,Tio} = F3(9). So ME = {a,c,d, f}. This example also
illustrates dynamic conflict resolution, i.e., the domination of the ground clause
e «— b over the ground clause f « ¢ does not always prevent the activation of
the latter. ]

Ezxample 6. Refer to the clauses C1,C2,G1 and G2 given at the beginning of
Section 1. Let tom belong both to type student and to type employee. Consider
a program P3 comprising C1,C2 and the following three clauses:

C3: tomllives-in — rangsit-campus| «—
C4: tom[sex — male] «
C5: tom[marital-status — married] «—

Assume, for simplicity, that C1 and €2 have G1 and G2, respectively, as their
only ground instances. Suppose that students who are also employees prefer the
accommodation provided for employees, and, then, that G2 dominates G1. Then,
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it is simple to se¢ taat MGE coutzins tom{residence — west‘ﬂat?] but does not
contain tom|residence — east ], and yickds the desired meaning of As.

To demorstrate dynamic conflict resolution, suppose next that the clause C5
is removed from P5. Thes, instead of cortaining tom/residence — west-flats], Mz
contains tomresidence — east-dorm[; and, it stll provides the correct meaning
of P in this case. O

Erample 7. This example illustrates method overriding. Let ait be an instance of
type int{ercational)-school and int-school be a subtype of school. Let a program
P, comprise the following three clauses:

X: school[medium-of-teaching — thail —  X[located-in — thailand]
X: int-schoo![medium-of-teaching — english]
ait[located-in — thailand]

For the sake of simplicity, assume that P, has only three ground clauses:

G3: aitjmedium-of-teaching — thail — ait]located-in — thailand]
G4 : ait{medium-of-teaching — english] —
G5 : ait[located-in — thailand] -

Since int-school is more specific than school, G4 is supposed to override G3;
therefore, let G4 dominate G3. It is readily seen that ME" is the set consisting
of the two atoms ait[located-in ~ thailand] and ait;medium-of-teaching — english},
which is the expected meaning of F;. =]

4 Perfect Model (with Overriding) Semantics

Dobbie and Topor defined a deductive object-oriented language called Gulog
[5), in which inheritance is realized through typed substitutions, and studied
the interaction of deduction, inheritance and overriding in the context of this
language. The declarative semantics for Gulog programs is based on Przytnusin-
ski's perfect model semantics for logic programs [11], but using the possibility of
overriding instead of negation in defining a priority relationship between ground
atoms. The perfect model (with overriding) semantics provides the correct mean-
ings for inheritance-stratified programs. In order to investigate the relationship
between this semantics and the grounded-extension-based semantics, the notions
of inheritance stratification and perfect model will be reformulated in the frame-
work of DP theory in Subsection 4.1. The relationship between the two kinds of
semantics will then be discussed in Subsection 4.2.

4.1 Inheritance-Stratified Programs and Perfect Models
According to {5], a program is inheritance-stratified if there is no cycle in any

definition of a method, te.. a definition of a method does not depend on an
inherited definition of the same method. More rrecisely:
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Definition 9. A declarstive prograin P on I' is said to be inheritance-stratified,
iff it is possible to decompose the interpretation domain G into disjoint sets
called strota, Go,Gy,...,G.,..., where ¥ < § and § is a countable ordinal, snch‘
that the following conditions are all satisfied.

1. For each C € Gclause(P), if head(C) € G,, then
(a) for each b € Body(C), b € Uy, G,
(b) for each C’ € Gdause(P) such that C’ dominates C,
i. head(C’) € Ugc, Ga,
ii. for each b’ € Body(C’), ¥ € Yz, Gs- .
2. There exists no infinite sequence Cp, Cf. «++3Cn.... of clauses in Gclause(P)
such that for each i > 0, Ci;, dominates C;.

Any decomposition {Gg,G\,...,G,...} of G satisfying the above conditions is
called an inheritance strutification of P, O

An example of non-inheritance-stratified programs will be given in Subsec-
tion 4.2 (Example 8). The next theorem illuminates the coincidence between
the grounded extension, preferred extension and stable extension of the argu-
mentation framework for an inheritance-stratified program (see Theorem 1 in
Subsection 2.1). Its proof can be found in the full version of this paper [10].

Theorem 2. If P is inheritance-stratified, then AF,(P) is well-founded. &)

With overriding, not every ground clause of a program is expected to be
satisfied by a reasonable model of that program. More precisely, a ground clause
need not be satisfied if it is overridden Ly some ground clause whose premise is
satisfied. This leads to the following notion of a model with overriding:

Definition 10. An interpretation I is a model with overriding (for short, o-
model) of P, iff for each C € Gdause(P), either I satisfies C or there exists
C' € Gclause(P) such that C’ dominates C and Body(C’) C I. 0

A program may have more than one o-model. Following [5], priority relations
between ground atoms are defined based on the possibility of overriding.

Definition 11. Priority relations <, and <, on G are defined as follows:

1. If C € Gclause(P), then
(a) for each b € Body(C), head(C) <, b,
(b) for each C’ € Gelause(P), if C' dominates C, then
i. head(C) <, head(C’),
ii. for each b’ € Body(C"), head(C) <p V',
.lfa<pband b <, ¢, thena <y ¢,
. I a <, band b <, ¢ (respectively, d <p @), then a <, ¢ (respectively, d <, b},
. Ifa <y b,thena <, b,
. Nothing else satisfies <, or <,. D

[4 -G U N ]

A preference relationship among o-models will then be defined based on the
priority relation <.
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DeSinition 12. Let Af and N be o-madels of 2. M is saud to be preferable o
N, in symbols, Af « N, iff Af # N and for each a € Af — N, ther‘e exists
b€ N — M such that @ <p b. Af is said to bec a perfect o-model of P, iff there
exists no o-model of P preferable to Af. 0

Every inheritance-stratified program P has exactly one perfect o-model,?
denoted by MB™, which provides the correct meaning of P with respect to
method overriding.

4.2 Relationship between the Proposed Semantics and Perfect
Model (with Overriding) Semantics

It is shown in the full version of this paper [10] that:

Theorem 3. If P is inkeritance-stratified and the domination relation is tran-
sitive, then ME = MpP™. 0

It is important to note that since the domination due to method overriding is
tvpically transitive, the transitivity requirement does not weaken Theocrem 3.
For programs that are not inheritance-stratified, the perfect model semantics
fails to provide their sensible meanings, while the proposed semantics still yields
their correct skeptical meanings. (The skeptical approach to method resolution
discards all conflicting definitions.) This is demonstrated by the next example.

Ezample 8. Let tom be an instance of type gr(aduate)-student and gr-student
is a subtype of student. Consider the declarative program P comprising the
following five clauses:

C6: X:student[math-ability — good] «— X[math-grade — b]

C7: X:student|major — math] —  X[math-ability — good],
X|favourite-subject — math|

C8: X:gr-student|math-ability — average] — X[major -+ math],

X|math-grade — b
C9: tom|math-grade —b] +—

C10: tom[favourite-subject — math] «—

Without loss of generality, suppose for simplicity that C6,C7 and C8 have as
their ground instances only the clauses G6, G7 and G8, given below, respectively:

G6: tom[math-ability — good| «—  tom{math-grade — b]

G7: tom[major — math] —  tom[math-ability — good],
tom|favourite-subject — math|

G8: tom[math-ability — average] «—  tom|major — math],

tom[math-grade — b

2 This result is analogous to and inspired by the corresponding result for inheritance-
stratified Gulog programs |5]. Its proof is given completely in |9].
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The ground clauses G6 and G8 are considered as definitions of the method
math-ability inherited from the types student and gr-student, respectively. As gr-
-student is more specific than student, G§ is suppused to dominate G6. Then, every
inheritance stratification of P requires that the ground atom tom[major — math|
must be in a stratum which is lower than the stratum contzining it, which is a
conuradiction. Hence Ps is not inheritance-stratified.

Observe that G8 dominates G6, but G8 also depends on G6; that is, the
activation of G6 results in the activation of G8, which is supposed to override G6.
Therefore, it is not reasonable to use any of them. As a consequence, none of the
conclusions of G6, G7 and G8 should be derived. However, it can be shown that
each o-model of P; contains both tom{major — math] and tom|math-ability —
average]. So every o-model of P does not serve as its reasonable meaning.

Now consider the proposed semantics. It is simple to see that M§f is the
set {tom|math-grade — b), tom|favourite-subject — math]}, which is the correct
skeptical meaning of Ps (i.e., the meaning obtained in the usual way after dis-
carding the conflicting clauses G6 and G8). O

5 Related Works and Conclusions

Defeasible inheritance has been intensively studied in the context of inheritance
networks |7,12,13]. Although the process of drawing conclusions from a set of
defeasible hypotheses in inheritance networks is quite different from the process
of deduction (as pointed out in |7]) and these works do not discuss dynamic
method resolution, they do provide the presented approach with a foundation
for determining the domination relation among ground clauses. A type hierarchy
and a membership relation can be represented as a network, and the domination
relation can then be determined based on the topological structure of the net-
work. For example. if there exists a path from an object o through a type ¢ to
a type t' in the network. then it is natural to suppose that the ground method
definitions for o inherited from t dominate those inherited from ¢’.

Besides [5], distinguished proposals that incorporate inheritance in the con-
text of logic-based deduction systems include [1,2,3,8]. However, in [1] and [8],
inheritance is realized by other means than typed substitution; t.e., [1] cap-
tures inheritance by transforming subclass relationships into rules of the form
class(X) «— subclass(X}, and [8] models inheritance as implicit implication on
interpretation domains (called H-structures). (2] and |3] incorporate inheritance
into unification algorithms but do not discuss nonmonotonic inheritance.

This paper studies the interaction of inheritance, realized by means of typed
substitution, and deduction, and proposes a framework for discussing a declara-
tive semantics for definite declai:ative programs with nonmonotonic inheritance.
The framework uses a domination relation on program ground clauses, specifying
their priority, as additional information for resolving conflicting method defini-
tions. With a specified domination relation, a program is transformed into an
argumentation framework which provides an appropriate structure for analyzing
the interrelation between the intended deduction and domination. The meaning
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of the program is defined based on the grounded extension of this argumenta-
tion framework. Method resolution in the framework is dynamic with respect
to the applicability of methods. The paper not only shows that the proposed
semantics and Dobbie and Topor's perfect modecl (with overriding) semantics (5]
coincide for inheritance-stratified programs (Theorem 3}, but also claims that
the proposed semantics provides correct skeptical mearings for non-inheritance-
stratified programs.
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Abstract. This paper develops a theoretical framework for modeling
and managing XML documents by employment of Declarative Descrip-
tion (DD) theory. In the framework, the definition of an XML element
is formally extended by incorporation of variables in order to represent
inherent implicit information and enhance its expressive power. An XML
document - a set of XML elements - is simply modeled as an XML declar-
ative description which consists of object descriptions, representing XML
elements in the document, and relationship descriptions, specifying rela-
tionships among the elements as well as integrity constraints. DTDs and
complex queries can also be expressed and evaluated.

1 Introduction

Modeling and managing XML [8] data have several challenges. An obvious dif-
ficulty is that XML is considered as a variation of semistructured data - data
that may be varied, irregular and unrestricted to any particular schema. An
XML document must only be well-formed but need not conform to a partic-
ular Document Type Definition (DTD). Mapping of semistructured data into
well-defined and highly-structured schemas, such as those in the relational and
object-oriented models, often requires a lot of eflorts and frequent schema modi-
fications. This difficulty has obstructed the use of relational and object-oriented
approaches to XML data modeling. Therefore, development of an appropriate
and efficient data model for XML documents has become an active research area.
Major current models are based on directed edge-labeled graphs [7,9,10,13, 16],
hedge automaton theory {14, 15] and functional programming (12].

A declarative description data model for XML documents is developed by
employment of Declarative Description (DD) theory [1-3], which has been de-
veloped with generality and applicability to data structures of a wide variety of
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domains, each characterized by a mathematical structure, called a specialization
system. An appropriate specialization system for XML elements is formulated
and a framework for their representation, computation and reasoning is con-
structed. XML elements defined in this paper can represent both explicit and
implicit information through the employment of variables. Conventional XML el-
ements are directly represented in the proposed model as ground (variable-free)
XML elements, with no translation needed. An XML declarative description
(XML-DD) comprises a set of XML elements, called object descriptions (ODs),
and a (possibly empty) set of their relationships, called relationship descriptions
(RDs). The meaning of such an XML-DD will not only yield all the explicit
information, represented in terms of ODs, but will also include all the implicit
information derivable by application of the RDs to the set of ODs, whence com-
plex queries about both kind of information can be formulated and executed
6].

[ RDs not only represent relationships among XML elements, but can also
be used to define integrity constraints that are important in a document, such
as data integrity, path and type constraints [10]. Moreover, in order to restrict
XML elements to only those that satisfy a given DTD, a simple and effective
mechanism is to directly map the DTD into a corresponding set of RDs for
checking the validity of an element with respect to the DTD [5].

Sect. 2 reviews major approaches to modeling semistructured/SGML/XML
documents, Sect. 2 develops a declarative description data model for XML doc-
uments, Sect. 4 presents approaches to modeling XML docurnents and their
DTDs, Sect. 5 outlines how to formulate and evaluate queries, and Sect. 6 draws
conclusions and presents future research directions.

2 Review of Data Models for
Semistructured/SGML /XML Documents

Three important approaches to modeling semistructured/SGML data before
1993, i.e., traditional information retrieval, relational model and object-oriented
approaches, have been reviewed in [19). This section reviews the more recent
ones which are based on graphs, hedge automaton theory and functional pro-
gramming.

In graph-based models, an XML document is mapped into a directed, edge-
labeled graph [7,9, 10,13, 16] consisting of nodes and directed edges, which, re-
spectively, represent XML elements in the document and relationships among
the elements, e.g., element-subelement and referential relationships. Although
a graph-based model provides an effective and straightforward way to handle
XML documents, it exhibits 4 difficulty in restricting a document to a given
DTD. The proposal 7], for instance, only provides a way to query XML docu-
ments but does not facilitate a means of representing the structure imposed by
a DTD. A substantial extension to the model is required to overcome this dif-
ficulty. For example, by application of first-order logic theory, the proposal [10]
has incorporated the ability to express path and type constraints for specification



of the document structure; the integration of these two different formalisms also
results in an ability to reason about path constraints.

Employing hedge automaton theory [14] (aka. tree automaton and forest au-
tomaton theory), developed by using the basic ideas of string automaton theory,
the proposals [15] have constructed an approach to formalizing XML documents
and their DTDs. A hedge is a sequence of trees or, in XML terminology, a se-
quence of XML elements. An XML document is represented by a hedge and
a set of documents conforming to a DTD by a regular hedge language (RHL),
which can be described by a regular hedge exrpression (RHE) or a regular hedge
grammar (RHG). By means of a hedge automaton, one can validate whether a
document conforms to a given RHG (representing some particular DTD) or not.

A functional programming approach to modeling XML documents and for-
malizing operations upon them has been developed in the proposal [12] by in-
troduction of the notion of node as its underlying data structure. An algebra
for XML queries, expressed in terms of list comprehensions in the functional
programming paradigm, has also been constructed. Using list comprehensions,
various kinds of query operations, such as navigation, grouping and joins, can
be expressed. However, this approach has considerable limitations as it does not
possess an ability to model a DTD, whence a mechanism for verifying whether
a document conforms to a given DTD or not is not readily devised.

3 Declarative Description Data Model for XML
Documents

XML declarative description (XML-DD) theory, which has been developed by
employment of Declarative Description (DD) theory [1-3] and serves as a data
model for XML documents [4], is summarized.

In XML-DD theory, the definition of an XML element is formally extended
by incorporation of variables in order to represent inherent implicit information
and enhance its expressive power. Such extended XML elements, referred to as
XML expressions, have similar form as XML elements except that they can carry
variables. The XML expressions without variable will be precisely called ground
XML expressions or XML elements, while those with variables non-ground XML
erpressions.

There are several kinds of variables useful for the expression of implicit in-
formation contained in XML expressions: name-variables (N-variables), string-
variables (S-variables), attribute-value-pair-variables (P-variables), expression-
variables (E-variables) and intermediale-erpression-variables (l-variables). Ev-
ery variable is preceded by '$’ together with a character specifying its type,
lLe., '$N’, '$5’, '$P’, "$E’ or *$I°.

Intuitively, an N-variable will be instantiated to an element type or an at-
tribute name, an S-variable to a string, a P-variable to a sequence of attribute-
value pairs, an E-variable to a sequence of XML expressions and an [-variable to
a part of an XML expression. Such variable instantiations are defined by means
of basic specializations, each of which is a pair of the form (var, val), where var



is the variable to be specialized and val a value or tuple of values describing the
resulting structure. There are four types of basic specializations:

i) rename variables,

ii) expand P- or E-variables into sequences of variables of their respective types,
iii) remove P-, E- or [-variables, and
iv) instantiate variables to some values corresponding to the variables’ types.

Let Ax denote the set of all XML expressions, Gx the subset of Ax com-
prising all ground XML expressions in Ax, Cx the set of basic specializations
and vy : Cx — partial_map(Ax) the mapping from Cx to the set of all partial
mappings on Ax which determines for each ¢ in Cx the change of elements in
Ax caused by ¢. Let Ax = {Ax,Gx,Cx,vx) be a specializalion generation sys-
temn, which will be used to define a specialization system characterizing the data
structure of XML expressions and sets of XML expressions.

Let V be a set of set variables, A = Ax U 2(4xYVY) G = Gy U 295 C =
CxU(V x 2(AxYV)) and v : C — partial_map(.A) the mapping which determines
for each basic specialization ¢ in C the change of elements in A caused by c.

In the sequel, let I' = (A, G, S, u) be a specialization system for XML ezpres-
stons with flat sets, where § = C* and u : § — partial_map(A) such that

#(A)(a) = a, where A denotes the null sequence and a € A,
ule.s)(a) = p(s)(v(c)(a)), where c€C,s € S and a € A.

Elements of § are called specializations. Note that when u is clear in the context,
for @ € 8, u(0)(a) will be written stimply as af.

The definition of XML declarative description together with its related con-
cepts can be given in terms of I" = (A4,G, S, u}. An XML declarative description
(simply referred to as an XML-DD) on [ is a set of descriptions, each having
the form

H(—B[,Bz,...,Bn. (1)

where n > 0, H is an XML expression in Ax and B; an XML expression in Ay,
a constraint or a set-of reference on I'. Such a description, if n = 0, is called an
object description or an OD, and, if n > 0, a relationship description or an RD.

A constrainton I' is a formula ¢g{a;,...,a,), where ¢ is a constraint predicate
and a; an element in A. Given a ground constraint ¢{g1,...,gn),9i € G, its truth
and falsity is assumed to be predetermined.

A set-of reference on I' is a triple r = (S, fra, P) of aset § € 2(AxVV) 4
set-of function fr ., and an XML declarative description P, which will be called
the referred description of r. Given z,a € Ax, a set-of function f., can be
defined as follows: For each X € 25«

fra(X) ={z0 € Gxlaf € X,0 € Cy}. (2)

In other words, for each X € 297,20 € f. o(X) ifl there exists 6 € C% such that
af and rf are ground XML expressions in X and Gx, respectively. Intuitively,
a and z are used, respectively, to define the condition for the construction of
a set and to determine the elements comprising that set, i.e., 6 € f. (X)) iff



<{ELEMENT Person (Name, BirthYear, Parent?)>
C!'ATTLIST Person ssn ID sREQUIRED

gender (Male | Female) #REQUIRED>
<!'ELEMENT Nanme (8PCDATA)>
<!ELEMENT BirthYear (ZPCDATA)>
<!ELEMENT Parent EMPTY>
<YATTLIST Parent father IDREF #IMPLIED

mother IDREF #IMPLIED>

Fig. 1. An XML DTD example

af € X. The objects a and = will be referred to as filter and constructor objects,
respectively.

Given a specialization # € S, application of # to a constraint g(ay,...,an)
yields the constraint ¢(ai6,...,a,0), to a reference (S, fr.a, P) the reference
(S, fr.a. P)0 = (S8, fra,P) and to a description (H « By, Ba,...,B,) the
description (H8 « B,6, Byf,...,Bn,0). The head of a description D will be
denoted by head(D) and the set of all objects (XML expressions), constraints
and references in the body of D by object(D), con(D) and re f(D), respectively.
Let body(D) = object(D) U con(D) Uref(D).

Given an XML-DD P, its meaning, M(P) is the set of all the ground XML
expressions that can be derived from the descriptions in P. Intuitively, given
a description D = (H & By,B;,...,B,) in P, for every § € & that makes
B8, B28, ..., B,0 true with respect to the meaning of P, the expression H8 will
be derived and included in the meaning of P.

4 Modeling XML Documents and DTDs

4.1 XML Document Modeling

A conventional XML element is represented directly as a ground XML expres-
sion in Gx. A class of XML elements sharing certain similar components and
structures can also be represented as an XML expression with variables. These
variables are used to represent unknown or similar components (which could be
tag names, attribute-value pairs, subexpressions or nesting structures) shared
by the elements in the class.

A collection of XML documents can be modeled by an XML-DD consisting
of ODs and RDs. The meaning of such an XML-DD yields all the directly repre-
sented XML elements in the document collection, i.e., those expressed by ODs,
together with all the derived ones, which may be restricted by constraints.

Ezample 1. Let P be an XML-DD which represents an XML document encoding
demographic data and conforming to the DTD given in Fig. 1. Assume that such



a document contains three Person elements and P comprises the following seven
descriptions, denoted by Dy — D7:

D,: <Person ssn="99999" gender="Nale">
<Name>John Smith</Name>
<BirthYear>1976</BirthYear>
<Parent mother="55665"/>

</Person> &«

D,: <Person ssn="55555" gender="Female">
<Name>Mary Smith</Name>
<BirthYear>1950</BirthYear>
<Parent father="11111"/>

</Person> +— .

Di: <Person ssn="11111" gender="Hale">
<Name>Tom Black</Name>
<BirthYear>1920</BirthYear>

</Person> — .
Ds: <Ancestor ancestor=$S:Father descendent=$5:Person/>
- <Person ssn=$S:Person $P:PersonAttr>

$E:Subexpression
<Parent father=$S:Father $P:ParentAttr/>

</Person>.
Ds: <Ancestor ancestor=$S:Mother descendent=$S:Person/>
— <Person ssn=%$S:Person $P:PersonAttr>

$E:Subexpression
<Parent mother=$S:Mother $P:ParentiAttr/>

</Person>.
D¢ <Ancestor ancestor=$S:Father descendent=$%$5:Desc/>
— <Ancestor ancestor=%$S:Anc descendent=$S:Desc/>,

<Person ssn=$S:Ancestor $P:PersonAttr>
$E:Subexpression

<Parent father=$S:Father $P:ParentAttr/>

</Person>.
D+: <Apcestor ancestor=$5:Mother descendent=$S:Desc/>
— <Ancestor ancestor=$S:Anc descendent=3$S:Desc/>,

<Person ssn=$S5:Anc 3$P:PersonAttr>
$E:Subexpression

<Parent mother=3$S:Mother $P:ParentAttr/>
</Person>.

Descriptions D, — D3 represent Person elements in the document; Descriptions
D4 — D7 derive ancestor relationships among the individuals in the collection.
Descriptions D4 and Ds specify that both father and mother of an individual
are ancestors of such individual. Descriptions Dy and D7 recursively specify that
the father and the mother of an individual’s ancestor are also the individual’s
ancestors. This ancestor relationship represents an example of complex, recursive
relationships which can be simply expressed in the proposed approach. 0



4.2 XML DTD Modeling

An XML DTD is represented, in the proposed approach, as an XML-DD com-
prising a set of RDs [5]. Such RDs, referred to as DTD-RDs, are obtained di-
rectly from translating each of the element type and attribute-list declarations
contained in the DTD into a corresponding set of DTD-RDs and then combining
these sets together.

The head expression of such a DPTD-RD only imposes the general structure
of its corresponding element type and merely specifies the valid pattern of the
associated attribute list. Restrictions on the element’s content model, e.g., de-
scriptions of valid sequences of child elements, and on its associated attribute
list, e.g., attribute type and default value constraints, are defined by appropriate
specifications of constraints and XML expressions in the DTD-RD’s body. An
XML expression contained in a DTD-RD’s body will be further restricted by the
DTD-RDs the head of which can be matched with that XML expression.

An XML element is valid with respect to a given DTD, if such element can
successfully match the head of some DTD-RD translated from the DTD and all
the restrictions specified in the body of such a DTD-RD are satisfied.

Erample 2. This example demonstrates a translation of the DTD given in Fig. 1,
which will be referred to as myDTD, into a corresponding set of DTD-RDs:

Vi: <myDTD Person>
<Person ssn=$S5:5SSN gender=$5:Gender>
<Name>$S:Name</Name>
<BirthYear>$S:BirthYear</BirthYear>
$E:Parent
</Person>
</myDTD _Person>
— <myDTD_Parent>
$E:Parent
</myDTbB Parent>,
IsMember0f (<Value>$S:Gender</Value>,
{<Value>"Male"</Value>,
<Value>"Female"</Value>}).
Va:  <myDTD Parent>
<Parent father=$S:FatherSSN $P:MotherAttr/>
</myDTD Parent>
— <myDTD Parent>
<Parent $P:MotherAttr/>
</myDTD Parent>,
Va:  <myDTD Parent>
<Parent mother=$S:MotherSSN/>
</myDTD Parent> —
Va: <myDTD Parent>
<Parent/>
</myDTD Parent> —



Vs:  <myDTD Parent>
</myDTD_Parent> —

Description V) imposes restrictions on the Person element. The head expres-
sion of V; specifies that every conforming Person element must contain ssn and
gender attributes as well as Name and BirthYear elements as its first and second
subelements, respectively. The only restriction on Name and BirthYear elements
stating that their contents must be textual data is simply represented by the
S-variables $S:Name and $S:BirthYear, respectively, and is defined within the
restrictions on the Person element, i.e., within the head of V. The E-variable
$E:Parent is defined such that, following the Name and BirthYear subelements,
a Person element can optionally contain a Parent element. The myDTD Parent
element contained in the body of V| specifies that such Parent subelement will
be further restricted by the descriptions the heads of which are myDTD Parent
expressions, i.e., descriptions Vo — V5.

The constraint IsMemberOf enforces that the value of the gender attribute,
represented by $S:Gender, must be either “Male™ or “Female",

Moreover, it should be noted that since validation of uniqueness and ref-
erential integrify constraints defined by means of attributes of types ID and
IDREF/IDREFS, respectively, requires additional concepts of id and idref/ idrefs
references [5) which are beyond the scope of this paper, this example omits val-
idation of such constraints.

Descriptions V3 — Vs can be interpreted in a similar way as description V. O

5 Query Processing

As details of the query formulation and evaluation based on the proposed data
model are available in [6], this section merely sketches the basic ideas.

A query is formalized as an XML-DD, comprising one or more RDs, called
query RDs. Each query RD is written as a description D, where head(D) de-
scribes the structure of the resulting XML elements, object(D) represents some
particular XML documents or XML elements to be selected, con(D) describes
selection criteria and re f({D) constructs sets or groups of related XML elements
to be used for computing summary information. This syntax intuitively sepa-
rates a query into three parts: a pattern, a filter and a constructor, where the
pattern is described by object(D), the filter by con(D) and ref(D), and the
constructor by head(D)}. The five basic query operations [11,17, 18]: extraction,
selection, combination, transformation and aggregation, can be formulated [6].

Given an XML-DD P specifying a collection of XML documents together
with their relationships, a query represented by an XML-DD @Q is evaluated by
transforming the XML-DD (” U Q) successively until it becomes the XML-DD
(PUQ'), where Q' consists of only ground object descriptions. In order to guar-
artee that the answers to a given query are always preserved, only semantics-
preserving transformations or equivalent transformations [1-3] will be applied
in every transformation step. The equivalent transformation is a new compu-
tational model which is considered to be more efficient than the inference in



the logic paradigm and the function evaluation in the functional programming
paradigm. The unfolding transformation, a widely used program transformation

in the conventional logic and functional programming, is a kind of equivalent
transformation.

Erample 3. Referring to XML-DD P of Examplel, a query which lists the names
of all the John Smith’s ancestors can be formulated as:

D: <JohnAncestor>$S:Name<JohnAncestor/>
— <Person ssn=$S:JohnSSN $P:JohnAttr>

<Name>John Smith</Name>
$E: JohnSubExp

</Person>,

<Ancestor ancestor=$5:4Anc descendent=$%$S:JohnSSN/>,

<Person ssn=$S:Anc $P:AncAttr>
<Name>$S:Name</Name>
$E:AncestorSubExp

</Person>.

By means of unfolding transformation, XML-DD (£ U {D}) can be successively
transformed into XML-DD (P u {D’, D"}), where

D':  <JohnAncestor>Mary Smith<JohnAncestor/> -
DY': <JohnAncestor>Tom Black<JohnAncestor/> —

Since M(P U {D}) = M(P U {D’, D"}) and the heads of D’ and D" are the
only JohnAncestor elements in M{P U {D’, D"}), such elements are the only
answers to the query. 0

6 Conclusions

This paper has proposed and developed an expressive, declarative framework
which can succinetly and uniformly model XML elements/documents, integrity
constraints, element relationships, DTDs as well as formulate queries. By in-
tegrating the framework with an appropriate computational model, e.g., the
Equivalent Transformation (ET), one will be able to efficiently manipulate and
transform XML documents, evaluate queries, and validate XML data against
some particular DTDs. The framework, therefore, provides a foundation for rep-
resentation and computation of as well as reasoning with XML data.

A Web-based XML processor which can help demonstrate and evaluate the
effectiveness of the proposed framework has been implemented using ETC - a
compiler for programming in ET paradigm. The system has been tested against
a small XML database and preliminary good performance is obtained; and a
more thorough evaluation with a large collection of XML documents is under-
way. Other interesting future plans include development of indexing and query
optimization techniques for XML document databases.

Acknowledgement This work was supported in part by Thailand Re-
search Fund.



=

YIRA1 QLYY

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Akama, K.: Declarative Semantics of Logic Programs on Parameterized Repre-
sentation Systems. Advances in Software Science and Technology, Vol. 5. (1993)
45-63

. Akama, K.: Declarative Description with References and Equivalent Transforma-

tion of Negative References. Tech. Report, Information Engineering, Hokkaido Uni-
versity, Japan {1998)

Akama, K., Shimitsu, T., Miyamoto, E.: Solving Problems by Equivalent Trans-
formation of Declarative Programs. Journal of the Japanese Society of Artificial
Intelligence, Vol. 13 No.6 (1998) 944-952 (in Japanese)

. Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: A Foundation

for XML Document Databases: Data Model. Tech. Report, Computer Science and
Information Management, Asian Institute of Technology, Thailand (1999)

. Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: A Foundation for

XML Document Databases: DTD Modeling. Techn. Report, Computer Science and
Information Management, Asian Institute of Technology, Thailand {1999)
Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: A Foundation for
XML Document Databases: Query Processing. Tech. Report, Computer Science
and Information Management, Asian Institute of Technology, Thailand (1999)

. Beech, D., Malhotra, A., Rys, M.: A Formal Data Model and Algebra for XML.

W3C XML Query Working Group Note {1999)

Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML}
1.0. W3C Recommendation. (1998)

Buneman, P., Deutsch, A., Tan, W.C.: A Deterministic Model for Semi-Structured
Data. Workshop on Query Processing for Semistructured Data and Non-Standard
Data Formats (1998)

Buneman, P., Fan, W., Weinstein, S.; Interaction between Path and Type Con-
straints. Proc. ACM Symposium on Principles of Database Systems (1999)
Fankhauser, P., Marchiori, M., Robie, J.: XML Query Requirements, January 2000.
W3C Working Draft, (2000)

Ferndndez, M., Siméon, I, Suciu, D., Wadler, P.: A Data Mecdel and Algebra for
XML Query. Draft Manuscript {1999)

Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Mi-
grating the Lore Data Model and Query Language. Proc. 2nd Int. Workshop on
the Web and Databases (WebDB 99), Pennsylvania (1999)

Murata, M.: Hedge Automata: A Formal Model for XML Schemata. Technical
Report, Fuji Xerox Information Systems (1999)

Murata, M.: Transformation of Documents and Schemas by Patterns and Contex-
tual Conditions. Principles of Document Processing "96. Lecture Notes in Computer
Science, Vol. 1293 (1997)

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database
Management System for Semistructured Data. SIGMOD Record, Vol. 26, No. 3
{1997) 54-66

Quass, D.: Ten Features Necessary for an XML Query Langauge. Proc. Query
Languages Workshop (QI '98), Boston, MA, (1998)

Robie, J., Lapp, J., Schach, D.: XML Query Language (XQL). Proc. Query Lan-
guages Workshop (QL'98), Boston, MA, (1998)

Sacks-Davis, R., Arnold-Moore, T., Zobel, J.. Database Systems for Structured

Documents. IEICE Transactions on Information and System, Vol. E78-D, No. 11
(1995) 1335-1341



	BRG4080014_01
	BRG4080014_02

