

บทคัดย่อ

Paroxysmal nocturnal hemoglobinuria (PNH) เป็นโรคของเซลล์ต้นกำเนิดเม็ดเลือด (hematopoietic stem cell disorder) ชนิด clonal มีลักษณะทางคลินิกที่สำคัญ คือ ภาวะเม็ดเลือดแดงแตกในหลอดเลือดชนิดเรื้อรัง (chronic intravascular hemolytic anemia) ภาวะสร้างเม็ดเลือดได้น้อย (deficient hematopoiesis) และภาวะการเกิดลิ่มเลือด (thrombosis) ได้ง่าย โรคนี้เกิดจากการกลายพันธุ์ (mutation) ชนิด somatic ของยีนที่อยู่บนโครโมโซม X ได้แก่ยีน PIG-A (phosphatidylinositol glycan class A) ในเซลล์ต้นกำเนิดเม็ดเลือด ทำให้เม็ดเลือดทั้งหลาภากดความสามารถในการสังเคราะห์ glycosylphosphatidylinositol (GPI) anchor ซึ่งส่งผลให้โปรตีนบางชนิด (GPI-linked proteins) ไม่สามารถแสดงออกที่ผิวเซลล์ได้ ในบรรดาโปรตีนเหล่านี้รวมถึงโปรตีนที่ก่อขบวนการกระตุ้นระบบคอมพลีเม็นต์ (complement) ได้แก่ CD59 และ CD55 ทำให้เม็ดเลือดแดงของผู้ป่วย PNH มีความไวต่อคอมพลีเม็นต์ และแตกสลายได้ง่ายในกระแสเลือด พน PNH ในประเทศไทยมากกว่าประเทศไทยวันต่อ ซึ่งเรื่องที่ว่าเป็นผลจากการที่โรคนี้มีความสัมพันธ์กับโรคไขกระดูกฟ่อ (aplastic anemia) โครงการนี้ได้ศึกษาพยาธิกำเนิดของโรค PNH ใน 2 ประเดิม คือ 1) ศึกษาต้นกำเนิดและความสำคัญของเม็ดเลือด PNH (ความสัมพันธ์ระหว่าง genotype กับ phenotype) และ 2) กลไกการขยายตัวของ PNH clone ในประเดิมแรกทำโดยการตรวจหา PNH cell โดย flow cytometry และการศึกษาการกลายพันธุ์ของยีน PIG-A โดยการวิเคราะห์ heteroduplex และการตรวจหาลักษณะนิวคลีโอไทด์ (nucleotide sequencing) พนว่าในผู้ป่วย PNH สัดส่วนของเม็ดเลือดแดง PNH (GPI-AP negative granulocytes) มีมากกว่าเม็ดเลือดแดง PNH (GPI-AP negative erythrocytes) และเป็นดัชนีแสดงขนาดของ PNH clone ได้ดีกว่า ชนิดของกลาญพันธุ์ของยีน PIG-A ที่พบบ่อยคือ การขาดหายหรือเพิ่มขึ้นของ nucleotide จำนวนน้อยๆ (small deletion/insertion) และการแทนที่ nucleotide (base substitution) ทำให้ยีนนี้ไม่สามารถทำงานได้ เกิดเม็ดเลือดชนิด PNH III พนว่าความรุนแรงของโรค (โภตตาง) แสดงโดยขนาดของสัดส่วนของ GPI-AP negative granulocytes แต่ไม่ใช่โดยชนิดของการกลาญพันธุ์ของยีน PIG-A สำหรับการศึกษากลไกการขยายตัวของ PNH clone ทำโดยการตรวจสภาวะของการสร้างเม็ดเลือดในผู้ป่วย PNH (โดยการนับ CD34+ และการเพาะเลี้ยงเซลล์ต้นกำเนิดเม็ดเลือด) และการติดตามการเกิด PNH cells (clone) ในผู้ป่วยไขกระดูกฟ่อ (32 ราย) พนว่าผู้ป่วย PNH มีการสร้างเม็ดเลือดลดลง ซึ่งแสดงโดยจำนวน CD34+, BFU-E, และ CFU-GM ลดลง และพนว่า CD8+ ของผู้ป่วยเองทำให้ CFU-GM ลดลงไปอีก นอกจากนี้พนว่า CD59+ granulocytes ของผู้ป่วยมีการตายแบบ apoptosis มากกว่า CD59- granulocytes ประมาณ 70% ของผู้ป่วยไขกระดูกฟ่อมีการเกิดของ PNH clone ในระหว่างการศึกษา แต่การเกิด PNH clone ส่วนใหญ่จะเป็นอยู่ชั่วคราว และขณะที่เกิดนั้นผู้ป่วยมักจะมีจำนวนเม็ดเลือดขาวและเกรดเลือดต่ำกว่าขณะที่ไม่พน PNH clone จากข้อมูลดังกล่าวแสดงว่า PNH clone ถูกเลือกโดยสภาวะหรือกลไกเดียวกับที่ทำให้เกิดภาวะไขกระดูกฟ่อหรือไขกระดูกทำงานล้มเหลว ซึ่งน่าจะเป็นกลไกออโตอิมมูน (autoimmune mechanism) หรือโดยขบวนการ immunoselection

คำหลัก: **paroxysmal nocturnal hemoglobinuria (PNH), PIG-A, PNH clone**

Abstract

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematopoietic stem cell disorder characterized clinically by chronic intravascular hemolytic anemia, deficient hematopoiesis and thrombotic tendency. It is originated from a somatic mutation of the X-linked phosphatidylinositol glycan class A (PIG-A) gene in a hematopoietic stem cell resulting in the inability to biosynthesize glycosylphosphatidylinositol (GPI) anchor with subsequent failure of GPI-anchored proteins (GPI-APs) to be expressed on blood cells. Deficiency of the GPI-linked complement regulatory proteins, CD59 and CD55, is responsible for the hypersusceptibility of erythrocytes to the lytic action of complements. It is believed the PNH is more common in East Asia including Thailand than in the western countries, possibly due to the geographical difference in the prevalence of aplastic which is closely related to PNH. Our proposed studies were conducted to elucidate two aspects of pathogenesis of the disorder; 1) the origin and significances of PNH-phenotype blood cells (genotype-phenotype study), and 2) mechanism of PNH clonal expansion. The first issue was explored by immunophenotypic study of blood cells by flow cytometry and detection of PIG-A mutations by heteroduplex analysis and nucleotide sequencing. We found that GPI-AP (CD59) negative granulocytes were more prominent than erythrocytes and could actually reflect the size of PNH clone. Somatic mutations of the PIG-A were found in all 37 patients studied, and were mostly small deletions/insertions and base substitutions causing frameshift or nonsense, leading to the common PNH III phenotype. Severity of the disease (anemia) was found to be determined by the proportion of GPI-negative granulocytes but not by the types of PIG-A mutations. The mechanism of PNH clonal expansion was explored by studying the condition of hematopoiesis in PNH patients (CD34+ enumeration and hematopoietic stem cell culture) and looking at nature of PNH clones in a cohort of 32 aplastic anemia patients. Approximately 70% of the aplastic anemia patients showed PNH clones (CD59- granulocytes) during the follow-up period. Most of the emerging clones were usually transient and appeared during the status of significant bone marrow failure as represented by more the prominent leucopenia and thrombocytopenia. By hematopoietic stem cell culture, we found that PNH is usually associated with a condition of deficient hematopoiesis as shown by the low CD34+ cells and also BFU-E and CFU-GM. In addition autologous CD8+ cells seemed to depress the CFU-GM. Moreover the CD59+ granulocytes were more apoptotic than the CD59- counterpart. Our findings suggested that PNH is selected in the condition which is also responsible for bone marrow failure in aplastic anemia, i.e., the autoimmune mechanism or the immunoselection.

Key words: paroxysmal nocturnal hemoglobinuria (PNH), PIG-A, PNH clone