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Due to the linear independence of functions 1, x, ®;, and ¥; on (z;, Ti+1],
the latter relation is satisfied if and only if

im1 i
Z M;p, = z Min1p, =0, (11)

j=t-3 J=i—2

Yirr6i2Mip1,8,_; — Vici—1,2Mi,_, = 1, (12)
Cia2Miy1,8,., —Ci—12M;p,_, =0.

In particular, from (12) we derive the following identity
(¥i+r — Z)ci2Miy1,B,_; + (2 ~ yi)ci-12Mi B, _, = 1.

Solving system (12) and using (9) or (11), we obtain

X YVied — Yi+1
- MjB, = — ; s
CJ—1.2“-’:‘+1(!IJ)

wWit1(z) = ( — Yis1)(x — viv2)(T — Yisa)

j=i+1,i+2,i+3,

or with the notation ¢j3 = yj42 — ¥j+1, J = 1,1+ 1,

1
Ci26i3°

1 1 1
Miyap, = ———(—+ : (13)
Ci+1,2 ‘G3 G413

1
Ci42,2Ci41,3 ]

Mi-!-l,B.' =

Misap, =

§4. Local Approximation by Discrete GB-Splines

The functions B;j, 7 = —3,...,/N — 1 possess many of the properties inherent
in the usual discrete polynomial B-splines. -

Theorem 1. Let the conditions
0 <29;(z;) < ~hiD;j1®j(z;), 0 <2¥;(zj41) < h;D;j 1V, (z541)

be satisfied, the functions ®; and ¥; be convex and D;2®; and D; 2%, be
strictly monotone on the interval (z;,z;41)] for all j. Then the functions B;,
7= —=3,...,N —1 have the following properties:

(a) Bj(z) >0forz e (:z:_,-%rf’,:c_,-.;.,;—rjz‘_,fj’), andBj(z) = 0ifx ¢ (i Tj4a);

(b) B; satisfies the smoothness conditions (4) and has support of minimum
length;
N—
(c) ZJ.:_lsy;_,_zB,-(a:) =zir=0,1forz € [a,b],P;(z) = cj_,,

¥;(z) = ¢j,2¢;,3B;(x) forz € [z5,241), 5 =0,...,N = 1;

2¢j-2,3B;_a(z),
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(d) Bj, j = -3,. N 1, are linearly independent on [a,b) and form a basis
of the space S C of discrete generalized splines.

The proof of this theorem repeats that given in [6].

According to Theorem 1, any discrete generalized spline S € S can be
uniquely written in the form

N-1
S(z)= > b;Bj(z), z € [a,b] (14)

j=—3

for some constant coefficients b;.

If the coefficients b; in (14) are known, then by virtue of formula (10)
we can write out an expression for the discrete generalized spline S on the
interval [x;,z;+1], which is convenient for calculations,

) S(z) = bi—z + b{", (z — w) + b2, 8 (z) + P ¥4 (x), (15)

where ®) _ (D kD) ©
The representations (14) and (15) allow us to find a simple and effective
way to approximate a given continuous function f from its samples.

Theorem 2. Let a continuous function f-be given by its samples f(y;),

j=-1,...,N+1. Then for b; = f(yj42), j = —3,...,N — 1, formula (14)
is exact for polynomials of the first degree and provides a formula for local
approximation.

Proof: It suffices to prove that the identities

Z: y}f+2BJ—($) =z", r=0,1, (17)

j=-3

hold for z € [a,b]. Using formula (15) with the coefficients b;_, = 1 and

bj—2 = yj, j =1i—1,%,i+ 1,1+ 2, for an arbitrary interval [z;, z;41], we find
that identities (17) hold.

For bj_2 = f(y;), formula (15) can be rewritten as

S(z) =f(¥3) + flys, vinrl(@ — 1) + Wier — Yic1) f¥io1, vis vi1)ei Yy 2 2i(2)
+ (Yiv2 — ) F[¥i Yivrs Vinale 2 Vi(x),  z-€ [z4, Tiga]

This is the formula of local approximation. The theorem is thus proved. O

Corollary 1. Let a continuous function f be given by its samples fi = f(=z;),
J=-—2,...,N+ 2. Then by setting

bj—2=fj — (‘I’J 1(z) x5, Tj41] — @5 (-"’J)f[% 1'-"73]) 1 2 (18)
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in (14), we obtain a formula of three-point local approximation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and =z
as f. Then according to (18), we obtain b;_2 =1 and b;_5 = y; and it only
remains to make use of the identities (17). This proves the corollary. a

Equation (15) permits us to write the coeflicients of the spline S in its
-epresentation (14) of the form

? S(yj) — D;,25(z)®;(y5) — Dj1,28(x41)¥5(y5),  y5 = 5.

According to this formula we have b;_2 = S(y;) +O('fz-j), hj = max(h;j_1, hyj).
Hence it follows that the control polygon (e.g., see [3]) converges quadratically
to the function f when b;_s = f(y;), or if the formula (18) is used.

§5. Recurrence Formulae for Discrete GB-Splines

Let us define functions

Dj,g\Ifj (:c), re [:I:_-,',:I:J'+1), . o -
Bj,g(.."':) = DJ-+1'2<I>_.,-+1(:C), T c [:Bj+1, .’.L'j+2], J=1tt+1,24+ 2., (19)
0, otherwise,

We assume that the functions D; ¥ ; and Dj4q,20%®;4.1 are strictly monotone on
[zj,2;41) and [zj41,Zj42) Tespectively. The splines B, » are a generalization
of the “hat-functions” for polynomial B-splines. . They are nonnegative and,
furthermore, Bj2(z;) = Bj2(xj42) =0, Bj2(zj41) = 1.

Let us denote

D;S(z) = D; 1S:(x), a
D25(z) = D;aSi(z), € [zi,zig1], i=0,...,N—1;

then from (4) DS and D»S are well defined if S € SPC. With previous
notation, according to (10), (13) and (19) we obtain

i+3
D3Bi(z) = > M;p,Bj_12(z)
J=i+1 '
_ 1 (Bi,2($) _ Bi+1.2(93)) _ 1 (Bi+1,2($) _ Bi+2.2(~'5)) (20)
Ci3 Ci2 Ci+1,2 Cit+1,3 Cit1,2 Cit2,2 |

In addition, the function D;B; satisfies the relation

Bi x Bi
D1Bi(z) = :i ) _ (‘:‘“'3(3), (21)
1, 41,3
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where
[ DU (x
—l’lc—jjil: Z € [%5, Tj+1),
Di122i41(z)  Dj11¥541(7) _ ,
Bja(z)=<¢ 1T Cj.2 - Gtz T €@z, (22)
D; b, o(x
- J+2é;+1{:2( ), e [$j+2,:1:j+3),
L 0, °  otherwise.

Using formula (22) it is easy to show that the functions B 3,7 = —2,..., N
— 1 satisfy the first and second smoothness conditions in (4), have supports
of minimum length, are linearly independent and form a partition of unity,

N-1
Z BJ',3(:I:) =1, =zx¢€ [a,b].
i=1
Applying formulae (20) and (21) to the representation (14) we also obtain

N-1 N-1
DiS(z) =Y t§Bja(z), D2S(z)= Y b¥B;a(2), (23)

F=-2 j=-1

where bg-k), k = 1,2 are defined in (16).

§6. Series of Discrete GB-Splines (Uniform Case)
Let us suppose that each step size h; = z;41 — z; of the mesh A : a =

g < 1 < -+ < zxy = b is an integer multiple of the same tabulation step,
7, of some uniform mesh refinement on [a,b]. For § € IR, 7 > 0 define
Ry, = {0+4ir: iis an integer} and let Rgyo = R. Foranya,b€ Rand 7> 0
let [a,b], = [a,b] N R,

The functions Bj 2, Bj 3, and B; with 77 = /% = 7, j = 4,7+ 1 for all
i are nonnegative on the discrete interval [a,b],. This permits us to reprove
the main results for discrete polynomial splines in [7] for series of discrete
generalized splines. In particular, if in (14) and (23) we have coefficients
B > 0, k = 0,1,2, j = -3+ k,..., N — 1, then the spline S will be a
positive, monotonically increasing and convex function on [a, b],.

Denote by supp,B; = {r € IR, +|Bi(z) > 0} the discrete support of the
spline By, i.e. the discrete set (z; + 7, Tiyqa — 7)r.

Theorem 3. Assume that (_3 < {_2 < --+ < {n_ are prescribed points on
the discrete line R, . Then

D=det(B,-(C_,-)) >0, %j=-3,....N—-1
and strict positivity holds if and only if

¢ € supp.B;, i=-3,...,N—-1. (24)

The proof of this theorem repeats that of theorem 8.66 in [7, p. 355]. The
following three statements follow immediately from Theorem 3.
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Corollary 2. The system of discrete GB-splines {B;}, 3 = —3,. ._.,N -1,
associated with knots on R, r is a weak Chebyshev system according to the
definition given in [7, p. 36], i.e. for any (_a<C a2<--<(N-1inIRy, we
have D > 0 and D > 0 if and only if condition (24) is satisfied. In the latter

case the discrete generalized spline S(x) = Z;V:’_l:; b;B;{z) has no more than

N + 2 zeros.

Corollary 3. If the conditions of Theorem 3 are satisfied, then the solution
of the interpolation problem

S(¢) = fi i=-3,....,.N—-1, fieR (25)
exists and is unique.

Let A = {a;;},i=1,....m,j=1,...,n, be a rectangular m x n matrix
with m < n. The matrix A is said to be totally nonnegative (totally positive)

(e.g., see [4]) if the minors of all order of the matrix are nonnegative (positive),
i.. for all 1 €< p < m we have

15i1<'.'<ip£m,

det(ai, ;) =0 (>0) for all 1<j1<---<jp<n.

Corollary 4. For arbitrary integers =3 < v_3 < -+ < ¥p—4 S N —1 and
(3 <z < < (p—yg inRg, we have

D, = det{B,,((;)} =20, 4,j=-3,...,p—4

and strict positivity holds if and only if
(; € supp,B,,, i1=-3,...,p—4

i.e. the matrix {B;{¢)}, 1,7 = ~3,..., N — 1 is totally nonnegative.

The last statement is proved by induction based on Theorem 3 and the
recurrence relations for the minors of the matrix {B;(¢;)}. The proof does not
differ from that of Theorem 8.67 described in (7, p. 356].

Since the supports of discrete GB-splines are finite, the matrix of system
(25) is banded and has seven nonzero diagenals in general. The matrix is
tridiagonal if {; = ;44,1 =-3,...,N — L.

An important particular case of the problem, in which S'(z;) = f{, i =
0, N, can be obtained by passing to the limit as (_3 — {_2, {(ny—1 — {N—2.

De Boor and Pinkus [1] proved that linear systems with totally nonnega-
tive matrices can be solved by Gaussian elimination without pivoting. Thus,
the system (25) can be solved effectively by the conventional Gauss method.

Denote by $~(v) the number of sign changes {variations) in the sequence
of components of the vector v = (vj,---,v,), with zeros being neglected.
Karlin [4] showed that if a matrix A is totally nonnegative then it decreases
the variation, i.e.

ST(Av) < S7(v).
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By virtue of Corollary 4, the totally nonnegative matrix {B;()}, 4,7
-3,...,N — 1, formed by discrete GB-splines decreases the variation.

For a bounded real function f, let S~(f) be the number of sign changes
of the function f on the real axis IR, without taking into account the zeros

S_(f)=SupS—[f(C1),“-af(Cn)]} C1<C2<"'<<n-

Theorem 4. The discrete generalized spline S(z) = Z;v___:; b;B;(z) is a vari-

ation diminishing function, i.e. the number of sign changes of S does not
exceed that in the sequence of its coefficients:

- ( NZ—I bij) <57(b), b=(bs,....bn-1).

i=-3

The proof of this statermnent does not differ from that of Theorem 8.68 for
discrete polynomial B-splines in [7, p. 356].
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Abstract. Hyperbolic tension splines are defined as solutions of dif-
ferential multipoint boundary value problem. For computations we use a
difference approximation of that problem. This permits to avoid calcula-
tions of hyperbolic functions, however, the extension of a mesh solution

will be a discrete tension spline. We consider the basic computational
aspects of this approach.

Keywords: Hyperbolic tension splines, multipoint boundary value prob-
lem, discrete tension splines, shape-preserving interpolation.

1. Introduction -t

In the theory of splines mainly two approaches are used: algebraic and vari-
ational. In the first approach [5] splines are understood as smooth piecewise
defined functions. In the second approach [3] splines are solutions of some
minimization problems for quadratic functionals with restrictions of equality -
" and/or unequality type. But a third approach is also known [2] where splines
are defined as solutions of differential multipoint boundary value problems.
In some important cases all three approaches give the same solutions. How-
ever the third approach has substantial computational advantages which are
illustrated here by the example of hyperbolic tension splines.

For the numerical treatment of differential multipoint boundary value
problems we replace the differential operator by its difference approximation.
This permits us to avoid calculating hyperbolic functions and to find easily
mesh solution whose extension will, however, be a discrete tension spline with
continuous differences instead of derivatives.

2. Problem formulation

Let the data | :
('ri'»fi): i:01'°':N+1: (1)

be given, where: a =79 < 71 <:+- < zny41 = b. Let us put

hi=$i+1—xir 1:'———0,.'..,N.




Interpolating tension spline S with a set of tension parameters

{pi 2 0|i=0,...,N} is a solution of the differential multipoint bound-
ary value problem

d*S  (p:\>d%S _ _
T (}Z) —= = 0. ineach (z;,z;41). i=0..... N. (2)
S € C?a, b), ' (3)

with the interpolation conditions

Sz} =fi, i=0,...,N+1 (4)

and the endpoint constraints

S"(a) =fo and S"(b) = frya- (5)

For practical purposes it is often more interesting to know the values of
- the solution over a given tabulation of [a, b] than its global analytic expression.
In this paper we do not consider directly a tabulation of S but we study a
natural discretization of the previous problem. We prove that the discretized
problem has a unique solution, called mesh solution, and we study its prop- .
erties. Of course it turns out that the mesh- solution is not a tabulation of S
but it can be extended on [a, b] to a function u, with properties very similar to
those of S and which approaches S as the discretization step goes to zero. Due
to these properties we will refer to u as discrete tension spline interpolation
of the data (1).
Let us assume that each h; is an integer multiple of the same tabulation
“step, 7. Putting n; = h;/7, we look for a mesh solution @ = {uij | 7 =
=1,...,n;+1, i=0,..., N}, satisfying the difference equations:

[Az— (%;—)ZA]u,-‘j 0, j=1,...m—1 i=0,....N (6)

where

Ui, j—1 = 2Uij + Uit
Au,-‘_,- = 2 .
T

The smoothness condition (3) is changed for the equations

Ui—1,n;.y, = Ui 0,
Uil n;_1—~1 Uil n;_;+1 U1 — Ui—1

= : = PR 7
2T ) 27_ b 2 1) ? N? ( )
Aui 1 n,_, = Auyp,
which are equivalent to
ui—l,n,-_,l-.}-j = Ui j, .7 = _1= 01 1. (8)
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The interpolation conditions (4) take the form
U0 = fi: Uin; = fi+1s 1 =01'--1N1 (9)

and for the end conditions (3) we have

i\uo‘o = fél and AUN,nN = f:i’J-i—l' (10)

The equalities (8) permit to eliminate the redundant unknowns in the
difference equations (6). The values ug,_; and unny+1 are not explicitly
computed but are introduced into the formulation to accommodate the two
necessary end conditions. Putting m = Z;"_‘;O ni + 3, the previous equations
can be collected in the m x m linear system '

At =b, (11)
where
. 1 -2 1 0 i
0 1 0 0
1 ag bo ag 1
1 a by ag 1
1 Qg bo ag 1
0 0 1 0 0
_ 1 al bl ai 1
A= 1 a b a 1 :
) . _’, .
1 any by an 1
1 any by any 1
0 0 1 0
] 0 1 -2 1
' TN .
ai=_(4+wi)y bl=6+2wnwl:(h) ) 'l=0.,...,N,
and
G = (Up,—1, U00s UOL) - - -y UOnp—1s U10y « + = s U0y - - = y UND, - - '!uNﬂNluNﬂN+l)T’

b= (Tz (’)':fO:O:"':Osfh---:.f2:'--':fN:-":fN+1172f;\fY+1)T-

In the previous system the unknowns u; 5, ¢ = 0,..., N+1, can be immediately
determined from the interpolation conditions while the expression of ug,—;
(unnn+1) can be obtained from the first (last) equation and substituted in

92 AT
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the third (third to last) equation. Then in practice we deal with the m* x m~

linear system (m® =m — N — 4)

ATut =07, (12)
where
rbg— 1 ap 1 7
adg bo Qg 1
1 ag bo ap 1
1 Qo bg Qg
- 1 ag bo 1
AT = 1 b]_ ay 1 !
a) b1 a 1
1 any by an 1
1 any bn ay
L 1 awy bN —1 N

and u*, b* are correspondingly deduced from 4 -and b.

Following [4] we observe that

A-=C‘+D-,

-where both C* and D* are s@etric block diagonal matrices; to be mdre

specific,
- CO
Cy
C2

C" =
1 a; bi
1 Qg
L 1

The Fifth Annonul National Sviuposivm on Computational Science and Eng

Cn
|
, (13)
a; 1
bi a;
aq b,; — 1]
_393
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0 0
i _ 0 0.
Since the eigenvalues of D* are 0 and 2, from a corollary of the Courant-Fisher

theorem {1] we have that the eigenvalues of A*, Ac(A*®), satisfy the following
inequalities :

A(A®) > A(C?), k=1,...,m".
The eigenvalues of C* are the collection of the eigenvalues of C; and we have
Ci=B? —wB;,
where B; is the (n; — 1)} x (n; — 1) tridiagonal matrix
-_9 1 -
1. -2 1

.Bi;;,, . 1 -2 1

L 1 -2
It is well known, (see also [4]), that

.

A,-(B,-)=—-2(1—cos£), j=1,...,n; = 1,

7 .
then - )
(O = — cos 1% {1 = cos 2
A;(Ci) 4(1 COS ﬂi) + 2w.(1 cos ni).
It follows that

Ae(A%) > nt;.ijp A(Ci) = m'_in [4(1 — COS %)2 4 2w,—(1 — cos %)]

Hence, A* is a positive matrix and the linear system (12) (and (11) as well)
has unique solution.

EELP oS E 2001
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In addition, from Gershgorin's theorem, A;(A*) < max;[16 + 4w;], then
for the condition number, u,(A*), with respect to the 2 norm of A*, we have
the following upper bound not depending on the number of data points, N +2:

max; [16 + 4(5E)?]
min; [4(1 — cos FX)2 + 2(52)2(1 — cos 3T)]
max; [16 + 4(72)?] (14)

= ming(F)Hrt + (7pi)?]

p2(A%) <

We remark that, for p; =0, 1=20,..., N, we recover the results presented
in [4]. - | |

From the structure of A", the linear system (12) can be solved efficiently
using a direct method for band matrices. Since A* is positive band matrix
of band width 2, the classical Cholesky factorization , A* = LLT, provides a

lower triangular band matrix L of band 2 and it can be performed in O(2m*)
operations, [1].

3. System Splitting and Mesh Solution Extension’

In order to solve numerically the differential multipoint boundary value prob-
lem (2)—(5) we consider the system of difference equations (6) completed with
the smoothness conditions (7) (or (8)), interpolation conditions (9) and end
conditions (10).

In the notation

. M=Au‘.7’ j=0,...,n,-, Lfﬂ:-O,...,N, . (15)

on the interval [z;, Zij1) the system (6) takes the form

Mio = M;
Mij_y = 2M;; + M1 Pi\?2 :
(B M =0, j=1,....m:—1, (1
e () My=0i=1,...,m-1, (8
Mt'.,n.-z i+1,

where M; and Mj;,, are prescribed numbers. The system (16) has a unique
solution, which can be represented as follows

M;; = mi(zij), ziyj=z¢+j7, 7=0,...,n

with hk;( ) nh k
sinh k;(1 — ¢ si it
(z) = My——— il ——
mi(z) sinh(k;) M *Lsinh(k;)
T—I 2 kiT; o T
= —_ =1p; > ;= —,
t h R sinh 5 pi 20, 7 I
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From the equation (15) and the interpolation conditions (9) we have

uio = fi,
Uil TG T UG _ =1, n— (17)
-
Uin; — fi+1-
Let us consider the function
ui(z) = fi(l = ¢} + firrt + @i(1 — )R M, + @i ()R M 4. (18)

where . .
sinh(k;t) — ¢t sinh(k;)

p? sinh(k;) |
The function u; satisfies to the conditions

Pi(t) =

ui(z;) = fi, Aui(z;)) =M;, j=ii+]1,
where 0 ‘
Aui(e) = HE=D = 2@ rwlz +7)
T
The mesh restriction of the function u; gives us the solution of the system

(17) with u;; = u(zi;), 7 = 0,...,n;. The smoothness conditions (7) can be
rewritten as '

u_1(Z) = wi(zi),
Az ruim1 (T} = Ar rui_1(z5), : (19)
Aui_y(z;) = Aui(zi),
where
Uj(I+T) T"U.J'(I—T).
2T ’

. A:f,ruj(z)_=
(19) are equivalent to |
vio1(Ti + J7) = ui(z; + j7), j=-1,0,1

Using (18) and the second condition (19) we obtain a linear system with
3-diagonal matrix

MO = (’)'1
ai—rhi—1Mi_1 + (Bi-1hi—1 + Bihi) M+ a;hi My = d;, i =1,..., N, (20)
MN+1 = f;\}-i-ll

where-

g = fi  fi—fina

: hi hi—y '
s = “(ﬁi(‘ﬁ) - (ﬁ'i(-—-ﬁ) _ _Siuh(kg‘?‘i) — ‘f',' Sinh(kg)

' 2‘?’,‘ p‘-z'f"' sm_h(k._) !

. (,5,(1 + 'i’";) — (ﬁ‘(l - 'f‘,_) COSh(k.;) smh(k,i',) —_ 'f',; Sinh(ki)
Bi = - : = S :
27 p; Ti sinh(k;)

ANSCS E 2001
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Using an expansion of the hyperbolic functions in the above expressions as
power series we obtain

Gi >20;>0, 1=0,...,N, forall. 7>0, p;>0.

Therefore. the system (20} is diagonal dominant and has a unique solution.
We can now conclude that the function u which coincides with u; for
z € [Ti,Zix1], t = 0,1,..., N, is a discrete tension interpolation spline. A
mesh restriction of the spline u gives us a solution of the system (6). The
spline u can also be easy recovered from the solution of the system (6).

Instead of locks for a direct solution for the system (6) we recommend
the following algorithm.

Step 1. Solve 3-diagonal system (20) for M;,i=1,...,N. _
Step 2. Solve N + 1 3-diagonal systems (16} for M, j = 1,...,n; — 1,

1=0,...,N,
Step 3. Solve N 4+1 3- dzagonal systems (17) for u,,, i=1...,0;—1,
i=0,...,N.

-

Steps 2 and 3 can be replaced by a direct splitting of the system (11) into
N + 1 systems with 5-diagonal matrices

Ciui=¢, i=0,...,N, (21)
where the (n; — 1) % (n; — 1) matrix C; has the forn; (13),

u; = (Uily Uiz, - -1 Uiini—1)

o= ((2+w)fi — My, —fi,0,...,0, = fiy1, 2+ wi) fiyr — M=+1)T

_ The calculations to solve the systems (16) and (17) or (21) can be per- -
formed by using a mult:—processmg ‘parallel computer system. If n;"= nforall

i, we can first store a triangular factorization of the matrices of the’ systems '
and then use parallel computations.
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Abstract. A hyperbolic tension spline is defined as the solution of a differen-
tial multipoint boundary value problem. A discrete hyperbolic tension spline is
obtained using the difference analogous of differential operators; its computation
does not require exponential functions, even if its continuous extension is still

a spline of hyperbolic type. We consider the basic computational aspects and
show the main features of this approach.
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1. Introduction

Spline theory is mainly grounded on two approaches: the algebraic one (where
splines are understood as smooth piecewise functions, see e.g. [29,31]) and the
variational one (where splines are obtained via minimization of quadratic func-
tionals with equality and/or inequality constraints, see e.g. [15]). Although less
common, a third approach where splines are defined as the solutions of differential
multipoint boundary value problems (DMBVP for short), has been considered, [9].
Even though some of the important classes of splines can be obtained from all three
schemes, specific features make sometimes the last one an important tool in prac-
tical settings. We want to illustrate this fact by the example of hyperbolic tension
splines.

Introduced by Schweikert in 1966, [30], hyperbolic tension splines are solutions
of DMBVP where the differential operators depend on tension parameters. Their
tension properties (that is the possibility of pulling the curve toward a piecewise
linear function) have kept hyperbolic splines popular (see for example [11,24,25,27]
and references quoted therein) in shape-preserving interpolation and/or approxi-
mation. Unfortunately, it is difficult to work with hyperbolic splines for small or
large values of the tension parameters. For this reason, in spite of the presence of
refined algorithms for their calculation [25], hyperbolic tension splines were forced
out by rational splines (see for example [6, 12]) in practical applications.

We observe that for practical purposes, it is often neccessary to know the val-
ues of the solution S of a DMBVP only over a prescribed grid instead of its global
analytic expression. In this paper, we study a natural discretization of the DMBVP
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replacing, in the given interval [a, b], the differential operator by its difference ap-
proximation. This provides a linear system with a pentadiagonal matrix. It turns
out that the solution of the discretized problem, called mesh solution, is not a tab-
ulation of S but can be extended on [a, b] to a smooth function U which has shape
properties very similar to those of S and which provides a second order approxi-
mation of S as the discretization step goes to zero. Due to these properties we will
refer to U as a discrete hyperbolic tension spline.

In contrast with the continuous case, an important fact here is that the values
of a discrete hyperbolic tension spline over a prescribed grid in [e, b] (basically the
mesh solution) can be obtained solving a pentadiagonal system. This construction
is substantially cheaper than performing calculations by the standard algorithm
[25], which involves the solution of a simple 3-diagonal system, but with hyper-
bolic coefficients. In addition, the classical construction requires the evaluation of
hyperbolic functions over the prescribed grid with much larger computational cost.

Moreover, just as cubic splines can be seen as a subclass of the exponential ones
in the continuous setting, our discrete hyperbolic splines generalize the concept of
discrete polynomial splines and reduce to them as the tension parameters go to
Zero.

Discrete polynomial splines have been studied extensively. They were intro-
duced in [18] as solutions to certain minimization problems involving differences in-
stead of derivatives. They are connected to best summation formulas [19] and have
been used in [17] for the computation of nonlinear splines by iteration. Approxima-
tion properties of discrete splines have been studied in [16}. Discrete B-splines on a
uniform partition were introduced in [28] and discrete B-splines on a non—uniform
partition were defined in [2, p.15]. In [3] discrete B-splines were applied to the gen-
eral area of subdivision. While discrete polynomial splines are currently attracting
widespread research interest [21,22,23], discrete tension splines and B-splines have
been less studied. The only results we know regarding this topic concern discrete
exponential Box-splines [5, 26] and are therefore related to uniform partitions.

The content of this paper is as follows. In Section 2 we formulate the prob-
lem. In Section 3 we prove the existence of a mesh solution by constructing its
extension as a discrete hyperbolic tension spline. An upper bound for the distance
between a discrete hyperbolic tension spline and the corresponding continuous one
is established in Section 4. In Section 5 we give direct and recurrence algorithms for
constructing discrete hyperbolic tension B-splines. Section 6, with its subsections,
is devoted to the discussion of practical aspects and computational advantages of
our discrete spline. Finally, Section 7 gives some graphical examples to illustrate
the main properties of discrete hyperbolic tension splines.

2. Finite Difference Approximation

Let the data
(i, fi), i=0,...,N+1, (2.1)

be given, where: a = rp < z1 < --- < Tn41 = b. Let us put

hi=$i+1"—l‘i, ‘I:=0',...,N.
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An interpolating hyperbolic tension spline S with a set of tension parameters
{pi>0]|i=0,...,N}is a solution of the DMBVP

d4S Di 2 dzs . ) .
'(Er_*l — (h—t) -d:c—z = (0, 1in each (27{,.7){4.1), 1=20,... , N, (22)
S € C?a, b, (2.3)

with the interpolation conditions

S(z:)=f;, i=0,...,N+1, (2.4)

and some end constraints. For the sake of simplicity we only consider the following
classical end conditions

S"(a) = fy and S"(b) = fyiq- (2.5)
_ Let us now consider a discretized version of the previous DMBVP. Let n; € N,
1=0,...,N, be given; we look for '

{u,‘j, j=-1,...,n; + 1, ‘i=0,...,N},

satisfying the difference equations:

LN 2
[A?‘—(%‘) Ai]uij=01 Jj=1L...,ny—1, t=0,...,N, (2'6)
i
where Qs 4 5
Aiuij — u‘hJ—l ‘u;.? uiaJ"'l , Ti — _‘l_.

The smoothness condition (2.3) is changed into

Ui—1,n;_, = Ui0 »
Ui—1ni_1+1 — Wi—1n;_1—1 Uil — Ui 1 i—1 N (2 7)
2Ti_1 273 ? I )

Ai Uiy gn,_, = Ay o

while conditions (2.4)-(2.5) take the form

ui,OZ’-fi 1 7::0,--‘1N1 UN np :fN+1 3

2.8
Aouoo = fo, ANUN.ny = fNy1 - (2.8)

Our discrete mesh solution will be then deﬁnedtas
{‘uij, J=0,...,n4, 1=0,1,...,N}. (2.9)

In the next section we prove the existence of the solution of the previous linear

system while we postpone to Section 6 the comments on the practical computation
of the mesh solution.
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3. System Splitting and Mesh Solution Extension

In order to analyze the solution of system (2.6)—(2.8) we introduce the notation
my; = Ajui;, j7=0,...,n;, i=0,...,N. (3.1)
Then, on the interval [z;,z:41], (2.6) takes the i'orm
mig = My,

-1 — 2mi; + My ) ? i
mi -1 :nzu - (%) mi;=0,3=1,...,n; — 1, (3:2)

Min, — My,

where m; and m;4, are prescribed numbers. The system (3.2) has a unique solution,
which can be represented as follows
mi; = Mi(zi5), zij=xi+Jn, j=0,...,n,

with
Mi(z) = _sinhk.-(l—t)+  Sinhkt _ T—x
)= T nh (k) Tl Gnh(k)  hy

and where the parameters k; are the solutions of the transcendental equations

2n; sinh om; ~ P Pi >0,

2
Pi Pi .
o Pi Pi > =0,...,N.
ki =2n;1n TS \/(2'“) +1)_0, i =0, Y

From (3.1) and from the interpolation conditions (2.8) we have

that is

U.;‘o=fi1
ui, i—1 — 2‘“. +U" 41 .
R R S S P 33)

For each sequence m;;, j =0,...,n;, system (3.3) has a unique solution which can
be represented as follows

Uij =U¢(:L’gj), i==-1,...,m+1,
where
Ui(z) = fi(l — t) + fizat + @i(1 — t)hZm; + i(t)hZm 4, (3.4)
with
sinh(k;t) — tsinh(k;)

Pilt) = p? sinh(k;)
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In order to solve system (2.6)-(2.8), we only need to determine the values my,
i=0,...,/N +1, so that the smoothness conditions (2.7) and the end conditions in
(2.8) are verified. From (3.3)-(3.4), conditions (2.7) can be rewritten as

Ui—1(z:) = Ui(zi),

Ui—1(zs + 1i-1) — Uiy (zs — 1-1) _ Uiz + i) — Uiz — 73) (3.5)
2‘1‘,'_1 27‘,‘ ! '

A Ui () = AU (),

where

AU (z) = Uj(z + 75) — ZU:?E:!:) + Uj(z — 75)

» TE [z.'i’IJ'+1]-
: 3

Then, from (3.1)-(3.2) and (3.4), the first and the third equalities in (3.5)
are immediately satisfied, while, using (3.4) and the end conditions in (2.8), the

second equality provides the following linear system with a 3-diagonal matrix for
the unknown values m;:

mo = fy,
oi_r1hi—ymi—y + (Bic1hicy + Gihi)m + ohymiy =d;, i=1,..., N, (3.6)

"
MmNyl = fN+1’

where
g firn—Jfi  fi—fi1
o hi hir
o — _wilan) - ei(— _ M sinh(&t) — sinh(k;)
e = p; sinh(k;) '
wi(l+ ,%‘) —;i(1 — ;1‘-) oy cosh(k;) smh(;':-‘-) — sinh(k;)
bi = z = pEsimh(k,)

Expanding the hyperbolic functions in the above expressions as power series we
obtain

Bi>20;>0, i=0,...,N, forall n;>1, p;=>0.

Therefore, the system (3.6) is diagonally dominant and has a unique solution. We
can now conclude that system (2.6)—(2.8) has a unique solution which can be rep-

resented as U;(z;5), 7 = —1,...,n; +1, i = 0,..., N, whenever the constants m;
are solution of (3.6).
Let us put
U(:E) = Ui(:l.'), T € [:I,‘i,;’[:,'+1], 1=0,1,...,N. (37)

Due to the previous construction we will refer to U as discrete hyperbolic tension

spline interpolating the data (2.1). We observe that we recover the result of [17]
for discrete cubics since

_ 1 1 , _1 1 : t(t? —1)
plil-r_n’oa. = E (1 — n_f)’ ;:11,-1510 ﬁt = ‘6' (2 =+ n—?) 1 111.'190 Cp;(t) = —6-. (3.8)
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In this section, we present a bound for the distance between the discrete hyperbolic

tension spline defined in (3.7) and the corresponding continuous one interpolating
the same set of data and having the same end conditions.

As mentioned in section 2, the classical C? hyperbolic tension spline interpo-

lating the data (2.1) is a function S satisfying (2.2)—(2.5). It is well known that we
can express Si(z) := S(T)|[z;,2:41] 25

Si (:L‘) = f,;(l — t) + fiqat + tﬁ,‘(l - t)h?ﬁli + 4 (t)h?lﬁlﬂ_]., (4.1)

where

. d2s . ;. _ sinh(p;t) —tsinh(p;) . _
Mit+; = P(xﬂ—:})v P:i(t) = p?sinh(p,-) i=0,...,N, 7=0,1,

and the constants 7n; are solutions of the linear system

~ H

) mo = 0>
Gi_1hi—1mi_1 + (Bic1hi—1 + Bihi)mi + &hythip =d;, i=1,...,N, (4.2)
'th+1 = fo+11

where

- - sinh(p;) —pi 7 - p; cosh(p;) — sinh{p;)
[ - = i = - 1 prmenid - .
al (pt (0) p'2 Sinh(p,-) H 6 '}ot( ) p? Slnh(p,-)
It is easy to verify that ﬁ.- > 2a; > 0, Vpi 2 0, so that the 3-diagonal linear system

(4.2) is diagonally dominant. In addition, as n; — 400, systems (3.6) and (4.2)
coincide since

o= i 6=
Let us put
A= __rlninN (B; — &;)hi + (Bic1 — &i_1)hic1 > 0. (4.3)

For notational purposes, let us consider systems (3.6) and (4.2) where the first and
the last equation have been multiplied by A; let T and T be the corresponding

matrices and let m, m be the corresponding solutions. We have T = T + 4T,
where

-0 0 "
ng‘rch bofg + b11‘12 01712
ho ho hy hy
0 317]2 b;rf + bz'rg 0.21'22
ha hy hg hz
6T = ’
a 2 b 2 2 2
N=1TNn_1 N—-1Tpn_1 + bNTHN AN Ty
hy-a hn_ hy hy
L 0 0 h




and

".=~—-

n? rcosh 2—’;'— 1 n? cosh(k;) cosh 2—"._’;— cosh(p;)

' [sinh(k;) B sinh(p,-)]’ Di [ sinh(k;) sinh(p‘-)]'
After some computations we obtain that a;, b; are bounded functions of n;, more
precisely

i 3p; cosh(p;) sinh(p;) + p?
|ai|, Ibgl S A‘ = llm lb-;l —_ pt (pl.) 3 (pt) p ]
ni—+oo 24 sinh”(p;)
Then, following [17], [16] and [4]
lim — 1iloo < [|T7H|oo 6T oo|Im]|co-
Since ||Tr|loo = Allr|loo for all r € R¥*2, then || T~ !l < .A~1. In addition,

4.A;
<72 s, T =
0T oo < 7 i=%1,?.'?,(N T T !_ch)la.x Ti.

(4.4)

Therefore

1 4.A4;
— < 2___ : . .
_ , [l — fifleo < flmileor®— L;&ﬁfN 7 ] (4.5)
Then, setting

= 2 )], C =2 ((t TOIR 4.6
B; tréa[afclw()l ntléltafclw() wi (t)| (4.6)

we obtain from the expressions of S; and U, see (4.1) and (3.4), and from (4.5)

- T2
1S: — Uslleo = 18:(s) — Usla)| < 12 [um — oo B + nmnmc.-;]

[3- 'Tit1] h’?
: 4
< h?rzllm”m[i max ”14‘ + h2]

(4.7)
Since (see [4] for details) C; is a bounded function of n;, then from (4.7), for each
fixed sequence of the values py,...,pn, We have a second order convergence of the
discrete hyperbolic tension splines to the corresponding continuous spline. The
results agree with the order of approximation of the discretization which we have
used for the first, second and fourth derivatives. For example, let us consider in

detail the upper bound (4.7) in the limit case p; = 0,¢ = 0,...,N. From (3.8),
(4.4) and (4.6) we obtain

. 1 . =
dim, Ai = & pl.-li?o(ﬁ‘ — &) =
so that from (4.3) and (4.7)

5 n 1 1
16— Uall < anrimes mase, s | e L]

and we recover, with some improvements, the corresponding result of [17].

Finally, we observe that (4.7) can be used to estimate the rate of convergence of
a discrete hyperbolic tension spline towards a function generating the interpolation
points as max; h; — 0. To do this, it suffices to combine, via the triangle inequality,
(4.7) with the results of [20] where the convergence of a continuous hyperbolic
tension spline towards a function generating the interpolation points is studied.

1
- lim B,; < 1, lim Ci = O,
6 p.-—»() p,“—}o
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5. Discrete Hyperbolic Tension B-Splines

In this section, we use the strategy outlined in [13,14], where generalized B-splines
and their properties are discussed in more detail.

Let us associate with a partltlon Ara=20<zx1 < - <zZTny41 = b of the in-
terval [a,b] a space of functions SPH¥ whose restriction to an interval [z:, zit1],
i = 0,...,N is spanned by the system of four linearly independent functions

{1 x, <I>,, \I! ;} and where every function in SP¥ satisfies smoothness conditions (3.5)
for discrete hyperbolic tension splines.

Following [14] let us rewrite formula (3 4) on the interval [z;, 441}, 2 =0,..., N,
in the form

U(z) = Ui(x) =[fi — @i(zi)m:]{1 — 1) + [fis1r — Yi(zip1)miga]t (5.1)
+ ‘I),'(:I:)m.' + \Il;(:::)m¢+1, )

where t = (z — z;)/hi, m; = AjUi(z;), 7 =1,i1+ 1, and
- Wi(e) = Yi(OhE = p(pi, ORZ,  Bue) = il — A,

__ sinh(kst) — tn;sinh(k;/n;)
vilt) = pFsinh(ks) ‘ | (5.2)

Functions ®; and ¥; satisfy the conditions

‘I’.‘(:U,' -+ jT,‘) = (I’,'(:I:,'+1 +j1‘,') =0, J= —1,0,. 1, (5 3)
A,;(I),'(:U,') = A"‘I"'(SL“'+1) =1. )

Let us construct a basis for the space of discrete hyperbolic tension splines
SPH by using functions which have local supports of minimum length. Since
dim(SPH) = 4(N +1) — 3N = N + 4 we extend the grid A by adding the
points z;, j = —3,—2,-1,N+2,N+3,N+4,suchthat z_3 < z_2 < z_; < q,
b<zni2 <ZTN43 < TN4a-

We demand that the discrete hyperbolic tension B-splines (HB-splines for
short) B;, i = —3,..., N have the following properties

Bi(z) >0, z€ (zi+ 75, Tita — Tita),
Bi(z) =0, z¢ (zi,Zitrs),

N .
Z Bi(z)=1, z¢€]a,b]. . (5.4)

j=—3

5.1 Construction of HB-Splines

According to (5.1), on the interval [z;,zj41], 5 = 4,...,i + 3, the discrete
HB-spline B; has the form

Bi(.’,l:) = B,-'j(z:) = P."j (a:) -+ CI’J' (:c)m_.,-_B,. -+ \I’j (a:)m_,-+1'B_.,
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where P; ; is a polynomial of the first degree and my B, = AiBi(z1), I = 3,7 + 1 are
constants to be determined. The smoothness conditions (3.5) and constraints (5.3)
give the following relations

P; j(z;) = B; j-1(z;) + zjm; B,
Py jlz; — 15,75 + 7] = Py jalzj — Ti—1, 75 + Ti-1] + ¢i-1,2m5,8;,
where .
Zj = z_.,-(:r:_.,-) = \I’j_l(.'lij) —_ <I>J-(:1:_,-),
cj—1,2 = Vj_1[z; — Tj—1, 75 + T5-1] — j[z; — 7, 25 + 7
Thus
P; j(z) = P j—1(z) + [25 + ¢j—1,2(z — z;j)]m;, B;- (5.5)

As B; vanishes outside the interval (z:, z;14), we have from (5.5), in particular,
P;; =0 for j =1i,i+ 3. By repeated use of formula (5.5) we get

-

3 . . i4+3
Pj(@) =) [a+a-120z—z)lmup, = — ) [a+a-12(z — z)]mup,.
I=i+1 =741 *
In particular, the following identity is valid
i+3
- Y [z + cimra(z — z5)mus, =0,
F=i+1l
from which one obtains the equalities
i+3 ..
D cimieyimip, =0, r=0,1, yj=gz;— —2—. (5.6)
j=it+1 Ci-1,2

Thus, the formula for the discrete HB-spline B; takes the form

[ Ui(z)miv1,B; T € [Ti,Tiga),
(z — Ys41)Ci2Mig1 B,
+ @ p1(z)mig,B; + Yisa(z)mipe B,,
T € [Tit1, Tiva),
Bi(z) = T (¥i43 — T)Ci+2,2Mi43,B; (5.7)
+ Piq2(z)mita B, + Viga(T)mita B,
T € [Tiy2, Tiya),
Piy3(z)mita B, T € [Tiys, Tita),
| 0, otherwise.
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Substituting formula (5.7) into the normalization condition (5.4) written for
T € |zi, Ti+1], we obtain

i i—1 i
> Bjlx)= ®i(z) Y mip, +Ti(z) D migp;
j=i-3 j=i—3 j=i-2 |

+ (¥i+1 — T)ci,2Mit1,B,_; + (T — yi)cim12mi B, = 1.
As according to (5.4)
i-1 i
> myp, = D mig1,B;, =0 (5.8)

the following identity is valid
-  (¥i+1 — 2)Gi2Mis1,Bi, + (T — Yi)Cic1,2MiB, = 1
From here one gets the equalities
r r p—
Yip1Ci2Mit1,Bi_a — ¥ Ci—1,2Mi B, =01+, 7=0,1,

where 4, is the Kronecker symbol. Solving this system of equations and using
(5.6) or (5.8), we obtain

Yi+3 — Vi1
’ Y
Cj—1,2W;5 {(y;)

wit+1(z) = (z = Yir1 (= — Yir2)(T — Yiy3)

m;B; = j=t+1,1+2,i+ 3,

or with the notation c;3 = yj42 ~ ¥j+1, J =4, 1+ 1,

1
my 1,B; &= Y
o Ci,2Ci,3
1 1 1
migz, = ——— (== + ——), (5.9)
Ci+1,2 V&3 Ci+1,3
1
mi4+3,B; —

Ci42,2Ci41,3

5.2 Recurrence Formulas for HB-Splines

Let us define functions

A;¥;(x), T € [z, Z541),
Bja(z) = ¢ Aj11®41(x), T € [Tj41,T542], =40+ 1,i+2. (5.10)
0, otherwise,
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Using (5.2) one can readily check that A;®; and A;¥; are strictly monotonic
functions on the interval [z;,z;11]. The splines B;2 are a generalization of the

“hat-functions” for polynomial B-splines. They are nonnegative and, furthermore,
B;a2(zj+t) =611, 1 =0,1,2.
Let us denote

AU(z) = AiUs(x),
$y+g ’ ) = yeeey N;

then from (3.5) AU and DU are well defined if U € SPH. With the previous
notation, according to (5.7), (5.9), and (5.10) we obtain

i+3
AB;(x) = Z m;,8,Bj-1,2(x)
F=i+1
_ 1 (B."z(.'li) _ Bi+1,2(~'5)) _ 1 (Bi+1'2($) - B,-+2,2(:c)) (5.11)
- Ci3 Ci,2 Cit+1,2 Ci4+1.3 Ci41,2 Ci42,2
In addition the function D{B; satisfies to the relation
B; B;
D]_Bi(x) = "3(1:) - ‘+1'3($) ’ (5'12)
i3 Ci+1,3
where
( C—i;\l’,-[x—r;,x%—rj], T € [T5,Tj41),
1+ %2-(1’54.1[3: — Tj+1, T+ TJ‘+1]
B — 5.1
3'3(1‘) T —ﬁ‘l’j-i-l[x — Tj41, T + Tj+1], T € [$j+11$.1°+2)1 (5.13)
L _Cj-|]-.—1,2¢)j+2[x = Tj4+2, T + Tj+2]1 T E [$j+2;$j+3),

, otherwise.

Functions B; 3 and B; 4 = B; possess many of the properties inherent in usual
discrete polynomial B-splines. We collect their characteristics in the next theorem .
which can be proved by using the explicit formulae (5.7), (5.10), and (5.13) for
discrete HB-splines B x, j = 2,3, 4, and the relations (5.11) and (5.12).

Theorem 1. The functions B; , k = 3,4 have the following properties:
1. le4($) >0 forx € (.’L‘j —+ T2 Lj44 — Tj+4), and BJ-,4(-1:) =0ifx ¢ (:E_-,.',Ij+4),
B,a(z) > 0 for x € (zj,zj+3), and Bja(x) =0 if z ¢ (zj,Tj43);
2. Bj 4 satisfies the continuity conditions (3.5);
3. B;a satisfies the first and second continuity conditions in (3.5);
4. YN . Bjs(x)=1 for x € [a,b),

<I>j1; — 75, T + Tj] = —¢j—1,2Bj—2,3(x), ¥j[x — 7,z + 75] = ¢;,2B;j3(z)
for xz € [a:j,:cj+1], Jj=0,...,N;
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5. Z;L_a y;+2Bj,4(x) =z",r=0,1 for z € [a,b],
®;(z) = cj—1,2¢j—2,3Bj-34(x), ¥;(x) = c¢j2c;3Bja(x)
forz € [zj,z541], 5 =0,...,N.

Figures 1 and 2 show the graphs of discrete HB-splines B g, k = 2, 3,4 (from
left to right) on a uniform mesh with step size h = 1 and with ; = 7 for all i.
We have chosen discretization parameters 7 = 0.1 (Fig. 1, left and Fig. 2, right),
T = 0.33 {Fig. 1, right) and 7 = 0.5 (Fig. 2, left) for ;(t) from (5.2). In figures
1 and 2 (left) we have parameters p; = 0, i.e. we have conventional discrete cubic
B-splines (e.g., see [16]). Visually, the presence of intervals where the B-spline
B, 4 is negative is more visible with growing discretization parameter 7. In figure
2 (right) the tension parameters are p; = 50 for all ¢, whence the shape of the
graphs is practically unchanged when 7 increases from 0.1 to 0.5. As the limit for
pi — 0o we obtain the pulse function for B 2, the “step-function” for B; 3 and the
“hat-function” for Bj 4 (all of height 1).

Figure 3 shows the graphs of discrete HB-splines B; 4 on a uniform mesh (left)
and on a nonuniform mesh (right), where the asterisk * denotes the z;. For both
plots p; = 2 and n; = 2. .

Using the approach of [14], it is easy to show that the functions Bj;, j =
—3,...,N have supports of minimum length, are linearly independent and form a

basis in the space SP#H. So any discrete hyperbolic tension spline U € SPH can be
uniquely represented in the form

N
Uz) = > bBj(=) (5.14)

j=—3
with some constant coeflicients b;.
Applying formulae (5.11) and (5.12) to the representation (5.14) we obtain

N N
DyU(z) = ) b;aBja(z), AU(z)= D b;2B;a(x), (5.15)
j=—2 j=—1
where b b
bja-—x = gA—k — Tj-1l4-k , k=01 bj,.; = b;.
Cj3-k

5.3 Formulas for Local Approximation by HB-Splines

If the coefficients b; in (5.14) are known then by virtue of formula (5.7) we can
write out an expression for the discrete hyperbolic tension spline U on the interval
[z, zi+1], which is convenient for calculations,

U(x) = bi—a + Dibi—a{T — 1) + ci®i(z) + ci1P:(z), (5.16)
where
_ Ajbj_z — Aj_lbj_:g

Cj—1,2

.. = bj—1 —b;_
Cj sy  J =1.,'l.+1, Ajbj_g = Ll—b”’z.
¢ji—-1,3
The representations (5.14) and (5.16) allow us to find a simple and effective
way to approximate a given function f from its samples.
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1 1

7.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

o 0
0 1 2 3 4 5 6 0 1 2 3 4

Fig. 1. The discrete HB-splines B; x, £k = 2, 3,4 (from left to right)
on a uniform mesh with step size h = 1, no tension and
discretization parameter 7 = 0.1 (left) and 7 = 0.33 (right).

1L . 1
0.8 0.8
3.6 0.6
0.4 0.4
0.2 . 1 0.2 J j
0 0
0 1 2 3 4 5 6 0 1 2 3 4 S
Fig. 2. Same as Fig. 1, but with discretization paramcter 7 = 0.5
(left) and with tension parameters p; = 50 for all 7 (right).
' 5% 1 s 2 25 2 38 . e v 1 s z 25 3

Fig. 3. The discrete HB-splines B 4
on a uniform mesh (left) and on a nonuniform mesh (right).
The asterisk * denotes the z;. For both plots p; = 2 and n; = 2.
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Theorem 2. For b; = f(y;42), j =—3,...,N, formula (5.14) is exact for polyno-
mials of the first degree and provides a formula for local approximation.

Proof: It suffies to prove that the identities

N
> YieBilz) =27, r=0,1 (5.17)
j=—3

hold for x € [a, b]. Using formula (5.16) with the coefficients b;_» = 1 and b;_2 = y;,

j=1t—1,4,4+ 1,7+ 2, for an arbitrary interval [z;, z;41], we find that identities
(5.17) hold.

For bj—2 = f(y;), formula (5.16) can be rewritten as

U(z) =f(w:) + flyo vinal(@ — ) + (Wisr — vim1) Flvim1, v i ey 2 @i(2)
+ (Yiv2 — yi)f[ynyi+1,yi+2]c.-_,21‘1’i (), =z €[zi,ziga]

This is the formula of local approximation. The theorem is proved.

Corollary 1. By setting

1 fixr — i fi— fie
0 [qf,-_l(x,-)%j: - q,j(x,.):T_il] (5.18)

bj-2 = f; —

in (6.14), we obtain a formula of three-point local approximation, which is exact
for polynomials of the first degree.

Proof: To prove the corollary, it is sufficient to take the monomials 1 and z as f.
Then according to (5.18), we obtain b;_2 = 1 and bj_2 = y; and it only remains to
make use of identities (5.17). This proves the corollary.

Equation (5.16) permits us to write the coefficients of the spline U in its rep-
resentation (5.14) in the form

b U(y;) — Aj—1U(zj—1)®5-1(y;5) — AjU(z;) -1 (y;), ¥ < zj,
j—2 = (5.19)
U(y;) — AjU(z)®5(y;) — AjnaU(zj41)¥5(y5), v 2 ;.

Using this formula we obtain b;_2 = U(y;) + O('H?), h; = max(hj_1,h;). Hence
it follows that the control polygon (e.g., see [8]) converges quadratically to the
function f for bj_o = f(y;), or if the formula (5.18) is used. Formulas (5.16),
(5.17), and (5.19) generalize their continuous equivalents developed in [10].

6. Computational Aspects

The aim of this section is to investigate the practical aspects related to the numerical
evaluation of the mesh solution defined in (2.9).

A standard approach, [25], consists of solving the tridiagonal system (3.6) and
then evaluating (3.4) at the mesh points as is usually done for the evaluation of
continuous hyperbolic splines. At first sight, this approach based on the solution of a
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tridiagonal system seems preferable because of the limited waste of computational
time and the good classical estimates for the condition number of the matrix in
(3.6). However, it should be observed that, as in the continuous case, we have to
perform a large number of numerical computations of hyperbolic functions of the
form sinh(k;t) and cosh(k;t) both to define system (3.6) and to tabulate functions
(3.4). This is a very difficult task, both for cancellation errors (when k; — 0) and
for overflow problems (when k; — o0). A stable computation of the hyperbolic
functions was proposed in [25], where different formulas for the cases k; < 0.5 and
k; > 0.5 were considered and a specialized polynomial approximation for sinh(-)
was used.

However, we note that this approach is the only one possible if we want a
continuous extension of the discrete solution beyond the mesh point.

In contrast, the discretized structure of our construction provides us with a
much cheaper and simpler approach to compute the mesh solution (2.9). This can
be achieved both by following the system splitting approach presented in Section
3, or by a direct computation of the solution of the linear system (2.6)—(2.8).

- As for the system splitting approach, presented in Section 3, the following
algorithm can be considered.

Step 1. Solve the 3-diagonal system (3.6) form;,i=1,...,N.
Step 2. Solve N + 1 3-diagonal systems (3.2) for myj, 3 = 1,...,n; — 1, i =

0,...,N,
Step 3. Solve N + 1 3-diagonal systems (3.3) foru;;, j=1,...,n; — 1,
i=0,...,N.

In this algorithm, hyperbolic functions need only be computed in step 1. Fur-
thermore, the solution of any system (3.2) or (3.3) requires 8q arithmetic operations,
namely, 3q additions, 3¢ multiplications, and 2¢ divisions [31], where g is the num-
ber of unknowns, and is thus substantially cheaper than direct computation by
formula (3.4).

Steps 2 and 3 can be replaced by a direct splitting of the system (2.6)-(2.8)
into N + 1 systems with 5-diagonal matrices

uio = fi, MNiuio=M;
2 Pi\?2 . ' .
Aiu,’,j—(?) A,—u,-‘j:O, J=1,...,n,-—1, 1’.=0,...,N. (61)
(3
. Uin; = fit1, Aitin, = My,

Also, in this case the calculations for steps 2 and 3 or for system (6.1) can be
tailored for a multiprocessor computer system.

Let us discuss now the direct solution of system (2.6)—(2.8) which, of course,
only involves rational computations on the given data. In order to do this in the next
subsections we investigate in some details the structure of the mentioned system.

6.1 The Pentadiagonal System

Eliminating the unknowns {u;,—1, ¢=1,...,N,}and {u;n,41, i=0,...,N—
1}, from (2.7) determining the values of the mesh solution at the data sites z; by the
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interpolation conditions and eliminating ug,—1, Unny+1 from the end conditions
{(2.8) we can collect (2.6)—(2.8) into the system

Au=b, (6.2)
where
u=(u u u u u T
Oly ey U0 ng—1) LUllyer -3 U21y -y Nl)"':uN,nN—l) ’

A is the following pentadiagonal matrix (see also Fig. 1, left):

rbo—1 ap 1 T
agp bo Qg 1
1 agp bo agp 1
1 ag bo ag
- ' 1 a0 70mne—1 90,m0—1
811 ma a1
aa b1 aq 1
1 any by apn 1
1 anN bN anN
| 1 aN bN — 1
with
bi 2
a; = —(4+wt) » bi =64 2w; , w; = (_t) ;i 1=0,1,...,N,
t
1—p; pi—1
i—1lni_,—1 =6+ 2w;_; + » Mi.1 = 64+ 2wy
ng l'nl_l 1 + 1 1 + p‘- nt,l ‘-U1. + pi + 1
2 p?
Oiclmi gl = ———— , 0;1 = 2—— |
Pl T e+ 1) T T T
pi = i=12,...,N;
Ti—1

and

b= (—(ao + 2)f0 - Tg.fg-r —an 01 seey 01 '_fla _'YO,no—l.fh _'Yl,l.fl, "fl: 0,

. '!Os —'.fN-i-ls —(aN + 2)fN+1 - szvf;\’r.q.])T:

with

1;Pi
i1y — =—4+wi— +2 ?
Yi—1ln;_1-1 ( b Pi ) t=1,2,...,N.
Yin = —(@+wi +2(pi — 1)),
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6.2 The Uniform Case

From the practical point of view it is interesting to examine the structure of A when
we are dealing with a uniform mesh, that is 7; = 7. In such a case it is immediately
seen that A is symmetric. In addition, following [17] we observe that A = C + D,
where both C and D are symmetric block diagonal matrices. To be more specific,

Co
C
C= ! . , C; =B?—-u;B;,

Cn

where B; is the (n; — 1) x (n; — 1) tridiagonal matrix

-0 1 _
1 -2 1
B, — 1 -2 1 ,
1 —2 1
L 1 -2
and
0 0 7
0 0O
0
1 1
1 1
0
D =
0
1 1
1 1
0
0 0
L 0 0.

The eigenvalues of C, A (C), are the collection of the eigenvalues of C;. Since, (see
[17]), ‘
Jm

/\j(B,-)=—2(1—cos ),j=1,...,ni—1,

g

we have

25 (Cy) :4(1 _COS%)2+2M‘(1 —(jos-—t) j=1,...,n; — L
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In addition, the eigenvalues of D are 0 and 2, thus we deduce from a corollary

of the Courant-Fisher theorem [7] that the eigenvalues of A satisfy the following
inequalities

Ak(A) 2 Ae(C) = min;(C:) = min [4(1 — cos ;1’1)2 + 2u).-(1 - cosnii ]

Hence, A is a positive matrix and we directly obtain that the pentadiagonal linear

system has a unique solution.

In addition, by Gershgorin’s theorem, Ax(A) < max;[16+4w;]. Then we obtain
the following upper bound for the condition number of A which is independent of

the number of data points, N + 2, and which recovers the result presented in [17]
for the limit case p; =0, ¢=20,...,N,

i max; [16 + 4(2)?)
NA ool AT Hloo min; [4(1 — cos £)2 + 2(2)2(1 — cos )]
max; [16 + 4(2)?]

min; (5;)4[7* + (mpa)?]

(6.3)

Summarizing, in the particular but important uniform case we can compute
the mesh solution by solving a symmetric, pentadiagonal, positive definite system
and therefore, we can use specialized algorithms, with a computational cost of 17¢
arithmetic operations, namely, 7¢ additions, 7¢ multiplications, and 3¢ divisions
[31], where ¢ is the number of unknowns.

Moreover, since the upper bound (6.3) for the condition number of the matrix
A does not depend on the number of interpolation points, such methods can be
used with some confidence. i

In the general case of a non—uniform mesh, the matrix A is no longer sym-
metric, and an analysis of its condition number cannot be carried out analytically.
However, several numerical experiments have shown that the condition number is
not influfhced by the non-symmetric structure, but does depend on the maximum
number of grid points in each subinterval, exactly as in the symmetric case. In
other words, symmetric and nonsymmetric matrices, with the same dimension and
produced by difference equations with the same largest n;, produce very close con-
.dition numbers. Non—uniform discrete hyperbolic tension splines have in fact been
used for the graphical tests of the following section.

6.3 System Splitting

Sometimes the number of unknowns in (6.2) can be very large (for example for
generating a grid in bivariate interpolation) and then even the linear computational
cost of the solution of the pentadiagonal system may turn out to be too expensive.
However, as for the two first approaches proposed at the beginning of this section
for evaluating the mesh solution, if we have a parallel machine we can easily share
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Fig. 4. Left: the form of A for N = 2, n; = 18. Right: the matrix K.
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Fig. 5. Left: The block matrix E. Right: the block matrix F.

the computation of the solution of our pentadiagonal system among the processors
as outlined below.

- The basic idea is to transform A, which, for N = 2, n; = 18 has the form
shown in Fig. 4 left, into the form K (see Fig. 4 right). Setting r; = Z:;lo (n., —1),
we note that the rows r; +1,...,7; +n; — 1 of A describe equations (2.6) for the
subinterval {z;, z;11]. If we extract from K therowsr;+1,...,7+4,¢=0,1,..., N,
we get a block matrix E of the forrmn shown in Fig. 5 left. The corresponding linear
system has few equations, and having solved it, it is possible to solve in parallel
the N 4 1 linear systems obtained from the “remaining” matrix F of Fig. 5 right
by extracting its independent blocks.

The problem now is how to move from A to K. From Sections 2 and 3 we have
the following two facts. Having in mind the structure of A and the corresponding
Fig. 4, let us consider the section given by rows r; + 1,...,7;+1. We note that the
entries of the columns with index r; + 3,...,riy1 — 2 are 1,a,,b;,a;,1 which are
the coefficients of the difference equation {2.6). On the other hand, it is shown in
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Section 3 that any function of the form

T,;(:II) = 01(1 - t) + cot 4+ Cg(p,'(l — t) -+ C4<,0,'_(t) . (6.4)

is a solution for (2.6); therefore if we multiply the row of index r;+3, 5 =1,...,n;—
1, by Yi(z;,;) = Ti(xzi+3j7:) and then add all these rows, then the contribution of all
the columns from r;+3 to r;;1 —2 sums up to zero. The idea for obtaining the matrix
K from A is the following: we replace the four rows of index r;+1,7;+2,r; +3, r;+4
with the sum of the rows from r; +1 to ;41 multiplied by the values assumed in z;;
by four linearly independent functions of the form (6.4). The remaining question
is how to choose these functions. Several numerical experiments have shown that
the lowest condition number of the matrix K (which is in general larger than that
of A) is achieved when we use the cardinal functions for Lagrange interpolation at
the points z;, closest to x;, z; + hi/3, ziv1 — hi/3, Tipa.

7. Graphical Examples

The aim of this final section is to illustrate the tension features of discrete hyper-
bolic tension splines with some (famous) examples. Before, we want to notice that
the continuous form U; of our solution given in (3.4) has the good shape-preserving
properties of cubics (see e.g. [25]) in the sense that U; is convex (concave) in
[z:, Ti41] if and only if m;4; = 0 (£ 0), j = 0,1, and has at most one inflection
point in [z, Tit+1]. In order to preserve the shape of the data, we therefore simply
have to analyze the values Aju; o and A;u;, and increase the tension parameters
if necessary. All the strategies proposed for the automatic choice of tension pa-
rameters in continuous hyperbolic tension spline interpolation can be used in our
discrete context, see e.g. [24, 25].

In our first example we have interpolated the radio chemical data reported in
Table 1. The effects of changing the tension values p; are depicted in Figs. 6-7.
We have adopted a non—uniform mesh, assigning the same number of points {30)
to each interval of the main mesh, and imposed natural end conditions, that is,
following formulas (3.6), mo = my41 = 0.

Table 1. Radio chemical data:

x; | 7.99 8.09 8.19 8.7 9.2
fi 0 2.76429E-5 | 4.37498E-2 | 0.169183 | 0.469428

Ti 10 12 15 20
fi | 0.943740 | 0.998636 | 0.999916 | 0.999994

Fig. 6 is obtained setting p; = 0, that is considering the discrete cubic spline
interpolating the data. In Fig 7 a new discrete interpolant with pg = p; = 300, p; =

15, i = 2,...,7, is displayed for the same data, and the stretching effect of the
increase in tension parameters is evident.

In the second example we have taken Akima’s data of Table 2 and constructed
discrete interpolants with 20 points for each interval, with natural end conditions
mo = my41 = 0. Fig. 8 left shows the plot produced by a uniform choice of tension
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Fig. 6. The radio chemical data with natural end conditions mg = mpy41 =0
Interpolation by discrete cubic spline. (p; = 0)
Right: a magnification of the lower left corner.
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Fig. 8. Akima’s data with natural end conditions.
Left: Discrete interpolating cubic spline (p; = 0)
Right: discrete hyperbolic spline with p5s = pe = ps = 10.
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factors, namely p; = 0. The right part of the same figure shows a second mesh
solution, which perfectly reproduces the data shape, where we have set ps = pg =
ps = 10 while the remaining p; are unchanged.

Table 2. Akima’s data [1]:

Ti 0 2 3 G 6 8 9 11 (12 | 14 | 15
fi {10 |10 |10 (10 |10 |10 |10.5 |15 | 50 | 60 | 85
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