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Abstract

The guestion, posed i Craneley and Jons<om (210 whether the Ste cxcbnonee (o
crov i phies thee anresrrictod excehianee propercey for any modales, = =0l opon Lot
note we obtamn the cquivalence of the Hmte cxchanee property and tive unrestrn ted exe-
change properey for a class of modules. The result includes duo modules, modules whose
principal right ideals of their endomorphism rings are two-sided. modules whose endo-
morphism rings are semiprime, modules whose idempotent endomorphisins are central.

and non-singnlar square free modules (and henee non-singular quasi-continuous nmodnles

by 4.

1 Introduction

Given a cardinal R, an R-module Af i3 said to have the R-exchange property if for any module

X and decompositions X = A &Y = DNV, where M ~ M and [I] <= N, there exist

“Supported by The Thailand Research Fund
'Supported by The Royal Colden Jubilee Project

66



2 S. DHOMPONGSA, 5. PLUBTIENG and H. TANSEE

submodules N/ C N, such that X = A § (D¢ V). Clearly, by the modular law, N/ C® N,
for each i € I. A module A has the exrchange property if it has the R-exchange property
for every cardinal ¥. A module M has the finite erchange property if it has the N-exchange
property for every finite cardinal R. It is known that the finite exchange property and the
2-exchange property are equivalent (ct. [3, Lemima 2.5)). For a finitely generated module,
the exchange property is the same as the tinite exchange property. Injective modules [12],
quasi-injective modules [}, pure-injective modules [15], continuous modules [7], projective
modules over perfect rings ([5], [13]). projective modules over a certain Boolean ring {6] and
projective modules over von Neumann regular rings [11] have the exchange property. It is
not known whether the exchange property and the fnite exchange property are equivalent
for arbitrary modules. Thesy are equivalent for indecomposuble modules | 2], modules having
decompositions i,z 4 M, where each M, has a local endomorphism ring {135}, and quasi-
continuous modules (10, Theorem 3.2] The case of none-singular quasi-continuous modules
had been shown carlier by Mohamed and NMaller (90 Theorem 610 In [10]0 40 s noted that
discrete medules have the exchange property and, for guasi-diserete owedales, the hnite

exchange property tnplies the exchange property,

In this note we extend the result roonelade modules such os due odnles, mosdles
whose principal right ideals of thoir endomorphism rines are twe o siededs modules whose
endomorphism nings are semiprime, modules whose idempatent endomorphisims are central
(and hence distributive modules sinee every wempotent endomaorphisony of o distributive
module is central by (14, Proposition 23] and modales whose encdomorphisin rings are
reduced by [3, page 10]). and non-singular square free modules. For convenicnce. we let A
ve the class of all these mocules. A module M is said to be a duo module if s(N) C NV for
any endomorphism s of Af and all submodules N of Af. Finallv, M s ealled square free if
it does not contain a nonzero square, that is, there are no nonzero submodules X and Y

with X' >~ Y= Our main result is proved that

For M € A, the finite exchange property and the exchange property are equivalent.

By |8, Theorem 2.37], every quasi-continuons module is a direct sum of a quasi-injective
module and a square free module, and the finite exchange property of modules whose idem-

potent endomorphisms are central implies the countable exchange property [14, Theorem

1.1]. Thus our result covers non-singular quasi-continuous modules [9], and modules whose
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THE EXCHANGE PROPERTY OF MODULES 3

idempotent endomorphisms are central [14]. The proof we provided here is not only a

simpler one but it may be applied to wider classes of modules.

2 The Results

Throughout this paper we consider associative rings with identity and unitary right modules.
Given two modules U and V', a family (fi)ier of homomorphisms from U into V is called
summable if for each ©v € U, fi(v) = 0 for almost all = € I. Thus Xf, is a well-defined
homomorphism from 7 into V. e write Il%i to denote the canonical projection I1{

UV — V formodules U and V. f X &2 = X @)Y, &Y, and Z, = II:}(')T_,J, then
X®Z=X3Y & Zs. This can be verified by showing that I[';gi""ﬂzz L Za —— Yy s an
isomorphism, and the assertion follows from [1, Proposition 5.5]. We verify this fact as
follow. If ys 2 ¥5, then yo = o+ + 2o tor some r € N and zo € Zo. e, & = —r = {0 = 4y, =
A @Y 1o and consequently Il;!\.‘_"j'}'l |7, (22) = 3. Thus, I[‘}\-;‘:')'l |z, 15 onto. To prove that
[l';(-'z'i*Y‘LZQ is 1-1, we let 11.}\'2»2-3'1 |z,052) = 0. \Write 5 = o+ yp for sotwe 70 Ny € YL aud
yo =1z + Zn for some v € X and y2 € Y5 Now yo - &' = & + 1y unplies 12 = 0 and henee

S = 0 as desired.

Lemma 1. [195. Proposition 3.) The following are equivalent for « module M

(1) M has the Weerchange property:

(2) Forany Il < R and for cach sunmunable family (fi)yz; in & = Endpi M) with 2 f, = 1.

there erist orthogonal idempotents e, € Sf, such that Se, = 1.
The following is a key lemrma of this paper.

Lemma 2. Let A huave the finite crchange property. 1. fa. fa be eleinents i 5 =
Endgp{M) with ¢ an idempotent. fo + f4 = 1 — ey = hy. Then there crist orthogonal
idempotents el ea, hy such that el = ey + hye] © Sey . ex € Sfa. ho € Sfa. and e
ha = 1. Morcover, e] = eler. 0] - 1M — 1M s an womorphem. e} M 2l M o= ).

hy = eshy + hahy. e = (]l — e dea, and ho = (1 — ¢7 Vs,

Froof. We apply the idea in the proof of [8. Proposition 3.22). Put A, = M. A =

@?:1-41‘» frM — A (m—(evm, forn. fam)), g A — M((ay e a3) —— a) + us + a3).
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4 S. DHOMPONGSA, 5. PLUBTIENG and H. TANSEE
Thus gf = 17, and

(2.1) A= fM G kerg.

As M =~ f(M) and M has the finite exchange property, we can write

(2.2) A= fM$C & Cy @ Cy, for some submodules C, of A; (i = 1,2.3).

(2.1) and (2.2) imply H}{;‘rgml@c?@c?, :C1 8 Cy @ C3 — kerg is an isomorphism. Put

¥ = Hig’fglcl@c?@ca. We first find the images in ker g, under the map ¥ of elements in each
C;.

Ci : Let ¢y € €1 and (¢1,0,0) = (eym, fam, farn) + {x,y, z) for some n € Al and
(r.y.z) € kerg. Now z = ¢c; —eym, y = —fom, z = ~ fym. together with £ +y + = = 0

mply ¢y = m. Thus
cy - i
(2.3) (c1,0,0} — (hycy, — facy, — fzar) (e € Ch).

Ca @ Let ¢o € Cp and put (0.¢2.0) = (eym. farmm, fam) + (r.y. 2) for some m & AL and

(r.y.z) € kerg. Again = = —eym, vy = ¢ — forn., 2 = — [y, and o 4 ¥+ 2 = O imply

co = m. Thus
(2.4) (0,c2,0) 2 (—erea.ca — fara, = fyea) (o € Ca.
Cls @ As for Ca we have
o ‘I’ v
(2.5} (0,0,¢3) — (—eica, = faez. ¢y — facz)  (cz € ().

From (2.3), (2.-1) and {2.5). we have

. w
(2.6) (cr,ca.c3) — (hiey —eq(ea -+ c3)oco = foley F o +ca)ea — faler + o + ¢y}

We observe the following.

Foreachm e A, (hym. — fom. — fam) € ker g, then there must be a unique (¢;, ca. cy) &

Cy & Ca b C3 such that Y{cy, oz, c3) = (hym, — fam, —fizm). Thus . by (2.6), ey — &1 (0o +

¢3) = hym. Therefore hym = hyey, e, hymn € hyCy and hence

(27) hli\f :h;CL_
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on

Put ] = etM Ny, and let

={cl € Cy:W(c), eo.c3) = (e, — fohicf, — fahief) for some ¢, € ), 1 = 2.3},

We claim that C; = C;1 & C{ : If ¢f € C{NCY, then V(Y. co,c3) = (0,0.0) for some
(ca.c3) € Ca® (3, and ¢f = 0 as W is 1-1. That is the sum C}] + C7 is direct. Next let
cy € Cy. By (2.3), we have

W{c1,0,0)= (hic1, — fahic1, — fahrc1) + (O, — faeyc1, — faerc1)

= W(cY,ca,c3) + (e}, —ca, —c3)

for some ¢},¢f € Cy1 and ¢; € C; for i = 2,3. ¢ € C{ by the definition of CY. Indecd,
by (2.6), hici = hic] — e1{ca + ca) which implies hici = hic] and thus ¥(cl, 2, c3) =

(hicy, — fohic, — fshic)). For ¢}, we conclude, by (2.6}, that hi¢| + ey(cz +¢3) = 0, L.

¢y € C1. Since ¥ is 1-1 we have ¢; = ¢| + ¢f. and hence we conclude that € = C ¢ O as

claimed.

Put C; = (C7). Thus, by (2.3), C = {(0, fac, facl) + &) € 1} © Ao i Ay If
U(c1,0,0) = (0,¢c2,¢3) for some ¢ & C], co € Ca, and ¢z € (3. then (U, cp.05) € kerg,
and W(c},0,0) = (0,¢c2.03) = (0, co.ca). Therefore ] = ¢o = ¢3 = 0. This shows that
Cy O (Ca D Ca) = 0.

From the remark preceding Lemma 1 applying to A = fA/ ST kerg and A = f3M 0 %

T

CY @ Oy v Oy we obtain

A= M B a0 B0y ),
Here we let X' = fAL Z =kerg, ¥1 = /& (22 Cyoand Yo = ¢,

Write A = fAL & C) @ D, where D = Cp 3. (5 (g

We show now that
(2.8) e M= Cil = \f.

To prove this, let m € Af. By (2.7). hym = hyey for some ¢ € €. Write ¢, = o) + .

. ! - e
for some ¢} € ] and ¢f € C. Now ¢} +¢| = ¢| = ¢1c1 + hyey. Thus Aym = hjey =
(¢l —erc1) +cf € ey M + 7. and hence M = e M + kM C e M + CV. Aser My =0
is obvious. the sum e M + CY s direct and this proves (2.8).

From 4 = fM @ CY 2D, CYC A DC A3 A3 we can find (see the proof. for
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example, of [3, Lemma 2.5]) direct summands C5 C® Az and C4 ¥ Az such that

(2.9) A= fMaCloClaCy.
By (2.8) we have

A= (eyM @ By & B3) ® (CY & Cy @ CY)(2:10)

for some direct summands B, By such that A; = Bo & CF, As = By @ CF. (2.9) and

. CII‘@C!I@C!’
(2.10) imply I\ robea s lrm = fM
[[Crecyacy

Ell\ff@BQ@BalfM and p™' . e M @® By @ By — fM, the inverse of p.

+ ey M & By @ B3 is an isomorphism. Put p =

Let p) : el M B Cif —rerM, poi Bo® C’g — 39 and ps @ B3 C’é’

» 33 be the

canonical projections. Finally, define
el =op 'prer, ex—gp 'pafa, ha=gp”'pafs

Thus, as in the proof of Proposition 3.22 ({2)=>(3)) in (3], {e].e2, hat is o family ol
orthogonal idempotents such that e} 4+ es -+ o = 1. It is seen that, e] € Sej.ex € 5fz, and
hy € Sf;. For each m € M, let p~Yeym) = f(n.m,)( = (€1nm.fgu,,“fyjnm)) for o nnigue

R € M. Thus e(m) = gp~*prer(m) = gf (nm) = 1y and

(elm.U. 0) = {er1mm, fﬂnnp f3nu]) -+ (C,{\ C‘g-. C’:)

for some ¢ € € (i = 1.2.3). From (2.8} we have ¢ = 0. e1{rnm,) = #plod and so el =

e1{nm) + hi{nm) = ex(m) + hiel{m). Consequently e} = e, + hyej and e16] = ¢;. Dince
e] € Sey, it is clear that eJe; = e]. Also the mapping eym —— eym+h1m,, 1s an isomorphisim
from e} M onto e} AL Now, if hym = ej(m’) = e {m’) + hyej (') for some m_ ' € M, then
exm’ = 0 and ej(m’) = eje;(mn’) = 0. Therefore the sum ejAf + h M (= M) is direct.
Finally, from elh; = ejerh; = 0. and e] + e2 + hy = 1. we see that hy = ealy + hiatey
Also, writing 1 = (ey + hye]) + (hy — hie]) = ¢] + e2 + hio we obtain A (1 — &) = #2 + ho.
Consequently, ex = h {1 — e])es and he = /i (1 — e])ha.

-

Corollary 3. Under condition in Lemma 2 f. in addition, M £ A then e] = ¢\,

Proof. We modifv the proof of Lemma 2.

(Case : Al is a duo module or every principal right ideal of 5 is two-sided) If M s

duo. then e]A = efe; M C e M. Thus hie] = 0 and therefore ¢] = e + hye} = #). If S
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THE EXCHANGE PROPERTY OF MODULES 7

has above assumption, then 1.5 i1s a left ideal. Thus eje; € 15 and eJe; M C e M and the

proof can be continued as before.
{Cdse . Every idempotent element in S is central) It is clear.

{Case : M is a non-singular square free module) By [8, Lemma 3.4), ker(eje; — eje})
is essential in Af. Since Af is non-singular, eje; — e1e] = 0, and consequently, e] = eje; =

e1€] = e; as desired.

(Case : § is semiprime) Since (h1e])? = 0, we conclude that hje] = 0 because S is

semiprime. O

Theorem 4. For M € A, the finite exchange property and the exchange property are

equivalent.

Proof. In the course of the proof we shall apply repeatedly the following fact: If
{a.}ea 15 a summable family of orthogonal idempotents in S = Endgp(A), and if o is
anothor idempotent in 5 which is orthogonal to Laa;, then o and «, are orthogonal for ail
i & A. To prove this we first consider aomn for m & Af and see that T ayam € hya, Af. From
(Zao)a = 0 we have a,am = 0 for all 1 € A, Secondly. we ohserve that o, = (Zaa,)a,,
for cach ig € A. Thus aa;, = a(Zpaa,)a,, = 0. and the assertion = proved. Anothor fact
that we often need in the upcoming argument is that Laq, is also an idemporent whenever

{a; : 1 € A} is a summable family of orthogonal idempotents in 5.

Now to apply Lemima 1, we are given a summable family { f,},.; of elements in S with
Zfi = 1. Assume [ is a well ordered set of ordinals: 7 = {0.1,2,....w,w + 1,...}. We may
enlarge [ so that it does not contain its supremum. Thus for each m € M. we can find
an ig € I such that fy(m) = 0 for iy < k. For each i < j in I, put F} = Zicxe,; fx and
Ff o= Yyeife. Foreach i € TN let J, = {j €1 : 7 < 1} and " (if exists) be the smallest

limit ordinal in / with it > 4.

We are going to construct a family of idempotents {e;, E;+, H; : 7 € I} in S such

that e; € S5 f;, H, € SF;Jr, E+ € SFZ for cach i € I, and

(3.1) For each ¢ € I, the idempotents Hy, E,4, and e; (5 € J;) are orthogonal and

H;-FE,# +EJ‘(3_? =1.

When it in I does not exist, put £,+ = 0 and i = Foo,

z - 1
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Step 1. Apply Lemma 1 for ® = 2 to the endomorphisms Fg§ and FS® to obtain
orthogonal idemp_otents Hy, E, such that Hpy € SFy, £, € SFZ and Ho + £, = 1. That
is, (3.1) holds for ¢ = 0. Write Hpy = spf} for some sg € S, and put fon = Hpsofo and
fo2 = HosoFY'. Apply Corollary 3 to the endomorphisms E,,, for, foz to obtain orthogonal
idempotents eq, H; such that eqg € Sfo1 € Sfo. H1 € Sfgo € SEY, and eg + H) + E, = 1.
Thus (3.1) holds for i = 1. Next let a1 = ep+ £, H) = s, F} for some s1 € S, fii = His1 fi.
and fi2 = His1Fy. Note that a; is an idempotent and fi1; + fiz = H1 = 1 — ay. Apply
Corollary 3 to the endomorphisms «y, f11, fin and obtain orthogonal idempotents e, Ho
such that ey € Sfi1 € Sfi, He € Sfi2 C SFY and oy + e; + Hyp = 1. Thus, from above
observation, (3.1) holds for i« = 2. Suppose for some ¢ € J, there are idempotents such
that (3.1) holds. Let «; = E, + £,¢e,, H, = s;F¥ for some s; € 5, fi = H;s,f; and
fir = His B, Clearly, «; is an idempotent. Apply Corollary 3 to «y, fir, fio and obtain
orthogonal idempotents e;, H;y1 such that e; € Sf;; C Sf;, Hiy1 € Sfin € SFF,| and
o, +e; + Hiy1 = 1. We now have idempotents ¢, (7 € .J, U 1) and H;4q such that (3.1)
holds for ¢ + 1. By induction we obtain ilempotents . e,, H, (1 € J,} such that (3.1}

holds for all ¢ € /.. We show now that
(3.2) Lo+ Sr e, =1

Let m € M. By summability of (f,);e; we can find some g € J. such that fi.(m) = 0 for
all ig € k < w. Thus H;y{m) = 0 and e, {m) = 0 for all ip < k < w. By (3.1) for { = 14 we

have m = E,(m) + £ _e;(m), proving (3.2),

From FE, € SF5°, write £, = . F° = Bt F> + E t,F5 for some t, € 5. Observe
that £ _e; is an idempotent. Apply Corollary 3 to endomorphisms Z;_e;, Ewtqu”, Bt F5S
and obtain orthogonal idempotents H,, and En, such that H, ¢ SF>. E», € SE, and
Yy.e; + Ho 4+ Fo, = 1. That is (3.1) holds for i = w.

Step 2. Suppose for some i € [ orthogonal idempotents e; (§ < i), H; and E+
in § have been constructed so that e, € Sf, (7 < 1), H, € SF’I‘+, E+ € SFT. and
Yge;+ Hi+ Eip = 1 Put a = E+ + ey, Ho= s;Fi‘+ for some s, € 5, fiy = s, fu
and fi» = H,S,-Ff:l. From Step 1, it is seen that we can consider the case of being a
non-limit ordinal or a limit ordinal of ¢ simultancously (sce for example the case when

t = w). Apply Corollary 3 to ay, fi1, fiz and obtain orthogonal idempotents e;, H,,; such

thate; € Sfii C Sfi.Hiyy € Sfin C SFI‘:I and a;+e,+H;1y = 1. We now have idempotents
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THE EXCHANGE PROPERTY OF MODULES 9

e; (7 € JiuUi),Hiyy and E;+ such that (3.1) holds. By induction we conclude that
idempotents {e;, E,;+, H; : i € I} satisfying (3.1) have been constructed. We show that
Yre, = 1. Let m e M. By the choice of I, we take an ig € I such that fi{m) = 0 for ip < k.
By (3.1) for i = ig we have, as before, m = Hi(m) + E;+ (m)+ X ,e;{m) = 0+0+ 5 e;(m),

completing the proof of Theorem. [

Remark. As we can see in the proof of the main Theorem, we do not use all what we

state in Lemma 2. However, we put them there in case it might help to apply them to a

wider class of modules.
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Abstract

Several properties of the endomorphism ring of a semi-projective module
are obtained from the knowledge on Af, and vice versa. As for examples, we
show: (1) The endomorphism ring of a semi-projective module is regular if
and only if the image of every endomorphism is a direct summand. (2) The
kernel of every endomorphism of a semi-projective module is a direct summand
if and only if the endomorphism ring S is a PP-ring and Ker F{s) D Kers for
all ¥ € Homg(sS,8) and all s € S. (3) If the endomorphism ring of a semi-
projective module is principally injective (mininjective), then the module itself
is quasi-principally injective (respectively, quasi-mininjective). The converse
is also considered. Finally, we investigate when the principal right ideals of

the endomorphism ring of a semi-projective module are both projective and
injective.
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ON THE ENDOMORPHISM RING OF A SEMI-PROJECTIVE MODULES [2]

1 Introduction

Let K be a ring. A right R-module M is called principally injective if every R-
homomorphism from a principal right ideal of R into M can be extended to H.
This notion was introduced by Camillo for a commutative ring (1989). In 1995,
Nicholson and Yousif [7] studied intensively the structure of principally injective rings
and gave some applications. Since then, they continued to study rings with some
other kinds of injectivity, namely, mininjective rings [8] and simple-injective rings
[9]. Recently, Nicholson, Park, and Yousif [10] extended the notion of principally
injective rings to the one for modules. In 1999 [11], Sanh and others introduced a
quasi-principally injective module, an idea parallel to the notion of a principally quasi-
injective module given in [10]. Dually, a right R-module N is called A{-principally
projective if every R-homomorphism from N to an AM-cyclic submodule of M can
be lifted to an R-homomorphism from N to Af. Motivated by these and following

Wisbauer [14] we consider quasi-principally (or semi-) projective modules, especially,
their endomorphism rings.

Throughout this paper R will be an associative ring with unity and all modules
are unitary. IFor a module M over a ring R we write Mg (rAM) to indicate that Af is
a right (left) R-module. In the following we consider the ring § = Endg(Ag) of all
R-endomorphisms on a module Alg. A submodule NV of Af is said to be an M -cyclic
submodule of Al if it is the image of some element of S. By the notation N C%#AS
(N <« M) we mean that N is a direct summand (superfluous submodule) of Af. We
denote the Jacobson radical and the singular submodule of a niodule Af by J{A[)}

and Z (M), respectively. All modules considered here are right modules, except state
otherwise.

2 Principal Projectivity

Definition 2.1 Let Af and N be modules. A module N is called AM-principally
projective if for any Af-cyclic submodule s(Af) of Af, any R-homomorphism ¢ from
N to s(A) can be factored through to a homomorphism from N to A and s.

Lemma 2.2 Let M and N be modules. Then N s M-principally projective if and
only if for each s € S, Homp(N, s{(M)) = sHomg (N, Af).

Example 2.3 (1) Z/4nZ is Z-principally projective but not Z-projective.
(2) For a module Af which is A/-principally projective (later called semi-projective)

and s € S, if Kers C®M, then s(M) is M-principally projective. (See Proposition
3.1).

(3) If K =~ N and N is M-principally projective, then K is M -principally pro-
jective.
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(4) If M ~ M’ and N is M-principally projective, then N is M’-principally
projective.

Clearly, every K-cyclic submodule of K is an M-cyclic submodule of M for every
M-cyclic submodule K of M. Thus we have the following

Proposition 2.4 N is M-principally projective if and only if N is K -principally pro-
jective for every M -cyclic submodule K of M. In particular, if K is a direct summand
of M and N is M -principally projective, then N is both K -principally projective and
M /K -principally projective.

For a direct sum we have

Proposition 2.5 €, N; is M -principally projective if and only if N; is M -principally
projective for all i.

Corollary 2.6 If N is M-principally projective, then so is every direct summand.

Lemma 2.7 Let K be an M-cyclic submodule of M .If K is M -principally projec-
tive,then K ~ D for some direct summand D of M.

Proof. Let K = s(M) where s € S. Then s(M) is M-principally projective, so that s

splits. Hence M = Ker s® D for some submodule D of M. Therefore D ~ M /Ker s =~
s(M)=K. O

In general, we can not have K be a direct summand as the following example
shows.

Example 2.8 nZ is a Z-cyclic submodule of Z which is Z-principally projective and
nZ ~ Z C®Z. But nZ is not a direct summand of Z if n > 1.

Proposition 2.9 Let M and N be R-modules. Then M is N-injective and every
submodule of N is M -principally projective if and only if N is M -principally projective
and every M -cyclic submodule of M s N -injective.

Proof. (<) Assume that N is M-principally projective and every M-cyclic submodule
of M is N-injective. Let N’ be a submodule of N, s € S, and f : N' — s(M) a
homomorphism . Since s(M) is N-injective, there exists a homomorphism g : N —
s(M) such that g¢ = f where ¢ : N’ — N is the inclusion mapping. Also, being M-
principally projective of NV, there exists a homomorphism h : N — M with sh = g.
Now he : N' — M and sht = g¢ = f. Hence N’ is M-principally projective.
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(=>) Assume that M is N-injective and every submodule of N is M-principally
projective. Let s € S and let f : N — s(M) be a homomorphism from a submodule
N' of N to s(M). By assumption, there exists a homomorphism h : N' — M such
that sh'= f. Since M is N-injective, there exists a homomorphism & : N — M which
is an extension of h to N. Set a = sk. Then a: N — s(M) and it is an extension of
f to N. Hence s{M) is N-injective. 0

Corollary 2.10 Let M be injective. Then every submodule of M -principally projec-

tive module is M -principally projective if and only if every M -cyclic submodule of M
18 tnjective.

Proof. This follows from the fact that the module Rg is projective and a module is
R-injective if and only if it is N-injective for all modules N. O

Corollary 2.11 If R is injective, then R is regular if and only if every submodule of
R-principally projective module is R-principally projective.

Definition 2.12 A module M is called semi- projective if it is M-principally projec-
tive.

In general, we have

projective == quasi-projective == semi- projective == direct-projective.

Recall that an R-module M is direct-projective if given any P C®M, every M —
P — 0 splits. Direct-injective modules are defined dually. A ring R is (von Neumann)
regular if @ € aRa for each a € R.

Remark 2.13 (1) Any direct summand of a semi-projective module is again semi-
projective. This follows from Proposition 2.4.

(2) A submodule N of M is called a fully invariant submodule of M if sS(N)C N
for every s € S.

If M is quasi-projective, K C M is a fully invariant submodule, then M/K is
semi-projective.

(3) It is easy to see that a module is direct projective if and only if it satisfies
the property (D) where

(D2): f M/A ~ B,and B is a direct summand of M, then A is a direct summand of
M.

It is well-known that (D) implies

82



S. CHOTCHAISTHIT, S. DHOMPONGSA, H. TANSEE, AND S. WONGWAI (5]

(D3): If A and B are direct summands of A with A+ B = M, then AN B is a direct
summand of M. '

Thus, every semi-projective module satisfies the property (D-)} and hence (Dj3).

Lemma 2.14 Let M be an R-module. Then the following conditions are equivalent:

(1) M is semi- projective.

(2) (14, p. 260] For each s € S, S = Hompg(M, s(M)).

(3) For each s andt in S, if s(M) C t(M), then sS C tS.

(4) IIzc:ar e}ach sandtin S, {u€ S :tu(M) Cts(M)} =sS+{veS:vM)C
ert}.

Condition (2) in Lemma 2.14 is quite useful. As an example we can easily see
that, for every semi-projective module M, Homg(M, s(M)) is simple as a right S-
module for every s € S with s(M) simple (see Lemma 4.3). However, to what follows,
we will employ condition (3) throughout the study.

3 The endomorphism ring and its Jacobson radical

Proposition 3.1 Let M be a semi-projective module and s € S. Thus Kers is a
direct summand of M if and only if s(M) is M -principally projective.

Proof. Assume that Ker s is a direct summand of M. Then M/Ker s is isomorphic
to a direct summand of M. Hence M/Ker s is M-principally projective. Conversely,
let g : M/Kers — M be a homomorphism, p : M — M /Ker s the natural projection,
and i the identity mapping on M /Kers. Since M/Ker s is M-principally projective,
there exists a hommomorphism g : M/Ker s — M such that pg = i. Then Kers = Kerp
is a direct summand of M. 0

Proposition 3.2 Let M be a semi-projective module and s,t € S.

(1) If s(M) embeds into t(M), then sS can be embedded into tS.
(2) Ift(M) is an image of s(M), then tS is an image of sS.
(3) If s(M) ~ t(M), then s§ ~ tS.
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Proof. (1) Let f : s(M) — t(M) be a monomorphism. Since M is semi-projective,
there exists a homomorphism g € § such that fs = t¢g. Define ¢ : s§ — tS by

su +— tgu for all u € S. Clearly, o is a well-defined homomorphism. If tgu = 0, then
su = 0, since f is monic. Hence o is a monomorphism.

(2) Let f, ¢ and o be as above, only this time, f is epic. Since M is semi-
projective, if th € t§, there exists u € S such that th = tgu. Hence o is epic.

(3) Follows from the proofs of {1} and (2). O

Write

V={seS:s(M)< M}, and O ={se€S:(1+1s)(M)=Mforallte S}.
It is known that V is an ideal of S [5]. Note also that V C ¢ and
l+s)(M)=M = s(M)C (1+s)s(M).

It is well-known that, for a quasi-discrete module M, M is discrete if and only if S/V
is regular and J(S) = V [5, Theorem 5.4]. We now investigate when J(5) = V.

Recall that an R-module is called n-projective if each of its submodules lies above
a direct summand [14, 41.18]. A ring R is called semiregular if R/J(R) is regular and
idempotents can be lifted modulo J(R). Equivalently, R is semiregular if and only if
for each element a € R, there exists € = e € aR such that (1 — e)a € J(R).

A module is hollow if each of its proper submodule is superfluous.

Proposition 3.3 Let M be semi-projective.

(1) J(S)= 9.
(2) If S is local, then J(S)={s€ S :s(M) # M}.
(3) If S/V is regular, then J(S) = V.

(4) If S/J(S) is regular (e.g. S is semilocal or S is semiregular), then S/V is
regular if and only if J(S) = V.

(5) If Ker s << M where s € S, then any epitmorphism t : Mg — s(M) can be lifted
to an epimorphism in S.

(6) If M is hollow, then S is a local ring and J(S5) = V.
(7) For s € S, if M 1is hollow and s is right invertible, then s is invertible.

(8) If M is finitely generated, then J(S) = V if and only if J(S}(M) = V(M).
Here J(S)(M) =3 ,cy(s)5(M) and V(M) = 3, .o s(M).
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(9) M is hollow if and only if S is local and M is w-projective.
(10) If M is w-projective, then M is hollow if and only if S is local.
(11) If M s hollow, then Z(sS) C J(S).

Proof. (1) For s € J(S)and t € S, (1 +ts)g = 1 for some g € S. Thus M D
(1+ts)(M) D (1+ts)g(M) = 1(M) = M, and hence J(S) C ¢. On the other
hand, if (1 + ts)(M) = M, then § = (1 + ts)S which implies 1 = (1 + ¢s)g for some
g. Since this is true for all £ € S, we have s € J(S5).

(2) Since S is local, J(S) = {s € § : sS # S} (see [1, 15.158]). But for a
semi-projective module,

sS#£ S s(M)# M,
by Lemma 2.14(3). Thus the assertion follows.

(3) If s € J(S), then s(1 — as) = s — sas € V for some a € S. Thus s € V since
1 — as has a right inverse. The other inclusion is obvious by (1).

(4) If R/V is regular, then J(S) = V by (3). The other direction is obvious.

(5) Since M is semi-projective, there exists h € § such that sh = t. Hence
h(M) + Kers = M. Since Kers < M, h(M) = M.

(6) Since M is direct projective, S is local provided that M is hollow [14, 41.19].
Now J(S) = V is clear.

(7) Follows from (6) and (2).

(8) («=) s € J(S) implies s(M) C V(M). Since M is finitely generated, there
exist £;,...,tn € V such that s(M) C H4{(M) + ... +t,(M) < M. Thus s € V and
therefore J(S) C V. Now J(S) = V is obvious.

(9) (=) Follows from (6).

(<) Let U,V C M besuch that U +V = M. As M is w-projective, we can choose
s € § so that s(M) C U and (1 — s)(M) C V. Note that either s or 1 — s belong to
J(8). If s € J(S), then M = (1 — s)M C V. Otherwise, M = U.

(10) This is a direct consequence of (9).

(11) If @ € Z(sS) and t € S\0, then there exists s € S such that st # 0
but sta = 0. Thus s(1 + ta)} = s and s(1 + ta)(M) = s(M). Since Ker (s) # M,
(1 +ta}(M) = M. That is a € { = J(S). O

Note that (9) and (10) in Proposition 3.4 also hold for a direct projective module
M. The following Proposition is modified from [1, 17.12].

Proposition 3.4 If J(Mg) <« My, then
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(1) V = Hom(M, J(M)), and
(2) S/V is embedded in Endp(M/J(M)) as a subring.

Proof. (1) If s € V, then s(M) <« M. So s(M) C J(M). If, on the other hand,
s(M) C J(M), then s(M) < M and s € V.

(2) For each s € S, let #(s) be a map from M/J(M) into itself defined by
(8(s))(m + J(M)) = s(m) + J(M). Clearly, 0(s) € Endr(M/J(M)) and 8 : § —
Endgr(M/J(M)) is a ring homomorphism. Observe that 8(s) = 0 if and only if
s(M) c J(M) if and only if s € V. O

Corollary 3.5 If Mp is semi-projective and local and if every R-homomorphism in
Endg(M/J(MR)) lifts to an R-homomorphism in S, then J(S) = V.

Proof. Since M is local, we have J(M) is a maximal submodule of M and J(M) <« M.
So M/J(M)) is simple and Endp(M/J(M)) is a division ring by Schur’s Lemma. By
the mapping s — 68(s) in the proof of Proposition 3.4(2) and by the hypothesis, we
see that S/V is indeed a division (sub)ring of Endg(M/J(M)). Thus S/V is regular
and so J(S) = V by Proposition 3.3(3). O

A module M is said [13] to have the summand intersection property (SIP) if the
intersection of two direct summands is again a direct summand. We call a module M
a duo module if every submodule of M is fully invariant. In [10, Proposition 3.3, it
is shown that every duo and PQ-injective module has the SIP. Here a module M is
said to be principally quasi-injective (PQ-injective) [10] if for each element m € M,
every R-homomorphism mR — M can be extended to an endomorphism in 5.

We prove here the corresponding result for a duo and semi-projective module.
Note that every direct summand of M is of the form s{M) for some s € S.

Proposition 3.6 Every duo and semi-projective module has the SIP.

Proof. Let Mp be a duo and semi-projective module. Let s(M) and t(M) be
summands of M where s, t € §. Write M = s(M)® K and M = t(M) @ L.
Now s(M) = s(t(M)® L) C st{M) + s(L) € (s(M)nt(M)) + (s(M)N L) =
(s(MYNt(M)) @ (s(M)NL) C s(M). Thus s(M)Nt(M) C®M. O

Remark 3.7 In fact, from the proof above, we can show more that K = Kers := K|, :
From M = s(M) & K it follows that s(K) c s(M)N K = 0. Thus K C K,, and
M = s(M) + K,. By the condition (D;) K, is a direct summand of M, thus, by the
condition (Ds), we have s(M) N K, C®M. Write M = (s(M)N K,)® P. s(M) =

s(P) C PN s(M). Therefore P O s(M), and s(M)N K, = 0. Now M = s(M) & K,
and K = K,.
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Recall that .a module M has the property (C2) if any of its submodules which
is isomorphic to a direct summand is itself a direct summand. Every direct-injective
module has the property (Cz). (Cz) implies (C3) where we call a module M to have

the property (Ci), if whenever N and K are direct summands with N N K = 0, then
N & K is also a direct summand.

If we assume that M is quasi-principally injective, then Kers C ®M implies
s(M) Cc®M. (A module My is said to be quasi-principally injective [11] if every
element in Hompg(s(M), M) can be extended to an element in S. A ring R is called
principally injective if the module Rpg is quasi-principally injective.) This is obvious
since every quasi-principally injective module satisfies the property (Cb) (see [11,
Lemma 2.5)).

The module is said {3} to have the summand sum property (SSP) if the sum of
any two summands is again a summand.

Proposition 3.8 Every duo and semi-projective module with the property (C3) has
the SSP.

Proof. The proof follows the idea in [10]. Let Mz be a duo and semi-projective module
with the property (C3). Let s(M) and t(M) be summands of M where s, t € S. By
Proposition 3.6, we can write M = (s(M) Nt(M)) & N for some N C M. Since
M is duo, we see that s(M) + t(M) = s(M) + (M) N ((z(M) N t{M)) ® N)) =
s(M)+ (s(M)Nt(M)+ E(M)NN) =s(M)+ (#H{M)NN)=s(M)® (M) NN).
To apply the property (C3), we shall show that ¢(M) N N is a summand of M. But
this follows from the SIP of M (Proposition 3.6). O

Proposition 3.9 Suppose M is a semi-projective and w-projective module. If S 1is
semiperfect, then M = @}_, H;, where H; is hollow and semi-projective for each i.

Proof. Since S is semiperfect and M is semi-projective, M = H; & ... D H,, where
each Endgr(H;) is local. Note that H; is semi-projective. Each H; is m-projective [14,
41.14], thus by Proposition 3.3(9) we see that H; is hollow. O

Let

DM)={s€ S:s(M)C®M} and K(M)={se€S:Kersc®M}.
We know that D{M) C K(M) when M is semi-projective, and the reverse inclu-
sion holds for a principally quasi-injective module M.

To say that a module M has the property () if

(*): For each s € S, there exists an idempotent @ € S such that s(M) = a(M).
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It is known that S is regular if and only if D(M) = S = K(M) [14, 37.3]. Thus
S is regular if M has the property (C>) and K(M) = S.

Also observe that the property (*) implies D(M) = S.

Theorem 3.10 For a semi-projective module M, S is regqular if and only if M has
the property ().

Proof. (=) Let s € S. Thus 85 = a.S for some idempotent & € S. Hence M has the
property (#).

(<) Let s € S. Thus s(M) = a(M) for some a = a? € S. By semi-projectivity
we have s5 = aS. Since « is an idempotent, aS and hence sS is a direct summand
of 5. : O

A module Mz is called a principal selfgenerator if for each m € M, mR is M-
cyclic. Clearly M = R has this property as does every module in which each principal
submodule is a summand (for example regular modules [15}). Here M is regular if,

for any m € M, m = ma(m) for some a € Homg(M, R). It is worth to include the
following

Theorem 3.11 For a finitely generated module M, M is regular if and only f mR
is projective for all m € M, M is a principal selfgenerator, and D(M) = S.

Proof.(=) It is known [15, Theorem 2.2] that every regular module M is a principal
selfgenerator and for each m € M, mR is projective. Finally, let s € S. Thus
s(M) = s(my)R+ - - + s(my)R for some m,,...,m, € M, and this sum is a direct
summand of M by [15, Theorem 2.2].

(«<=) Let m € M. As M is a principal selfgenerator, mR = s(M) for some s € S.
Now D(M) = S implies mR C®Mpg. Then apply (15, Theorem 2.2]. O

Theorem 3.12 For a semi-projective module M,
D(M) =8 if and only if S is regqular
if and only if M has the property (*)

Proof. From the Remark after Proposition 3.6 we know that D(M) C K(M). Thus
the assertion follows from Theorem 3.10. 4

It follows immediately that for a finitely generated semi-projective module M, if
M is regular, then Endgr(M) is regular.

Corollary 3.13 Let R be direct-injective. Then R is a regular ring if and only if
every principal right ideal of R is projective.
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Corollary 3.14 [4, Corollary 3.2(ii)] If M is quasi-projective, then S is regular if
and only if D(M)} = §.

Theorem 3.15 For a semi-projective module M, if S ts semiregular, then (+') holds,
where (+') is the condition

(+'): For every s € S\J(S), there erists 0 ¥ a? = a € S such that a(M) C s(M)
and (1 — a)s(M) # M.

If, in addition, S s local, then the converse is true.

Proof. Let s € S\J(S). Take a? = a € sS such that (1 — a)s € J(S). Thus a # 0.
Now aS C s§ implies a(A) C s(M). Write o’ = 1 — a. If &’s(M) = M, then
a’sq = 1y for some ¢ € 5. Applying a on both sides, we have a = 0, a contradiction.

The converse follows from Proposition 3.3(2). O

4 Injectivity

We now consider an interplay between Mg and it endomorphism ring S in terms of
injectivity. Let Af be a semi-projective module. Observe that the relation

s(M) —— sS

establishes a bijection between the set of Af-cyclic submodules of A and the set of
principal right ideals of S.

For each s € S, consider the mapping 6 : Homg(s(M), M) — Homg(sS, S)
defined by 8(f) = F, for each f : s(M) — M where FF : s§ — § is defined by
F(st) = fst. It is clear that Ker8(f)(s) = Ker F(s) D Kers. On the other hand, if
F € Homg(sS,S) with Ker F(s) D Kers, we define f{sm) = F(s)(m) for m € M.
We see that f € Homp(s(M), M), and 6(f) = F.

The relation
(4.1) f——F

establishes a bijection between f € Homp(s(M), M) and F € Homg(sS,S) with
Ker F(s) D Ker s in such a way that

(4.2) F(st)= fst forall 5, t €S,

and
f(s(m)) = F(s)(m) forall s€ S and me M.
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Lemma 4.1 If M is semi-projective and s € K(M), then Ker F(s} D Kers.

Proof. Write M = Ker s® K for some submodule K of M. Let t = 1ke: s ©0 associate

to this decomposition. Thus st = 0. If m € Ker s, we have F(s)(m) = F(s)(t(m)) = 0.
Hence Ker s C Ker F(s). 0

Theorem 4.2 Let M be a semi-projective module.

(1) If S is principally injective, then M is quasi-principally injective.

(2) The converse in (1) is true if we assume, in addition, that K(M) = S.

Proof. (1) To show that M is quasi-principally injective we let s € S and f €
Homp(s(M), M). Define F € Homg(sS, S) corresponding to f by (4.2). Extend F
to ¥ € Homg(S, S) and define ¢ : M — M corresponding to ¢ by (4.2). Clearly,

p € S. Ifme M, we have p(s(m)) = ¥ (s)(m) = F(s)(m) = (fs)(m). That is, ¢ is
an extension of f.

(2) If F € Homg(sS, S), then as f € Homg(s(M), M) by (4.2) and Lemma 4.1,
there exists ¢ € S such that p|,an = f. Let ¢ € Homs(S, S) be the one corresponds
to ¢ € S according to (4.2). We can see as above that 1 is an extension of F. a

A module M is called quasi-mininjective if for each s € § with s(M) simple,
every R-homomorphism in Hompg(s(M), M) can be extended to an endomorphism in
S. A ring R is called mininjective if the module Rg is quasi-mininjective.

Lemma 4.3 For a semi-projective module M and s € S, if s(M) is simple, then sS
is simple. The converse is true if, in addition, M is a principal self generator.

Proof. Suppose s(M) is simple. If 0 # stS # sS for some ¢ € S, then st(M) is a
nonzero proper submodule of s(M), a contradiction. On the other hand, suppose M
is a principal selfgenerator and sS is simple. If 0 # s(mR) # s(M), then for some
t € S, st(M) = s(mR) # s(M). This implies 0 # stS # sS, a contradiction. a

Theorem 4.4 Let M be a semi-projective module.

(1) If S is mininjective, then M is quasi-mininjective.

(1) The converse in (1) is also true if we assume, in addition, that M is a principal
selfgenerator and s € K(M) for all s € S with sS simple.

Proof. With the help of Lemma 4.3 and 4.1, the proof follows the same lines as above.
a
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5 PP-endomorphism rings

A ring R is called a right PP-ring if each of its principal right ideal is projective. In
[14, 39.10(4)] it is shown that

If a module Mg is a self-generator or sM is flat, and if S is a right PP-ring,
then K(M) = S.

We consider the result for a semi-projective module.

Theorem 5.1 For a semi-projective module M, K(M) =S if and only if S is a
right PP-ring and Ker F(s) D Ker s for all F € Homg(sS,S) and all s € S.

Proof. (=) The first part is [14, 39.10(1)]. The second part is Lemma 4.1.

(<) By Proposition 3.1, it is enough to show that s(M) is M-principally projec-
tive foralls € S. Let s, t € S and f : s(M) — t(M) be an R-homomorphism. Define
F € Homg(sS, S) as in (4.2). By projectivity of sS we get ¢ € Homg(sS, §) such that
ty = F. That is, t{¢(sq)) = F(sq) for all ¢ € S. We now get a ¢ € Homp(s(M), M)
via (4.2) for 9. For each m € M,

(tp}(s(m)) = (tp(s))(m) = ty(s)(1u(m}) = F(slu){m) = (fs}(m) = f(s(m}).
This shows that tp = f. (.

A module M is said to be (*)-hereditary if every submodule of M is M -principall
projective.

Lemma 5.2 Let M be a semi-projective module. If s, t) and t; are endomorphisms

on M such that t;(M) Nta(M) and Kers are direct summands of M and s(M) =
tl(M) + tg(M), then s € t]_S + tzS.

PTOOf. Write K2 = tl(M) ﬂtz(M), tl(M) = Kl 3%] Kg, tz(M) = K2 D K3. Put
M; = s7Y(K;) (i=1,2,3), and K, = Kers. Thus My N M, N M3 = K, = M; N M;
for i # j. Write M; = M’; ® K,. From the fact that K;N¢;(M)=0for 2 # 7 # j we
have the sum M’ +M';+M'3+ K, is direct. For,if m’; € M';fori =1,2,3and k € K|
such that m/y + m’; + m/3s + k = 0, then, for example, s(m’;) = —s(m'2) — s(m'3) €
KiNty(M) = 0. This implies m’y € M’y N K, = 0. Therefore m'; = m’3s = 0 which
implies m’s + k = 0 as well. Now, as M, N K, =0, we see that m’s = k = 0.

Claim M =M1 & M3 ® M'3® K, : Let m € M. Since s(M) = t;(M) + t2(M),
there exist z € ¢,(M) and y € t2(M) such that s(m) = = + y. Write z = a + b and
y=c+d for some a € K}, d € K3 and b and c are in K,. As t;,(M) C s(M) and by
the definition of M;, we can find m'; € M’; for i = 1 and 3, and h,, ks € M’; such
that s(m'y) = a, s(m'a) =d, s(h1) = b, and s(he) = c. Put m’ = m/y +(hy+ ha) +m'3.
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Thus m' € M'y®@M'a®M’'; and s(m') = s(m'1+hy1)+s(ha+m'3) = (a+b)+(c+d) =
z+y=s(m). But thenm—m' € K,,andsom &€ M & M'> & M’ ® K,. This proves
the claim.

With respect to this decomposition of M, decompose s = ) D 52 D s3 D 0 so that
si(M) = s;(M';) = K;. Since (s1 ® s2)(M) C t,(M) and s3(M) C t2(M), we have by
semi-projectivity of M that s, @ s; € ;.5 and s3 € £3S5. Therefore, s € t; S + t,S5. O

Theorem 5.3 Let M be semi-projective. Consider the following conditions.

(1) M is (x)-hereditary.
(ii) .s(M) is M -injective for all s € S.
(iii) sS is projective and injective for all s € S.
(1) If M is quasi-injective, then (i) and (ii) are equivalent.
(2) If M has both the properties (SIP) and (SSP) (eg. M satisfies conditions in
Proposition 8.8), then (ii) implies (iii).

(3) If M is a principal selfgenerator, then (iii) implies (ii).

Proof. (1) This is Proposition 2.9 with N = M.

(2) From (ii) we have D(M) = K(M) = S, i.e. S is regular. Thus sS is
projective for each s € S. To show sS is injective we let F' € Homg(T, sS) where T’
is a right ideal of S. Put T(M) = 3 . t(M) and define a map f : T(M) — s(M)
by f(t(m)) = F(t)(m) for m € M. Since K(M) = S, if {{(m)} = 0 where t € T and
m € M, then by Lemma 4.1 we have F(t)(m) = 0.

Claim f € Homg(T(M),s(M)) :1f > %, t:(m;) = 0 for some t; € T, and m; € M.
Write 37 t:(M) = a(M) for some a (= a?) € S and a(M) + t,(M) = B(M) for
some 8 (= %) € S. By Lemma 5.2 and by induction we have

BeaS+t.SC Y t;SCT.

=1

Now 0 = S°7_, t:(m) = B(m) for some m € M. Finally, f(530, ti(ms)) = f(B(m)) =
F(B)(m) = 0 as shown above. This completes the proof of the claim.

By injectivity of s(M), we choose an extension ¢ € Hompg(M, s(M)) of f. Since
M is semi-projective, ¢ = sq for some g € §. We define a map ¥ : § — 55 via

P(t) = sqt. ¢ is an extension of F since, if t € T and m € M, then ¥(t)(m) =
(sgt)(m) = f(t(m)) = f(t)(m).

(3) Let f € Homg(NV,s(M)) where N is a submodule of M and s € S. Define
T={te§:t(M)c N} Thus T is a right ideal of S, and by the assumption,
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T(M) = N. Define a map F : T — sS by F(t) = ft. Note that ft(M) C s(M). Thus
ft € sS and so F' € Homg(T, sS5). By (iii), F is left multiplicative, that is, ' = sq- —
for some g € S. Now define ¢ € Hompg(M, s(M)) by ¢(m) = (sq)(m). We verify that
 is an extension of f. For this, let n € N. Take m € N and ¢t € T such that t(m) = n.
Now ¢(n) = ¢(t(m)) = (sqt)(m) = F(t)(m) = f(n). O
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ON V-RINGS AND pV-MODULES*

Jintana Sanwong

Abstract

A right R-module M is called a pV-module if every simple right R-module
is p-M-injective. In this note it is shown that R is a right V-ring if and only if
every cyclic right A-module is a pV-module.

2000 Mathematics Subject Classification. 16D30, 16D50, 16D60, 16D90

1 Introduction

Let M and N be right R-modules. Call M a principally-N -injective (p-N -injective)
module if every R-homomorphism from a cyclic submodule of V to M extends to V.
H M is principally R-injective, we call M a principally injective (p-injective) module.

Following [?], a ring R is a right V-ring if every simple right R-module is injective.
A module M is a V-module or co-semisimple module if every simple right R-module
is M-ipjective (|9]). It is known that R is a right V-ring if and only if every right
R-module is a V-module. Tominaga in [7] call the ring R a right pV-ring if every
simple right R-module is p-injective. Generalize this notion, we study pV-modules
and prove that R is a right V-ring if and only if every cyclic right R-module is a
pV-module.

2 Characterizations of pV-modules

Throughout this paper all rings R are associative with unity, and Mod-R is the
category of unital right R-modules. Following (7], o[M] denotes the full subcategory of
Mod-R whose objects are all R-modules subgenerated by M. For a right R-module M

*Supported by Thailand Research Fund
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with X C M and A C R, the right annihilator of X in Risrg(X) = {r € R | Xr = 0}
and the left annihilator of A in M is €ys(A) = {z € M | zA = 0}. For singletons {r}
and {a}, we abbreviate to rg(x) and €ps(a). The notations N C M and N C™** M
will mean N is a submodule and a maximal submodule of a module M respectively.
As usual we denote the Jacobson radical of M by Rad(M).

Definition 2.1 A module M is called a pV-module if every simple right R-module
is p-M-injective. A ring R is called a right pV-ring if Rp is a pV-module.

Example 2.2 (1). Every V-module is a pV-module.

(2). If every cyclic submodule of M is a direct summand, then M is a pV-module.

In particular, every regular module (see [?}]) is a pV-module. Since there is a regular
module which is not a V-module, not every pV-module is a V-module.

Before we present some characterizations of pV-modules, the following lemma
about principal injectivity is needed.

Lemma 2.3 Let {M;}ic; be an indezed set of p-N -injective modules.

(1) e M; is p-N -injective.

(2) ®ierM; is p-N-injective.

Proof. (1) We prove that I1;c; M; is p-N-injective. Let n € N and @ : nR — Il M;
be an R-homomorphism. Let n; : Il;e;M; — M; be the natural projection. Since
M; is p-N-injective, there exists an R-homomorphism 8; : N — M; with §;1 = 7«
where 2 : nR — N is the inclusion map. Now, let v : N — Il;c.;M; be such that
iy = [; for each i € I. Then myy(nr) = Gi(nr) = Bp(nr) = ma(nr) for all r € R, all
i € I. Therefore v1 = a.

(2) We show that @®;c;M; is p-N-injective. Let n € N, a : nR — @1 M;
an R-homomorphism and + : nR — N be the inclusion map. Since a(n) €
@icrM;, a(n) = (m;)ier where m; = 0 for almost all i. Set F = {i € I / m; # 0}
and K = {(z;) € ®ierM; / z; = 0 for all i ¢ F}. Then F is a finite subset of I
and K is a submodule of ®;c;M;. Thus it follows that a(nR) = a(n)R = (m;)erR
is a submodule of K which is isomorphic to @;cprM;. Let ¥ : a(nR) — K be the
inclusion map and let g : K — @;crM; be the obvious isomorphism. Because M;
is p-N-injective for all i € F and @ierM; = Il;crM;, so by (1) we get ®icrpM; is
p-N-injective. Hence there exists v : N — @;cpM; with 1 = Bi'a. Put @ = 714.
Then & : N — K C @ M; is an R-homhmorphism which extends a. a

Proposition 2.4 The following statements are equivalent for a module M :
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(1) M is a pV-module;
(2) Every semisimple module in o[M] is p-M -injective;
(3) Every simple module in o[M| is p-M -injective;

(4) For any cyclic submodule C of M, any mazximal submodule K of C, there exists
a marimal submodule L of M such that K = LN C.

Proof. (1) = (2) Let S be semisimple in o[M]. Then S = ®;e1S; where S; is
simple for each 7 € I. Since M is a pV-module, each S; is p-M-injective, and thus
S = ®ierS; is p-M-injective by Lemma 77.

(2) = (3) is obvious.

(3) = (1) follows from the fact that every simple module cutside o|M] is p-M-
injective.

(1) = (4) Let C be a cyclic submodule of M, and let K be a maximal submodule
of C. Thus C/K is simple. Since M is a pV-module, there is an h: M — C/K with
h: = 1 where 2 : C — M is the inclusion map and n : C — C/K is the canonical
map. From the fact that M/ker h ~ C/K which is simple we get that L := ker h is
a maximal submodule of M, and K = kern =kerhNC =L nNC.

(4) = (1) Let S be a simple right R-module, C a cyclic submodule of M and
0 # a € Hom(C, S). Then K := ker  is a maximal submodule of C, since C/K ~ §
is simple. Thus by (4), there is a maximal submodule L of M such that K = LNC.
This implies C € L and hence M = C + L. It follows that M/K = C/K & L/K.
Therefore o can be extended to M. O

If M, N are any right R-modules and t € M, write
N ={n € N |rg(t) C rr(n)}.
Then N is a left S-module where S = End(Ng).
For a cyclic right R-module M we have a characterization of M to be pV. At

first we need the following lemma which is motivated by the work of Nicholson and
Yousif in [6].

Lemma 2.5 Let N be a right R-module, and let M = tR be a cyclic right R-module.
Then the following conditions are equivalent:

(1) N is p-M-injective;
(2) For each a € R and « € Hom(taR, N), a(ta) € ;Na;
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(3) For each « € R, £n(rg(ta)) = (Na.

Proof.” (1) => (2) Let a € R and o« € Hom(taR,N). Then there is an R-
homomorphism 3 : M — N such that §|;,,r = a. So a(ta) = B(t)a where 3(t) € N.

(2) => (3) Let @ € R and n € €n(rr(ta)). Then nu = 0 for all u € rgr(ta).
Consider the mapping o : taR — N defined by a(tar) = nr, we see that « is an
R-homomorphism. Thus, by assumption, n = n.1 = a(ta.l) = a(te) € Na. The
other inclusion always holds.

(3) = (1) Let a : taR — N, ta € M be an R-homomorphism. Suppose
a(ta) = n, then rr(ta) C rr(n). So n € €n(rr(n)) C €n(rr(ta)) = «Na by (3), that
is n = ka, k € «N. Thus the mapping 8 : M — N defined by 8(tr) = kr is an
R-homomorphism and S(tar) = B(ta)r = (ka)r = nr = a(te)r = a(taer). 0

We can now characterize cyclic pV-modules.

Proposition 2.6 Let M = tR be a cyclic module. Then the following conditions are
equivalent:

(1) M is a pV-module;
(2) For each K C™* Ry and each a € R,
trixc(ra(ta)) = «(R/K)a.
Proof. (1) == (2) Let K be a maximal right ideal of R and a € R. Then R/K is
simple. Thus by (1), R/K is p-M-injective. So by Lemma ?7 we get

ER/K(TR(ta)) = g(R/K)a.
(2) = (1) Let S be simple. We prove that S is p-M-injective by using Lemma
?7?. Since S ~ R/K for some maximal right ideal K of R, by assumption we have

Lrii(rr(ta)) = (R/K)a for all a € R. Thus R/K is p-M-injective, this infers that
S is also p- M-injective. 0

Proposition 2.7 The following conditions are equivalent for a ring R :

(1) R is a right pV-ring;
(2) Every semisimple right R-module is p-M -injective;

(3) For any principal right ideal P of R, any mazimal right ideal K of P, there
exists a marimal right ideal L of R such that K = L N P;
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(4) For each K C™** Rp and each a € R, €/ (rr(a)) = (R/K)a;
(5) Every factor ring of R is a right pV-ring.

Proof. (1) <= (2) < (3) follow from Proposition ??.

(1) <= (4) Put M = R = 1R in Proposition 77, then (R/K) = {Z €
R/K | rr(1) C rr(z)} = R/K. Thus we get the equivalence of (1) and (4).

(5) = (1) is trivial.

(1) = (5) Assume that R is a right pV-ring. Let I be an ideal of B. For
convenience we set M = R/[ and thus M = tR where rg(t) = I. We prove that M is
a right pV-ring. Let S be simple, m = ta € M for some a € R and o« € Hom(mR, S).
If &« = 0, then it is clear that a(m) = 0 € ,Sa. Now, we consider the case a # 0,
and define § : aR — mR by f(ar) = mr. Thus 3 is an R-homomorphism. Since
R is a right pV-ring, there is § € Hom(R, S) such that § extends af, this gives
d0(1)a = é(a) = afB(a) = a(B(a)) = a(m) # 0. From the fact that rp(t) = [ is a
two-sided ideal, rp(t) C rgr(a(m)). This infers that 0 # a(m) € ,S. Because S is
simple, so §(1) = a(m)b for some b € R. Thus rg(t) C rr(a(m)b) = rg(é(1)) and that
4(1) € .S. Hence a(m) = §(1)a € Sa. Therefore by Lemma 7?7, S is p-M-injective
and thus M = R/! is a right pV-ring as required. 0O

Remark 2.8 The equivalence of {1) and (3) is Theorem 1 in Yue Chi Ming [?].

Recall that a ring R is a right duo (gquasi-duo) ring if every (maximal) right ideal
of R is a left ideal. Thus for a right quasi-duo ring we obtain:

Corollary 2.9 If R is a right quasi-duo right pV-ring, then rg(a) # 0 for alla € R
with aR # R.

Proof. Since R is a right pV-ring, £a/am(rr(a)) = (R/M}a for all M C™** Ry and all
a € R. Suppose there is an a € R with aR # R, but rg(a) = 0. Let K be a maximal
right ideal of R with aR C K C R. Then R/K = fg/k(rr(a)) = (R/K)a. Because
R is right quasi-duo and a € K, so (R/K)a = {K}. This means R/K = {K} which
contradicta to the maximality of K. O

3 V-rings and pV-modules

The ring R is a right V-ring if every simple right R-module is injective, equivalently
every right R-module is a V-module. In this section the characterizations of right
V-rings in terms of injectivity and V-modules will be weakened.
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Lemma 3.1 Let E be p-N -injective for all cyclic right R-modules N. If Hom(S, E) #
0 for all stmple might R-modules S, then E cogenerates every cyclic right R-module.

Proof. Let IV be a cyclic right £-module. We show that E cogenerates V. Let 0 #
n € N. Since nR is cyclic, nR contains a maximal submodule, say L. So by hypothesis
there is 0 # h € Hom(nR/L, E). Let p: nR — nR/L be the canonical map. Then
there is ¢ € Hom(N, F) with ¢|,g = hp since E is p-N-injective. Thus @(n) # 0

and that Rejn(E) = ({kerh | h € Hom(N, E}} = 0. Therefore E cogenerates N as
required. O

If K, I are any right ideals of the ring R, we set
(R/IK)={1€ R/K |zl C K}.
Thus it follows that ;(R/K)={z € R/K | rr(1+ ) C rr(z)} = 14/(R/K) where
1+ 1 e R/I. So we have the following theorem.

Theorem 3.2 For any ming R, the following are equivalent:

(1) R 15 a right V-ring;
(2) Every simple right R-module is p-M -ungective for all myht K-modules M
(3) Every simple right R-module is p-N -injective for all cyclic right R-modules N ;
(4) Every right R-module is a pV-module:
(5) Ewvery cyclic right R-module is a pV-module;
(6) For all K C™** Ry and I C RHpg,
fryrlrrla~1)) = [(R/K)a
forallae R.

Proof. (1) = (2) = (3) = (5) and {2) = (4) == (5) are obvious implications.

(5) = (1) We prove that R is a right V-ring by proving that Rad(/N) = 0 for
all cyclic right R-modules N.

Let {Si|i € I} be a set of representatives of the distinct isomorphism classes of
simple right R-modules. Then S; is p-N-injective for all cyclic right R-modules N.
Thus by Lemma 2.3, E = I1;; S, is p-N-injective for all cyclic right R-modules V.
From the fact that E cogenerates every simple right R-modules we get Hom(S, E) # 0
for all simple right R-modules S. Hence by Lemma 3.1, E cogenerates every cyclic
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right R-module.” So for each cyclic right R-module /V, there is an indexed set A with
N — E“ a monomorphism. This infers that N is cogenerated by the class of simple
modules. Hence Rad(N) = 0 for all cyclic right R-modules V.

(5) == (6) Let ¥ €™ Rg, I C Rg and a € R. Then R/T is cyclic. Thus by
(5), R/I = (1 + )R is a pV-module So by Proposition 77 we get

ER/}\'(?‘R((I + [)) = H.[(JQ/A')(L = [([f/[\')(l..

(6) = (5) Let iV be a cyclic right R-module. Then N ~ R/[ for some [ C Ry,
We prove that /] = (1 + I)R is a pV-module. Let A" be a maximal right ideal of
Hand a € R. Then by (6) we get {g/p(Tr(a+ 1)) = ({(R/K)a= 4+ (R/K}a. Thus
Proposition 77 shows that R//{ is a pV-mcdule. Hence /V is a pV-module as required.

O

Corollary 3.3 The following conditions are equivalent for a mght dvo ring R -

(1) R is a might V-ring:
(2) R is a right pV-ring:

(3) R s a von Neumann reqular ring.

Proof. (1) = (2) is evident. (1) <= (3) is shown in Brown [?].

(2) = (1) Since R is a right pV-ring, by Proposition 77 we get that every factor
ring of R is a right pV-ring. Because 7 is right duo, so every cyclic module is a
pV-module. Thus R is a right V-ring by Theorem 77. .
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Abstract

Let R be a ring. A right R-module M is called a generalized q.f.d
module if every M-singular quotient has finitely generated socle. In this
paper we introduce and characterize this class of modules by means of the
weak injectivity.

1. Introduction

In [8] Kurshan defined a class of q.f.d rings, taat are rings over which every cyclic
right module has finitely generated socle. Let R be a ring. A right R-moc lule
M is called a q.f.d module if every quotient has a finitely generated socle and
generalized q.f.d module if every M-singular quotient has a finitely generated
socle. A ring R is called a right ¢q.f.d mng (resp. a generalized q.f.d ring) if Rp
is a q.f.d module (resp. a generalized q.f.d module). The class of q.f.d modules
was introduced and investigated by Camillo in [4] and some characterisations of
q.f.d rings were given by Al-Huzali, Jain and Lépez-Permouth in [1]. We now
study some properties of generalized gq.f.d modules and rings.

2. Results

Throughout the paper R is an associative ring with identity and Mod-R the
category of unitary right R-modules. Let A be a right R-module. A module N
is said to be Af-generated if there is an epimorphism A 5 N for some index
set I. If I is finite, then NN is called finitely Al -generated. Especially, N is called
M-cyclic if it is isomorphic to Af/L for some submodule L C A. The socle of the
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module M is denoted by Soc(M). For Al € Mod-R we denote by o[M] the full
subcategory of Mod-R whose objects are submodules of M-generated modules
(see [11]).

Let M and N be right R-modules. N is called singular in o[M] or M-singular
if there exists a module L in o[AM] containing an essential submodule K such that
N ~ L/K (see [11]). By definition, every M-singular module belongs to o[A].
For M = Rpg, the notion of being R-singular is identical to the usual definition of
singular right R-module (see [6]). The class of all M-singular modules is closed
under submodules, homomorphic images and direct sums (e.g. [11, 17.3 and

17.4]). Hence every module N € o[M] contains a largest M -singular submodule
which we denote by Zxs (V).

Definition. A right module M is called a generalized q.f.d module if every
M-singular quotient has a finitely generated socle. A ring R is called a right
generalized q.f.d ring if it is a generalized q.f.d module as a right R-module.

At first we need:

Lemmma 1. If0 - A 5 M — B — 0 1s an exact sequence of modules
such that A and B are finite dimensional, then M 1is also finite dimensional and
dim M <dim A + dim B.

Proof. See [8].

Theorem 2. Let R be a ring and M be a right R-module. Then the following
conditions are equivalent:

(1) M is a generalized q.f.d module;
(2) FEvery M -cyclic M -singular module is finite dimensional;
(3) Ewvery finitely M -generated M -singular module is finite dimensional;

(4) For every strictly increasing chain Ay C 4, C ... of submodules of an
M -eyclic M -singular right R-module N, there extsts an integer n such that
Ap C¢ Ay for any k > n;

(5) Every submodule N of an M-cyclic M -singular module contains a finitely
generated submodule T such that N/T has no mazimal submodules.

Proof. We use the same argument as that given in [10].

(1) = (2). Suppose A is a generalized q.f.d module and NV is an M-cyclic
M -singular module. If NV is not finite dimensional, then there is an infinite direct
sum of nonzero submodules I" = &,¢;7; C N. Without loss of generality, we can
assume that each T} is cyclic. Then there exists submodules U; of T which is
maximal in 7; for each 7. Put UV = @®c;U;. Clearly N/U is M-cyclic and M-
singular and its socle contains the infinite direct sum T/U = @;¢;T:/U;, which
is contrary to the hypothesis.

(2) = (3). Let o : M™ — N be an epimorphism and N is M-singular.
We prove by induction on n. If n = 1, then N is M-cyclic and M singular and
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therefore it is finite dimensional by (2). Now assume that the assertion is true

forn -1, and set M™ = M @ M""!, (M) = {¢(m,0,...,0) € Njm € M} and
9 = @|am. Consider the diagram with exact rows:

0o — M = MeMmMr—t Iy  pqmn-l — 0

le };p |1

0 —» (M) — — N/p(M) — 0

where f : M"™"™! — N/@(M) is defined by f(z2,...,zn) = ¢(0,z2,...,%,) +
@(M). It is easy to see that g and f are epimorphisms. Clearly, ¢(M) and
N/p(M) are M-singular. By hypothesis, ¢(M) and N/p(M) are finite dimen-
sional. It follows from Lemma 1 that N is finite dimensional.

(3) = (4) Suppose on the contrary that (4) fails. Let N be an M-cyclic
M -singular module containing a strictly increasing chain of submodules A, C

Az C ... such that A; is not essential in ) A;. Then there exists a subchain
A; C A, C ...such that A;, is not essentialin A;,, for k=1,2,.... Hence for
every k = 1,2,..., we can find a nonzero submodule Uy such that Uy C A;, |

and Uy N A4;, = 0. It follows that the sum ) Uy is direct and hence N is not
finite dimensional.

(4) = (1) If A = @S; is a semisimple submodule of an M-cyclic M-singular
module NV, then by (4) there is an integer n such that S; &S5, & ... & S, C® A4,
inthiscase A =5, ...86 5,.

(2) = (5). Suppose there exists a submodule N of an M-cyclic M-singular
module L such that for every finitely generated submodule T of IV, N/T has a
maximal submodule. Let P, be a maximal submodule of V. For z, € N \ Py,
let P, be a maximal submodule of N containing z;R. For z3 € N\ P, let
P3; C N be a maximal submodule of N containing zo. R + r3Ii. Continuing this
process we obtain a sequence z; = 0,22, Z3,..., of elements of N and a sequence
P, Py, P, ..., of maximal submodules of N such that

iR+ zoR+ ...+ 2 RC P, and x4, € FPi. foreach & > 1.

Put P = N;e v P; and N = N/P. By induction,

N = (ﬂf:;ﬁi) & (ﬁ?ik+1ﬁi>-

Thus 0 C (N2, P;) € (NX,P;) C (N2, P;) C ... is a strictly ascending
chain of direct summands of N and hence N = N/P is not finite dimensional.
Therefore L = L/ P is not finite dimensional. This contradicts to (2) because L
1s M -cyclic and M -singular.

(5) = (1) Let N be an M-cyclic M-singular module. Then by assumption,
Soc(N) contains a finitely generated submodule T such that Soc(N)/T has no
maximal submodule. But Soc(N)/T is a homomorphic image of a semisimple
module, thus it is semisimple and always has maximal submodules if it is not
zero. Hence it must be zero and therefore Soc(N) = T It follows that Soc(NV)
is finitely generated, as desired. a
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Let M = Rpg, we obtain the following result:
Corollary 3. For a ring R the following conditions are equivalent:

(1) R is a generalized right q.f.d ring;
(2) Every cyclic singular right R-module is finite dimensional;
(3) Every finitely generated singular right R-module is finite dimensional;

(4) For every strictly increasing chain Ay C Ay C ... of submodules of a cyclic
stngular right R-module N, there exists an integer n such that Ay C¢ Aiy,
for any k > n;

(5) Every submodule N of a cyclic singular module contains a finitely generated
submodule T' such that N/T has no mazimal submodules.

We now characterize generalized q.f.d modules and rings by means of weak
injectivity. Let A be a right R-module. A module NN is said to be weakly M-
injective if for every homomorphism f : M — E(N) there exists a monomor-
phism ¢ : N — E(N) and a homomorphism f:+ M — N such that f=of
(see [T]). We note that for any module NV € o[M] there exists an M-injective hull
N of N which is 3.5/, p(n, Im(f), the trace of M in the injective hull E(N)
of N. Therefore, a module N € U[A[] is weakly M-injective if and only if for
every homomorphism f : Af — N there exists a monomorphism o : N — N
and a homomorphism f : Af — N such that f = of. If N € O‘[M] is weakly
X-injective for any module X € c[M], then N is M -injective.

Following [3], a right R-module N € o[M] is called weakly injective in o[M]
if for any finitely generated submodule X of N, the M-injective hull of N, there
exists a submodule Y of N which is isomorphic to N such that X C Y. Since
every finitely generated submodule of N is contained in a finitely M -generated
submodule of ﬁ, then every module N € o[M] which is weakly A ™-injective for
all natural number n is weakly injective in o[M]. It is easy to show that for a
finitely generated module A, a module N € o[M] is weakly M ™-injective for all
natural number n if and only if it is weakly injective in o[M].

Theorem 4. For a finitely generated right R-module M with Z, (M) = 0
the following conditions are equivalent:

(1} M is a generalized q.f.d module;

(2) Fvery direct sum of M-injective M -singular right R-modules is weakly in-
jective in o[M];

(3) Every direct sum of M -singular right R-modules which are injective in
o[M] is weakly injective in o[M];

(4) Every direct sum of M -singular right R-modules which are weakly injective
in g[M] is weakly M -injective,

(5) EBvery direct sum of indecomposable M -injective M -singular right R-modules
15 weakly Al -injective.
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Proof. We use the same technique as that given in [1].

(1) = (2). For convenience we denote X, the M-injective hull of X in o[M].
Consider X = ®;cr L, where E; is an M-injective M-singular module for each
i € I. Let N be a finitely M-gencrated submodule of X. Since M is non-M-
singular, then X' is Af-singular by [5, 4.1] and hence N is M-singular. By
Theorem 2, N contains as an essential submodule a direct sum of uniform
submodules 691_1U Since X is essential in X, there exists 0 #qg € UiNn X
for each i = 1,2,...,k. Therefore ®f_,q;:R is contained in a finite subsum
E, ®E,®... & E,, of X, It follows that B;, & E;, @®...® E;, contains an M-
injective hull E of ®%_,q:R. Since E is M-injective and contained in X, we may
write X' = E® K, for some submodule K of X. On the other hand let N be the M-
injective hull of N inside X. Then N = &% [ U; = @%_ lq,R E. Since ®f_,q:R
is essential in NV, it follows that N N K = 0 SoletY =NeK~Eo K = X.
Then N C Y ~ X, proving our claim.

(2) = (3). Let X = @®;caX; be a direct sum of M-singular modules X;, i € A
which are weakly injective in o[M] and N a finitely M-generated submodule of
X, the M- -injective hull of X. By (2) the direct sum EB,EAX of M-injective
M -singular modules is weakly injective weakly injective in o[M] and

.}; Ce ZBIEAXI Ce X

Therefore by (2) there exists a submodule ¥ C X such that N C Y and ¥V ~
EB,E/\X We write YV = &;eaY;, where ¥; =~ _f\l,z € A. Since N is also finitely
generated, hence there exists a finite subset I' C A such that NV C @1€P}t =
@ierY:. Since Y's are weakly injective in o[M], the finite direct sum ®;crY; is
again weakly injective in o[M] and hence there exists Zy ~ @erY: =~ @ier,
such that ¥V C Z; C EB:-;FYI-. But then V C Z) ® (SigrYi) = X, proving our
assertion.

(3) = (4) and (4) = (5) are trivial.

Now we prove (5) = (1). Let M/L be an M-cyclic M-singular module. If
Soc(M /L) = 0, then we are done. Suppose S = Soc(M /L) # 0.

Write S = 6,45 as a direct sum of simpl/c;ﬁmodules S;. We show that S

is finitely generated. Clearly S = ZienSi = @:ienSi. By hypothesis ;e S; is
weakly M-injective, hence it is weakly A{/L-injective. Consider the diagram

5

S = 2 M/L

!ﬂ

S = (Eey Si)

m

where ¢ and A are inclusion R-homomorphisms. By the Af-injectivity of §,
there exists @ : M /L — S such that A = . Further, since &,caSi is weakly
M/ L-injective and since M is finiteiv generated by {m,me,... ,171;;}, say, there
exists X C § such that @(m; + L)....,@(mg + L) € X =~ &;cpS;. Hence there
exists a finite subset [ of A and an independent family of submodules {X;},cr
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such that @(my + L),...,@(mk + L) € @ierXi, and X; ~ S, foralli € . On
the other hand, S = ¢(5) C g(M/L) = Zl<j<k @(m; + LYR C @®;er X;. Since
each X; is uniform, S has finite dimension and is therefore finitely generated.
The proof of the theorem is now complete. 0

By taking M = Rgr we have the following result:

Corollary 5. For a non-singular ring R the following conditions are equiv-

alent:

(1)
(2)
(3)
(4)

(5)

R is a right generalized q.f.d ring,

Every direct sum of injective singular right R-modules is weakly injective;
Every direct sum of weakly injective singular right R-modules is weakly
injective;

Every direct sum of weakly injective singular right R-modules is weakly
R-injective;

Every direct sum of indecomposable injective singular right R-modules is
weakly R-injective.
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On weak CS-modules*

N. v. Sanh, S. Dhompongsa, P. Jantagan

Abstract

A right RR-module Af is CS if cvery its complement is a direct summand. We now study a
weaker form of this kind of modules. A right fe-module A is called a weak CS-module il every
semisimple submodule is essential in a direct summmand ol A7. In his paper, P. Smith asked the
question whether any direct summand of a weak CS-miodule is again weak C8. This question
now is still open. In this note we prove that if A7 is a weak CS-module such that every direct
summand is again weak C8 and M /Soc(M) satisfies ACC or DCC on direct suinmands, then
Af = RN Lep N, where IV is a modules with finite Goldie dimension, L is semisimple and N is
a module with zero socle.

RNey words: weak CS-module, chain conditions

1991 AMS Mathematics Subject Classification: 16D50, 16170, 161280

1 The Theorem

Throughout this paper 2 is an associative ring with ydentity and Mod-/? is the category
of unitary right ft-mocdules. A will denote a vight JE-module. A submodule N of A/
is called essential in A if it has a non-zero intersection with any non-zero submodule
of Al. A family of submodules {N,: 1 € '} s called independent if the sum Z.ei N\
is direct and all Ny are non-zero. For a module Al the socte (vesp. radical) of Al is

denoted by Soc(AM) (resp. radi M) If A = Soc{Al). Af is called a semisimple module.
A complement submodnle of a module M is a submodule N of Al for which there is a
submodule 1, of M such that N is maximal with respect to LN = 0. A module is

called a CS-module if every complement submodule is a divect stmmand or equivalent|y,
if every submodule is essential in o chivect summand, We nse the terminologies ACC and
NDCC for the ascending and descending chain conditions,

Following [12]. a right /t-module M is called weak CS-module if every semisimple submo-
dule is essential in a divect summand of AL The question in [120 1.1] whether any direct
stmmand of a weak S modnle 1= again weak OS5 15 now still open. Below we will eall
roughly such a module weakly €8 mocile, e 0 M is A weakly Cs-madule if every diveet

“The research of the first and the sceond author was partly supported by aogrant of the Thailaned
Rescarch Tand.
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summand of Al is weak CS. Since every module with zero socle s weakly (S, it is clear
that the class of CS-modules and weakly CS-modules are different.

In [1], N.V. Dung showed that if M is a CS-module satisfying ACC on direct summands
of M/Soc(M), then M is a divect sum of a semisimple module and a module with finite
Goldie dimension. In this note we get a similar result for weakly CS-modules as follows:

Theorem. fLct M be a weakly CS-module. [f M/Soc(M) has ACC or DCC on direct

summands, then M s the sum N b L& N, where N is a module with finite Goldie
dimension, L is semisimple and N 15 a module with zero socle.

It was shown in [6] and [2] that Af/Soc(A]) is Noetherian (resp. Artinian) if and only if
it satisfies ACC (resp. DCC) on essential submodules. As an application of this fact and
the above theorem we have the following corollary.

Corollary. If M is weakly S and satisfies ACC (vesp. DCC) on essential submodules,
then M = KN b L, where IV s Noctherian (resp. Artinian) and L is semisimple.

2 The Proof
We consider the following property (P):

A right R-module is said to have property (P)if for any independent family {N; i € N}
of semisimple submodules of A, there exists a descending chain {M; | 1 € IN} of direct
summands of M such that ., N, is essential in M, for reery j € IV

Lemima 1. Let A be a right R-modules. If M is a wenkly CS-module, then M has
property (P).

Proof. Supposc that A is weakly CS. Let {N, | £ € £V} be an independent family of
semisimple submodules of Af. Let My be a divect summand of M that contains essenti-
ally @2, Voo By definition, My is weakly CS. Take 3/, a direct summand of Afy that

contains essentially EB,;} N;. Clearly My is also a divect summand of M and M, C AM,.

By induction, let A, be a direct summand of My that contains essentially @72, N

Then it is clear that Al satisfies (). o

Lemma 2. Let M be a right H-module. If M satisfics ACC on dircet summands, then
it satisfics DCC on diveet summands. Convcrsely, of M s weakly CS with cssential socle
and satisfics 1DCC on direct summands, then M satisfies ACC on direct summands

Proof. Suppose A satisfies ACC on direct summands and {M,.i€ N}isa descending
chain of direct summands of M

\[1 o AL D My :1...:\I-l;l:].‘\[,':.‘\[,,D.... : (4:)

Since cach A, is a divect summand of M, then M, is a disect summand of M,y by the
modular law. Therefore Af,_y = N oy -0 AL (for all ). Put (= EB;«_ZL- N, then by our
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construction. Uy is a direet summand of Al for all & and they establish an ascending
chain of direct summands of M. By hvpothesis, this chain must be stationary, i. o., there
exists ng such that Ny = N, for all & > ng. This shows that the descending chain () is
stationary. 1. ¢., Al satisfies DCC on direct summands.

Conversely. suppose that Al is weakly CS with essential socle. Let {A;,i € IN} be an
ascending chain of direct summands of Af and A = Uien A;. Then Soc(M) = Soc(AY b U
for some semisimple submodule U7 of Al. Put Soc(A) = €D, Si where each S, is simple.
We will show that A is finite. We see that Soc(A) is essential in a direct summand A/,
of Al. Since Al is again weakly CS with essential socle, then for 1, € A, G}.—E,\"#‘ S; is
essential in a direct summand M, of M. Now we take i; € A\ {i,}. Then ®iel\\{i..iz} ;
will be essential in a direct summand Afy of Al; (M3 is a direct summand of M, since M,
is). Continuing this process we have a descending chain {Al;,1 € IV} of direct summands

of M. By DCC condition, this chain must be stationary and therefore A is finite. This

shows that Al has ACC on direct summands. m

Corollary 3. /lLet M be a weakly CS-module with cssential socle.  Then M satisfies

ACC or DCC on direct summands if and only if every independent family of semisimple
submodules of Al is finitr.

Proof. (=). By Lemma 2, it suthices to give the proof for the case of DCC. Let {N; | i € 1}
be an independent family of semisimple submodules of Al. Without loss of gencerality, we
can assume that / is countable. Since A is weakly CS, then by Lemma 1, there exists a
descending chain { A, | 1 € 1} of direct summands of Al such that Z.‘>, N, 1s cssential in
AL, for every j € 1. Since Al has DCC on direct summands. then the family {Al; | i€ 1}
is finite. It follows that the family {N; |1 € [} is finite.

(<). Let Al D AM; D ... D M, D...beadescending chain of direct summands of Af.
Since the socle of Al is finitely generated and essential in ALL this chain must be stationary.

This shows that Af has DCC on direct summands. n

The following lemma is given by N.\. Dung in [1].
Lemma 4. Let Al be a module and S = Soc(M). Then:

(1) If A and I3 are submodules of M with A0 13 = 0, then

((CA+ S/ S)IN{( B+ 5)/8) =0
(2) If A is a divect summand of M. then (A +5)/5 is a dircet summand of M/S;
(3} If BierA; is a direct sum of submodules of M, then tbiei((Ai + S)/S)is also a direct
sum of submodules in M/S.

Lemma 5. ([8. Folgerung 9.1.3 ]). If S is the socle of a direct sum DoeNa, then
S = QigexSoc(N,). Henee

((}T’oe;: o\l.\ )/‘S' ~ Cq \hnef: (Nn/'-qn(‘( f\,n ))
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is casy to sce that:

mma 6. Let N be a direct summand of a module M. If M has ACC (resp. DCC) on
irect summands, then so does K.

3
ow we arc ready to give the proof of the theorem.

roof of the Theorem. By dcfinition, without loss of generality we can assume that
is weakly CS with essential socle. By Lemma 2, it is enough to give the proof for the
CC condition.

Let F = {N; | £ € I} be a maximal independent family of direct summands of M such
that for every 1 € I, Soc(N;) # N; and Soc(N,;) is simple. Let K be a direct summand
Jof Al essentially containing B,e;50c( Vi) and we write M = K & L. Here we have some
remarks.

Remark 1. For any direct summand V of A, we have Soc(N) # N. In fact, by the choice
of F, every simple submodule of A" which is not a direct summand of M must be contained
in rad( /'), so is Soc(\'). Therefore any simple submodule of A" is not a direct summand
of A’ and the remark follows.

Remark 2. From the choice of F. if N is direct summand of M such that Soc(N) is
finitely generated, Soc(N) # N and there is no simple submodules of N which is its direct
summand, then N must be contained in A In fact, if there is such a direct summand
N ¢ K, then there exists 0 # £ C N, Eis simple and £ ¢ I, otherwise every simple
submodule of N is in A, then NV C A, a contradiction. Take such a simple submodule
E. Then E is cssential in a direct summand £ of M with £ # E’. This contradicts to
the maximality of F.

We may assume that [ is countable. Since {Soc(N;},t € [} is an independent family of
simple submodules of A" which is weak CS, then by Lemma |, there exists a descending
chain {M, | n € [} of direct summands of A" and hence of M such that @, Soc(N;) is
essential in A/, foralln € 1. Put & = Soc(N) = DierSoc(N;). By Lemmad, {M, | n € 1}
isa descending chain of direct summands of A/ S, where A, = (M,+5)/5. By hypothesis,
| the descending chain {ﬁn | n € I} ix stationary. ['hus there exists & € [ such that

Hk = I‘Ik.'._,

for all j € V. We show that Al = Mgy, forall j > 1. Since &+ j > k, then My, ; C M,
and we have M, = My ; U U # 0. Therefore, (M + 8)/S = ((Mig; + S)/S) d (U +
SYSY =My, b (U 4+ 8)/8)y =M, (U +5)/9). It follows that (U/ +.5)/5 = 0. Since
U is a direct summand of A, then by Remark 1. Soc(l/) # U and hence U ¢ 8, therefore
U = 0. Thus M = My ;. 1t follows that the descending chain {A, | n € 1} must be
stationary, i.c., / is finite. ‘Then Soc( ') = duerSoc(N;) is tinitely generated. Morcover
Soc( ') is semisimple and essential in A, then A” has finite Goldie dimension.
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Now, it remains to show that /[ is semisimple. Note that Soc(l) is essential in /.. Assume
on the contrary that [ is not semisimple. ‘Then there exists a finitely generated submodule
I of L which is not semisimple. Let 1 be a direct summand of M essentially containing
E. Then Soc(ll) = Soc(l) # H. If Soc(l’) is finitely generated, then /1 contains a
non-zero direct summand U which Soc(U) # U, Soc(U) is finitely generated and no
simple submodule of U/ is a direct summand of U. T'hen by Remark 1 above, U C KA, a
contradiction. Hence Soc(F7) is not finitely generated, say Soe(F) = &, Fi,. We may
assume that / is countable, say /I = IV, and we will show that Soc([) must contain a
subimodule which is not finitely generated and is a direct summand of /.

Since IV can be written in the form IV = |2, Ni, N: O (U e vy Vi) = 0. N is infinite.
then there exists an infinite independent family {7, | n € IV} of semisimple submodules of
E such that for cach n € IV, T, is not finitely generated. Since I{ is a weakly CS-module.
there exists a descending chain {(',, | m € IV} of dircct summands of #f such that Br>mTn
is essential in C,, for every m € B (see Lemmal). llence, C,n = (Cum+Soc(I1))/Soc(1T) is
a direct summand of 1/ Soc( 1) for every m € IV (L.emma4) and therefore {C,, | m € I}
is a descending chain of direct summands of H/Soc(H).

Since H/Soc(H), being isomorphic to direct summand of L/Soc(L), also has DCC on
direct summands (Lemma 6) and IV is infinite, there exists kg € IV such that for all

k> ko

Cie = Cipr- (1)

Since Soc( 1) = (Soc(HYNC ) U for some UV C Soc( ). we have Ci+ Soc(H) = Cy b U

Since Soc(11) = Soc(Cy) & U and Cyyy b Tk is essential in (¢ by our construction, we
have

Cigr + Soc(H) = Cryy L UL (2)

From this and (1) we have
(Cagy Ty 50 U/ Soc( 1) = (Co b U)/ Soc( 1), (3)

Since Crgr b T € g, it follows that Cigy b Ti = (. ‘This shows that 7T} is a direct
summand of /{ and hence of 1. But this is impossible because [ is finitely generated
and 1} is not finitely generated by our assumption. ‘This contradiction shows that cvery
finitely generated submodule of /. must be semisimple. Therefore L is semisimple and the
proof is complete. =

Remark. lollowing the proof. we can replace the condition that Al is weakly CS by
assuming that Al is weak ('S and non-singular. With this condition, cvery direct summmand
of A is weak CS and the lemmas | and 2 are satisfied by an adaptation of the proofs in

[12).
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Abstract. Let R be a ring. A right R-module M is called principally injective
if every homomorphism from a principal right ideal of R to Af can be extended

to R. We extend this notion to modules. A module N is called M-principally

injective if every homomorphism from an M-cyclic submodule of M to N can
be extended to M. In this paper, we give some characterizations and properties

of quasi-principally injective modules which generalize results of Nicholson and
Yousif.
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1 Introduction

Let R be a ring. Call a right R-module M principally injective if any R-
homomorphism from a principal right ideal of R to M can be extended
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to an R-homomorphism from R to M. This notion was introduced by
Camillo [2] for commutative rings. In [7], Nicholson and Yousif studied the
structure of self-principally injective rings and gave some applications. The
nice structure of self-principally injective rings draws our attention to bring
this notion to modules. We see that every principal right ideal I of a ring
R can be considered as a homomorphic image of R and vice versa. We
use this fact to generalize the notion of principal injectivity to M-principal
injectivity for a given right R-module M. Throughout this paper, R is an
associative ring with identity. Let M be a right R-module. A module N is
called M -generated if there is an epimorphism M/} — N for some index
set I. If I is finite, then N is called finitely M -generated. In particular, N
is called M -cyclic if it is isomorphic to M /L for some submodule L C M.
As usual, the socle of the module M is denoted by Soc(M).

2 Principal Injectivity

Definition 2.1. Let M be a right R-module. A right R-module N is
called M -principally injective if every homomorphism from an M-cyclic
submodule of M to N can be extended to a homomorphism from AM to
N. Equivalently, for any endomorphism & of M, every homomorphism from
e(M) to N can be extended to a homomorphism from M to N. N is called
principally injective if it is R-principally injective.

Lemma 2.2. Let X; (1 <1 < n) be Af-principally injective modules. Then
D, X is M-principally injective.

Proof. 1t is enough to prove the result for n = 2. Let ¢ : C - X @Y be
a homomorphism, where C is an Af-cyclic submodule of Af. Siice X and
Y are M-principally injective, there exist ¢, : Af = X and ¢z . M — Y
such that ¢ = m@ and @zt = w2, where 7, and 7, are the natural
epimorphisms from X @ Y to X and Y, respectively, and ¢ : C — Al is the

embedding. Put @ = ty9, + 209 : Af — X @Y. Then it is clear to see that
P extends . D

Lemma 2.3. Let C be an M -cyclic submodule of M. If C 1is Al -principally
injective, then it is a direct surnmand of M.

Proof. Since the embedding ¢ : € — Af has a left inverse, it clearly splits
and so C is a direct sumnmand of Af. O

Call a module M quasi-principally injective if it is Af-principally injec-
tive. A ring R is right self-principally injective if Rg is R-principally injec-
tive. The following lemma is straightforward. By this lemma, we can pro-

duce many quasi-principally injective modules from a right self-principally
injective ring.

Lemma 2.4. Any direct summand of a quasi-principally injective module
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ts again quasi-principally injective.

The next lemma shows that the conditions (C2) and (Ch) (see [6]) also
hold in a quasi-principally injective module.

Lemma 2.5. Let M be a quasi-principally injective rmodule and A, B its
submodules.

(1) If A is a direct summand of M and B = A, then B is a direct
summand of M.

(2) If A and B are direct summands of M with ANB =0, then A® B
is a direct summand of M.

Proof. (1) Since A is a direct summand of M, it is M-principally injective,
and so is B. Therefore, B ic a direct summand of M by Lemma 2.3.

(2 Let M = A A" ard m: A A’ - A’ be the projection. Then
m|g : B — A’ is a monomorphism, and therefore, B ~ w(B). By (1), 7(B) is
a direct summand of M, and hence, a direct summand of A’ by the modular
law. Thus, A @ 7(B) is a direct summand of M. Since A® B ~ A @ n(B),
it follows from (1) that A & B is again a direct summand of Af. m]
Corollary 2.6. Let M be a quasi-principally injective, quasi-projective
module and s : M — M an endomorphism. Then the following conditions
are equivalent:

(1) Im(s) is a direct summand of M.
(2) Im(s) is M -principally injective.
(3) Im(s) is M-projective.

Proof. (1)=-(3). It follows from the projectivity of Af.

(3)=(2). Since the sequence 0 — Ker(s) -+ M — Im(s) — 0 splits,
Im(s) is isomorphic to a direct summand of Af. Therefore, it is a direct
summand of A by Lemma 2.5. Hence, it is M -principa:ly injective.

(2)=(1). It follows from Lemma 2.3. O

Following [3], a right R-module M is said to be direct-projective if, for
any direct summand X of M, every epimorphism f : A — X splits (i.e.,
Ker(f) is a direct summand of A). Combining Lemma 2.3 and Theorem
37.7 in [9], we can state the following theorem.

Theorem 2.7. Let § = End(Mp) be the endomorphism ring of a module
M. If 5§ is von Neumann regular, then every Al -cyclic submodule of M
ts M-principally injective. Conversely, if M s direct-projective and every
M -cyclic submodule ts M -principally injective, then S = End(Mg) is von
Neurnann regular.

We now consider the endomorphism ring of a quasi-principally injective
module.

Theorem 2.8. Let M be a quasi-principally injective module and s,t €

5= End(ﬂfn}
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(1) If s(M) embeds into t{M), then Ss is an itnage of St.

(2) If t{M) is an image of s(M), then St can be embedded into Ss.
(3) If s(M) ~t(M), then Ss ~ St.

Proof. (1) Let f : s(M) ~ t(M) be a monomorphism. Let b s(M) - M
and 2 : t({M) - M be embeddings. Then there is a map s’ : M — s(M)
induced by s : M — M (ie, 118 = s). Since M is quasi- principally
injective, the homomorphism f : .s(M) — t(M) can be extended to f :
M — M such that fi; = 1,f. Let o : St — Ss be defined by o(ut) = ufs
for every u € S. Since Im( fs) C t(M) = Im(¢t), o is well-defined. Moreover,
g is an S-homomorphism. For any v € S, vty : s(M) — M can be extended
to an R-homomorpb.lsm w: M — M such that (,OLQf = viy. Consequently,
we have 0(ps) = ¢fs = pfi18’ = piafs’ = viys’ = vs. This shows that o
1s an epimorphism, proving our claim.

(2) By the same notation as in (1), let f : s(M) — t(M) be an epi-
morphism. Since M is quasi-principally injective, f can be extended to
f:M — M such that fi; = i1pf. Define o : St — Ss by a(ut) = ufs for

any ut € St. Then the map o is well- deﬁned since Im(t) = Im(fs). It is
clear that o is an S-monomorphism.

(3) This part follows immediately from (1) and (2). O

Corollary 2.9. (7, Theorem 1.1] Let R be right self-principally injective
and a,b € R. Then the following statements hold:

(1) If bR embeds in aR, then Rb is an image of Ra.

(2) If aR is an image of bR, then Ra can be embedded in Rb.

(3} If bR~ aR, then Ra =~ Rb.

Proof. The above statements are direct consequences of Theorem 2.8. O

From now on, we use the symbols ¢ and r to indicate the left and right
annihilators, respectively.

Theorem 2.10. Let M be a right R-module and § = End(Aly). Then
the following conditions are equivalent:

(1) M 1is quasi-principally injective.

(2) ¢s(Ker(s)) = Ss for all s in S.

(3) Ker(t) C Ker(s) implies Ss C St for any s,t € S.

(4) €s(Im(t) N Ker(s)) = €s(Im(t)) + Ss for all s.t € 5.

Proof. (1)=(2). For any t € Bs(Ker(s)) we have t(Ker(s)}) = 0. This
leads to Ker(s) € Ker(¢). Let &' : M — s(M) and t' : M — t(Af) be
R-homomorphisms induced by s and ¢, respectively, and ¢y : s{(M) -+ M
and ¢» : t{M) — M the embeddings. Since s’ is an epimorphism, there is
an R-homomorphism ¢ : s(M) — t(AM) such that ws’ = ¢’. Since M is
quasi-principally injective, there exists an R-homomorphism w : A — A
such that ut; = tz. Hence, t = us and ¢ € Ss. On the other hand, since
s € £s(Ker(s)), we see Ss C €s(Ker{s)).
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(2)=(3). From Ker(t) € Ker(s), we have £g(Ker(s)) C £s(Ker(t)).
Therefore, we have Ss C St by (2).

(3)=(). Let 8’ : M — s(M) be an R-homomorphism induced by
s: M — M and ¢y : s(M) 5 M. Let v : s(M) - M. Then s’ is
clearly an R-endomorphism of M and Ker(s) C Ker{ys’). By (3), we have
Sps’ C Ss, and therefore, ps’ = us for some u € §. This shows that M is
quasi-principally injective.

(3)=>(4). Let u € £5(Im(t) N Ker(s)). Then u(Im(t) " Ker(s)) = 0. This
implies Ker(st) C Ker(ut). By (3), ut = vst for some v € S. It follows that
(v — vs)t = 0, and therefore, u — vs € £5(Im(t)), ie., u € £s(Im(t)) + Ss.
This shows £5(Im(t) N Ker(s)) € £€s(Im(t)) 4+ Ss. Conversely, any z €
£5(Im(t)) + Ss can be written in the form z = u + v, where u(Im(¢)) = 0
and v{Ker(s}) = 0. It follows that z € £5(Im(¢) N Ker(s)}).

(4)=-(2). This part is clear by taking ¢t = 1,s, the identity mapof M. O

Corollary 2.11. [7, Lemma 1.1]

The following conditions are eguivalent
for a ring R:

(1) R 1is right self-principally injective.

(2) €r(a) = Ra for all a in R.

(3) r(b) C r(a) fora,b € R implies Ra C Rb.
(4) &(bRNr(a)) = £(b) + Ra for all a,b in R.

The following corollary is a generalization of Corollary 1.1 in [7].

Corollary 2.12. If K = s(M) is a simple submodule of a quasi-principally
injective module M where s € S = End(MRg), then SK =3, 5 s(K) is the
homogeneous component of Soc(M) containing K.

Proof. It is clear that, for any isomorphism u : K — H wiiere H C M,
we have Ker(u) = Ker(us). By Theorem 2.10, Ss == S(us), and hence,
H = us(M) € SK. This shows that the K-component is in SK. The other
inclusion always holds. 0

Following [9], a module M is called a self-generator if it generates all
its submodules. Since every homomorphism from Af to its submodule can
be considered as an endomorphism of M, for every m € M, we have mR =
Yecr (M) for some I C S if M is a self-generator. The following theorem
is a generalization of Theorem 2.1 in [7].

Theorem 2.13. Let M be a right R-module, S = End(Mg), & the set of
s € S such that Ker(s) is essential in M, and J(S) the Jacobson radical of
S. If M is a quasi-principally injective module which is a self-generator,

then J(8) = A.

Proof. Since Ker(s) N Ker(1 — s) = 0, we have Ker(l — s) = 0 for any
s € A. Hence, § = £5(Ker{(1 — s)) = S(1 — s) by Theorem 2.10(2). This
shows that J(S) 2 A. For the converse, we show that, for every s € J(S5),
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if t(M)NKer(s) =0fort e S, thent=0. In fact, by Theorem 2.10(4), we
have

€s(Im(t)) + Ss = £5(Im(t) N Ker(s)) = S,

so £5(Im(t)) = S, 1.e,, t = 0. Since M is a self-generator, for any m € M,
we have mR = 5, (M) for some I € S. If Ker(s) " mR = 0, then
Ker(s)Mt(M) =0 for all t € I, and hence, mR = 0. This shows that Ker(s)
is essential in M and the proof is complete. O

Corollary 2.14. {7, Theorem 2.1, Corollary 2.1] If R is right self-principally
injective, then J(R) = Z(Rpg). Consequently, if R is right and left self-
principally injective, then Z(Rg) = Z(rR).

Theorem 2.15. Let M be a quasi-principaily injective module and sq,---

5n € S = End(M) such that the sum > ._, Ss; is direct. Then any ho-

momorphism « : 21;1 si{M) = M can be extended to a homomorphism
w: Mo M.

T

Proof. Each s;{(M) is M-cyclic. By the quasi-principal injectivity of Af,
there exists a homomorphism ¢; : M — M such that ¢,s;(mm) = as;(m) for
all m € M. It follows that 3 7. | @is; = Y o, as;. Since (3°i_, si)(M) C
ST . si(M), a can be extended to p : M — M such that, for any m € A,

o( s m =a( T s)om),

i=1 1<i<n

lLe., Z?zl Wwsi = 2:;1 as;. It follows that 3.1 ws; = 2:1:1 -8, The
direct sum @7, Ss, implies ps; = ¢;s; for all 1 < i < n. Therefore, for any
xz € Y si(M), we have a(z) = (z), proving our theorem. O

Corollary 2.16. (7, Lemma 3.1] Let R be right self-principaliy injective
and assume Rb, & Rb, @& - - & Rb,, is a direct sum where b, € A. Then any
linear map

can be ertended to ' R — R.

Theorem 2.17. Let M be a quasi-principally injective module and sy, - - .
s € § = End(M) such that the sum > ._, Ss; is direct.  Write A =

s (MY 4+ -+ si(M) and B = sp (M) + -+ sa (M) where 1 € k < n.
Then

fs(ANBY =£€:(A) + £s(B).

Proof. Clearly, £5(A) + £5{B) C £s(AN B). Let u € {5(AN B). Consider
the map o : A + B — M given by a(a + &) = u(a). Since u(z) = 0 for
any r € AN B, it can be checked that the map a is well-defined and is a
homomorphism. By Theorem 2.15, there exists a homomorphism @ A —
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M that extends «. Clearly, ¢(b) = 0 for all b € B, and hence, ¢ € {5(B)

and u — y € €5(A). This shows u = (u — @) + ¢ € £5(A) + £5(B), proving
our claim. D

Corollary 2.18. [7, Theorem 3.1] If R is right self-principally injective
and Rby @ --- @ Rb, is direct where b; € R. Write S =bjR+-.-+ bR and
T =bxs1BR+ -+ bR where 1l <k <n. Then £(5NT) = £(S) + &T).

3 Principal Injectivity and Weak Injectivity

We now consider the relationship between principal injectivity and weak
injectivity. Let M be a right R-module. Recall that a module N is said
to be weakly M -injective if, for every homomorphism f from M to the
injective hull E(N) of N, there exists a monomorphism ¢ : N — E(N) and
a homomorphism f: M — N such that f=of. It is easy to see that N is
weakly M-injective if and only if, for any M-cyclic submodule X of E(N),
there exists a submodule Z of E(N)} such that X C Z ~ N (see [4, 5]).

Following [4], a right R-module is weakly injective if it is weakly R™-
injective for each natural number n. It was shown in [4] that a cyclic right
R-module is weakly injective if and only if it is weakly R?-injective. The
following proposition generalizes this fact.

Proposition 3.1. Let M be a right R-module. An M -cyclic module N is
weakly M™-injective for all n € Z* if and only if it ts weakly M?-injective.

Proof. The necessity is trivial. We now prove the converse by using induc-
tion on n. Let NV be an M-cyclic module. Since Af = M?/M | it is true for
n = 1. Let U/ be an A ™-cyclic submodule of £(N). Then U can be written
in the form of a summ U = A + B, where A is M" !-cyclic and B is M-
cyclic. By the induction hypothesis, there is a submodule X of E(N) such
that A C X =~ N. Since X and B are AM-cyclic, X — B must be MZ.cyclic.
By the weak AMZ-injectivity, there exists a submodule ¥ of E{N) such that
X+ BCY ~ N, proving our proposition. a

We now give a description for the quasi-injective modules.

Theorem 3.2. A module M is quasi-injective if and only if it is weakly
M?_injective and quasi-principally injective.

Proof. The necessity is trivial. For the converse part, suppose Al is M-
principally injective and weakly Af?%-injective. It suffices to show f(AM) C M
forany f: M — FE(M). Assume f(Al} € M and considerid+f : M@ M —
E(M). Then M C Im(id+ f) is an essential submodule of some M’ C E(Af),
M'" ~ M. But M’ is quasi-principally injective, and hence, M is a direct
summand of M’, which is a contradiction. O

As an application of Theorem 3.2, we re-obtain the following character-
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ization for right self-injective rings.

Corollary 3:3. |7, Theorem 1.3] A ring R is right self-injective if and only
if it is right weakly injective and right self-principally injective.

Acknowledgements. The first author is grateful to the Department of Mathemat-
ics, The Chinese University of Hong Kong, for their support of his visit in January
1998. The authors would like to thank Professor R. Wisbauer for a short proof of
Theorem 3.2 without referring to Proposition 3.1.
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Abstract. Let R be a ring. A right R-module M is called finitely injective (briefly, f-injective) if
every homomorphism from a finitely generated right ideal of R to M can be extended to R. We
now extend this notion to modules. A module N is called M -finitely injective (or M-f-injective) if
every homomorphism from a finitely M-generated submodule of M to N can be extended to M.
In this note we give some characterizations and some properties of quasi f-injective modules.
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1. Introduction

Throughout, R is an associative ring with identity and Mod-R the category of unitary
right R-modules. Let M be a right R-module. A module N s called M-generated if
there is an epimorphism M/} — N for some index set /. If / is finite. then N is called
finirelv M -generated. In particular, N is called M-cyclic if it is isomorphic to M /L for
some submodule L C M. ‘

Let R be a ring. Call a right R-module M finitely injective (resp. p-injective) if any
R-homomorphism from a finitely generated (principal) right ideal of R to M can be
extended to an R-homomorphism from R to M. Right self p-injective rings were studied
by Nicholson and Yousifin [8] and some properties of finitely injectivity were given there.
Sanh et al. [10] generalized this notion to M-p-injectivity for a given right R-module
M. A nght R-module N is M-p-injective (M -f-injective) if every homomorphism
from an M-cyclic (finitely M-generated) submodule of M to N can be extended to
a homomorphism from M to N. '

*Supported in part by the Thailand Research Fund.
" Corresponding author. Current address: Department of Mathematics, Khon Kaen University, Thailand
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In this note, we give a characterization of quasi-f-injective modules which generalizes
the Ikeda—Nakayama Lemma (see [4]).

2. Finitely Injectivity

Definition. Let M bearight R-module. A right R-module N is called M -finitely injective
(briefly, M-f-injective) if every homomorphism from a finitely M-generated submodule
of M to N can be extended to a homomorphism from M to N. Equivalently, for any
endomorphisms s\, 52, ..., s, of M, every homomorphism from s\ (M) +s2(M)+-- -+
sn(M) to N can be extended to a homomorphism from M to N. N is called f-injective
if it is R-finitely injective.

Lemma 2.1. Let X;,i € I be M-f-injective modules. Then ;1 X; is M-f-injective.

Proof. Let U be a finitely M-generated submodule of M, ¢ : U — M the embedding,
and ¢ : U — IljerX;. Foreach i, let m; : [1;¢; X; — X; be the ith projection. Since
each X; is M-f-injective, there is ¢; : M — X such that ;1 = 7;¢. By the definition of
products, there is a homomorphism ¢ : M — [l;¢; X; such that m;¢ = ¢; foralli € I.
It is clear that @t = ¢, proving that IT;¢; X; 1s M-f-injective. O

Lemma 2.2. Let C be a finitely M-generated submodule of M. If C is M-f-injective,
then it is a direct summand of M.

Proof. Since the embedding ¢ : C — M has a left inverse, it clearly splits and so C is a
direct summand of M. |

Proposition 2.3. Let {M;.i € [} be any familyv of M-f-injective modules. If M is finitely
generared, then @;c; M; is M-f-injective.

Proof. Since M is finitely generated, it follows that every finitely M -generated
submodule U/ of M is again finitely generated. Hence, for any homomorphism ¢ : U —
Bic: M;. ¢(U) is contained in a finite direct sum @, ey, M; tor some finite subset [y of /.
By Lemma 2.1, @7, M, is M-f-injective, hence. ¢ can be extended to a homomorphism
¢ from M 0 @;c; M;, proving our proposition. : O

Corollary 2.4. Any direct sum of f-injective modules is again f-injective.

It is clear that over a right Noetherian ring. every f-injective module is injective. By
Proposition 2.3, we see that if every f-injective right R-module is injective, then R is
right Noetherian.

Following [10]. a right R-module N is M -p-injective if every homomorphism from
an M-cyclic submodule of M to N can be extended to 2 homomorphism from M to N.
M is quasi-p-injective if it is M-p-injective. According to Wisbauer [11], a module M
is direct projective if, for any direct summand X of M, every epimorphism f : M — X
splits (1.e.. ker(f) is a direct summand of M ). Clearly, every quasi-projective module is
direct projective. The following theorem gives a description of this kind of modules.
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Theorem 2.5. Let M be a direct-projective module and S = End(Mpg) its endomor-
phism ring. The following conditions are equivalent:

(1) S is von Neumann regular,

(2) every M-cyclic submodule of M is M-p-injective;

(3) cvery finitely M -generated submodule of M is M-p-injective;
(4) every finitely M -generated submodule of M is M-f-injective;
(5) every right R-module is M -f-injective.

Proof. Clearly, (5) = (4) = (3) = (2), and (2) = (1) by Theorem 2.7 in [10]. We
now show that (1) = (5). Let 5y, 52 € S. Since § is von Neumann, then sy (M) = e(M)
for some idempotent e of S. Hence, 51 (M) + s2(M) = e(M) & (1 — e)s~(M). Again,
(1 —e)s2(M) = f(M) for some idempotent f € Swithef =0.Leth =e+ f — fe.
Then /1 is an idempotent of § and we have (M) = s (M) + s2(M). This shows
that s, (M) + s2(M) 1s a direct summand of M. By induction, we see that every
finitely M-generated submodule of M i1s a direct summand of M, and therefore, any

homomorphism from a finitely M-generated submodule of M to a module N can be
extended to M. O

Proposition 2.6. Let M be a right R-module and U a finitely M -generated submodule
of M. If a module N is M-f-injective, then it is U-f-injective. Moreover, if M is
quasi-projective, then N is M /U -f-injective.

Proof. The proof for the first part is routine. We observe that for a quasi-projective
module M, if U is a finitely M-generated submoduleof M and X = X/U. X C M,isa
finitely M-generated submodule of M = M/ U, then X is finitely M-generated. In fact,
let vy : X — X = X/U be induced by the natural epimorphism v : M — M /U. Since
X = X/U is finitely M-generated, there is an epimorphism 7 : M — X = X/U for
some n. Letk = @dv : @M = M" — (A /U)" be defined by components. Since M is
quasi-projective, M" is M-projective and is therefore X -projective. Hence. there exists
a homomorphism & : M" — X such that vy & = nk. Clearly. forany v € X. we can find
r € M” suchthat E(r) —x € U.ie..x € §(M") + U. It follows that X = s« M"Y + U,
and hence X 1s finitely M-generated.

Let(: X - M andi: X — M be the embedding. Since N is M-f-injective, there
exists vy : M — N such that ¢t = vy, Then U C U;I(Kercp) = Ker(pvy) =

Ker(_qolc) = a“(Kergo.) = X M Kery;. This shows that kerv C E:rqo]. Hence. there i1s
@ : M — N such that gv = ¢,. Clearly. 5]_\—. = @. Hence. N is M-f-injective. proving
our proposition. O

Corollary 2.7. Let I be a finitely generated right ideal of R. If N is f-injective, then it
is I -f-injective and R/ I-f-injective.

3. Quasi-Finite Injectivity
Cal} a module M quasi-f-injective if it is M-f-injective. A ring R is right self-f-injective

if Rg s R-f-injective. The following lemma is straightforward but. by this lemma, we
can produce many quasi-f-injective modules from a right self-f-injective nng.
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Lemma 3.1. Any direct summand of a quasi-f-injective module is again quasi-f-
injective. a

Theorem 3.2. Let My be a right R-module and S = End(Mpg). Then the following
conditions are equivalent:

(1} M is a quasi-f-injective module;

(2) for any finitely M -generated submodules A, B of M and for any ¢ € §, we have
(a) €s(ANB) = £5(A) + €5(B).
(b) E€srm(c) = Sc.

(3) M isquasi-p-injectiveand Es(ANB) = €5(AY+Ls(B) forany finitely M -generated
submodules A, B of M.

Proof. (1) = (2). First we prove (a). Clearly, £5(A) +£5(B) C £5s(A N B). Conversely,
let s € £s(A N B). Then the map

¢: A+ B —->M
a+b  @la+b)=s(b)

1s well defined, and moreover, it is an R-homomorphism.

Since M is quasi-f-injective and A + B is finitely M-generated, there exists g : M —
M suchthat@|a4+p = @.Inparticular, p(a) = @(a) = Oforalla € A.Hence,p € £5(A).
Moreover. for all b € B, we have ¢(b) = @(b),1.e, (g —s)(b) =0Qorp — s € £5(B).
It follows that s = @ + 1 € €5(A) + £5(B), proving (a).

Recall that, for any ¢ € S, ry(c) = {m € M|c(m) = 0} = ker(c). We now prove
that

Esrp(c) = Sc for all c € 5.

Clearlv. Sc C €srp(c) = Eg(ker(c)). Leth € £srpy (). Thenrag(¢) C ras(b) and hence,
the map

c(My - M

c(n) — b{n)

1s well defined and is a homomorphism. Since M is quasi-f-injective, there exists
s : M — M such that sc(;m) = b(in) for all m € M. This shows that b = sc € Sc, as
required. ,

(2) = 1). We now assume that M satisfies (a) and (b)in (1). Let U = T”_,s5;(M).
We prove by induction on #. Forn = 1, let ¢ : s(M) — M be a homomorphism.
Since s(/r:) = 0 implies that @s(m) = 0, we infer that rys(s) C ras(@s). It follows that
rar(Ss) C rpy(Ses). By (b), we have

Sps = bsrm(Ses) C €srp(Ss) = Ss.

Therefore. there exists @ € S such that ¢s = @s, and hence, @|5s1) = ¢ as required.
We now transfer from n to n + 1. Let

n+1

@ : Zs,-(M) — M

i=lI
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be a homomorphism. By induction, there exist ¢1,¢2 € S such that, for any
E:':Jrll si(mp) € " s (M), we have

i=1
<,0( Z-“:‘ (”'i)) = @ (ZS.' (mi)),
i=1 i=1
@ (Sup1 (1)) = (;0'2(5n+|("1n+l))‘
By (b). we have

"

p1—¢2 € Ls ((ZS:'(M)) ﬂsn+|(M)) = ES(ZS;'(M)) + Es(sns1(M)),

i=1| i=1

i.e., there exist s € €5 (Z/_;si(M)), ¢ € €s{sus1(M)) such that ¢ — @ = 5 — ¢. Put

Y = @y —5 = ¢ —t. Then for any x = E":l's,-(m;) € Ef‘:lls.-(M),

i

n+1 "
w(zs;‘(me')) = 90( Si (m.')) + @Spp1(Mpy)

i=1 i=1

= (1 — 5)(251'("1:')) + (92 — 1) (Sn41(Mns1))

=1

n+1
= W( Z s (mi)) .
i=1
This shows that M is quasi f-injective, proving (1).
(2) < (3) The condition (b) in (2) is a characterization of quasi-p-injective module
(see [10, Theorem 2.10]). 0

As an application, by putting Mg = Rr we have immediately the Ikeda—Nakayama
Lemma (sce [4]).

Corollary 3.3. Let R be a ring. The following conditions are equivalent.

(1) R isright self-f-injective:

(2) for any finitely generaied right ideals A and B of R and anv ¢ € R, we have
((1- (ZR(A M B) = ER(.‘\) -+ L)R(B)
{br €rrr(Rc) = Rc;

(3) Risrightselfp-injectiveand Er(ANB) = Lr(A)+Lr(B) forany finitely generated
richt ideals A and B of R.

We now consider the relation between quasi-injectivity and quasi-f-injectivity in a
special casc.

Corollary 3.4. Let M be a Noetherian right R-module which is a self-generator. Then
M is quasi-injective if and only if it is quasi-f-injective.

Proof. Since M is Noethenan, every submodule of M is finitely generated, and hence,
it is finitely M-generated, because M is a self-generator. This shows that if M is
quasi-f-injective, then it is quasi-injective. The converse is always true. : a

It is well known that a ring R is QF (quasi-Frobenius) if it is right Noetherian and
right seif-injective. As an application, we have
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Corollary 3.5. If R is right Noetherian and satisfies £(A + B) = £(A) + &(B) and
£r(c) = Rc for any finitely gencrated right ideals A, B of Rand ¢ € R, then R is a
QF-ring.
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1 Introduction

Rings over which every singular right module is injective (bricfly, right SI-
rings) were introduced and investigated by Goodearl [2]. Using the category
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o|M], the concept of Sl-modules was defined gimilarly, and a structure the-
orem for finitely gencrated quasi-projective Sl-modules was obtained (sece
{4]). Woeakly injective maodules, as a generalization of injective modules,
were introduced by Jain and Ldpez-Perinouth [5] and have been extensively
studied [6, 8, 13]. In this paper, we introduce and investigate the class of
rings whose singular right modules are weakly injective. In fact, most of our
results are proved in a more general sctting, namely for modules M whose
singular subgencrated modules are M-weakly injective. We call the former
right Swl-rings and the later right Swl-modules. These concepts may be
regarded as generalizations of right Sl-rings and weakly semisimple ringg.
Various characterizations of Swl-rings and Swl-modules are obtained and,
under an additional condition for modules, right Swl-rings and right Swi-
moditles can also be characterized in terms of semiprimitive modules. For
a right contimtons {and hence, self-injective) ring R, if R is right Swl, then
it is left SI. Finally, we obtain a necessary and suflicient condition for an
Swl-ring (resp., Swl-moclule) to be an Sl-ring (resp., SI-module).

2 Definitions and Preliminaries

Throughout this paper, 12 is an associative ring with identity and we use
Mod-R to dcnote the category of unitary right R-modules. Let M be a
right R-module. An R-module N is said to be M-generated if there is
an cpimorphismm MY — N for some index set I. If I is finite, then N
is called a finitely M-generated module. Especially, N is called an M-
cyclic module if it is isomorphic to M/L for some submodule L of M.
N is said to be M -subgenerated if it is isomorphic to a submodule of an
M-generated module. We denote by o[M] the full subcategory of Mod-R
whose objects are all AM-subgenerated modules (see [12]). M is said to be
a QI-module if cvery quasi-injective module in o[M] is M-injcctive. Let
Soc(M) and E(M) denote the socle and injective hull of M, respectively.
Following Goodecarl [2], M is said to be singular (resp., non-singular) if
Z(M) = M (tcsp., Z(M) = 0). Here, Z(M) is the singular submod-
ule {in € M |ml = 0 for somnc cssential right ideal T of R}. A ring R is
right singular (resp, non-singular) if the module Ry is singular (resp., non-
singular). N is called singular in o[M] or M -singular if there cxists a mod-
ule L in o[M] containing an cssential submodule K such that N =~ L/K.
By definition, every M-singular module belongs to a[M]. For M = Rp, the
notion “R-gsingular” is identical to the usual definition of singular right R-
modules defined above {sce [1, 2, 12]}). The class of all M-singular modules
is closed under submodules, homomorphic images, and direct sums. Hence,
every module N € o[M] contains a largest M-singular submodule, which
we denote by Z(N). In our notation, Z(NV) = Zr(N) is just the largest
singular submodule of N and Zp(N) € Z(N). If Zpm(N) =0, N is called
M -non-singular. In this paper, the term “singular subgencrated modules”
means all modules in o[M] which are M-singular.
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- Recall that for any module N € o[M], thero exista an M-injective hull
N of N which is 3, p_y gy Im(Jf), the trace of M in E(N). N is the
largest M-generated submodule of E(N) (cf. [12]).- A module N is said to
be weakly M -injective if, for every homomorphism f : M — E(N), there
exists a monomorphism o : N — E(N) and a homomorphism f : M —
N such that f = o f (sce [6] and the references therein). Note that this
concept generalizes M-injective modules, in which case we require o to be
the inclusion map. It is clear that a module N € o[M] is weakly M-
injective if and only if, for every homomorphism f : M — N, there exists
a monomorphism ¢ : N — N and a bomomorphism f : M — N such that
f =of. Note that, if N € o[M] is weakly X-injective for every X € o[M],
then N is M-injective. Fromn this fact, it leads to the following definition

(sce [11}]).

Deflnition 2.1. For a right R-module M, a module N € o[M] is called
M -weakly injective if N is weakly M™-injective for cach natural number 7.
A right R-module is weakly injective if it is R-weakly injective.

From this definition and the observation stated above, we have the fol-
lowing.

Proposition 2.2, A module N € o[M] is M-weakly injective if and only

if any finitely M -generated submodule X of N is contained in a submodule
Y of N such that Y = N.

Lemma 2.3. [11, Proposition 18] Le! M be a right R-module. An M-cyclic
module N is M-weakly injective if and only if it is weakly M?-injective.

Deflnition 2.4. A right R-module M is called weakly semisimple if every
module in o[M] is M-weakly injective, and it is called an Swil-module if
every M-singular module in o[M] is M-weakly injective. A ring R is right
weakly semisimple if every right R-module is weakly injective, and it is
called a right Swi-ring il every singular right R-module is weakly injective,

We begin with a module version of Lemma 1.8 in [6).

Lemma 2.5. Let U be Q-injective, where Q € o{M] is weakly M-injective.
Then U is Q-injective.

Proof. Suppose U is not @ injective. By Zorn’s Lemina, we have a sub-
module A of @ and a homomorphism f: A 3 U which cannot be extended
to any proper extension of A. Since A is essential in @ and M(A) — @ for
some index set A, we have an cpimorphism M — B for some submodule B
of § and B ¢ A. Since Q is weakly M-injective, B is embeddable in Q. So
U is B-injcctive. Note that AN D # 0. We extend flanp tog: B = U and
define f' : A+ B — U via a + b — f(a) + g(b), which is well defined. Thus,
f' is a proper extension of f, a contradiction. O
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Obscrve that, when U=qQ,we have that Q is Q-m_;cctwc Thus, Q

~is a dircet summand of Q, and hence, = Q since Q is essential in Q
* Thercfore, Q is M-injective.

Lemma 2.6. Every finitely generated weakly semisimple module is noethe-
rian, '

Proof. Let M be a weakly semisimple module. If Q € o[M], then Q
is M-weakly injective. If Q is also quasi-injective, then Q is M-injective
by the observation above. This shows that M is a Ql-module. Let S,
(A € A) be simple modules in o[M]. Since every semisimple module is
quasi-injective and @xea Sy € o[M], we sce that @ueaS)y is M-injective.
Thercfore, @yeaSx = BreaSyr = EBAE/\E?-;. Hence, if M is also finitely
generated, then M is noctherian. &)

Lemma 2.7. If Mg is finitely generated and M /Soc(M) is noetherian,

then ecvery finitely M -generated M -singular module has finite Goldie dimen-
sion.

Proof. Let X be a finitely M-gencrated M-singular module. Clearly, X is
linitely generated and X € o[M/K) for some casential submodule K of M.
Now X € o[M/Soc(M)] since Soc(M) C K. Since X ia finitely gencrated

and M/Soc(M) is noetherian, X is noetherian. Thus, X has finite Goldie
dimension. : O

Lemma 2.8. Let A € O’[M] Let X be a finitely M -generated submodule
of A N a submedule of XﬂA and X = N. If N is M-weakly injective,
then A ~ A’ for some A’ such that X C A' C A.

Proof: The proof is based on the idea of Lemma 2.4 in [6]. Write A=XeL
for some submedule L of A. From X C N there exists a monomorphism
o: N 5 N such that o(N) D X. Define a monomorphism 1 = 6 @14 A=
NeL- A Then X € o(N) =n(N) C 5(A) C A. (B

Lemma 2.9. Suppase every uniform M -cyclic module is M -weakly injec-
tive. Then cvery uniform module in o[M] is M-weakly injective.

Proof. Let U be a uniform module in o[M] and X a finitely M-generated
submodule of U. There exists a non-zero submodule ¥ of X and an epi-
morphism from M to Y. Now Y is M-weakly injective since it is uniform
M-cyclic. Thus, X is M-weakly injective since Y is essential in X. By
Lemma 2.8 (putting A = U and N = X), U is M-weakly injective. 0O

3 Results

A module M is said to be compressible if it is embeddable in each of its non-
zero submodules. The following theorem is the module-theoretic version of
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Theorem 2.5 in [6].

Theorem 3.1. For a finitely Qenemted right R-module M, the following
condilions are equivalent:

(1) M is weakly semisimple.
(2) BEvery finitely M-generated module is M-weakly injective and M is
noetherian.

(3) Every finitely M -generated uniform module is compress:ble and M i3
noetherian.

(4) Every finitely M-generated module is compressible.

Proof. By Lemma 2.6, we have (1)=(2).

(2)=>(3). Let U be a uniform M"™-cyclic module. Then there exists a
non-zero uniform M-cyclic submodule Uy of U. By (2), Uy is M-wcakly
injective, which implies that U is M-weakly injective. Let U! be a non-zero
subinodule of U. Then U'N U, is M-wcakly injective by Lemma 2.9, U’ is
M-weakly injective, and U C U = U;. Therefore, U is cibeddable in U,

(3)=(1). Lot U be a uniform cyclic module in o[M]. We show that U is
M -weakly injective, et K be a finitely M-gencrated submodule of U, By
(3), IC s compressible, i.c., there exists an lsomorphiam X - K' cUNK
for some K'. Let o : K' = K be an isomorphism. Since i is M -injective,
there is an extension & : U — U of . We sce that & is monic since K’ is
essential in U and o is monic. Thus, U ~ g(U) D 7(K') = K. Hence, U
is M-weakly injective. Finally, let A € g[M]. To show that A is M-weakly
injective, let X be a finitely M-generated submodule of A By Lemma 2.6,
there exists a direct sum N of uniform cyclics such that IV is essential in
X N A (which is essential in X). Thus, N and hence N are M-weakly
injective. Then Lemma 2.8 and Proposition 2.2 imply that A is M-weakly
injective.

(3)=(4). Let X be an M™-cyclic module and let IV be essential in X.
Since M ia noctherian, X has finite Goldie dimension. Then N has an essen-
tial submodule Bi, U; which is a direct sumn of uniform cyclic submodules
U;. Thercfore, X = o 1U¢ Put Xy = m(X), where 4 : X - Uy is the
natural projection. Since X is finitely M-generated, each X is also finitely
M-generated and X € &' Xi. Noting that U; N X is cssential in X; and
X is a uniform module, by (3), we have a monomorphism ¢; : X; — Uj.
Thercfore, X is embedded into N by &%, g;, showing that X is compress-
ible.

(4)=>(3). Let S be a simple right R-module. If § € o[M], then S is
M-injective. Now suppose S € o[M]. 1f S # S, since § is M-generated,
there exists an M-cyclic submodule N C 5 such that N @ S. But since 5 is
uniform, S is essential in N and then N is embeddable in S. Thus, § = N,
a contradiction. Hence, $ = 5§ and § is M-injective, i.e., M is a V-module.

Next, we show that every M-cyclic module K has finitcly generated
socle. Let X be a complement of Soc(K) in K. Hence, Soce{K) & X is



232 S. Dbompongsa, S. Plubticog, J. Sanwong, H. Tansce

*essential in K. ‘This implics that Soc(kK) is cssential in K/X. Since K/X
is compressible, we have an cmbedding K/X — Soc(K), implying that
"I/ X is a semisimple module. Thia shows that Soc(K) ia isomorphic to

K /X, and hence, is {initcly generated. Now Lemma 2 in [13) says that M
is noctherian. a

When M = R, the equivalence of (1)-(3) in the above theorem can also
be obtained by Theorem 3.4 in [14].

Theorem 3.2. For a finitely generated M -non-singular right R-module
A, the following conditions are equivalent:

(1) M i3 an Swl-module.

(2) Euwery finitely M -generated M -singular module is weakly semisimple.

(3) Every finitely M-generated uniform M -singular module is compress-
ihle and M /Soc(AM) is noetherian,

(4) Every finitely M-generated M -singular module is compressible.

Proof. (1}=(2). Let A be linitely M-generated and M-singular, and B €
olA]. Then B is M-singular, and so 3 is M-weakly injective. Since A is
finitely M-generated, B is A-weakly injoctive.

(2)=(1). Let A be a finitely generaled M-singnlar module. Then A €
o[M/K,] for some essential submodule Ky of M. Let X be a finitely M-
generated submodule of Ae a[Af]. Thus, X is a finitely generated Af-
singular module and X € o[M/K>3] for some essential submodule K7 of A.
Let K = Ky NI, Then Kois essential in M, and A, X € a[M/K]. We now
sce that A is an (A/K)-weakly injective module. Note that E(A) D A=

S ratae [(M) D Y ke JM/K)Y == A € a[M/K]. We show

X CA From X € a[M/K], we have an epimorphism (M/K)YY 5 ¥ o X
for some Y. Since X is finitely gc‘nomtr‘d we have an epimorphism B — X
where B € M/K) for somne k. Since A is M- injective, we also have some
aubmodnle € of A containing X, which is an image of (M /X)*. Therefore,

)

ST fMEY= ST f(M/K)DC DX,

[ MK E(A) FM/KA

as desired. Now A is (1\{!1()-\&!0:11{])/ injective and C is a finitely (M /K)-
generated submodule of A. Thus, by (2), we have a submodule D of A such
that D O C and D ~ A. From D,C € o[M], D CAC A, X C D, and
D ~ A, we sce that A is M-weakly injective.

For the general case, let A be an M-singular module. We show that A is
M-weakly injective. Again, let X be a ﬁnitely M- generated submodule of
Ae - o[M]. Write A=Xa L for some L C A. Note that X N A is cssential

in X since s is essential in /4 and X C A. By Lemma 2.7, X N A contains
some cssential submodule N, which is a finite ditect sum of (uniform) cyclic
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submodnlea. Note also that X ¢ N = XNnA = X. Thns, X = N. Since
N is a finftely generated M-singular module, it {8 M-weakly Injective. Dy
"Lemima 2.8, A is M-weakly injective.

(1)¢(3). 'This follows by applying (1)<(3) of Theorem 3.1 to the cate-
gory of M-singular modules.

(3)=(4). Let X be an M"-cyclic module. Since M /Soc{M) is nocthe-
rian, X has finite Goldie dimension by Lemima 2.7. Hence, X is compressible
as in the proof (3)=(4) of Theoremn 3.1.

(4)=(3). Let K bLe cssential in M and M = M/K. Note that any
finitely M-generated module is finitely M-generated and M-singular. Then
every finitely M-generated module is compressible, and henee, by (4)=(3) of
Theorem 3.1, M/ K is noctherian. Therefore, M /Soc{M) is noctherian. O

Applying Lemmmas 2.8 and 2.9, and Theorem 5.5 in [1], we can furnish
more cquivalent conditions for Theoren 3.2:
(5) M/IC is weakly semisimple for every essential submodule K of M.
(6) Every finitely M-generated M-singular module is A -weakly injective.
(7) Every M-cyelic M-singular module is weakly M 2-injective and
M /Soc(M) is noctherian.
(8) Every uniform Af-cyclic M-singular module is weakly MZ-injective
and M /Soc(M) is noctherian.

Using (5) and Theorem 3.1, one ean easily prove the following.

Corollary 3.3. For a finitely generated M-non-singular mght R-module
M, the following condilions are equivalent:
(1) M/Soc{M) ts weakly sermistmnple.
(2) M 13 an Swl-module and every finitely (M /Sac(AM))-generated um-
form module 13 compressible.
(3) M ts an Swilonodule, and for any finitely (M/Soc(A))-generated uni-
Jorm maodule U Hom (U, U)) # 0 for every non-zero submedule U

of U.

A ring R is right continuous (of. [10]) if it satisfies the following condi-
tions: ‘

(Cy) Every right ideal of 12 is essential in a direct summand of 11

(C2) Every right ideal isomorphic to a direct summand of R is itself a direct
summmand of /.

Corollary 3.4. [f K is a right continuous right Swl-ring, then 1T ts a left
SI-ring.

Proof. We first show that R is right non-singular, t.e., Z(R) = 0. We write
E(R) = E(Z2(I1N)Y & N for some non-singular fT-module N and 1 = 2 + b,
where a € E(Z(R)) and b € N. Since Z(R) is weakly [-injective, alt ig
embeddable in Z({R) and so there exists an essential right ideal I such that
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al = 0. But then I = (1 —a)] = I, and hence, I = b1 C bR C N. Since
Z{I) = InZ(R) =0, we obtain Z{R) = 0 because I is cssential in Rp.
Next, we show that ft is von Newmann regular. Let 0 # y € R and let
A = rp(y) be its right annthilator in R. 1t {ollows by Lemma 7.51 in [7]
that A is closed in Rp. By (C1}, R = A @ N for some right ideal N of
It. By (Cg), yR ~ H/A ~ N i3 a dircet summand of Rp. Hence, R is von
Neumann regular. The ring R/Soc(R) i8 von Neumann regular, as well as
right noctherian by Theorem 3.2. By Proposition 1.2 in {2], we sce that

R/Soc(R) is a semisimple artinian ring. Hence, by Corollary 3.7 in [2], R is
a left SI-ring. 0

Consider the following condition on a module M:
Every simple module in a[M] is M-cyclic. {*)

In this case, we can deduce that M is weakly semisimple or M is Swl from a
sialler subclass of modules in ¢[A], namely the subcelass of all semiprimitive
modnles. Receall that a module is said to be semiprimitive if ite Jacohson
radical is zero. When IR is a V-ring, i.c., every simple module ig injective,
cvery module is semniprimitive (sce [9]). A ring R is scmishmple artinian if
and only if every cyclic scmiprimitive It-module ts injective. If every cyclic
semiprimitive singular ft-module is injective, then R is an Sl-ring (sce [3]).

Theorem 3.5. For a finitely generated right R-module M satisfying (+),
the following condifions are equivalent:

(1) M 13 weakly semisimple.

(2) Every semiprimitive module in o[M] is M -weakly injective.

(3) Fvery M-cyclic semiprimitive module 13 weakly M?-injective and M
15 noetherian.

(4) Every uniform M -cyclic semiprimitive module is weakly M?-injective
and Al i3 noetherian.

Proof. (1y=(2). It is clear.

(2)=(3). This can be proved similarly to the proof of Lemnma 2.6 using
the remark after Lemma 2.5 and noting that cvery semisimple module is
semipriitive.

{3)=>(4). It is clear.

(1)=(1). By (*), every simple module in ¢[M] is weakly M2-injective.
Let X be a uniformm M-cyclic module. We first show that X is sciniprimitive.
If X is siinple, then we are done. If X is not simple, we apply the same
proof as for Lemma 2 in {3} to conclude that X is semiprimitive. Now by

(4), X is weakly A %-injective. Thercfore, by Theorem 3.1, M is weakly
semisimple. ]

Corollary 3.6. The following are equivalent for a hereditary noetherian
ring I
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(1) R is a right QI-ring.
(2) Ewery semiprimitive right R-module is weakly injective.
(3) Every semiprimilive left R-module is weakly injective.

Proof. This is an immediate conscquence of Theorem 3.5 since a ring is
right weakly semisimple if and only if it s left weakly semisitnple (ace [6,
Theorem 3.1]). O

Theorem 3.7. For a finitely genernted M -non-singular right R-module
M satisfying (%), the following conditions are equivalent:
(1) M is an Swl-module.

(2) Every finitely M -generated semiprimitive M -singular module is M-
weakly injective and M /Soc(M) is noetherian.

(3) Every M-cyclic semiprimitive M -singular module is weakly M?-inje-
ctive and M /Soc(M) is noetherian.

(4) Every uniform M -cyclic semiprimitive A -singular module is weakly
M2 -injective and M /Soc(M) is noctherian.

Proof. We only need to prove (4)=>(1). For this, let X be a uniform M-cyclic
M-singular module. Then X is semiprimitive and weakly M2-injective by
{4). Now apply Theorem 3.2 to sce that A ig an Swl-module. O

As all rings satisfy the condition (*), Theorems 3.2 and 3.7 can apply
immediately to all non-singular rings.

An It-module M is called a GV-module if every singniar simple R-module
is M-injective, and it is called a GCO-medule if every singular simple R-
module is M-injective or M-projective. Thus, every GV-maodule is a GCO-
module (sce [1]). The following is a necessary and sufficient condition for
an Swl-modnle to be an Sl-module. Recal!l that a module Af is called an
Sl-madule if every A -singular module is M-injeetive.

Theoren 3.8. A finitely generated self-projective M -non-singular right R-
module A is an SI-module if and only if it 15 an Swl-module and Soc(M/K)
# 0 for every proper essential submodule K of M.

Proof. We only need to prove the sufficieney. Let S be a singuiar simple It-
madule. Note that every simple R-module is M-singular or M-projective,
If S 18 Af-singular, then S is weakly M-injective and s0 M-injective gince it
is quasi-injective. This implies that Af is a GV-module, and hence, a GCO-
module. We note by Theoremn 3.2 that Af/Soc(Af) is noetherian. Hence,
by [1, 17.3], Af is an Sl-module. (]

Since every right Swl-ring is right non-singular (Corollary 3.4), we im-
mediately have the following.

Corollary 3.9. A rnight Swl-ring R is an SI-ring if and only if Soc(R/K)
# 0 for every proper essential right ideal K of R.
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