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ABSTRACT

Let m and n be non—negative integers and k a positive integer. A graph G is said to have
property P(m,n,k) if for any m + n distinct vertices of G there are at least k other vertices, each of which is
adjacent to the first m vertices but not adjacent to any of the latter n vertices. We know that almost all
graphs have property P(m,n,k). However, for the case m, n = 2, almost no graphs have been constructed,

with the only known examples being Paley graphs which defined as follows. For q = I(mod 4) a prime

power, the Paley graph G4 of order q is the graph whose vertices are elements of the finite field Fg; two
vertices a and b are adjacent if and only if their difference 1s a quadratic residue. By using higher order
residues on finite fields we can generate other classes of graphs which we refer to as generalized Paley

graphs. For any m, n and k, we show that all sufficiently large (order) graphs obtained by taking cubic and

quadruple residues satisfy property P(m,n,k).

1. INTRODUCTION

All graphs considered in this paper are finite, loopless and have no multiple
edges. For the most part, our notation and terminology follows that of Bondy and Murty
[10]. Thus G is a graph with vertex set V(G), edge set E(G), v(C) vertices and £(QG)
edges.

Let m and n be non—-negative integers and k a positive integer. A graph G is said
to have property P(m,n.k) if for any d‘isjoint sets A and B of vertices of G with |A| =m
and ‘ B | = n there exist at least k other vertices, each of which is adjacent to every vertex
of A but not adjacent to any vertex of B. The class of graphs having property P(m,n,k) is
denoted by ¢(m,n,k). The cycle C, of length v is a member of §(1,1,1) for every v = 5.

The well-known Petersen graph is a member of ¢(1,2,1) and also of (1,1,2). The class
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(/(m,n,k) has been studied by Ananchuen and Caccetta [2, 3, 5, 6], Blass et. al. [7], Blass

and Harary [8], Exoo [13], Exoo and Harary [14, 15]. In addition, some variations of the
above adjacency property have been studied by Alspach et. al. [1], Ananchuen and
Caccetta [4], Bollobas [9], Caccetta et. al. [11, 12] and Heinrich [16].

In 1979, Blass and Harary [8] established, using probabilistic methods, that
almost all graphs have property P(n.n,1). From this it is not too difficult to show that
almost all graphs have property P(m,n,k). Despite this result, few graphs have been
constructed which exhibit the property P(m,n,k); some constructions for the class
(/(1,n,k) were given in [5].

An important graph in the study of the class ¢ (m,n,k) is the so—called Paley

graph G, defined as follows. Let q = 1(mod 4) be a prime power. The vertices of Gq are
the elements of the finite field F;. Two vertices a and b are adjacent if and only if their
difference is a quadratic residue, that is a — b = y* for some y €'F,.

In [3, 4] we proved that for a prime power q = 1(mod 4):

Gq € G(1,nk) forevery q> {(n—2)2"+2}/q +(n+2k—1)2"-2n—1;

Gq € G(n,nk) forevery > {(2n—-3)2"""'+2}Jq + (n+2k-1)2>"""'-2n’—1;
and Gq € ¢(m,nk) for every q > {(t—3)2"""+2} ,/a +(t+2k-1)2"" -1,

wheret>m + n.

By using higher order residues on finite fields we can generate other classes of

graphs. More specifically, for q = 1(mod 3) a prime power we define the cubic Paley

graph, GEI‘“ as follows. The vertices of G ff) are the elements of the finite field Fg. Two

vertices a and b are adjacent if and only ifa—b = y° for some y € Fq. Since g = 1(mod 3)
Is a prime power, —1 is a cubic in F,. The condition —1 is a cubic in Fg is needed to

ensure that ab is defined to be an edge when ba 1s defined to be an edge. Consequently,

fo) is well—defined. Figure 1(a) gives an example.
For q = 1(mod 8) a prime power, define the quadruple Paley graph Gf::' as

follows. The vertices of Gf:) are the elements of the finite field F,. Two vertices a and b

are adjacent if and only ifa— b = y4 for some y € Fy. Since q = 1(mod 8) is a prime



power. —1 is a quadruple in Fgq. The condition —1 is a quadruple in Fq 1s needed to ensure

that ab is defined to be an edge when ba 1s defined to be an edge. Figure 1(b) gives an

example.

Figure 1. Graphs G2’ and G| .
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In this paper the adjacency properties ot the classes Gi{" and G[q ' are studied.

NMore specitically. we prove that:

_ ) | 5
e G'q:“ e (J(2.2.K) toreveryq> [:(79 + 3436k +701)]:

(3) 2 N\ f S eyl =1 t m [_ A1, ay~—Nat—1
e G, = {(m.nk) torevery gz (2 =2+1)27yYq ¥*(m+2n+3k=3)253 ",

wheret > m + n: and

e G f:" e ((m.n.k) forevery q> (12' 7' 2"+ 1)3”‘\/3 +(m+3n+4k-4)37"3"" ",

wheret > m + n.

2. FINITE FIELDS

In this section. we present some results on finite fields that we make use of in
establishing our main theorems. We begin with some basic notation and terminology.

Let F, be a finite field of order q where g is a prime power and let Fy[x] be a
polynomial ring over F,.

A character 7 of F; , the muluiphicative group of the non—zero elements of F, is

a map from F; to the multiplicative group of complex numbers with [;{(:-:.), = ] for all



X € F; and with y(xy) = x(xX)x(y) forany x, y € F; :
Among the character of F ; , we have the trivial character ¥, defined by yo(x) = 1
for all x € F;; all other character of F; are called nontrivial. With each character ¢ of

F;, there is associated the conjugate character ¥ defined by % (x) = x(x) for all x €

F .. A character x 1s of order d if ¥® = ¥, and d is the smallest positive integer with this

property.
It will be convenient to extent the definition of nontrivial character y to the
whole F, by defining % (0) = 0. For %, we define %,(0) = 1.
Observe that
X () = x(2") (2.1)
for any a € Fq and t a positive integer.

¥

If ¢ is a nontrivial character of Fo, we known that (see [17]), for a, b € Fq with

a=b

> x(x—a)¥(x —b)=-1. (2.2)

xeFq

The following lemma, due to Schmidt [18], 1s very useful to our work.

Lemma 2.1. Let y be a nontrivial character of order d of F,. Suppose f(x) € Fq[x] has
precisely s distinct zero and it 1s not a d"™ power; that is f(x) is not the form c{g(x)}",

where ¢ € Fg and g(x) € Fq[x]. Then

S x(f(x) | <(s-1)4q. 0

| xEFq

The next lemma is a generalization of Lemma 3.2 proved in [3].

Lemma 2.2, Let % be a nontrivial character of order d of Fq. If ay, ay, ... , a; are distinct

elements of Fy and s = 0(mod d), then there exist ¢ F:l such that



> x{x—a)(x—az)...x—a)}=-1+ > x{c(x—-b)(x-by)...(x—b,)}

}{EFq XEFq

for some distinct elements by, by, ..., b__, of Fg.

Proof: We write

2. x{x—a)(x—ay)... (x—as)}

XE Fq

= > x{x(x+a —a)(x+a —a3) ... (x +a —a)}. (2.3)

KEFq

Note the latter equality is valid, since x and x + a; assume all values in Fg. Now, since ay,

a,, ..., a are distinct, thenc;=a;—aj+1#0for1 €1 <s— 1.

If x # 0, then there exists an x| such that xx™' = 1. Furthermore, %(x™')* = 1,

since s = (mod d) and ¥ is a character of order d. If x =0, then x(x) = 0. Thus, we can

write (2.3) as

D> xfx(x+e)x+e) ... (x+ ¢, )} -

EEF;

=y v(X )P {x(xX+ )X +¢C) ... (x+ c )}

-
IEFE

Z x{xx"(xx" + clx_l)(xx" + czx") (xx"] + cs_lx")}

IEF;
= Z x{(1+eix )1 +cax ) ... 1+ ¢, x ).
KEF;
Since, for each i, ¢; # 0, then ¢’ exists. Further, x(c,¢;'¢c2¢3' ... ¢, ¢ )=

Now using the same idea as above we can write

> x{(I+ex )1 +ex) ... 1+ ¢, x )}

xEF;

= > xeier e xACe +x7e X (el +xT)) 24)

g

Letc=cicy ... C Since c¢; # 0, for each 1, we have ¢ # 0. As x assumes all values in

s—-1"

*

F,,sodoes xf'. Hence, we can write (2.4) as

> x@Efx+ ey )x+ ') L (x+ c))}

[ ]
xEFh

= 2 x(@Qudt+ eiHE+ ') (x e} —x(@x(e™)

xEFﬁ



= 5 xfex+ ¢ )x+ ¢;') o (x+ )} - 1.

IEFq

This completes the proof of the lemma. Q

Using Lemma 2.1, we have the following corollary to Lemma 2.2.

Corollary. Let x be a nontrivial character of order d of Fq. If aj, a,, ... , a5 are distinct

elements of Fq and s = O(mod d) then

3 x{(x—a,)(x—a,)..(x-a,)}| <1+(s-2)4q. Q

IEFq

Let g be a fixed primitive element of the finite field Fg; that is g is a generator of the

cyclic group F; . Define a function o by

Tmit

a(gh=-e 3,

where i = —1. Therefore, o is a cubic character, character of order 3, of Fq. The values

2m

of o are the elements of the set {1, o, ®°} where ® = e 3 Note that o is also a cubic

q >

3

character and a = o®. Moreover, if a is not a cubic of an element of F_, then

a(a) + cxz(a) = -1,
Further, define a function 3 by
B(g) =1
Therefore, B is the quadruple character, character of order 4, of Fq. The values of B are in

the set {1, —1,1, —1}. Observe that B3 is also a quadruple character and B =B’ while Bz 1S

a quadratic character. Moreover, if a is not a quadruple of an element of F;, then

B(a) + B*(a) + B’(a) = 1.

Lemma 2.3. Let a be a cubic character of Fq and let A and B be disjoint subsets of F,.

Put



=Y TT{1+ax-a)+a(x—a)} []{2 - o(x—b) - o’(x - b)}.

xeF, 2eA beB
As usual, an empty product is defined to be 1. Then
g>2"q— (12" = 2"+ 1)2'/q,
where |A| = m, |B[ =nandt=m + n.

Proof: Let Auw B = {cy, c3, ..., ¢;}. Expanding g and noting that Z 2" = 2"g, we can

muEF‘I

|g-2"q| < . X > 2 lxx—ci)| +

xeFg xe{uu } 1=l

Z Z Z {2t ZXI x—c,l)xz(x—ciz)} + ..

1,Eiua } h<iy |

> 2 2 2T &me)xp (- cy ) x (ke )}

xek, 115{11.!11} I <1y<...<l,

> D Ay (x—c)y,(x—c2)...yq, (X =)}

xeFy  y,eta.a?)

Now, by (2.1) and Lemma 2.1 we obtain
. t
lg-2"q| <> 252"{5J(s—1)\/€
g=]

= @' -2'+ 1)2'[q.
Therefore, g > 2"q — (12"~ L2t + l)2‘ﬁ as required. Q

Lemma 2.4. Let a be a cubic character of Fq and A be a subset of m vertices of Fy. Put

o= z H{l +a(x—a)+az(x—a)}.

X€E Fq acA

As usual, an empty product is defined to be 1. Then
g>q-[l-m’+m+ (21’11—3)3"‘_])]\/5 — (m* — m).

Proof: Let A = {a;, a3, ..., am}. We can write

g=1 + > Y xx-a)+
\ =]

xek, xEFq ;r_E{ﬂ. a?)



> > 2 Ay x-a )y, (x-a)}+...+

xeFy x,etaal) <l

Z E Z {xl(x_au))’.:(x'31:)'"3(5(”:_31,)}"'---"*’

ek, I,EIﬂ-ﬂzl << <l

Z > {g(x-a)y,(x—a)...q, (X —am)}. (2.5)

-

5
Q 1115[:1.11']

Consider
h= 2 2 {xk-a)yK&=-2a,))
e} 2
4 ljtluiﬂ )

for some a, , a,, withi; <12 Then by using (2.2) we have

h=

™~

{a(x-a, Ja(x—a, )+alx-a, Y (x — a,)+ c:z(x -a, Ja(x—a, )+

15?1

a’(x - a, Yt (x - a,,))

=24+ > ta(x — a,, Ja(x — a, ) + (I.:(K = 4, )(12(?(;‘ Sy )}

il

A€ F‘

Using the same idea as above together with (2.1), (2.2) and Lemma 2.1 we get from (2.5)

m

m -
g-[q—(mz —m}]] < Z 2"(5)(5— I)Ja +(m‘—m)\/a

p=1

=[1+2m-3)3""=(m’-m)]Jq.

-m - |

Therefore, g2 q-|[1 - m’+m + (2m - 3)3 )] \/E;- ~ (m~ — m) as required. Q

Lemma 2.5. Let B be a quadruple character of Fg and let A and B be disjoint subsets of

Fq. Put
g= Y JJ{1+Bx-a)+pix-a)+ P (x-a)} [ {3 -B(x-b)-Pi(x-b)-P’(x-b)}.

xeb,  aeA beB

As usual, an empty product is defined to be 1. Then
g>3"q- (2" ' -2'+1)3'q,
where |A| =m, ‘BI =nandt=m+ n.

Proof: Let AU B = {c), ¢2, ..., ¢}. Expanding g and noting that Z 3" = 3"q, we can

xekF,

write



> 2 2 3T x=e)| +

veF, ye(pp’p’) 1=l .

PIED D MR C N CE D PAC TR ] IS

| veFy gz eipp’p') 1<y

e-3"q] <

Z z Z {3"‘1,(-‘1—C.;)x:(x”ciz)‘“xs(x_Cl,)} + ...+

EIF‘ I,ﬂﬁ-ﬂ‘.ﬂii <y <1,

Y Ay, (x=c)y,(x—c2)y, (x—c)}

veF, x.e(pp’yp’) '

Now, by (2.1) and Lemma 2.1 we have

. t
\g—3“q| < Z 353l-i(s)(5— l)ﬁ

=2 -2+ 1)3'q.

Therefore, g > 3"q — (12' 7' = 2' + 1)3'/q as required.

Lemma 2.6. Let B be a quadruple character of Fy and A be a subsets of m vertices of F,.

Put

g = Z 1—[{ l + B(x —a) + P3(x —a) + P (x —a)}.

vef, aeA
As usual, an empty product is defined to be 1. Then
g2q-[1+Gn-44"""q.

Proof: Let A = {a,,a>, ..., am}. We can write

m

g=2 1+2 2 2 xux-a)+

xef, x€k, yelp.pip') 1=l

Z Z Z {'X.i(x‘ar.)X:(x‘aiz)}+--.+

veFy g elpp’p’) u<y

Z Z Z {xu(’“ﬂa.)h(x—aiz)*nx;(x—ai,)}+---+

xefy  1,elPp'p) nen< «,

Z Z {'X_I(x_al)xz(x“'32)...xm(x--—am)}_

xeF, x,e(pp’p’)

Then, by (2.1) and Lemma 2.1 we have



m

ESCIED) 3’(?)(s—l)ﬁ

=[1+Cm-44"""/q.

Therefore, g2 q—[1 + (3m —4)4™ ') Ja as required. Q

3. THE GENERALIZED PALEY GRAPHS
For g = 1(mod 3) a prime power, there exists a cubic character a of Fgq and a(-a)
= a(a) for all a € Fy. Further, for q = I(mod 8) a prime power, there exists a quadruple

character B of Fq and B(-a) = B(a) forall a € F,.

Observe that if a and b are any vertices of G|’ , then fort =1 and 2

X if aisadjacent to b,
a'(a—b) = {0, if a=b,
|w or W, otherwise. '

Also, if a and b are any vertices of G f:}, then fort=1and 3

1 if aisadjacenttob,
Blla-b)=14 0, if a=b,
—-l,10r—1, otherwise

Note that B~ is a quadratic character; that is

I, if a-Dbisa quadratic ressidue,
B(a-b)=1{ 0, if a=b,

-1, otherwise.

Before stating our results, we need the following notation. For disjoint subsets
A and B of V(G), we denote by n(A/B) the number of vertices of G not in A U B that are
adjacent to each vertex of A but not adjacent to any vertex of B. When A = {a, a,, ...

am} and B = {b,, b,, ..., ba}, we sometimes write for convenience n(A/B) = n(a,, a,

am / bl: bI: “ee 3 bﬂ)'

- b

10



Theorem 3.1. Let q = 1(mod 3) be a prime power and k a positive integer. If

q> [%(79 + 3436k + 701)]%,

then Gh‘” e G(2,2,k).

Proof: LetS = {a, b, ¢, d} be any set of distinct vertices ofGL” . Then n(a, b/c,d) 2 k if

and only if
f= Y {[1 +a(x-a)+a’(x—a)][l +a(x - b) + a’(x - b)]
vef,
neS
[2-a(x—c) - a’(x — A)][2—-—a(x—-d) - az(x - d)]}
> k3°. |

To show that f> k3%, it is clearly sufficient to establish that f> (k — 1)3°,

We can write
g = Z {[l +a(x—2a)+ a’(x —a)][] + a(x —b) + c:z(:-:‘— b)]

E Fq

[2 —a(x —c) - a’(x — c)][2—-a(x—-d)- o’ (x — d)]}

=Z4+Z Z {41(?‘—3)'*‘43(.(-'"_b)-EX(K—C)—E:{(x—d)}+

vef, xefF, yela.a”)

> 2 A x=0) g, (x—d) =2y (x—a) g, (x—¢) -

'l'EFq Legu_u:]
2x|(}{—-il)xz(}{—d)—2xl(x—b)x2(?{-—f;)—
2x|(x—b)xz (x-—d)+4xl(x—a)x1(x—b)} +

> D {px—a)y(x—e)ys(x—d)+ o, (x=Db) y, (x =€) g;(x —d) -

?
xeF, yx€la.a’)

2y, (x=a)y,(x=b)y,(x—c)—2, (x—a)y,(x=b)y;(x—-d)} +

> > {nx-a)y (x=b)y(x =)y, (x —d)}, (3.1)

x€Fy 1,5[::_1:1}]
Now, by (2.1) (2.2) and Lemma 2.1 we get from (3.1)
g=4q+ 0 + [Z a(x —c)a(x —d) + Z az(x—c)az(x—d)—Z]_

:qu IEFq

2( Z a(x —a)a(x —c) + Z az(x —a)a’(x —c) — 2] -

XE Fq X€E Fq

11



2[ Z a(x —a)a(x —d) + Z az(x — a)az(x —-d)-2] -

XE Fq xeFg

AT ax-ba(x-c)+ Y a’(x-b)a’(x—c)-2]-

2[ Y a(x—ba(x—d)+ ) oA(x —b)ai(x —d)—2] +

X E Fq XE F‘q

4] Z a(x =a)a(x —Db) + az(x —a)a’(x —b)-2]+

XE F,pl X€e Fq

> D, {yx=a)y,(x=0)gs(x=d)+ ¢ (x=b)y, (x =)y, (x —d) -

‘EFII IlE{ﬂ._uzl

29, (x=a) g, (x =b)y;(x =€) =2y, (x —a) g, (X =) 3 (x —d)} +
2. 2. {xuG&x-a)yy,x-b)y;(x—c)y,(x~-d)}.

xeF, yela.a’)

By first applying (2.1) and Lemma 2.2 and then applying Lemma 2.1 we obtain

lg—4q-10] <2/q +4q +4q +4/q +4/q +8/q +
[6(3-1)43)+2G-2)Ya ]+ [6(3-1)Jq)+23-2)Jq]+
2(6((3-1)4/a) +2(3-2)4Jq 1+2[6(3-1)y/a) +2(3-2)Ja 1+ 163 /q )

=158./q.
Therefore.
g>4q+10-1584q.
_onsider

o—t={l+aa-b)+coi(a-b)}{2-a@a-c)-a’(a-c)}{2-a@-d)-a’(a-d)} +

(1 +a(b—a)+a’(b—2a)}{2—ab-c)-oa’(b-c)}{2 —ab-d) - a’(b-d)} +

2{1 + a(c —a) + a’(c —a)}{l + a(c —=b) + a’(c = b)} {2 —a(c —d) — a’(c —d)} +

2{1 + a(d —a) + o’(d — a)} {1 + a(d — b) + &’(d = b)} {2 — a(d — ¢) — &*(d - ¢)}

< 108,
since g — f achieves its maximum value when ab, cd ¢ E(G) and ac, ad, bc, bd € E(G).
Consequently,
f>g—-108
>4q+ 10— 158,/q —108.

12



Hence, f> (k — 1)3" for q > [%(79 + 34/36k + 701)]°. As S is arbitrary, this completes

the proof. 0

Remark 1. When k = 1, Theorem 3.1 above asserts that G':q” e ((2,2,1) for all prime
powers = 1609. We have verified, using the computer, that G ff‘) € ((2,2,1)onlyifqisa
prime power of order 151, 157 or at least 223. Table I gives the maximum k for which

G 513} e ((2,2,k); we give only some of the computational results.

Table I. Maximum k for which G’ e §(2,2,k).

T l
I Maximum k Order g Maximum k Order g
0 <139 and 165 14 601,613,619, 631, 634
l 151,157, 223 15 661 |
2 169, 181, 193, 199, 229 16 673, 625 i
3 211, 241, 271, 361 17 691, 709, 769
4 256, 277, 289, 313 18 727,733,757
5 283, 307, 331 19 751
6 337, 343, 349, 373, 379 20 739, 787, 811, 829
7 367, 397, 409 22 823
8 433, 439, 463, 523 | 23 859, 883
9 421,457,487, 529 24 | 853, 877, 907
11 499 25 919, 937
12 547,571, 577 27 967, 991
13 541, 607 28 997, 1009

For the class ¢(m,n.k), we have the following result.

Theorem 3.2. Let q = 1(mod 3) be a prime power and k a positive integer. If

q>(2'"'=2'+1)2™fq + (m+2n+3k-3)27"3'", (3.2)

13



then G ff) e ((m,nk) forallm,nwithm+n=<t.

Proof: It clearly suffices to establish the result for m + n =t. Let A and B be disjoint

subsets of V(G ) with |A| =mand |B| =n. Then, n(A/B) > k if and only if

f= > 1_[{1+cx(x—a)+cx?‘(:~:—a)}1—[{2—a(x—b)—az(x—b)}

IEFq acA beB
xgAuB

> (k- 1)3".
Let

g= > JJ{1 +a(x —a) + o’(x —a)} [ [{2 - a(x — b) — &’(x — b)}.

IEFq acA beB

Now, by Lemma 2.3 we have

g >2"q— (12" =2+ 1)2'/q.
Consider

g-f= ) 1_[{1+a(x—a)+cxz(x—a)}l_[{2-—a(£—b)—a3(x—b)}.

xeAwB aeA beB

Since, 1n the product l—[{ l +a(x—a)+ a’(x —a)} each factor is at most 3 and one factor
acA

1s 1 and in the product ]—[ {2 —a(x —b) — 0:2(:( — b)} each factor is at most 3 and one
beB

factor is 2 we have

o —f<3'" " 'm+3'""'2n

=(m + 2n)3'"".

Consequently,
£>2"q— (2" ' =2'+ 1)2'Jq — (m +2n)3' " ",

Now, if inequality (3.2) holds, then f> (k — 1)3' as required . Since A and B are arbitrary,
this completes the proof of the theorem. O

For the case n = 0, we have the following sharper result.

Theorem 3.3. Let q = 1(mod 3) be a prime power and k a positive integer. If

q>[1-m?+m+@2m-3)3"""1Jq + (m®>-m)+ (3k-2)3""", (3.3)
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then fo} € ¢(m,0,k).

Proof: Let A be any subset of m vertices of fo). Then there are at least k other

vertices, each of which is adjacent to every vertex of A if and only if

f=> JJ{1+ax-a)+a’(x—a)}>(k-1)3"

IEFq agA
XEA

Let
g=> J[{1+ax-a)+a’(x—a)}.

xeF, aeA
Then, by Lemma 2.4 we have
g>q—[l1-m?>+m+(2m-3)3""H]/q - (m*—m).

Consider
g—f= Z 1_[{ ] +a(x—a)+c¢2(x—a)}
XEA AeA i
i: 3[1'1— l!

since, each factor is at most 3 and one factoris 1.

Therefore,
f>q-—[1 —m2+m+(2m—3)3m_l)]ﬁ —(m*-m)-3"""

Now, if inequality (3.3) holds, then f > (k — 1)3™ as required. As A is arbitrary, this

completes the proof of the theorem. Qa

We now turn our attention to the adjacent properties of the quadruple Paley

(4)

graph G ..

Theorem 3.4. Let q = 1(mod 8) be a prime power and k a positive integer. If

q> [2(291 + 1024k + 85193 )], (3.4)

then G{” e §(2,2,k).

Proof: LetS = {a, b, c, d} be any set of distinct vertices of G};”. Then n(a, b/c, d) > k if

and only if
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f= 3 {[1+B(x—a)+PAx—a) + B(x—a)][1 + P(x — b) + B2(x — b) + B*(x — b)]

:'«:EF,I
XeS

[3 - B(x—c)—P*(x—c) - B’ (x—c)][3 - B(x —d) - B*(x —d) - B*(x — d)]}
> (k — 1)4°.

We can write

g= Y {[1+P(x—a)+p*(x—a)+p’(x—a)][l + B(x—b) + B*(x—b) + B*(x—b)]

XE Fq

[3 - B(x—c) - BA(x—c) - B’ (x=)][3 — B(x ~d) - B*(x —d) B> (x— )]}
Now using an argument similar to that used in the proof of Theorem 3.1 (except here we

do not use (2.2)) we obtain:
1g—9q| <994q)+12(94q) +94q +54(24/q) +162(2/q) + 81(3/q)
=873./q.

Observe that
g— 1< 384,
since g — f achieves its maximum value when ab, cd ¢ E(G) and ac, ad, bc, bd € E(G).

Consequently,
f>9q-873./q —384.

Hence, f> (k — 1)4" when (3.4) holds. As S is arbitrary, this completes the proof. Q

For the class ((m,n,k), we have the following result.

Theorem 3.5. Let g = 1(mod 8) be a prime power and k a positive integer. If
q> (2" ' =2'+1)3™Jq +(m+3n+4k—4)37"4'" " (3.5)
thgn fo] € {(m,nk) forallm,nwithm+n=t

Proof: It clearly suffices to establish the result form + n=1t. Let A and B be disjoint

subsets of V(G EI‘”) with | A | —mand |B | =n. Then, n(A/B) 2 k if and only if

f= 3 TT¢1+Bx—a)+pi(x—a)+ P> (x—a)} [ [{3-B(x—b)—B*(x—b)—B*(x~b)}

H.EFq acA beB
xeAUB

> (k - 14"
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Let
g=3 TJ]{1+Bx-a)+p*(x—a)+p°(x—2a)} [ [{3-P(x—b)—B*(x—b)—p’(x~b)}.

EEF,:I aeA beB

Now, by Lemma 2.5, we have

g>3"q— (12" =2'+ 1)3‘,/5.

Consider _
g-f= 3 TJ{1+B(x-a)+pi(x—a)+P’(x-a)} [ [{3-B(x-b)-B*(x-b)-PB’(x-b)}.

Since, in the product H{ 1 +pB(x—a)+ Bz(x —a) + [33()( — a)} each factor 1s at most 4
acA

and one factor is 1 and in the product H{ 3 —-pB(x->b)— Bz(x — b) — B°(x — b)} each

beB

factor is at most 4 and one factor is 3 we have
g—f£4“]m+4t"3n
= (m + 3n)4' " . ‘
Consequently,
f>3"q— (2" ' =2'+ 1)3'\/Jq —(m +3n)4' "
Now, if inequality (3.5) holds, then f> (k — 1)4' as required. Since A and B are arbitrary,

this completes the proof of the theorem. a

For the case n = 0, we have the following result.

Theorem 3.6. Let g = 1(mod 8) be a prime power and k a positive integer. If

g>[1+@m=-4)4"""1q +@k-3)4""", (3.6)

then G}’ e ¢(m,0.k).

Proof: Let A be any subset of m vertices of fo}., Then there are at least k other

vertices, each of which is adjacent to every vertex of A if and only if

f=> JT{1+B(x—-a)+pi(x—a)+p(x—a)}>(k-1)4"

:»:EFq asA
XEA

Now using the method of proof of Theorem 3.3 together with Lemma 2.6, we

17



get f> (k — 1)4™ when (3.6) holds. Hence, the result. 0
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