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Abstract
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This research report addresses the definition and the study of discrete general-
ized splines. Discrete generalized splines are continuous piecewise defined functions
which meet some smoothness conditions for the first and second divided differences
at the knots. They provide a generalization both of smooth generalized splines and
of the classical discrete cubic splines. Completely general configurations for steps in
divided differences are considered. Direct algorithms are proposed for constructing
discrete generalized splines and discrete generalized B-splines (discrete GB-splines
for short). Explicit formulae and recurrence relations are obtained for discrete GB-
splines. Properties of discrete GB-splines and their series are studied. It is shown
that discrete GB-splines form weak Chebyshev systems and that series of discrete
GB-splines have a variation diminishing property. The presentation is illustrated
by graphs of GB-splines. Examples of defining functions are also included.

A hyperbolic tension spline is defined as the solution of a differential multipoint
boundary value problem. A discrete hyperbolic tension spline is obtained using
the difference analogous of differential operators; its computation does not require
exponential functions, even if its continuous extension is still a spline of hyperbolic
type. We consider the basic computational aspects and show the main features of
this approach.

In future research, one could try to generalize the results obtained here to the
multidimensional case.

Keywords: Discrete generalized splines and GB-splines, recurrence relations, weak

Chebyshev systems and variation diminishing property, multipoint
boundary value problem, shape preserving interpolaion
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Introduction

Univariate splines in their simplest and most useful form are nothing more than
pieces of polynomials joined together smoothly at certain knots. They were studied
intensely in the 60s, and by the mid-70s were sufficiently well understood to permit
a fairly comprehensive treatment in book form (see [11,54,60]). Univariate splines
remain very important tools in a multitude of applications invelving curve fitting
and design. The main reason for this is their excellent approximation properties.
Splines are easy to store, manipulate, and evaluate on a digital computer.

However, polynomial splines do not retain the shape properties of the data.
This problem is known as the problem of shape preserving approximation. During
the last two decades different authors have developed various algorithms of spline
approximation with both local and global shape control. Based on spline functions,
such methods are usually called methods of shape preserving spline approximation.

One of the main applications of shape preserving spline approximation is com-
puter aided geometric design (CAGD). The idea in CAGD is to find representations
of curves and surfaces which are easy to treat on a computer, and which are easy to
render on a graphical device such as a computer screen. To be of most use, these rep-
resentations should have convenient handles consisting of a set of parameters which
can be varied by the user to make well-defined changes in the curve or surface.
The main challenge is to develop algorithms that select these parameters automat-
ically. The design of curves and surfaces plays an important role not only in the
construction of different products such as car bodies, ship hulls, airplane fuselages
and wings, propellers blades, etc., but also in the description of geological, physical
and even medical phenomena. New areas of CAGD applications include computer
vision and inspection of manufactured parts, medical research (software for digital
diagnostic equipment), image analysis, high resolution TV systems, cartography,
the film industry, etc.

In the majority of these applications, it is important to construct curves and
surfaces which have certain shape properties. For example, we may want the surface
to be positive, monotone, or convex in some sense. Standard methods of spline
functions do not preserve these properties of the data. Therefore, when fitting
spline curves and surfaces to functions and data one needs to have more refined
methods available which preserve the shape of the data. By introducing some
parameters into the spline structure, one can preserve various characteristics of
the data, including positivity, monotonicity, convexity, as well as linear and planar
sections. By increasing one or more of these parameters the curve is pulled towards
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an inherent shape, usually a piecewise linear curve, at the same time keeping the
smoothness of the curve.

Very strong requirements must be met in industrial design. Usually, a designer
provides the envelopes of a car body, ship hull, airplane fuselage, engine details of
complex shape, etc. as a discrete set of points. To produce the body one needs to
describe these points as lying on some curve, or some surface. Any discontinuities
of the first and even second derivative as well as large values of the second derivative
(i.e. of the curvature) may lead to flow separation, that is, to an increase in friction.
By this reason, the designer is often interested in a very smooth approximation
which preserves the shape of the data.

In many cases one would also like to use the shape preserving representation of
surves and surfaces to drive some manufacturing device (such as a lathe or another
cutting tool). This is usually referred to as computer aided manufacturing (CAM).

Research on constructing shape-preserving interpolatory functions started with
the spline in tension of Schweikert [55] where exponential splines were used as
approximants. This was followed by the work of Spéth [57,58], Nielson [42], Pruess
[43,44] and de Boor [11] with various exponential and cubic spline interpolants
containing “tension parameters” to control shape. All of these approximations were
interpolatory and globally C?, but strictly speaking were not local in the sense that
changing data at one point meant the entire approximation had to be regenerated.
This made automatic algorithms for choosing free parameters to control shape
(especially monotonicity) fairly complicated. McAllister, Passow and Roulier [38]
derived a method for generating shape-preserving curves of arbitrary smoothness
based on the properties of Bernstein polynomials, but to achieve C? smoothness
they had to use piecewise polynomials of degree at least four. There is also the
possibility of using piecewise rational interpolants (e.g. see Delbourgo and Gregory
[13], Gregory and Delbourgo [20]) although these are usually only C! or they are
intended for strictly monotone or strictly convex data.

In 1980 Fritsch and Carlson [18] proposed a shape-preserving interpolatory
cubic spline which was only C! globally, but consequently was local, and admitted
much simpler algorithms for the choice of free parameters to control shape (Fritsch
and Butland [17]). Renka [47] working on the exponential spline has produced an
algorithm for authomatically choosing tension parameters in the C! case together
with an iterative approach to extend this in a special manner to C?. Costantini [6)
also has families of shape-preserving interpolants based on Bernstein polynomials;
these are very simple to use but are comonotone, i.e. the spline on the ith data
interval is increasing or decreasing as is the data on that interval. Such splines have
the disadvantage that they must have slope zero at a point where the neighboring
secant lines have a sign change in their slope; hence, any local extrema of the
underlying approximation are assumed to be in the data sample. Also, to get
globally C? interpolants one must use quintic splines. Other examples of C! shape-
preserving spline interpolants are found in Burmeister, Hess and Schmidt [3], and
Schmidt and Hess [52]. There is the work of Dougherty, Edleman and Hyman
[16] where C? quintic splines are used; a fairly complete algorithm is given there

for preserving monotonicity and there is also a considerable discussion concerning
convexity for the piecewise cubic case.
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In the theory of splines mainly two approaches are used: algebraic and varia-
tional. In the first approach, splines are understood as smooth piecewise functions.
In the second approach, splines are solutions of some minimization problems for
quadratic functionals with equality and/or inequality constraints. Although less
common, a third approach where splines are defined as the solutions of differen-
tial multipoint boundary value problems (DMBVP for short), has been considered,
[22]. Even though some of the important classes of splines can be obtained from all
these schemes, specific features make sometimes the last one an important tool in
practical settings. This research report investiges this third approach and consists
of two chapters.

Chapter 1 investigates the tool of discrete generalized tension splines. Such
splines generalize the concept of discrete polynomial splines and reduce to them as
the tension parameters go to zero. We propose direct algorithms and recurrence
relations for constructing discrete generalized tension splines and generalized ten-
sion B-splines (discrete GB-splines for short). Properties of discrete GB-splines
and their series are studied. It is shown that discrete GB-splines form weak Cheby-
shev systems and that series of discrete GB-splines have a variation diminishing
property.

Chapter 2 illustrates the advantages of the finite difference approach by the
example of hyperbolic tension splines. Using a finite difference approximation of
DMBVP we obtain a system of linear equations with a pentadiagonal matrix. This
permits us to easily find an approximate solution and avoid having to calculate
hyperbolic functions. Even more, if we have a parallel machine, then we can share
the computations of the solution of our pentadiagonal system among the processors.
However, the extension of our approximate solution will be a discrete hyperbolic
tension spline with continuous divided differences instead of derivatives.

The methods of shape preserving interpolation described in this research report
were used in a package of computer programs which enable one to construct complex

multivalued surfaces. A test of this package known as the “Viking boat” can be
found in the appendix.



Chapter 1

Approximation by Discrete GB-Splines

This chapter addresses the definition and the study of discrete generalized
splines. Discrete generalized splines are continuous piecewise defined functions
_which meet some smoothness conditions for the first and second divided differences
at the knots. They provide a generalization both of smooth generalized splines and
of the classical discrete cubic splines. Completely general configurations for steps in
divided differences are considered. Direct algorithms are proposed for constructing
discrete generalized splines and discrete generalized B-splines (discrete GB-splines
for short). Explicit formulae and recurrence relations are obtained for discrete GB-
splines. Properties of discrete GB-splines and their series are studied. It is shown
that discrete GB-splines forrn weak Chebyshev systems and that series of discrete
GB-splines kave a variation diminishing property.

1.1 Introduction

The tools of generalized splines and GB-splines are widely used in solving problems
of shape preserving approximation (e.g., see [3,20,22,23,31,36,39.40]). By introduc-
ing various parameters into the spline structure, one can preserve characteristics
of the initial data such as positivity, monotonicity, convexity, presence of linear
and planar sections, etc. Here, the main challenge is to develop algorithms that
choose parameters automatically. Recently, in [5] a difference method for construct-
ing shape preserving hyperbolic splines as solutions of multipoint boundary value
problems was developed. Such an approach permits to avoid the computation of
hyperbolic functions and has substantial other advantages. However, the extension
of a mesh solution will be a discrete hyperbolic tension spline.

Discrete polynomial splines have been studied extensively. They were intro-
duced in [28] as solutions to certain minimization problems involving differences
instead of derivatives. They were connected to best summation formulae in [29],
and have been used in [27] to compute nonlinear splines iteratively. Approximation
properties of discrete splines have been studied by Lyche [25,26] and other authors
(e.g., see [11,12,34,45]). Discrete L-splines were considered in [2]. Discrete B-splines
on a uniform partition were introduced in [41]. Discrete B-splines on a nonuniform
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partition were defined in [8, p. 15]. In [4] discrete B-splines were applied to the gen-
eral area of subdivision. While discrete polynomial splines are currently attracting
widespread research interest (e.g., see [32,33,35]), discrete generalized splines and
GB-splines have been less studied. The only results we know of concern discrete
exponential Box-splines [7,38] and are therefore related to uniform partitions.

The contents of this chapter is as follows. In section 1.2 we give a general
definition of a discrete generalized spline and prove sufficient conditions for its
existence and uniqueness. Next, we construct a minimum length local support
basis (whose elements are denoted as discrete GB-splines) of the new spline space;
see section 1.3. Properties of GB-splines are discussed in section 1.4, while the
local approximation by discrete GB-splines of a given continuous function from its
samples is considered in section 1.5. In section 1.6 we derive recurrence formulae
for calculations with discrete GB-splines. The properties of GB-spline series are
summarized in section 1.7. Section 1.8 provides some examples of defining functions
that conform to the sufficiency conditions derived earlier in the paper.

-

1.2 Discrete generalized splines. Conditions of existence and uniqueness

Let a partition A:a= a:o <z < -+ < Ny = b of the interval [a,b] be given.
For fixed ‘TJ >0 and ‘TJ >0, 5 =1,14+ 1, and a function S which is defined and
continuous on the real line R we mtroduce the linear difference operators

D;1S(z) =(ABS[x — 78 2] + AF S[z, . + 7)) (1 — 8)
+ (A5, Sz - =+1v$] A1 Sz, z + 7':+1])t (1.1)
D;2S(x) =2S[z — 75, z,z + 7411 — t) + 2S[x — 75, 2,z + T, '
T €[zri,Tiy1), t=0,...,N—1,

where /\j-?" = 1—,\.{-“ = Tjﬁ‘/(TJ-I"+Tf"), j=1t,i+landt = (z—x;)/h;, hy = Ti41—z;.
The square parentheses denote the usual first and second divided differences of the
function S.

We associate to A a system of functions {1, z, ®;,¥;},7=0,..., N — 1, which
are defined and continuous on IR and for given i are linearly independent on the
interval [z, Zi+1]. The functions ®; and ¥; are subject to the constraints

Bi(zig1 — 7)) = Pilzig1) = Pulwigr + 78) =0, D;o®i(x:) =1, (1.2)
Wi(z; — T,- ‘Y = Vi(zi) = Wiz + 'r,- ‘Y =0, i,2‘1’:‘(1‘=‘+1) = 1. .

Any element S; of the linear space T; spanned by the four functions 1, z, &;
P; can be uniquely written as follows

Si@) =5:(x)(1 — ) + Silzip)t + DiaSi(z)[®i(z) — ule)(1-0)]
+ D; 2Si(zi41)[¥i(z) — Ui(zi41)t] (1.3)
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1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 [¢]
4] 1 2 3 4 5 6 ¢ 1 2 3 4 5 6
(a) (b)

Fig. 1.1. The discrete GB-splines B; 2, B; 3, and B; (from left to
right) on a uniform mesh with step size h; = 1, no tension
_ and discretization parameter v = 0.1 (a) and 7 = 0.33 (b).

1 1 m
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
|
0 0
Y 1 2 3 4 3 2 0 1 2 k| 4 5 6
(a) (b)

Fig. 1.2. Same as Fig. 1.1, but with discretization parameter 7 = 0.5
(a) and with tension parameters ¢; = 50 for all < (b).

1.7 Series of discrete GB-splines (uniform case)

Let us suppose that each step size h; = z;,1 — z; of the mesh A :a =129 < 1 <

| -+ < zny = bis an integer multiple of the same tabulation step, 7, of some uniform
| mesh refinement on [a, b].

. For 8 € IR, T > 0 define

Re, = {#+i7: 7 is an integer}

and let IRgo = IR. For any e,b € IR and 7 > 0 let

la,b]; = [a,b) N Ry, .




- 17 -

The functions Bj 2, Bja, and B; with 7% = 7/% = 7, j = 4,4+ 1 for all
i are nonnegative on the discrete interval [a,b],. This permits us to reprove the
main results for discrete polynomial splines in [42] for series of discrete generalized
splines. Even more, one can obtain the results of generalized splines in [19] from the
corresponding statements for discrete generalized splines as a limiting case when
T — 0.

In particular, if in (1.25) and (1.34) we have coefficients bgk) >0, k=0,1,2,
j=—34+k,...,N—1, then the spline S will be a positive, monotonically increasing
and convex function on [a, b),.

Let f be a function defined on the discrete set [a, b],. We say that f has a zero
at the point z € [a, b}, provided

f(x)=0 or f(zx—7)-f(z)<O.

When f vanishes at a set of consecutive points of [a, b],,say fisOat z,...,z+
(r—17,but f(zx —7)- f(x+r7) # 0, then we call the set X = {z,z+7,..., 20+
{r — 1)7} a multiple zero of f, and we define its multiplicity by

T, if flz —71)- f(z+r7) <0 and 7 is odd,
Zx(f)=4q 1 if f(x —7)- f(x+r7) > 0 and r is even,
r 4+ 1, otherwise.

This definition assures that f changes sign at a zero if and only if the zero is of odd
multiplicity.

Let Zj, 1), (f) be the number of zeros of a function f on the discrete set [a, b],,
counted according to their multiplicity. Let us denote DfS(z) = S[z — 7, z].

Theorem 4. (Rolle’s Theorem For Discrete Generalized Splines.) For any
S € SPG,

Zta,), (DT S) 2 Zia ). (S) — 1. (1.35)

Proof: First, if S has a z-tuple zero on the set X = {z,...,z+(r —1)7}, it follows
that DTS has a (z — 1)-tuple zero on the set X/ = {z+7,...,z+ (r — 1)7}. Now
if X! and X? are two consecutive zero sets of S, then it is trivially true that D{S
must have a sign change at some point between X! and X2. Counting all of these
zeros, we arrive at the assertion (1.35). This completes the proof. (e}

Lemma 1.4. Let the functions D;2®; and D;»V; be strictly monotone on the
interval [z;, z;4+1] for all i. Then for every S € SP which is not identically zero on
any interval [z;,Zi41])-,1=0,...,N — 1,

Z[a_‘;:,]f (S) < N + 2.

Proof: According to (1.30) and (1.34), the function D25 has no more than one
zero on [z, x;y1), because the functions D; 2®; and D; »V; are strictly monotone
and nonnegative on this interval. Hence Zla,p),(D2S) < N. Then according to the
Rolle’s Theorem 1.4, we find Z,4) (S) < N + 2. This completes the proof. )

Denote by supp.B; = {x € R,,, |Bi(z) > 0} the discrete support of the spline
B;, i.e. the discrete set (z; + 7, z;pq — 7)+.
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Theorem 1.5. Assume that (_3 < {_2 < --+ < (n_1 are prescribed points on the
discrete line Rq,-. Then

D = det(B;(¢;)) >0, i,j=-3,...,N—1

and strict positivity holds if and only if

¢ € supp.B;, i=-3,...,N —1. (1.36)

The proof of this theorem is based on Lemma 1.4 and repeats that of theo-

rem 8.66 in [42, p. 355]. The following three statements follow immediately from
Theorem 1.5.

Corollary 1.2. The system of discrete GB-splines {B;}, j = —=3,..., N — 1, asso-
ciated with knots on IR, ; is a weak Chebyshev system according to the definition
given in [42, p. 36], i.e. for any (_3 < {(_2 < --- < (ny_1 in R, we have D > 0
and D > 0 if and only if condition (1.36) is satisfied. In the latter case the discrete

generalized spline S(z) = Z;-V:—_la b;B;(z) has no more than N + 2 zeros.

Corellary 1.3. If the conditions of Theorem 1.5 are satisfied, then the solution of
the interpolation problem

S(G)=fi, i=-3,....,N—-1, fieR (1.37)
exists and is unique.

Let A = {a;;},i=1,...,m,j=1,...,n, be a rectangular m x n matrix with
m < n. The matrix A is said to be totally nonnegative (totally positive) (e.g., see

[16]) if the minors of all order of the matrix are nonnegative (positive), i.e. for all
1 < p <m we have

1<4; <+ < iy <,

det(a;, ;) = 0 (> 0) for all )
e(a_,) ( ) ra 1<ji<- < jp <.

Corollary 1.4. For arbitrary integers =3 < v_3 < -+ < vp_4 < N — 1 and
(-3 < (_2 <+ <(p-g inRg + we have

D, =det{B,,((;)} =0, i,j=-3,....,p—4

and strict positivity holds if and only if

CiGSUppTBVI, i=_3’--.,p_4.

i.e. the matrix {B;({)}, 4,5 = —3,..., N — 1 is totally nonnegative.

The last statement is proved by induction based on Theorem 1.5 and the
recurrence relations for the minors of the matrix {B;(¢;)}. The proof does not
differ from that of Theorem 8.67 described in {42, p. 356].
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Since the supports of discrete GB-splines are finite, the matrix of system (1.37)
is banded and has seven nonzero diagonals in general. The matrix is tridiagonal if
(i = xiqo,t=-3,...,N— 1.

An important particular case of the problem, in which S'(z;) = f!, i =0, N,
can be obtained by passing to the limit as {_3 — (_2, {y—1 — (Nn—2.

De Boor and Pinkus [9] proved that linear systems with totally nonnegative
matrices can be solved by Gaussian elimination without pivoting. Thus, the system
(1.37) can be solved effectively by the conventional Gauss method.

Denote by S~ (v) the number of sign changes (variations) in the sequence of
components of the vector v = (v1,--+,vn), with zeros being neglected. Karlin [16]
showed that if a matrix A is totally nonnegative then it decreases the variation, i.e.

ST(Av) < S7(v).

By virtue of Corollary 4, the totally nonnegative matrix {B;({)}, 4,7 = —3,.
N — 1, formed by discrete GB-splines decreases the variation.

) For a bounded real function f, let S7(f) be the number of sign changes of the
function f on the real axis IR, without taking into account the zeros

ST(f) = sup STIf(C)y - Flé)], << - <a.

ey

Theorem 1.6. The discrete generalized spline S(z) = Z;-V:__la b;B;(z) is a vari-

ation diminishing function, i.e. the number of sign changes of S does not exceed
that in the sequence of its coefficients:

N-1
3_( Z b_fB_f) <857(b), b={(b-z,...,bn-1).

j=—3

The proof of this statement does not differ from that of Theorem 8.68 for
discrete polynomial B-splines in {42, p. 356].
By Theorem 1.6, the spline

N-1
Si(x) = D> flyj+2)B;(z)

j=-3
is a variation diminishing function. It enables us to write the inequalities
ST(S5) < ST(F) < S7(f),

where £ = (f(y-1),..., f(ynvs1))-

Since in addition by Theorem 1.3, the locally approximating discrete general-
ized spline Sy is also exact for polynomials { of first order, we arrive at the inequality

ST(Sy~1)=5(S;-) <5 (f - D).
Thus, the following statement is true.

Theorem 1.7. Let a continuous function f be given by its samples flyg), 7 =

-1,...,N+1. Ifb; = f(yj+2), = =3,...,N — 1, then the locally approximating

discrete generalized spline Sy intersects an arbitrary straight line at most as often
as the function f.
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1.8 Examples of defining functions

Let us give some choices of the defining functions ®; and ¥; for discrete generalized
splines that conform to the sufficiency conditions derived earlier in the paper.
Putting

i(z) = ¥i(t)h2 = (g, 75, 7, 0OR2,  ®i(z) = (ps, 758, 75,1 — ) A2,
T [ i+1 t+1 1

L . ~R; ; . ..
=i, 7Y =7 §=1444+1 0<pi,q < oo,

we consider some possibilities for choosing the functions ; which, due to the con-
straints (1.2), satisfy the conditions

Pi(—7) = 9:(0) = (7)) = 0, Digr29:(1) = A2 (1.38)
1. Discrete rational spline with linear denominator:

P (R i (i
_ B =G oy

2. Discrete rational spline with quadratic denominator:

e T = 7
'ﬁbz(t) - Ct 1 +q;~t(1 — t)

3. Discrete exponential spline:
Pi(t) = Ci(t + 'f',-L‘)t(t — 'f'f{")e:z:p( —qi(1— t))
4. Discrete hyperbolic spline:

sinh g; 'f',-R"
—
75

¥;(t) = Ci1[sinhgit — ¢

sl
] + Ci2[coshgit — 1 — £Cosh q:;‘_ 1] .
74

5. Discrete cubic spline with additional knots:
o) = LEZ B TN = B) 4 (8 = B — 1Y)
2 31— Bi) + Eir1 — & =

g =i~k j=di+1 fi=1-(1+q)"Y E, =max(0,E).

7

The points z;+a;h; (s = (1+p;)~ 1) and z; 4 B;h; fix the position of two additional
knots of the spline on the interval [z;, z;;1]. By moving these knots one can perform
a transfer from a discrete cubic spline to piecewise linear interpolation.

6. Discrete spline of variable order:

Pi(t) = Ci(t + 7F)th (¢ — #7), ki=1+44,.

The constants C; in the expressions for the function i; above are calculated
from the condition (1.38) for the second divided difference of ;. To find C; ks
k = 1,2, one needs additionally use the condition w,-(—':“"-L") = 0. It is easy to check

tl}fxt in a;tl_l cases 1.-6. we get the corresponding defining functions in [21] by setting

T =0=0,=151+ 1.



Chapter 2

Difference Method for Constructing
Hyperbolic Tension Splines

In this chapter a hyperbolic tension spline is defined as the solution of a dif-
ferential multipoint boundary value problem. A discrete hyperbolic tension spline
is obtained using the difference analogous of differential operators; its computation
does not require exponential functions, even if its continuous extension is still a

spline of hyperbolic type. We consider the basic computational aspects and show
the main features of this approach.

2.1 Introduction

Spline theory is mainly grounded on two approaches: the algebraic one (where
splines are understood as smooth piecewise functions, see e.g. [54,60]) and the vari-
ational one (where splines are obtained via minimization of quadratic functionals
with equality and/or inequality constraints, see e.g. [31]). Although less common, a
third approach where splines are defined as the solutions of differential multipoint
boundary value problems (DMBVP for short), has been considered, [22]. Even
though some of the important classes of splines can be obtained from all these
schemes, specific features make sometimes the last one an important tool in prac-
tical settings. We want to illustrate this fact by the example of hyperbolic tension
splines. ‘

Introduced by Schweikert in 1966, [55], hyperbolic tension splines are solutions
of DMBVP where the differential operators depend on tension parameters. Their
tension properties (that is the possibility of pulling the curve toward a piecewise
linear function) have kept hyperbolic splines popular (see for example [25,47,48,50]
and references quoted therein) in shape-preserving interpolation and/or approxi-
mation. Unfortunately, it is difficult to work with hyperbolic splines for small or
large values of the tension parameters. For this reason, in spite of the presence of
refined algorithms for their calculation [48], hyperbolic tension splines were forced
out by rational splines {see for example [13, 27]) in practical applications.

We observe that for practical purposes it is often neccessary to know the val-
ues of the solution S of a DMBVP only over a prescribed grid instead of its global
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In addition, the function D, B; satisfies to the relation

D;B;(z) = Bia(z) Bi+1,3(37),

- cerns (2.38)
where
( Cj%‘l’j[x—Tj,SC“i-Tj], T € [xj,ZT541),
1+ c}j@jﬂ[x = Ti+1, T + Tjt1]
Bja(z) = —aﬁ‘l’jﬂ[ﬂ? = Ti+L T+ Tl T € [T, Ti42), (2.39)

1
_Cj-{-—l,:zq)j"'z[x — Tj+2, T+ Tj+2], TE [$j+2’ $.1'+3)’
0, otherwise.

“

Functions B; 3 and B; 4 = B; possess many of the properties inherent in usual
discrete polynomial B-splines. We collect their characteristics in the next theorem
which can be proved by using the explicit formulae (2.33), (2.36), and (2.39) for
discrete HB-splines B, 7 = 2,3, 4, and the relations (2.37) and (2.38).

Theorem 2.1. The functions B, x, k = 3,4 have the following properties:

(a.) Bj,4($) >0 forxe (Ij + Ty, Tj44 — Tj+4), and BJ',4(‘.'L‘) =0ifz ¢ (.’L‘j,.’l?j+4),
Bj,3($) >0 forxz € (:L'_,-,a:_,-.,.;;), and B_,-,g(:c) =0ifx ¢ (a:,-,a:j+3);

(b) B, 4 satisfies the smoothness conditions (2.14);

(c) Bja satisfies the first and second smoothness conditions (2.14);

(d) N _,Bja(x) =1 for z € [a,b],
Q;lxr — 15,z + Tj] = -Cj_1,2Bj_2,3(.7J), Vilz - 15,z + Tj] = ¢;j,2B; 3(x)
forx € [xj,241), 7 =0,...,N;

(e) E;-V:__s y}7+2Bj,4(:c) =z",r=0,1 for x € [a,b),
®;{z) = cj-1,2¢j-2,3B;-3,4(x), ¥;(x) = ¢;2¢;,3B;4(x)
forxz € [.‘.Dj,l‘j.{.ﬂ, 3=0,...,N.

(a) (b)
Figure 2.1. The discrete HB-splines B; ¢, k = 2,3, 4 (from left to right) on a uniform

meslB \g:i”tl(lbs;tep size h; = 1, no tension and discretization parameter 7 = 0.1 (a) and
T = U. .
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!Figure 2.2. Same as Figure 2.1, but with discretization parameter v = 0.5 (a) and

- with tension parameters p; = 50 for all 1 (b).
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Figure 2.3. The discrete HB-splines B; 4 on a uniform mesh (a) and on a nonuniform

‘mesh (b). The asterisk * denotes the z;. For both plots p; = 2 and n; = 2.

Figures 2.1 and 2.2 show the graphs of discrete HB-splines B;x, k = 2,3,4
(from left to right) on a uniform mesh with step size h; = 1 and with ; = 7 for all
i. We have chosen discretization parameters 7 = 0.1 (Figures 2.1(a) and 2.2(b)),
7 = 0.33 (Figure 2.1(b)) and 7 = 0.5 (Figure 2.2(a)) for ¢;(¢) from (2.28). In
figures 2.1 and 2.2(a) we have parameters p; = 0, that is, we have conventional
discrete cubic B-splines (e.g., see [33]). Visually, the presence of intervals where
the B-spline B; 4 is negative is more visible with growing discretization parameter
7. In figure 2.2(b) the tension parameters are p; = 50 for all 7, whence the shape of
the graphs is practically unchanged when 7 increases from 0.1 to 0.5. As the limit
for p; = oo we obtain the impulse function for B; 2, the “step-function” for B;.s
and the “hat-function” for B; 4 (all of height 1).

Figure 2.3 shows the graphs of discrete HB-splines B; 4 on a uniform mesh (a)
and on a nonuniform mesh (b), where the asterisk * denotes the z;. For both plots
p; = 2 and n; = 2.

Using the approach of chapter 6, it is easy to show that the functions Bj,
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j = —3,...,N, have supports of minimum length, are linearly independent and
form a basis in the space SP¥. So any discrete hyperbolic tension spline U € SPH
can be uniquely represented in the form

N
U(z) = > b;Bj(z) (2.40)

j=—3

with some constant coefhicients b;.
Applying formulae (2.37) and (2.38) to the representation (2.40) we obtain

N N
DiU(z) = 3 bBja(z), AU()= > 5)B; (), (2.41)
j==2 j=-—1
where

(k—1) (k—1)
- ORI Ml '
2

, k=12 5% =b;. (2.41a)

2.5.8 Formulae for Local Approzimation by Discrete HB-Splines

If the coefficients b; in (2.40) are known then by virtue of formula (2.33) we can
write out an expression for the discrete hyperbolic tension spline U on the interval
[z, zi4+1], which is convenient for calculations,

U(z) = bi—z + bV, (z — ys) + b8, ®;(z) + D T (2), (2.42)

where b(k) k = 1,2, are defined in (2.41a).

The representations (2.40) and (2.42) allow us to find a simple and effective
way to approximate a given continuous function f from its samples.

Theorem 2.2. Let a continuous function f be given by its samples f(y;), j =

~1,...,N + 2. Then for b; = f(y;+2), j = —=3,..., N, formula (2.40) is exact for
polynomials of the first degree and provides a formula for local approximation.

Proof: It suffices to prove that the identities

D Ya2Bj(z) =2, r=0,1 (2.43)
j=-3

hold for z € [a, b]. Using formula (2.42) with the coefficients b;_» = 1 and b;_5 = y;,

J=1i—1,%,i+ 1,7+ 2, for an arbitrary interval [z;, z;1,], we find that identities
(2.43) hold.

For b;_2 = f(y;), formula (2.42) can be rewritten as

Ulz) =f(v:) + flyi, viral — i) + Wit1 — vie1) F¥ie1, ¥, yi—f—l]c,;___le(I’i(I)
+ (Yigo — yi)f[yi,y£+1,yi+2]czgl‘1’i(:c), x € [T, Tiga]-
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This is the formula of local approximation. The theorem is thus proved. O

Corollary 2.1. Let a continuous function f be given by its samples f; = f(x;),
j=—=2,...,N+ 3. Then by setting

1

Cj—1,2

bji_2 = f; — (‘I’j—l(xj)f[xj,xjﬂ] — ‘I’j(mj)f[ffj—hmj]) (2.44)

in (2.40), we obtain a formula of three-point local approximation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and z as f.
Then according to (2.44), we obtain b;_2 = 1 and b;_2 = y; and it only remains to
make use of identities (2.43). This proves the corollary. O

Equation (2.42) permits us to write the coefficients of the spline U in its rep-
resentation (2.40) of the form

by = {U(yj) — A1 U(z5-0)P5-1(y5) — AjU(z)¥5-1(y;), v <z, (2.45)

U(y;) — AjU(z5)25(y;) — Aj+1U(z541)¥5(y5),  y5 = x5.

Using this formula we obtain bj_2 = U(y;) + O('H?), h; = max(hj_1,h;). Hence
it follows that the control polygon (e.g., see [21]) converges quadratically to the
function f when b;_o = f(y;), or if the formula (2.44) is used. Formulae (2.42),
(2.43), and (2.49) generalize their continuous equivalents developed in chapter 6.

2.6 Computational Aspects

The aim of this section is to investigate the practical aspects related to the
numerical evaluation of the mesh solution defined in (2.9).

A standard approach, [48], consists of solving the tridiagonal system (2.15) and
then evaluating (2.13) at the mesh points as is usually done for the evaluation of
continuous hyperbolic splines. At first sight, this approach based on the solution of a
tridiagonal system seems preferable because of the limited waste of computational
time and the good classical estimates for the condition number of the matrix in
(2.15). However, it should be observed that, as in the continuous case, we have to
perform a large number of numerical computations of hyperbolic functions of the
form sinh(k;t) and cosh(k;t) both to define system (2.15) and to tabulate functions
(2.13). This is a very difficult task, both for cancellation errors (when k; — 0) and
for overflow problems (when k; — o00). A stable computation of the hyperbolic
functions was proposed in [48], where different formulae for the cases k; < 0.5 and
k; > 0.5 were considered and a specialized polynomial approximation for sinh(-)
was used.

However, we note that this approach is the only one possible if we want a
continuous extension of the discrete solution beyond the mesh point.

In contrast, the discretized structure of our construction provides us with a
much cheaper and simpler approach to compute the mesh solution (2.9). This can
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be achieved both by following the system splitting approach presented in Section
2.3. or by a direct computation of the solution of th linear svstemn (24600 02 w1

As for the system splitting approach presented i Scction 2.3 the folloawine
algorithm can be considered.

Step 1. Solve the 3-diagonal system (2.15) for M, 7= 1. ... N

Step 2. Solve N + 1 3-diagonal systems (2.11) for M, ;= 1..... re, — 1.
t=0,.... N,

Step 3. Solve N + 1 3-diagonal systems (2.12) for u,,. 5 = 1... .. e 1.
t=0,...  N.

In this algorithm, hyperbolic functions need only be computed in step 1. Fur-
thermore, the solution of any system (2.11) or (2.12) requires 8¢ arithmetic opera-
tions, namely, 3¢ additions, 3¢ multiplications, and 2q divisions [60], where ¢ is the
number of unknowns, and is thus substantially cheaper than direct computation by
formula (2.13).

Steps 2 and 3 can be replaced by a direct splitting of the system (2.6) (2.8)
into N 4+ 1 systems with 5-diagonal matrices

ui0 = fin Aiugo = M,
Ajug; — T Aju, 3=0, j=1,...,ny—1, ¢=0,....N. (2.406)
L9

Uin, — f:'+1, Aiui,n, = M,

Also, in this case the calculations for steps 2 and 3 or for system (2.46) can be
tailored for a multiprocessor computer system.

Let us discuss now the direct solution of system {2.6)-(2.8) which, of course.
only involves rational computations on the given data. In order to do this in the next
subsections we investigate in some details the structure of the mentioned system.

2.0.1 The Pentadiagonal System

Eliminating the unknowns {w; —,. 2 = 1...., NP and {u, 40 1 = 0000
N — 1} from (2.7). determining the values of the mesh solution at the data sites
r; by the interpolation conditions and eliminating wo —1. vnx. 1 from the end
conditions (2.8) we can collect (2.6) (2.8) into the system

Au — b, (

e
~1

where

u = {upr....s W =1 M- s U2 - UNYe o N g )
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A is the following pentadiagonal matrix (see also Figure 2.3(a)):

an
by — 1

b — 1 ag 1
[234) b() (410 1
1 ag bo Qg 1
1 (0¥ bo (4%)]
Il a0 Mong—1 9Y0mg—1
d1,1 1.1 a, 1
a, by a) 1
1 any by apn
1 any by
L 1 aN
with ) ’
a.-=—(4+w,-),b,—=6+2w,—,w,-=(n—') 1 =0, , N,
1—p pi — 1
i~ -1 = 2wi_ v i1 =6 4 2w;
Mi—1n,_1—1 =6+ 2w 1+1+Pi i1 +w+p‘-+l
2 p?
i — =, 01 =2——,
dimtniam pi(pi + 1) ! pi +1
Pi = L ’ i:]-:"-vN;
Ti—1
and
b =(—(ao+ 2)fo — Tgfg: —~f0, 0, ..., 0, —f1y, ~Y0,m0—1 f1, =711 f1, — [1, 0,
.. ':01 _fN+1:—(aN + 2)fN+1 - le\ffgr-i-l)T?
with
Yi—lnio1—1 = {4+ wi—y +2 _p'),
1 1
Yil = —(4+w,-+2(p,--—1)), t1=1,...,N.

2.6.2 The Uniform Case

From the practical point of view it is interesting to examine the structure of
A when we are dealing with a uniform mesh, that is 7; = 7. In such a case it is

immediately seen that A is symmetric. In addition, following [34] we observe that

A = C + D, where both C and D are symmetric block diagonal matrices. To be

more specific,

Co
Ci

y C,‘ = B? — w,-B,-,

Cn



- 3% -

where B; is the (n; — 1) x (n, — 1) tridiagon:l i

and

0 0
5 0 04

The eigenvalues of C, A (C), are the collection of the eigenvalues of C;. Since, (see

[34]), ‘
_ _ JTY L L
A;(Bi) = 2(1 Ccos nr)’ 7=1,...,n;—1,

T

we have

A (Cy) = 05 ) 2w (1 - cos2Z) =1 I
5( i)—4(l—(0.s“—_ + 2wl —cos— ) 7 =1.....n, — L.

i 1,

In addition, the ecigenvalues of D are 0 and 2. thus we deduce from a corollary
of the Courant-Fisher theorem [19] that the cigenvalues of A satisfy the following
mmequalities

A(A) 2 A(C) = min A, (C,) = min [4(1 — cos ”)3 + 22, (1 = con l)]

.7 I, ",

Henece. A is a positive matrix and we directly obtain that the pentadiagonal lincar
syvstem hias a unique solution.

In addition. by Gershgorin's theorem. Ap(A) < max[16+4w,|. Then we obtain
the following upper bound for the condition number of A which 15 independent of
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the number of data points, N + 2, and which recovers the result presented in [34]
for the limit case p; =0, 1 =0,..., N,

-1 max; [16 + 4(pi/n:)’]
Aol A oo < min; [4(1 — cos (7/n3))2 + 2(p:i/n:)%(1 — cos (W/n,—))]
_mnax, [16.+ d(ps/n)7)
= ming(1/n;)4[71 + (7p:)?]’ (2.48)

Summarizing, in the particular but important uniform case we can compute
the mesh solution by solving a symmetric, pentadiagonal, positive definite system
and therefore, we can use specialized algorithms, with a computational cost of 17¢
arithmetic operations, namely, 7q additions, 7¢ multiplications, and 3g divisions
[60], where g is the number of unknowns.

Moreover, since the upper bound (2.48) for the condition number of the matrix
A does not depend on the number of interpolation points, such methods can be
used with some confidence.

In the general case of a non—uniform mesh, the matrix A is no longer sym-
metric, and an analysis of its condition number cannot be carried out analytically.
However, several numerical experiments have shown that the condition number is
not infiuenced by the non—symmetric structure, but does depend on the maximum
number of grid points in each subinterval, exactly as in the symmetric case. In
other words, symmetric and nonsymmetric matrices, with the same dimension and
produced by difference equations with the same largest n;, produce very close con-
dition numbers. Non—uniform discrete hyperbolic tension splines ha.ve in fact been
used for the graphical tests of the following section.

2.6.3 System Splitting

Sometimes the number of unknowns in (2.47) can be very large (for example for
generating a grid in bivariate interpolation) and then even the linear computational
cost of the solution of the pentadiagonal system may turn out to be too expensive.
However, as for the two first approaches proposed at the beginning of this section
for evaluating the mesh solution, if we have a parallel machine we can easily share
the computation of the solution of our pentadia-
gonal system among the processors as outlined below.

The basic idea is to transform A, which, for N = 2, n; = 18 has the form shown
in Figure 2.4(a), into the form K (see Figure 2.4(b}). Setting r; = Zv_o(n,, -
1), we note that the rows r; + 1,...,7; + n; — 1 of A describe equations (2.6)
for the subinterval [z;,z;y1]. If we extract from K the rows r; + 1,...,r; + 4,
t=0,...,N, we get a block matrix E of the form shown in Figure 2.5(a). The
corresponding linear system has few equations, and having solved it, it is possible
to solve in parallel the N + 1 linear systems obtained from the “remaining” matrix
F of Figure 2.5(b) by extracting its independent blocks.

The problem now is how to move from A to K. From Sections 2.2 and 2.3
we have the following two facts. Having in mind the structure of A and the corre-

sponding Figure 2.4, let us consider the section given by rows r; +1,...,7r;;;. We
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(a) (b)
Figure 2.4. (a) The form of A for N = 2, n; = 18. (b) The matrix K.
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Figure 2.5. (a) The block matrix E. (b) The block matrix F.

note that the entries of the columns with index r; 4+ 3,...,7;41 — 2 are 1, a4, b;, a4, 1
which are the coefficients of the difference equation (2.6). On the other hand, it is
shown in Section 2.3 that any function of the form

Ti(z) = c1(1 — t) + cat + capi(l — t) + capi(t) , (2.49)
is a solution for (2.6); therefore if we multiply the row of index r;+3,j=1,...,n;—
1, by Ti(z: ;) = YTi(zi+j7) and then add all these rows, then the contribution of all
the columns from r;+3 to rj4+1—2 sums up to zero. The idea for obtaining the matrix
K from A is the following: we replace the four rows of index r;+1,7;+2,7; +3,7; +4
with the sumn of the rows from r; +1 to r;4y multiplied by the values assumed in z;;
by four linearly independent functions of the form (2.49). The remaining question
is how to choose these functions. Several numerical experiments have shown that
the lowest condition number of the matrix K (which is in general larger than that

of A) is achieved when we use the cardinal functions for Lagrange interpolation at
the points z,, closest to z;, z; + hi/3,zis1 — hi/3, Tiy1.
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2.7 Graphical Examples

The aim of this final section is to illustrate the tension features of discrete
‘lhyperbolic tension splines with some (famous) examples. Before, we want to notice
that the continuous form U; of our solution given in (2.13) has the good shape-
preservmg properties of cubics (see e.g. [48]) in the sense that U; is convex (con-
cave) in [z;,z¢41] if and only if M;;; > 0 (£ 0), 7 = 0,1, and has at most one
inflection point in [z, Z;4+1]. In order to preserve the shape of the data, we there-
fore simply have to analyze the values A;u; 0 and Aju,,, and increase the tension
parameters if necessary. All the strategies proposed for the automatic choice of ten-

. |sion parameters in continuous hyperbolic tension spline interpolation can be used
in our discrete context, see e.g. [30].
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(a) (b)

Figure 2.6. (a) The radio chemical data with natural end conditions Mg = M4 =

0. Interpolation by discrete cubic spline (p; = 0). (b) A magnification of the lower
left corner.
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(a) (b)
Figure 2.7. The same as Figure 2.6 with pg = p; =300, p;, = 15,1 =2,...,7

In our first example we have interpolated the radio chemical data reported in
Table 2.1. The effects of changing the tension values p; are depicted in Figures 2.6-
2.7. We have adopted a non-uniform mesh, assigning the same number of points
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,LSO) to each interval of the main mesh, and imposed natural end conditions, that
;\is, following formulae (2.15), My = Mn4+1 = 0.

Table 2.1. Radio chemical data:

i z; | 7.99 8.09 3.19 8.7 9.2
fi 0 2.76429E-5 | 4.37498E-2 | 0.169183 | 0.469428

Zi 10 12 15 20
fi | 0.943740 | 0.998636 | 0.999916 | 0.999994

l ; igure 2.6 is obtained setting p; = 0, that is considering the discrete cubic spline
interpolating the data. In Figure 2.7 a new discrete interpolant with po = p1 =

300, p; =15, i = 2,...,7, is displayed for the same data, and the stretching effect

of the increase in tension parameters is evident.
|

(a) (b)
. Figure 2.8. Akima’'s data with natural end conditions. (a) Discrete interpolating
cubic spline (p; = 0). (b) Discrete hyperbolic spline with ps = pg = pg = 10.

In the second example we have taken Akima’s data of Table 2.2 and constructed

discrete interpolants with 20 points for each interval, with natural end conditions
My = My, =0.

Table 2.2. Akima’s data [1]:

xz; | 0] 2] 3 5] 6] 8| 9 [11 12|14 [15
[fi 1010 |10 [10 [10 [10 [ 10.5 [ 15 | 50 | 60 | 85

Figure 2.8(a) shows the plot produced by a uniform choice of tension factors,
namely p; = 0. Figure 2.8(b) shows a second mesh solution, which perfectly repro-

duces the data shape, where we have set ps = pg = pg = 10 while the remaining p,
are unchanged.



Critique

In this research report we considered 1-D problem of shape-preserving inter-
polation only. However in many practical application it is important to constract
a surface defined on a two-dimensional domain which has certain shape properties.
For example, we may want the surface to be positive, monotone, or convex in some
sense. The results obtained in this research report can be also used for solving
such problem. By this reason 2-D problem of shape-preserving interpolation is for-
mulated here as a Differential Multipoint Boundary Value Problem (DMBVP for
short) for thin plate tension spline. For a numerical treatment of this problem,
one can consider its finite-difference approximation. This gives a system of linear
algebraic equations which can be solved either by direct and iterative methods. As
a direct method, we suggest to consider a block Gaussian elimination. For iterative
solution of the obtained linear system one can apply Successive Over-Relaxation
(SOR) method. Finite-difference schemes in fractional steps [45] should also prove
their efficiency in the numerical treatment of this DMBVP.

Let a rectangular domain Q@ = QU be given where
Q={(r,y)|a<z<b c<y<d}
and T is the boundary of . We consider on {2 a regular mesh A = A, x A, with

Ara=x<z1 < -<ITNy1 =0Db,
Ayic=y <t < - <ym41 =d,

which divides the domain O into the rectangles Q;; = Q;; |JI';; where

Qij ={(IL‘, y) | TE (Iis $i+1)1 yc (yj,y3+1)}

and I';; is the boundary of Q;;,¢=0,...,N,7=0,..., M.
Let us associate to the mesh A the data

(zi,¥j, fi;), 1=0,...,.N+1, j=0,...,M+1,

29, i=0,N+1, 5=0,....,M+1,
(0I2) y — R

02, i=0,....N+1, j=0M+1,
(2,2)

ij 3 7,=0,N+1, J:O’M.}_l
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It is convenient for us to colleet this data m the following table.

—

2 (0.2 (U2 N (0,23 (2.2)
Jaarsa fu AL+ 1 N M+1 Jn N Al | TN AT+
(0 ‘ (2,0}
fﬂ_;’\[+l | fﬂ..’\!+1 fl.;‘.[+1 fN_AI+1 fN+1.f\!+1 N1 Af41
(2.0 l (2.0}
BVRNY: | fooar Jiar I IS, NA1ar
I
(2.0) (2.0)
l 01 ‘ fl.l f.r'\".l .[N+1.1 N1
2o (0.2) (0.2 (0.2) £ (2.2)
oo 0.0 1.0 N N41.0 fniio

f[sz. y}] =flr,

~'£/_3') = flj'

We mtroduce the following notations for divided differences

flaigr Typhy Y “f[fi,---J?t k—1-Yy
f[Tt """" Iz-yk-yj]: [ + t ‘ J] + 3]1
Lok — I
k=1,.... Nal.i=0... . N+1—Fk j=0,.. ., M+1,
floriiyie -sy'-H]"f[TilU----wy'+t—1]
flzey; )] == ’ , ? : )
Yiel — Y5
[ =1, A +1,:=0,. N+1, 3=0,....; N+ 11—
In particular, one has for the fivst order divided differences
fles iy = (fisny — fi))/ e, hy =340 — o,
1=0,....N, J=0.... .1 A+ 1.
f[l‘i'\ijyj-kl]: f:;il" 1])”3~ z_IZEJJHr-l-an
1= N+ 1 5 =0, .., M.
Definition 1. The data f,;, 1 =0,.... N+ 1.7 =0,... Al +1 is said to be
positive (negative) if
fi; >0 (<0} forall «and )
monotonically increasing (decreasing) by x if
fleg ey >0 (<00 =0, N, g=0.... Al +1
monotonically increasing (decreasing) by y if
Sy, >0 (€03 1=0,...,N+1, ,=0,...,A;
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convex (concave) by z if

f[mi’xi+1;yj]_f[xi—lvxi;yj]>0 (<0)s i:‘lv---,Na j=0:---1M+1;

convex (concave) by y if

flziiyisyivr) — flziiyj—1,95] >0 (<0), i=0,...,N+1, j=1,..., M.

We denote by C?2%[Q2] the set of all continuous on {2 functions f having con-
tinuous partial and mixed derivatives up to the order 2. We say that the problem
of searchmg for a function S € C22[Q] such that S(zi,y;) = fij» 1 =0,...,N +1,
j=0,...,M+1, and S preserves the form of the initial data is the 2 D shape-
preserving mterpolatwn problem. This means that where the data increases (de-
creases) monotonically, S has the same behaviour, and S is convex {concave) over
intervals where the data is convex (concave).

Evidently, the solution of 2-D shape-preserving interpolation problem is not
unique. We are looking for a solution of this problem as a thin plate tension spline.

Definition 2. An interpolating thin plate tension spline S with two sets of tension

parameters {p; >0|i{=0,...,N}and {g; 0| 3=0,...,M} is a solution of the
DMBVP

84S s 8's  (pi\28%8  [g¢;\’ %S _
+ _(-h_;) %5_(_) —— =0, ineach €y,

ey -+ 23:(:233}2 Oy? l; 9y

i=0,...,N; j=0,...,M,
34_3_(_") S _0, ze@nrin) v=y;
ozt hi) Ox? ’ v "

1=0,...,.N; 3=0,...,M+1,
4 2 52
gys ((‘;_j) %:0, T = x, ye(yj’yj-l-l)’

i=0,....,N+1; §=0,..., M,

S € C?2[Q,
with the interpolation conditions

S(:Ci,yj):fij: i=0,....,.N+1; 7=0,..., M +1,

and the boundary conditions

DO (z;,y;) = &P, i=0,N+1; j=0,.,M+1,
DODS (z;,y;) = f5P, i=0,.,N+1; j=0M+]1,
DS (z;,y;) = fP, i=0,N+1; j=0M+1,

where
0"t S(z, y)

DUS(2,y) = —5



- 46 -

If all tension parameters of the thin plate tension spline S are zero then one
obtains a smooth thin plate spline [14] interpolating the data (zi,y;, fi;), ¢ =
0,...,.N+1,3=20,...,M + 1. If tension parameters p; and g; approach the
infinity then in the rectangle ﬁ,-_,-, t1=0,...,N,7=0,...,M, thin plate spline S
turns into a linear function separately by x and y, and obviously preserves on _ﬁ,-_,-
shape properties of the data. So, by changing values of the shape control parameters
p; and g; one can preserve various characteristics of the data including positivity,
monotonicity, convexity, as well as linear and planar sections. By increasing one
or more of these parameters the surface is pulled towards an inherent shape at the
same time keeping its smoothness. Thus, DMBVP gives a reasonable mathematical
formulation of 2-D shape-preserving interpolation problem. This problem can be
investigated in the next research project with TRF.

The problem of convergence and the orders of approximation for shape preserv-
ing splines were considered in detail only for a discrete hyperbolic tension spline in
chapter 2. However, it is obvious how to approach this problem in general. We have
to prove that under a refinement of the mesh, the norm of the highest derivative
of our shape preserving spline with best chosen shape control parameters remains
bounded, or that at least the order of its growth is known. This question is still not
solved in general. It can be considered in a separate research project with TRF.
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Applications

A large variety of applications now requires the use of curve/surface descrip-
tion, especially in fields such as computer aided design and machining, and com-
puter vision and inspection of manufactured parts. The design of curves and sur-
faces plays an important role not only in the construction of different products
such as car bodies, ship hulls, airplane fuselages and wings, propellers blades, etc.,
‘but also in the description of geological, physical and even medical phenomena.
Other areas where the description of curves/surfaces is of interest include many
fields of science, medical research (software for digital diagnostic equipment), im-
age analysis, high resolution TV systems, cartography, the film industry, etc. This
diversity and the wide range of applications of the subject enables us to consider
the problem of constructing shape preserving curve/surface interpolation splines as
very valuable.

The PI offers formal graduate level courses in Computer Aided Geometric De-
sign and Geometric Modeling, and is available for training of Thai researchers, using
methodology and results of this project, and thereby effecting advanced technology
transfer of this very important tool to Thai scientists.



Appendix

Example: Reconstruction
of a Ship Surface

The methods of shape-preserving spline approximation of curves and surfaces
described in this research report were used in a package of computer programs
which enables one to construct complex multivalued surfaces.

As a numerical test of this package, we tried to reconstruct the surface of a
“Viking boat”. The initial data, which the author obtained from Professor Lyche
of Oslo University, was defined pointwise in the form of the envelopes of the sides
and the keel of the boat, as well as six ribs. Three-dimensional view of the data
is given in Figure A.1l. Figures A.2 — A.4 show the main projections of the data.
After partial selection of the data, a system of non-intersecting, generally speaking
curvilinear, pointwise assigned loft sections was constructed from this data. Each
section, except the sections for ribs, contained 4 points.

Figure A.1. Three-dimensional view of the data.
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Figure A.2. Projection of the data onto the zy-plane.
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Figure A.3. Projection of the data onto the zz-plane.
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Figure A.4. Projection of the data onto the yz-plane.

First, using the shape-preserving interpolation algorithm of Chapter 2, we
construct a system of space curves along the selected sections. A twodimensional
spline is defined as the tensor product of one-dimensional splines, generating a
family of local approximation generalized splines in the orthogonal direction by
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In Figures A.5 and A.6 the resulting shape-preserving surface is given in two dif-

ferent projections with a mesh of lines 100 x 100.
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