distinct clements in the Herbrand universe of Par. It is shown in (Dung 1995)

that:

Theorem 3 Let AF be an argumentation framework., Then, E is the grounded
ertension of AF, iff

AGUaf U {acceptable(X) | X € E}
U {defeated(Y) | Y is attacked by some element of E}
U {—defeated(Z) | Z € E}
is the well-founded model (Van Gelder, Ross and Schlipf 1988; Van Gelder, Ross
and Schlipf 1991) of Par. O

It follows directly from this theorem that if WFAMp,. denotes the well-founded

model of Psp, then the set
{X | acceptable(X) € WFMp,.}

is the grounded extension of AF. As a result, given a declarative program P, after
the argumentation framework AF,(FP)/~ is constructed, one can generate the logic
program P4, (p);~ and then use an evaluation procedure based on the well-founded
semantics of logic programs to determine whether an equivalence class of Tree(P)
modulo ~ belongs to the grounded extension of AF,{P)/~, and, thus, whether an

atom belongs to MEF.

4 Perfect Model (with Overriding) Semantics

Dobbie and Topor defined a deductive object-ortented language called Gulog {(Dob-
bie and Topor 1993; Dobbie and Topor 1995), in which inheritance is realized
through typed substitutions, and studied the interaction of deduction, inheritance
and overriding in the context of this language. The declarative semantics for Gulog
programs is based on Przymusinski’s perfect model semantics for logic programs
(Przymusinski 1988), but using the possibility of overriding instead of negation in
defining a priority relationship between ground atoms. This perfect model (with
overriding) semantics provides the correct meanings for the programs which are
inheritance-stratified.

In order to investigate the relationship belween the grounded-extension-based
semantics and the perfect model (with overriding) semantics, the notions of inher-

itance stratification and perfect model are reformulated in the framework of DP

23

theory in this section. The relationship between the two kinds of semantics will be

discussed in Section 5.

4.1 Inheritance-Stratified Programs

According to (Dobbie and Topor 1995), a program is inheritance-stratified if there
is no cycle in any definition of a methed, t.e., a definition of a method does not
depend on an inherited definition of the same method. The notion of inheritance

stratification is reformulated based on DP theory as follows:

Definition 15 (Inheritance Stratification) A declarative program P on T is
said to be inheritance-stratified, iff it is possible to decompose the interpretation
domain G into disjoint sets, called strata, Go,G1,...,G+,..., where ¥ < d and 4 is

a countable ordinal, such that the following conditions are all satisfied.
1. For each C € Gelause{P), if head(C) € G, then

(a) for each b € Body(C), b € Uz, Go,

(b) for each C’ € Gclause(P) such that C' dominates C,
i. head(C') € Upea G,
ii. for each &' € Body(C'), b € | Uz, Go-

2. There exists no infinite sequence Co, Cy,...,Ch, ... of clauses in Gelause(P)

such that for each i > 0, Ci4, dominates C;.7

Any decomposition {Go, Gy,G,. ...} of § satisfying the above conditions is

called an mheritance stratification of . 0O

Two examples of non-inheritance-stratified programs are given in Subsection 5.2.
The next proposition 18 an important result. It illuminates the coincidence
hetween the grounded extension. preferred extenston and stable extension of the

argumentation framework for an inhernitance-stratified program (see Theorem 1).

PCroposition 4 [f P s mheritance-stratified. then AF, (P) ts well-founded. O

"Hy Condition 1 snlely, there niay exist an infinite sequence Cg, Cy.. .., Cn.... of clauses in
et U sch that far each o 2 O hea d (7)) and head(C, 4,) belong to the same stratum and
e cbammates O The nonexistenee of such 4 sarquence is required by Propesition 4.

Proof Let P be inheritance-stratified. First observe that, by Conditions 1a and
1(b)i of Definition 15, for any derivation trees T, T¥ of P, if T attacks 7", then the
stratumn containing head(root(T)) can not be higher than the stratum containing
head(root(7T’)). Consequently, since the ordinals are well-founded, it suffices to
show that there exists no infinite sequence Ty, Ty, ..., Ty, ... of derivation trees of
P such that for each ¢ > 0, T4, attacks T; and head(root(T;)) and head(root(T;4,))
belong to the same stratum.

Suppose that such an infinite sequence exists. It will now be shown that for each
i > 0, root(T;4+1) necessarily dominates root(T;). Assume the contrary, i.e., there
exists j > 0 such that root(7} ;) does not dominate root(T;). Then root{(Tj+1) dom-
inates some node C of an immediate subtree of T;. As root(Tj) dominates some node
of Tj_1, it follows from Conditions 1a and 1(b)ii of Definition 15 that the stratum
containing head(C) is strictly lower than the stratumn containing head(root(T;_,)).
Then, by Condition 1(b)i of Definition 15, it is impossible that head(root(T;_1))
and head(root(Tj4+1)) belong to the same stratum. This is a contradiction.

As a result, the existence of such an infinite sequence implies that there exists
an infinite sequence of clauses root(T\), root(T3), ..., root(1,), .. . such that for each

i > 1, root(T;;1) dominates root(T;), which violates Condition 2 of Definition 15.

It follows immediately from Proposition 4 and Theorem 1 that:

Corollary 2 The grounded extension of AF,(P) is stable. D

4.2 Perfect Model (with Overriding) Semantics

With overriding, not every ground clause of a program is expected to be satisfied by
a reasonable model of that program. More precisely, a ground clause need not be
satisfied if 1t is overridden by some ground clause whose premise 1s satisfied. This

leads to the following notion of a model with overriding:

Definition 16 (Model with Overriding) An interpretation [is a model with

overriding (for short, o-model) of P, iff for each C € Gclause(P), at least one of

the following conditions is satisfied:

1. I satisfies C.

9. There exists C' € Gclause(P) such that C' dominates C and Body(C’) C I.

(]

Notice that every model of P is also an o-model of P, but not vice versa. How-
ever, if P is domination-free, then an o-model of P is also a model of P.

A program may have more than one o-model. Following (Dobbie and Topor
1995), a priority relationship between ground atoms is defined based on the possi-
bility of overriding (Definition 17). This priority relationship will be used to deter-
mine a preference relationship between o-models (Definition 18). The meaning of
an inheritance-stratified program P is then defined as the o-model of P to which
none of other o-models of P is preferable, called its perfect o-model and denoted

by M. This meaning is uniquely determined for every inheritance-stratified pro-

gram (Theorem 4).

Definition 17 (Priority Relations <, and <,) Priority relations <, and <, on
G are defined by the following rules:

1. If C € Gelause(P), then

(a) for each b € Body(C), head(C) <, b,
{b) for each C’ € Gelause(P), if C' dominates C, then
1. head{C) <, head(C"),

ii. for each &' € Body(C’), head(C) <, ¥,

2. Ifa<,band b <, c, then a <, ¢,

3. If a <p b and b <, ¢ (respectively, d <, a), then a <p c {respectively, d <, b),
4. If a <, b, then a <, b,

5. Nothing else satisfies <, or <,. O

Definition 18 (Preference Relation <« and Perfect O-Model) Let M and N
be o-models of P. M is said to be preferable to NV, in symbols, A < N,iff M # N

and for each a € M — N, there exists b € N — Af such that « <p b. M is said to be

a perfect o-model of P, iff there exists no o-model of P preferable to M. O

The following results are analogous to and inspired by the corresponding results

tor anheritance-stratificd Gulog prosrats presented in (Dobbae and Topor 1993

206

Dobbie 1994; Dobbie and Topor 1995). Their proofs, which are given completely

in (Nantajeewarawat 1997), are guided partly by (Przymusinski 1988) and (Dobbie
1994).

Lemma 2 [f P is a domination-free program, then the minimal model of P is the
unique perfect o-model of P. O

Theorem 4 Every inheritance-stratified program P has erxactly one perfect o-
model, which will be denoted by ME™, and for every other o-model N of P,
METN. O

5 Relationship between the Proposed Semantics

and Perfect Model Semantics

This section first shows that for inheritance-stratified programs, the grounded-ex-
tension-based semantics and the perfect model (with overriding) semantics coincide
with each other (Subsection 5.1). Then, it uses two simple examples to show that the
grounded-extension-based semantics also provides non-inheritance-stratified pro-
grams with their correct skeptical meanings, whereas the perfect model semantics

fails to provide sensible meanings for them (Subsection 5.2).

5.1 Coincidence between the Two Kinds of Semantics

Throughout this subsection, let {Go,...,G+....}, where v < §, be an inheritance
stratification of P, and GFE be the grounded extension of AF,(P), and assume that
the domination relation associated with P is transitive. It is important to note that
this transitivity requirement does not weaken the results of this subsection, because

the domination due to overriding is typically transitive. Also note that, though the

domination relation is transitive, the attack relation of AF,(FP) is not necessarily

transitive.

Lemma 3 Let T € GE. Then every subtree of T belongs to GE. O

Proof Assume the contrary, 1.e., there exists a subtree T’ of T such that 77 ¢ G£.

As (G E is stable (by Corollary 2), GE attacks T'. Then, obviously, GE also attacks

T. which is a contradiction. =

», (]
W A 5 5
nooy -y 49 4 AW t " 'H Wty
4 8 E: B A “_\ g o F s f ¥ = b~
B o o 0oL o 320§ & 7 SN
£ T SR " b I by M % T
g 45§ gl - A & 4 4 S
4 OASU .m Wy m Ui e g o 3 w I Lonot
¢ g BB = 8 5 g A B
O ._m ~ @ b d oy ?.w A4 W f, M. roo ¥y o
I T T - - i g 0 £ Ao
.’ o —— § L o uﬁ O [A - e q‘ a4
L vn ¥ G L i . ﬂ ! " g ..M.m . ! L4 ,.ﬂ o ﬂ_..
]] - 1, . gt h & fy £ Y]) f
sﬂ " . m by .W_ _.,a S et " A o ft :
/AR oo g 0o g ; o6
R R S L R v& H.w__ y 0 ,m~_ TV N_ ! _x_ p L A
Ot d g Ry Sy oo n
A B 15 6 ! } | o
w. -) G| L I r _ k TR |
48 = oo Y) > doog g
N o e F N_ /R . . oy ,t o) oo
—”u\ 9& J .w_- h & _ } _P_ &) ,] _ u“ £ \-.. [} ;uﬂ_ W:
o oY NA woy 1 T i3 ' Y " Y
o, Q - ’ -l , T d & (J ““ i oo
oL U e 3 G g y g
.u M.ﬂ ge ™ g fg M g;. foq u‘m ﬁ " w_. 7 rl <t x
2 ,_.W mu [i i ._m ' weo GBIy o i 4o v
IR BICHE B R i
ﬁ It m L r& w b ..u K 4 ~.{. T .nw { il M _." -
o 4 . , et ‘ ! " : # = { 4 3
L . i " _hw. E 15 T £ [“. & b i n.. _L v “”
y : .w_ goE oW oh : ._. oo m # ¢ -)
Wt ,c " | J i o . rm ; : - . .
o S I LY PN ! T L by g y -
"' L, h y .m _ u .,w.‘ 2 f, m‘_ v th i) i .
th, Wty o " : £z ¥ e £ o
- nﬂ_ e L- .& .-m e C R m.... a ' H f1a L & '
- [B & ' v 1 [" iy 9 : o . o 0
VIR] ; | -
(Wl m L L vy M) # ‘\h b FIS] I e . W
e BT, L ooy Al ; A oy At
t YRR A T ™ o " = . i 4 i “_ s t bt .
AR R N P A [f .
™ 4 p : g A e i W k.w__ o vcm ! . o ¥
) oo . & & R 0 R T . L S
- h - Fooa1 i) g &k q v rA . ‘ oo ,
PR g ! v " ["
i< 4 Boga v o5 & p A o . ioa
- oo 5 0w 4 = e
._.4 e m... Y - n " s _"_ & s fi, h, ' .—. o -
.,.ull.\ m em\ a‘“ -:_ M..w ___ .-....m m..__ wm Dn.. .W. “u.. Uu.. »h
/A S G | : '
m o9 e L ..._ :.m et

The main result of this section 1is:
Theorem 6 Mp®* = Mp". 0

Proof The result follows immediately from Theorems 4 and 5. m

5.2 Generality of the Proposed Semantics

One approach to dealing with conflicts caused by inheritance is to discard all con-
flicting definitions. This approach is called the skeptical approach. The next two

examples show that for programs which are not inheritance-stratified, the proposed

semantics still provides their correct skeptical meanings.

Example 16 Let P; be a declarative program which consists of three ground

clauses:
a
b ¢« a
¢ « b

Assume that ¢ « b dominates b + a and for any other two clauses in P7, one does
not dominate the other. According to Definition 15, any inheritance stratification
of P; requires b to belong to a stratum which is lower than the stratum containing
b, which is impossible. So P; is not inheritance-stratified. Note that here the
dominating clause ¢ « b depends solely on the dominated clause & + a; thus, it
is unsound to use any of them. As a rcsult, neither & nor ¢ should be derived.
However, according to Definition 16, it is not difficult to see that every o-model of
P7 must contain a,b and ¢; and, therefore, no o-model of P; provides its sensible
meaning.

Now consider the grounded-extension-based meaning of P;. The argumentation
framework AF,(P7} is delineated in Figure 7. Note that, in the figure, T3 attacks

itself. Let F be the characteristic function of AF,(P7). Then, as F(@) = {n} =

F(F(2)), Mp is the set {a}, which is a correct skeptical meaningof P;. O

Example 17 Let tom be an instance of type gr(aduate)-student and gr-student is

A

Y]

Oy

i B IR

1

bea be—a

a <«
a a

T
Tz Ta

Figure 7: The argumentation framework for the program P;.

a subtype of student. Consider the following declarative program Fs:

X: student[math-ability — good] «— X[math-grade — b]
X:student{major — math] — X[math-ability — goed].
X[favourite-subject — math]
X: gr-student{math-ability —+ average] « X[major — math].
X[math-grade — b]
tom[math-grade — b} —

tom(favourite-subject — math] — .

For the sake of simplicity, suppose that Ps has only five ground clauses:

G1l: tom|math-ability — good] +— tom[math-grade — b]
G2: tomimajor — math] +«— tom[math-ability — good],
tomifavourite-subject — math]

G3: tom|math-ability — average] +— tom[major — math],

tom[math-grade — b]

G4 : tomimath-grade — b) —
G5 tom[favourite-subjeci — math] «— .

The eround clauses G1 and (3 are considered as definitions of the method math-
ability taken from the types student and gr-student, respectively. As gr-student is
more specific than student, G315 expected to dominate G1. Then. every inheritance
stratification of Ps requires that the ground atom tem{major — math] must be in
a stratum which is lower than the stratum containing it. which is a contradiction.
Hence Pz ots not inheritance-stratified.

Obsgerve that G dominates (71, but (3 also depends on G 1; more precisely, here,

ihe netivar e of G0 st the eetneation of GO which is supposed to override

A

T;; T4 TS

Figure 8: The argumentation framework for the program Ps.

G'1. Therefore, it is not reasonable to use any of them. As a consequence, none of the
ground atoms tom[math-ability — good], tom[major — math] and tom[math-ability —
average| should be derived. However, it can be shown that each o-model of Py
contains both tom[major —+ math] and tom[math-ability — average]. So every o-
model of Pg does not serve as its reasonable meaning.

Now consider the proposed semantics. The argumentation framework AF,(Fg)
is depicted by Figure 8, where a-g. a-a, m-m, g-b and f-m denote the ground
atoms tom]math-ability — good), tom[math-ability — average], tom{major — math],
tom[math-grade — b} and tom[favourite-subject —» math], respectively. Note that, in

Figure 8, Ty attacks itself. It is simple to see that M?;.f" is the set
{tom[math-grade — b], tom[favourite-subject — mathj},

which is the correct skeptical meaning of Pg (:.e., Lhe meaning obtained in the usual

way after discarding the conflicting clauses 1 and G3). O

6 Comparisons with Works on Inheritance Net-

works

Nonmonotonic inheritance has been studied intensively in the context of inheritance
networks (Touretzky 1986; Horty, Thomason and Touretzky 1990; Stein 1992). An

inheritance network is & directed acyelio graph with positive aned negative cdees A

31

o~ g

Figure 9: An example of inheritance networks.

vertex in the network represents an object (individual) or a kind of object. Posi-
tive and negative edges are intended to denote “is-a” and “is-not-a”, respectively.
A positive path from a vertex a to a vertex z, t.e., a sequence of positive edges
(a,51),(51,52)s--+{Sn~1,8n),{$n, 2), where n > 0, supports the inference “a is an
z”. On the other hand, a negative path from a to z, i.e., a sequence of positive
edges (a,s1), (51,52}, -, (Sm—1,5m) followed by a single negative edge from s, to
r, where m > 0, supports the inference “a is not an z”. When the network contains
paths that support conflicting conclusions, the topological properties of the network
will be employed to resolve the conflicts based on the principle that more specific
information is more directly relevant. For example, consider the inheritance net-
work in Figure 9. Let the vertices ¢, p, b and f denote “Tweety”, “penguin”, “bird”
and “flying thing”, respectively. This network then contains the information that
Tweety is a penguin, that penguins are birds, that birds fly, and that penguins do
not fiy. The positive path from ¢ (through p and b) to f enables the conclusion that
Tweety flies, while the negative path from t (through p) to f supports the opposite
conclusion. In terms of the topology of this network, since there is a path from ¢
through p to b, it is natural to suppose that p provides more specific information
about ¢t than b does. The positive path from ¢ to f is therefore considered to be

preempted, and an inheritance reasoner infers that Tweety does not fly.

In contrast with the works on inheritance networks, this paper assumes that
a hierarchy of types, partially ordered by the subtype relation (in other words,
partially ordered by the inclusion relation on the extensions of the types), is given.
The hierarchy itsclf does not contain any conflicting information, i.€., a type either

= or i~ not o Glivect or mndirect) subtype of another type, but not Loth, Method

32

definitions (possibly conditional), expressed as definite clauses, are associated with
a type, and are inherited by an individual of the type. From a consistent type
hierarchy, conflicts between method definitions inherited form different types may
arise and can be resolved based on a specified domination relation on ground clauses.

In some cases, by using an appropriate kind of inheritance reasoner, method def-
initions can be encoded in an inheritance network. For example, the two definitions
of the method medium-of-teaching in Example 11 can be represented by the net-
work in Figure 10, where a, i, {;, m; and m. denote “AIT”, “international school”,
“school that is located in Thailand”, “school at which the medium of teaching is
Thai” and “school at which the medium of teaching is English”, respectively. As
there exists an uncontested path from a to m,, a skeptical inheritance reasoner will
infer from this network that the medium of teaching at AIT is English.

However, it is pointed ocut by Horty, Thomason and Touretzky (1990) that:

Of course, the process of drawing conclusions from a set of defeasi-
ble hypotheses through inheritance reasoning is quite different from the
process of drawing conclusions from (the set) through deduction. In-
heritance reasoning doesn’t depend on the interplay of connectives, for
example, since there aren’t really any connectives, to speak out, in cur

semantic nets ... (Horty, Thomason and Touretzky 1990)

The edges in an inheritance network are not connectives, since they apply to in-
dividuals and kinds rather than sentences. It is therefore not always possible to
represent a method definition expressed by a definite clause by an inheritance net-

work. For example, consider the definite clause defining the method math-ability for
my m
L 2 *

L J
a

e

f

Figure 10: The definitions of medium-of-teaching represented by an inheritance net-

work.

AAa R

3 15)

*0

Je
o

Figure 11: An unsatisfactory representation of the clause a « m,b.

the individuals of type gr-student:

X: gr-student{math-ability — average] « X[major = math],
X[math-grade — b,

given in Example 17. The antecedent of this clause is a conjunction of two atoms
and the clause cannot be represented satisfactorily by the part of an inheritance
network shown in Figure 11, where a,b and m denote “graduate student whose
mathematical ability 1s average”, “graduate student whose mathematics grade is
B” and “graduate student whose major is mathematics”, respectively. (This part
of the network merely states that a graduate student whose mathematics grade
is B has average mathematical ability, and that a graduate student whose major
is mathematics has average mathematical ability.) Furthermore, as conditional
method definitions cannot, in general, be represented, dynamic method resclution
is not discussed in the context of inheritance networks.

Notwithstanding, the works on inheritance networks provide the presented ap-
proach with a foundation for determining the domination relation among ground
method definitions. The hierarchy of types together with the membership relation
associating individuals with their types can be represented as a network, and the
domination relation can then be determined based on the topological information
of the network. For example, if there exists a path from an individual a through a
type t to a type {' in the network, then the method definitions for the individual a

inherited from the type t can reasonably be considered to dominate those inherited

from the type ¢’

7 Conclusions

A framework for discussing a declarative semantics for declarative programs with

defeasible inhentance. Tised on Dung's argumentation framework (Dung 1995).

34

is proposed. The framework requires a domination relation on program ground
clauses, specifying their priority, to be explicitly given as additional information.
In practice, when a hierarchy of types is given, a suitable domination relation with
respect to method overriding can be determined by syntactic examination of a
program. With a specified domination relation, a program is transformed into an
argumentation framework which provides an appropriate structure for analyzing
the dynamic interaction of the intended deduction and domination. The meaning
of the program is defined based on the grounded extension of this argumentation
framework. This paper not only shows that the proposed semantics and Dobbie and
Topor’s perfect model {(with overriding) semantics coincide for inheritance-stratified
programs (Theorem 6), but also claims that the proposed sermantics provides correct

skeptical meanings for non-inheritance-stratified programs.

Acknowledgement

The proposed semantics is inspired by Phan Minh Dung. This work is supported
in part by the Thailand Research Fund.

References

ABITEBOUL, S., G. LauseN, lI. UrHorF, and E. WALLER. 1993. Methods and
Rules. Proceedings of the 1993 ACM SIGMOD International Conference on the
Management of Data, pages 32-41, Washington, DC, May. ACM Press.

AiT-Kact, H., and R. Nasr. 1986. LOGIN: A Logic Programming Language with

Built-in Inheritance. The Journal of Logic Programming, 3:185-215.

AlT-Kact, H., and A. PopieLski. 1993. Towards a Meaning of Life. The Journal
of Logic Programming, 16:195-234.

Arama, K. 1993. Declarative Semantics of Logic Programs on Parameterized Rep-

resentation Systems. Advances in Software Science and Technology, 5:45-63.

CERI, S., G. GoTTLo8, and L. TaAncCaA. 1990. Logic Programming and Databases.

Springer-Verlag.

Downir, (00 19971, Founditions of Deductive Object-Oriented Database Sys-

tems. PhD thesis, Department of Computer Science, ‘The University of Melbourne,
Parkville 3052, Austraha.

Dossig, G., and R. Toror. 1993. A Model for Sets and Multiple Inheritance in De-
ductive Object-Oriented Systems. In S. Ceri, K. Tanaka, and S. Tsur, editors, Pro-
ccedings of the Third [nternational Conference on Deductive and Object-Oriented
Databases (DOOD’'93), pages 473-488, Phoenix, Arizona, December. Volume 760

of Lecture Notes in Computer Science. Springer-Verlag.

Dossig, G., and R. Toronr. 1995. On the Declarative and Procedural Semantics

of Deductive Object-Oriented Systems. Journal of Intelligent Information Systems,
4:193-219.

DunG, P. M. 1995. On the Acceptability of Arguments and Its Fundamental Role
in Nonmonotonic Reasoning, Logic Programming and N-Person Games. Artificial

Intelligence, 77:321-357.

pDung, P. M., and T. C. Son. 1995. Nonmonotonic Inheritance, Argumentation
and Logic Programming. In V. W. Marek and A. Nerode, editors, Proceedings of
the Third International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR'95), pages 316-329, Lexington, KY, June. Volume 92§ of Lecture

Notes in Computer Science. Springer-Verlag,

Horty,J. F. . H Tinomason, and D. S. ToureTzKy. 1990. A Skeptical Theory

of Inheritance in Nonmonotonic Semantic Networks. Artificial Intelligence, 42:311-

348,

Kieer, M., G. LAUSEN, and J. Wu. 1995. Logical Foundations of Object-Oriented

and Irame-Based Languages. Journal of the Association for Computing Machinery,

42:741-843.

Lroyn, J. W. 1987. Foundations of Logic Programming, Second, Extended Edi-

tion. Springer-Verlag.

NANTAJEEWARAWAT, [1997, An Axiomatic Framework for Deductive Ohject-
Oriented Representation Systerns Based-on Declarative Program Theory. PhD the-
sis, C5-97-7, Computer Science and Information Management Program, School of

Advanred Technologies, Asian lustitute of Techinology, Bangkok. Thailand.

A6

PrzyMUSINSKL, T. C. 1988. On the Declarative Semantics of Deductive Databases
and Logic Programs. In J. Minker, editor, Foundations of Deductive Databases and

Logic Programming, pages 193-216. Morgan Kaufmann, Los Altos, CA.

STEIN, L. A. 1992, Resolving Ambiguity in Nonmonotonic Inheritance Hierarchies.
Artificial Intelligence, 55:259-310.

THIRUNARAYAN, K., and M. KIFER. 1993. A Theory of Nonmonotonic Inheritance

Based on Annotated Logic. Artificial Intelligence, 60:23-50.

ToURETZKY, D. S. 1986. The Mathematics of Inheritance. Morgan Kaufmann, Los
Altos, CA.

VaN GELDER, A., K. Ross, and J. ScHLIPF. 1988. Unfounded Set and Well-
Founded Semantics for General Logic Programs. Proceedings of the Seventh ACM

Symposium on Principles of Database Systems, pages 221-230. ACM Press,

VaN GELDER, A., . Ross, and J. ScHLIPF. 1991. Well-Founded Semantics for

General Logic Programs. Journal of the Association for Computing Machinery,

38:620-650.

37

)u\r‘m‘\ ®*L O
Su\,m;“eo\ o PRS- T\m\ng, K‘r\ow\e&%e o Dc\lv; Ev\aineu'ma

¢ AT Yevision)

Regular Paper

Declarative Programs

with Implicit Implication*

ViLas WUWONGSE
E-mail: vw@cs.art.ac.th
Computer Science & Information Management Program
School of Advanced Technologies
Asian Institute of Technology
Pathumthani 12120, Thailand

EKAWIT NANTAJEEWARAWAT
E-mail: ekawit@sit tu.ac.th
Department of Information Technology
Sirindhorn International Institute of Technology

Thammasat University

Pathumthani 12121, Thailand

Inder Terms— Declarative program, implicit implication. subsumption. taxenomy.

deductive object-oriented databasc., model-theorelic semantics, fixpoint semantics

*This paper is a substantially revised and extended version of [35].

Abstract— In the presence of taxonomic information, there often exists implicit impli-
cation among atoms in an interpretation domain. A general framework is proposed for the
discussion of an appropriate semantics for declarative programs with respect to such im-
plicit implication. It is first assumed that the implicit implication can be predctermined
and represented by a preorder on the interpretation domain. Under the consequent con-
straint that every interpretation must conform to the implicit implication, an appropriate
model-theoretic sernantics as well as its corresponding fixpoint semantics for declarative pro-
grams is described. Based on &stler et al.’s foundation of fixpoint with subsumption, it
is shown that, if the implicit-implication relation is, in addition, assumed to be a partial
order, then the meaning of a program can be determined more efficiently by application of
an immediate-consequence operator which involves only reduced representations, basically

consisting only of their maxirnal elements, of subsets of the interpretation domain.

Index terms— Declarative program, implicit implication, subsumption, taxonomy, de-

ductive object-oriented database, model-theoretic semantics. fixpoint semantics

1 Imntroduction

Ontological categories of entities constitute an important part of knowledge. In order to
organize and simplify a knowledge base, the categories of things that exist in the domain
of interest are commonly arranged into taxonomic hierarchies according to levels of gener-
ality. The idea of such arrangement dates from ancient times [26, 28]: and generalization

taxonomies of categories have been constructed as parts of several modern knowledge-based

systems, e.q.. [16. 20. 30]. A general category covers a number of specialized categories

sharing some similarities. The intensional description of a general category captures the
commeoenalities. but suppresses the differences in the intensional descriptions of more spe-

cific categorics [3. 29]. Catlegories are also called classes, colleclions, concepts. kinds, types.

sorts, and concept types. The selection of categories determines the vocabulary used for
representing knowledge. In addition to containing facts about individual objects and their
interactions, a knowledge base usually contains general statements concerning categories;
and much of reasoning takes place at the level of categories [26, 31].

Logic as well as ontology is an essential foundation of virtually every knowledge repre-
sentation scheme. Logic provides forms of sentences, interpretation structures for specifying
the meanings of sentences, and rules of inferences. In logic-based deductive systems with
taxonomic information, such as deductive object-oriented systems, atomic formulae (atoms)
in an interpretation domain, which serve as basic sentences for describing objects, are usually
interrelated semantically, 1. e., some atom may implicitly imply others, based on their struc-
tures, their intended meanings and class/subclass information. In particular, in a system
which separates taxonomic schema declarations from data definitions’, such an interrelation
can, in general, be predetermined. For example, in a conceptual graph language [13, 15, 34).
if generalization lattices of concept types, relation types and markers are provided, irredun-
dant atomic conceptual graphs? can be partially ordered into a generalization hierarchy in
which a graph logically implies each of its more general graphs [25. 27]. Similarly, in descrip-
tion logics [7. 8, 6, 22, 32]. which are descendants of the KL-ONE language [9]. subsumption
relationships among structured descriptions, where a subsumee entails its subsumers, can be
derived automatically from their structures with respect to a given generalization taxonomy
of primitive descriptions. This kind of implication is implicit in the sense that it does not
need to be declared in the assertional parts of knowledge bases, but 1s embodied in the

systems’ reasoning apparatuses.

'In such a system, taxonamic information (e.g., class/subclass relation and class population) is treated
as part of the system schema, and is not defined by program clauses.
2 A conceptual graph is redundant if it is logically equivalent to some of its proper subgraphs. It is atomic

if it does not contain any context as its concept node [15).

device
carrier port digitalDevice analogTransducer

logic memory thermistor potentiometer

1]

ic-gate logicMemory register

counter mMicroprocessor

Figure 1: A partial hierarchy of concept types for digital systems

Fnicroprocessor: #123 rept supplyData agnt potentiometer: #088
during
| robotArm: #226 agnt move src point
dest
point

Figure 2: A conceptual graph G1
1.1 A Motivating Example

Figure 1 illustrates a partial generalization hierarchy of concept Lypes in the domain of
digital system specifications and requirements, which is inspired by [10, 11]. The type
device encompasses all hardwar elements. The types logic and memary embrace devices
tha! contain logic for data manipulation and devices that contain memory for storage of
values, respectively; and their common subtype, logicMemory, represents devices that are

both of type logic and of type memory. The type analog Transducer cavers devices that convert

microprocessor: #123 —(ropt) (agnt)>—#] potentiometer: #088

Figure 3: A conceptual graph G2

digitalDevice: #123 +— rcpt) (agnt)—»{ anatogTransducer

Figure 4: A conceptual graph G3

physical quantities into electrical analog quantities. The universal type. T, which is the most
general concept type, and the absurd type, 1, which is a subtype of every concept type, are
not shown in the figure.

Now consider the atomic conceptual graph Gl in Figure 2, which is intended to mean
“the potentiometer #088 supplies data to the microprocessor #123 when the robot arm
#226 moves from one point to another”. This graph is more specific than and hence im-
plicitly implies, for instance, the graph G2 in Figure 3. which states “the potentiometer
#088 supplies data to the microprocessor #123”. According to the hierarchy in Figure 1,
since microprocessor and potentiometer are subtypes of digitalDevice and analogTransducer,
respectively, the graph G2 in turn implicitly implies the graph G3 in Figure 4, which is
intended to mean “an analog transducer supphes data to the digital device #123”. This
kind of implicit implication between conceptual graphs can be determined by examining
their syntactic structures and components.

Then, consider a conceptual graph program which contains as its program clauses the
graph C in Figure 5 and the graph G1. The intended meaning of the conceptual graph C is
“if an analog transducer supplies data to a digital device. then an A/D converter is interfaced
to the digital device™. Since G1 implicitly implies G3. which satisfies the antecedent of C.
the clause C fires and thus yields the graph G4 in Figure 6. the intended meaning of which

is “an A/D converter is interfaced to the digital device #123" . as derived information.

v [> |

Figure 5: A conceptual graph C

[gmeres 713 o~(a) <>

Figure 6: A conceptual graph G4

1.2 The Presented Work

The effect of such implicit implication on the declarative meanings of assertional knowledge
bases expressed as logic-programming-style definite programs is studied in this paper. It
is first assumed that there exists predetermined implicit implication among atoms in an
interpretation domain and this implicit implication can be described by a binary relation
on the domain. By the characteristics of implication. such a relation is typically a preorder
{quasi-order). r.e., it is reflexive and transitive. Under this assumption. an interpretation
must be closed with respect to the preorder. An appropriate model-theoretic semantics
for declarative programs together with its corresponding fixpoint semantics is developed

accordingly.

aguatece Je—(Gesya—| merace |
T
./@

| digitaiDevice: #123

Figure 7: A redundant conceptual graph G5

Next, a stronger assumption is considered, namely that the implicit-implication relation
is a partial order {antisymmetric preorder). To illustrate the practicality of this assumption,
consider the implicit implication on atomic conceptual graphs. This implicit implication is,
in general, a preorder but not a partial order [12, 25}; e.g., the conceptual graph G4 in Fig-
ure 6 and the redundant conceptual graph G5 in Figure 7 implicitly imply each other, and,
thus, the implicit implication is not antisymmetric. However, when consideration is only
given to irredundant conceptual graphs, which are actually used in practical applications,
the implicit implication is a partial order [25]. Under this stronger assumption, a legitirnate
interpretation can be represented equivalently by its reduced version which, intuitively, con-
sists only of its maximal elements with respect to the order. In addition, based on the
foundation of fixpoint iteration with subsumption [18, 19], the reduced representation of the
meaning of a program can be directly computed by an immediate-consequence operator on
a quotient set of the reduced interpretations.

For the sake of simplicity and generality, this paper uses as its primary logical basis
Akama’s axiomatic theory of logic programs [3]. i.e., DP (declarative programs) theory.
Section 2 recalls some basic definitions and results of DP theory. Section 3 discusses the
model-theoretic semantics together with the fixpoint semantics of a declarative program
under the preorder assumption. Section 4 recalls certain definitions and results related
to subsumption ordering [18, 19] and describes a more elegant fixpoint semantics under
the stronger assumption of partial order. Results concerning the continuous operators on

complete lattices, used in this paper, are given in the appendix.

2 DP Theory

Akama's DP theory [3] is an axiomatic theory which purports to generalize the concept

of conventional logic programs to cover a wider varicty of data domains. The theory sup-

presses the diflerences in the forms of {extended) atoms in various logic-programming-style
knowledge representation languages, and captures the common interrelations between atoms
and substitutions by a mathematical abstraction, called a specialization system. Despite its
simplicity, the specialization system provides a sufficient structure for defining declarative
programs together with their declarative meanings.

DP theory provides a template for developing a declarative semantics for declarative pro-
grams constructed out of atoms in any specific data domain. For example, in [4. 33], after
a concrete specialization system for RDF/XML elements is formulated, all the results of
DP theory can be employed to determine the meanings of RDF/XML declarative programs.
Likewise, as will be seen in Subsection 2.4, by formulating an appropriate specialization
system for atomic conceptual graphs, DP thecory provides a framework for discussing the
meanings of definite conceptual graph programs. In addition to program semantics, declar-
ative programs on such specific domains can inherit properties or findings related to DP
theory including the ones presented in this paper. Therefore, it is often more advantageous

to work on DP theory than to work on some specific declaratjve program {ramework.

2.1 Specialization Systems and Declarative Programs

The concepts of specialization systein and declarative program on a specialization system

are reviewed first.

Definition 1 [3]) (Specialization System) A specralization system 1s a 4-tuple (4. G, S, u)

of three sets A4 G and &, and a mapping ;1 from S to partial_map(A) (t.c.. the set of all

partial mappings on A}, that satisfics the conditions:
I (Vs', 8" € SYDs € 8) s = (js") o (1),
2. (3s € S)(Vae A): (ps)a = a,

3.6C A

The elements of A are called aloms, the sct G interpretation domain, the elements of S spe-
cialization paramelers or simply specializations, and the mapping u specialization operator.

A specialization s € § is said to be applicable toa € A, il a € dom(us). D

Throughout this section, let I' = (A, G, S, u) be a specialization system. A specialization
in S will often be denoted by a Greek letter such as ¢. In the absence of confusion, a
specialization # € § will be identified with the partial mapping p0 and used as a postfix
unary (partial) operator on A4, e.g., (u4f)a = afl.

A declarative program on [is defined as a set of definite clauses constructed out of
atoms in A. Every logic program 1n the conventional theory can be regarded as a declarative

program on some specialization system.

Definition 2 [3] (Definite Clause and Declarative Program) Let X be a subset of A.

A definite clause C on X is a formula of the form:

a b[,...,b"

where n > Qand a,b;,...,b, are atoms in X. The atom a is denoted by head{C) and the set
{by.....b,} by Body(C). A definite clause C such that Body{C) = @ is called unit clause.
The set of all definite clauses on X is denoted by Dclause(X). A declarative program on T’

is a {possibly infinite) subset of Dclause(A4). O

Let C be a definite clause (@ « b;,....b,) on A. A definite clause C’ is an instance of C'.
iff there exists ¢ € & such that # is applicable to a, by, ...,6, and C' = (al « 5,0,...,6,0).
Denote by C0@ such an instance €' of C and by Instance(C) the set of all instances of C.

Given a declarative program P on [, denote by Gclause(P) the set

U (Instance(C) N Delause(G)),
cer

i.e.. the sel of all instances of clauses in P which are constructed solely out of atoms in ¢.

2.2 Model-Theoretic Semantics

FFor a discussion of the model-theoretic semnantics of a declarative program on I', an interpre-
tation assigning truth values to atoms in the interpretation domain G, the truth value of a
definite clause on A with respect to a particular interpretation, and a mode! of a declarative

program on " are given by:

Definition 3 [3] (Interpretation) An interpretation is a subset of G. A definite clause C

on A is ttue with respect to an interpretation I, iff
(YC' € Instance(C) N Dclause(G)) : ((head(C’) € I) or (Body(C') g I)}. O

Definition 4 [3] (Model) An interpretation [is a model of a declarative program P on T,

iff all definite clauses in P are true with respect to [. 0O

As in the conventional theory. the model intersection property also holds for declara-
tive programs on I', and the semantics of a declarative program P on [is defined as the

intersection of all models of P, called the minimal model of P and denoted by Mp.

Proposition 1 {3] (Model Intersection Property) The intersection of more than one

model of a declarative programm P on T is also a model of P.

Theorem 1 [3] Lvery declarative program P on T has the minimal model Mp, which is

the intersection of all models of P. 0

2.3 Fixpoint Semantics

Throughout this subsection, let / be a declarative program on I'. Associated with P are

the mappings Tp and N p on the complete lattice (29.C). the least fixpoints of which are

equal to the minimal model Mp. Ip and Np are given by:

Definition 5 [3] For each X C G,
Tp(X) = {head(C) | C € Gelause(P) & Body(C) CX}). o
Definition 6 [3] For each X C G,
Kp(X) = Tp(X)UX. O
Some important properties of the mappings Tp and Kp follow:
Proposition 2 [3] Tp and Kp are C-continuous. 0O
Theorem 2 [3] Let I be an interpretation. Then
1. I is a model of P, iff Tp(I) C 1,
2. Iisamodel of P, iff Kp(I)=1I. O

Theorem 3 [3] Mp =1ifp(Tp) =ifp(Kp). O

2.4 Examples

Examples 1 and 2 below demonstrate how to regard conventional logic programs and definite

conceptual graph programs [13. 15, 34], respectively, as special forms of declarative programs.

Example 1 Let an alphabet A = (V. K, F, R) be given, where V. K. I and R are mutually
disjoint sets of variables, constants, function symbols and predicate symbols. respectively.
Let a specialization system [y = (A,.G,,S;, 41) be defined as follows: A4, is the set of all
first-order atoms over A: G, i1s the subset of A, that consists of all variable-free atoms in
A1 &) is the set of all usual substitutions over A; and. for each s € &, and a € 4. (jys)a
is the result obtained by applying the substitution s to a in the usual way. From the basic

cencepts and results® for logic programming, it can be seen that 'y satisfies all the three

?See, for example, the first chapter of [21].

conditions of Definition 1. The declarative programs on I'y are conventional logic programs,

and their meanings according to DP theory are exactly their conventional meanings. O

Example 2 Let a concept universe i = ({T, <.). -, M, V, ::) be given, where (T;.,<.) is a
lattice of concept types with the maximum element T and the minimum element L, 7, is
a sct of relation types, M is a set of individual markers, V' is a set of variables?, and :: is a

binary relation from T, to M, called the conformity relation, satisfying the conditions:
e Forany s, €1, me M,
— ifs:mand s <. thent::m,
— if s = m, t ::m and u is the greatest lower bound of s and ¢, then u :: m.

e Forany me M, T ::m, but not L :: m.

An individual marker m € A is said to conform to a conceptual type t € T, iff £ =1 m.

In general, the sets 77 and M may be partially ordered. To simplify the presentation, the

partial orders on these two sets are not considered in this example.

An atomic conceptual graph on i{ is a bipartite, connected, finite, directed graph & =
(C. R, [lab), where C and 1 are two classes of vertices. the elements of which are called

conecepls and conceptual relations. respectively, IZ is a set of edges. and {ab is a mapping that

associales with each vertex a label satisfying the conditions:

e For each ¢ € C, cither lab(c) is a concept type in T.. or lab(c) is of the form ¢ : r, where

t € 7; and r is either an individual marker in Af that conforms to { or a variable in V.
e lor cach r & . lab(r) is 2 ~elation tvpe in T,

Let a speciahization system 'y = (. G2 80 44 be defined as {ollows:

4 . .
In conceptual graphs, a variable is usually represented by the generic marker =, followed by an identifier

for indicating cross referenaes

1. A; is the set of all atomic conceptual graphs on (/.
2. G7 is the subsct of A, that consists of all variable-free atomic conceptual graphs.

3. Sz is the set of all substitutions of the form {vy/ry, ..., va/r,}, where the v; are distinct

variables in V', and for each j € {1,...,n}, r; € MUV and v; # ri.

4. Given s = {v)/r1,...,va/ra} € Sz and a € Aj;, if the result obtained from a by
simultaneously replacing each occurrence of v; in @ by r;, foreachi € {1,...,n},isa
conceptual graph on &/, then (u3s)a is defined to be that result, otherwise pus5 is not

applicable to a.

It is not difficult to see that I's satisfies the three conditions of Definition 1. A declarative
program P on I'; such that for each clause C € P, every variable occurring in head(C)
also occurs in Body(C) is a conceptual graph program; and, the semantics of declarative
programs with implicit implication. which will be developed in Sections 3 and 4, yields its

expected meaning. D

3 Implicit Implication as a Preorder

When a generalization taxonomy of types or classes is provided. an implicit-implication rela-
tion among the atoms in an interpretation domain can often be determined by examination
of their structures and intended meanings. For example. in a conceptual graph language
(13, 15, 34], since atomic conceptual graphs, in the linear notation, [t : 0] — (1) — [t* : o]
and [t : 6] = (r) — [t’] are intended to mean “there exist objects o of tvpe t and o' of type

t’ such that o has relation r to ¢'” and “there exists an object o of type ¢ such that o has

*This condition is satisfied iff for each concept ¢ in a and each binding v, /r, € s, if lab(c) = ¢ : v, and

ry € M, thent:r,.

relation r to some object of type ", respectively, the atomic conceptual graph
[microprocessor : #123] — (part) — [register : #001]

implicitly implies the atomic conceptual graph
[digitalDevice : #123] — (part) — [memory],

provided that the types microprocessor and register are more specific than the types digi-
talDevice and memory, respectively. In F-logic [17], as a signature expression cfm = s
intended to mean “if a method m for an object of class ¢ is defined or derived, then it must

return an object of class ¢'”, the signature expression
memory[content = digitalValue]

implicitly implies the signature expression
counter[content => value],

provided that the id-terms counter and digitalValue are subclasses of the id-terms memory

and value, respectively. Likewise, in KL-ONE-like languages [7, 8. 9. 22]. the conceptual

description

[device that receives data from at least one analogTransducer]

subsumes the conceptual description
[microprocessor that receives data from at least three thermistors}.

provided that the primitive concepts [device] and [analogTransducer] subsume the primitive
concepts [microprocessor] and [thermistor)], respectively; and. therefore. if an individual object
satisfies the latter description, the object will also satisfy the former description. This
kind of system-defined implicit implication should be separated from application-dependent
implication explicitly defined by definite clauses in application programs. and. as will be

described in Section 4, can be employed to enhance systems computation mechanisms.

11

This section assumes that the implicit implication among the atoms in an interpretation
domain can be predetermined and explicitly represented by a preorder on the domain. More
precisely, in the sequel, it will be assumed that I't = (A,G, S, 4) is a specialization system
and C is a preorder on G such that for any g,¢' € G, ¢ C ¢, ifl ¢ is implicitly implied by
¢'. Under the constraint that every interpretation must conform to the implicit implication,
an appropriate model-theoretic semantics for declarative programs with respect to C along

with its corresponding fixpoint semantics will now be developed.

3.1 Model-Theoretic Semantics

In the original DP theory, an interpretation arbitrarily assigns truth values to the atoms
in an interpretation domain, whence every subset of the domain can serve as one possible
interpretation. Under the established assumption, in contrast, the truth values of the atoms
must be consistent with the implicit implication described by the preorder C. and thus
cannot be randomly assigned. Accordingly, not all of the original interpretations. but only
those which are closed with respect to C will be used henceforth to discuss the model-

theoretic semantics for declarative programs on I'c.
Definition 7 {C-Closed Interpretation) An interpretation [is said to be C-closed. iff

(Veel)vg' €G): (¥Cg = g'€l) O

Lemma 1 The intersection of more than one C-closed interpretation 1s also a C-closed

tnterpretation. O

Proof Tor some index set J, let {1, | j € J} be anon-empty set of C-closed interpretations.
Let g € njeJ Ij and let ¢" € G such that ¢’ C g. For cach j € J. since y € [, and [, is

C-closed, it follows that ¢* € [, whence ¢’ € Njes 5 =

relation r to some object of type ", respectively, the atomic conceptual graph
[microprocessor : #123] — (part) — [register : #001]
implicitly implies the atornic conceptual graph
[digitalDevice : #123] — (part) — [memory],
provided that the types microprocessor and register are more specific than the types digi-
talDevice and memory, respectively. In F-logic {17}, as a signature expression ¢[m = ¢'] is

intended to mean “if a method m for an object of class ¢ is defined or derived. then it must

return an object of class ¢'”, the signature exptession
memoryf[content = digitalValue]

implicitly implies the signature expression
counter[content = value],

provided that the id-terms counter and digitalValue are subclasses of the 1d-terms memory

and value, respectively. Likewise, in KL-ONT-like languages [7. &, 9. 22]. the conceptual

description
[device that receives data from at least one analogTransducer]

subsumes the conceptual description
[microprocessor that receives data from at least three thermistors).

provided that the primitive concepts [device] and [analogTransducer] subsume the primitive

concepts [microprocessor] and [thermistor]. respectively: and. therefors. if an inchvidual object

satisfies the latter description. the object will also satisfy the former description. This

kind of system-defined implicit implication should be separated from application-dependent

implication explicitly defined by definite clauses in application programs. and as will be

described in Section 4. can be employved to enlance systems’ computation inechantsims

11

This section assumes that the implicit implication among the atoms in an interpretation
domain can be predetermined and explicitly represented by a preorder on the domain. More
precisely, in the sequel, it will be assumed that I'c = (A,G, S, y) is a specialization system
and C is a preorder on G such that for any ¢,9' € §, ¢ C ¢', ifl g is implicitly implied by
g¢’. Under the constraint that every interpretation must conform to the implicit implication,
an appropriate model-theoretic semantics for declarative programs with respect to C along

with its corresponding fixpoint semantics will now be developed.

3.1 Model-Theoretic Semantics

In the original DP theory, an interpretation arbitrarily assigns truth values to the atoms
in an interpretation domain, whence every subset of the domain can serve as one possible
interpretation. Under the established assumption, in contrast, the truth values of the atoms
mustl be consistent with the implicit implication described by the preorder C. and thus
cannot be randomly assigned. Accordingly, not all of the original interpretations. but only
those which are closed with respect to C will be used henceforth to discuss the model-

theoretic semantics for declarative programs on I'c.
Definition 7 (C-Closed Interpretation) An interpretation [is said to be C-closed. iff

(Veel)ve eG): (g = 4g'€l). O

Lemma 1 The intersection of more than one C-closed interpretation s also a C-closed

inferpretation. 0O

Proof Tor some index set J.let {f, | j € J} be a non-empty set of C-closed interpretations.
Let g € nJEJ I; and let ¢’ € G such that ¢ C g. Foreach ; € J. since g € {, and [, is

C-closed, it follows that ¢’ € J;, whence ¢’ € [\, ,/;. =

S NI IYE

The truth value of a definite clause on A with respect Lo a C-closed interpretation is still
defined as in the original DP theory (sce Definition 3). A C-closed model of a declarative
program P on I'c is defined in a straightforward manner as a C-closed interpretation which
is also a model (according to Definition 4} of P. The meaning with respect to C of a
declarative program P on I'c is then defined as the intersection of all C-closed models of P,
which is the minimal C-closed model of P (sce Proposition 3 and Theorem 4 below) and is

denoted by M5

I'roposition 3 (C-Closed-Model Intersection Property) The inlersection of more

than one C-closed model of a declarative program P on Ic s also a C-closed model of

P. 0O
Proof The proof follows immediately from Proposition 1 and Lemma . =

Theorem 4 Every declarative program P on Tc has the minimal C-closed model M%,

which 1s the intersection of all C-closed models of P. QO

Proof Since G is a model of every declarative program on I'c and is also C-closed, P has

at least one C-closed model. Then, by Proposition 3, .M,E-, is a C-closed model of P, which

is obviously minimal with respect to set inclusion. =

3.2 Fixpoint Semantics

In arder to provide fixpoint characterization of C-closed model semantics. the C-continuous
. > . 5 . . . :

mapping KN'p on the complete lattice (2%, C) is associated with a declarative program P on

I'c. An important virtue of this napping is that cach of its fixpoints determines a C-closed

model of 2 (Theorem §). Therefore. the minimal C-closed model M,;, can be obtained by

computing its least fixpoint (Theorem 7). Ilntreduce now the nation of expanded version

of a subsct of G with respeet Lo the preorder 2, which will be used in the definition of the

mapping KL

16

Definition 8 (Expanded Sct)® Let X C G. The ezpanded version of X, denoted by £(X)

is defined as:
E(X) = {9€CG|(BxeX):gC=z}. O

The next proposition links the notion of C-closed interpretation to that of expanded

version of an interpretation.
Proposition 4 An interpretation I s C-closed, if E(I)=1. 0O

Proof Note first that, by the reflexivity of C, £(/} D I. Thus

(Fgel(3g€G): 9 Cag & g ¢l <= ((FeG):9€lll)&yg¢l
— E(I)D1I
— E(I)# 1,

ie., I isnot Cclosed, if E(/} #1. =

Now, let P be a declarative program on I'c. Note that £(Adp). the expanded version of
the minimal model M p, is possibly not a model of P (since there may exist some ¢lause C €
Gclause(P) such that Body(C) € Mp and head(C) ¢ Mp, whereas Body(C) C £(Mp)
and head(C) ¢ £(Mp)). This clarifies that the minimal C-closed model M% is. in general.
not equal to £(AMp): and, accordingly, _M% cannot be obtained simply by expanding the

least fixpoint of K p. Next, consider the mapping h'5, the least fixpoint of which equals

C
ME:
Definition 9 The mapping I\'f;: 2¢ 5 29 is given by

Kp(X) = RKp(E(X)),

foreach X CG. 0O

5 . - R
This definition is an adaptation of that of an expanded set with respect to a partial order on a hasic

set, given in [19].

Proposition 5 and Theorems 5 and 6 below describe some properties of the mapping K'5.
Proposition 5 K& is C-continuous. O

Proof Considering £ as a mapping from 2% to 29, it will first be shown that £ is C-
continuous. Let X be a directed subset of 2¢, | JX and |JE(X) denote U;ex £ and
U.ex €£(z), respectively. Then
gefUX) <= (@delUX):9Cy¢

< (3ze€X)(3¢€=z):gCy¢g

— (3reX):g€£(z)

— gelUEWN).
Thus £(U X) = J£(X), t.e., £(ub(X)) = [ub(£(X)). whence £ is C-continuous. Then, it
follows from Proposition 2 and Result 1 of Lemma 3 in the appendix that K = Kpo £ is

C-continuous. ®
Theorem 5 pr(h'f;) = I\’f; tw. 0O

Proof The proof follows directly from Proposition 5 and Proposition 10 in the appendix.

Theorem G Lel [be an inlerpretation, then KEUIY =1, iff I 15 a C-closed modet of P.

a

Proof It is clear that, for each X C G. Kp(X) 2 X and £(X) D X. Thus. for each

interpretation f,
Ke(l) = Kp(€()) =1 <= Kp(l)=18& £(1)=1.
Tle result then {ollows from Theorem 2 and Proposition 4. =

The main result of this subsection is:

Theorem 7 M5 =1fp(K§). O

Proof The result follows from Theorems 4 and 6. =

4 Implicit Implication as a Partial Order

As has been illustrated at the beginning of the last section, the implicit implication among
atoms in a particular system, whete their intended meanings are clearly known, can, in
general, be decided upon by examination of their forms and the generalization relationship
between the types or classes occurring at the corresponding positions in them. In a con-
ceptual graph language, for example, given two cancnical conceptual graphs G and /., &
is more specific than, and, thus, implicitly implies /1, iff there exists a projection’ from f{
to G [23, 25]. The existence of a projection, which is a kind of graph morphism. from one
conceptual graph to another depends solely on the syntactic structures of the two graphs and
the generalization hierarchies of conecept types, relation types and markers. An algorithm
for computing a projection from one conceptual graph to another was developed in {24, 25].
In particular, it is shown in [24, 25] that if G is a conceptual tree, t.e., a conceptual graph
without cycles, except for cycles created by multi-edges between a relation vertex and one
of its neighbours. then a projection from to any conceptual graph can bhe computed n
polynomial time.®

A generalization hierarchy of types or classes commonly has a partial-order structure,

T A projection [27] is a graph morphism, preserving the order on edges and complying with some additional
rules on vertex labels.

® Trees scem to be very frequent in conceptual graph applications {25]. The irredundant atomic conceptual
graphs shown by the figures in this paper are all conceptual trees. A general algorithm for computing a
projection from one conceptual graph to another conceptual graph by converting the former into a tree
and then using the polynomial-time algorithm for computing a projection from a tree to a graph as a

preprocessing part is also described in [23].

19

and consequently, the implicit-implication relation is often also a partial order. For instance,
the implicit implication on irredundant atomic conceptual graphs is a partial order. It will
now be assumed, in addition, that the implicit-implication relation on the interpretation
domain is a partial order, i.e., the preorder T in the last section is, in addition, assumed to
bLe antisymmetric. Under this stronger assumption, it applics Lhe results on fixpoint iteration
with subsumption provided by [18, 19] (Subsection 4.1) to describe more elegant fixpoint
semantics for declarative programs with respect to the implicit implication (Subsection 4.2).

Formally, throughout this section, let T'c = (A, G, 8, i) be a specialization system and
C a partial order on G such that for any ¢,¢' € G, ¢ C ¢’, iff ¢ is assumed to be implicitly

implied by ¢. All the definitions and results in the previous section apply in this section.

4.1 Basic Definitions and Results

Recall now some definitions and results from [18, 19], which will be used in Subsection 4.2.°

Based on the partial order C on G, the binary relation C on 2¥ is defined by
XCEY <= (VreX)(3yeY): zCy,

for any X,Y C G. This relation is a preorder on 2%, but nat necessarily a partial order.!?

Based on 1t, the equivalence relation ~ on 2% is defined by
A~Y +— NCY &LYCNXN,

for any X,Y € G. The preorder C on 29 is extended to the quotient set of 2¥ modulo ~

(r.e., 29/~) by

(NJC[Y] <= XxCVY

LR it < ; i ;
It should Le noted that it is only assumed in (1R, 19} that C s a partiad order on a basic set {in this

paper, the interpretation domain G), i.e., all the results presented in this subsection still hold without the
condition that the partial order T represents an implicit-implication relation on .

This preorder on 2% is usually called Hoare's vrdering.

20

for any [X],[¥] € 29 /~. This extended rclation is a partial order on 26 /~.

Next, consider the notion of a reduced version of a subset of G

Definition 10 [19] (Reduced Set) Let X C G, C be the set of maximal (with respect to
set inclusion) chains!! of X, and, for each C € C, mazc(C) denote the maximum (with

respect to C} element, if it exists, of C. The reduced version of X, denated by R(X), is

defined by:

R(X) = |J ke

CeC

where

{mazc(C)}. if marc(C) exists.
e = - -
C, otherwise.

Denote by 2% the set of all reduced subsets of G. i.e., the set {R(X)| X €2¥}. O

For each X C G, the maximal chains in .\ without maximum elements'? are left un-
changed in R{X), while those with maximum elements are reduced to their maximum ele-
ments in R(X). Thus, if X is a finite set, then R{X) consists only of the maximal elements

of X. The next proposition interrelates reduced sets. expanded sets. set inclusion. and the

relations C and ~ on 29.
Proposition 6 [19] If X,Y C G, then
L X ~R(X)~E(X),

2 XCY = R(X)CR(Y) & E(X)CEY) O

"1 The maximal chains of a partially-ordered set X are the totalty-ordered subsets ol X that are maximal
with respect to sct inclusion. For example, let X = {a.b.c.d} be partially ordered by a C oL candald

Then the maximal chains of X are {a,b,¢c} and {a,d}.

20nly infinite chains may have no maximum clements.

2}

Using Result 2 of Proposition 6, 1t can be shown that:
Proposition 7 K is C-monotonic. O

Proof Let X,Y CG. Then
XCY = E(X)CE&Y) (by Result 2 of Proposition 6)
— Kp(£(X)) C Kp(E(Y)) (as Kp is C-monotonic!?)
— Kp(E(X))C Kp(E(Y)) (by the reflexivity of C)

— KE(X)T KE(Y).

It is shown in [19) that the partially-ordered set [2%/~, C) is a complete lattice, where the
top element is [R(G)], the bottom clement is (8] and tub{[X;] | j € J} = [R(U, ¢, Xj)]. Next,

recall the main theoretical results on fixpoint iteration on this complete lattice, provided by

(18, 19].

In the sequel, let ;2% 5 29

Definition 11 [19] If IV is C-monotonic. then the mappings Fr and [~ are defined by:

1. Fp:2% — 29 such that Fr(XN) = R{F(X)). for each X cq.

2. F~:2% [~ — 2% /~ such that F~([X]) = [Fr(N)]. for each [X] € 2%/~ O

Theorem 8 [19] If IF s C-monotonte, then 7~ has a least firpownt. 0O

Theorem 9 [19] If f7 is C-monotonic and C-continuous, then
LAfp(FT)=TF~ tw,
2ZRFtn))=F~tn=['"r1Tu)] foranyn < w.

AR p(EN]) = p(F)y=1ub{{I'r tn]|n < Wl 0O

'* K’ p is C-continuous, by Proposition 2, and, hence, C-monotonic.

"1t is shown in (19] that, fer any X,V € G, X ~ ¥ implies R{F[(X)) ~ R(F(¥Y}Y), and, thus, F~ is well

defined. Moreover, Fp and ™ are both C-monatonic.

22

4.2 More Elegant Fixpoint Semantics

Under the assumption of this section, it follows from Propositions 4 and 6 that, for every
C-closed interpretation I, £(R(/)) = £(]) = I, i.e., every C-closed interpretation can be re-
captured from its reduced version by expansion. This suggests that C-closed interpretations
can be equivalently represented by their reduced versions. Moreover, for any declarative pro-
gram P on I'c, as Kf, 1s both C-continuous and C-monotonic {Propositions 5 and 7), Kﬁ
determines the mapping (KN5)™ on the complete lattice (2% /~,C) according to Definition

11, i.e., given [X] € 2%/~,

(KE)YW(IX]) = [R(KR(X)),

and it follows from Theorem 7 and Result 3 of Theorem 9 that

[RIMB)] = [REfP(KEN] = UfpUKE)).

Hence, if {fp{(K5)~) = [A], then, by Result 2 of Proposition 6, £(A) = £(R(M3)), and,
as M% is C-closed, then, £{A) = M,g, Therefore, the minimal C-closed model M% can be
obtained by expansion of any representative of the least fixpoint of (K5)™~.

At first glance, computing M% by application of (W£)™, described above. seems to be
efficient, in that (K'5)™ is a mapping on a quotient set of the reduced subsets of G. llowever.
on closer examination of Definitions 9 and 11, one finds that for any equivalence class [X]

in the quotient set 2% [~
(KEY“([X]) = [R(KE(X))] = [R(Kp(E(X)]. (1)

Thetefore. if (Kf,)“’([_\']) is evaluated directly according to Equation (1). i.r.. by means of
the mapping Kp. then the reduced set X must be expanded and the merit of computation
on reduced sets will be lost. It will next be shown that, instead ol using Lquation (1),

(K5)~([X]) can be computed by using another mapping]\'%‘ which does not involve the

expanded version of X .

23

&Y,

— |

v

A g1 NYa B

In the sequel, let P be a declarative program on [c. The next definition associates with

P a mapping T on 2°, based on which the mapping K5 is defined.
Definition 12 For each X C G,
TE(X) = {head(C) | C € Gelause(P) & Body{C)C X}. O
Definition 13 The mapping K5:29 — 29 is defined by
K5(X}=T5(X)UNX,
foreach N CG. O

The next lemma and proposition assert some characteristics of the mappings TE and

K§.
Lemma 2 Let X C G, then
[N - g -
1. Te(E(X)) = T5 (X)),

2K

(X) 2 AF(N),

ot

2 KE(XN) ~ KE(X). O
Proof
1. By Definition § and the definition of C on 2¥, for any Y. Z cg,

Y CE(Z) = MveY):ve £(2)
— (\"ye‘t')(E:EZ):yg:

= YLC2Z

Then, it follows directly from the definitions of Te and T_E {Definitions 3 and 12) that

Te(8(X)) = TE(.X), for each X C ¢,

_.Vi--‘y

3 Let X, Y CG. Then
XCY = Kf.(,\') E l\'f,(\’) {by Proposition 7)

= KE(X)C KE(Y) (by Result 3 of Lemma 2).

As I\'E is always C-monotonic as well as C-continuous (Proposition B), the mapping
(l\'g)" on the complete lattice (2%/-».!;) is well-defined by Definition 11, ie., for each
1X] € 2% /~.

(KR (XD = [R(KE(O]
and (KE)™ has all the properties listed in Theorem 9. Proposition 9 below establishes the
equality between the mappings (KE)™ and (l\'%)""
Proposition 9 (RK£)~ = (KR)~. 0O

Froof By Result 3 of Lemma 2 and Result 1 of Proposition 6, R(KE(X)) ~ R(KF(X))

for each X C ¢. Henve, the mappings (K5)™ and (KE)” are equal.
As a result, given an equivalence class [X]in 2% /~, {K$)~{{X]) can be computed through
the mapping h,g by the equation:
(RRUND = (RRITIND = [RINE(O)L (2)

Observe that, in the evaluation of K%(.\')_ X is not expanded, but directly compared with
Body(C), based on the preorder C on ¥, for each C € Gelause(P).

The next theorem is the main result of this section. 1t intimates that the expanded
version of any arbitrary representative of the least fixpoint of{l\'g)“ 18 equal to the mimmal

L - closed maodel .\1?\
Theoren 10 {R(_*I%}] = [RUFp(NEN = ff;\(\h'%]‘”)_ 0O
Prootl The result fallows from Theorewr 7, Result 3 of Theorem 9, and Proposition 9. ®

26

4.3 Comparisons with Related Works

In [18, 19], Kostler et. al. augmented logic programming by incorporating semantic control
knowledge in the form of user-supplied subsumption information, which may be used to
expedite query evaluation process, and extended the classical theorems for least models and
least fixpoints accordingly. In their proposals, a user can provide a subsumption ordering
on the Herbrand base, by means of meta-rules, in order to specify that some ground atom
is semantically preferable to, or more intended than, or more useful than another ground
atom. For example, in the problem of computing shortest paths, as illustrated in [19], the
atom path(a, b, ¢;), asserting that there exists a path the cost of which is ¢; from a vertex a
to a vertex b, can be considered to subsume the atom path(a, b, c2) if ¢y 1s less than ¢3.

On condition that the conventional immediate consequence operator Tp Is monotonic
with respect to the subsumption ordering, {ostler et. al. succeeded in applying their elegant
theorem of fixpoint iteration with subsumption {Theorem 9) to the development of efficient
iteration schemes for bottom-up query evaluation with respect to the conventional semantics
of logic programs and the supplied subsumption information. As pointed out in [19}, however,
the operator Tp is, in general, not monotonic with respect to the subsumption ordering, and,
consequently, Theorem 9 does not always apply

This paper, in contrast, focuses on the implicit-implication relation due to taxonomic
information, and develops a natural semantics for declarative programs, which accounts for
the impact of the implicit implication. Under the practical assumption that the implicit-
implication relation can be determined in advance and represented by a partial order C
on the interpretation domain G, the operator W5. the least fixpoint of which determines
the proposed meaning M% as well as the operator 1\'%_ which is specifically devised lor
eflicient computation of .M% on reduced subsets of ¢, 1s always monotenic with respect

to C (Propositions 7 and 8), and Theorem 9 always applies. DBased on these results. the

i

reduced representation ofM,g, can be computed clegantly by means of the operator (h‘%)""
an application of which compares a reduced subset of G directly, with respect to C, with
the bodies of ground program clauses. Such a comparison is especially suitable for dealing
with the implicit implication; and, as illustrated in the beginning of this section, it mainly
involves examination of the internal structures of atoms, and is often inexpensive in practice.
In their remarkable work [1], Ait-Kaci and Nasr introduced an extended form of first-
order terms, called i-terms, and incorporated the employment of taxonomic information
into y-term unification process. A y-term 1s a record-like type structure, which denotes a
set of objects. For example, the set of all IC gates in the TTL family may be denoted by
the y-term ic-gate[family => ttl], provided that the type ic-gate embraces all IC gates. One
t-term 1s considered to subsume another y-term if the set of objects denoted by the former
is a superset of that denoted by the latter. This subsumption relation is a partial order on
the set of y-terms. The unification of two given ¥-terms is the operation that computes
their greatest lower bound, which denotes the intersection of the sets of objects denoted by
the two y-terms. Tor instance, assuming that ic-gate is a subtype of device, the unification
of the y-terms device[family => tt!] and ic-gate yields the y-term ic-gate[family => ttl].
The unification of y-terms is used in [1]. instead of the usual unification of first-order

terms, in the goal-directed SLD-resolution mechanism of PROLOG. Suppose, for example.

that one has the query

? connect(X : device[family => ttl]. ¥ : device[family => cmos]),

asking for all TTL devices that are connected to some CMOS devices. Through the unifi-

cation of ¢-terms, the query cun unify with the head of the progratn clause

connect(X :ic-gate,Y :ic-gate) send(X, Z : value, Y},

stating that an IC gate X is connected to an IC gate Y if X sends some value Z to Y.

and can thus be resolved with this program clause. The unification coerces the y¥-terms

23

cover#355 Je~C G

Figure 8: A conceptual graph G

Figure 9: A conceptual graph G+

X :ic-gate and Y : ic-gate in the program clause to the y-terms X : ic-gate[family => ttl] and

Y :ic-gate[family => cmos], respectively, and the resolvent thus obtained is
send(X : ic-gate[family => ttl}, Z : value, Y : ic-gate[family => cmos]),

which becomes the new goal to be proven.

In comparison, the partial order in this paper represents the implicit-implication relation
on atoms in the interpretation domain. each of which does not denote a set of objects, but
a statement about objects. The greatest lower bound of two given atoms, if exists, is an
atomn which implicitly implies each of the two atoms; and, its existence does not, in general,
signify that the two atoms are relevant to and can unify with each other. Referring to the
hierarchy of concept types in Figure 1. for example, the conceptual graphs G¢ 1n Figure 8§
and G7 in Figure 9 have the conceptual graph Gg in I'igure 10 as their greatest lower bound.
Notwithstanding, the graph Gs is hardly relevant to the graph G+, and if one has Gs as a
goal conceptual graph, it is hardly useful to try to prove G by resolving it with a program
clause the head of which is G7.

By considering atoms in the interpretation domain as abstract entities. which are charac-
terized by their implicit-implication relationship with others, this paper provides a general
foundation for efficient bottom-up, forward-chaining evaluation of declarative programs. A
top-down, goal-driven proof procedure. on the other hand, usually depends on the syntax

and the internal structures of atoms. which vary with knowledge-representation languages,

29

ic-gate: #355

ic-gate: #229

Figure 10: A conceptual graph Gsg

and is normally tailored for each individual language. For example, the unification algo-
rithms used in [1, 2] are designed specifically for atoms involving y-terms. TFor definite

conceptual-graph programs, a goal-directed proof procedure was developed in [14].

5 Summary

Atoms in an interpretation domain normally serve as basic statements which describe various
kinds of relationships among objects. When class/subclass information is provided, there
usually exists an implicit-implication relation among the atoms, which can be determined by
considering their forms and their intended meanings. In a system which regards taxonomic
information as schema information, atoms are not used to describe subclass relationships.
and, as a result, the implicit-implication relation does not depend on any particular inter-
pretation and can usually be determined in advance.

This paper first assumes that the implicit-implication relation among the atoms in an
interpretation domain is predetermined and described by a preorder C on the domain. The
meaning of a declarative program P with respect to the implicit implication is then defined
as the minimal C-closed model .M',;,, which can also be characterized as the least fixpoint
of the immediate-consequence operator A% on the power set of the interpretation domain
{Theorem 7). Afterwards, 1t is furthermore assumed that the implicit-implication relation
C is a partial order and it is shown that. under this stronger assumption. the meaning

C
M5B : . .
AME of any program 2 can be computed mare elegantly and more efficiently by expanding

30

any representative of the least fixpoint of the immediate-consequence operator (K%)"‘ on a

quotient set of reduced subsets of the interpretation domain (Theorem 10).

Acknowledgement

The authors would like to thank the anonymous reviewers for their comments and suggestions

which helped to improve the paper. This work was supported by the Thailand Research

TFund.

Appendix: Continuous Operators on Complete Lattices

Throughout this appendix, let (L, <) be a complete lattice, the minimal element of which
is L. Given T: L — L, let T(X) denote {T(z) | z € X} for each X C L, and Tt w denote
lub{T™(L) | n > 0}, where T®(z) =z and T (z) = T{(T" " Yz)) forn > 1 [3]. Aset X C L
is said to be directed, iff every finite subset of X has an upper bound in X [21]. A mapping
T:L — L is said to be <-continuous, iffl T(lub(X)) = lub(T(X)), for each directed subset
X of L, and is said to be <-monotonic, iff T(z) < T(y), forany z,y € L such that £ < y

[21]). For any mappings T, 7": L — L. let the mapping 7" + T: L — L be defined by
(T +T)(z) = ub{T'(r),T(z)}.
for each x € L [3).
Proposition 10 [21] /f T: L — L is a <-continuous mapping, then{fp(T) =T tw. O
Lemama 3 If T.T': L — L are both <-continuous mappings, then
I. T'oT is <-continuous,

2. T+ 7T is <-confinuous. 0

31

Proof The first result of this lemma is well-known. Only the second result will be proven

here. Let X be a directed subset of L. Note first that, ifa € L, then
VeeX:a>(T"+T)(z) & VreX ca > lub{T'(z), T(z)}
= VzeX:a2T(z) & a>T(x)
= a>lub(T(X)) & a>lub(T(X)),
i.e.. a is an upper bound of (IV+T)(X), iff @ is an upper bound of {{ub(TV(X)),lub(T(X))}

Thus
lub((T" + TYX)) = lub{lub[T’(.\')],lub(T[X))}.

It follows that
(T + TY({ub(X))
= lub{T'{{ub(X)), T(lub(X))}

Lub{lub(T" (X)) {ub(T(X))} (as T’ and T are <-continuous)

= wh((T' + TH(X)).

References

[1] If. Ait-Kaci and R. Nasr, “LOGIN: A Logic Programming Language with Built-in

Inheritance”. J. Logic Programming, vol. 3, no. 3, pp. 185~215, 1986.

[2] H. Ait-Kaci and A. Podelski, “Towards a Meaning of Life”, J. Logic Programming, vol.

16, no. 3/4, pp. 195-234. 1093

[3] IK. Akama. "Declarative Semantics of Logic Programs on Parameterized Representation

Syatems”. Adrances m Software Scrence and Technology, vol. 5, pp. 45-63, 1993.

(4]

(5]

[6]

(8]

(9]

[10]

(11]

[12]

C. Anutariya, V. Wuwongse, E. Nantajeewarawat and K. Akama, “Towards Compu-
tation with RDF Elements”, Proc. 1999 Int’l Symposium on Digital Libraries (1SBL),

Tsukuba, Japan, pp. 112-119, 1699.

A. Borgida, J. Mylopoulos and . K. T. Wong, “Generalization/Specialization as a
Basis for Software Specification”, M. L. Brodie, J. Mylopoulos and J. W. Schmidt,
eds., On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases,

and Programming Languages, pp. 87-117, Springer-Verlag, 1984.

A. Borgida, “Description Logics in Data Management”, [ZEE Trans. on Anowledge

and Data Eng., vol. 7, no. 5, pp. 671-682, 1995,

R. J. Brachman, . E. Fikes, and I1. J. Levesque, *“KRYPTON: A Functional Approach

to Knowledge Representation™, IEEE Computer, vol. 16, no. 10, pp. 67-73, 1983.

R. J. Brachman, D. L. McGuinness, P. . Patel-Schneider, and L. A. Resnick. “Living
with CLASSIC: When and How to Use a KL-ONE-Like Language”, J. I'. Sowa, ed.,

Principles of Semantic Networks, pp. 401-456, Morgan Kaufmann, 1991.

R. J. Brachman and J. G. Schmolze. "An Overview of the KL-ONE Knowledge Repre-

sentation System”, Cognitive Science. vol. 9. no. 2. pp. 171-216. 1985.

W. Cyre, “A Requirements Sublanguage for Automated Analysis™. Int{ J. of Intelligent

Systems, vol. 10, no. 7, pp. 665-689. 1995.

\W. Cyre. “Capture. Integration. and Analysis of Digital System Requirements with
Conceptual Graphs™, [ELL Trans. on Anowledge and Data Eng . vol 9. no 1. pp.

R-23, 1997,

G. Elis. “Compiling Conceptual Graphs™. [ELE Trans. on Knowledge and {lata Fng.

voal. 7. no. 1. pp 68-81. 1095,

13

[13] B. C. Ghosh and V. Wuwongse, “Inference Systems for Conceptual Graph Programs”,
Proc. 2nd Int’l Conf. Conceptual Structures (1CCS), College Park, Maryland, Lecture

Notes in Artificial Intelligence, vol. 835, pp. 214-229, Springer-Verlag, 1994.

(14]) B. C. Ghosh and V. Wuwongse, “A Direct Proof Procedure for Definite Conceptual
Graph Programs”, Proc. 3rd Int’l Conf. Conceptual Structures (ICCS), Santa Cruz,
California, Lecture Notes in Artificial Intelligence, vol. 954, pp. 158-172, Springer-

Verlag, 1995.

[15] B. C. Ghosh and V. Wuwongse, “Conceptual Graph Programs and Their Declarative
Semantics”, ILICE Trans. on Information and Systems, vol. E78-D, no. 9, pp. 1208-

1217, 1995.

[16] J. R. Hobbs, “Overview of the TACITUS Project”, Computational Linguistics, vol. 12,

no. 3, pp. 220-222, 1986.

[17] M. Kifer, G. Lausen, and J. Wu, “Logical Foundations of Object-Oriented and Frame-

Based Languages”, J. ACM, vol. 42, pp. 741-843, 1995,

(18] G. Kostler, W. KieBling, I{. Thone, and U. Giintzer. “The Differential Fixpoint Opera-
tor with Subsumption”, Proc. 3rd Int't Conf. Deductive and Object-Oriented Databases

(DOOD), Phoenix, Arizona, Lecture Notes in Computer Science, vol. 760, pp. 35-48,

Springer-Verlag. 1993.
[19] G. Késtler, W. KieBling, II. Théne, and U. Glntzer, “Tixpoint Iteration with Sub-

sumption in Deductive Databases”, J. Intelligent Information Systems. vol. 4, no. 2,

pp. 123-148, 1995,

[20] D. B. Lenat and R. V. Guha, Duilding Large Knowledge-Based Systems: flepresentation

and Inference in the CYC Project, Addison Wesley. 1990.

34

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

J. W. Lloyd, Foundations of Logic Programming, second, extended edition, Springer-

Verlag, 1987.

R. Mac Gregor, “A Deductive Pattern Matcher”, Proc. 1988 National Conference on

Artificial Intelligence (AAAI), pp. 403-408, Menlo Park, California, 1988.

M. L. Mugnier and M. Chein, “Characterization and Algorithmic Recognition of Canon-
ical Conceptual Graphs”, Proc. 5th Int’l Conf. Conceptual Structures (ICCS), Quebec
City, Canada, Lecture Notes in Artificial Intelligence, vol. 699, pp. 294-311, Springer-

Verlag, 1993.

M. L. Mugnier and M. Chein, “Polynomial Algorithms for Projection and Matching”,
T.E. Nagle and 1. D. Pfeiffer, eds., Conceptual Structures: Theory and Implementation,

Lecture Notes in Computer Science, vol. 754, pp. 239-251, Springer-Verlag, 1993.

M. L. Mugnier, “On Generalization/Specialization for Conceptual Graphs”, J. Lrperi-

mental and Theoretical Artificial Intelligence, vol. 7, pp. 325~-344, 1995.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. ch. 8. Prentice

ITall, 1995.

J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine, Ad-

dison Wesley, 1984.

J. T. Sowa, Knowledge Representation: Logical, Philosophical, and Computational

Foundations, Brooks/Cole Publishing, 2000.

A. Taivalsaari, “On the Notion of Inheritance™. ACM Computing Surveys. vol. 28, no.

3 pp. 438-479, 1996.

35

(30]

(31}

(32]

[33]

[34]

D. 1{. D. Warten and F. C. N. Pereira, “An Efficient LCasily Adaptable System for
Interpreting Natural Language Queries”, Computational Linguistics, vol. 8, no. 3/4,

pp- 110-122, 1982.

W. A. Woods, “Understanding Subsumption and Taxonomy: A Pramework for
Progress”, J. F. Sowa, ed., Principles of Semantic Networks, pp. 45-94, Morgan Kauf-

mann, 1991.

W. A. Woods and J. G. Schmolze, *The KL-ONE Family™, Computers & Mathematics

uwith Applications, vol. 23, pp. 133-177, 1992,

V. Wuwongse, C. Anutariya and E. Nantajeewarawat, “Reasoning about RDF Ele-
ments”, Proc. Intl Joint Workshop on Digital Librares (IJIVDL), Bangkok, Thailand.

Digital Libraries, No. 12, pp. 83-94, 1998,

V. Wuwongse and B. C. Ghosh. “Towards Deductive Object-Oriented Databases Based
on Conceptual Graphs™, T. E. Nagle and H. D. Pfeiffer, eds., Conceptual Structures:
Theory and {mplementation. Lecture Notes in Computer Science. vol. 754. pp. 188-205,

Springer-Verlag. 1993

V. Wuwongse and E. Nantajeewarawat. “Devlarative Pragram Theory with Implicit Im-
plication™. Proc. {th Pacific lim [ntl Conf. Artificral Intelligence (PRICAI), Cairns.

Australia. Lecture Notes in Artificial Intelligence. vol 1114, pp. 97-108. Springer-

Verlag. 1996,

AV, u*-?d' *3

An Argumentation Approach to
Semantics of Declarative Programs
with Defeasible Inheritance

Ekawit Nantajeewarawat! and Vilas Wuwongse?

! Information Technology Program,

Sirindhorn International Institute of Technology, Thammasat University,
P.0O. Box 22, Thammasat-Rangsit Post Office, Pathumthani 12121, Thailand
ekavit@siit.tu.ac.th
? Computer Science and Information Management Program,

School of Advanced Technologies, Asian Institute of Technology,

P.O. Box 4, Klongluang, Pathumthani 12120, Thailand
vubcs.ait.ac.th

Abstract. Inheritance is a characteristic reasoning mechanism in sys-
tems with taxonomic information. In rule-based deductive systems with
inclusion polymorphism, inheritance can be captured in a natural way by
means of typed substitution. However, with method overriding and mul-
tiple inheritance, it is well-known that inheritance is nonmonotonic and
the semantics of inheritance becomes problematical. We present a gen-
eral framework, based on Dung's abstract theory of argumentation, for
developing a natural semantics for declarative programs with dynamic
defeasible inheritance. We investigate the relationship between the pre-
sented semantics and Dobbie and Topor's perfect model (with overriding)
sernantics, and show that for inheritance-stratified programs, the two se-
mantics coincide. The proposed semantics, nevertheless, still provides the
correct skeptical meanings for non-inheritance-stratified programs, while
the perfect model semantics fails to yield sensible meanings for them.

1 Introduction

One of the most salient features associated with generalization taxonomy is
inheritance. In logic-based deduction systems which support inclusion polymor-
phism (or subtyping), inheritance can be captured in an intuitive way by means
of typed substitutions. To illustrate this, suppose that tom is an individual of
type student. Then, given a program clause:

C1: X:student[residence — east-dorm] +— X[lives-in — rangsit-campus],
X[sex — male],

which is intended to state that for any student X, if X lives in rangsit-campus and
X is male, then X’s residence place is east-dorm; one can obtain by the application
of the typed substitution {X:student/tom} to C1 the ground clause:

P.S. Thiagarajan, R. Yap (Eds.}: ASIAN'99, LNCS 1742, pp. 239-250, 1999,
© Springer-Verlag Berlin Heidelberg 1999

240 Ekawit Nantajecwarawat and Vilas Wuwongse

G1: tom[residence — east-corm] = tom|lives-in — rangsit-campus],
tom[sex — male].

The clause C1 can naturally be considered 8s 8 conditional definition of the
method residence associated with the type (class') student and the clausc G1 as
a definition of the same method for tom inherited from the type student.
However, when a method is supposed to return a unique value for an ob-
ject, definitions of a method inherited from different types, tend to conflict. For
example, suppose that tom is also an individual of type employee and & clause:

C2: X:employee|residence — west-flats] + X|lives-in — rangsit-campus],
X[marital-status — married],

defining the method residence for an employee is also given. Then, the definition
of residence for tom obtained from C2, i.e.,

G2: tom[residence — west-flats] «— tomflives-in — rangsit-campus],
tom|marital-status — married],

conflicts with the previously inherited definition G1 when they are both ap-
plicable. In the presence of such conflicting definitions, the usual semantics of
definite programs, e.g., the minimal model semantics, does not provide satis-
factory meanings for programs; for example, if a program has both G1 and G2
above as its ground instances, then, whenever its minimal model entails each
atom in the antecedents of G1 and G2, it will entail the conflicting information
that tom’s residence place is east-dorm and is west-flats.

In order to provide appropriate meanings for programs with such conflicting
inherited definitions, a diflerent semantics that allows some ground clauses whose
antecedents are satisfied to be inactive is needed. This paper applies Dung’s the-
ory of argumentation [6] to the development of such a semantics. To resolve
inheritance conflicts, the proposed approach requires a binary relation on pro-
gram ground clauses, called the domination relation, which determines among
possibly conflicting definitions whether one is intended to defeat another. For
example, with additional information that students who are also employees usu-
ally prefer the accommodation provided for employees, G2 is supposed to defeat
G1l. With such a domination relation, a program will be transformed into an
argumentation framework, which captures the logical interaction between the
intended deduction and domination; and, then, the meaning of the program will
be defined based on the grounded extension of this argumentation framework.

Using this approach, conflict resolution is performed dynamically with re-
spect to the spplicability of method definitions. That is, the domination of one
method definition over another is effective only if the antecedent of the domi-
nating definition succeeds. The appropriateness of dynamic method resolution in
the context of deductive rule-based systems, where method definitions are often
conditional and may be inapplicable to certain objects, is advocated by (1]. In
particular, with the possibility of overriding, when the definitions in the most

! In this paper, the terms “type” and “class” are ' sed interchangeably.

Declarative Programs with Defeasible Inheritance 241

specific Lype are inapplicable, it is reasonable to try to apply those in a more
general type.

In order to argue for the correctness and the generality of the proposed seman-
tics in the presence of method overriding, its relationship to the perfect model
(with overriding) semantics proposed by Dobbie and Topor [5)] is investigated.
The investigation reveals that these two semantics coincide for inheritance-
stratified programs. Moreover, while the perfect model semantics fails to pro-
vide sensible meanings for programs which are not inheritance-stratified, the
presented semantics still yields their correct skeptical meanings.

For the sake of simplicity and generality, this paper uses Akama’s axiomatic
theory of logic programs (4], called DP theory (the theory of declarative pro-
grams), as its primary logical basis. The rest of this paper is organized as follows.
Section 2 recalls some basic definitions and results from Dung’s argumentation-
theoretic foundation and DP theory. Section 3 describes the proposed seman-
tics. Section 4 estabiishes the relationship between the proposed semantics and
the perfect model {(with overriding) semantics. Section 5 discusses other related
works and suminarizes the paper.

2 Preliminaries

2.1 Argumentation Framework

Based on the basic idea that a statement is believable if some argument sup-
porting it can be defended successfully against attacking arguments, Dung has
developed an abstract theory of argumentation (6] and demonstrated that many
approaches to nonmonotonic reasoning in Al are special forms of argumentation.
In this subsection, the basic concepts and results from this theory are recalled.

Definition 1. An argumentation framework is a pair (AR, attacks), where AR
is a set and attacks is a binary relation on AR. a

In the sequel, let AF = (AR, attacks) be an argumentation framework. The
elements of AR are called erguments. An argument a € AR is said to aftack
an argument b € AR, iff (a,b) € attacks. Let B € AR. B is said to attack an
argument b € AR, iff some argument in B attacks b. An argument a € AR is
said to be acceptable with respect to B, iff, for each b € AR, if b attacks a, then
B attacks b. B is said to be conflict-free, iff there do not exist arguments e, b € B
such that a attacks b. B is said to be admissible, iff B is conflict-free and every
argument in B is acceptable with respect to B.

The credulous semantics and the stable semantics of AF are defined by the
notions of preferred extension and stable extension, respectively:

Definition 2. A preferred extension of AF is a maximal (with respect to set
inclusion) admissible subset of AR. A set A C AR is called a stable extension of
AF, iff A is conflict-free and A attacks every argument in AR — A. (]

242 Ekawit Nantajeewarawat and Vilas Wuwongse

To define the grounded (skeptical) semantics of AF (Dcfinition 3}, the {unc-
tion Far on 248 called the characteristic function of AF, is dcfined by:

Far{X) = {a| a is acceptable with respect to X}).
Clearly, F4r is monotonic (with respect to C), and, thus, hias the lcast fixpoint.
Definition 3. The grounded extension of AF is the least fixpoint of Far. O
The next example illustrates the three kinds of extensions.

Ezample 1. Let AF = (AR, attacks), where AR = {a,b,c,d,e} and attacks =
{{(a,b), (b,¢),(d,€), (e,d)}. Then, AF has two preferred extensions, i.e., {a,c, d}
and {a,c, e}, which are also stable extensions. As Fap(0) = {a} and F2.(0) =
{a,c} = F%(0), the grounded extension of AF is {a,c}. 0

Well-foundedness of an argumentation framework, recalled next, is a sufficient
condition for the coincidence between the three kinds of extensions.

Definition 4. AF is well-founded, iff there exists no infinite sequence of argu-
ments ag,dy,..-,an,--- such that for each 1 > 0, a,4 attacks a.. O

Theorem 1. If AF is well-founded, then it has exactly one preferred extension
and one stable extension, each of which is equal to its grounded extension. O

2.2 DP Theory

DP theory [4] is an axiomatic theory which purports to gencralize the concept
of conventicnal logic programs to cover a wider variety of data domains. As an
introduction to DP theory, the notion of a specialization system is reviewed first.
1t is followed by the concepts of declarative programs and their minimal model
semantics on a specialization system.

Definition 5. A specialization system is a 4-tuple (A, G, S, u) of three sets A, G

and S, and a mapping u from S to partial_map(A) (i.e., the set of all partial
mappings on A), that satisfies the conditions:

1. (Vs,s' € 8)(3s"” € 8) : pus"” = (us’)o (us),
2. (s € S){(Va € A) : (us)a = a,

3. 6C A 0
In the rest of this subsection, let I' = (A, G, S, i) be a specialization system. The
elements of A are called atoms; the set G is called the interpretation domain;
the elements of & are called specialization parameters or simply spec*iatlizaticnnsj
and the mapping u is called the specialization operator. A specialization s € S'
is said to be applicable to a € A, iff a € dom(us). By formulating a suitable spe-
cialization operator together with a suitable set of epecialization parameters, the

Declarative Programs with Defeasible Inheritance 243

typed-substitution operation can be regarded as a special form of specialization
opceration.

Let X be a subset of A. A definite clause C on X is a formula of the form
(@ «— bi,...,bn), where n > 0 and a,by,...,b, are atoms in X, The atom a
is denoted by head(C) and the set {b;,...,ba} by Body(C). When n = 0, Cis
called a unit clause. A definite clause C* is an instance of C, ifl thereexistss e S
such that s is applicable to a,8,,...,b, and C’ = ((us)a — (us)by, ..., (us)b,).
A definite clause on G is called a ground clause. A declarative programon [is a
set of definite clauses on A. Given a declarative program P on I', let Gclause(P)
denote the sct of all ground instances of clauses in P. Conventional (definite)
logic programs as well as typed logic programs can be viewed as declarative
programs on some specialization systems.

An interpretation is defined as a subset of G. Let I be an interpretation.
If C is a definite clause on G, then I is said to satisfy C iff (head(C) € I) or
(Body(C) € 7). If C is a definite clause on A, then I is said to satisfy C iff
for every ground instance C’ of C, I satisfies . I is a model of a declarative
program P on I', iff I satisfies every definite clause in . The meaning of P is
defined as the minimum model of P, which is the intersection of all models of P.

3 The Proposed Semantics

In the sequel, let I" = (4,6, S, ;1) be a specialization system and P a declarative
program on I'. Let dominates be a binary relation on Gclause(P). A ground
clause C of P is szid to dominate another ground clause C’ of P, iff (C,C") €
domninates. It will be assumed lienceforth that the relation dominates prioritizes
the ground clauses of P; more precisely, for any ground clauses C,C’ of P, C
dominates C’, iff C is preferable to €' and whenever Body(C) is satisfied, C’
will be inactive. It should be emphasized that the domination of a ground clause
C over anotlier ground clause C' is intended to be dynamically operative with
respect to the applicability of C, 1.e., the domination is eflective only if the
condition part of C is satisfied. The relation dominates will also be referred to
as the domination relation of P.

3.1 Derivation Trees

The notion of a derivation tree of a program will be introduced first. A derivation
tree of P represents a derivation of one conclusion from P. It will be considered
as an argument that supports its derived conclusion. Every conclusion in the
minimum model of P is supported by at least one derivation tree of P.

Definition 6. A derivation tree of P is defined inductively as follows:

1. If C is a unit clause in Gclause(P), then the tree of which the root is C and
the height i1s 0 is a derivation tree of P.

244 Ekawit Nantajeewarawat and Vilas Wuwongse

d—cb
c+—a co—a\b.—
a +— b‘-‘ |
a — a «—
T T2
T3 T

Fig. 1. The derivation trees of the program Pj.

2. If C = (a + by,...,b,) is a clause in Gclause(P) such that n > 0 and
T\, ...,Tn are derivation trees of P with roots Cy, ..., Cn, respectively, such
that head(C;) = b;, for each i € {1,....n}, then the tree of which the root

is C and the immediate subtrees are exactly T1,...,7Tx is a derivation iree
of P,
3. Nothing else is a derivation tree of P. D

Ezample 2. Let P, be a declarative program comprising the five ground clauses:
a +«— b o« € — a d — ¢,b f ~— ¢

Then, P, has exactly four derivation trees, which are shown by Figure 1. Note
that the derivation trees T),T%,Ta and Ty in the figure depict the derivation of
the conclusions a, b, ¢ 2nd d, respectively. a

In the sequel, the root of a derivation tree T will be denoted by root(T). A
derivation tree T will be regarded as an argument that supports the activation of
the ground clause root(T) (and, thus, supports the conclusion head(root(T))).

3.2 Grounded-Extension-Based Semantics

In order to define the meaning of P with respect tc the domination relation, the
program P will be transformed into an argumentation framework AF, (P), which
provides an appropriate structure for understanding the dvnamic interaction of
the deduction process of P and the specified domination relation. Intuitively, one
argument {derivation tree) attacks another argument (derivation tree), when the

ground clause supported by the former dominates some ground clause used in
the construction of the latter.

Definition 7. The argumentation framework AF,(P) = (AR, attacks) is de-
fined as follows: AR is the set of all derivation trees of P, and for any T, 77 € AR,
T attacks T’, iff root(T") dominates some node of T, O

Ezxample 3. Referring to the program P, of Example 2, suppose that the
ground clause @ « dominates the ground clause b «—, and for any other two
ground clauses in P;, one does not dominate the other. Then AF,(P) =
(ARp,,attacks), where ARp, consists of the four derivation trees in Figure 1
and attacks = {(T1,T2),(T1,T4)}. (Note that Ty attacks Ty as the root of T
dominates the right leaf of Ty.) O

Declarative Programs with Defeasible Inheritance 243

d—a e—1b J+—c

/ I B —
a +— b — C — a|o— b o— C —
Ts Ts T Ts T Tho

Fig. 2. The argumentation framework for the program P,.

The meaning of P is now defined as the set of all conclusions which are
supported by some arguments in the grounded extension of AF,(P).

Definition 8. The grounded-eztension-based meaning of P, denoted by AMSF,
is defined as the set {head(root(T)} | T € GE}, where GE is the grounded
extension of AF,(P). O

Four examples illustrating the proposed semantics are given below.

Ezample . Consider AF,(P,) of Example 3. Let F be the characteristic function
of AF,(P). Clearly, F(0) = {T\,T3} = F(F(®)). Thus F(0) is the grounded
extension of AF,(P), and, then, M§° = {a,c}. 0

Ezample 5. Let a declarative program P, comprise the six ground clauses:
a «— b Cc — d—a e—b fe—e

Let d «— a dominate b «— and e — b dominate f «— ¢, and assume that
for any other two ground clauses in P,, one does not dominate the other.
Then AF,(P2) = (ARp,,attacks), where ARp, consists of the six derivation
trees shown in Figure 2 and attacks = {(T%,Ts,),(Ts,T9), (Ts,T10)} as de-
picted by the darker arrows between the derivation trees in the figure. Let
F be the characteristic function of AF,(P;). Then F(@) = {Ts,T7,Ts}, and
F3(0) = {T5,T%,Ts,Tio} = F3(9). So ME = {a,c,d, f}. This example also
illustrates dynamic conflict resolution, i.e., the domination of the ground clause
e «— b over the ground clause f « ¢ does not always prevent the activation of
the latter.]

Ezxample 6. Refer to the clauses C1,C2,G1 and G2 given at the beginning of
Section 1. Let tom belong both to type student and to type employee. Consider
a program P3 comprising C1,C2 and the following three clauses:

C3: tomllives-in — rangsit-campus| «—
C4: tom[sex — male] «
C5: tom[marital-status — married] «—

Assume, for simplicity, that C1 and €2 have G1 and G2, respectively, as their
only ground instances. Suppose that students who are also employees prefer the
accommodation provided for employees, and, then, that G2 dominates G1. Then,

236 Elawit Nantajeewarawal and Vilas Wiumongse

it is simple to se¢ taat MGE coutzins tom{residence — west‘ﬂat?] but does not
contain tom|residence — east], and yickds the desired meaning of As.

To demorstrate dynamic conflict resolution, suppose next that the clause C5
is removed from P5. Thes, instead of cortaining tom/residence — west-flats], Mz
contains tomresidence — east-dorm[; and, it stll provides the correct meaning
of P in this case. O

Erample 7. This example illustrates method overriding. Let ait be an instance of
type int{ercational)-school and int-school be a subtype of school. Let a program
P, comprise the following three clauses:

X: school[medium-of-teaching — thail — X[located-in — thailand]
X: int-schoo![medium-of-teaching — english]
ait[located-in — thailand]

For the sake of simplicity, assume that P, has only three ground clauses:

G3: aitjmedium-of-teaching — thail — ait]located-in — thailand]
G4 : ait{medium-of-teaching — english] —
G5 : ait[located-in — thailand] -

Since int-school is more specific than school, G4 is supposed to override G3;
therefore, let G4 dominate G3. It is readily seen that ME" is the set consisting
of the two atoms ait[located-in ~ thailand] and ait;medium-of-teaching — english},
which is the expected meaning of F;. =]

4 Perfect Model (with Overriding) Semantics

Dobbie and Topor defined a deductive object-oriented language called Gulog
[5), in which inheritance is realized through typed substitutions, and studied
the interaction of deduction, inheritance and overriding in the context of this
language. The declarative semantics for Gulog programs is based on Przytnusin-
ski's perfect model semantics for logic programs [11], but using the possibility of
overriding instead of negation in defining a priority relationship between ground
atoms. The perfect model (with overriding) semantics provides the correct mean-
ings for inheritance-stratified programs. In order to investigate the relationship
between this semantics and the grounded-extension-based semantics, the notions
of inheritance stratification and perfect model will be reformulated in the frame-
work of DP theory in Subsection 4.1. The relationship between the two kinds of
semantics will then be discussed in Subsection 4.2.

4.1 Inheritance-Stratified Programs and Perfect Models
According to {5], a program is inheritance-stratified if there is no cycle in any

definition of a method, te.. a definition of a method does not depend on an
inherited definition of the same method. More rrecisely:

Declarative Progranis with Defeasible Inheritance 247

Definition 9. A declarstive prograin P on I' is said to be inheritance-stratified,
iff it is possible to decompose the interpretation domain G into disjoint sets
called strota, Go,Gy,...,G.,..., where ¥ < § and § is a countable ordinal, snch‘
that the following conditions are all satisfied.

1. For each C € Gclause(P), if head(C) € G,, then
(a) for each b € Body(C), b € Uy, G,
(b) for each C’ € Gdause(P) such that C’ dominates C,
i. head(C’) € Ugc, Ga,
ii. for each b’ € Body(C’), ¥ € Yz, Gs- .
2. There exists no infinite sequence Cp, Cf. «++3Cn.... of clauses in Gclause(P)
such that for each i > 0, Ci;, dominates C;.

Any decomposition {Gg,G\,...,G,...} of G satisfying the above conditions is
called an inheritance strutification of P, O

An example of non-inheritance-stratified programs will be given in Subsec-
tion 4.2 (Example 8). The next theorem illuminates the coincidence between
the grounded extension, preferred extension and stable extension of the argu-
mentation framework for an inheritance-stratified program (see Theorem 1 in
Subsection 2.1). Its proof can be found in the full version of this paper [10].

Theorem 2. If P is inheritance-stratified, then AF,(P) is well-founded. &)

With overriding, not every ground clause of a program is expected to be
satisfied by a reasonable model of that program. More precisely, a ground clause
need not be satisfied if it is overridden Ly some ground clause whose premise is
satisfied. This leads to the following notion of a model with overriding:

Definition 10. An interpretation I is a model with overriding (for short, o-
model) of P, iff for each C € Gdause(P), either I satisfies C or there exists
C' € Gclause(P) such that C’ dominates C and Body(C’) C I. 0

A program may have more than one o-model. Following [5], priority relations
between ground atoms are defined based on the possibility of overriding.

Definition 11. Priority relations <, and <, on G are defined as follows:

1. If C € Gclause(P), then
(a) for each b € Body(C), head(C) <, b,
(b) for each C’ € Gelause(P), if C' dominates C, then
i. head(C) <, head(C’),
ii. for each b’ € Body(C"), head(C) <p V',
.lfa<pband b <, ¢, thena <y ¢,
. I a <, band b <, ¢ (respectively, d <p @), then a <, ¢ (respectively, d <, b},
. Ifa <y b,thena <, b,
. Nothing else satisfies <, or <,. D

[4 -G U N]

A preference relationship among o-models will then be defined based on the
priority relation <.

248 Ekawit Nantajeewarawnt and Vilas Wuwongse

DeSinition 12. Let Af and N be o-madels of 2. M is saud to be preferable o
N, in symbols, Af « N, iff Af # N and for each a € Af — N, ther‘e exists
b€ N — M such that @ <p b. Af is said to bec a perfect o-model of P, iff there
exists no o-model of P preferable to Af. 0

Every inheritance-stratified program P has exactly one perfect o-model,?
denoted by MB™, which provides the correct meaning of P with respect to
method overriding.

4.2 Relationship between the Proposed Semantics and Perfect
Model (with Overriding) Semantics

It is shown in the full version of this paper [10] that:

Theorem 3. If P is inkeritance-stratified and the domination relation is tran-
sitive, then ME = MpP™. 0

It is important to note that since the domination due to method overriding is
tvpically transitive, the transitivity requirement does not weaken Theocrem 3.
For programs that are not inheritance-stratified, the perfect model semantics
fails to provide their sensible meanings, while the proposed semantics still yields
their correct skeptical meanings. (The skeptical approach to method resolution
discards all conflicting definitions.) This is demonstrated by the next example.

Ezample 8. Let tom be an instance of type gr(aduate)-student and gr-student
is a subtype of student. Consider the declarative program P comprising the
following five clauses:

C6: X:student[math-ability — good] «— X[math-grade — b]

C7: X:student|major — math] — X[math-ability — good],
X|favourite-subject — math|

C8: X:gr-student|math-ability — average] — X[major -+ math],

X|math-grade — b
C9: tom|math-grade —b] +—

C10: tom[favourite-subject — math] «—

Without loss of generality, suppose for simplicity that C6,C7 and C8 have as
their ground instances only the clauses G6, G7 and G8, given below, respectively:

G6: tom[math-ability — good| «— tom{math-grade — b]

G7: tom[major — math] — tom[math-ability — good],
tom|favourite-subject — math|

G8: tom[math-ability — average] «— tom|major — math],

tom[math-grade — b

2 This result is analogous to and inspired by the corresponding result for inheritance-
stratified Gulog programs |5]. Its proof is given completely in |9].

Declarative Programs with Defeasible Inheritance 249

The ground clauses G6 and G8 are considered as definitions of the method
math-ability inherited from the types student and gr-student, respectively. As gr-
-student is more specific than student, G§ is suppused to dominate G6. Then, every
inheritance stratification of P requires that the ground atom tom[major — math|
must be in a stratum which is lower than the stratum contzining it, which is a
conuradiction. Hence Ps is not inheritance-stratified.

Observe that G8 dominates G6, but G8 also depends on G6; that is, the
activation of G6 results in the activation of G8, which is supposed to override G6.
Therefore, it is not reasonable to use any of them. As a consequence, none of the
conclusions of G6, G7 and G8 should be derived. However, it can be shown that
each o-model of P; contains both tom{major — math] and tom|math-ability —
average]. So every o-model of P does not serve as its reasonable meaning.

Now consider the proposed semantics. It is simple to see that M§f is the
set {tom|math-grade — b), tom|favourite-subject — math]}, which is the correct
skeptical meaning of Ps (i.e., the meaning obtained in the usual way after dis-
carding the conflicting clauses G6 and G8). O

5 Related Works and Conclusions

Defeasible inheritance has been intensively studied in the context of inheritance
networks |7,12,13]. Although the process of drawing conclusions from a set of
defeasible hypotheses in inheritance networks is quite different from the process
of deduction (as pointed out in |7]) and these works do not discuss dynamic
method resolution, they do provide the presented approach with a foundation
for determining the domination relation among ground clauses. A type hierarchy
and a membership relation can be represented as a network, and the domination
relation can then be determined based on the topological structure of the net-
work. For example. if there exists a path from an object o through a type ¢ to
a type t' in the network. then it is natural to suppose that the ground method
definitions for o inherited from t dominate those inherited from ¢’.

Besides [5], distinguished proposals that incorporate inheritance in the con-
text of logic-based deduction systems include [1,2,3,8]. However, in [1] and [8],
inheritance is realized by other means than typed substitution; t.e., [1] cap-
tures inheritance by transforming subclass relationships into rules of the form
class(X) «— subclass(X}, and [8] models inheritance as implicit implication on
interpretation domains (called H-structures). (2] and |3] incorporate inheritance
into unification algorithms but do not discuss nonmonotonic inheritance.

This paper studies the interaction of inheritance, realized by means of typed
substitution, and deduction, and proposes a framework for discussing a declara-
tive semantics for definite declai:ative programs with nonmonotonic inheritance.
The framework uses a domination relation on program ground clauses, specifying
their priority, as additional information for resolving conflicting method defini-
tions. With a specified domination relation, a program is transformed into an
argumentation framework which provides an appropriate structure for analyzing
the interrelation between the intended deduction and domination. The meaning

250 Ekawit Nantajeewarawat and Vilas Wirwongse

of the program is defined based on the grounded extension of this argumenta-
tion framework. Method resolution in the framework is dynamic with respect
to the applicability of methods. The paper not only shows that the proposed
semantics and Dobbie and Topor's perfect modecl (with overriding) semantics (5]
coincide for inheritance-stratified programs (Theorem 3}, but also claims that
the proposed semantics provides correct skeptical mearings for non-inheritance-
stratified programs.

Acknowledgement

The proposed semantics is inspired by Phan Minh Dung. This work is supported in
part by the Thailand Research Fund.

References

1. Abiteboul, S., Lausen, G., Uphofi, H., Waller, E.: Methods and Rules. {n: Proceed-
ings of the 1993 ACM SIGMOD International Conference on the Management of
Data. ACM Press (1393) 3241

2. Ait-Kaci, H., Nasr, R.: LOGIN: A Logic Programming Language with Built-in In-
heritance. The Journal of Logic Programming 3 (1986) 185-215

3. Aft-Kaci, H., Podelski, A.: Towards a Meaning of Life. The Journal of Logic Pro-
gramming 16 {1993) 195-234

4. Akama, K.: Declarative Semantics of Logic Programs on Parameterized Represen-
tation Systems. Advances in Software Science and Technology 5 (1993) 45-63

5. Dobbie, G., Topor, R.: On the Declarative and Procedural Semantics of Deductive
Object-Oriented Systems. Journal of Intelligent Information Systems 4 (1995) 193~
219

6. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and N-Person Games. Artificial Intelli-
gence 77 (1995) 321-357

7. Horty, J.F., Thomason, R.H., Touretzky, D.S.: A Skeptical Theory of Inheritance
in Nonmonotonic Semantic Networks. Artificial Intelligence 42 (1990) 311-348

8. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oricnted and Frame-
Based Languages. Journal of the Association for Computing Machinery 42 (1995)
741843

9. Nantajeewarawat, E.: An Axiomatic Framework for Deductive Object-Oriented
Representation Systems Based-on Declarative Program Theory. PhD thesis, CS-
97-7, Asian Institute of Technology, Bangkok, Thailand (1997)

10. Nantajeewarawat, E., Wuwongse, V.: Defeasible Inheritance Through Specializa-
tion. Technical Report, Computer Science and Information Management Program,
Asian Institute of Technology, Bangkok, Thailand (1999)

11. Przymusinski, T.C.: On the Declarative Semantics of Deductive Databases and
Logic Programs. In: Minker, J. (ed.): Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann (1988) 193-216

12. Stein, L. A.: Resolving Ambiguity in Nonmonotonic Inheritance Hierarchies. Arti-
ficial Intelligence 55 (1992) 259-310

13. Touretzky, D.S.: The Mathematics of Inheritance. Morgan Kaufmann {1986)

Ow\'?&d"%“\-
o &"?%‘o{ " Mo, \g‘¥ 3"‘)‘ C“"‘lﬁ E\QA“M"C (-U‘r\nw\QYCA ond

\,ﬂq_\o ch\—mo\ o (_e_f-)f\na Noter v C\S\V\?\A\-{/\r Q_,c,'\c,“u_’
%?‘nw_\lm\acg% ROCO

Towards a Foundation for XML Document
Databases

Chutiporn Anutariya!, Vilas Wuwongsel,
Ekawit Nantajeewarawat?, and Kiyoshi Akama?

' Computer Science & Information Management Program,

Asian Institute of Technology, Pathumtani 12120, Thailand
{ca, vw}ecs.ait.ac.th

? Information Technology Program, Sirindhorn International Institute of Technology,
Thammasat University, Pathumtani 12120, Thailand
ekawit@siit.tu.ac.th
3 Center for Information and Multimedia Studies, Hokkaido Unversity,
Sapporo 060, Japan
akama€@cims.hokudai.ac.jp

Abstract. This paper develops a theoretical framework for modeling
and managing XML documents by employment of Declarative Descrip-
tion (DD) theory. In the framework, the definition of an XML element
is formally extended by incorporation of variables in order to represent
inherent implicit information and enhance its expressive power. An XML
document - a set of XML elements - is simply modeled as an XML declar-
ative description which consists of object descriptions, representing XML
elements in the document, and relationship descriptions, specifying rela-
tionships among the elements as well as integrity constraints. DTDs and
complex queries can also be expressed and evaluated.

1 Introduction

Modeling and managing XML [8] data have several challenges. An obvious dif-
ficulty is that XML is considered as a variation of semistructured data - data
that may be varied, irregular and unrestricted to any particular schema. An
XML document must only be well-formed but need not conform to a partic-
ular Document Type Definition (DTD). Mapping of semistructured data into
well-defined and highly-structured schemas, such as those in the relational and
object-oriented models, often requires a lot of eflorts and frequent schema modi-
fications. This difficulty has obstructed the use of relational and object-oriented
approaches to XML data modeling. Therefore, development of an appropriate
and efficient data model for XML documents has become an active research area.
Major current models are based on directed edge-labeled graphs [7,9,10,13, 16],
hedge automaton theory {14, 15] and functional programming (12].

A declarative description data model for XML documents is developed by
employment of Declarative Description (DD) theory [1-3], which has been de-
veloped with generality and applicability to data structures of a wide variety of

LR B I o B
A

domains, each characterized by a mathematical structure, called a specialization
system. An appropriate specialization system for XML elements is formulated
and a framework for their representation, computation and reasoning is con-
structed. XML elements defined in this paper can represent both explicit and
implicit information through the employment of variables. Conventional XML el-
ements are directly represented in the proposed model as ground (variable-free)
XML elements, with no translation needed. An XML declarative description
(XML-DD) comprises a set of XML elements, called object descriptions (ODs),
and a (possibly empty) set of their relationships, called relationship descriptions
(RDs). The meaning of such an XML-DD will not only yield all the explicit
information, represented in terms of ODs, but will also include all the implicit
information derivable by application of the RDs to the set of ODs, whence com-
plex queries about both kind of information can be formulated and executed
6].

[RDs not only represent relationships among XML elements, but can also
be used to define integrity constraints that are important in a document, such
as data integrity, path and type constraints [10]. Moreover, in order to restrict
XML elements to only those that satisfy a given DTD, a simple and effective
mechanism is to directly map the DTD into a corresponding set of RDs for
checking the validity of an element with respect to the DTD [5].

Sect. 2 reviews major approaches to modeling semistructured/SGML/XML
documents, Sect. 2 develops a declarative description data model for XML doc-
uments, Sect. 4 presents approaches to modeling XML docurnents and their
DTDs, Sect. 5 outlines how to formulate and evaluate queries, and Sect. 6 draws
conclusions and presents future research directions.

2 Review of Data Models for
Semistructured/SGML /XML Documents

Three important approaches to modeling semistructured/SGML data before
1993, i.e., traditional information retrieval, relational model and object-oriented
approaches, have been reviewed in [19). This section reviews the more recent
ones which are based on graphs, hedge automaton theory and functional pro-
gramming.

In graph-based models, an XML document is mapped into a directed, edge-
labeled graph [7,9, 10,13, 16] consisting of nodes and directed edges, which, re-
spectively, represent XML elements in the document and relationships among
the elements, e.g., element-subelement and referential relationships. Although
a graph-based model provides an effective and straightforward way to handle
XML documents, it exhibits 4 difficulty in restricting a document to a given
DTD. The proposal 7], for instance, only provides a way to query XML docu-
ments but does not facilitate a means of representing the structure imposed by
a DTD. A substantial extension to the model is required to overcome this dif-
ficulty. For example, by application of first-order logic theory, the proposal [10]
has incorporated the ability to express path and type constraints for specification

of the document structure; the integration of these two different formalisms also
results in an ability to reason about path constraints.

Employing hedge automaton theory [14] (aka. tree automaton and forest au-
tomaton theory), developed by using the basic ideas of string automaton theory,
the proposals [15] have constructed an approach to formalizing XML documents
and their DTDs. A hedge is a sequence of trees or, in XML terminology, a se-
quence of XML elements. An XML document is represented by a hedge and
a set of documents conforming to a DTD by a regular hedge language (RHL),
which can be described by a regular hedge exrpression (RHE) or a regular hedge
grammar (RHG). By means of a hedge automaton, one can validate whether a
document conforms to a given RHG (representing some particular DTD) or not.

A functional programming approach to modeling XML documents and for-
malizing operations upon them has been developed in the proposal [12] by in-
troduction of the notion of node as its underlying data structure. An algebra
for XML queries, expressed in terms of list comprehensions in the functional
programming paradigm, has also been constructed. Using list comprehensions,
various kinds of query operations, such as navigation, grouping and joins, can
be expressed. However, this approach has considerable limitations as it does not
possess an ability to model a DTD, whence a mechanism for verifying whether
a document conforms to a given DTD or not is not readily devised.

3 Declarative Description Data Model for XML
Documents

XML declarative description (XML-DD) theory, which has been developed by
employment of Declarative Description (DD) theory [1-3] and serves as a data
model for XML documents [4], is summarized.

In XML-DD theory, the definition of an XML element is formally extended
by incorporation of variables in order to represent inherent implicit information
and enhance its expressive power. Such extended XML elements, referred to as
XML expressions, have similar form as XML elements except that they can carry
variables. The XML expressions without variable will be precisely called ground
XML expressions or XML elements, while those with variables non-ground XML
erpressions.

There are several kinds of variables useful for the expression of implicit in-
formation contained in XML expressions: name-variables (N-variables), string-
variables (S-variables), attribute-value-pair-variables (P-variables), expression-
variables (E-variables) and intermediale-erpression-variables (l-variables). Ev-
ery variable is preceded by '$’ together with a character specifying its type,
lLe., '$N’, '$5’, '$P’, "$E’ or *$I°.

Intuitively, an N-variable will be instantiated to an element type or an at-
tribute name, an S-variable to a string, a P-variable to a sequence of attribute-
value pairs, an E-variable to a sequence of XML expressions and an [-variable to
a part of an XML expression. Such variable instantiations are defined by means
of basic specializations, each of which is a pair of the form (var, val), where var

is the variable to be specialized and val a value or tuple of values describing the
resulting structure. There are four types of basic specializations:

i) rename variables,

ii) expand P- or E-variables into sequences of variables of their respective types,
iii) remove P-, E- or [-variables, and
iv) instantiate variables to some values corresponding to the variables’ types.

Let Ax denote the set of all XML expressions, Gx the subset of Ax com-
prising all ground XML expressions in Ax, Cx the set of basic specializations
and vy : Cx — partial_map(Ax) the mapping from Cx to the set of all partial
mappings on Ax which determines for each ¢ in Cx the change of elements in
Ax caused by ¢. Let Ax = {Ax,Gx,Cx,vx) be a specializalion generation sys-
temn, which will be used to define a specialization system characterizing the data
structure of XML expressions and sets of XML expressions.

Let V be a set of set variables, A = Ax U 2(4xYVY) G = Gy U 295 C =
CxU(V x 2(AxYV)) and v : C — partial_map(.A) the mapping which determines
for each basic specialization ¢ in C the change of elements in A caused by c.

In the sequel, let I' = (A, G, S, u) be a specialization system for XML ezpres-
stons with flat sets, where § = C* and u : § — partial_map(A) such that

#(A)(a) = a, where A denotes the null sequence and a € A,
ule.s)(a) = p(s)(v(c)(a)), where c€C,s € S and a € A.

Elements of § are called specializations. Note that when u is clear in the context,
for @ € 8, u(0)(a) will be written stimply as af.

The definition of XML declarative description together with its related con-
cepts can be given in terms of I" = (A4,G, S, u}. An XML declarative description
(simply referred to as an XML-DD) on [is a set of descriptions, each having
the form

H(—B[,Bz,...,Bn. (1)

where n > 0, H is an XML expression in Ax and B; an XML expression in Ay,
a constraint or a set-of reference on I'. Such a description, if n = 0, is called an
object description or an OD, and, if n > 0, a relationship description or an RD.

A constrainton I' is a formula ¢g{a;,...,a,), where ¢ is a constraint predicate
and a; an element in A. Given a ground constraint ¢{g1,...,gn),9i € G, its truth
and falsity is assumed to be predetermined.

A set-of reference on I' is a triple r = (S, fra, P) of aset § € 2(AxVV) 4
set-of function fr ., and an XML declarative description P, which will be called
the referred description of r. Given z,a € Ax, a set-of function f., can be
defined as follows: For each X € 25«

fra(X) ={z0 € Gxlaf € X,0 € Cy}. (2)

In other words, for each X € 297,20 € f. o(X) ifl there exists 6 € C% such that
af and rf are ground XML expressions in X and Gx, respectively. Intuitively,
a and z are used, respectively, to define the condition for the construction of
a set and to determine the elements comprising that set, i.e., 6 € f. (X)) iff

<{ELEMENT Person (Name, BirthYear, Parent?)>
C!'ATTLIST Person ssn ID sREQUIRED

gender (Male | Female) #REQUIRED>
<!'ELEMENT Nanme (8PCDATA)>
<!ELEMENT BirthYear (ZPCDATA)>
<!ELEMENT Parent EMPTY>
<YATTLIST Parent father IDREF #IMPLIED

mother IDREF #IMPLIED>

Fig. 1. An XML DTD example

af € X. The objects a and = will be referred to as filter and constructor objects,
respectively.

Given a specialization # € S, application of # to a constraint g(ay,...,an)
yields the constraint ¢(ai6,...,a,0), to a reference (S, fr.a, P) the reference
(S, fr.a. P)0 = (S8, fra,P) and to a description (H « By, Ba,...,B,) the
description (H8 « B,6, Byf,...,Bn,0). The head of a description D will be
denoted by head(D) and the set of all objects (XML expressions), constraints
and references in the body of D by object(D), con(D) and re f(D), respectively.
Let body(D) = object(D) U con(D) Uref(D).

Given an XML-DD P, its meaning, M(P) is the set of all the ground XML
expressions that can be derived from the descriptions in P. Intuitively, given
a description D = (H & By,B;,...,B,) in P, for every § € & that makes
B8, B28, ..., B,0 true with respect to the meaning of P, the expression H8 will
be derived and included in the meaning of P.

4 Modeling XML Documents and DTDs

4.1 XML Document Modeling

A conventional XML element is represented directly as a ground XML expres-
sion in Gx. A class of XML elements sharing certain similar components and
structures can also be represented as an XML expression with variables. These
variables are used to represent unknown or similar components (which could be
tag names, attribute-value pairs, subexpressions or nesting structures) shared
by the elements in the class.

A collection of XML documents can be modeled by an XML-DD consisting
of ODs and RDs. The meaning of such an XML-DD yields all the directly repre-
sented XML elements in the document collection, i.e., those expressed by ODs,
together with all the derived ones, which may be restricted by constraints.

Ezample 1. Let P be an XML-DD which represents an XML document encoding
demographic data and conforming to the DTD given in Fig. 1. Assume that such

a document contains three Person elements and P comprises the following seven
descriptions, denoted by Dy — D7:

D,: <Person ssn="99999" gender="Nale">
<Name>John Smith</Name>
<BirthYear>1976</BirthYear>
<Parent mother="55665"/>

</Person> &«

D,: <Person ssn="55555" gender="Female">
<Name>Mary Smith</Name>
<BirthYear>1950</BirthYear>
<Parent father="11111"/>

</Person> +— .

Di: <Person ssn="11111" gender="Hale">
<Name>Tom Black</Name>
<BirthYear>1920</BirthYear>

</Person> — .
Ds: <Ancestor ancestor=$S:Father descendent=$5:Person/>
- <Person ssn=$S:Person $P:PersonAttr>

$E:Subexpression
<Parent father=$S:Father $P:ParentAttr/>

</Person>.
Ds: <Ancestor ancestor=$S:Mother descendent=$S:Person/>
— <Person ssn=%$S:Person $P:PersonAttr>

$E:Subexpression
<Parent mother=$S:Mother $P:ParentiAttr/>

</Person>.
D¢ <Ancestor ancestor=$S:Father descendent=$%$5:Desc/>
— <Ancestor ancestor=%$S:Anc descendent=$S:Desc/>,

<Person ssn=$S:Ancestor $P:PersonAttr>
$E:Subexpression

<Parent father=$S:Father $P:ParentAttr/>

</Person>.
D+: <Apcestor ancestor=$5:Mother descendent=$S:Desc/>
— <Ancestor ancestor=$S:Anc descendent=3$S:Desc/>,

<Person ssn=$S5:Anc 3$P:PersonAttr>
$E:Subexpression

<Parent mother=3$S:Mother $P:ParentAttr/>
</Person>.

Descriptions D, — D3 represent Person elements in the document; Descriptions
D4 — D7 derive ancestor relationships among the individuals in the collection.
Descriptions D4 and Ds specify that both father and mother of an individual
are ancestors of such individual. Descriptions Dy and D7 recursively specify that
the father and the mother of an individual’s ancestor are also the individual’s
ancestors. This ancestor relationship represents an example of complex, recursive
relationships which can be simply expressed in the proposed approach. 0

4.2 XML DTD Modeling

An XML DTD is represented, in the proposed approach, as an XML-DD com-
prising a set of RDs [5]. Such RDs, referred to as DTD-RDs, are obtained di-
rectly from translating each of the element type and attribute-list declarations
contained in the DTD into a corresponding set of DTD-RDs and then combining
these sets together.

The head expression of such a DPTD-RD only imposes the general structure
of its corresponding element type and merely specifies the valid pattern of the
associated attribute list. Restrictions on the element’s content model, e.g., de-
scriptions of valid sequences of child elements, and on its associated attribute
list, e.g., attribute type and default value constraints, are defined by appropriate
specifications of constraints and XML expressions in the DTD-RD’s body. An
XML expression contained in a DTD-RD’s body will be further restricted by the
DTD-RDs the head of which can be matched with that XML expression.

An XML element is valid with respect to a given DTD, if such element can
successfully match the head of some DTD-RD translated from the DTD and all
the restrictions specified in the body of such a DTD-RD are satisfied.

Erample 2. This example demonstrates a translation of the DTD given in Fig. 1,
which will be referred to as myDTD, into a corresponding set of DTD-RDs:

Vi: <myDTD Person>
<Person ssn=$S5:5SSN gender=$5:Gender>
<Name>$S:Name</Name>
<BirthYear>$S:BirthYear</BirthYear>
$E:Parent
</Person>
</myDTD _Person>
— <myDTD_Parent>
$E:Parent
</myDTbB Parent>,
IsMember0f (<Value>$S:Gender</Value>,
{<Value>"Male"</Value>,
<Value>"Female"</Value>}).
Va: <myDTD Parent>
<Parent father=$S:FatherSSN $P:MotherAttr/>
</myDTD Parent>
— <myDTD Parent>
<Parent $P:MotherAttr/>
</myDTD Parent>,
Va: <myDTD Parent>
<Parent mother=$S:MotherSSN/>
</myDTD Parent> —
Va: <myDTD Parent>
<Parent/>
</myDTD Parent> —

Vs: <myDTD Parent>
</myDTD_Parent> —

Description V) imposes restrictions on the Person element. The head expres-
sion of V; specifies that every conforming Person element must contain ssn and
gender attributes as well as Name and BirthYear elements as its first and second
subelements, respectively. The only restriction on Name and BirthYear elements
stating that their contents must be textual data is simply represented by the
S-variables $S:Name and $S:BirthYear, respectively, and is defined within the
restrictions on the Person element, i.e., within the head of V. The E-variable
$E:Parent is defined such that, following the Name and BirthYear subelements,
a Person element can optionally contain a Parent element. The myDTD Parent
element contained in the body of V| specifies that such Parent subelement will
be further restricted by the descriptions the heads of which are myDTD Parent
expressions, i.e., descriptions Vo — V5.

The constraint IsMemberOf enforces that the value of the gender attribute,
represented by $S:Gender, must be either “Male™ or “Female",

Moreover, it should be noted that since validation of uniqueness and ref-
erential integrify constraints defined by means of attributes of types ID and
IDREF/IDREFS, respectively, requires additional concepts of id and idref/ idrefs
references [5) which are beyond the scope of this paper, this example omits val-
idation of such constraints.

Descriptions V3 — Vs can be interpreted in a similar way as description V. O

5 Query Processing

As details of the query formulation and evaluation based on the proposed data
model are available in [6], this section merely sketches the basic ideas.

A query is formalized as an XML-DD, comprising one or more RDs, called
query RDs. Each query RD is written as a description D, where head(D) de-
scribes the structure of the resulting XML elements, object(D) represents some
particular XML documents or XML elements to be selected, con(D) describes
selection criteria and re f({D) constructs sets or groups of related XML elements
to be used for computing summary information. This syntax intuitively sepa-
rates a query into three parts: a pattern, a filter and a constructor, where the
pattern is described by object(D), the filter by con(D) and ref(D), and the
constructor by head(D)}. The five basic query operations [11,17, 18]: extraction,
selection, combination, transformation and aggregation, can be formulated [6].

Given an XML-DD P specifying a collection of XML documents together
with their relationships, a query represented by an XML-DD @Q is evaluated by
transforming the XML-DD (” U Q) successively until it becomes the XML-DD
(PUQ'), where Q' consists of only ground object descriptions. In order to guar-
artee that the answers to a given query are always preserved, only semantics-
preserving transformations or equivalent transformations [1-3] will be applied
in every transformation step. The equivalent transformation is a new compu-
tational model which is considered to be more efficient than the inference in

the logic paradigm and the function evaluation in the functional programming
paradigm. The unfolding transformation, a widely used program transformation

in the conventional logic and functional programming, is a kind of equivalent
transformation.

Erample 3. Referring to XML-DD P of Examplel, a query which lists the names
of all the John Smith’s ancestors can be formulated as:

D: <JohnAncestor>$S:Name<JohnAncestor/>
— <Person ssn=$S:JohnSSN $P:JohnAttr>

<Name>John Smith</Name>
$E: JohnSubExp

</Person>,

<Ancestor ancestor=$5:4Anc descendent=$%$S:JohnSSN/>,

<Person ssn=$S:Anc $P:AncAttr>
<Name>$S:Name</Name>
$E:AncestorSubExp

</Person>.

By means of unfolding transformation, XML-DD (£ U {D}) can be successively
transformed into XML-DD (P u {D’, D"}), where

D': <JohnAncestor>Mary Smith<JohnAncestor/> -
DY': <JohnAncestor>Tom Black<JohnAncestor/> —

Since M(P U {D}) = M(P U {D’, D"}) and the heads of D’ and D" are the
only JohnAncestor elements in M{P U {D’, D"}), such elements are the only
answers to the query. 0

6 Conclusions

This paper has proposed and developed an expressive, declarative framework
which can succinetly and uniformly model XML elements/documents, integrity
constraints, element relationships, DTDs as well as formulate queries. By in-
tegrating the framework with an appropriate computational model, e.g., the
Equivalent Transformation (ET), one will be able to efficiently manipulate and
transform XML documents, evaluate queries, and validate XML data against
some particular DTDs. The framework, therefore, provides a foundation for rep-
resentation and computation of as well as reasoning with XML data.

A Web-based XML processor which can help demonstrate and evaluate the
effectiveness of the proposed framework has been implemented using ETC - a
compiler for programming in ET paradigm. The system has been tested against
a small XML database and preliminary good performance is obtained; and a
more thorough evaluation with a large collection of XML documents is under-
way. Other interesting future plans include development of indexing and query
optimization techniques for XML document databases.

Acknowledgement This work was supported in part by Thailand Re-
search Fund.

=

YIRA1 QLYY

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Akama, K.: Declarative Semantics of Logic Programs on Parameterized Repre-
sentation Systems. Advances in Software Science and Technology, Vol. 5. (1993)
45-63

. Akama, K.: Declarative Description with References and Equivalent Transforma-

tion of Negative References. Tech. Report, Information Engineering, Hokkaido Uni-
versity, Japan {1998)

Akama, K., Shimitsu, T., Miyamoto, E.: Solving Problems by Equivalent Trans-
formation of Declarative Programs. Journal of the Japanese Society of Artificial
Intelligence, Vol. 13 No.6 (1998) 944-952 (in Japanese)

. Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: A Foundation

for XML Document Databases: Data Model. Tech. Report, Computer Science and
Information Management, Asian Institute of Technology, Thailand (1999)

. Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: A Foundation for

XML Document Databases: DTD Modeling. Techn. Report, Computer Science and
Information Management, Asian Institute of Technology, Thailand {1999)
Anutariya, C., Wuwongse, V., Nantajeewarawat, E., Akama, K.: A Foundation for
XML Document Databases: Query Processing. Tech. Report, Computer Science
and Information Management, Asian Institute of Technology, Thailand (1999)

. Beech, D., Malhotra, A., Rys, M.: A Formal Data Model and Algebra for XML.

W3C XML Query Working Group Note {1999)

Bray, T., Paoli, J., Sperberg-McQueen, C.M.: Extensible Markup Language (XML}
1.0. W3C Recommendation. (1998)

Buneman, P., Deutsch, A., Tan, W.C.: A Deterministic Model for Semi-Structured
Data. Workshop on Query Processing for Semistructured Data and Non-Standard
Data Formats (1998)

Buneman, P., Fan, W., Weinstein, S.; Interaction between Path and Type Con-
straints. Proc. ACM Symposium on Principles of Database Systems (1999)
Fankhauser, P., Marchiori, M., Robie, J.: XML Query Requirements, January 2000.
W3C Working Draft, (2000)

Ferndndez, M., Siméon, I, Suciu, D., Wadler, P.: A Data Mecdel and Algebra for
XML Query. Draft Manuscript {1999)

Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Mi-
grating the Lore Data Model and Query Language. Proc. 2nd Int. Workshop on
the Web and Databases (WebDB 99), Pennsylvania (1999)

Murata, M.: Hedge Automata: A Formal Model for XML Schemata. Technical
Report, Fuji Xerox Information Systems (1999)

Murata, M.: Transformation of Documents and Schemas by Patterns and Contex-
tual Conditions. Principles of Document Processing "96. Lecture Notes in Computer
Science, Vol. 1293 (1997)

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: A Database
Management System for Semistructured Data. SIGMOD Record, Vol. 26, No. 3
{1997) 54-66

Quass, D.: Ten Features Necessary for an XML Query Langauge. Proc. Query
Languages Workshop (QI '98), Boston, MA, (1998)

Robie, J., Lapp, J., Schach, D.: XML Query Language (XQL). Proc. Query Lan-
guages Workshop (QL'98), Boston, MA, (1998)

Sacks-Davis, R., Arnold-Moore, T., Zobel, J.. Database Systems for Structured

Documents. IEICE Transactions on Information and System, Vol. E78-D, No. 11
(1995) 1335-1341

