WHGHUDIITVUGIHULAIT I INQULUB YN

Foundations of Deductive Object-Oriented Datzbase Systems

o e 4 1::':, =3 d‘i 4 e
Tasamsissesdanuilnunidluiugiuneniswann
aiuayulay
aninnuasInUaiyayUns IS

(1aVUNIATINT BRG14/2540)

fh v = 4 @ 34
AMzE I EIMIA Zaad (Hamihlasanms)
= & o - st 4 ar Ex ar
MIBBNIVR UUNTITIANT (WnIDY)
HIEIEANT BYASHZ (HNI9Y)

Professor Kiyoshi Akama (ﬁﬂ%ﬂ“ﬂl)

ke J0% OU e

BRG/14/2540-8. TA1# 94

y o »
- HugiuvesssuugudeyaiB s Inquuue il

Py ¢ e gy A 1 w
Insamsidvespnnuilminidluiugunentawann
avivayulay

L ol

dninUNBMUT U YUN I IdY
(auiln3an13 BRG14/2540)

[ToY) - < s 1%
AzI0D: wilans 2298 (Hanlassne)
wsendve) YumdasYani (1n3de)
WISHIYANWT oynIas (HnIde)

Professor Kiyoshi Akama (ﬁl.ﬁﬂ!el'l)

Foundations of Deductive Object-Oriented Database Syste v
oo
Q-

at L
UNAALD

nmwu'li’fnqu;]hhunsuwaﬂs.mﬂunuﬁ%’wmquuug1uvaas:uu3m'ﬁ'nuam1m
ummunmmﬂmuﬂqunmam.uanmuumaanunau‘lﬁunnnuiua msmamu‘uwawaqa n3
'munanmaum\ HaEnIMMUAR I WNA TAOY aﬂmzmjs.qnnafwnqquupuﬁmmpuua
yAONEIXML qrmmi‘lus~u~ug1uvanammqnuuaumuﬂs-'m'nwuq nqugﬂupumnnnmmm

Mafrnuviaesdeyavenenms XML eauuudiasives XML DTD un.ﬂfunn'lnﬁwmu
1J$~maﬂammoumngmwna XML

Abstract

Ti\is research project 'employs Declarative Progran;n theory to develbp a theoretical foundation for
Deductive Object-Oriented Databases (DOODs) which coveré deduction, hierarchical classification,
inheritance and implicit information. In order to apply the concepts gained, this research project also
develops a theoretical framework for XML document databases, which are a kind of DOOD. The
framework permits representation of XML documents, modeling of XML DTDs and formulation as well as

evaluation of XML queries. .

111

e A A

unin

ey] . - - W
FEmsautunsite
WA Y

uniosal
wiladod e
Output
msviy 19 ss Toand

Iy

=] =S L= ["]

1. unt

ummwna'lumiwmnwm_;mm*mwfwnnquuuaqmu (Deductive Object-Oriented
Representation) RasudioUszannd we. 2530 minnsAruRmLAUs IR R lumsSadute
gnuvmmfuuuumu (Dcductwe Representation) nuuuamwm'lumsnmnuvm&msnaq (Object-
Oriented Representation) Tnvilyatlszasrfiszsndefvesssuuiasuunz yarododoodafunazfy
(1] wwamndagana il unsaenieisadumamefimnzsudwmunsvoiednon myesszuy
gudeyanazanudlfensosesfunnudesntalvig ﬁﬂ:lﬁm{u'lmmﬂs:qnofﬂmnumué’numz'lu
owina Medgy Aunmsindyglszfyy aumddnaadiide aunidndanssutazgamv
n3Tu tarUMIAuT s EUmemgimeaad (Hudu

 Gausd) wet. 2532 (Hudhan dndfovarongulunarslsemaldaRuunamuiterusuiuy
vesszvugudeyauaznuiiFiaquuuoyuiu u'nmmmfhffﬁzﬂunuﬂﬁwﬁ'uaduwf}qﬁa widy
Mudromsiruehnnssivseamuiildlunsussnedeyauaraiwd awdromssmuaninmunves
Tsunsulunmnuq Tnummumwﬂﬂﬂmnmu'n...ti‘]ummwuﬂL\fowwaweuauavmmﬂu
ST z‘duuuﬂqﬂa1*mm"lﬂ'qqﬂﬁssﬂnmﬂq;ammuﬂumsﬁnmua ARURUULLYBITEUY AE
fio anueu"amwuwaqsmuunvqnnwun’Iﬂu'l'u'hmnsmmmnmqﬂuuasummﬂmmnnaunu1u
Aruvosnnuminoluszuuiunndrndu nanmumﬂﬂamsmmmg‘mwunqygﬂunuﬁmmmwa
udeyauazmmudiFaTaquuueniny sIngmmanguRRana1finanudifgetdilunsfmun
aumeRidanu linquinievesgnudeyauazaimg nsdmuaiiemvesdeyauaraimluszun
msftnuuaziinszgudeyauaranuiodiazden ascrvumsiaaevausdmivdiulialse
FninmmsSaduuazszuanateyauasaiing -

mmm'l-uﬂmwmanygmnan ﬂﬁl"H')ilUWU’lmu‘l’ﬁl wmumqumﬂuaﬁsmmn"hmnsm'uaa
amwndmiuszuunistafudoyauaranudiFsiaquuueyunu ‘nqyQunz‘ln‘l‘i‘y’"l'wmsmmmwm
mutlanmamililunisusseoidiudizneuang veassuy uRszRoandIuilsrnoudeg ves
stvuindludmsznauuus§3u (Abstract Component) Frozgnimuadnuus laosmsussuon i
oafuRusuasnansey ﬂumnunumuﬂvnauauq ALREE vuleolduvusiasanandiamand
(Mathematical Model) ﬂququminvmauﬂaumaﬂymmnﬂmwumms vy Suldun mstisve
{Deduction} N9 nﬂmﬂu‘nuwwaga (Hierarchical Classification) mimwaﬂﬂmﬁuﬁﬁ {lnheritance) LAY
AIAMUATISTUINA 1atly (Implicit Information) Naamjmm‘lunqugunwmm"lﬂmmsmdwauama
danu TaolditnrRganinnadinmaas (Mathematical Proof Methods)

A1 deductn e A7 191N a1 T30 00T s

2. IEndutiumisiey
1) ﬂ%’nnqygﬁmiuuuumsoﬁmu-umJmm:mmfmi’nquuuwmu noudtiez iy
'lw*msmmm-vmnmﬂﬂmumuuﬂuwugm'lummmuﬂmuﬂs.naumm GREEANNY)
ez 1unudiasanundamanslumssmuannuduiudunseons siodaduons fu
1rnindlsznevdisg mumﬁa'lﬂnququrmn':nm‘lﬂﬂuqnm'lﬂﬁnus-uuumn

wawdinyuz unvmouﬁﬂtgmmw'lm1ng1u:wmmnugﬁmmi:uugmﬂoumm-fmu
JiETnquuueyuy

2) dAnfushinruduiusunsaanssnurefusendlanisiisty (Deduction) fUNIIEWNEA
f}m}uﬁ'ﬁ (Inheritance) HazsEUINMITsHoRUMIUs Mg gna Thniy (Implicit lmplicati’on) i
'lﬁminﬂms’imﬂwfrhuﬂsznou'uﬂqu TUﬂ'fﬂumau‘ﬁ’wammﬂuTﬂsm%’Nmﬂuwwq
mITume Famsinds mstoneanmesia ua.mitmmqqnﬂﬂuuuuﬁ’]uni.mumi
win#i 19113014414 (inference) Tusznugwdeyauasaimdi@einguuusan

3) muafi%msf?m%”umsf‘imuﬂmmnmuﬁqm’fmiﬂmwm'hJmnm?‘i“h’r'ﬁwﬁsﬁummj"lﬂ
AumIteneaRuauiALaz ML aMagHa Tanty mmwwmtmaqTstuﬂsummwzi‘lu
wugmﬁmtylun1smﬂumuamwwagaumﬂnmgmnunwgnwmuaghs,uu umni‘lu'
wugm-ummsﬁnmua::mﬂmgmuanaummwi’ouwmmtm FEmsidmuaiuiines

rasounquiansdninisvandadusznivmssyuiuuaznistomesnuauadle

2) szyndnqui "wm-'l’ivmm:ﬂ'nnfﬁ‘lﬁmﬁusmw’fa:gmaﬂms XML (Extensible Markup
Language) -

3. wamT gl

Taramsfidhuadsommguiiluvdn TrodudusinmisinyuasiinszyalS sudsudunuy
'*umsw'um's%’mﬁummf?k%q*Tmmmuaumuﬁgmﬁuu“luunmweinq wazadranubrasInig
AdinmaaT (Mathematical Model) ma‘la’f‘lumsﬂmuﬂﬁ'zuﬂsmaumqq uazfmuannuduiutus
drulsznouaig vsassuy wawmuummuanqygm"mmsnm"lﬂ“lmﬂuwugmﬁmnu‘lums'
aﬁuwﬂmauummmumqq umqmﬁuumhus'Jwaqi'"uurnuuuumqq HarMIINMuUAIE lums
Uizurawa Tﬂu‘l%ﬁmﬁwqwmmmﬂmam (Mathemahcal Proof Methods) 1UMIA320e8URIWQARBA -
CYDINOEFUNA1I mﬁuaw

¥ ' v .
aa = o ar o o 1 ar o o -
noufrrueiululnsinitite assungquidnuasdinga g Nmuavosssuuimnudoyouns
L. o + ° . [o o S uI; 1 ¥
AndFataguuueyuiu suldun nisussondeyauasanuileody msiadrduiuvaangudoya ns
s el fnsindeiouiunistionagquandd wasmawsanggualacio - 1ulUtaiimsluns

ﬁmuamwwwn'mmuuoﬂﬂmﬂmnlﬂummssmwaumlrmwﬂmzuu warTEmslums
furuvinunioves lsunsy

" ot - e 1 - L) - J
dlevmanysalaramsiSveuaniioen ddluresdnilvugq dadl

1)

trunsniunmsinuidushtinnuduiusuasnansenudofusznianisdsvouaznig

dwneaquautd aud3dulAusnusinalnlunszuiumsdumeaqumnidoenijunes

dovair Savmzusmumsdumesgumiian 1invinnsrumimsiusazdoanms W
undag (Specialization Operation) a"num'*fiﬂm’rﬂumsdwnaaqmﬁmﬁﬁ’lé’uwmmsxm
MR YAnIavo (Implicit I[mplication) Tnuomu-uauammnnlﬂnﬂﬁ'nmnuw
(Classification Hierarchy) Y84 1sﬂummﬁuwu31u '

Tuguvesnsawnesquandfuvuusn kamsAnnuasiinsizdlnnginsdmuannu
nywvos IsunsulungufTasunsuBalszna (Declarative Programs Theory) [3] 36
ﬁ1u1ﬂi=qnﬁ1§’lﬁiﬂumd'luﬂTsf‘hnunmmﬁmu'uaa'hJsunmﬂivmwﬁ'lﬁﬁmminm’fa
ﬁ'us.m'iwmiﬁiﬁmm“mi'fiwwﬂﬂﬂmauﬁﬁ uﬂ'lummsnmm“l‘u"lﬁﬂu'fﬂsuﬂsununﬁ
‘lmmsu‘suunquﬂﬂnmsmunaﬂf]mauummmu’iqnu Fansdaudeiussninmsiinte
uazmisdwnsaguendaiidudnvar vy 1&ieondalu Tusunsuildussmodoyauns
Anuiiaiaguuvepnu ﬂm~§"31701¢’1’1ﬁuEﬁ'ﬁmiﬁwuﬂmmwmmjmTﬁsunmw“\w‘
Tﬂu"l*wqug]mﬂc’fuua (Argumentation Theoretic Framework) (7] Fudlug SEmsd
mnuﬂw"lwuummsnm"lﬂ“lﬂﬁﬂu'[ﬂstmmmamﬂs san dazansod hihlszgnald
°lum':1h~maunmammmuwagmm.,ﬂ'nufmﬂuﬂ“lus,uu‘lﬁ'[ﬂumq iilpanimiuis

ﬂ‘ﬁﬂ‘l%ﬂﬁﬂ‘hﬂl“ﬁ (Iteration) "lumsmmmmqvmsmuﬂwqﬂ (Least Fixed Paint) el
lﬂﬂﬂ']'lﬂﬁlﬂﬂ'llﬂﬁ.[ﬂﬁllﬂin

mam"ﬂs munmﬁﬂ15nmuﬂmmwmuwﬂﬂsunmmﬁua-uu ﬂmvrpnu"lé'mmsvmm
ul“uumuummwmuuaﬂﬂsun*nmmnumuunummwuwﬁummumJ (Perfect Model
Semantics) ‘nqmﬁuﬂiﬂu AaBou aeudl nassoaild Inided 1l we. 2536 [6) uaz'lém

m'mmmﬂunsmumTﬂmnsnnmmmnﬂmsmunaﬂﬂwﬁnumi‘lumu'lﬁ (Inheritance-
Stratified Program) msmwuﬂﬂ'ﬂuumumﬁmuuumﬂnHaawnmnaunu dmlunsdl
maﬂﬂmnmﬂumminﬂﬂmimunaﬂqmﬁuumﬁwyu"lﬁ'uu 1ﬁms‘nﬂmwm%umuaﬁum
adl¥radniigndesaumaruna tuvariiives i Nadou aouil uazseaiis Tned
mmm'lwmmwuwwmmuauun'iﬂsuﬂ'mﬂsvmnu"lﬂ

<

‘ ﬁwfs'ummwnaﬂEmfmuwm"lf-mwwnn‘s.ymunmmqmqqmiﬂuuuuu ﬂm‘*mw"lmﬁuﬂ

1% m'sammuwuwum"lﬂum'nm‘l‘u‘lummmuﬂmmﬁmwaﬂﬂiunsnnnmihmsm
voaaug lAumsoeneanurudayd Lm‘nu Tﬂumﬁnﬁuuﬂg AP gaa Taolo

~

ENITTE, Li'lummﬁuwummuauﬂmuamu (Preorder) mmmmqnmwum“lvﬁ’mmmmn

‘ R RITE 1:111?1 ¥ Qﬂ'ﬂdﬁTQU"ﬁl—H]ﬂﬂlF}l‘J’ﬁ l_[ﬁtllﬂ“'mW‘SNQi}u'ﬂﬂTU%ﬂﬂ“ﬂ:ﬂTﬁuﬂﬂTllJ‘rﬂHUTl

J d.y N -] o § - . . P
vruodui Isunsuuaaz Tsunsuas anumuedanuiun i@ {(Unique Meaning) %3

2)

¥
AnunIeRIna 1o Qnmmm'lﬁ'n1nn1sﬂs~mnﬂnmqmsmuaunﬁﬂnuﬁménuu
M3 (Operator) Aigndmuntionysz Tondneq favualuT)sunsy

doninin nasdIvolfiimauinimaigraTilaveifudrdunliudifiey (Fixed Point -
. . d 4 4 a ‘
Theory with Subsumption) Aigmerueduluil we. 2538 Tau 1905875a Inaviiaed unsnue

J 1 -l " L -~ L
[12) vufuiugutumsuaasrilunsdiimsusanggue Taodolidnuasifunnuduwus

uyuuduwiadau (Partial Order)'mmuu‘uwaq’iﬂsuniuﬂwﬁu9 mmman‘hmm‘lﬁ
omqmmmm.uﬂs.amnmmnuwu Taolémsdssanamavu Tamsufttivuadnasedi
WD uenvINIu ﬂm.,ri'“wuq'lﬁmumnmﬂumsnmuammnmwm'Iﬂmnsunums'hy
mstinionug dumausanggra lnndsdsuanii Wannsodmuedranild uar'ld
TerueiEnslumsdszuranaftofaminnumneve s Wsunsulunsdudeiidan

n‘wﬂﬁouﬁumsmmmamsﬁny1ua~mmwﬂﬂumuummﬂs.qnn'l%’ Tﬁuwmmum"
2
wmumququa~1mumammsmmmwugmﬁmsugmwgmanms XML 18na15 XML &

dnvoazdiudull (Tree) Ndoudn (Nested) Avanudu fadinududou unsfeldng

FnvazuuuneInsaade (Semi-structured) WilRmndenIssaiy Sudu uazdounads
:@mnmwaugnu’[ﬂﬂt‘rswﬂmulsumwamqwu%’auﬂugmuanmmnﬁ’uwuﬁ QUi
Auguiianniunlfldiinsehanshasdeyaveusnas xML nsaduuvviians
¥04 Document Type Definition (DTD) ‘UfJQLUﬂ’n”li XML umm‘:ﬂsumﬁﬂammaumu
(query processing) ﬂ4uunmﬂ'lrﬁ'mﬂuﬂqygwuslwmmnmi XML 'nummwmqumn

4. um3nisal

1una31380 Defeasible Inheritance Through Specialization [Output #1, #3] ﬂmsvfﬁﬁa'lﬁﬁnm
o - o é’ e .
Wismiivuanuvuisved I sunsuiidmuatu mifuanumngves Tdsunsuanysainuy
(Perfect Mode! Semantics) 184 Aaifiou asud uarseaild Tnuled (6] waveamsnliouiiioy
Taonszvumsnuadamaniisingd Tunsdivesllsunsuiimuisodanistwneanu
> z L A 1
aulRiduduld (nheritance-Stratified Program) 3¥misvianosuadwimiioudu diwlu
- . Hwn ar 1 . e P4 v o ary e}
nsgiveaTsunsui aunsofansteneaauaudd@budulfiu - Fasieuolurnany

FHoluadnininnugndosmumeaunaninn il

2) luwaauIiy Declarative Prograins with Implicit Implication [Cutput #2] MY NuieUOYL

1DIVBINTIRVISUIANHFNWUT sz 52 Toawug i IuTusinsun ¥ Conceptual Graph
flauelao Tma & Tna uacdete 2298 [8-11. 14] uazTun1yy F-logic fuouelag luifa

Towrles uarawe (12] Idusuduiusiuunisusunagualavit (Implicit Implication)

-3 a B ﬂl el J =) = e ﬁv L]
FnssmuantnoyeshilsunsufinusfiSmaveduivilunonuided annsmihl

1¥Fuldsunsumiaesdnuact1d

3) 1uraa iy A Foundation for XML Document Databases [Output #4, #5, #6] ﬂm:éﬁﬁ'ﬂﬁ'
. »
Wauriimsdmiumsnsauyuenss XML uazlaninsed DTD samianisdszuaann
: - - -y o W ot - w - ah o
astreuow vunseunquiugRnady frinndahifileshaunsammquiing
' o g -] st -
vonwaninvmuastangy wudwarifuil s tfluﬁmmmmnﬂqvm{upuﬁwmm
-’ -y . M - o g a4 - - -~
Jwmnilenh Tugnisitouasianmsdunaidnme idasznugudoyad mivienms
o T R 4 S "o <
XML suszidudsz Tomilunedfiidun diesen xML Wufivoufuudrinthanasgi
gy lumsuraazuanndvudoyauu Web

5. wiied 1B

{1]

(2]

(3}

(4]

(7

(8]

(9]

{10]

.8. Abitelboul. . Towards a Deductive Object-Oriented Database Language. Data & Knowledge
Engineering, 5(4):263-287, 1990. '

P. Aczel. Replacement Systems and the Axiomatization of Situation Theory. In R. Cooper, K. Mukai,

" and I. Perry, editors, Situation Theory and Its Applications, volume 1, number 22 in CSLI Lecture

Notes, pages 3-31. CSLI Publications, Stanford, 1990.

K. Akama. Declarative Semantics of Logic Programs on Parameterized Répresentation Systems.
Advanced in Software Science and Ti echhology, 5:45-63, 1993. .

H. Ait-Kaci and R. Nasr. LOG.IN:'A Logié Programming Language with Built-in I[nheritance. The
Jourm‘zl of Logic Programming, 3(3):185-215, 1986.

G. Dobbie and R. Topor. -On the Declarative and Procedural Semantics of Deductive Object-Oriented
Systems. Journal of Intelligent Irzfor.;narion Systems, 4(2):193-219, March 1995,

E;, M. Dung. On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and N-Person Games. Artificial Intelligence, 77(2):321-357.
September 1995.

B. C. Ghosh and V. Wuwongse. Declarative semantics of Cohceﬁmal P‘rograms.‘ [n Proceedings of the
1" International Conference on Conceptual structures (ICCS8'93), Quebec City, Canada, August 1993.
B. C. Ghosh and V. Wuwongse. Inference Systems for Conceptual Graph Programs. In W. M.
Tepfenhart, J. P. Dick and I. F. Sowa (eds.). Proceedings of the 2" International Conference on

Conceptiial Strucrures (ICCS'94), Lecture Notes in Artificial Intelligence #835, 214-229, Springer-

~ Verlag, College Park, Maryland, USA, August 1994.

B. C. Ghosh and V. Wuwongse. A Direct Proof Procedure for Definite Conceptual Graph Programs. In
G. Ellis. R. Levison, W. Rich and J. F. Sowa (eds.), Proceedings o_f!hé 3 International Conference vn
Conceptual Structures (FCCS™95), Lecture Notes in Artificial Intelligence #954, 158-172, Springer-

Vertag., Santa Cruz, CA, USA, August 1995,

[11] B. C. Ghosh and V. Wuwongse. Conceptuﬂ Graph Pfogﬁms and Their Declarative Semantics. /EICE
' Transaction on Information and Systems, E18-D{(9):1208-1217, September 1995. |
. [12] G. Klostler, W. Kiebling, H. Thone and U. Guntzer. Fixpoint lteration with Sulisumption in Deductive
Databases. Journal of lnle-lligent Information Systems, 4(2):123-145, March 1993.
[13] M. Kifer, G. Lausen and J. Wu. Lﬁgical Foundations of Object-Oriented and Frame-Based Languages.
Journal of the Asséciatian Jor Computing Machinery, 42(4):741-843, July 1995.
[14] V. Wuwongse and B. C. Ghosh. Towards Deductive Object-Oriented Databases Based on Conceptual
| Graphs. In H. D. Pfeiffer and T. F. Nagle {eds.} Proceedings of the 7" Annual Warkshop on Conceptual

Graphs, Lecture Notes in Artificial Intelligence #754, 188-205, Springer-Verlag, Las Cruces, NM,
USA, July 1992.

6. Output

[11 Ekawit Nantajeewarawat and Vilas Wuwon-g'se, Defeasible Inheritance Through Specialization,l
Computational Intelligence, Vol. 17, No. 1, 2001 (to appear).

[2] Vilas Wuwongse and Ekawit Nantajeewarawat, Declarative Programs with [rﬁplicit Implication, {EEE
Transactions on Knowledge and Data Engineering (Isll re\;rision). |

[3] Ekawit Nantajeewarawat and Vilas Wuwongse, An Argumentation Approach to Semantics of
Declarative Programs with Defeasible Inhcritance, in P.§. Thiagarajan and R. Yap {eds.): ASIAN '99_,—
Lecture Notes in Comﬁute_r Science #1742, Springer-Verlag, pp.239-250, 1999.

[4] Chutiporn Anutariya, Vilas Wuwongse, Ekawit Nantajeewarawat and Kiyoshi Aké,ma, Towards a
Foundation for XML Document Databases, Proceedings of the I” Int. Conf. Electronic Commerce and
Web Technologies, Lecture Notes in Computer Science, Springer-Verlag, 2000 {to appear).

(5] Vilas Wuwongse, Kiyoshi Akama , Chutipom .An-l:tariya and Ekawit Nantajeeivarawat, A Foundation for
XML Databases: Data Model, Ini. J. Knowledge and Information Systems {submitted).

[6] Chutipom Anutariya, ‘;"ilas Wluwongse, Kiyoshi Akal"na' and Ekawit Nantajeewarawat, A Foundation for

XML Databases: DTD Modeling, /nt. J. Knowledge and Information Systems (submitted).

7. msiTifFysslayw

tHadvines _

=g 4 o . 1 [o [o 3 §f = o
Ta5en1538sebuwndaasduatea N @IANUAIIT VDTS UUIRNUIBYBUASANNIITIING

o

HUUBHINU Tamnwizes1edaluiSsaveanuduidsuazNARTENUABAUTTHIIIMIHIHoUAE MY

: wa 5 ar . = Y I 3 1 .
nosnuapla Fudunizviuaiseyanunaniuizuy FuduRugundnlunmaivuadiudszaoy

¥
e

A1eq voessuu ulasansideilldlimsausiing fvuanuvuIeYed Wsunsui g lumsussen

6

1 ﬁ 1 -] - 4 o l
wovweroyauaranuilussuvedndaou uazlfiausiTnisdwimlizuanaiodiuiamiaiy
] J .

mnwveshfsunsufidmuaiu - arwwinouaz Mnudinanduiugudylunsfnyumeingsd

P

mnuwuq'ﬁaqnur Mudluszuvedsandoa wozdlutugudidylunsoenuuunesnisian

gormdtmimlinigalssAnsnmmsiadusazninlszusasadeyauasaid luszuy Aurdity
o 1) - J - ﬁ - o -~ - "

manTvimaufnerusiutiszdunnguidiytmivnisiannszyuianisgudeyanazn iy

BUINA |

wenuinil Aoz 16’umﬁw’fqiﬂﬂﬂmﬁwn~u'ds.,'[u'tmamwaﬁwmgmmm'sﬁnmuavﬁu
ahifoifussvunadudeyauasanudiainquuveyy - uwineimendameaifenely
1fmmnwmmmm‘lﬂ'lﬁﬁumstmmmu'lumsmﬂ11ulm11n1u$:uumu'ﬁaqaun:mmfﬁm"z’nq
HueruaImEdnuazinisimatungy WRirueiun nIAnsTULME Tnonsefiazszin
'Tauﬂnﬂﬁ‘innﬂuﬁvfupus"mawﬁﬂﬁ'tﬁﬂﬂqmﬁ’mruﬁ‘m'lﬁ'hu‘_ e snszuumariiiinis drmug
anuasthimaieg vouszuylasldlanseimmeuandsiuesn ua:ﬁm1uﬂmhm§auﬁu1um-.
ﬁmunmmnmwmﬁnumz(ﬁuq i} %qﬁwa'lﬁlﬁﬂmmﬂmhmﬁouﬁu'lum%ﬁ'muﬂmiuwmn

Tassasvea Tdsunsuluszuy

. |
TAsans8eii lTdwrsadainielmi 2 au TasauusneunisfinuisedulZyguenudue
-um~uﬁ‘]ugmumﬁnswwunﬁmuumﬂTuTaumuwmﬁsuﬁ UM AINUIAUESITNAARAS duBnauiid
ﬂnm‘lurﬁuﬂsmtywmnn AIT
V /s

usnvinillassmsItofidaiidrunszdunnusuie lumsviiisevesnaizdiseny Prof Kiyos

LY

Akama AUV INUIAY Hokkaido

iWamidivy
- w. o 1 Iyq { Za & nwya « Pl
dufinswiua luasmmssuiiniue Audaveriurisiuiunidi@Wannsorauldiss
. ¥ =
nsdamsgutoyanuuAuduWUS (Relational Database Management System) Juw1 uaz'lanuns
o«
maﬂmnimﬂanu”lﬂ‘l‘ﬂunuﬂnqnmmamuqsnmm'“muauq stadszauanuduiesdraniiay’

a

pl5fd dninnmiseuianefadndvgfdinnusiui ssuugndeyauuuduiuisindidedaia
Sovarwdszas dothawu dedidnludesies Tnsaatedoyas (Tarsadadeyafiugiu vesss
yudoyanvuardiusiduinsariony record Fuduglasinlumsiafudoyadifiinsaaie
FoU) q‘fm“nﬁ’ﬂ"lunﬁﬁuwmﬁéua?au?ﬁ'ﬁﬁﬁun1ﬁﬁm‘sé’1¢§aﬁaﬁum (Recursive Query) QUa3%f

u.sm-ua:a:zmwiwvnmum?‘%’wnuh]sn,misz nﬁﬁ'umymh"lum'mwaua (Impedance Mism:

»”
'

Problem) *U‘amnﬂ]umswrﬂ'lmagmmunluammm uaz mwmw‘sﬁumﬂﬂnuummglumnal

MWidudss oy Hudu

L) Y A . - u . -l ar Lo -I
dnInvimsaenianeshiununmisn szvuymdeyaiFaiaguuyeyuiuiifnsniniie:
) E 4 [] . - 7
aunsoudludodrfadnqmarit wasemnsofiszsssfunuszgndlsziameeg na mnnivuniy

- - J - : - ry - - « o -
nquffurueiululnsansito szdluiupuiididgdmsunavanneenaniszuunstanisgiude
qaxiﬁwquuuaqmu {Deductive Object-Oriented Database Management System) ‘n(]Hf]UTIPhd a9 ﬁi%ﬂu

™ < 3 v s @
Tvarmumusvea Tusunsufiuganisiifoufiqa (The Least Fixpoint) ¥0a#2@1iIUNS (operator) ﬁqn

fmualdonTsunsy ounsotivhidszgndlf1dTaonss lumsilszaasanudionwesdoynlugn

Joua uazmrfewidoynluszuy Taoléaneity (Atgorithm) mmgm'lumsﬁmmmmqammuou

figgaveadaduiiumsunuy Ty TuIntin (Monototic Operator)

g ad | 4 - - ¢ = - 3 'y
uanmnu'lunqugmﬂua‘uu Uﬂ"ﬁ"llﬂ??:'ﬂllﬂ3Y’Jﬁlﬂﬂﬂw'lﬂTIIJH‘LI'IUUOQTﬂ?lIﬂSUHﬁSLNBH'ﬁIﬂQ
* - - ' A‘ - 3] o U :l’ ’ J ls‘ 2
31u1’1’a:gaunzmmfamm:mummmu mmm‘umw']ummwmﬂ'nuﬂuwmnﬂnmﬂuwusmnm

dhuesndalumsiannwerauiiUssion Optimization Tools d#wividlunisuiudyasz@nininens

‘ .
matafy Aum uaztsynasadeyalugudoyauazanul dredrvessedAainTUszianii ¥

St o

d [} 4 L é [] I‘I = t d ! ﬂ' [-
yerauiinsdsusiddumdeysedimildlitiuididnadimils’ Aldnadnimiiowduuald

o : ¥ e o o i i ‘ I C da :
pawazninonsveszuulunsfunnisvainiudn veddurinlaavuiavesgudeyanslaoiding

o J - 1 4
WUHBHWAZ A NUH U IURAIAY ﬁ‘]umu

Hogafiandifouszgnd ludiuves XML matieziinlsz Tesiodatalumalfid wieqnin XML
'lﬂnmmﬂummgmmaqmmﬁmuauuamﬂauumeqauu Internet mw"ﬂiamqmmmaunﬂﬂvmn ad

AL TS n‘ju NWN'ﬂUﬂLaﬂ'YIiB’uIﬂ?T 'ﬁﬂdﬁl{ﬂﬂ%ﬂﬂﬁ ‘H‘iﬂ mmuu;ma'lna

00:\'?&

r;h\)\m\“‘d ‘\Y.) DY Y \iv\ow\w\% ;N\A .&hsfurwﬂx“m 835*««-«5 U\L-\—?U'T *5

A Foundation for XML Document Databases: Data Model 1

A Foundation for XML Document Databases:
Data Model™

Vilas Wuwongse', Kiyoshi Akama’
Chutiporn Anutariya' and Ekawit Nantajeewarawat?

! Computer Science & Information Management Program, Asian Institute of Technology
Pathumtani 12120, Thailand
{vw, cal}lcs.ait.ac.th

? Information Technology Program, Sirindhom International Institute of Technology,
Thammasat University, Pathumtani 12120, Thailand
ekawit@siit.tu.ac.th

Y Center for Information and Multimedia Studies,
Hokkaido University, Sapporo 060, Japan
akama@cims.hokudai.ac.]jp

Abstract. The proposed data model for XML documents, based on Declararive Description (DD} theory,
formally generalizes the definition of an XML element to an XML expression by incorporation of variables for
representation of inherent implicit information and enhancement of its expressive power. An XML element is
simply modeled as a variable-free XML expression, while an XML document — a set of XML elements — as
an XML declarative description (XML-DD) which consists of clauses describing those elements in the
document, their relationships as well as integrity constraints. Selective and complex queries, formulated as
sets of clauses, about explicit information satisfying certain specified constraints as well as derivable
information which is implicit in the documents, become then expressible and computable. Similarly, an XML
DTD is modeled as a corresponding set of clauses which can be employed in order to validate an XML
document with respect to that DTD. The proposed model thereby serves as an effective and well-founded
XML document database management framework with succinct representational and operational uniformity,
reasoning capabilities as well as complex and deductive query supports.

Key words. data model, document modeling, specialization system, XML declarative description, XML
document, XML element, XML expression.

1 Introduction

Extensible Markup Language (XML) [9], a W3C recommendation which has recently emerged as a standard for
data representation and interchange among various Web applications, is a simpler and convenient subset of
Standard Generalized Markup Language (SGML). XML provides simple means for a more meaningful and
understandable representation of Web content. In contrast to HTML, XML does not require a predefined fixed
set of tags; it provides instead a facility to define new tag sets as well as structural relationships of tags via tag
element nesting and referencing, whence it is self:describing and extensible.

An XML document is only required to be well-formed, i.e., its tags must be properly nested, but need not
conform to a particular Document Type Definition (DTD) — a grammar defining restrictions on tags, attributes
and content models. Hence, XML is considered as a variation of semistructured data — data that may be varied
and are not restricted to any particular schema or structure; they are at times referred to as schemaless data [13].
Management of semistructured data by a highly-structured modeling technique, such as relational and object-
oriented models, not only results in a very complicated logical schema, but also requires much efforts and
frequent schema modifications. This difficulty has obstructed the use of such approaches to XML data modeling
and management. Consequently, development of an appropriate and efficient data model for XML documents
has become an active research area with major current models based on trees (7], directed edge-labeled graphs
[8,10.11,13.,19], tree automata theory [15,17,18] and functional programming [12].

" This paper is a substantially expanded version of [5].

A Foundation for XML Document Databases: Data Model 2

A declarative description data model for XML documents [5) is developed by employment of Declarative
Description (DD) theory [1,2,3], which has been developed with generality and applicability to data structures of
a wide variety of domains, each characterized by a mathematical structure, called a specialization system. Based
on the formulation of an appropriate specialization system for XML expressions, a framework for their
representation, computation and reasoning is constructed. The definition of XML expressions introduced here is a
formal extension of XML elements which allows representation of both explicit and implicit information by
means of variables. In the proposed model, conventional XML elements are represented directly as ground
(variable-free) XML expressions, without need for translation. An XML declarative description (XML-DD)
comprises a set of XML expressions, formulated as unif clauses, and a (possibly empty) set of their relationships,
formulated as non-unit clauses. The meaning of such an XML-DD will not only yield all the explicit
information, represented in terms of unit clauses, but will also include all the implicit information derivable by
application of non-unit clauses to the set of unit clauses, whence complex queries about this implicit information
[4] can be formulated and executed. Non-unit clauses not only represent relationships among XML elements but
can also be used to define integrity constraints which are important in a document, such as data integrity, path
and type constraints [11]. Moreover, in order to check whether an element conforms to a given DTD or not, one
can similarly apply the same convention, i.e., simply translate the DTD into a corresponding set of clauses, and
then verify the validity of the element against the clauses. Such a validation process is usually applied when an
element is inserted or updated.

Section 2 reviews major approaches to modeling semistructured/SGML/XML documents, Section 3 recalls
fundamental definitions of DD theory, Section 4 develops a declarative description data model for XML
documents, Section 5 presents an approach to modeling XML documents, Section 6 compares the proposed new
approach with existing ones, and Section 7 draws conclusions and presents suggestions for future research.

2 Review of Data Models for Semistructured/SGML/XML Documents

Three important approaches to the modeling of semistructured/SGML data prior to 1995, i.e., traditional
information retrieval, relational model and object-oriented approaches, have been reviewed in [20]. A review
and evaluation of more recent work follows.

2.1 Tree-Based Approach

Based on the lexical structure of XML data, an XML document can be viewed as a free corresponding to a
document’s text representation. An example of this approach is Document Object Model (DOM) for XML [7].

In XML, an element can have an attribute of type /D the value of which provides a unique identifier,
referencable by other elements through attributes of type IDREF and IDREFS. However, by simply treating
attributes of these types as nothing more than text strings, the tree-like representation of an XML document
encounters a serious problem in capturing cross-link or referential relationships among XML elements. If this

approach is employed, a query language itself must provide a means to associate these related elements.
Otherwise, users cannot issue queries with referential relationships.

2.2 Graph-Based Approach

Since XML can be viewed as a variation of semistructured data, several models for semistructured data have
been maodified and extended to fully support such data [11,13]. Many of these semistructured data models, such
as Object Exchange Model (OEM) or Lore data model [19] and deterministic data model [10], are intuitively
based on directed, edge-labeled graphs.

In graph-based models, a collection of XML documents is represented as a directed, edge-labeled graph
(8,10,11,13,19]. A non-leaf node in the graph, associated with a sequence of zero or more attribute-value pairs,
represents an XML element, while a leaf node represents an XML element’s textual content. An edge, pointing
from a parent element to a child element and labeled with the child element's tag name, represents an element-
subelement relationship. An IDREF(S) attribute is represented by an edge pointing from the referring element to
the referred element and labeled with the attribute name.

The graph model can be viewed as an enhancement of the tree model with an attempt to represent and handle
the referential relationships among arbitrary tree nodes, defined by means of attributes of the types ID and
IDREF(S). Although a graph-based mode! provides an effective and straightforward way to handling XML data,
it encounters difficulties in restricting XML data to a given DTD. For instance, the proposal [8] only provides a
way to querying XML data but does not facilitate a means to represent the structure imposed by a DTD. The

A Foundation for XML Document Databases Data Model 3

» model requires substantial extension o overcome this difTiculty. For example, by application of firss-order logic
theory, the proposal [11] has incorporated an ability to express path and fpe constrainis for the specification of
the structure of XML data; the integration of these nwo different formalisms also yiclds an ability 1o reason about
path constraints. However, other forms of integrity constraints have not yet been included 1n addition. the
complex notions of model and implication in first-order logic tend to complicate the syntax and semantics of
path constraints and make their understanding difTicult.

Besides introducing walidaring parsers 1o restict XML data to a particular DTD, Lore’s XML model has
proposcd the use of DaraGuides [19) ~ a graph describing the structure of documents stored in Lore's database -

to capture the structure of documents imposed by a DTD. Apant from providing a computational mechanism,
Lore’s XML modcl does not possess a capability for reasoning about XML clements.

2.3 Hedge Automaton Approach

By mcans of hedge automaton theory [16) (aka. tree automaton and forest automaton theory {181), developed by
employment of the basic idcas of string automaton theory, the proposals [17,18] have constructed an approach to
formalization of XML documents and their DTDs. A hedge is a sequence of trees or, in XML terminology. a
sequence of XML ¢lements. A document is therefore represented by a hedie and a sct of documents conforming
to a DTD by a regular hedge language (RHL), expressible by a regulur hedye cxpression (RHE)Y or a regular
hedge grammar (R}MHG). A RHG is a quintuple (L, A\ N, P, 1),
where - L : asetof symbols,
X : asct of variables,

~ N :asctofl non-terminals,

-~ P asctof production rules, and

— r7:aregular expression over the non-terminals.
Each production rule is of the form n — xor n — <a> r ,
where ~ n: a non-terminal in N,

- x:avanablein X,

- a:asymbolin X, and

-~ r: arcgular expression over the non-terminals

This formalism allows a DTD to be easily translated into a comesponding RHG, which describes a RHI, or in

this context, a set of documents conforming to the DTD. A hedge aquromaton can be employed to determine
whether & document conforms to a given grammar (representing some particular DTD) or not. This approach
also provides a mechanism to transform XML documents and their DTDs [17,18) However, it docs not provide
a means for incorporation of knowledge into those signmificant operations

2.4 Functlonal Programming Approach

The proposal {12] has developed a funcrional programming approach 1o modehing XML documents and
formalizing operations upon them by introduction of user-defined typed feature term, called node, as it
undertying data structure. Nodes can be grouped into the three types text, element and reference, which conain
a characier string, a list of child nodes, and a referential relationship to another node, respectively In the model,
an XML clement is represented as an clement node, a sequence of ity child elements as a hist of child nowdes and 4
tentual content of an clement as a tent node Attnbutes are abvo mimdeled as clement nodes the names of which
hegin with "’ An clement node representing an attnibute of type CDATA containy exactly one chrld tent nende.
while a node reprosenting an annbute of tvpe IDREY or IDRIES comprises a number of child reference nodes

referencing to the referred clement nondes Apparenthy, this data madel o comparable to the praph-bhased dats
maxde |

Based on this data model, an algebea for XML quenes eaprovaed in terms of isr romprehennions an the
furnctronal programmung paradigm, has alse been corntructed [12] U ung Tond comprehenyions, s arueas binds of
XML query opcrnatwons, such as navigation, ooding, groudpeng amd omrs can be oapresswed Hoswever, this
appraach has comuderabic limations, as 11 docs et peeascsy an abudity to rredel an WML DD, wherec a
mexhanium to venify whether an XML dow ument conforms to a groen DT om0 mest reatidy ey ined

Y Declarative Description Theon

Fhavy s immn revalie coriam lurmdamsenial Setorot

A Foundation for XML Document Databases: Data Model 4

3.1 Speclalization Systems

A specialization sysiem is an abstract structure derived from the generalization of substitutions in conventional
logic program theory, and defined in terms of certain very simple axioms.

Definition 1 [Specialization System]

A specialization system is a quadruple I' = (_4, ¢, S, wyof three sets _4 & S and a mapping ufrom S to the
sct of all partial mappings on _4 such that:

1. Ws.s5:€ S 35 € S:45)= 165) ° 1452),

2. 3se SVae 4 i{s)a)=a,

3. G A
where 24s,) °z4s;) is the composite mapping of the partial mappings z4s,) and z(s;). The set §is called the

interpretation domain, and the clements of _{ Gand Sare called objects, ground objects, and specializations,
respectively. O

When g is clear from the context, for 8 € X g4 A(a) will be written simply as a6. If there exists & such that a@
= b, 0 is said to be applicable to a, and a is specialized to b by 6. Given a € _{ let rep(a) denote the sct of all

ground objects which can be specialized from a, ic, for g € G, g € rep(a) iff there exists a specialization € in §
such thata@l= g.

3.2 Dceclarative Descriptions

Declarative Descriptions (DDs) and other related concepts can now be defined in terms of a specialization
system I = (4, §, S, 1.

Let A" be a sct of constraint predicates. A constraint on T is a formula g(ay, ... , a,), where g is a constraint
predicate tn A"and a, an object in . & Given a ground constraint g(g,, ... , €,), g € @ its truth and falsity are
assumed to be predetermined. Denote the set of all true ground constraints by Tcon. A specialization & is
applicable to a constraint g(a,, ... , a,) if #is applicable to ay, ..., a,. The result of the application g(ay, ..., a.)@
is the constraint g(a, 0, ..., a,0); and g(a,, ..., a,) is said to be spccialized 10 g(a\ 6, ..., a,0) by 6.

The notion of constraints introduced above is useful for defining restrictions on objects in _4

Definitlon 2 [Declarative Description]

A clause on s a formula of the torm:
H < B, B .. B, (n

where n 2 0, # is an objectin | Yand 8, an object in _Jor a constraint on I'. H is called the Aead and (8,, By, ...
8.) the body of the clause. A declarative description (DD) on T is a (possibly infinite) set of clauseson ™. [0

Let C be aclause (# « By, By, ..., B,). 1f n = 0, uch a clause C, is called a wnir clause, and, if # > 0, a non-unit
clause. The head of C will be denoted by head(C) and the set of all objects and constraints in the body of C by
obect(O) and con{O), respectively. Let bodi C) = object(Q) w con(C). A clause Cis an instance of C iff there is
a specialization @ € Nsuch that ¢is applicable w #, 8, 8,, .., B,and C'= C& = (HO « B0, B0, ... B.0). A

clause C s a ground clause Y C compnses only ground objects and ground constraints. When it is clear from
the context, a declarative descaption on U s simply called a description.

XA Semantics of Declarative Description

Ihe mapping Tr. 252+ Jdefined for a declarative description £ on I, will be used to define the declarative
semantics of £an Detinmition 4

Definition 3 [Mapping 1)

L et £ be adeclarative descniphion on B The definstion of the mapping Tp: 25— 2" follows:

A Foundation for XML Document Databases: Data Model 5

_ 'err each X < G an XML clement g is contained in Tx(X) iff there exist a clause C € Pand a specialization @ € .S

such that C@ is a ground clause the head of which is g and all the objects and constraints in the body of which
‘belong 10 X and Tcon, respectively, i.e.:

THX) = {head(CO)| Ce P, 6€S, C# isaground clause, object(CO c X, con(C6) < Tcon '} (2)
a

Definition 4 [Semantics of Declarative Description]

Let P be a declarative description on I'. The meaning of P, denoted by AP}, is defined by

sPy= | JI7p1"(2) 3

n=]

where @ is the empty set and [T5]"(D) = TH[T]" (D). O

3.4 Egquivalent Transformations

| Equivalent Transformation (ET) [3] is a new computational model based on semantics preserving

transformations (or equivalent transformations) of declarative descriptions. Basically, a declarative description
P, is said to be transformed equivalently into a declarative description P, if they have exactly the same meaning,
i.e., MP) = A(P;). In the ET model, computation is defined by means of equivalent transformation rules (ET
rules) to be applied to the components — objects and constraints — of a target clause.

4 Declarative Description Data Model for XML Documents

By means of DD theory, an XML data model is formulated. Subsection 4.1 specifies the format and structure of
conventional XML elements, Subsection 4.2 gives formal definitions of XML expressions, Subsection 4.3 defines
specialization operations for XML expressions, and Subsection 4.4 formulates a specialization system for XML
expressions, denoted by I'y=(_4, Gk, Sx, ux), XML Declarative Descriptions and other related concepts.

4.1 Conventional XML Elements

By convention, XML elements are ground, i, they contain no variable, and assume formally the forms:

\. empty element: <elem_type atri=val, ... attr,=~val./>
2. simple element: <elem_type attr\=val| ... attr,=val,>val,., </elem_type>
3. nested element: <elem_type attr\=val, ... atir,=val,> e, ... e, </elem_type>

where -~ n,mz0,

— elem_pype : an element type (or tag name),

~ attr; : distinct attribute names,

— wval; : literals, and

— g : XML elements.
However, in order to express inherent implicit information and enhance its expressive power, the definition of an
XML element will be formally extended by incorporation of variables, and then called an XML expression.

4.2 XML Expressions

Let Qx be an alphabet comprising the symbols in the following sets:

Z : aset of characters

N : a set of names (which could be element nypes or auribute names)
NVAR : a set of name-variables (or N-variables)

SVAR : a set of string-variables (or S-variables)

PVAR : aset of attribute-valtue-pair-variables (or P-variahies)
EVAR : aset of XML-expression-variables (or F-variabios)

N

A Foundation for XML Document Databases: Data Model 6

7. IVAR : a set of intermediate-expression-variables (ot I-variables).

N-, S-, P-, E- and I-variables introduced here are uscful for representation of implicit information’contained in
XML expressions. Intuitively, an N-variable will be instantiated to an element type or an attribute name in N and
an S-variable to a string in I°, while a P-variable will be specialized 10 a sequence of attribute-value pairs, an E-
variable to a sequence of XML expressions and an [-variable to a part of an XML expression. A detailed
explanation of the specializations of these variables is provided in the next subsection. In order to distinguish
between elements of the above sets, let:

I. Every element in NVAR begin with “$N:", in SVAR with “$5:", in PVAR with “$P:", in EVAR with “$E:”
and in /VAR with “$1:".
2. No element in N begin with “$N:" and ‘$* ¢ I.
Based on the alphabet Q, the formal definition of an XML expression is now given:

Definition 5 {XML expression]

An XML expression on £y takes one of the following forms:

1. evar
2. <elem_type aury=val, ... attry=val, pvar, ... pvar, />
3. <elem_type attr\=val, ... anry=valy pvar, ... pvar, > valy, <elem_type>
4. <elem_type attry=val, ... aury=val, pvar, ... pvar, > e, ... e, <Jelem type>
5. <ivar>e, ... e, <ivar>
where - evar € EVAR,
- k,mnz0,
— elem _type, attr. € (N W NVAR),
— pvar; € PVAR,

- val,e (Z°U SVAR),
— ivar € IVAR, and
— ¢;are XML expressions on Q.

The order of pvar; (P-variables) and that of pairs attr= val, (pairs of attribute name and value) are immaterial.
|

By its definition, an XML expression is either an E-variable (XML-expression-variable) in EVAR or a tagged
expression containing the following four components:

1. A tag name which could be a name in N, an N-variable (name-variable) in N¥4R or an [-variable
(intermediate-expression-variable) in fV4R;
2. A sequence of zero or more P-variables (attribute-value-pair-variable) in PVAR;
3. A sequence of zero or more attribute-value pairs, where an attribute could be either a name in N or an N-
variable in NV4R, and a value be a string in &° or an S-variable (string-variable) in SFAR;
4. An expression content which could be a string value (cf. Definition 5-3) or a sequence of zero or more
subexpressions (cf. Definition 5-4, 5-5).
When an expression’s tag name is represented by an /[-variable, it must contain a sequence of zero or more
subexpressions but neither a P-variable nor an attribute-value pair (cf. Definition 5-5). Intuitively, an [-variable
is employed to represent an XML expression when its structure or nesting pattern is not fully known. For

example, the expression <ivar> e ... e, </ivar>, where ¢; are XML expressions, represents the XML expressions
which contain the subexpression sequence e, ... e, to an arbitrary depth.
Note:

1. The XML expressions without variable will be precisely called ground XML expressions or XML

elements, while those with variables non-ground XML expressions.
2. An expression having the form

<elem_type attr\=valy ... altry=valy pvar, ... pvar,> val </elem_type>
or

<elem_type alir\=val, ... attir,=val, pvary ... pvar,>e, ... e,</elem_type>
is often referred to as elem_rype expression, while an expression

<fvar=e, ... e,</ivar>
as ivar expression. For example, the expression

<Person SSN=$5:55N>
$E:PersonData
<Mother>Mary Smith</Mother>
</Person>

A Foundation for XML Document Databases: Data Model 7

is referred to as Person expression, while the subexpression <Mother>Mary Smith</Mother> nested inside
that Person expression is referred to as Mother expression.

3. Anexpression
<elem_type attry=val, ... attry=valy pvar, ... pvar, > </elem_type>
is considered to be identical to the empty-form expression
<elem_type attry=val, ... attry=val; pvar, ... pvar,/>.

4. The paris
<elem_type attry=val, ... attry=val, pvar, ... pvar, >,

</elem_type>
and

<elem_type attry=val, ... attry=val, pvar| ... pvar, />
will be simply called fags or, more specifically, start-tag, end-tag and empty-element-tag, respectively.

Definition 6 [_4, the set of XML expressions)
Ay is the set of all XML expressionson Qy. O

Example 1 As an example of non-ground XML expressions in _4, consider the following expression

<$l:Parent>
<Father>Peter Smith</Father>
<f$I:Parent>

Note that in this example:

— The given $I:Parent expression is intended to represent a class of XML expressions which encodes
information about all the individuals having Peter Smith as their father. However, the exact structure,
including tag names, list of attribute-value pairs and the nesting pattern of the expression containing the
subexpression <Father>Peter Smith</Father> which encodes the individuals’ father information, is
unknown and represented by an I-variable $I:Parent.

— Father is a name in N.

— Peter SmithisastringinE’. O

Definition 7 [y, the set of ground XML expressions)
Gx is that subset of _4 which consists of all ground XML expressions in _4.]

Example2 As an example of ground expressions in (%, consider the following XML expression encoding
information about the individual with the name John Smith:

<Person ssn="99999">
<Name>Jlohn Smith</Name>
<Father>Peter Smith </Father>

<Mother>Mary Smith</Mother>
<fPerson>

where — Person, ssn, Name, Father, and Mother are names in .
- "99999", John Smith, Peter Smith and Mary Smith are strings in Q". [J

Example 2 shows that mappings between conventional XML elements and ground expressions in Gy are

apparently straightforward, as no translation or modification is needed. Example | has demonstrated the the
employment of various types of variables in XML expressions for the representation of a group or a class of
XML elements with some common attributes or subelements.

4.3 Specializations

Definition 8§

A Foundation for XML. Document Databases: Data Model

[w4 basic specialization mapping]

8

Let Gy be (NVAR x NVARYU (SVAR x SVARY W (PVAR x PVAR) U (EVAR x EVAR) W (IVAR x IVAR) U
(PVAR x (NVAR x SVAR x PVAR)) W (EVAR x (EVAR x EVAR)) W ((PVAR w EVAR W IVAR) x {e}) U
(NVAR x N) U (SVAR x ') U (EVAR x _4) U (IVAR x (NVAR x PVAR x EVAR x EVAR x IVAR)).

Elements of (are called basic specializations. Let a € _4. The basic specialization mapping vy G —

partial_map(_+4) is defined in Table 1. O

Table 1. The basic specialization mapping +x.

Type -

i

‘Basic Specialization ¢ In (x

Applicability
Condition

{c)(a) is Obtalned
from a by

o

1. Variable Renamiing

PR

c = (var,, var;)

€ (NVAR x NVARY W (SVAR »
SVARY W (PVAR x PVAR)Y W (EVAR x
EVARY W (JVAR x [VAR)

Replacement of all
occurrences of var; in a by
var;.

e - B A TP
‘2. Variable Expansion
o T =

Ciay el

2.1 P-variable .
T el

%3

¢ = (pvar,, (nvar, svar, pvary))
€ PVAR < (NVAR x SVAR < PV4AR)

Forevery tagina
containing pvar,
that tag does not
contain nvar as one
of its attribute name

Replacement of all
occurrences of pvar) in a by
the sequence of the pair
nvar=svar and the P-variable
pvar,.

:,QLQ_E—.varf;i(l_ﬁ‘{g;_‘r
LT R R

¢ = (evar, (evar,, evary))
€ EVAR x (EVAR =~ EVAR)

Replacement of all
occurrences of evar in a by the
sequernce evar, evary.

“3XVariable Removal -_

B h Y

¢ = (var, £)
€ (PVAR w EVAR) x {&},
where € denotes the null symbol

Remaoval of all occurrences of
varina.

c={(ivar,g) € IVAR = e},
where £ denotes the null symbol

Removal of all occurrences of
<jvar> and </fvar> in a.

4. Variable Intantiation

4.1. N-variable-

c=(mvar,nye NVAR » N

Forevery tagina
containing svar as
one of its attribute
name, that tag does
not contain an
attribute named n

Replacement of all
occurrences of nvar in a by n.

4.2.5- and E-variable

¢ = (var, val)

€ (SVAR x ZY W (EVAR x _4)

Replacement of all
occurrences of var in a by val.

4.3. I-variable

¢ = (ivary, (nvar. pyar, evar,, evars,
fvary))) € JTVAR x (NVAR x PVAR =
EVAR x EVAR » [VAR)

Replacement of each
occurrence of the ivar,
expression nested in a by the
expression of the form
<nvar pvar>

evar,

<fvar,> content </ivary>

evar,
</nvar>
where content represents the
content of that occurrence of
ivar expression.

By the definitions of (k and the basic specialization mapping vy, which is used to determine the application of
each basic specialization ¢ € (to an expression a € 4., there are four types of basic specializations:

1. Rename variables.

Expand a P- or an E-variable into a sequence of variables of their respective types.
Remove P- or E-variables.

Instantiate variables to some vatues which correspond to the types of the variables.

PESR VA]

A Foundation for XML Document Databases: Data Model 9

'Definition 9 [.S, the set of specializations, and the specialization mapping)

Let S = G, i.c., the set of all sequences on (. Based on vy, the specialization mapping uy. Si —
partial_map{(_4) is defincd by:

HdAXa) = a, where 4 denotes the null sequence,

e - sXa) = (s vlcXa)), where ¢ € G, s € Scand a € _4.
Note that u{s}a) is defined only if all elements in s are successively applicable toa. [

Example 3 This example demonstrates that the expression shown in Example 1 can be specialized to the one
given in Example 2 by means of the specialization operator uy. Let @ € S be the sequence (¢, ¢; ¢; ... ¢9),
I defined in Table 2, and a, denote the expression in Example 1. Table 2 illustrates the derivation of the expression
a.&

b
Table 2. Application of &to a,.

" Delinition of Baslc Speclalization ¢; € (x ’ Application of Resulting XML Expression

a; = <$N:Person $P:PersonAttrl>
¢; = ($1:Parent, ($N:Person, $P:PersonAttrl, $E:PersonDatal
$E:PersonDatal, $P:PersonData2, <$l:Parent2>
, $1.Parent2)) wvc)) to g <Father>Peter Smith</Father>
€ IVAR x (NVAR x PVAR x EVAR x EVAR x </$1:Parent2>
[IVAR) $E:PersonData?2
3, </Person>

\ ay = <$N:Person $P:PersonAtirl>
<Name>John Smith</Name>
¢y = ($E:PersonDatal, <$l:Parent2>
<Name>John Smith</Name>) vi{ci) 10 &y <Father>Peter Smith</Father>
€ EVAR x _4 <f$1:Parent2>
$E:PersonData2
</Person>

ay = <$N:Person $P:PersonAttrl>
<Name=>John Smith</Name>
¢3 = ($E:PersonData2, <$l:Parent2>
<Mother>Mary Smith</Mother>) vilcy) to ay <Father>Peter Smith</Father>
€ EVAR x _4, </$I:Parent2>
<Mother>Mary Smith</Mother>
[</Personz>

| as = <$N:Person $P:PersonAttrl>
<Name>John Smith</Name:>
cs = ($L:iParent2, €) € fVAR x (g} v{cs) to ay <Father>Peter Smith</Father>

<Mother>Mary Smith</Mother>
</Person>

ag = <Person $P:PersonAttri>
<Name>John Smith</Name>
s = ($N:Person, Person) € NVAR x N vi{cs) to as < Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
</Persgon>

ar = <Person $N:SSN=%$S:SSN $P:PersonAttr2 >
¢ = ($P:PersonAttrl, ($N:SSN, $S:SSN, <Name>John Smith</Name>
$P:PersonAttr2)) vl Cs) 1O ag <fFather>Peter Smith</Father>
€ PVAR < (NVAR x SVAR x PVAR) <Mother>Mary Smith</Mother>
</Person>

ag = <Person ssn=%5:5S5N $P:PersonAttr2>
<Name>John Smith</Name>
€7 = ($N:SSN, ssn} € NVAR x N vi{e7) to as <Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
</Person>

aq = <Person ssn="99999" $P:PersonAttr2>
<Name>John Smith</Name>
€y = ($5:55N, "99999") € SVAR x C* v{cs) 10 ag <Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
</Person>

ayp = <Person s55n="99999">

<Name>John Smith</Name:>
€y = ($P:PersonAttr2, £) € PVAR = (¢} Vo) 10 Wy <Father>Peter Smith</Father>
<Mother>Mary Smith</Mother>
- </Person>

A Foundation for XMU Document Datasbhases: Data Maodel 10

In other words, by successive applications of the members of €10), one obtains the element g, 8 = a,,, which
is the one shown in Example 2. Also, note that &is not the only specialization that can specialize a; o ayo. For
ample, analtemative is @ = (G G cici G osad €S O

4.4 Specialization System for XML Expressions and XML Declarative Description

In the sequel, et Ty = {_h Seop). The definitions of W, Gr. Sy and g readily show that Ty
specialization svstem since it satisties the three requirements of specialization systems.

—
w

Definition 10 [Specialization system for XML expresstons]
The speciaizarion svstem for XML expressions s Uy = AL a0 Sy . O
Proposition 1 The specialization system for XML expressions in Definition [0 satisfies the three requirements
of specialization svstems, 1.¢.,
oo ¥sn 828 NG 38 € S ads)Y =l sy) T ads:),
A F N N
3. g‘.\ [—_— v!\ O

Proer

L aw s = a

LooLetsy =4 7 oo d0and s = 0 G L0 dL be clements of NIt follows immediately trom the definitions
of Sypand o that there exists s = (3030 00 J) s L such that gl) = ads) © andss)
-

20 Obvioushy, i ANaY = a0 foreach ¢ € © A, where ©is the null sequence.
3. By Definition 7, (g isasubsetof 4. =

Afler the spunla:.\tmn svitem for XML c\prcssiom s Jdefined, the definitions of VML clawses, VML
fons (AVML-DDY and the Jdecdararive semenrics of an XML declarative deseription are
obtained directiy from the DD theory (of. Seenon 3.

Joclaranve Jdosor

53 XML Document Modeling

NAML-DD theory, fomulated in Section 4, will be applicd to the management of NMU Jocuments

A comeentional XMU element s represented directly as a ground XML expression in (i A class of XML
clements, swhich share certain similar components and structures, can also be represented as an XML expression
with vanables. These variables are used to represent unknown or similar compoenents (which could be tag names
lists of attrnibute-value pairs, subclements or nesting structures) shared by the elements in the class. For instance,
in order to represent a set of XMLU elements encoding intormation about individuals born in 1973, one can
simply construct an XML expresston with a Person tag name containing a BirthYear subexpression, the content
of which s 1975 Other information that may vary, such as their Names, Parents and SSNs, is expressed
implicitly through the use of variables. Thus, an XML document, comprising a set of # XML elements, is
directy mapped into a set of 21ounit clauses. cach of which desceribes its corresponding XML element in the
document. Besides this simple and straightfors and representation of XML clements, the proposed approach also
pormits o define io terms of non-unit clauses e conseraenrs, ¢l data integriny, path and type constraints
LEE]L as well as vrowdedee and complen relanonshys among XML elements, e, referential relationship.

A celiccton of XML documents, each of which contains a sequence of XML elements probably contonming
to diterent DTDs can be modeled by a deseription £ eonsisting of gedn Clauses and non-wenr clauses. Intuitivels,
for ¢ « S oand a unit clause in £ ot the torm (M «— 3.0 He s a ground XML expression, then AHd will be
meluded in the meaning ot £, white a non-unit clause in £ ot the form (M «— By .., B0 > 1L s interpreted as
foltows for even ¢ ¢ Sgthat makes Bl oL o true with respect to the meaning of £, the expression Hed will
be dernved and meluded in the meaning of P In other words, tor eveny binding of variables contained in such a
clause that makes all the constraints and relationships specified in the body of that clause satistied. an expresston
represented by the head of the clause will be included in the meaning of % Theretore. the declarany e meaning of
Fovaclds all the directly represented XML elements in the decument collection, e, those evpressed by unit
clases, tovether wath all the derived ones. which man be restricted by constraints, Thus, in additon w the
o s s whech e ony based on oy pattern mtching, ore can also asue seloctinve, comploy Juenes

Ahont s oo ey mnenmatien (4] Moo er, By omcoporation of sot-ot references, the proposed approach

A Foundation for XML Document Databases: Data Model 11

readily enables formulation and evaluation of group-by and aggregate queries. Detailed discussions on the
formulation and the processing of XML queries under the proposed approach are presented in [4].

It is important to emphasize that the proposed approach also provides simple means for a restriction of XML
data to those which satisfy a given DTD. They are materialized by directly translation of a DTD into a

corresponding set of clauses for the checking of the validity of an XML document with respect to the DTD. The
theoretical details of such formalization are available in [4].

<IELEMENT Person (Name, BirthYear, Parent?}>
<IATTUST Person ssn ID #REQUIRED
state IDREF #REQUIRED
gender {Male | Female) #REQUIRED >
<!ELEMENT Name {#PCDATA)>
<IELEMENT BirthYear (#PCDATA)>
<IELEMENT Parent EMPTY>
<|ATTLIST Parent father IDREF #IMPUED
mother IDREF #IMPLIED >
<IELEMENT State (Name)>
<IATTUST State id ID #REQUIRED>

Fig. 1. An XML DTD example

Example4 Let P be a description which represents an XML document encoding demographic data and
conforming to the DTD given in Fig. 1. Assume that such a document contains three Person elements and a State
element and P comprises the following nine clauses, denoted by C, — Co:

Ci: <Person ssn="99999" state="NY" gender="Male">
<Name:>John Smith</Name>
<BirthYear>1975</BirthYear>
<Parent mother="55555" />

</Person> — .

C,: <Person ssn="55555" state="NY" gender="Female">
<Name>Mary Smith</Name:>
<BirthYear>1950</BirthYear>
<Parent father="11111"/>

</Person> «— .

(3. <Person ssn="11111" state="NY" gender="Male">
<Name>Tom Black</Name:>
<BirthYear>1920</Birthvear>

</Person> «

Cs <State id="NY">

<Name>New York</Name>
</State> «—

Cs: <ValidPerson ssn=4$5:PersonSSN state=$S:Stateld $P:PersonAttr>
$E:PersonData
</ValidPerson>
« <Person ssn=$S:PersonSSN state=$S:Stateld 4$P:PersonAttr>
$E:PersonData
</Person>,

<ValidState id=45:Stateld>
$E:StateData
</ValidState >,

Cs: <Ancestor ancestor=$S:FatherSSN descendent=$S:PersonSSN/>
«— <ValidPerson ssn=$S:PersonSSN $P:PersonAttr>
$E:PersonSubelement

<Parent father=%$S:FatherSSN $P:ParentAttr/>
</ValidPerson:>.

A Foundation for XML Document Databases: Data Model 12

Cr <Ancestor ancestor=$S:MotherSSN descendent=4$5:PersonSSN/ >
« <ValidPerson ssn=%5:PersonSSN $P:PersonAttr>
$E:PersonSubelement
<Parent mother=4$5:MotherSSN $P:ParentAttr/>
</ValidPerson>.

Cs: <Ancestor ancestor=$S:FatherSSN descendent=$5:DescendentSSN/ >
«— <Ancestor ancestor=%$S:AncestorSSN
descendent=%$5S:DescendentSSN/ >,

<ValidPerson ssn=4%5S:AncestorSSN $P:PersonAttr>
$E:PersonSubelement
<Parent father=$S:FatherSSN $P:ParentAttr/>
<fValidPerson>.

Cy: <Ancestor ancestor=$S:MotherSSN descendent=$5S:DescendentSSN/ >
<« <Ancestor ancestor=%$S:AncestorSSN
descendent=$S:DescendentSSN/ >,

<ValidPerson ssn=%$5:AncestorSSN $P:PersonAttr>
$E:PersonSubetement
<Parent mother=$5:MotherSSN $P:ParentAttr/>
<fValidPerson>.

Clauses C, — C; and C, represent Person and State elements in the document, respectively; clause Cs defines an
integrity constraint on the Person elements; and clauses C¢ — Cq represent knowledge about ancestor relationship.

The given DTD shows that the state atiribute belonging to the Person element is an attribute of type IDREF
intended to refer to a State element. With respect to such a referential integrity constraint, clause Cs specifies
that a Person element is valid if the value of the state attribute matches the id of some particular valid State
element. In addition to referential integnrity constraints, other kinds of integrity constraints can be similarly
defined; for instance, to restrict that

(i) the values of the father and mother attributes in a Parent element match the ssn of two particular Person

elements,

(ii) a Person must be younger than his/her Parents, i.e., to assure that such Person’s BirthYear must be

greater than the Parents’ BirthYears, and

(iii) the gender of a Person referred to as a father must be Male and a mother Fernale.

Clauses C4 — Cy derive ancestor relationships among the individuals in the collection. Clauses Cg and C;
specify that both father and mother of an individual are ancestors of such an individual. Clauses Cg and Cy
recursively specify that the father and the mother of an individual’s ancestors are also the individual’s ancestors.
This ancestor relationship represents an example of complex, recursive relationships which can be simply
expressed in the proposed approach. Synonym relationships can be dealt with in a similar manner. [J

6 Comparisons

Compared with other models, e.g., those based on graphs, hedge automaton and functional programming, the
proposed data model for XML documents provides a more direct and succinct insight into computation of and
reasoning with XML data.

From the reasoning point of view, employment of an existing deductive database approach [14, 21], such as
Datalog, and some of its extensions, e.g., LDL and Relationl.og, to XML document modeling may be proposed.
However, since such an approach provides inexpressive flat structures and cannot directly support the complex,
nesting structure common in XML syntax, it exhibits a significant problem in modeling and representing XML
data. An XML element must be translated and expressed in terms of its permitted representations only,e.g., asa
set of atomic formulas in Datalog. Identical XML elements may have several corresponding representations
depending on the employed translational scheme. Moreover, the difficulties encountered during application of
the refational approach to modeling XML data remain inherent in deductive database approaches. In addition, it
is difficult to express a query when the document schema, element tag name or the nesting level at which the
required element occurs is unknown. Such an approach therefore trades the structural information and the
expressive power underlying in XML documents for an application of an existing theory.

Table 3 detiberately compares several important aspects of XML data management.

Table 3. Comparison of approaches to XML data management.

A Foundation for XML Document Databases: Data Model 13

retles/ _1 N s “ Approaches . .
gu::ﬁonahﬁav e Grnph Based " Hedge "~ Functional -- _ Datalog Declarative
B L - | Automaton- Programming : ‘Description
X »__f.l'au_s &% ? Rooted, cdgc- Hedges Typed feature Atomic formulas XML
re'prueai ition » 17| labeled graphs terms or relations expressions
7 Yes, by integration No No Yes, by means of Yes, by means of
Laad 4| of first-order logic built-in predicates | constraints in the
| theory. However, description
the support is theory
limited to only for
£l path and type

constraints.

Yes Yes Yes, by means Yes, but rather Yes, by means of
of list difficult to deal equivalent
comprehension with very transformation of
evaluation complicated XML-DDs

structured data
DTPb valldnﬂon md No Yes, by No Yes, by means of Yes, by means of
"Tuhjcﬂou luppor'f"'-. means of the Datalog programs | descriptions
’-"v l:.- :J'A-'.- i hedgc
automaton

Yes, but limited to Yes, by Yes, by means Yes Yes

only reasoning means of the of list

about path and type | hedge comprehension

A constraints automaton evaluation
Yes No Yes Indirect support by | Indirect support

employment of by employment
variables and of variables and
recursions in recursions in

e T Datalog rules clauses

Provlslon of suec!.nc No No No No Yes

. representation and .

-operation o!' JCML

data

7 Conclusions

An expressive, declarative data model has been developed, founded on a theoretical basis upon which
representation and computation of as well as reasoning with XML data can be carried out in a uniform and
succinct manner. Integration of the proposed data model with an appropriate computational paradigm, e.g.,
Equivalent Transformation (ET) (3], allows efficient manipulation and transformation of XML documents, query
evaluation and validation of XML data against some particular DTDs.

In order to help demonstrate and evaluate the effectiveness of the proposed approach, XML-ETC Engine — an
casy-to-use, Web-based XML processor — has been implemented under ETC - a compiler for programming in
ET paradigm. The systern has been tested against a small XML database with good performance; a more
thorough evaluation of the system with a large collection of XML documents is underway.

Acknowledgement

This work was supported in part by Thailand Research Fund.

References

1. Akama, K.: Declarative Semantics of Logic Programs on Parameterized Representation Systems. Advences in Softwure
Science and Technology, Vol. § (1993) 45-63

2. Akama, N.:

Declarative Deseniption with Rererences and Eguivalent Transformanten of Nepatine Keterenoe.

Report, Department of Information Engineening. Hokhaido University . Japan (1995)

/VL't Al e

A Foundation for XML Document Databases: Data Model 14

Akama, k., Shimitsu, T., Miyamoto, E. Solving Problems by Equivalent Transformation of Declarative Programs.
Journal of the Japanese Society of Artificial Intelligence, Vol. 13, No. 6 (1998) 944-952 (in Japanese).

Akama, K., Anutariya, C., Wuwongse, V. and Nantajeewarawat, E.: A Foundation for XML Document Databases:
Query Formulation and Evaluation. Technical Report, Computer Science and Information Management Program, Asian
Institute of Technology, Thailand (1999)

Anutariva, C., Wuwongse, V., Nantajeewarawat, E. and Akama, K.: Towards a Foundation for XML Document
Databases. Proceedings of I¥ International Conference on Electronic Commerce and Web Technologies (EC-Web
2000), London, UK. Lecture Notes in Computer Science, Springer Verlag (2000) (to appear)

Anutariya, C., Wuwongse, V., Akama, K. and Nantajeewarawat, E.: A Foundation for XML Document Databases: DTD
Modeling. Technical Report, Computer Science and Information Management Program, Asian Institute of Technology,
Thailand (1999)

Apparao, V., Et Al: Document Object Model (DOM) Level 1 Specification Version 1.0, October 1998. W3C
Recommendation (1998) Available at httpi//www. w3 org/TR/AREC-DOM-Level-1/

Beech, D., Malhotra, A., Rys, M.: A Formal Data Mode! and Algebra for XML. B3C XML Query Working Group Note,
September 1999 (1399)

Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML) 1.0, February 1998. W3C
Recommendation (1998) Available at http:/www. w3 org/ TR/REC-xml

Buneman, P., Deutsch, A, Tan, W.C.: A Deterministic Model for Semi-Structured Data. Workshop on Query
Processing for Semistructured Data and Non-Siandard Data Formats (1998)

Available at http://db.cis.upenn.edwDL/icdl.ps.gz

Buneman, P., Fan, W., Weinstein, S.: Interaction between Path and Type Constraints. Proc. ACM Symposium on
Principles of Database Systems, PODS (1999} Available at fip://fip.cis.upenn.edu/pub/papers/db-research/pods99.ps.gz
Fernandez, M., Siméon, J., Suciu, D. and Wadler, P.: A Data Mode! and Algebra for XML Query. Draft Manuscript
(1999) Available at http://www.cs.bell-labs.com/~wadler/topics/xml html#algebra

Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the Lore Data Model and Query
Language. Proc. 2nd International Workshop on the Web and Databases, WebDB '99, Philadelphia, Pennsylvania
(1999)

Liu, M.: Deductive Database Languages: Problems and Solutions. ACM Computing Surveys, Vol. 31, No. 1 (1999)
Murata, M.: Forest-regular Languages and Tree-regular Languages. Technical Report, Fuji Xerox Information Systems
(1995) Available at http://www peocities.com/ResearchTriangle/Lab/6259/prelim1.pdf

Murata, M.: Hedge Automata: A Formal Model for XML Schemata. Technical Report, Fuji Xerox Information Systems,
(1995) Available at http://www geocities.com/ResearchTriangle/1.ab/6258/hedee nice.pdf

Murata, M.: Transformation of Documents and Schemas by Patterns and Contextual Conditions. Principles of Document
Processing, Proc. 3rd International Workshop (1996)

Available at hup//www.peocities.com/ResearchTriangle/Lab/6259/podp96.pdf

Murata, M. DTD Transformation by Patterns and Contextual Conditions. Proc. SGML/XML '97 Conference (1997)
Avaitable at http://www fxis.co jp/DMS/spml/xml/sgmlixmi97 htm!

McHugh, J., Abiteboul, S., Goldman, R., Quass, D. and Widom, J.; Lore: A Database Management System for
Semistructured Data. SIGAMOD Record, Vol. 26, No. 3 (1997) 54-66

Availabie a1t fip;/‘db stanford edu/pub/papersilore97.ps

Sacks-Davis, R., Amold-Moore, T., Zobel, J.: Database Systems for Structured Documents. [E/CE Transactions on
Informarior and System, Vol E78-D, No. 11 (1995) 1335-1341

Ullman, J. D.: Principles of Database and Knowledge-Base Systems. Computer Science Press, Maryland (1988)

A Foundation for XML Document Databases: DTD Modeling 2

set of directed edges and vertices) needs to be defined. On the other hand, if a document’s semantics is taken into
account, the document is then represented as a set of related tuples contained in their comresponding relations;
different documents are probably modeled differently, whence resulting in a very complex and huge database
schemas. A DTD is then formalized as a set of Datalog rules, where predicates contained in each rule have
structures corresponding to the selected document’s relational representation.

A new approach is presented to the modeling of XML DTDs by employment of XML Declarative Description
(XML-DD) theory (6,17] which serves as a foundation for the representation and computation of as well as
reasoning with XML data. In this approach, an XML DTD is represented as an XML-DD which comprises a set
of clauses, to be referred specifically as DTD clauses. Such an XML-DD is obtained directly by translation of
each of the element type and attribute-list declarations contained in the DTD into a corresponding set of DTD
clauses and consequence combination of these sets. This formalism also facilitates the development of a simple
mechanism for convenient determination of whether a given XML element/document conforms to the grammar
imposed by the DTD or not. Besides providing means for restriction of a document’s syntactical constraints, this
formalism can also be applied to enforce various kinds of integrity constraints which are not expressible in terms
of DTDs but are extremely important in query evaluation [5] and optimization, e.g., atomic typing (char, integer,
float, etc.) and restrictions on the type of IDREF(S).

Section 2 summarizes the XML-DD theory developed in [6,17] and presents its extension for dealing with
references, Section 3 develops a formalism for modeling XML DTDs, Section 4 presents an approach to
validation of an element/document against a particular DTD, and Section 5 concludes and outlines future
research.

2 XML Declarative Description Theory

2.1 Declarative Description Data Model for XML Documents

In the declarative description data model for XML documents [17], developed by employment of Declarative
Description (DD) theory (1,3,4], the definition of an XML element is formally extended by incorporation of
variables in order to represent inherent implicit information and enhance its expressive power. Such extended
XML elements, referred to as XML expressions, have a similar form to XML elements except that they can carry
vaniables. XML expressions without variable will be called ground XAl expressions or XML elements, those
with variables non-ground XML expressions. There are several kinds of variables useful for the representation of
implicit information contained in XML expressions: name-variables (N-variables), siring-variables (S-
variables), attribute-value-pair-variables (P-variables), XML-expression-variables (E-variables) and
intermediate-expression-variables (f-variables). Every variable is preceded by ‘$” together with a character
specifying its type, i.e,, ‘$N’, *$5°, *$P°, *$E’ or *$I°.

An XML expression alphabet 2y comprises the symbeols in the following sets: X (a set of characters), N (a set
of names), NVAR (a set of N-variables), SVAR (a set of S-variables), PVAR (a set of P-variables), EVAR (a set of
E-variables} and IVAR (a set of I-variables).

Intuitively, an M-variable will be instantiated to an element type or an attribute name, an S-variable to a string
on L', a P-variable to a sequence of attribute-value pairs, an E-variable to a sequence of XML expressions, an /-
variable to a part of an XML expression. Such variable instantiations are defined by means of basic
specializations each of which is a pair of the form (var, val), where var is the variable to be specialized and va/ a
value or tuple of values describing the resulting structure. There are four types of basic specializations:

rename variables,

1.
2. expand a P- or an E-variable into a sequence of variables of their respective types,
3. remove P-, - or /-vaniables, and

4. instantiate variables to some values which correspond to the types of the variables.

Let _4 denote the set of all XML expressions on Qy, G the subset of _4 which comprises all ground XML
expressions in _4., Cx the set of basic specializations and vy : G — partial_map(_+4) the mapping from (i to the
set of all partial mappings on _#4 which determines for each basic specialization ¢ in (the change of elements
in _+4 caused by c. Let Ay = (_4. Gy, G, v&) be a specialization generation system, which will be used to define
a specialization svstem characterizing the data structure of XML expressions and sets of XML expressions.

Let I"be a set of ser variahles,

A= AN 0= G 2%, O oo (e 2R,
and

|

il

A Foundation for XML Document Databases: DTD Modcling 3

v: C— partial_map(_4
the mapping from Cto the set of all partial mappings on _¢which determines for each basic specialization e in
the change of objects in _dcaused by ¢ such that

1. Ifce G anda e _4,
then YcKa) = vy (c)(a).
2. Ifce(C-G)andae _4,
then WcXa) = a.
3. Wce GuS={a,....aun, Vi,Va} € (A~ _4).a, € Acand v; € V,
then YcXS) = {w{c)a)),..., videXa,), vi, ..., va)
4. Ifc=(.R) e (C-Gland S={x,...,x,, v} € (_A- 4,
then W(c)}(S) = {x;, ..., x, } W R.

In order to distinguish a set variable from other types of variables, every set variable in ¥ will be preceded by
‘$V’. In the sequel, let

F=(AG S u (h

be a specialization system for XML expressions with Slat sets, where S = " and y: S— partial_map{_ 4 such
that, fora € _4

K A)a) = a, where A denotes the null sequence,

M - s¥a) = (hs}(Ac)a)), wherec e Cand s € &

Elements of _{ Jand Sare called objects, ground objects and specializations, respectively. The mapping 4 is
called the specialization mapping. Note that when 4 is clear from the context, for @ € S 14 &(a) will be written
simply as a6, and, for X € ¥, a singleton {X} will be written as X,

The definition of XML declarative description with references together with its related concepts can be given
intermsof ' =(_4 ¢ S).

2.2 XML Declarative Description with References

An XML declarative description on T, simply called an XML-DD or a description, is a (possibly infinite) set of
clauses on T, each in the form

H(—BhB:,...,B,.,. {2’

where n 2 0, # is an XML expression in _4, and B8, an XML expression in _4, a constraint or a reference on |
H is called the head and (B, B, ..., B,) the body of the clause. Such a clause, if n = 0, is specifically called a unir
clause, and, if n > 0, a non-unit clause. .

Let X be a set of constrains predicates. A constraint on I' is a formula g(e, a,), where n > 0, g 's 4
constraint predicate in A"and a, an object in _< Given a ground constraint g(g,. ..., g.). g, € G its truth or fal?my
is assumed to be predetermined. Denote the set of all true ground constraints by Tcon. The notion of constraints
introduced here is useful for defining restrictions on objects in .4 t.e., both on XML expressions in <4 and on
sets of XML expressions in X 4% 4

Let Fbe the set of all mappings: 2% — 2% the elements of which are called reference Sunctions. A reference on
Iisatriple r = (a, /, P) of an object g in _« a reference function fin Fand a description £, which will bf' called
the referred description of r. A reference (g, f, P)is a ground reference \fY g € (, Such a notion of rc!crcncc.ﬂ
introduced here together with appropriate definitions of id-, idrefs and idfefs-reference functions in F (ct
Definition 9, Subsection 3.2) will be employed to restrict wnigueness and referential constraints imposed by
attributes of types ID and IDREF(S), respectively (cf. Definition T, Subsecuion 3.2) For instance, given an
XML element identified by x. in order to ensure the uniqueness of such an identifier x with respect to a paricular
XML document represented by a description P, an id reference (<id value=x/>, id,,. F)is formulated _

Given a specialization # e application of #to a constraint gla,, . a.) s the construint gf{a, £, Lanth, o
a reference {a. f. Py the reference {a. f. Py = (ad [P)and o aclause (M « B, K., |, B.ythe clause (/& «-
B\6. B:6, ... B.®. The head of a clause € will be denoted by headiC) and the set of all objects (XML
CXPressions), constraints and references in the bondy of 0 by heel i) coni 0 and e T, respectinely ot
bO\f_\(C‘) = obyecnCy G U L om0 N clause O s o Kroend e it Conipnises o Ieareung oo
Rround constraints and ground references

A Foundation for XML Document Databases: DTD Modeling 4

Let C be a clause (cither unit or non-unit clause) and P a description on I'. The Acight of C and P, denoted by
het(Cyand hgn(P), respectively, are defined as follows:)

1. The height of the clause C is zero if C contains no reference, i.c., if reffC) = .

2. If the clause C contains references, its height is equal to the maximum height of the all referred
descriptions contained in its body plus one.

3. The height of the description £ is the maximum height of all the clauses in P,

Let P be a description on [, The meaning of P, denoted by 44 P), is defined inductively as follows:

1. Given the meaning, 44(2), of a description @ with the height m, a reference r = (g, f, () is a true
reference T g € AAAQ)). For any m 2 0, define Tref{lm) as the set of all true references the heights of
the referred desceiption of which are smaller than or equal to m, e

Trefim) = ((@fiR) | € G fe £ hgtRYSm, g € f(AR)) 3)

rJ

The meaning, A4, of the description £ with the height m + 1 is a set of ground XML expressions
detined by

an

andy = | i 17o) 4)

LA

where O is the empty set, [Tp](O) = TA[Tr]7'(O)) and the mapping Tp: 2552%1s defined as follows:
Foreach Vo (v e TAV) it there exist a clause C e P and a specialization € € Ssuch that C6 is a
ground clause the head of which is g and all the objects, constraints and refercnces in the body of
which belong to X, Teen and Tref{n), for some 11 £ m, respectively, i.e.:

TN = {head(CH | C e P, eX, C8 isaground clause,
objecCH < X, con(COH < Teon, (%)
relCOh e TreAm, nsm '}

Intuitively, given a deseription P, its meaning, AAF), is a set of all the ground XML expressions which can be
derived from the clauses in P. In other words, givena clause C= (H « 8, B;, ... B), n2 0, in P, furevery 8 &

Sthat makes B 6, 8.6, ..., B¢ true with respect to the meaning of P, the expression H6 will be derived and
included in the meaning ot £,

3 XML DTD Modcling

This section employs the XML-DD theory, formulated in Section 2, to model XML DTDs.

3.1 Element Type and Attribute-List Declarations

Element tvpe and atribere st declarations are two essental declarations contained in an XML DTD, used to
define the ordering and structuring of elements in a document. An element type declaration tvpically specifies
the clement’s content model In other words, it provides a gramimar regulating the structure of the clement’s
content which could be empty, character data or a valid sequence of the allowed types of child elements. An
attribute-list declaration specifies the names, data oypes as well as default values (it any) of attributes associated
with a given element type.

NML elements” content models can be cateorized into three classes: emprv, simple and complex (or nested)
comtent models. An clement type has empty content it elements of that type are empty, i.c., they are encoded by
empty -clement tags onby, it has simple content if clements of that type contain merely character data, and it has
complen content it elements of that type contain a sequence of one or more child elements. For these three
classes of content models, there are also three corresponding forms of clement type declarations: empty, simple
and complex forms, Each form is used to declare element tvpes with the respective content model, i.¢., an empty-
content clament tvpe s dechired byoan empty Stomucd Jdechirative, o simple-content element tape by g simple-

A Foundation for XML Document Databases: DTD Modeling 5

,formed declaration and a complex-content element type by a complex-formed declaration which employs
content particles (simply referred to as particles) to constrain the element’s content.

Given below is the formal definition of content particles which will be used in the definition of complex-
formed element type declarations (cf. Definition 2-3).

Definition 1 [Content particles]

A content particle on a set of names N takes one of the forms:

1. Ungqualified content particle

1.1. atomic form: elem-type
1.2. choice-list form: (cpi]---lepn)
1.3. sequence-list form: (cpy,...,cpn)

2. Qualified content particle:

2.1. ?-form: cp?

2.2. +-form: cp +

2.3. *-form: cp*
where — “elem-fype is an element type in N,

- n>1,

— cp;is a content particle,
— ¢p is an unqualified content particle.

Let CP be the set of all content particleson N. [

Apparently, a content particle is simply a regular expression over element types in V.

Definition 2 [Element type declarations]
An element type declaration on N assumes one of the forms:

1. empty form: <IELEMENT elem-type EMPTY >
2. simple form: <IELEMENT elem-type (#PCDATA) >
3. complex form: <IELEMENT elem-type content-particle >

where — elem-type € N specifies the element type being declared
— content-particle € CP describes the element’s content model.

Let ETD be the set of all element type declarationson N. O
From the definition of element type declarations, an element type having a very complex content model can

be simply described by a content particle which is formed by combinations of nested content particles and
occurrence qualifiers ¢?°, ‘“+” or **’.

Definition 3 [Attribute-list declarations]

An attribute-list declaration has the form:

<IATTUST elem-type attr-name, attr-type, attr-default,

attr-name,, attr-lype, attr-default, >
where

nzl,
elem-type & N specifies the type of element that will be associated by the specified set of attributes,
the attr-name; e N are distinct attribute names,
= attr-type; € {CDATA, ID, IDREF, IDREFS}
U {(value, | ... | value,) | value; € L* are distinct enumerated values},
— atir-default; ¢ {#REQUIRED, #IMPUED}
 {#FIXED jfixed-value | fixed-value € L*}
w

Let ALD be the set of all attribute-list declarations. O

A Foundation for XML Document Databases: DTD Modeling 6

Definition 4 |Document type declarations]

A document type declaration is a sequence d, d} ... d,, where d, € (ETD w ALD). Let DTD = (ETD w ALD)*,
i.c., the set of all sequences on (ETD w ALD), be the sct of all document type declarations. O

3.2 XML DTD Translation

In the proposed approach, an XML DTD is modeled as a description comprising a set of clauses. Such clauses,
precisely referred to as DTD clauses, are obtained directly by translation of each of the element type and
attribute-list declarations contained in the DTD into a corresponding set of clauses and then combination of these
sets. The numbers of clauses formulated for an ¢lement type declaration and for an attribute-list declaration
depend solely on the complexity of the element type's content model and on the number of the declared
attributes, their specified types and default values, respectively. The more complex is an element’s structure, the
greater a number of DTD clauses is obtained.

There are two classes of DTD clauses, namely, those that restrict element types’ content model and those that
constrain associated lists of attributes. The tag name of the head expression of each DTD clause starts simply
with the name of the translated DTD, concatenated with the name of the element type being restricted. Such a
head expression only describes certain particular restrictions on the element type's content model and merely
specifies a general pattern of associated attribute list. Additional restrictions on the element’s content model
(e.g., descriptions of valid sequences of child elements) and on its associated attribute list (e.g., attribute type and
default value constraints) are defined by appropriate specifications of XML expressions, constraints and
references in a clause’s body. An XML expression contained in a clause's body will be further restricted by the
other DTD clauses the head of which can be matched with that XML expression. Constraints and references in a
clause’s body are used to impose conditions on attribute types and default values.

An XML element is valid with respect to a given DTD, if such an element can successfully match with the
head of some clause translated from the DTD and all the restrictions specified in the body of such a clause are
satisfied.

Let XClause denote the set of all clauses on I'. Given next is the formal definition of the mapping 7cp to be
used for the definition of the element-type-declaration translator, rg (cf. Definition 6). Intuitively, 7cp recursively
translates a given pair (cp, cp-specification) into a corresponding set of clauses, where ¢p is a content particle
and cp-specification an underscored separated element type in N having the form dtd_elem-type_position, where
dtd specifies the translated DTD, elem-type the declared element type and position the location that ¢p occurs in
the declaration of elem-fype. In the sequel, assume that the DTD being translated is denoted by “drd™.

Definition 5 [rcp, the content-particle translaror)

Let ¢p € CP and cp-spec € N. The content-particle transiator tcp: (CP x N) — 2™ is defined by Table 1.
O

Table 1. rcp, the content-particle translator.

“Types of Content Particles Content Particle cp € CP 1ccp, cp-spec)

1. Unqualified Content Particle

reelep, cp-spec) = {C}, where
C: <cp-spec>
. cp = (elem-npe), $E:subexp
I.1. Atomic Form where elem-nipe € N </ep-spec> - <dtd_elem-iype>
$E:subexp
</dtd_elem-tvpe>.

n

recp, cp-spec) = U Tep (€pn cp-spec_i)w {Ci. ..., Cah

i=l

= here, foreach i e {1, ..., n},
ico-li ep=(cpil...|cpa) where,
1.2 Choice-List For .
oic m where n> 1, cp, € CP Cr Qp-;éesz> -
</cp-spec> — <cp-spec_I>

$E:subexp
</cp-spec_i>.

A Foundation for XML Document Databascs: DTD Modeling 7

" "Types of Content Particles ° | Content Particle cpeCP | T - Yerepyepspec) T R e e

rerlep, cp-spec) = U Tcp (epi cp-spec_i) U (C}, where
i=1

C: <cp-spec>
$E:subexp_1
1.3. Sequence-List Farm p h= (cps. l +CPa), $E:subexp_n
wherenz21,¢cp, € CP <lep-spec> - <cp-spec_1>
$E:subexp_1
<fep-spec_1>,
<cp-spec_i>
$E:subexp_n
</cp-spec_i>.

2. Qudlified Content Particles

teplep, cp-spec) = teplepy, cp-spec_1) v {C,, C;}, where

Cy: <ep-spec>
$E:subexp
2.1. ?2-Form P =(cp?), </cp-spec> “— <¢p-spec_l>
where ¢py € CP $E:subexp
<cp-spec_1>.
Gy <cp-spec>
</cp-spec> «~

teAcp, ep-spec) = tepepy, cp-spec_l)w {C,, Gy}, where

C: <cp-spec>
$E:subexp
<Jcp-spec> «— <cp-spec_1>
$E:subexp
<lep-spec_1>.
2.2. +-Form cp=(cpi+) Cr: qp:gii;ex
: p_1
where ¢cp; € CP $E-subexp_ 2
<Jep-spec> «— <¢p-spec_l1>
$E:subexp_1
<fep-spec_1>,
<cp-spec>
$E:subexp_2
<lcp-spec>.
teplcp, cp-spec) = teplcpy, cp-spec_1) v {Cy, Gy}, where
Cy: <cp-spec>
$E:subexp_1
$E:subexp_2
<fcp-spec> — <cp-spec_l>
2.3 *-Form cp=(ep *), $E:subexp_1
where c¢p, € CP <cp-spec_1>,
<cp-spec>
$E:subexp_2
<Jep-spec>.
Cy: <cp-spec>
</cp-spec> «—
Example 1 Given a content particle c¢p = (Organizer+ | Sponsor*) together with its specification

myDTD_Conference_1_ 2 which describes that cp occurs in the declaration of Conference element type of myDTD,

by means of the translator Tep, the pair (cp, myDTD_Conference_1_2) can be translated into a corresponding set
of clauses:

. 7ep((Organizer+ | Spoensar*), myDTD_Conference_1_2)
= rcp{Organizer+, myDTD_Conference_1_2_1)

 re{Sponsor*, myDTD_Conference_1_2_2)

2.

A Foundation for XML Document Databases: DTD Modeling

A {Clu CI}
where
C;: <myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2> «— <myDTD_Conference_1_2_1>

$E:subexp
</myDTD_Conference_1_2_1>.

C;: <myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2> « <myDTD_Conference_1_2_2>
$E:subexp
</myDTD_Conference_1_2_2>.

tcp(Organizer+, myDTD_Conference_1_2_1)
= tcp{Organizer, myDTD_Conference_1_2_1_1)

u {CJ| C‘l}
where
C;: <myDTD_Conference_1_2_1>
$E:subexp
<fmyDTD_Conference_1_2 1> «— <myDTD_Conference_1_2_1 1>

$E:subexp
<myDTD_Conference_1_2_1 1>.

Cs: <myDTD_Conference_1 2 1>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1_2_1> « <myDTD_Conference_1_2_1_1>
$E:subexp_1
<myDTD_Conference_1_2_1_1>,

<myDTD_Conference_1_2_1>
$E:subexp 2
</myDTD_Conference_1_2_1>.

tcp(Organizer, myDTD_Conference_1_2_1_1)
= {Cs)

where
Cs: <myDTD_Conference_1_2_1_1>
$E:subexp
</myDTD_Conference_1_2_1_1> « < myDTD_Organizer>

$E:subexp
</myDTD_Organizer>.

tep{Sponsor*, myDTD_Conference_1_2_2)
= 1cp(Sponsor, myDTD_Conference_1_2_2_1)
'\J {Cﬁv CT}

where

Ce: <myDTD_Conference_1 2 2>
$E:subexp 1
$E:subexp_2
</myDTD_Conference_1_2_2> «— <myDTD_Conference_1 2 2 1>
$E:subexp_1
</myDTD_Conference_1_2_2_ 1>,

<myDTD_Conference_1_2_2>
$E:subexp_2
</myDTD_Conference_1_2_2>.

Cy;: <myDTD_Conference_1_2_2>

</myDTD_Conference_1_2 2> “—

8

A Foundation for XML Document Databases: DTD Modeling 9

15. 1ep(Sponsor, myDTD_Conference_1_2_1_1)
= {GCs}

where

Cy: <myDTD_Conference_1_2_2 1>
$E:subexp
</myDTD_Conference_1_2_2_1> «

<myDTD_Sponsor>

$E:subexp

</myDTD_Sponsor>,

Then, let Py = rcp{cp, myDTD_Conference_1_2) = {C,,

v Cg). O

Based on the definition of the content particle translator 7cp, the definition of element-type-declaration

|
I], translatar t¢ is now given.

Let d € ETD be an element type declaration. The element-type-declaration translator tg: ETD — 2XC4e

defined by Table 2. 0O

Table 2. 1, the element-type-deciaration translator.

Definition 6 [, the element-type-declaration translator)

15

where elem-type e N

'*.;;I‘yges of Element ;| -Element Type Declaration : P - ol

iType Declarations o deETD ™. S =(d) . R
r{d) = {C}, where

1. Empty Form <JELEMENT elem-type EMPTY>, C: <did_elem-type>

<elem-type $P:attrlist/>
</dtd_elem-type>

«— <did_elem-type_attrlist_1 $P:attrlist/>.

<IELEMENT elem-rype (#PCDATA)>,

2. Simple F
‘mpie Form where elem-type € N

r{d) = {C}, where

C: <drd _elem-type>
<elem-type $P:attrlist>
$S:pcdata
</elem-type>
</dtd_elem-type>

« <dtd elem-type_attriist_1 $P:attrlist/>.

<IELEMENT elem-type cp>,

3. Complex Form
where cp e CP

t{d) = tcplep, drd_elem-nype _1)w {C), where

C: <did_elem-type>
<elem-rype $P:attriist>
$E:subexp
<felem-rype>
<did_elem-type>
«— <did _elem-type_attrlist_1 $P:attrlist/>,

<did_elem-type_l1>

$E:subexp
</did_elem-type_1>.

Example 2 Denote the DTD of Fig. 1| by myDTD. This example demonstrates a transiation of Conference
element type declaration g, into a corresponding set of clauses.

d: <IELEMENT Conference {(Name, (Organizer+ | Sponsor*))>

dy: <!ATTLIST Conference url ID #REQUIRED
type (International | Local) #REQUIRED
chair IDREF #IMPLIED>

dy: <!ELEMENT Name (#PCDATA)>

dy: <!ELEMENT Organizer (#PCDATA)>

dy: <!ELEMENT Sponsor (# PCDATA)>

dy: <!ELEMENT Person (#PCDATA)>

dy: <VATTLIST Person ssn ID #REQUIRED >

Fig. 1. An XML DTD Example.

A Foundation for XML Document Databases: DTD Modeling 10

1. dd\) = rp((Name, (Organizer+ | Sponsor*)), myDTD_Conference_1)
w {GCo}
where
Co: <myDTD_Conference>

<Conference $P:attrlist>
$E:subexp

</Conference:

</myDTD_Conference> “«— <myDTD_Conference_attriist_1 $P:attrlist />,

<myDTD_Conference_1>
$E:subexp
</myDTD_Conference_1>,

2. rep{(Name, (Organizer+ | Sponsor*)), myDTD_Conference_1)
= rep{Name, myDTD_Conference_1_1)
W re{(Organizer+ | Sponsor*), myDTD_Conference_1_2)

W {Co}
where
Cio: <myDTD_Conference_1>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1> «— <myDTD_Conference_1_1>

$E:subexp_1
</myDTD_Conference_1_1>,

<myDTD_Conference_1_2>
$E:subexp_2
</myDTD_Conference_1_2>.

3. rep{Name, myDTD_Conference_1_1)

= {Cu}
where
Ci: <myDTD_Conference_1_1>
$E:subexp
</myDTD_Conference_1_1> - <myDTD_Name>

$E:subexp
</myDTD_Name>,

4. r-p({Organizer+ | Sponsor*), myDTD_Conference_1_2)
= Pl
= [C[asay Cg}

These four steps yield P, = t(d\) = {Cs, Cip. C11} W Py.

Clause Cy imposes some restrictions on the Conference element. Its head specifies that every conforming
Conference element must contain a list of associated attribute-value pairs as well as a sequence of subelements,
represented by the P-variable $P:attrtist and the E-variable $E:subexp, respectively. Its first and second body
elements indicate that the validity of the attribute list and the subelement sequence will be determined by clauses
with the heads: myDTD_Conference_attrList_1 and myDTD_Conference_1 elements, i.e., by those clauses
obtained by translation of the declaration of Conference's attributes (cf. Example 3) and by clause Cios
respectively.

Clause C)q divides the subelement sequence of a Conference element into arbitrary two subelement sequences
and then specifies that restrictions on the first sequence are defined by means of the myDTD_Conference_1_1
expression (i.e., by clause C,; obtained from r-ps(Name,myDTD_Conference_1_1))) while restrictions on the
second sequence by myDTD_Conference_1_2 expression (i.e., by clauses C, and C; in description P, obtained
from zep{(Organizer+ | Sponsor*), myDTD_Conference_1_2)). Clause C), simply constrains that such a first
sequence must contain exactly one element conforming to the grammar defined for the Name element type, ie.,
it must satisfy the clauses the head of which are myDTD_Name expressions.

Clauses C,; and C; demand that the second sequence must conform to the restriction defined by clauses C3—Cs
or by clauses Cs—Cs, respectively. Clauses C; and C, together specify that such a sequence may consist ofone_‘ or
more sub-scquences each sub-sequence of which is restricted by clause Cs, i.e., it must contain a valid Organizer
element. Alternatively, clauses C, and €5 indicate that such a second sequence of a Conference element may

A Foundation for XML Document Databases: DTD Modeling 11

lcomp_rise zero or more sub-sequences each of which is constrained by clause Gy, i.e., each sub-sequence must
contain a valid Sponsor element. 0O

In the sequel, let $S:id be an S-variable in SFAR.

Definition 7 [Mapping EID]

A mapping ElementID : DTD — 24 is
EiD(dtd) =Y < _4; such that
the XML expressions
<$l:anExpression>
<elem-type, attr-name;=%$5:id $P:attrList>
$S:content
<felem-type,>
</$l:anExpression>
and
<$1l:anExpression>
<elem-type;, attr-name,=%5:id $P:attrlist>
$E:subexp
</elem-type,>
</$I1:anExpression>

where $1:anExpression € IVAR, $S:content € SFAR, $P:attrlist € PVAR, $E:subexp € EVAR,
will be contained in Y iff

<IATTUST elem-type name, Hpe, defaulr
name; 1D defaulr,

name, n'pe, default,>
is an attribute-list declaration in drd. O3

Given did € DTD, EID(dtd) returns a set of non-ground XML expressions in _4, which represent classes of
XML elements having associated attributes of type 1D, defined by the given dtd.

Definition 8 [Mapping Ger/D]
Based on the mapping EID, let Ger/D: (2% x 2°™)y 5 2% be

Given X' € G, did € DTD, (6)
GellD(X,dtd) = {<id value=3%S:id/> 8| a e EID(did), 8 € Sy, ab e A}
O

Intuitively, given a subset X of (, and dtd in DTD, GetID(X, drd) is a set containing XML elements, each of
the form <id value=elem-id/>, where elem-id € T* is an identity of an XML element in X.

Definition 9 [id-, idref-, idrefs-reference functions]
Given dtd € DTD, let idyy 2% — 29, idrefuy © 2% — 2% and idrefsgy : 2% —» 2% be reference functions in £

defined in terms of the mapping Ger/D as follows:
Foreach X ¢ (G,

idydX) = Gy — GetlD(X, did) 7
idrefuAX) = GetID(X, dtd) (8)
idrefs A X) = 200 A ()

idag, idrefs, and idrefs,,; will be referred to as id-, idref- and idrefs-reference functions. O

Nme that references {(a, id,,. R, {(a, idrefy, R) and (S, idrefs.;. R) will be called id, idref and 1drefs
references, respectively, iff

- a=<d value=efcm-id!> € A of the form <id value=clem-1di>, where elem-wd € (5% 0 SUAR),

A Foundation for XML Document Databases: DTD Modeling 12

~ Se VorS={a ... a.} © A&, where a has the form <id value=elem-id/> and elem-id, € (L* U SVAR),

— dtd € DTD,
~ R is a description on I' specifying an XML document upon which a given XML element will be validated
against.
Such cogncepts of id and idref{s) references defined here are useful for specification of uniqueness and referential
constraints defined by attributes of types 1D and IDREF(S), respectively.
The definition of true references in Section 2.2 shows that the conditions specified in Table 3 must hold for a
particular id and idref{s) references to be true references.

Table 3. Satisfiability conditions for true id and idref(s) references

_ .Reference : Satisfiability Conditions
1. id reference (g, idys R, The value specified by elem-id does not occur as an 1D of
where g = <id value=elem-id/> € Gy any XML elements in AAR)
2. idref reference (g, iduas R), There exists an XML element in AfR) the ID of which is
where g = <id value=elem-id/> € G elem-id.
3. idrefs reference {X, idsq4 R), where For each i € {1, ..., n}, there exists an XML element in
X ={g1, g.} and g, = <id value=elem-id/> € Gx AR) which is uniquely identified by elem-id..

In the sequel, let R be a description on ', which specifies an XML document against which a given XML
element will be validated.

Definition 10 [Equal, IsMemberOf and IdrefsSplitUp constraints)

Let Equal, IsMemberOf and IdrefsSplitUp be constraint predicates in &7 The constraints Equal, IsMemberOf and
IdrefsSplitUp on I are:

1. Equal(a,, a;), where a,, a; e _4
2. IsMemberOf(a, X), where a € _4, X € 2\4%",
3. IdrefsSplitUp(<idrefs value=string/>, X), where string € SVAR U X" and X € 2(4%1,

Such constraints are true constraints in Teon iff they assume the forms:

1. Equal(g, g), where g € G

2. IsMemberOf(g, X), wherege G, X e 2% and g€ X,

3. IdrefsSplitUp(<idrefs value="string"/>, X),
where string € SVAR and X = {<id value="string,"/>, ..., <id value="string,"/>} € 2% such that srring is
the white-spaced separated sequence of string,, strings, ..., string,,.

0
Intuitively,
1. Foray, a; € _4 a constraint Equal(a,, a;) is used to ensure that the objects a, and a; are identical.

2. Fora e _4and X € 2*“", a constraint IsMemberOf(a, X) ensure that the XML element represented by a
is a member of the set .X.

3. Forsmring € SVAR W X" and X € 2%V a constraint IdrefsSplitUp(<idrefs value=string/>, X) ensure that
X is specialized to a set {<id value="string,"/>, ..., <id value="string,"/>} € 2% such that string is the
white-spaced separated scquence of siring,, string,, ..., string,.

Definition 11 [z, the attribute-list-declaration translator]

Let z,: ALD — 2% denote attribute-list-declaration translator. For an attribute-list declaration d € ALD
defined in the DTD dtd and having the form

<!ATTUST elem-type name, type, defaulr,

name, ype, default,>, wheren=1,
7,(d) is a set comprising m+1 clauses, where n < m < 2n.

An algorithm describing the formulation of such i+ 1 clauses follows:

Step 1:

e

e

o

10:
11:

12:

13:
14:

15:

16:
17:

18;

19:
20:

21:

22:

23:

24:

25:
26:

A Foundation for XML Document Databases: DTD Modeling

[Formulation of the first mr clauses)
For (i=1; i<m; i=i+1)
Letj=i+1.
If (default; is #REQUIRED)
Then
Letm=1.
Formulate clause C,,, where
Cy: <did_elem-type_attrlist i name,=%S:value $P:attriist />

«— <did_elem-type_attrlist j $P:attriist />,
Else-If (default, is #IMPLIED)

Then
Letm=2.
Formulate clauses C;; and Cp, where
Ch: <dtd_elem-type_attrlist i $P:attrlist />
«— <dtd_elem-type_attrlist j $P:attrList />.
Ca: <did _elem-type_attrlist i name=%S:value $P.attrlist />

“— <dtd_elem-type_attrlist j $P:attrList />,
Else-1f (default; is #FIXED fixed-value)
Then

Letm=1.
Formulate clause C;,, where
Ch: <did_elem-type_attrlist_i name~$S:value $P:attrList />
“«— <dtd_elem-type_attrlist_j $P:attrlist />,
Equal{<Value>$5S:value</NValue>,
<Value>fixed value</Value>).
Else-If (default, is fixed-value)
Then
Letm=2.
Formulate clauses C;; and Cj, where
Ch: <dtd _elem-type_attrlist_i $P:attrList />
“— <dtd_elem-type_attrList_j $P:attrlList />.
Ca: <did_elem-type_attrlist_i name=$S:value $P:attriist />

«— <did_elem-type_attrlList ; $P:attriist />.
End-If.

If (type; is ID)
Then

For (k=1; k<m; k=k+1)
Add the reference (<id value= $S:value />, f4.44, R) 10 the body of clause C,,

End-For.
Else-If (nvpe, is IDREF)
Then
For (k=1; ksm; i=k+1)
Add the reference {(<id value= $S:value />, f 4 44 R) to the body of clause C,
End-For.
Else-If (ipe, is IDREFS)
Then
For (k=1; k<m; k=k+1)
Add the constraint IdrefsSplitUp(<idrefs value= $S:value />, $V:5etOflds) and
the reference ($V:SetOflds, fis.n a0 R) 10 the body of clause C,
End-For.
Else-1f (fype, is an enumeration (value, | ... | value,))
Then
For (k=1; k<m; k=k+1)
Add the constraint
IsMemberOf{ <Value>$S:value</Value>,
{<Value>value,</Vatue>, . . <Value>value,</Value>})
to the body of clause C,
End-For.
End-If.

End-For.

13

A Foundation for XML Document Databases: DTD Modeling 14

Step 2: [Formulation of the (m+1)" clauses]
2T Letj=n+1. "
28: Formulate clause C,.,, where
Car: <did_elem-type_attrUst j /> <«
O

In order to determine the validity of a list of attribute-value pairs associated with an element of elem-fype,

these m+1 clauses, n < m < 2n, work in rr+1 steps:

— In the i step, | S i < n, the validity of the specification of the attribute name, is verified by means of
clause Cy. If such specification is valid, the pair of that attribute name, and its value is removed from the
list and the next step, i.e., the (i+1)™ step, is taken. Otherwise, the verification fails.

— In the last step, i.e., the (n+1)® step, clause C,., verifies that no undeclared attribute can appear in the list,
i.e., the list of attribute-value pairs must now be empty.

Note that when there is no attribute-list declaration provided for elem-type, the following clause must be
forrnulated instead:

<dtd elem-type_attrlist_1 /> «—

Such clause merely restricts that elements of elem-type cannot have an associated list of attribute-value pairs.

Example3 As an example of the translation of an attribute-list declaration, let P; be a description obtained by
translation of o3, the declaration of attributes associated with Conference element (Fig. 1). In other words, P; =
14(d2) comprises the following five clauses, denoted by C); — Cy¢:

Cy2: <myDTD_Conference_attrlist_1 ur=$S:value $P:attrList />
«— <myDTD_Conference_attrList_2 $P:attrlist />,
(<id value= $5:value />, fis mpom. R).

Ci3: <myDTD_Conference_attrlist_2 type=$S:value $P:attriist />
— <myDTD_Conference_attrlist_3 $P:attrlist />,
IsMemberOf{ <Value>$S:value</Value>,
{<Value>International</Value>, <Value>Local</Value>}).

Ci4: <myDTD_Conference_attrlist_3 chair=$S:value $P:attrlist />
«— <myDTD_Conference_attrlist_4 $P:attrlist />,
(<id value= $S:value />, fisremor R)-

C\s: <myDTD_Conference_attrlist_3 $P:attrList />
— <myDTD_Conference_attrlList_4 $P:attrList />,

Cis: <myDTD_Conference_attrList_4 /> “—

Clause C,; specifies constraints imposed on the list of attribute-value pairs associated with a Conference
element. It ensures that the list contains a specification of url attribute, while the other attributes, represented by
$P:attrlist, wiil be additionally constrained by a clause the head of which is myDTD_Conference_attrList_2
expression, i.c., clause C\3. Moreover, the id reference contained in the body of C); specifies that the value of url
attribute, represented by $S:url, must be unique with respect to description R, i.e., $S:url does not occur as an 1D
for any element defined in description R.

Clause C); imposes that a Conference element must contain also a type attribute the value of which must be
cither International or Local. Clauses C4 and C;s then enforce that the element may optionally contain a chair
attribute. The idref reference contained in the body of C,4 specifies that the value of chair attribute, represented
by $S:value, is a reference to another element defined in description R and having the same value as its ID.

Clause Cy¢ specifies that the Conference element cannot contain attributes other than the url, type and chair
attributes. O

Definition 12 [zp7p, the document-rype-declaration translator)

The element-tvpe-and-atiribute-list-declaration translator tegq: (ETD \w ALD) — 27X is:
Teald) = teld). ifd € ETD,
tea dy = t{d). ifd € ALD.
Let did = (d\ ... d,) € DTD. The document-type-declaration transiator tprp: DTD — 2N Clause s

A Foundation for XML Document Databases: DTD Modeling 15

Torp{dtd) = U Teaa(d))

i=1

U {<did_elem-type_attrlist_1/> <« . | <IELEMENT elem-type content-model> € did,

<IATTUST elem-type name, type, default, ... name, type, default,> & did}.
O

Example 4 This example demonstrates a translation of myDTD (Fig. 1). into a corresponding set of clauses. Let
Q be a description obtained from translating myDTD. Then,

Q= tprp(myDTD) =P, Pyu Py U P,

where P, comprises the six clauses Cy7 — Cys:
Ci7: <myDTD_Name>
<Name $P:attrList>

$S:pcdata
</Name>
</myDTD_Name> - <myDTD_Name_attrlist_1 $P:attrList />.
Cs: <myDTD_Name_attrList_1 /> “«—

C9: <myDTD_Organizer>
<Organizer $P:attrlist>
$S:pcdata
</Organizer>
</myDTD_Qrganizer> “«— <myDTD_Organizer_attrlist_1 $P:attrList />.
Cyo: <myDTD_Organizer_attrlist_1 /> «

Cy1: <myDTD_Sponsor>
<Sponsor $P:attrlist>
$S:pcdata

</Sponsor>
</myDTD_Sponsor> “— <myDTD_Sponsor_attrList_1 $P:attriist />.
Ca: <myDTD_Sponsor_attriist_1 /> «—

Cz: <myDTD_Person $P:attrlist>
<Person $P:attrlList>

$S:pcdata
</Person>
</myDTD_Person> «— <myDTD_Person_attrlist_1 $P:attrlist />.
Ciq: <myDTD_Person_attrList_1 ssn=$S:value $P:attrlist/>
— <myDTD_Person_attrlist_2 $P:attrList />,
{<id value=$S:value />, fis myom, R)-
Cys: <myDTD_Person_attrList_2 /> “—

3.3 DTD Translation Optimization

Since this is an attempt to outline a general translation scheme for all possible XML DTDs, it may be pointed out
that the number of DTD clauses obtained from modeling some particular DTD is rather large and could lead to
an inefficient approach. This limitation can be alleviated by application of the optimization algorithm (cf.

Appendix) which rewrites and removes redundant DTD clauses. For example, clauses Cyq and Cys of Example 4
can be replaced by the clause:

<myDTD_Person_attrlist_1 ssn=$S:value/> “— (<id value=$S:value />, fi7 myom. R).

Appendix also gives a description Q obtained by application of the developed optimization algorithm 1o
description O of Example 4.

A Foundation for XML Document Databases: DTD Modeling 16

4 XML Element Validity Checking

*,

Given an XML DTD represented by a description P, in order to determine the validity of an XML element, say
x, with respect to such DTD, a single clause D is formulated:

D:a « <did_elem-type> x </dtd_elem-type>. (10)

The head of D, represented by a, is an XML expression in _4 which will be derived if the given element x is
valid. The body of D contains a single XML expression with a tag name of the form dtd_elem-type, where did is
the name of the DTD to be checked and elem-fype the type of the validated element. Such a body expression
contains the validated element x as its only child element. If x is valid, the element represented by a will be
derived from or contained in the meaning of the description (P« {D}). More precisely, to say that x is valid,
such a description (P v {D}) must be able to be transformed equivalently and successively into the description
(P {D?%), where D’is an ground unit clause of the form

v at «— . (1)

Example 5 Referring to description Q of Example 4 which represents myDTD, in order to determine whether
the Conference element:

<Conference uri="http://www.cs.ait.ac.th/smarthet39/™ type="International® chair="12345">
<Name>SmartNet'99</Name>
<Organizer>Asian Institute of Technology </Organizer>
<Organizer>International Federation Information Processing</Organizer>
<0Organizer>Telecommunication of Thailand </Organizer>

</Conference>

conforms to myDTD or not, the following clause is formulated:

D: «<Vvalid_XML ur="http://www.cs.ait.ac.th/smartnetod/" />
«— <myDTD_Conference>
<Conference ur="http://www.cs.ait.ac.th/smartnet99/"
type="International” chair="12345">
<Name>SmartNet'99</Name>
<Organizer>Asian Institute of Technology </Organizer>
<Organizer>Intermational Federation Information Processing</Organizer>
<Organizer>Telecommunication of Thailand </Organizer>
</Conference>
</myDTD_Conference>

Suppose that the referred description R, which represents an XML document to be validated against, comprises
the two clauses E, and £;:

E,: <Conference url="http://www.cs.ait.ac.th/ijwdI98/" type="International">
<Name>International Joint Workshop on Digital Libraries</Name>
<Organizer>Asian Institute of Technology</Organizer>

</Conference> - .

E.: <Person ssn="12345">Vilas Wuwongse</Person> «—

Since the description (Q ' {D}) can be successively transformed into the description (Q w {D}), where
D <Valid_XML url="http://www.cs.ait.ac.th/smartnet99/" /> “ -

the given Conference element is valid with respect to myDTD. Validating other Conference elements is similar.
a

5 Conclusions

An approach 1o the determination of the grammatical correctness of a given XML element/document with
respect to a particular DTD has been developed, by incorporation of the expressiveness and efficient
computational mechanism facilitated by Declarative Description theory and Equivalent Transformation (ET}
paradigm, respectively. It represents an XML DTD as a corresponding set of DTD clauses, which describe valid
elements’ content models as well as restrictions on associated lists of auributes, e.g., uniqueness, referential and

A Foundation for XML Document Databases: DTD Modeling 17

type constraints. Thus, the developed approach is complete with respect to XML DTD modeling and document
. validating,.

Research on an extension of XML-ETC Engine, a Web-based XML processor developed under Equivalent
Transformation Compiler (ETC) environment, by integration of supports for DTD modeling and validation is
continuing. Moreover, formalisms for D7D transformation and combination, e.g., union, concatenation,

intersection and complement, are envisaged, in order to provide a complete support for DTD and document
processing.

Acknowledgement

This work was supported in part by Thailand Research Fund.

References

Abiteboul, S, Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan
Kaufmann Publishers, CA (2000)

2. Akama, K.: Declarative Semantics of Logic Programs on Parameterized Representation Systems. Advances in Software
Science and Technology, Vol. 5 (1993) 45-63

3. Akama, K.: Declarative Description with References and Equivalent Transformation of Negative References. Technical
Report, Department of Information Engineering, Hokkaido University, Japan (1998)

4. Akama, K., Shimitsu, T., Miyamoto, E.: Solving Problems by Equivalent Transformation of Declarative Programs.
Journal of the Japanese Society of Artificial Intelligence, Vol. 13 No. 6 (1998) 944-952 (in Japanese)

5. Akama, K, Anutariya, C., Wuwongse, V. and Nantajeewarawat, E.: A Foundation for XML Document Databases:
Query Formulation and Evaluation. Technical Report, Computer Science and Information Management Program, Asian
Institute of Technology, Thailand (1999)

6. Anutariya, C., Wuwongse, V., Nantajeewarawat, E. and Akama, K.: Towards a Foundation for XML Document
Databases. Proceedings of 1*' International Conference on Electronic Commerce and Web Technologies (EC-Web
2000), London, UK. Lecture Notes in Computer Science, Springer Verlag (2000) (10 appear)

7. Apparao, V., Et Al.: Document Object Model (DOM) Level 1 Specification Version 1.0, October 1998. W3C
Recommendation (1998) Available at http://www.w3.0re/TR/REC-DOM-Level-1/

8. Beech, C., Malhotra, A., Rys, M.: A Formal Data Model and Algebra for XML. W3C XML Query Working Group Note,
September 1999 (1999)

9. Bray, T. Paoli, J.,, Sperberg-McQueen, C.M.: Extensible Markup Language (XML) 1.0, February 1998. W3C
Recommendation. (1998) Available at http://www.w3.0rg/TR/REC-xm!

10. Buneman, P., Deutsch, A., Tan, W.C.: A Deterministic Model for Semi-Structured Data. Workshop on Query
Processing for Semistructured Data and Non-Standard Data Formats (1998)

Available at hup:/db.cis upenn.eduwDL/icdt.ps.pz

11. Buneman, P, Fan, W., Weinstein, S.: Interaction between Path and Type Constraints. Technical Report, Department of
Computer and Information Science, University of Pennsylvania (1998)

Available at ftp:/fip.cis.upenn.edu/pub/papers/db-research/tr9816.ps.pz

12. Fernandez, M., Siméon, J., Suciu, C. and Wadler, P.: A Data Model and Algebra for XML Query. Draft Manuscript
(1999) Available at http://www.cs bell-labs.com/~wadler/topics/xm!.htmi#algebra

13. Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the Lore Data Model and Query
Language. Proceedings of the 2nd International Werkshop on the Web and Databases (WebDB '99), Philadelphia,
Pennsylvania (1999) Available at http://www-db.stanford.edw/lore/pubs/xml.pdf

14. Makoto, M.: Forest-regular Languages and Tree-regular Languages. Technical Report, Fuji Xerox Information Systems,
(1995) Available at http://wwtataw peocities.com/ResearchTriangle/Lab/6259/preiim1.pdf

15. Makoto, M.: Transformation of Documents and Schemas by Patterns and Contextual Conditions. Principles of
Document Processing. Proceedings of the Third International Workshop, Vol. 1293 (1997)

16. ?’I;];oto. M.: DTD Transformation by Patterns and Contextual Conditions. SGAL/XML '97 Conference Proceedings

1997)
17.

Wuwongse, V., Akama, K., Anutariya, C. and Nantajeewarawat, E.: A Foundation for XML Document Databases: Data

Model. Technical Report, Computer Science and Information Management Program, Asian Institute of Technology,
Thailand (1999)

A Foundation for XML Document Databases: DTD Modeling 18

Appendix

An optimization algorithm for the developed DTD translation scheme is sketched.

Let aDTD be an XML DTD and P = {C,, ..., Ca} a description obtained by translation of aDTD into a
corresponding set of DTD clauses, i.e., P = 1prp{aDTD). An algorithm which can reduce the complexity of such a
description P by removal and rewriting of some redundant DTD clauses contained in P follows:

1: Let Q= {C, 8, Cala}, where 8, ..., 8, are specializations in Swhich rename variables in Cy, ..., C,,
respectively, such that C, 4, ..., Cafa do not have any variable name in common.

2 Repeat

3: Find a clause C = (H « B, B, ..., By) € Q that satisfies the following two conditions:

— head(C)’s tag name has the form
aDTD_elem-type_level
or
aDTD_elem-type_attrlist_level
where elem-type is an element type declared in aDTD and Jevel is a sequence of number
separated by underscores, e.g., 1_2_1.

— TThere is no clause D € @ such that head{D)'s tag name is the same as head(C)'s tag name.

4; If (such a clause C (in Step &) is found)
Then ’

5: Let 0= Q@ — {C}, i.e,, remove clause C from description Q.
6: For each (clause D =(H « B\, B3, ..., Bi1, Bi, Biav,..., B.) € O, where u 2 0)
7 If (there exists & € Ssuch that B8 = H)

Then
8: Let D'=(H 8« B\6,B36, ..., B1,0,B,, By, ..., By, Bir16,..., B.O).
9: Let 0= Q- {D} v {DY, i.e., replace clause D in @by D"

End-If.

End-For-each.

End-If.
10: Until (such a clause C is not found in Q).

Based on the above algorithm, let O be a description obtained by optimization of description Q of Example 4
and containing the following 13 DTD clauses, denoted by €| — C5:
C': <myDTD_Conference>
<Conference url=$S:value type=$S:.valuel $P:attrlist>
$E:subexp_1
$E:subexp_2
</Conference>
</myDTD_Conference > «— <myDTD_Conference_attrlist_3 $P:attrlist />,

(<id value= $S:value />, fis moro. R),

IsMemberOf(<Value:>$S:valuel </Value>,
{<Value>Intemational</Value>,
<Value>Local</Value>})

<myDTD_Name>
$E:subexp
</myDTD_Name>,

<myDTD_Conference_1_2>
$E:subexp_2
</myDTD_Conference_1_2>.
C5: <myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2> «— <myDTD_Conference_1_2_1>
$E:subexp

</myDTD_Conference_1_2_1>.

Cy

Ce

C'si

Ce

Cy:
Che:

Ce:

C'm:

C‘“:

C-”:

<myDTD_Conference_1_2>
$E:subexp
</myDTD_Conference_1_2>

<myDTD_Conference_1_2_1>
$E:subexp
</myDTD_Conference_1_2_1>

<myDTD_Conference_1_2_1>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1_2_1>

<myDTD_Conference_1_2_2>
$E:subexp_1
$E:subexp_2
</myDTD_Conference_1_2_2>

<myDTD_Conference_1_2_2>
</myDTD_Conference_1_2_2>

*—

—

A Foundation for XML Document Databases: DTD Modeling

<myDTD_Conference_1_2_2>
$E:subexp
</myDTD_Conference_1_2_2>.

<myDTD_Organizer>
$E:subexp
</myDTD_Crganizer>.

<myDTD_Organizer>
$E:subexp_1
</myDTD_Organizer>,

<myDTD_Conference_1_2_1>
$E:subexp_2
</myDTD_Conference_1_2_1>.

<myDTD_Sponsor>
$E:subexp_1
</myDTD_Sponsor>,

<myDTD_Conference_1_2_2>
$E:subexp_2
</myDTD_Conference_1_2_2>.

<myDTD_Conference_attriist_3 chair=$5:value/>

<myDTD_Conference_attrlist_3/>

<myDTD_Name>
<Name>
$S:pcdata
</Name>
</myDTD_Name>

<myDTD_Organizer >
<O0rganizer>
$S:pcdata
</Organizer>
</myDTD_Organizer>

: <myDTD_Sponsor>

<Sponsor>
$S:pcdata
</Sponsor>
</myDTD_Sponsor>

<myDTD_Person ssn=%$S:value>
<Person>
$S:pcdata
</Person>
</myDTD_Person>

—

+—

(<id value= $S:value />, fiurermyotos K).

(<id value=%S:value />, f; mom. B).

19

[11] B.C. Ghosh and V. Wuwongse. Conceptual Graph Programs and Their Declarative Semantics. IEICE
Transaction on Information and Systems, E78-D(9):1208-1217, September 1995,

[12] G. Klostler, W. Kiebling, H. Thone and U. Guntzer. Fixpoint lteration with Subsumi)tion in Deductive:
Databases. Journal of Intelligent Information Systems, 4(2):123-148, March 1995.

[13] M. Kifer, G. Lausen and J. Wu. Logical Foundations of Object-Oriented and Frame-Based Languages.
Journal of the Association for Computing Machinery, 42(4):741-843, July 1995.

[14] V. Wuwongse and B. C. Ghosh. Towards Deductive Object-Oriented Databases Based on Conceptual‘
Graphs. In H. D. Pfeiffer and T. F. Nagle (eds.) Proceedings of the 7" Annual Workshop on Conceptual,

Graphs, Lecture Notes in Artificial Intelligence #754, 188-205, Springer-Verlag, Las Cruces, NM,
USA, July 1992.

6. Qutput

[11 Ekawit Nantajeewarawat and Vilas Wuwongse, Defeasible Inheritance Through Specialization,
Computational Intelligence, Vol. 17, No. 1, 2001 (to appear).

(2] Vilas Wuwongse and Ekawit Nantajeewarawat, Declarative Programs with Implicit Implication, /JEEE
Transactions on Knowledge and Data Engineering (1" revision).

[3] Ekawit Nantajeewarawat and Vilas Wuwongse, An Argumentation Approach to Semantics of
Declarative Programs with Defeasible Inheritance, in P.S. Thiagarajan and R. Yap (eds.): ASIAN 99,
Lecture Notes in Computer Science #1742, Springer-Verlag, pp.239-250, 1999.

[4) Chutiporn Anutariya, Vilas Wuwangse, Ekawit Nantajeewarawat and Kiyoshi Akama, Towards a
Foundation for XML Document Databases, Proceedings of the 1" Int. Conf. Electronic Commerce and
Web Technologies, Lecture Notes in Computer Science, Springer-Verlag, 2000 (to appear).

(5] Vilas Wuwongse, Kiyoshi Akama , Chutiporn Anutariya and Ekawit Nantajeewarawat, A Foundation for
XML Databases: Data Model, Int. J. Knowledge and Information Systems (submitted).

[6] Chutipomn Anutariya, Vilas Wuwongse, Kiyoshi Akama and Ekawit Nantajeewarawat, A Foundation for

XML Databases: DTD Modeling, Int. J. Knowledge and Information Systems (submitted).

7. i I ¥ s e

15939113

Tﬂsamﬁ%’uﬁya%uwadwa:nﬁmﬁqﬁnumzﬁ]ﬁmusahqq mm5:uuﬁ'ﬂlﬁuiayaua:mmﬁl?ﬁﬁﬂq
wwveynu Tanewzesiataluinavesnu i e nansynuaefiuszniainsinisuasmsn
NOANNTINTR r‘f}u'ﬁ‘uﬂizuaum‘iaqmuwﬁ'nclu's:uu c?a;ﬁ1¢1'~fug1uwﬁ'n°luﬂ1sr‘imuﬂﬁ'mﬂiznau

. < oo 1::” -t = - o)
a1 woaszuy Julasanmsifei1dinisauedtnisfvuasnunoves lusunsuildlunmsussow

6

.4 [[-y - - g -
Lflemvoadeyauazawiluszuuedugasu uarldirueiinisdmivlszanaiodiuismina
- e .y - pe) - - - "
Ve Tdsunsufidmuaiu anuvonasisnsdainavdutugudidglunisdounariins ey
L) -l l - - -
Liffemvesteyauazanuluszvusdnazden nazfluiugudifgluniseonuuunaznisWann

| ™ - o e -~ of LYY
yoraTdmsulnlpalszantmwmsianuuasnisdsznanadeyanazanuiluszvy audide

manTaimquinirueuiisniilusinguiid iy dmiunsvauszyudanis gudeyanazaiuly

suInA

Yo e N d

wenvint auzddtumandinlnsanisdsvesiidss lumisdnatsdmsudndeanisanyiuas iy

afunortuszvunisdaudeyauazanuiiFiiaquuueyuiy uyudiasmundamani niauslu
- e - » ' <1 l . ¥ b 4 o e
Tasanis3fvansorih I dlunsesdioga0lunisiinnutle luszuugudeyauazanufidatag

-

- ﬂ. - a8 1 J 1 e -4
wuvoyuuvanvalwdnuurminisovawngulaueiuin msAnuiszuumaiilavasiiazszuy

qc:‘] ° ¥ o o J e A [a’a -
Tavdsmuinnquinugusiveritdinannuduauiuladw IHDIDINTTUVMATHUNITNINUA

»
& ar

- [Y . v P] - =

dnumzdifnaiag vesszuulaoldhuinsdimwiriuandannueenl aaziinnusatmndounulums
» - ' Y 4 o g - .
AIMUARNUNLITYOIANYUEAG mal Fadawalifinannunaiandeuiulumssivuaniumuiy

TavsauvoaTusunsulussuy

o

= e qy VYot [] by o S oo L] - - 3
Tﬂ‘iﬂﬂ'l‘i’liltluvlﬂuﬁ']u‘]ﬂuﬁ‘i'Nuﬂ']iJUGI.HIJ 20U TﬂUﬂuuﬁﬂi]'Uﬂ'I'iﬁﬂU15:ﬂU1J5ﬂJﬂJ"IlDﬂNﬁ’Jllﬂ:

[

variidudsiomansinsdianiuma luladuunnadiuss ymInodusssumanas audnauiide

Anu luszaunlSyyueni AIT

»
LA G L

uenaniilasinisiIveiidafidunssdunnusule TunmsiiIdousanue4I5uAU Prof. Kiyoshi

Akama NUM1INOI1AU Hokkaido

- oy

ITINTIHYE

ﬂ a a4 o Y - o o o E] vV oo « o«
unnswdudinlugommissvidiug drdasodauaidniunidlawanaenaulissuy

e k4 ar o ¥ % =1 a
MITANITFIUVBYAUVUATINTUWUT (Relational Database Management System) vuu1 uaz l@iinisua

¥
1 =

e o o 3 o = 4 ' a '
yovlauidinat ldluannlssgadniedugsisuazdubug sdinlszauanudusedianiavia

e

] S o o o o ta o = 1 [Y o 3 @
8611 131A UnIngimsaeuiamesdiulngdilinauiiui srvugudeyanuuduiuifindidesiine

=]
[e %

»

= o 1 L) [b }
snvatolszns dednaru dedidnlwiesves Tnseafudeya (Inseadndeyaiugiu veaszuu

=i

9/ @ e o : ar 1 o1 ar
guveyanyuanduRuiitInsad iy record Fadlugdasialunisimfudoyadiiiinssairady

3 Y a8 1 v 3/ L] o~ v/ - o s - .

¥ou) veimnalunisnumiveyalasldmididumifiiinidasadadues (Recursive Query) guassalu
-:‘l] ') ¢:; e ar n:;
FoveIrpINIznInNmE i Indsu T sunsudszgadtuninildlumsmidoya (Impedance Mismatch

¥ 2 _ o o [~ M =1 ¢ u: ™ o e] L
Problem) vadwialunisdadudeyanuuiudwudu vazmnimsaumalaniofifegludnyalhle
ThiudseTond Judu

—

- » A » - . - ar -
a3 neInsABNRAAD S 1UULINITe I sTuugIuvoyY I Taquuuoymiulifnoninngg

¥ e & -y - - ”, ’ g
aursoudluteditadiaquidiil sazmunseisziesiunudszgnadsziamang lduninvalvnniy

A fouotulul 350 enduit RdfydnSunisia Hausszuunse b
nouffeueiululnsemisite junugiunding unisWanyeran sruunstanisgude

gaﬁn’ﬂquuuaumu {Deductive Object-Oriented Database Management System) nquﬁundn 9 ﬁ.léau
Toenunuioves TusunsuAugansafiioofiqa (The Least Fixpoint) VOIAIAUTUMS (operator) 'ﬁqn
amualdoinTusunsy aunsmihhhlszgndld1dTaonss 'lum:an:mnnamxffanwan’faqa'lupu
Joya uazmsfumdeyaluszuy Taul¥daneitu (Algorithim) nAsgulumsinumsiganiaiides
figaveadadiunisuunTuTuInin (Monototic Operator)

uaﬂmnfhuﬂqyﬁﬁmuaﬁu SnsdinssiiazetuediniummovesTsunsuuaziionives
sudoyauaznnuiednavibuatany Fammdanu limnuvesamumnedinaniifuiug i
HuotadalumsWasedansuszinn Optimization Tools dm3ulFlumsiimlsalsz@ninmyes

@ g b 4 4 k4 » -] b « q’) SO
Msdany Auvt uardszulanadeyalugiudeyauazaniul AlediavesrerdawdrsUssianii laun

{c;e

o« a Y 14 v = . oo * 4 g ¥ - 4 -3 < " v

o Mimsasuimdidumdeyassimia ddumdidnedianis Aldnadnimiiomduualy
ar 4 L 4 1T o L4 foay v » ae

nawmznineinsvestuutumsdunniovaanindy serdaurinldaavuiavesgiudoyaad laoidam

»
a o -

WIHBH AT AU HUIUAAUAY rfluﬁu

¥ q’ = ar H ' o [- [ol 3
Wogatinuifodsrgndludiuves XML aadiesfitlse Towniediagaluniad fUa tieanin XML
1" ﬂ c; > é - | 1] - 1 []
anawinlunasgiuvesnsuaaazuani’dsuveyauu Intemet TivsAssuRquIIUnBUNNUsTIAN TN

4 o {] @ fa g = ¢ ¥ oo, = -1 »
TIVTIUH WIUTFIDIRNNIDUN® HOIaYAAINDD 19D mﬂiuugmﬂna

\

D\}C\'?\f\- #4
3 To GR?QW ™ C\mnf\k'\'&xwm“\ _\-“l‘“;‘y’“m'\]‘)\' 13, No.4. (2uv)

Defeasible Inheritance

Through Specialization

Subject Categories:

Formal Underpinnings, Knowledge Representation

EXAWIT NANTAJEEWARAWAT
ekawit@siit.tu. ac.th
Department of Information Technology
Sirindhorn International Institute of Technology, Thammasat University
P.O. Box 22, Thammasat-Rangsit Post Office, Pathumthani 12121

Thatland

VILAS WUWONGSE
vw@cs.ait.ac. th
Computer Science and Information Management Program
School of Advanced Technologies, Asian Institute of Technology
P.O. Box 4, Klongluang, Pathumthani 12120

Thailand

June 13, 2000

Abstract

Typed substitution provides a means of capturing inheritance in logic de-
duction systems. However, in the presence of method overriding and multi-
ple inheritance, inheritance is known to be nonmonotonic and the semantics
of programs becomes a problematic issue. This paper attempts to provide
a general framework, based on Dung'’s argumentation theoretic framework,
for developing a natural semantics for programs with dynamic nonmenotonic
inhentance. The relationship between the presented semantics and perfect
model (with overriding) semantics, proposed by Dobbie and Topor (1995},
is investigated. [t is shown that for inheritance-stratified programs, the two
semantics coincide. However, the proposed semantics also provides correct

skeptical meanings for the programs which are not inheritance-stratified.

Key words: nonmonotonic inheritance, argumentation, skeptical semantics,
inhentance stratification, deductive object-oriented systems, dynamic method

resolution

[~

1 Introduction

Deduction and inheritance are two important reasoning mechanisms in deductive
object-oriented database (DOOD) systems. Most DOOD languages provide these
two mechanisms in certain ways. However, there are subtle differences in their
interpretation and realization, e.g., datalog™¢** (Abiteboul, Lausen, Uphoff and
Waller 1993) captures inheritance by transforming subclass relationships into rules
of the form class(X) « subclass{X), LOGIN (Ait-Kaci and Nasr 1986) and LIFE
(Ait-Kaci and Podelski 1993) incorporate inheritance into unification algorithms,
F-logic (Kifer, Lausen and Wu 1995) considers inheritance as implicit implication on
an interpretation domain, and Gulog (Dobbie and Topor 1995) models inheritance
by means of typed substitutions. This paper focuses on the interaction between
deduction and the inheritance that is realized through typed substitutions, and its

effects on program semantics.

1.1 Motivation

Most DOOD languages support inclusion polymorphism (or subtyping), i.e., the
extension of one type (the set of all individuals belonging to the type) can be defined
to be a subset of the extension of another type. With inclusion polymorphism,
inheritance can be captured in an intuitive way by means of typed substitutions.
To illustrate, suppose that ait is an object of type int(ernational)-school and int-

school is a subtype of school. Then, given a program clause:
C1l: X:school[medium-of-teaching — thai] if X[located-in — thaifand],

which is intended to state that for any object X of type school, the medium of
teaching at X is thai, if X is located in thailand; one can obtain by the application

of the typed substitution {X:school/ait} to C1 the ground clause:
G1: ait[medium-of-teaching — thai] il ait[located-in — thailand].

Naturally, the clause C1 can be viewed as a conditional definition of the method

medium-of-teaching attached to the type {class!) schoo! and the clause 1 as a

definition of the same method inherited from the type school for the object ait.
However, under the usual way of defining program semantics, e.g., the minimal

model semantics, inasmuch as every single ground instance of a program is required

I this paper, the ters "type” and “class” are used interchangeabldy.

to be satisfied by the meaning of that program, the inheritance thus obtained is
inherently indefeastble, i.c., every inherited definition will be compulsorily used.?
Undeniably, indefeasible inheritance is not always most appropriate, Inheritance of
a property can reasonably be expected to be blocked owing to property overriding.

For example, let a unit clause:
C2: X:int-school[medium-of-teaching — english],

defining the method medium-of-teaching for the objects of type int-school, be also
given. Then, as int-school is a subtype of school, il is reasonable to suppose that

the definition of medium-of-teaching for ait obtained from C2, i.e.,
G2: ait[medium-of-teaching — english],

is more specific than the previous inherited definition G'1 and is likely to supersede
G1.

In the case of multiple inheritance, where there are several possible inherited
definitions none of which is more specific than the others, with indefeasible inheri-
tance all the definitions will be employed. This is again not always natural. Another
reasonable option is either to selectively use only some of those inheritable defini-
tions based on some resolution criteria and some additional information, leaving the
others ineflective, or even to skeptically discard all of them.

When some inherited information does not apply in the presence of more specific
information or some other eligible heritage, inheritance is said to be defeasible.
In general, the choice of the most suitable inheritance strategy (indefeasible or
defeasible) may seem to be a matter of opinion. However, indefeasible inheritance
tends to cause unintended inconsistency when methods are required to behave as
(partial) functions, i.e., when the invocation of a method on a particular object
15 required to vield a unique value whenever that invocation is defined. Referring
ta the clauses G1 and G2 above, for example, if the method medium-of-teaching is
supposed to return a single value for the object ait, then G1 conflicts with G2 when
they are both active. With such a functionality requirement, defeasible inheritance
is therefore particularly preferable. Furthermore, from the modelling viewpoint, it
has been widely recognized that defeasible inheritance appears to be more suitable

for reasoning about the behavioral aspect of objects.

Dk s ble inheritance is abao cidled steect inheritance,

Indefeasible inheritance is known as monotonic inheritance, because it always
increases derived information monotonically as the number of program clauses in-
creases, By contrast, defeasible inheritance typically causes ronmonolonic behav-
tor, t.e., addition of a new clause to a program may result in the withdrawal of
some conclusions which were previcusly derivable by inheritance from that pro-
gram. Coping with defeasible (nonmonotonic) inheritance is not simple. One pri-
mary problem is how to deal with situations wherein some inherited information
conflicts with some other information (possibly also inherited). This subject has
been intensively studied in artificial intelligence (Touretzky 1986; Horty, Thoma-
son and Touretzky 1990; Stein 1992; Thirunarayan and Kifer 1993; Dung and Son
1995); however, most of these studies discussed nonmonotonic inheritance not in

the context of rule-based deductive systems.

1.2 The Proposed Work

This paper applies Dung’s theory of argumentation (Dung 1995) to the development
of an appropriate declarative semantics for programs with defeasible inheritance. In
order to resolve inheritance conflicts, a binary relation on program ground clauses,
called the domination relation, which determines among possibly conflicting (inher-
ited) definitions whether one is intended to be preferable to another, i1s required.
The domination relation, for example, may provide the information that between
the clauses G1 and G2 given in Subsection 1.1, G2 is more suitable. A program will
be transformed into an argumentation framework, which captures the logical inter-
action between the intended deduction and domination; and, then, the meaning of
the program will be defined based on the grounded extension of this argumentation
framework.

Using this approach, conflict resolution is performed dynamically with respect
to the applicability of method definitions. That is, the domination of one method
definition over another is effective only if the antecedent of the dominating definition
succeeds. The appropriateness of dynamic method resolution in the context of
deductive rule-based systens, where the definitions of methods in a class are often
conditional and may be inapplicable to certain objects of the class, is advocated by
Abiteboul, Lausen, Uphoff and Waller (1993). In particular. with the possibility of

overriding. when the definitions in the most specific class are not applicable it is

ol

reasonable to endeavour to apply those in a more general class.

In order to argue for the correctness and the generality of the presented se-
mantics in the presence of method overriding, its relationship to the perfect model
(with overriding) semantics proposed by Dobbie and Topor (Dobbie and Topor
1993; Dobbie and Topor 1995) is investigated. The investigation reveals that these
two semantics coincide for inheritance-stratified programs. Furthermore, while the
perfect model semantics fails to provide natural meanings for programs which are
not inheritance-stratified, the presented semantics still yields their correct skeptical
meanings.

For the sake of simplicity and generality, this paper uses Akama’s axiomatic
theory of logic programs (Akama 1993), called DP theory (the theory of declarative
programs), as its primary logical basis. The rest of this paper is organized as fol-
lows. Section 2 recalls some basic definitions and results from Akama’s DP theory
and Dung’s argumentation-theoretic foundation. Section 3 describes the proposed
semantics. Section 4 formulates the notions of inheritance-stratified program and
perfect model with overriding based on DP theory. Section 5 establishes the rela-
tionship between the proposed semantics and the perfect model (with overriding)

semantics. Section 6 compares the presented approach with works on inheritance

networks.

2 Preliminaries

2.1 DP Theory

DP theory (Akama 1993) is an axiomatic theory which purports to generalize the
concept of conventional logic programs to cover a wider variety of data domains.
As an introduction to DP theory, the notion of a specialization system is reviewed

first. 1L is followed by the concepts ol declarative programs and their minimal model

semaintics on a specialization system.

Definition 1 (Specialization System) A spectalization system is a 4-tuple
(A.G. 8 1) of three sets 4,G and 8, and a mapping g from S to partial_.map(A)

(r.c., the sct of all partial mappings on 1), that satisfies the conditions:

1. (Vs,s' € 8)(3s" € 8) 1 pus” = (us’) o (jes).

6

2. (s € S)(Va € A) : (ps)a = a,
3. G6C A

The elements of A are called atoms; the set G is called the interpretation domain;
the elements of S are called spectalization parameters or simply specializations; and

the mapping u is called the specialization operator. A specialization s € S is said
to be applicable to a € A, ifl a € dom{us). O

By formulating a suitable specialization operator together with a suitable set
of specialization parameters, the typed-substitution operation can be regarded as
a special form of specialization operation. Throughout this subsection, let ' =
(A,G, S8, u) be a specialization system. A specialization in § will often be denoted
by a Greek letter such as 8. When there is no danger of confusion, a specialization
8 € S will be identified with the partial mapping zf and used as a postfix unary
(partial) operator on A, e.g., (uf)a will be written as af.

A declarative program on I' is defined as a set of definite clauses constructed
out of atoms in 4. Every logic program in the conventional theory can be regarded

as a declarative program on some specialization system.

Definition 2 (Definite Clause and Declarative Program) Let X be a subset

of A. A definite clause C on X is a formula of the form:

(43 — bl ----- bn
where n > 0 and a,b,,...,b, are atoms in X. The atom a is denoted by head(C)
and the set {b;,...,b,} by Body(C). A definite clause C such that Body(C) = 0 is

called a unif clause. The set of all definite clauses on X is denoted by Dclause(X).
An element of Dclause(G) is called a ground clause. A declarative program on T is

a (possibly infinite) subset of Dclause(A}. O

A declarative program will also be simply called a program in this paper.

Let C be a definite clause (a + b;,...,b,) on A. A definite clause C’ is an
instance of C, iff there exists # € & such that 0 is applicable to a,b,,...,6, and
C' = (af « b,8,...,b,0). Such an instance C* of C is denoted by C#8, and the

set of all instances of C by Instance(C). Given a declarative program P on T,

Gelause(P) denotes the set

LJ (Instance(CY N Delause (G)).
e

i.e., the set of all instances of clauses in P which are constructed solely out of atoms
inG.

An interpretation assigning truth values to the atoms in the interpretation do-
main G and the truth value of a definite clause on A with respect to a particular

interpretation are next defined:

Definition 3 (Interpretation) An interpretationis a subset of G. Given a definite

clause C on G, an interpretation [is said to satisfy C, iff
(head(C) € I) or (Body(C) € I).
A definite clause C on A is said to be true with respect to an interpretation [/, iff

(VC' € (Instance(C) N Delause(G))) : [satisfies C'. D

As in the conventional theory, an interpretation [is a model of a declarative
program P on I, iff ali definite clauses in P are true with respect to [; and, the
meanting of P is defined as the minimal model of P, which is the intersection of all
models of P. A fixpoint characterization of this minimal model semantics is also
discussed in {Akama 1993).

Examples 1 and 2 below demonstrate how to regard conventional logic programs
and (simplified) typed logic programs with subtyping, respectively, as special forms

of declarative programs.

Example 1 Let an alphabet A = (V, K, F,R) be given, where V, K, F and R
are mulually disjoint sets of variables, constants, function symbols and predicate
symbols, respectively. Let a specialization system '} = (A, Gy, 51, 1) be defined
as follows: A, is the set of all first-order atoms over A; G, is the subset of .4; that
consists of all variable-free atoms in A;; S; is the set of all usual substitutions over
AL and, for each s € 8, and a € A,, (u,s)a is the result obtained by applying
the substitution s to a in the usual way. From the basic concepts and results®
for logic programming, it can be seen that ['; satisfies all the three conditions of
Definition 1. The declarative programs on I'y are conventional logic programs, and

their meanings according to DP theory are exactly their conventional meanings.

(.

TSRe, for example, the first chapter of (Lloyd 1987).

Example 2 This example illustrates one among several possible ways of formulat-
ing specialization systems for typed logic programs. To simplify the presentation,
only typed logic programs without function symbols will be considered. Let T be
set of types partially ordered by <. Let V, K and R be mutually disjoint sets of
variables, constants and predicate symbols, respectively. Assume that each variable
in VV as well as each constant in K has exactly one type in T, and each m-ary
predicate symbol in R has a unique type of the form r x --- x 7,,, where the =

belong to T. Let a specialization system I'; = (A2, G2, 82, u2) be defined as follows:

1. A; is the set of all typed atoms of the form p(t;,...,tm), wherte m > 1, p
is an m-ary predicate symbol in R having type n, x --- x 7, and for each
it € {1,...,m}, t; belongs to either V or K and if the type of ¢; is 7/, then

! < .

| R

2. G5 is the subset of A, that consists of all variable-free typed atoms in .4,.

3. &, is the set of all typed substitutions of the form {vy/ty,...,,va/tn}, where
the v; are distinct variables in V, each of the t; belongs to either V or K, and
for each j € {1,...,n}, v; #¢; and if v; has type 7; and {; has type r], then

! .
'rJ-SrJ.

4. For each s € &3, and a € 4., (p2s)a is the result obtained by applying the

typed substitution s to a in the usual way.

Given any s,s’ € S3, it is clear that if s denotes the composition, defined in the
usual way, of s and s', then (p25")a = ((m25) o (p25'})a, for each a € A;. So
I'> satisfies Condition 1 of Definition 1. Obviously, 'y also satisfies the other two
conditions of Definition 1. The declarative programs on I's are typed logic programs,

and the declarative semantics defined in DP theory yields their expected meanings.

O

2.2 Argumentation Framework

Based on the basic idea that a statement is believable if some argument supporting
the statement can be successfully defended against its counterarguments, Dung
has developed an abstract theory of arguminentation and demonstrated that many

of the major approaches to nonmonotonic reasoning in artificial intelligence can be

viewed as special forms of argumentation (Dung 1995). In this subsection, the basic

concepts and results from this theory are summarized.

Definition 4 (Argumentation Framework) An argumentation framework is a
pair (AR, attacks), where AR is a set and attacks is a binary relation on AR. The

elements of AR are called arguments. O

In the sequel, let AF = (AR,attacks) be an argumentation framework. An
argument a € AR is said to atlack an argument b € AR, iff (a,b) € attacks. A set
A C AR is said to attack an argument b € AR, ifl some argument in A attacks b.
An argument a € AR is said Lo attack a set B C AR, iff a attacks some argument

in B.
The concept of acceptability of argument and the notions of conflict-free and

admissible sets of arguments are now recalled.

Definition 5 (Acceptable Argument) An argument a € AR is said to be ac-
ceptable with respect to a set A C AR, ifl, for each b € AR, il b attacks a, then A

attacks b. o

Definition 6 (Conflict-Free Set and Admissible Set)

1. A set A C AR is said to be conflict-free, iff there do not exist arguments

a,b € A such that a attacks b.

2. Aset A C AR issaid to be admissible, ifl A is conflict-free and every argument

in A 1s acceptable with respect to 4. O

The credulous semantics and the stable semantics of AF are defined by the

notions of preferred extension and stable extension, respectively:

Definition 7 (Preferred Extension) A preferred ertension of AF is a maximal

(with respect to set inclusion) admissible subset of AR. O

Definition 8 (Stable Extension) A set A C AR is called a stable extension of

AL A is conflict-free and A attacks every argument in AR—A. 0O
Lemma 1A set A C AR 15 a stable extension of AF, iff

A= {ae AR A does not attack). O

10

The grounded (skeptical) semantics of AF is defined (Definition 10) as the least

fixpoint of the characteristic function of AF, which is given below.

Definition 9 (Characteristic Function) The characteristic function of AF,

Faop:24R 4 24R 5 defined by

Farp(X) = {a|ais acceptable with respect to X},

foreach X CAR. 0O

Proposition 1 Fsr 1s monotonic with respect to set inclusion, but, in general, is
not continuous. However, if for each argument a € AR, there erist only finitely

many arguments in AR which attack a, then Fap is continuous. (]

Definition 10 {Grounded Extension}) The grounded ertension of an argumen-

tation framework AF is the least fixpoint of Fap. O
Extensions of the three kinds are illustrated by the next two examples.

Example 3 Let AF, = (AR;,attacks), where AR, = {a,b,c} and attacks =
{(a,b),(b,c)}. AF: has only one preferred extension, i.e., {a,c}, which is also
its only stable extension. Since Far, (0) = {a} and F}p (8) = {a,c} = F3g (0),

the grounded extension of AF) is also the set {a,c¢}. D

Example 4 Let AF;, = (AR3,attacks), where AR> = {a,b,¢,d} and attacks =
{(b,¢),(c,b),(b,d)}. Then, AF; has two preferred extensions, i.e., {a,b} and
{a,c,d}, which are also stable extensions. As Fap,(0) = {a} = F3p,(0), the

grounded extension of AFy is {a}. O

Well-foundedness of an argumentation framework, recalled next, is a sufficient
condition for the coincidence between the grounded semantics, preferred extension

semantics and stable semantics (Theorem 1).

Definition 11 (Well-Founded Argumentation Framework) An argumenta-
tion framework is well-founded, iff there exists no infinite sequence of arguments

@0, dy,...,qn,...such that for each i > 0, a,4 attacks a,. |}

Theorem 1 Every well-founded argumentation framework has eractly one pre-
ferred eztension and one stable extension. Moreover, its grounded extension, pre-

ferred extension and stable extension are equal to each other. O

Example 5 The argumentation framework AF, of Example 4 is not well-founded,

since the arguments b and ¢ attack cach other. 0O

11

3 The Proposed Semantics

In the sequel, let T = (A4,G,S, u) be a specialization system and P a declarative
program on [. Let dominates be a binary relation on Gdause(FP). A ground clause
C of P is said to dominate another ground clause C' of P, ifl (C,) € dominates.
It will be assumed henceforth that the relation dominates priontizes the ground
clauses of P; more precisely, for any ground clauses C,C’ of P, C dominates C’,
iff C is preferable to C’ and whenever Body(C) is satisfied, C’ will be inactive.* It
should be emphasized that the domination of a ground clause C over another ground
clause €’ is intended to be dynamically operative with respect to the applicability
of C, ie., the domination is effective only if the condition part of C is satisfied.
The relation dominates will also be referred to as the domination relation of P.

A program is said 1o be domination-free, iff there do not exast any ground clauses

C,C' of the program such that C dominates C'.

3.1 Derivation Trees

The notion of a derivation tree of a program will be introduced first. A derivation
tree of P represents a derivation of one conclusion from P. It will be considered as

an argument that supports its derived conclusion. Every conclusion in the minimal

mode] of P is supported by at least one derivation tree of P,

Definition 12 (Derivation Tree) A dertvation tree of P is defined inductively

as follows:

1. If Cis a unit clause in Gelause{P), then the tree of which the root is C and

the height 15 0 is a derivation tree of P.

2.0 C = {a «— by,b)) 15 a clause in Gelause(P) such that n > 0 and
T... .. 74 are derivation trees of P with roots C,. ..., C,, respectively, such
that

head{Cyy = &, .

forenchi = {1,.. _n}. then the tree of which the root is € and the immediate

<ubtrecs are exactiy Ty, .., Thn 15 a dervation tree of P.

“The retatin duminstes is inspiced partly by the relationship ~possibly overrides™ in (Dobbie

Al leazinr Uras [aobiie aced Toper 1735,

12

d«ctb

\

cé—a c+a b —
a b
a ¢ a
T1 T?
T3 Ty

Figure 1: The derivation trees of the program P,.

3. Nothing else is a derivation tree of P.

The set of all derivation trees of P is denoted by Tree(P). O

Note that as the derivation trees are inductively generated, only well-founded
derivation trees are obtained. In the sequel, for any derivation tree T of P, let

root(T) and height{T) denote the root and the height, respectively, of T

Example 6 Let P, be a declarative program which consists of the following five

ground clauses:

L

b o«

c 4 a
d ¢« e,b
f « e

Then, P; has exactly four derivation trees, which are shown by Figure 1. Note

that the derivation trees 71,73, 73 and Ty in the figure depict the derivation of the

conclusions a, b, c and d, respectively. 0O

In the ensuing discussion, a derivation tree T" will be regarded as an argument

that supports the activation of the ground clause root(T) (and, therefore, supports

the conclusion head(root(T))).

3.2 Transformation into Argumentation Framework

In order to define the meaning of /7 with respect to the domination relation, the

progrvatn 1?2 will be transformed into an argumentation framework A (), which

13

d-c b

Cc - u Ct—a b -

i 4= [£ 3

IFigure 20 The argumentution frnimewaork for the progran 77

provides an approprinte strnctare for understanding the dynamic interaction of
the deduction process of 1 nond the apecified domination relation. Intuitively, one
argiment {decivabion tree) atincks another argument {derivation tree), when the
pround clavne aupported by the fortmer dominates some ground clanse used in the

conatruction of the latter.

Delinition 13 The argumentation frammework AF () = (AR attacka) is deflned

(L] !'n”nwu:
oAl Prec(l?)

LoVor any U o ARG attacks D voot (1) dominates some node of 7.

L1

Vixnmaplo 7 NHelerring, to the program 1) of Example 6, suppose that the ground
clanune a ¢ domiuntes the ground elause b =, and for any other two ground clauses
P one dosenob dominnte the other Then AR (IY) = (Pree(Ih), attackas), where
Pree{Py) comists of the Towr derivation trees depicted by Figure 1 and aftacks =
LCEL) CF U ED T as vepresented by the arrows i Pigure 2, (Note that) attnoks

s the vool of 2y donimates thie ripht leal ol 1) (1

a+ b c a ¢

T\ T T3 T Ts

Figure 3: The argumentation framework for the program Ps,.

Example 8 Let a declarative program P comprise the following ground clauses:

a ¢+
b«
L
d «— a
e «— b
[« e

Let d «— a dominate & « and ¢ « b dominate f « ¢, and assume that for
any other two ground clauses in P;, one does not dominate the other. Then
AF,(P;) = (Tree(P2), attacks), where Tree(P2) consists of the six derivation trees

given in Figure 3 and attacks = {(74,T2,), (T4.T5),{Ts,T6)} as shown by the arrows

between the derivation trees in the figure. O

3.3 Grounded-Extension-Based Semantics

The meaning of a program is now defined as the set of all conclusions which are sup-

ported by some arguments in the grounded extension of the argumentation frame-

work for the program.

Definition 14 {(Grounded-Extension-Based Meaning) Let GE be the

grounded extension of AF,(P). Then the grounded-ertension-based meaning of P,

denoted by MEF, is defined by
MBS = {head(root(T)) | T ¢ GE}. 0

Example 9 Consider AF,(P;) of Example 7 (Figure 2). Let F be its characteristic

lunction (see Definition 9). Clearly, F(#) = {7}.T3) = F(F(¥)). Thus (@) is the

grounded extension of AF, (7)), and, then, MEE = {a, ¢} m]
. :

15

Example 10 Refer to Example 8 (Figure 3). Let F be the characteristic function
of AF._(P?), then F(@) = {Tl, T3,T4}, and F2(0) = {TI,T3,T4,T5} = Fa(g) Thus
F2(0) is the grounded extension of AF,(Pz), whence Mp: ={a,¢e,d,f}. O

Example 10 above also illustrates the dynamic conflict resolution in the proposed
approach, i.e., the domination of the ground clause e « & over the ground clause
f + c does not always prevent the activation of the latter.

The next example shows how to deal with the problem raised at the beginning

of the paper.

Example 11 Let ait be an instance of type int-school and int-school a subtype of

school. Let P; be a declarative program which consists of the following three clauses:

X: school[medium-of-teaching — thai] ¢+ X[located-in — thailand]
X:int-school[medium-of-teaching — english] +
ait{located-in — thailand] — .

For the sake of simplicity, assume that P35 has only three ground clauses:

G1: ait{medium-of-teaching — thai) ¢« ait[located-in — thailand]

G2: aitfmedium-of-teaching — english] «

G3: ait[located-in — thailand] — .
As explained at the beginning of Section 1, G2 is supposed to override G1; there-
fore, let G2 dominate G1. Figure 4 depicts the resulting argumentation framework
AF (P3), where m-t, m-e and I-f denote the ground atoms ait{medium-of-teaching —
thai], ait[medium-of-teaching — english] and ait[located-in — thailand], respectively.
Now let F be the characteristic function of AF,(FP3). As F(B) = {T1,Ta,} = F?(0),
F(8) is the grounded extension of AF,(P3). Thus M is the set

{ait{located-in — thailand], aitimedium-of-teaching — english]},

m-t «— [-t
-t — -t « \ m-e
T T Ts

Frcuee 4 “Fhe argumentation framework for the program /.

16

which is the expected meaningof P;3. O

The next two examples illustrate method resolution in case of multiple inheri-
tance. The first one shows how the proposed approach deals with the well-known

Nixon's Diamond. The second discusses the case when method definitions are con-

ditional.

Example 12 Let nixon be an individual both of type quaker and of type republican,

and P4 a declarative program consisting of the following two clauses:
Cl: X:quaker[policy — pacifist]
C2: X:republican[policy — hawk] « .

For simplicity, assume that C1 and C2 have as their ground instances only the

clauses G1 and G2, given below, respectively:

G1: nixon[policy — pacifist]

G2: nixon|[policy — hawk] — .
Suppose that being a quaker and being a republican are believed to neutralize each
other, and, consequently, that the domination relation is defined in such a way that
G1 and G2 dominate each other. Then, as the derivation trees of P4 attack each
other, it is clear that M is the empty set, which is the expected meaning of P4. On
the other hand, suppose that being a republican is believed to have more influence
than being a quaker, and, then, that G2 is considered to dominate 1 but not vice

versa. It is readily seen that ME7 now becomes the set {nixon[policy — hawk]},

which is, in this case, the desired meaningof Py. O

Example 13 Let tom belong both to type student and to type employee. Consider

a program Ps comprising the following five clauses:

Cl: X:student[residence — north-dorm]
X[lives-in — rangsit-campus],
X[sex — male]

C2: X:employee[residence — west-apartments]
X[lives-in —» rangsit-campus],
X[marital-status — rmarried]

C3: tom[lives-in — rangsit-campus]

C4: tom[sex — male] «

'3 tom[marital-status — married] + .

17

= r, s-m rew &= l-r,m-m

S 2NN

I-r e PR R l-r + m-m ¢
T4 Ty
Figure 5: The argumentation framework for the program .

Asstine, for simplicity, that 1 and C2 have the clauses, given below, G1 and G2,

rexpectively, as their only ground instances:

-

(1 : tom|iesidence ~+ north-dorm] ¢
tom[lives-in — rangsit-campus],
tom[sex — male]
(2 tom|residence — west-apartments]
tom|lives-in — rangsit-campus],
tom{marital-status — married).
Suppose that students who are also employees usually prefer the accommodation
provided for employees, and, therefore, that (72 dominates G1. Figure 5 shows
the argumentation framework AF (), where) s-m, me-m, ron and r~w denote
tomflives-in — rangsit-campus]. tomlsex — male], tom[marital-status — married),
tomlresidence - north-dorm] and tom|residence — west-apartments], respectively.
Obwiously, AT contains tomfresidence — west-apartments] but does not contain
tom[residence - north-dorm}, and provides the desired meaning of .

Neat, suppaose that the clause s removed from £%. Then, as 75 in Figure 5
1z now net a derivation tree of 1%, the domination of G2 over (01 is not effective.
As a result] instead of containing tomresidence — west-apartments], At} contains
tomfresidence -3 north dorms and, 1t stll viclds the coreect meaning of £ in this

(RN TR t

b weneral, VG s a subset of the minimal maodel of £ However, it s readily

seent that

roposition 2 {7 o donunation: froe, then A s the mmemal modet of . 0O

Prvool 108 domnnationsfree, then GE s the set of all derivation teees of 22, Thus

L .
AT s esaetly the ool neodel o 8]

béea

aeb a+ b

b a be—a bea

a+b a+b aeb aeb

be—a bi—l—a bea bea b—a

a a+ a|4— a a a
T T T3 T Ts Ts

Figure 6: Infinitely many derivation trees of FPs.

3.4 Computing on Equivalence Classes of Derivation Trees

An atom a is said to be self-dependent with respect to P, iff there exists a sequence of
(not necessarily distinct) clauses C),...,Cn, where n > 1, in Gelause(P) such that
head(C,) = a = head(C,) and for each t € {1,...,n — 1}, head(C;) € Body(Ci41).
The next example demonstrates that if there exists a self-dependent atom with
respect to P, then the set of all derivation trees of 7 may be infinite (even when

Geclause(P) is a finite set).

Example 14 Let Pg be a program consisting of the following three ground clauses:

a —
b &« a
a «— b

The atom a is self-dependent with respect to Ps. (So is the atom b.) Pg has infinitely

many derivation trees, as depicted by Figure 6. O

As a consequence, it is, in general, not possible to construct the set of all deriva-
tion trees of a given program entirely in finitely many discrete computation steps.
Moreover, since the number of nodes in a derivation tree is, in the worst case, ex-
ponential in the height of the tree, determining whether one derivation tree attacks

another by examining directly whether the root of the former dominates some node

of the latter is, in general, inellicient.

19

However, a closer examination of the interrelation among the derivation trees
in AF,(P) reveals that it is not always necessary to generate all the derivation
trees of P so as to determine Mp". Different derivation trees with the same root
and the same set of nodes, e.g., T3 and Ts in Figure 6, always support the same
conclusion, attack the same derivation trees, and, furthermore, are attacked by
the same derivation trees, Such derivation trees can therefore be considered to be
equivalent to each other in this sense, and it is therefore sufficient to use only one
of them in the computation of M3°. It will be seen in this subsection that when
Gclause{P) is a finite set, AMp" can always be determined by considering finitely
many equivalence classes of derivation trees.

The above idea will now be presented in a precise way. Let the set of all nodes of a
derivation tree T be denoted by Node(T). Let an equivalence relation ~ on Tree(P)
be defined as follows: T\ ~ T3 ifi root(T1) = root(T32) and Node(Ty) = Node(T:z). As
usual, let the equivalence class modulo ~ containing a derivation tree 7" be denoted

by (7], and the quotient set of Tree(P) modulo ~ (i.e., the set of all equivalence
classes of Tree(P) modulo ~) be denoted by Tree(P)/~.

Example 15 Refer to the program FPs of Example 14 and the derivation trees of Ps
shown in Figure 6. It is readily seen that (T1] and [T3] are singletons; [T3] and [T4]
are infinite sets, which include {73, 75} and {T4,T5s}, respectively; and, Tree(P)/~
is the set {[T1], [7%], [T3), [T4]}. O

Now, let AF,(P)/~ denote the argumentation framework (Tree(P)/~, attacks),
where for any [T1], [T2] € Tree(P)/~, [T1] attacks [T3] iff root(T}) dominates some
clause in Node(Tz). In the sequel, let F and F., denote the characteristic functions

of AF (P} and AF (P)/~, respectively. The next proposition follows immediately
from the definitions of AF,(P) an i AF (P}/~.

Proposition 3 Let T € Tree(P), B C Tree(P) and C = {[T'] | T' € B}. Then,
T € F(B), if [Tl e Fu(C). T

Corollary 1
1. If A 1s a firpoint of F_, then U[T]efx [T] 1s a firpoint of F.
2. If B 15 a furpoint of F, then {[T11 T e BY is a firpoint of F.. O
Proof The resolts tollow directly [rom, 'roposivion 3.

20

Theorem 2 If A is the least firpoint of F.., then Uirjea[T] is the least fizpoint of
F. o

Proof Let A be the least fixpoint of F.. and B the set Uy 4[7]- By Result 1
of Corollary 1, B is a fixpoint of F. Suppose that B is not the least fixpoint of
F. Then, there exists a fixpoint B’ of F such that B ¢ B’. Let A’ be the set
{[TV] | T' € B'}. By Result 2 of Corollary 1, A’ is a fixpoint of F... As B ¢ B',
there exists U € B such that U ¢ B’. As U € B, [U] belongs to A. As U ¢ F(B’),
it follows from Proposition 3 that [U] ¢ F.(A'), and, thus, [U] ¢ A’. So A ¢ A’,

which is a contradiction. =

Theorem 2 implies that M3® can be obtained through the grounded extension
of AF,(P}/~, i.e.,

MSEE = {head(root(T)) | [T] € GE.},

where GE.. denotes the grounded extension of AF,(P)/~.

Computing M$EF on AF,(P)/~ has two important advantages. Firstly, since
for each T € Tree(P), Node(T) C Gelause(P), checking whether one equivalence
class modulo ~ attacks another is linear in the number of clauses in Gelause(P).
Secondly, when Gelause(P) is a finite set, the quotient set Tree(P)/~ is always
finite, and can be constructed incrementally as follows. For each unit clause
C € Gclause(P), construct the pair (C,{C}); and, then, perform the following

repetition:
Repeat

For each clause (a « b,,...,0,), where mn > 1, in Gelause(P)

If pairs (Cy,S51),--.,(Cm, Sm) such that
head(CY) = b;, for each i € {1,..., m}, have been constructed
before the current execution of the repeat-loop

then construct the pair

((la e=b1, .. bm). 51U - US,U{(eae—b1,....0m)})

unti} no new pair is constructed

It is simple to show that if T is a derivation tree of P, then the pair (root{T}),

Nade (1)) is constructed. by induction on the height of T, and, conversely, that if

21

a pair (C,S) is constructed, then there exists a derivation tree T” of P such that
root(T’) = C and Node(T”) = §, by induction on the number of times the repeat-
loop has been executed when the pair (C, 5) is constructed for the first time. Now,
for any [T] € Tree(P)/~, let [T] be represented by the pair (root(T), Node(T)). It
follows that when Gelause(P) is a finite set, the above procedure always terminates
and generates exactly all the pairs representing the equivalence classes of Tree(P)
modulo ~.%

Once the argumentation framework AF,(P)/~ is constructed, its grounded ex-
tension can be computed using a usual iterative procedure for computing the least
¢

fixpoint of a monotonic function.® The next subsection discusses an alternative

way of reasoning about M3® by considering AF.(P)/~ as a logic program with

negation.

3.5 Meta-Interpreters for Argumentation Systems

Dung demonstrated in his paper {(Dung 1995) that argumentation can be viewed
as logic programming, and introduced a general method for generating meta-
interpreters for argumentation systems. This subsection first summarizes this
method and then explains its application to the presented work.

Given an argumentation framework AF = (AR, attacks), let the logic program
Pasr be defined as the union of two logic programs, AGU ¢ (argument generation

unit) and APL4r (argurnent processing unit}, where
AGUsr = {attazke(X.Y) « | (X,Y) € attacks},
and APU4r consists of the following two clauses:
1. acceptable(X) « —defeated(X)
2. defaated(X) - attacks(Y, X'}, acceptable(Y).

The clause €y means that an argument is acceptable if it is not defeated; and, the
clanse C5 means that an argurnent is defeated if it is attacked by some acceptable
arguinent. Fap s regarded as a metz-interpreter in the sense that it is independent

of any particular argument framework: the arguments in AF are considered as

“In particular, when no atemn is s«lf-dependent with respect to P, the number of times the

feprat-lonp s enscuted s beunded Ly the nuinber of clauses in Grlause{F) (since the height of a

Aerivatiun tree of 705 bounded Ly this numb=r).

T R S L0 LLCNNR | S o Uiy

ur= LET goen o 10700y Cioitbnt, aned (anea §irr).

22

