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Abstract

The project is devoted to the study two applications of group analysis to the Navier-Stokes
equations. The Navier-Stokes equations play a central role in much of the research within
applied mathematics, physics and engineering.

The first problem that we study in the project is the existence of solutions of special vortex
type for the Navier-Stokes equations and viscous gas dynamics equations. This type of solutions
for the inviscid gas and fluid dynamics equations was introduced by L.V.Ovsiannikov [36]. Note
that this solution is partially invariant with respect to group of rotations O(3). The analysis
that has been done proves that the partially invariant solutions of the studied class for the both
types of equations (the Navier-Stokes equations and the full viscous gas dynamics equations), in
contrast to inviscid gas and ideal fluid dynamics equations, are spherically symmetric solutions.
For the completeness of consideration of partially invariant solutions that are connected with
the group of rotations O(3) the group classification of the full viscous gas dynamics equations
with spherical symmetry has been done.

Another part of the research is devoted to a particular class of partially invariant solutions
of the Navier-Stokes equations. This class of solutions is constructed on the base of the four-
dimensional subalgebra H? with the generators

Xl = 95161: + ¢”16u - 17(15;’619, X2 = ¢28$ + ¢’28u - I‘»bg s

Yl = ¢13y + l.biau - ylbfap, },2 = ¢26y + 'd):'gav - ng pr
We systematically investigate the case, where the Monge-Ampere equation is hyperbolic (L f, +
k+1 > 0). It is shown that this class of solutions is a particular case of the solutions with
linear profile of velocity with respect to one or two space variables.
Key words: Invariant and partially invariant solutions, group classification, group stratifica-
tion, Navier-Stokes and viscous gas equations.
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3 Introduction

The mathematical models of many real world phenomena are formulated in the form of differen-
tial equations. One of the methods for studying the properties of differential equations is group
analysis. Differential equations usually contain parameters or functions that are determined
experimentally and hence are not strictly fixed. Group analysis not only helps to construct
exact solutions, but also to classify the differential equations with respect to these arbitrary
elements.

Many of the invariant solutions of the Navier-Stokes equations have been known for a long
time; however their systematic analysis became possible only with the development! of the
modern methods for the group analysis of differential equations [35]. The first group classifica-
tion of the Navier-Stokes equations in the three-dimensional case was done in [13]. It was shown
that the Lie group admitted by the Navier-Stokes equations is infinite-dimensional. There is
still no classification of this group. Several papers [6-11]% are devoted to invariant solutions
of the Navier-Stokes equations. Partially invariant solutions of the Navier-Stokes equations
have been less studied [41, 33]. At the same time there has been progress in studying such
classes of solutions of inviscid gas dynamics equations [35, 46, 29]. Recently, L.V.Ovsiannikov
[36] found one class of partially invariant solutions, called a special vortex. This solution is
based on the group of rotations O(3). An ideal fluid and an inviscid gas have the same class of
solutions. Therefore, it is natural to investigate the existence of special vortex type solutions
for the Navier-Stokes equations and viscous gas dynamics equations.

As is well-known, the main difficulty in the study of partially invariant solutions is the
analysis of the compatibility [15, 25] of the appearing overdetermined systems. The analysis of
compatibility can be reduced to the consecutive performance of algebraic operations of symbolic
nature. These operations are connected with a prolongation of the system, substitution of
composite expressions {transition onto manifold), and finding ranks of matrices. Typically,
the compatibility study of systems of partial differential equations requires a large amount of
analytical calculations, and it is necessary to use a computer system for these calculations.
Here we used the system REDUCE [21].

Another part of our study is devoted to the group classification of spherically symmetric
viscous gas dynamics equations. The group classification problem consists of searching for
admitted groups of transformations admitted by the system for all arbitrary elements and all
specifications of arbitrary elements. By special choice of the arbitrary elements one can extend
the admitted group.

After finding the admitted group one can try to coustruct exact solutions: every subgroup
of the admitted group can be a source of invariant or partially invariant solutions. There is an
infinite number of subgroups?®, even in cases where the admitted groups are finite-dimensional.
But if two subgroups are similar, i.e., they are connected with each other by a symmetry
transformation, then their corresponding invariant solutions are connected with each other by
the same transformation. Since the set of subgroups can be divided into classes of similar
- subgroups, therefore, it is sufficient to find only one representative solution from each similar
class of subgroups. A set of representatives of equivalent subgroup classes is called an optimal

1 A historical review of a group analysis develpoment can be found in [22]. Many results of the group analysis
are collected in [23]

2Short reviews devoted to invariant solutions of the Navier-Stokes equations can be found in [41, 16, 17, 28].

3Because there is a one-to-one correspondence between groups and Lie algebras one can study the Lie algebra
of the admitted group.



system of subgroups. In this manuscript we give representations of all invariant solutions with
respect to subgroups of two-dimensional admitted groups of spherically symmetric viscous gas
dynamics equations.

We should also note here that, as for the Navier-Stokes equations, many of the invariant
solutions of the viscous gas dynamics equations have been obtained by other methods [21-29].
The group classification of the viscous gas equations (in case when the first A and the second
p coefficients of viscosity are related by the equation A = —21/3) was done in [8]. For some
models of viscous gas dynamics equations, group analysis was used in [32, 7|. There also exist
other similar approaches for constructing exact solutions of the Navier-Stokes equations. We
note here two of them: nonclassical symmetry reductions [27, 28] and linear profile of velocity
45].
| ]An unsteady motion of incompressible viscous fluid is governed by the Navier-Stokes equa-

tions
u+u-Vu=-Vp+Au, V-u=70(, (1)

where u = (u, v, w) is the velocity field, p is the fluid pressure, V is the gradient operator in
the three-dimensional space x = (z,y,2) and A is the Laplacian. The Navier-Stokes equa-
tions contain complete information about the structure of flows under usual temperature and
pressure. Despite progress in numerical methods and techniques, there is considerable interest
in finding exact solutions of the Navier-Stokes equations. Each exact solution has value, first,
as the exact description of the real process in the framework of a given model; secondly, as a
model to compare various numerical methods; and thirdly, as theoretical tool to improve the
models used.

One method of constructing exact solutions is group analysis [35]*. This method is based
on the symmetries of the given equations. Note that many of the invariant solutions of the
Navier-Stokes equations have been known for a long time: these solutions were obtained by
assuming a form of the representation of the solution. Group analysis gives a method for
obtaining the representation of solution. The first group classification of the Navier-Stokes
equations in the three-dimensional case was done in [13]°. It was shown that the Lie algebra
admitted by the Navier-Stokes equations is infinite-dimensional®. For each subalgebra of the
admitted algebra one can try to find an invariant or partially invariant solution. Several papers
(7, 14, 26, 6, 47, 49, 39]7 are devoted to invariant solutions of the Navier-Stokes equations.
Another class of solutions that is suggested by group analysis is the class of partially invariant
solutions [35, 34]. The theory of partially invariant solutions is still developing [37, 38]. While
partially invariant solutions of the Navier-Stokes equations have been less studied [?], there
has been substantial progress in studying such classes of solutions of inviscid gas dynamics
equations [1,20-26].

We should note here that there are also other approaches for constructing exact solutions
of the Navier—Stokes equations. We note here two of them: nonclassical symmetry reductions
and direct methods [28, 27] and linear profile of velocity [45, 50].

%A historical review of the development of group analysis can be found in [22]. Many of the results of group
analysis are collected in [23].

3The first classification of the two-dimensional Navier-Stokes equations was studied in [40].

®The classification of infinite-dimensional subalgebras of this algebra was studied in [20]. There is still no
full classification of the subalgebras of this algebra.

"Short reviews devoted to invariant solutions of the Navier-Stokes equations can be found in [?, 16, 17, 28).



4 The method of study

Let us first review the notations and techniques used in group analysis.
Let an [-th order system of differential equations

Y

(S): F¥z,u,p) =0, (k=1,2,...,s)
be given. Here z = (z;), (: = 1,2,...,n) are the independent variables, u = (@) ( j =
1,2,...,m) are the dependent variables, p = (p¥) are the derivatives up to [-th order, and

a = (o, Qz,-..,0q) is a multiindex with |a| = a; + a2 + ... + an < I. In the space J!, which
consists of the elements (z, u, p) the system of differential equations is considered as a regular
assigned manifold

U = {(x,u,p) € J' | F¥(z,u,p)=0, (k=1,2,...,5)}. (2)
The term "regular” means that the vector function F(z,u,p) satisfies the condition

8(F)

B(I,u,p)) —°

rank (

4.1 Admitted Lie group of transformations

Orne of the main objects in group analysis is the local one-parameter Lie group G! of the
transformations:

T, = f5(z,u;a), v'=fY(z,y;0), ((=1,2,...,n; j=1,2,...,m). (3)
There is a one-to-one correspondence between such groups G' and infinitesimal generators

X = 5‘(1, u)ax.- + Cj(:r: u’)auj:

where .

i _dfE j _dfv

&z, u) = —— e © (z,u) = —— -
The operator .
)F= X + Z Cgap_j’
J
with coefficients _ _
ak = DiCl — ZP’L,,’Dkf'- (4)

is called the /-th prolongation of a generator X. Here, the operators
D .

are the operators of total differentiation with respect to zx, (k = 1,2,...,n). Formulae (4)
for the coefficients of the prolonged operator are defined by the following fact. Let a function
u = u,(z) be given. Substituting it into the first part of transformation (3) and using the
inverse function theorem one has

z = g*(z, a).

8



The transformed function u,(z') is given as follows
ua(z) = [*(°(2', @), uo(9°(7, @)); @).

Hence, the derivatives p’ of the transformed function uq(z') are defined through the derivatives
p of the function u,(z). The local Lie group of transformations in the space J*

' = [z, u;a), v = f¥(z,u;a), P = fP(z,u,p;a) (5)

with the operator X is called the /-th prolongation of the group G' (3).
A function ®{z,u,p) is called an invariant of the group G! if the equality

(2’ v, p') = ®(x,u, p)

holds. If ®, # 0, then the function @ is called a differential invariant. The regular assigned
manifold (2) is an invariant manifold with respect to the prolonged group (4) if and only if

DS : J‘\’Fk(x,u,p)wl =0, (k=1,2,...,s). (6)

A local Lie group G! of transformations (3) is said to be admitted by the system (S) (we
also say that the system (S) admits the group G!) if the manifold (S) is invariant with respect
to the prolonged group. In this case, the generator X of the Lie group G' is also called admitted
by the system (S). The algorithm for finding a local one-parameter Lie group (3) admitted by
the system of differential equations (S) consists of the following four steps.

In the first step, the form of the generator

X = £'(z,u)0s, + ¢ (z,u)0u,

is given, with unknown coefficients £'(z, u), ¢?(z,u). In the second step the prolonged operator
Xis applied to every equation of the system (S). In the next step the coefficients of the prolonged
operator are substituted by using formulae (4). The equations obtained must be considered on
the manifold U;. As a result we obtain the system of differential equations (6). The system of
equations DS is called a system of determining equations and it is an overdetermined system
of linear homogeneous differential equations in the unknown coordinates £'(z, u), ¢*(z,u). The
general solution of the determining equations DS generates a full group G'S of the system (.5).
The feature of the admitted group is that under action of any transformation of this group
every solution u = U(z) of the system (S) is transformed into a solution u = U,(z) of the
same system (S). Therefore the admitted group allows constructing new solutions from known
solutions. Note that the set of admitted generators generates a Lie algebra, which is called
admitted by the system (5).

4.2 Equivalence transformations

Most systems of partially differential equations have arbitrary elements: arbitrary functions
or arbitrary constants. These arbitrary elements can be separated into classes with respect
to a group of equivalence transformations. An equivalence transformation is a nondegenerate
change of dependent and independent variables and arbitrary elements, which transforms any
system of differential equations of a given class to a system of equations of the same class. These
transformations allow us to use the simplest representation of the given equations. Note that the

g



admitted group depends on specialization of the arbitrary elements. The group classification
problem consists in searching for an admitted group of transformations, which is admitted
for all arbitrary elements of the system and all specializations of the arbitrary elements. The
specialization of the arbitrary elements can extend the admitted group. For the calculation of
equivalence transformations we follow the approach developed in [30, 31], which consists of the

following.
Suppose, the system of differential equation

F¥(z,u,p,¢) =0,(k=1,2,...,5) (7)

has arbitrary elements ¢ = (¢', ¢?, ..., ¢'), which are functions (or constants) ¢ = ¢(z,u). A
specific value of the arbitrary elements represents a concrete system of differential equations.

The problem of finding an equivalent transformation consists of constructing a transforma-
tion of the space R*"*™%(z, u, ¢) which preserves the equations by only changing their represen-
tative ¢ = ¢(x, u). For this purpose, we consider the one-parameter group of transformations
of the space RPH™m+t .

' = f*(z,u,$;0),u = fYz,u, ¢;0),4' = [?(z,u, $; a). (8)
A generator of this group has the form:
X® = £%0; + (0, + (%04 (9)
with the coordinates®:
& =€(z,4,6),¢" =¢(5,4,¢),¢* =¢*(z,u,9)

(i=1,...,m5=1,....,mk=1,...,1).

We use the main feature of the Lie group that any solution u,(x) of system (7) with functions
#(z, u) is transformed by (8) into another solution u = u,(z") of system (7), but with different
(transformed) functions ¢4(z, u), which are defined in the following way. Solving the relations

2’ = f*(z,u, d(z,u);a), v =[f*(z,u,é(z,u);a)
with respect to (z,u), we obtain
z = g*(z',v';a), u=g*(@, v;a). (10)
Then the transformed function is
$a(z', ') = f%(z,u, ¢(z, u); a), (11)

where instead of (z,u) we have to substitute their expressions (10). The transformed solution
uq(x) is obtained by solving the relations

z' = f3(z,u0(x), d(x, uo(x)); @)

with respect to (z):
z = ¢Y*(z';a)

8Later the author discovered that similar assumptions about the coefficients of the operator were used in
[48] for one class of ordinary differential equations with one nonessential restriction (¢ = (%" (z, ¢).

10



and substituting into

ua (') = ¥z, uo(T), ba(z, uo(z)); @). (12)
The formulae for the transformations of the partial derivatives p, and the derivatives of the
functions ¢ are obtained by differentiating (11) and (12) with respect to z' and u'.

The method for finding a group of equivalence transformations is similar to the algorithm for
finding an admitted group of transformations. The difference only consists of the prolongation
of the infinitesimal generator X®. In agreement with the construction of the functions u,(z’)
and ¢.(z’', u'), the prolonged operator

K€ = X€ 4 (%0, + (%0p, + (™ Op +
has the following coordinates
¢ = DICY — u DSER, (A =z, T2,...T5)
with D§ = 9\ + ux8y + (Puur + @) and
(= f)j{g"‘b — ¢ DSET — p, DSCY, (A =ul,u?, ., u™, 1), 1o, L)

with D§ = O + ¢20,.

An equivalence group G'S¢ of transformations is generated by G*(X¢).

Remark. In some cases one may have additional requirements for the arbitrary elements.
For example, the arbitrary elements ¢* may be supposed to be independent of the independent
variables Bi = 0. When studying the equivalence group such conditions have to be added to

Oz
the original system of differential equations (7), leading to additional determining equations.

Remark. Note that in case of the Navier-Stokes equations, kinematic viscosity is the
arbitrary element and these equations can be transformed to equations (1) by scaling the
independent and dependent variables.

4.3 Invariant and partially invariant solutions

For each subgroup of the admitted group GS one can try to find an invariant or partially
invariant solution. Let H C GS be a group admitted by the system of equations (S). Assume
that X, ..., X, is a basis of the Lie algebra L™ which corresponds to the group H. An invariant
or partially invariant solution with respect to the group # is called an H-solution. The method
[35] for constructing H-solutions with respect to the group H requires to find an universal
invariant of this group: a set of all functionally independent invariants. For this purpose one
needs to solve the overdetermined linear system of differential equations:

Xi¢($, u) = 0'-' (i = 112! ""T) * (13)

Because X}, ..., X, generate a Lie algebra, system (13) is complete. Its general solution can be
expressed through the m + n — r, invariants

J = (I (z,u), J2(,0), .., S (2, 1))

where 7, is the total rank of the matrix composed of the coefficients of the generators X;, (i =
( Jl Jm+n r.)

&ty i)

1,2,...,r). If the rank of the Jacobi matrix is equal to ¢, then without loss

11



of generality, one can choose the first ¢ < m invariants J', ..., J9 such that the rank of the
o(J, ..., J9) .
a(ula ey um)
Jit2 .., J™""- only depend on the independent variables z. H-solutions are characterized
by two integers: the rank o = ¢ + n — 7, > 0 and the defect § > 0, thus one uses the notation
H(o, §)-solution. Rank and defect must satisfy the inequalities

Jacobi matrix is equal to ¢ and the remaining £k = m +n —r, — ¢ invariants J9*!,

k<o <mn max{r. —n,m—g¢q,0} <6 <min{r, — 1,m— 1}.

To construct a representation of H(o, §)-solutions one needs to separate the universal in-
variant into two parts: J = (J, J), where [ = m — ¢ and

T = (JY, . T, T = (JH, Jit2 L gmineTs),

This means that one can choose the number / such that 1 <! < ¢ < m. The rank and the
defect of the H(o,6)-solutionare é =m -1, o =m+n—r. -1 =4+ n —r,. A solution is
called invariant if § = 0, otherwise it is called a partially invariant solution. From the first {
invariants J!, J?, ..., J! one can define the ! dependent functions

ut = ¢t (J,u et L u™ ), =1, ...,10). (14)

The functions u!*!, u'+?, ..., u™ are called superfluous. The representation of the H{o, §)-solution
is obtained by assuming that the first part of the universal invariant is a function of the second

part: .
J = ¥(J). (15)

and substituting (15) into (14). Thus, the representation of an invariant or partially invariant

solution is ' L
ul = (T, u Ut L u™ ), (=1, .., 1), (16)

where @' = ¢ (U(J), ul*t!, ul*2, .., u™, z).

If § # 0, then either ¢ = k or 0 > k. In the first case (o = k) the partially invariant solution
is called regular, otherwise it is called irregular [37]. The number o — k is called the measure
of irregularity.

After constructing the representation of an invariant or partially invariant solution one
needs to substitute it into the original system of equations. The system of equations in the
functions ¥* and superfluous functions thus obtained is called the reduced system. This system
is overdetermined and requires analysis of compatibility. Usually the compatibility analysis is
easier for invariant solutions than for partially invariant ones.

If H' is a subgroup of H, then it may be possible that a partially invariant H(o, §)-solution
is a partially invariant H'(o’,§’')-solution. In this case &' < §, ¢’ > o [35]. A solution is
called reducible to a H'(¢’,§’')-solution. if there exists H' € H such that § < §, ¢ =
In particular, a solution is called reducible to an invariant solution if there exists H' ¢ H
with ¢’ = 0. Thus, a natural problem is to reduce a partially invariant H (o, §)-solution to an
invariant H'(o, 0)-solution.

5 Results

For the first problem the analysis that has been done proves that the partially invariant so-
lutions of the studied class for the both types of equations (the Navier-Stokes equations and

12



the full viscous gas dynamics equations), in contrast to inviscid gas and ideal fluid dynam-
ics equations, are spherically symmetric solutions. Group classification of the full viscous gas
dynamics equations with spherical symmetry shows that the kernel of admitted groups is ex-
tended for three types of the state equations. For each class the optimal system of subalgebras
is constructed. Universial invariants of all subalgebras are constructed. Representations of all
possible invariant solutions is given.

Another part of the research is devoted to a particular class of partially invariant solutions
of the Navier-Stokes equations. This class of solutions is constructed on the base of the four-
dimensional subalgebra H* with the generators

X, = ¢’161 + ﬁf’rlau - $¢’|’ap, Xo = ¢ + ¢’28u - Iégapi

Y1 =1 ay + d)’l Oy — yd);’ap: Yo = w‘.’ay + wlgav - yw’zlap-
According to the classification [37], a partially invariant solution with minimum defect § = 2
is a regular partially invariant solution of H{(2,2). In this case a representation of the partially
invariant solution is

w=2f(z1), p=h(zt)—kt)z? - 1t)y*, u=u(z,y,2,t), v=ouv(zr,y,21),

where k = ¢!/(2¢:), | = ¥!/(2¢;). After substitution of the representation of solution into
the Navier-Stokes equations the overdetermined system of equations is obtained. It is proven
that in the process of compatibility study the Monge-Ampere equation is constructed. In
the research a systematical investigation of the case, where the Monge-Ampere equation is
hyperbolic. It is shown that this class of solutions is a particular case of the solutions with
linear profile of velocity with respect to one or two space variables. Examples of solutions with
elliptic Monge-Ampere equation are given.

5.1 Full Navier-Stokes Equations
5.1.1 Coordinateless form of the equations

In this manuscript we study unsteady viscous gas dynamics equations. These equations govern
a three-dimensional motion of a compressible, thermal conductive, Newtonian viscous gas flow
dv

: dr :
= 7 div(P), i Tdiv(v) = 0,

de :

i 7P : D+ 1div(kVT).

Here 7 = 1/p is a specific volume, p is a density, v is a velocity, P is a stress tensor, D =
%(% + (g—: ") is a rate-of-strain tensor, € is an internal energy, T is a temperature, k is a

coefficient of a heat conductivity. The Stokes axioms for a viscous gas give
P = (—p+ Adiv(v))I + 2uD,

where p is a pressure, A and u are the first and the second coefficients of viscosity, respectively.
A viscous gas is a two parametric media. As the main thermodynamic variables we choose the
pressure p and specific volume 7: the entropy 7, the internal energy € and the temperature T
are functions of the pressure and specific volume

= W(P, T)s £ = E(p, T)’ T= T(p, T)-

13



The first and the second thermodynamic laws require for these functions to satisfy the equations

£ €+ P
Up:%,W'r:‘T—T-‘,3/\"*‘2#20;#20,'520-
For the simplicity of classification we study case, which corresponds to an essentially viscous

and heat conductive gas

p#0, k#0.
Thus, the studying viscous gas dynamics equations are
‘Z_‘t’ +7Vp =7 (A + @)V (div(v)) + (div(v)) VA + pAv + 2D(V)), (17)
Z—I — rdiv(v) = 0,
z—f + A(p, 7)div(v) = B(p,7) (M div(v))? + 2uD : D + (Vk)(VT) + kAT)

with the functions
_ 1(er + D) ="
e T ey

Note that the internal energy and entropy can be expressed through the functions 4 =
A(p,7), B = B(p,7) by formulae

T A T A

=g Sr=g P =g "= g

The conditions €, = €,5, Tpr = 7irp lead to the restrictions

7B, + BA, — AB, = B®* + B, (18)
71, = AT, - TB.

In the case of an ideal gas (i.e., the gas that obeys the Clapeyron equation T = R~'pr) there
are B = B(7p), A = p(1 + B(7p)) with an arbitrary function B(7p). For a polytropic gas
¢ = (v — 1)"'7p and this one more simplifies the functions 4 and B: B = (y — 1), A = vp.
Here R is the gas constant and -y is a polytropic exponent. Note also that the Navier-Stokes
equations are obtained from the viscous gas equations by assuming that the second coefficient
of viscosity p and the density p (or the specific volume 7) are constants.

Remark. In the case of constant 7 and u system (17) is split on two systems: the Navier-
Stokes equations and the energy equation.

5.1.2 Spherical coordinate system

Equations (17) are written in coordinateless form. For applications one needs to write them
in some coordinate system. Because our goal is to study solutions of viscous gas equations
connected with the group of rotations, then it is convenient to use a spherical coordinate

system.
The spherical coordinates (r, 8, ) and the Cartesian coordinates (z, y, 2) of the point x € R3
are introduced by the formulae

z=rsinfcosy, y=rsinfsiny, z=rcosf

14



Corresponding physical components of the velocity vector v in the spherical coordinate system
(U,V,W) and (u,v,w) in the Cartesian coordinate system are related by the expressions
u=Usinfcosy + V cosf cosp — Wsin ¢,

v="Usinfsiny + V cos#sinyp — W cos p,

w=Usinf — Vsin@.
Note that the vector (V, W) can be described by its modules H and by the angle w
V=Hcosw, W= Hsinw. (19)

For the spherical coordinate system the fundamental tensor is diagonal
0 0

1 0 0 B 1
(9i5)= |0 r° 0 i (g7)=|0 & O |9l = det(g;;) = r'sin® 6.
0 0 r2sin®f 0 0 =gy

The Christoffel’s symbols
rl. = lgls Ogis  0gis  9gi;
Vo2 0Ki O0K' OJK*

are (we write down only nonvanishing symbols)

[f, =05 =T} =03 = r’ Ly =
i, = —r sin® 8, I'3; = —sin 4 cos #

Here K! = r; K? = 6; K® = ¢ and there is a summation with respect to a repeat index

Tensor components of the vector v are
vV W .
), (vi,v2,u3) = (U,7V,7 sin 6 W),

2 .3y —
(U v U) (UT "rsin @

Coordinates of a gradient of any scalar function F are
y  OF oF 1 oF

= F = —=—
(VF), =(VF) = B , (VF),= 50 (VF) 250"

oF 3 1 9F
VF)y;=—, (VFY = 50— +—.
( )s dyp ( ) r2 sin? 0 Oy
A matrix of the covariant derivatives is (here ¢ is a number of a row, j is a number of a column)
au au au
- S . fa 1% —en 6;W
(W) =| % +twts —g—m w
1 oW 1w 1 '8y 4 U 4 ocotoy
rsind 8¢ rsinf 3g

rsind or

Coordinates of the rate-of-strain tensor D = ( o+ (52) ) e
2DJ| = v.,’l + U:'sgiagjﬁ-
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Hence, o _ _
2D : D = vv’; + v:?-v:;g,-agﬁ.

1y

For the divergency there is
i@('rzU) 1 JsinfV 1 oW

1 0 ;
divv = —— . (\/ ') = '
o \/EaK‘ lglv T2 Or * rsinfl 96 + rsinf Jy

The Laplace operator of a scalar function is

1 0 ., OF
AF = ——1[+/|glg¥=— | =
_lg TEB_F +___1 _E Singa_F + 1 62F
2 0r ar r2sin 6 08 a6 r2sin? @ 9p?
The Laplace operator Av of the vector v has coordinates
Y [T . (0T
i { il H t 2 g
(Av)y =A (U ) + 2931—‘53% + g¥ (B_KIJ) + Fipl_‘_t‘is - FijF;s) VP,

which for the spherical coordinate system are
20V 2 ow 22U 2cot9v

1 __ - = _ —
(Av) =A(U) r 80 r2sind Oy 72 r2
Y_)+ 2 8V 20U 2cotf W 1%

r20r 1380 r3sinf 8o r3sin?f’
w 2 0 /W 2cotf O %4

&P =2 (5505) * remaar () 5 (sn9)

(&v) rsinf rsin@dr \ r + 3 80 \siné +

N 2 6U+ 2cotf OV

r3sin?@ 3¢  r3sin?@ Gy’

(avy=a(

T

d
The acceleration vector d—: has the components

dv\! W24 V2 dv® 1 UV —cot@ W2
(E) = D) - — (E) = ;D(V) + 3 ,
dv? 1 UW +cot WV
(E) " rsin GD(W) + r2sin @ ’
where af _of Vaf W of
PN =%+V% T 730t rsmb oo

A substitution of the presented coordinates of the tensors and the vectors into system (17)
gives equations of a viscous thermoconductive gas in the spherical coordinate system. These

equations are very cumbersome®.
9All symbolic calculations for the coordinates of the tensors and the vectors were made on computer with

the help of the system REDUCE [21].
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5.2 Partially Invariant Solution with respect to SO(3)

In the space of variables t,7,0,,U, H,w, 7, p the group of rotations O(3) has the generators

26
X = —sin 0y — cos p cot HF, + cos ¢(sin #) '3,

Y = cosp0y —sinpcot §3, + sin p(sin )14,
Z = 0,.

Invariants of this group are ¢t,r,U, H, 7, p.

The rank of the Jacobi matrix of the invariants with respect to the dependent functions is
equal to four. Therefore, according to [33] there are no nonsingular invariant solutions that
are invariant with respect to group of rotations O(3). A minimal possible defect of a partially
invariant with respect to O(3) solution is equal to one. In this case a representation of the

partially invariant solution is
T=7(t,r), U=U(t,1), H=H(tr), p=p(tr), w=w(trb, ¢ (20)

The function w(t,r, 8, ¢) is "superfluous”: it depends on all independent variables. Note that
if H = 0, then by virtue of (19) the tangent component of the velocity vector is equal to zero
and it corresponds to spherically symmetric flows that are considered in the next subsection.

In this subsection it is assumed that H # 0.
All analytic calculations for the viscous gas dynamics and the Navier-Stokes equations are

done in the REDUCE system [21]. The result of these calculation is: class of solutions that is
partially invariant with respect to O(3) is confined by spherically symmetric solutions.

5.2.1 Analysis of compatibility of partially invariant solutions

For the sake of simplicity we present here analysis of compatibility of partially invariant solution
for the Navier-Stokes equations, i.e., when 7 and p are constants. Analysis of compatibility
for the viscous gas dynamics equations is similar, but it needs more cumbersome symbolic

calculations.
After substituting the representation of the partially invariant solution (20) into the Navier-

Stokes equations'® and some combinations of the second and the third equations the initial
system can be split on two subsystems: the invariant system

DoU + pr =7 'H? + (Upy + 477U, + 2r™2V) (21)
with the operator Dy = 9, + UJ, and the supplementary system
Do(rH) = (rH),, — (rsin? ) 'H — rH(w? + r 2w} + (22)
+(rsin ) "w? + 2(r?sin 6) "' cot fw,),
Dow + (rsin #) ™! H(sin 6 cos wwy + sin ww, + cos fsinw) =

= Wyr + 2(r H) " (r H)pw, + 7~ %weg + 772 cot Bwe + (rsin 9)‘2ww,
sin @ sin wwy — cos ww, = cos f cosw + sin 8(rH )~ {(r?U),.

10Here we use dimensionless representation of the Navier-Stokes equations in which one can account that
p=1land r=1.
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For the analysis of compatibility of system (21),(22) it is convenient to use implicit repre-
sentation for the function w = w(t,r, 8, v) in the form

F(w,t,r,0,9)=0, (F,#0).

Y
All derivatives of the function w(t, 7,8, ¢) can be calculated through the derivatives of the

function F(w,t,7,6, ). For example, for the first derivatives we have
wy = —F/F,, wp=—-F/F,, wp=—-F/F,, w,=—F,/F,.
Then the last equation of (22) becomes
sinfsinwFy — coswkF, + F,(cosfcosw + ksinf) = 0,

where the function & = (rH) !(r?U), only depends on ¢ and r. Note that for a viscous gas
dynamics equations there is the same equation with the function k(t,r) = (Hr7)~ ' (—r D1 +
7(r?U),. The general solution of the last equation is

sin w
ksin® + cos @ cosw

F=9o (Lp + arctan( ),sinfcosw — kcos@,t, r) :

Here the function ® = ®(y;, y2,¢,7) is an arbitrary function of the arguments ¢,r and

sin w
k sin @ + cos # cosw

Y1 = @ + arctan( ), y2 =sinfcosw — kcos .

All further intermediate calculations in studying the compatibility of overdetermined system
( 21), ( 22) were made on computer in the system REDUCE [21]. Here we give the way of

computing and the final results.
Note that the Jacobian %(% # 0, therefore one can choose (y;,y2,6,t,7) as the new

independent variables. All derivatives of the function w(t,r,8, ) can be written through the
derivatives of the function ®(y,, y2,t,7). After that the second equation of (8) accepts the form

sian’l(yl, Y2, t, T, 9) + G2(yl:y2: t: T, 9) = 0!

where the functions G, (v1,y2,t, 7, 8) and Gz2(y1, y2,t,7,0) do not include w and its derivatives.
In the last equation sinw can be excluded by using the trigonometry identity:

G%(1 — (ya + kcos 8)?) — G3(1 — cos® ) =0,

where the equality cosw = sin~! 8(y, + k cos ) found from the representation of y, was applied.
Further calculations show that the last equation depends on # as the polynomial of the
degree 8 with respect to cos @:

8
Py =) axcos* 6 =0.
k=0

The coefficients ax, (k = 0,1,...,8) only depend on y,,¥.,¢,7 and do not depend on §. This
allows splitting the equation with respect to cosf: ax =0, (k=1,2,...,8).
The equality ag = 0 gives
Doh = hey + h(K* + 1) hy, (23)
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where h = rH. Substituting h; found from (23) into ag = 0, we obtain
ke (K + 1)@, + kk,2®y,) = 0. (24)

If (k* +1)®, + kk,y2®,, = 0, then the equation a4 = 0 gives the equation y2 — (k> +1) = 0

or
(sinfcosw — kcosf)? = k% + 1.

Note that substituting the representation of the function w(t,r, 8, ¢) found from this equation
into ( 21), ( 22) and splitting them with respect to cos# gives the expression H = 0 that
contradicts the assumption about H.

For the second case in (24), when k&, = 0 we will obtain a contradiction with the help of
the first equation of (22). Really, the same study of the first equation of (22) as for the second
equation leads to the polynomial of the degree 10 with respect to cos#:

10
Py =3 bicos* 8 =0,
k=0

where the coefficients by, (kK =0,1,...,10) only depend on yy, y2, {, 7. The equality b, = 0 gives
ki =172h(k?* +1). (25)
By virtue of k, = 0, ( 25) and the definition of £ = (r?U),/h one can obtain that
h(t,r) = 3c(t)r?, r2U(t,r) = k(t)e(t)r® + A(),

where c(t) = (k2(t) + 1)~'£'(¢)/3. Substitution of this representation into ( 23) and splitting it
with respect to r gives c(¢) = 0 that contradicts the assumption H # 0.

Similar calculations have been done for the viscous gas dynamics equations.

The analysis that has been done proves that the partially invariant solutions of the studied
class for the both types of equations (the Navier-Stokes equations and the full viscous gas
dynamics equations), in contrast to inviscid gas and ideal incompressible inviscid fluid dynamics
equations, are only spherically symmetric solutions.

5.3 Spherically Symmetric Flows of a Viscous Gas

The case H = 0 corresponds to a spherically symmetric flow of a viscous gas. According to
the definitions of the group analysis it is a singular invariant solution with respect to group of
rotations O(3). The viscous gas dynamics equations in this case are

Dot — (U, + 2r~'U) = 0, (26)
DoU + 7p, = (A + 2p) (Upy + 277Uy = 2772U) + 67(ptr T + ppy) +
+7(Ur + 2r WUY(Ar7r + Appy),
Dop + A(U, + 2r~'U) = BAU, +2r~'U)? + 2u(U7 + 2r2U%) +
+86(Trr77 + 2T0p7ePr + Tppp? + Tr(Ter + 277! 7) +
+ T3 (Prr + 277" pr) + (KpPr + K72 ) (T + Typr)],

where Dy = 8, + UJ,. In this subsection we study a group classification of equations (26) with
respect to the arbitrary elements A |, B, A, y, &, T.
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5.3.1 Equivalence transformations

The first stage of group classification requires determining a group of equivalence transforma-
tions of equations (26). An equivalence transformation is a nondegenerate change of dependent
and independent variables and arbitrary elements, which transforms any system of differential
equations of a given class to the system of equations of the same class. It allows using the sim-
plest representation of given equations. Here we give a construction of the group of equivalence
transformations without restrictions on the representation of equivalence transformations [35].
We follow the approach for the calculation of equivalence transformations developed in [30].
Since arbitrary elements satisfy restrictions (18) and A = A(p, 7), B = B(p, 7), A = A(p, 7)), =

ulp,7),k = k(p,7), T = T(p,7), then for calculating an equivalence group of transformations
we have to append the equations

to equations (26). All coefficients of the infinitesimal generator of the equivalence group
X =8 + ¢80, + CYu + (70 + POy + (H0a + P + CPOx + (HOu + ("0s + (T Or
are dependent on all independent, dependent variables and arbitrary elements
r,t, U, 7, p, A, B, A u, g, T.
With the following notation:

2 5
w=U vl=71 v¥*=p, a' = A, a®> =B, a® = ), al=p =k =T

and Bk o
1 2 3 4 5 _ k_va p a
Z =T Z :t, Z =U, Z =T, ——p,aﬁ— a?,ajﬁ— W’

the coefficients of the prolonged operator

Xe Xe+z (¥ B,s + (W, )+ZC=JB.& +.

k.j
can be constructed with the prolongation formulae:
¢% = D ¢* —uiD ("~ uiD, (Y, (% = D¢ — uiDeCm — ulDyCt,
¥ = DpC* — uf, D¢ — ul,DiC
% = D% — zakDeﬂgz , (%8 = DSs(% — Za D¢,

Here the operators D,, D, denote the total derivative operators with respect to r and ¢, re-
spectively. For example,

D, =08, +> ul0ye + 3 (ar +D_al;ul)0 + ...
o ] k]
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When we use the operator Df; we consider 2!, ..., 2° as independent variables and a!, ..., a® as
dependent variables, we obtain:

D=0, +> abifu +....
\ i
All necessary calculations here as in the previous subsections were carried on a computer
using the symbolic manipulation program REDUCE [21].
The calculations showed that the group of equivalence transformations of equations (26)
corresponds to Lie algebra with generators

f =0, X§5=0p, X§=r0, 410, + A0 + n0, + x0x,
Xi =710 +uby + 270, + 260, X§{ = —70; + pOp + A0 + A0\ + p0, + KOx.

Remark. If instead of the functions A(p,7), B(p,7) one considers the internal energy
e(p, 7), then the operators X§, X§, and X¢ are changed to

JYS = ap —_ Tae, Xf = Tar + uau + 2T67 + 256}5 + 2685;

X§ = —70; + pdy + A0x + u0, + KOx.

and there is one more generator X§ = d..
Remark. By a direct checking one can obtain that in the general case!! (equations (17))
the equivalence group includes the transformations with the generators

T =0, X3 =0,
X§ =x0x + t0 + A0y + 10, + KO,

X§ = x0x + udy, + 270, + 2K0,,
XE = —78, +pFy + A0 + A0\ + pn0, + KOx.

There are also other generators, for example, that correspond to the Galilei transformations
and to the rotations in the three-dimensional case.

5.3.2 Admitted group

Finding an admitted group consists of seeking solutions of determining equations [35]. We are
looking for the generator

X =(0+¢0+¢"8y +(8, + (I,

with the coefficients depending on r,t, U, 7, p. Calculations lead to the following result.
The kernel of the fundamental Lie algebra is made up of the generator

X=6t.

Extension of the kernel of the main Lie algebra occurs by specializing the functions A =
A(p,7),B = B(p,7),A=Ap,7), = pp,7),& = k(p,7), T = T(p,7). Note that the functions
A= A(p,7),B = B(p,7),T = T(p, 7) have to satisfy equations (18). There are three types of
the generators admitted by system (26). Further o, 3 and § are arbitrary constants.

"Group classification of three-dimensional viscous gas dynamics equations with A = —2u/3 was studied in

(8]-
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'I‘ypg (2). If the functions A(7,p), B(7,p), M, p), u(1, p), 6(T, p), T(7, p) satisfy the equa-

tions
atA; + Ap =0, atB, + B, =0,

QT + pp = P, ath + Ay = G2, (27)
atl, + T, =T, atk, + Kk, = (=6 + a + B)x,

A\
then there is one more admitted generator:

Y, = aUdy + 2a70, + 20, + (o + 28)70, + 25t0,.
The general solution of equations (27) is

A= A(re ®?), B= B(re °P), p = e’PM(re %), \ = e’PA(Te~°F),
T = e’PO(7e7P), k = el 0+atBP [ (re0P),

where the functions A(z), B(z) and ©(z) satisfy the equations (2 = re~°")
—azBA' 4+ zB'(1+ad) = B*+ B, (1+ aA)z0' = (64 — B)O. (28)
The internal energy is represented by the formula
e = e (p(2) — zp) + ¥(p), ¥'(p) = Ce®?,

where the function ¢(z) and the constant C' can be accounted as arbitrary and they are related
with the functions A(z) and B(z) by the formulae

Alz) C=z+——r

o) = Gy By +ae!() — ()

In this case the function ©(z) has to satisfy the equation
(C — 2+ ap(2)) ©'(2) = (6¢'(2) — 1)O(2).
Type (b). If the functions A(7,p), B(7,p), A(7,p), (7, p), k(7,p), T (T, p) satisfy the equa-

tions
aTA; +pA, = A, atB, +pB, =0,

Tty + Dty = (B4 Vi, @rhs + 9y = (B+ D), (29)
arTy + 9T, = 6T, atk, +pT, = (=0 + 2 + a + B)x,

then there is an extension by the generator
Yy = (1 + a)Udy + 2a10; + 2p0, + (a + 20 + 1)r0, + 26t0,.
The general solution of equations (29) is

A=pA(1p™®), B =B(rp™®), p=p "' M(rp=*), X = pP*'A(p~®),
T = p*@(rp™@), k = p~$totb+2K (rp=2),

where the functions A(z), B(z) and ©(z) satisfy the equations (z = 7p~2)
—azBA' + zB'(14+ aA) = B2+ B— B4, (1+aA)z0' = (6A - B)O. (30)
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The internal energy is represented by the formula

e =p®*(p(z) - 2) + ¥(p), ¥'(p) = Cp°,

v’v‘here the functiop ¢(z) and the constant C are arbitrary and they are related with the functions
A(z) and B{z) by the formulae
A(2)

P =Fy C=2+ W) +azg'(2) — (a + 1)p(2)

The function ©(z) is represented through the function ¢(z) by the formula
(C — 2+ (a+ 1)p(2)) ©'(3) = (64/(2) — 1)O(2)

Note that an ideal gas belongs to this type in case of § = a + 1 and the function ¢(z)
satisfies the equation
6(z¢" — ) = C.
Type (c). If the functions A(r,p), B(1,p), A(7, ), u(7, p), (7, p), T (7, p) satisfy the equa-

tions
Ar =0, B, =0, Tu, = Bu, 1A = BA,

7T, = 6T, 76, = (=8 + 1 + B)x, (31)
then there is one more admitted generator:
Y. =Udy + 279, + (1 + 23)70, + 23t0;.
The general solution of equations (31) is
A= A(p), B = B(p), p=7"M(p), A =17A(p},
T = w50(p), k= T-0 K (p),
where the functions A(p), B(p) and O(p) satisfy the equations
BA'— AB'=B*+ B, A© =(§+ B)O. (32)

The internal energy is represented by the formula
e =71p(p) —7p,

where the function ¢(p) is an arbitrary function and it is related with the functions A(p) and
B(p) by the formula
_ Al)

@(p) = B—(p)
In this case the function ©(p) is related with the function ¢(z) by the formula
v(P)O'(p) = (1 — 6+ 6¢'(p))O(p).

Note that if § = 1 and ¢ = Cp, then the gas is ideal.

The final results of the group classification are presented in Table I. In this table the first
column means the type of the extension of the algebra {X}: the types a, b, or c, respectively.
The last column means conditions for the state functions.
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Therefore, there are three kinds of admitted by equations (26) groups, which depend on
the specifications of the functions A = A(p,7),B = B(p,7),A = Mp,7), 1t = p(p,7),x =
k(p,7), T = T(p, 7). These groups are one-dimensional, two-dimensional and three-dimensional.

The two-dimensional admitted groups are groups with the generators either {X,1.} or
{X,Y;} or {X,Y.}. The three-dimensional admitted groups are the groups with the generators
either {X: Ya: }fb} or {X: }/a.: Y;:} or {XJ }/b: }’c}

The group with the generators {X,Y,,Y;} is admitted by equations (26) if

A= Agt®, B =—1, p=pgm?*® A= N7P*% k= kot T =Tyr, a # 0.

In this case the internal energy is € = —(7p+ Ay [ 7®d7). Instead the operators Y, and }} one
can use their linear combinations:

Y, =8, Yo =(1+a)Udy + 270, + (o + 28 + 1)rd, + 255,
The algebra of the type {X,Y,, Y.} is admitted by equations (26) if
A=Ay, B=-1, p= j.LoTﬂeap, A= )\()T'Beup, K= ROT’B_AO"e("_“)P, T = T0T1+Aocreop_

In this case the internal energy is € = —(7p + Ap7) and by taking linear combinations of the
operators Y, and Y, one obtains another basis of the generators:

Y. =8, +a(rd, +18,), Y. = Udy + 279, + (28 + 1)rd, + 26td,.
The third type of the algebras {X,Y}, Y} is admitted by (26) if

A=p, B=7v—1, p=pe7Pp'*®, X = A7Pp'*e,
Kk = korY(1medtBpa—8+2 T = T rv(-D+1p8 oy L],

The internal the energy in this case is
TP
v—1
and linear combinations of the operators Y, and Y, are:

¥, = Udy + 2p8, + (2 + 1)r0, + 20t8,, ¥, = Udy + 278, + (28 + 1)rd, + 26t3,

£ =

Note that a polytropic gas belongs to the last case of gases, where -y is a polytropic exponent.
In the formulas above Ay, 1o, Ao, K0, L0, @, 3,7, 6, 0 are arbitrary constants; the commutators

V., V] =0, [V, Y] =0, [V, Y] =0.

5.3.3 Optimal systems of subalgebras

Here we study subalgebras of the two-dimensional admitted algebras {X, Y.}, {X, Y}, {X, Y }.
The commutator [X, Y] of the generators X and Y is

[X,Y] = 2X.

Here either Y =Y, or Y = Y, or Y = Y, and z = 2. Automorphisms are recovered by the
table of commutators and consists of the automorphisms

A 2 =x+2ya, ¥ =y,
A2 . xr = e—Zsz, y’ =y,
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where z and y are coordinates of the operator Z = zX +yY, 2’ and y are coordinates of the op-
erator Z' after actions of the automorphisms, and a;, a, are parameters of the automorphisms.
There is also one involution

E: 1’":'—15 y’:ys

which corresponds to the change of the variables t —» —# and I/ — —U without changes of
equations (26). Note that if 2 = 0, then the automorphisms are identical transformations. This
leads to two optimal systems of subalgebras.

If z=0 (or B = 0), then the optimal system of subalgebras consists of the subalgebras

{X}, {Y + X}, {X,Y},

where A is an arbitrary positive constant.
If z# 0 (or 3 # 0), then the optimal system of subalgebras consists of the subalgebras

{xX}, {Y}, {X,Y}.

Therefore, one can summarize: optimal systems of subalgebras for the two-dimensional algebras
are described by the following system of subalgebras

(X}, {Y +hX}, {X,Y}, Bh=0. (33)

5.3.4 Representations of invariant solutions

A next step in the construction of representations of invariant solutions is a finding universal
invariants. Note that invariant solutions corresponding to the case of the subalgebra {X} are
the well-known stationary solutions. The universal invariants for the other subalgebras of the
optimal system (33) of the algebras {X,Y,}, {X,Y:} and {X, Y.} are presented in Tables II,
IIT and IY, respectively.

According to the theory of the group analysis [35] on the next step in constructing of
invariant solutions one needs to separate the universal invariant on two parts: one part has
to be solvable with respect to the dependent variables U, T,p. After that the representations
of invariant solutions are obtained by supposing that the first part of the universal invariant
depends on the second part. Because of this requirement there are no invariant solutions in the
cases: a.l if h = 0, a.4, b.1, b.5 and c.3. The cases a.5, 6.6 and c.4 correspond to the special
cases of stationary solutions, which we also exclude from our consideration'?.

All possible representations of invariant solutions of equations (26) are presented in Table
Y, where the functions f*, f7, f? are functions of one independent variable presented in the
last column. These functions must satisfy ordinary differential equations, which are obtained
after substituting the representation of solution into system (26).

Remark. Invariant solutions 6.2, 6.4, c.2 are self-similar solutions.

Remark. One of the well-known solutions of the Boltzmann equation (the BKW-solution!?)
has the representation [5, 24]

f = ¢(lule”),

121f an universal invariant is three-dimensional (consists of three invariants), such as in the cases of .5, b.6,
¢.4, then the representation of the invariant solution is obtained by supposing that all invariants of the universal

invariant are constants.
13This solution is constructed for the Maxwell molecules.
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where f is a distribution function, |u| is a modulus of the velocity. The invariant solution of
the viscous gas equations, which corresponds to the case 6.3 gives

Iu|e—t(a+1)/h — qu(Q),

with ¢ = re~"@*1/"_ Therefore this solution can correspond to the BK\W-solution and gener-
alize it on molecules with an exponent intermolecular potentials. For the molecules with an
exponent intermolecular potentials the coefficients of viscosity and conductivity are [4]

H= HOT}C:K' = EOTkt

where T = Typr, k = (n — 1)/m + 1/2, n is dimension of the problem, m is the exponent of
intermolecular potentials. In this case a = 1/k— 1 = (m+ 2n — 2)"'(m — 2n + 2). For the
Maxwell molecules, for which the BKW-solution was constructed, the exponent of intermolec-
ular potentials is m = 4, and hence, in the three-dimensional case @ = 0 and & = 1.

5.4 Spherically Symmetric Flows of the Navier-Stokes Equations

For the complete consideration of solutions connected with the group of rotations O(3) we
present solutions of the Navier-Stokes equations with spherical symmetry'!. Substituting the
value of V = 0, W = 0 in the last equation of (22) one obtains that r2U = h(¢, 0, ¢). From the
remained equations of (21),(22) all space derivatives of the pressure can be found

pr =1~ *(cot Bhg + sin~? Oh,y, + heg — T2hy + 277 A?),
po = 2r3hy, p, = 2r3h,,

where g(t) and h(t¢) are arbitrary functions.

Using symmetry property of the mixed derivatives ps, = pro, Pyr = Pryy Pos = Po, and
spliting these equalities with respect to r one can get that & = A(t) and the general solution of
the Navier-Stokes equations in this case is

p=r"R() —r T R2(t)/2 + g(t), U=r1"%h(t), V=0, W =0.

5.5 Conclusion of the first part of the research

The analysis that has been done proves that the partially invariant solutions of the studied class
for the both types of equations (the Navier-Stokes equations and the full viscous gas dynam-
ics equations), in contrast to inviscid gas and ideal fluid dynamics equations, are spherically
symmetric solutions. For the completeness of consideration of partially invariant solutions that
are connected with the group of rotations O(3) the group classification of the full viscous gas
dynamics equations with spherical symmetry has been done.

5.6 One class of partially invariant solutions

The class of solutions studied in [33] is a class of partially invariant solutions with respect to
the group H with generators

X=8;, Y=0, U=to+0, V =1t9,+0d,.

4These solutions are irregular invariant solutions of the Navier-Stokes equations with respect to rotations.
We think that they are known, but, unfortunately, we do not know any reference on this subject.
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Table 1: Group classification.

A 7 T K A B z Cond
o €PPA(z)  PAI(z)  PO(z) IR R(Z) A(z)  B(z) e (28)
boptA(z) PITIM(z) pPO(s) pTTetINIK(z) pA(z) B(z) tp® (30)
c T™PA(p) TPM(p)  TOE) MR Alp)  Blp) p (32)

Table 2: Universial invariants of subalgebras of the algebra {X, ¥, }.

N  Subalgebra consts Universal invariant

al Y, +h\ J=0,a=0 U, r.t—hp/2.r

a.2 Bh=0 J=0.a#0 Urrr 2 p=2a " Inr.t —ha 'Inr

a.3 3#0 =/ pymald gy 3=V ¢, pp—(at28)/(25)
ad XN}, a+23=10 [Femor/2 pe-op

a.5 a+23#0  pmeftesd pp-taftes2d) gy 9(a £ 23)

Table 3: Universial invariants of subalgebras of the algebra {X.,Y,} (k= a+28+1).

N  Subalgebra consts Universa] invariant

b.l Yy + AN J=0a=—-1.h=0 U.p/r.r.

b2 Bh=20 J=0a#-1.h=0 Ur'.7r" ‘3“/““) L pr-dlatl) g

b.3 3=0.h ?g 0 L,'t,ﬁr,(aakl /h, *e“““/"“,pe'm/h,Te““““”lh
b4 3 £ 0 [»"f7(°+l)/(23). ,,.t—af;i pt*l/a,rt_k/(za)
b5 XY, k=0 L'p (a+1)72 ~p

b6 i ?1__ 0 [y (a+1) /k —2o/k pr#’sz

Table 4: Universial invariants of subalgebras of the algebra { X, Y,}.

N  Subalgebra consts Universal invariant

c.l Y.+ hX =0 Ur=' rr=? p,t—hinr

c2 Bh=0 3 #0 Ut V28 pg= /3 p opy = (23+1/(23)
3 X.,Y. 23+1=0 U2 pr

c.4 283+ 140 Up 1/20+0 7p-2/(2341)

Table 3: Representations of invariant solutions.

N Representation of invariant solution Ind. variable Model
1 U= f,7=f,p=2th '+ f7 T a.l
2 U=rfe,7=7%f",p=2a " 1lnr+ fF t—~ha llnr a.2
3 U=t/ fu r =ya/Bfm p=p3"VInt+ fPr rt-(@+20)/(25) a.3
4 U =rfu,5=r2aflotl)fr = p2/lctl)fr £ b.2
5 [ = et(a+l)/hfu’ T = e?ta/hf*r,p — e?t/hfp’ ?.e—t(chrl)/h b.3
6 U = t(°+l)/(2ﬁ)fu, r = ta/ﬁf‘r’p — tl/ﬁfp ri—(@+28+13/(28)  p 4
7 U=rfy,r=7r*fT,p=f"* t—hlnr c.1
8 U=t/ fu 7 = VBfT p= fP rE—(26+1)/(28) c.2
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This group is a subgroup of the group admitted by the Navier-Stokes equations. There exist
no invariant solutions that corresponds to this group. In fact, the universal invariant of this
algebra is ¢, 2, w, p, hence, the rank of the Jacobi matrix of the universal invariant with respect
to the dependent variables ¢ is equal to two. Therefore, § > 2 and one can only construct
partially invariant solutions with respect to this group. According to the classification [37], a
partially invariant solution with minimum defect § = 2 is a regular partially invariant solution
of H(2,2). In this case a representation of the partially invariant solution is

w=2f(z,t), p=h(zt), u=ulzvy zt), v =v(r,y,z,t).

For the gas dynamics equations such a class of solutions was studied in [38]. Pukhnachov V. V.15
noted that for the Navier-Stokes equations this representation can be generalized by including
two arbitrary functions & = k(t) and [ = {(t):

w=2f(z1), p=h(zt) -k —U)y>, u=ulz,yzt), v=o(r,yzt). (34)

The arbitrariness of the functions k(¢) and (¢} gives additional possibilities for satisfying bound-
ary conditions. Representation (34) can also be explained from the group point of view. In
fact, let us consider the four-dimensional group H*, which is generated by the operators

‘\-l - ¢'1ar -~ @'1 81; - I‘bi’apv ‘\"2 = cs?.a.r + d)’za‘u - Id)gap:

Y1 = U0y + U0, =y 0y, Yo = 120, + V50, — y¥hd,.

Here the functions ¢; = &;{t), vy = ¥4(t), (+ = 1,2) satisfy the natural conditions for the
algebra H¥ = {X|, X3, Y\, Y,} to be a four-dimensional algebra:

016 — 0102 £ 0, T — Uit £ 0,

t " ot '
¢1¢2_é1¢‘2=0, lﬁ]UQ—ﬁrlw.z:

A regular partially invariant solution with respect to the Lie group H" has representation (34),
where k = ¢/(2¢:), | = ¥)/(2¢5). In the literature there are solutions which are particular
cases of (34). Examples are the solution in [42] and one of the solutions in [27].

5.7 Compatibility conditions

As is well-known, the main difficulty in the study of partially invariant solutions is the com-
patibility analysis of the reduced systems. The compatibility analysis can be reduced to a
consecutive performance of algebraic operations of symbolic nature [13, 23]. These operations
are related with the prolongation of the system, substitution of composite expressions {tran-
sition onto manifold), and finding ranks of matrices. Typically, the compatibility study of
systems of partial differential equations requires a large amount of analytical calculations, and
it is necessary to use a computer system for these calculations. Here we have used the system
REDUCE [21].

For the case k = 0, [ = 0 the analysis of compatibility was done in [33]. As mentioned
earlier the arbitrariness of the functions k(t} and [(¢) gives additional possibilities, however the

15An oral communication.
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compatibility analysis of the overdetermined system obtained after substitution of representa-
tion (34) into the Navier-Stokes equations (17) becomes more difficult. Here the compatibility
analysis of this overdetermined system is given.

Note that after introducing the functions 4(z,y, z,t), ©(z,y, z,t) by the formulae:

u=1u-— Ig v =1 of
N 0z’ VT Ve
the second equation of (17) becomes
du  9r
=0
dr Ay ’

which shows that for the compatibility analysis it is more convenient to use the functions
t(z,y,z,t), v(x,y,z,t) instead of u(x,y,z,t) and v(r.y, z,t). The general solution of the last
equation can be given through the analog of the stream function ¢ = ¢*(z, y, 2, t) by the formulae

: dy X o
= o, U= ——.
Jy ox
Then the first two scalar equations of (17) have the form
Uy + Vylay — Untyy + 2f ¥y — T(foo + fotbny + 2f foo = F2) — yfetbyy = (35)

= A&'y — X+ QIk:
_w:t - wyd".rx + !rf).rtj"xy - Qflrf".rz — y(f:t - fzwxy + fo:z - fz?) + If.‘.t".r.l‘ =
= - A, — yf:zz + le,

and the third equation serves for determining the function A(z,t) (if the function f(z,t) is

known):
h,+2f,—2f..+4ff, =0.

The compatibility conditions are derived with respect to the following equivalence transfor-
mations: representation (34) is invariant with respect to rotations in the (x, y)-plane and shifts
in (z,y, z) and ¢.

5.7.1 Preliminary analysis of compatibility.

Let us consider some solutions of (17), which we will call simple.
The first solution is a solution of the form

1
¥(z,9,2,1) = 5(z°(2,8) + yoc(z,t)) + 2M(z, 1) + yb(z, 1) + zya(z, ). (36)
This representation is a particular case of the solutions with linear profile of velocity!'®
u=z(a—f;)+yc+bdb v=—zy—yla+ f.)— A

After substituting the representation (36) of the solution into (35) and splitting with respect
to z and y, one obtains the compatibility conditions:

Lfi+k+l=—-cy+a? La=af, +k -1,

Ly = fiv, LA= X a— by, Lec= f.c, Lb= Ac— ab, (37)

1650]lutions with a linear profile of velocity with respect to one, two or three space variables were studied in
[45, 50).
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where L is the linear operator
LF =F,+2fF, — F,, — f.F.
The second type of solutions has the representation'”

v(z,y,2,t) = z%a(y, z,t) + ob(y, z, t) + gy, 2, 1). (38)

As in the previous case, after substituting the representation of the solution into (33) and
splitting with respect to z, one obtains the compatibility conditions. Two of these conditions
are ay = 0, by, = 0. Hence, the function b(y, z,¢) is linear with respect to y: b(y,z2,t) =
ya(z,t) + Az, t). If a # 0, then gy, = 0, but this case corresponds to (36), which was
considered earlier. Hence, a = 0. The remaining compatibility conditions are

Lf,+k+l=0a? La=af, +k—1,

LA =ca) Ly — oy — (yla+ f.)+ A)e, + ap =0, (39)
where ¢ = g,. This solution has a linear profile of velocity with respect to z
u=z(a—f)+¢, v=—yla+t f)— A
Note that the case 1;; = 0 is a particular case of the representation (38).
Let us consider the representation
Y(zr,y,z,t) = alx, 2,t) + by, z,t) + zya(z,t). (40)

After substitution of this representation into the Navier-Stokes equations one obtains
Qrzzbyy = 0, @zrbyy, = 0.

Without loss of generality, this case can be considered as a particular case of representation
(38).

We exclude the above considered solutions from the further study of the compatibility
conditions of system (35).

Remark. A solution of the form

(2, y,2,8) = 22p(2, 1) + zA(2,t) + ¥ c(2,t) + yb(z, 1) + zya(z, 1) + Q(z + yq(2,t), 2,t) (41)

is a particular case of (36) if the function Q = Q(£, 2,¢) is a quadratic function with respect
to the first argument. This case corresponds to a linear profile of velocity, which was studied
before. If Q¢ # 0, then the compatibility conditions require that ¢ is a constant. By rotating
in the (z,y)-plane this case can be transformed to (38), which was also regarded earlier.

5.7.2 Monge-Ampere equation.

Note that after adding the first equation of (35) differentiated with respect to z to the second
equation differentiated with respect to y, one obtains

2y — Vel =Lf: + k+ 1 (42)

17Because the Navier-Stokes equations are symmetric with respect to rotations, the case Yyyy = 0 is similar
to the case ¥,,;, = Q.

30



The right side of this equation only depends on z and ¢, therefore it can be regarded as the
Monge-Ampere equation with a constant (depending on the parameters z and t) right side.
The method for solving the Monge-Ampere equation depends on the sign of the right side.

The next theorem is one of the main results of this manuscript.

Theorem. Any solution of system (35) satisfies the Monge-Ampere equation (42). If the
right side of the Monge- Ampere equation is non negative, Lf, + k4 [ > 0, then the solution of
the overdetermined system (35) and of the Monge-Ampere equation (42) is either a solution of
system (37) or system (39).

Before proving the theorem let us give some comments.

There are known particular solutions of the Navier-Stokes equations of type (34) with both
positive and negative right sides. For example, solutions with linear profile of velocity (36) with
respect to z and y can be of both types, depending on the value of a? — ¢y. For solutions that
are linear with respect to one independent variable z (and essentially nonlinear with respect to
another y) (41) the right side of the Monge-Ampere equation is positive. In case (38) the type
of the Monge-Ampere equation is hyperbolic.

Here we also present two known solutions [27, 42].

As the first example one can consider a slight generalization of the solution [42]'®

u = _Q(y - gl(zv t))? u = Q(&," - 92(z1t)): w = W,

where wy is a constant and §) denotes a constant angular velocity. Compatibility conditions for
this solution are

(g1t + Wog1z — Grzz + Qg2), = 0, (922 + WoG2: — 92:. — Qg1), = 0.

This solution can be represented as type (34) if kK = —Q2/2, | = —Q?/2, h = h(t), 2f = wo
and
g1t + WoGiz — G1zz + 292 = 0, gar + Wog2: — G222 — S2g1 = 0,

In this case
Lf,+k+1=-0?<0. (43)

The second example is the class of steady solutions studied in [27], where
F=1(2), h=2(f'(2) = f*(2)), u=zi(z), v = —y(@(e) + 2(f'(2))?,
and constants k and . The functions f(z) and #%(z) satisfy the equations
T —2f7 — T+ 2A=0, f"-2ff" + 2NV +2Uf + T =k + L.

For this solution
Lf.+k+1=(f+@)*>0. (44)

The next subsections are devoted to proof of the theorem: we study compatibility conditions
for equations (35) with non negative right side (the hyperbolic case) of the Monge-Ampere
equation (42).

18]n [42) the functions g and f do not depend on time ¢. But this is not significant, because without loss of
generality one can inciude dependence of this functions on time.
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" 5.7.3 The hyperbolic case

Further we consider the hyperbolic case, where the right side of the NMonge-Ampere equation
(42) is non negative. By virtue of this assumption we denote

o?(z,t) = Lf. + k+1L.

It is well known [19], that in this case the Monge-Ampere equation can be integrated over
time!®
gy = 2ax + G (g, 2,t). {15)

where g(z,y,2,t) = ¥(z,y,2,t) + zya(z,t), and G = G(z,t,£) is an arbitrary function. After
substituting this representation into the first equation (33) with the help of the second equation
can exclude the third order derivatives:

S = b4g§,r + b5g§z + blg:c:c + b?.g:cz - b3 = 0) (46)

where
bl = 4QG£G££, bg = QGsz, b4 = (Gg + l)G\ff? b5 = Ggg,

b3=:c(6:—2(k—l))+y&G§+(fz—a) (EGE—G)—FGt—%—?sz—G“—4a2G5§,
d=La—of, +k-—1

By direct calculations one can rewrite the expression DS — G¢D;S — 29,;G¢S =0 as a
polynomial of second order with respect to the derivatives g.z, gz.:

a(l + GE)GEEE,’ggI + aGEffggz + f192z + fagz. + f3=0. ("17)
Here D, and D, are the total derivatives with respect to z and y, respectively,

fl = (m(rfi — Q(k — l)) + y&GE) G{g -+ ']?1, :f:z =2 (azG& =+ QGEEZ) ,
3= —yaaGeg + f3

with some functions f;, (¢ = 1, 3), which are not explicitly dependent on z and y. Because the
expressions of the functions fl and f, are very cumbersome we omit their representations here.
For the treatment of complicated mathematical expressions we used the system REDUCE [21].

Note that if G¢ = 0, then this is a particular case of the representation (40} or (41). In
fact, assume that G¢ = 0 or G = qg; + 3 for some functions ¢ = ¢(z,t), 8 = B(z,t). By (45)
the function g(z,y, z,t) has to satisfy the equation

9y — q9: = 20z + (. (48)
If ¢ = 0, then the general solution of (48) is
g =2azy +yB + vz, 2, t),
which is a particular case of (40). If ¢ # 0, then the general solution of (48) is
9 =q '(az® + Bz) + p(z — gy, 2, 1),

which is a particular case of (41).

19There are some studies of an elliptic case of the Monge-Ampere equation, for example [18, 1].
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5.7.4 The non-linear case (G¢ # 0)

Let Gee # 0, then equation (47) with the help of (46) can be rewritten as the quasilinear
equation
19z + 29z, + a3 = 0, (49)

with coeflicients a; = 0;Geee — fiGee, (¢ = 1,2,3). The last equation and equation (46) can
be regarded as a system of linear equations with respect to z and y. The determinant of this
system is equal to Geea&(& — 2(k — 1}).

If « = 0, then by virtue of the definition of & we get & = (k — I), and the following

prolongation
DyH — GeD: H — g2:Gee H = —6(k — 1}92:GeGee = 0,

where H = DS — G¢D:S — 29,:GeeS. Because g;;GeGee # 0, then k — 1 = 0. This means,
that @ = 0. In this case

H +2g::GeeS = —2gz; ((g:chf{ + G&z)Q + gingg(l + G?)) = 0.

The last equation contradicts the condition g;;G¢e 7 0. Therefore, o # 0.

5.7.5 Case a(a@—2(k-1))#0

If &(@ — 2(k — 1)) # 0, then a&(@ — 2(k — 1))G¢ # 0 and, hence, the two equations (46) and
(49) can be solved with respect to z and y:

I = (I)l(gzx:gz:zsgmzs t): Y= QQ(QIIagIZ)gI1z$ t)- (50)

After differentiating the last equations with respect to z and y, substituting the expressions of
9y 9zy> Gzyz» 9zzy iNto them and taking linear combinations, one obtains

D,®, — G D;¥, = gi;q)l,ngf + @) 2(20; + 9229:.Gee + 92:Ge.) + 2P 30+ G =0, (51)

H(gzz:grz:gzaz)t) = Dy(I)Q - GEDIq)Q = (52)
= gix@g,lG@g + (1’2,2(20-’2: + g:czgzzG§§ + gr:cGEz) + Q(I)Z,Ba - 1= 0:

H3(Gzz, 922, 92,2, 8) = — P21 D@1 + 0,1 DP9y — $05D0,P, + @,,D,P, =
= grzx( P11 P23 — P13P2,1) + 92:(P12P23 — P 3P22) + P12P2g — Py P22+ Py =0
P, 0P, oD;
L, D, = _‘, ;3 =
09z 09z oz _ .
the functions ®;, (¢ = 1,2) into the last equations, equation (51) is a consequence of equation
(52) and the function H(g:z, 9zz, 9z, 2, t) is a polynomial of fourth degree with respect to g.,

and second degree with respect to g;,

where &®;; = . Note that after substituting the expressions of

H = hzgﬁ,, + h19zz + ho,

where
4 2
hg = 3g§$G§€ + 4C\{gx$G£§£GEE -+ 2(12(G§££§G££ - GEEE)
The coefficient of the polynomial H with respect to g2, is 3Gg£(1 + G7) # 0 and does not
depend on g.,. Hence, the equation H{(gzz, 9zz; 9z, 2,t} = 0 can be rewritten as H, = g, —
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' X(zz) 9z, 2, t) = 0. In the same way, after differentiating the last equation with respect to z
and y, substituting the expressions of gy, gzy, 9zyz, gzzy into them, one obtains

DyH - GEDIH = Q,.?,-,;H,lGeg + H,?(gaz + gm:gszEE + gszEZ) + 2H’30: = 0.

Since H(9zz, Yzz 9z, 2, t) = 0O, the left side of the last equation can be rewritten as a polynomial
of degree three with respect to g.;:

HQ(ga::c;g:cz, gz, Zat) = 0. (53)

a(HI: Hz)

If the Jacobian
8(9121:) gIZ)

is not equal to zero, then from the equations

Hl(gxr-; Gzz, 9z, zat) =0, H2(g:traga:zagz¢zs t) = 0.

one can define
Grz = \p].(gl‘:zat)v Gz: = qj?(g;r;zat)‘

Substitution of these derivatives into (50) gives the contradictory equalities

z=®,(gs,2,t), y = Palgs, 2, 1). (54)

a(Hl,Hg) _aHg BX . aHQ
e a(g:EIJgIZ) agI$ agIZ agIZ o
Hy = Hy(xX(9z2) 921 2+ 1), 922, 9z, 2, t) does not depend on g,,. Furthermore Hy, = 0, because

otherwise one can define ¢, as a function of z and ¢, which contradicts the condition g, # 0.
Therefore H, = F(H;). In our case,

If the Jacobian

= 0 , then this means that the function

H, = a3H? + G, H? + a, H, + dy.
Thus, the coefficients @; must be constants and @; = 0. Note that
Gy = bix + ba, @ = bax? + byx + Esgﬁz + Do gz + by,
where b; are functions of the variables g, z, ¢ and
by = by = 3(1 + G2)bs, bs = 3GeeGeeece — 5G

If 31 # 0, then from the equation @2 = const we have x = —Efl (32 —@2), which does not depend
on g... In this case the equation @, = const is a polynomial of degree two with respect to g,
with coefficient b5 # 0. This means that one can obtain contradictory equations of type (54).

Therefore, b, = 0 or
3GeeGeeee — 5Ggee = 0.

This equation can be integrated twice with respect to &:
Gee = MGe +9)°,
Two more integrations with respect to £ give:

MG +Eg+7)°+26+8=0.
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~Here the functions A = A(z,t), ¢ = q(2,t), v = v(2,t), B = B(z,t) are arbitrary and A # 0.
Note that in this case G3 =0, by = b3 =by =bs =bg =0, @3 = by

a0 = Qol(g:m Z:t)X + (PO(g.’EJ <, t): (55)

and
hy = 3N (Ge + ¢)°(922(Ge + ) + 200)*.

Assume that the function x(gz:, gz, 2, t) does not depend on g, : x = x(gz, 2,t). Because
of the prohibition of obtaining equations of the type (54}, the coefficients h; (z = 1,2) of the
polynomial H have to be equal to zero. Hence, as G¢ # 0, we have

G::(Ge + @) = —2¢c.

The left side of this expression is the total derivative with respect to = of G(g., z, t) + q(z, 1) g..
Thus,
G(gz, 2, t) + (2, t)g: + 2a(z, t)z = @(y, 2, 1). (56)

Because g;, = G¢g:z + 2a, then
¢y = gzy(Ge + @) = (G¢ + q)Gegzz + 20(Ge + q) = 20q.

After integrating the last equation with respect to y, there is ¢(y, z,t) = 2ya(z, t)q(z, t)+h(z, t).
Substituting the function ¢(y, z,t) and ¢, into (56), one obtains

9y + 99z = 2yag + h.
The general solution of this equation is
9(z,y, 2, t) = yh(z,t) + y’alz, )q(z, 1) + O(z — yq(z,1), 2, 1)

or
b(z,y,2,t) = —zya(z,t) + yh(z,t) + y’o(z,1)q(z, 1) + (2 — yg(z, 1), 2, 1).

dx

This is a particular case of (41). Therefore, we need to study the case 5 # 0.
9zz
Assume that aax # 0. From the expression for the function @, = 0 (55) we conclude that
gzz

(Pl(gxa Z,t) — 0: CPO(Q:c: 2z, t) = (.
After splitting these equations with respect to g;, one obtains

q. =0, aq+qlk—1)=0,
202 At + 2 Ay — Asz + f2h — @X) — (A + ad,)? + X2a(@ — 4(k — 1)) + 40202 = 0.

The same analysis of the equation H3(gzz, 92z, 9z, 2,t) = 0 as for the equation H, = 0 leads to
a contradiction. Therefore, we have to study the case &(& — 2(k —{)) = 0.
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"5.7.6 The case & =0
Let us consider & = (0 or

o da O« of
IH g X5 9 =
5t + faz 552 2cx 3, +k—-1=0.

The coefficients a;, &;, fi, (2 =1,2,3), by, b5 do not explicitly depend on .
Assume first that £ # . In this case one can define the value of z from (46) and substitute
it into (49), which is a polynomial of degree three with respect to g,

H\ = hagd, + hag?, + higzz + ho,

where?’
hy = Ge(1+ G5 #0

This means that one can define g.> = x(9::, ¢z, 2, t) from this equation. Note that the coefficient
in H,, which is related with the maximal degree (second) with respect to g., is equal to

gmGgE + aGlege. (57)
By the equation H,(g:z, gzz, 9z, 2, 1) = 0, the left side of the expression
H,=D,H, - G:D H, =0.
is a polynomial of second degree with respect to g,,:
Hy = a292, + a1gzz + ao = 0.
Before further consideration, we note that if from the equations

Hl(gz;r,; grz:g:cazat) =0, HQ(gzz:gzz:gI:z: t) = 0.

one can define
Qrr = lel(g:C!Z}t)v 9zz = ‘1’2(9‘:, z, t)1
then after substitution of these derivatives into (46) one has the equality

z = ©(g;, 2, t). (58)

Differentiating the last equality with respect to y we have g, = 0. If &, = 0, then (58) is
a contradictory equality between the independent variables. The case g,, = 0 was considered
earlier.

Assume that the function x(g:,, 9z, 2,t) does not depend on g,.. In this case all coefficients
of the equation H; = 0 with respect to g, have to be equal to zero. Hence, from (57) we obtain

X = —aG Gee. (59)

Because one can find the derivatives gzz; and g:;., one obtains the equation H3(g,., gz, 2,t) =
D,S = 0. Note that Gg, # 0 (because g;; # 0) and because it is prohibited to define g,, from
the equation H, = 0, H, = 0, H3 = 0, all coefficients of this polynomial with respect to g,

20The analysis is similar to the previous case. For the polynomials and their coefficients we use the same
symbols as in the previous case. However, the functions H, H,, H3 and etc. are now different.
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" have to be equal to zero. Particularly, from the coefficient related with the highest (second)
degree of the equation H; = 0 we have

3G2
Gegee = QG&:

Because Ggee # 0 (the equation Geee # 0 leads to the case g,, = 0, which is excluded from our
consideration as it has already been studied), the general solution of the last equation is

G = —A""In(Ags + B) + pg= + 7,
where 3, A, i, v are arbitrary functions of the independent variables z,¢. In this case
z = 2a(Ag: + ). (60)
The general solution of equation (60) is

Ié]
2a)2

2aAz

g=— (1+ 2aAz) + € + @2,

where ¢, = ¢\(y, 2,t), w2 = wa(y, z,t). All coeflicients of the polynomials H, and H; with
respect to g, which have to be equal to zero, are polynomials with respect to g,. This allows
splitting them with respect to g,, otherwise g, can be defined as a function only of z and ¢.
Further study of all these coeflicients leads in particular to the equality gz = 0.

By virtue of 4 = 0 and substituting ¢ into the equation
9y = G(9:,2,t) + 2az,

one obtains ¢, = 0,2,, = 0. This means that g,, = 0 or ¥,, = 0. This case was studied
earlier.
Assume that x, , # 0. The study of this case is similar to the previous case where &(& —

o(H,, H
2(k — 1)) # 0. Because the Jacobian O(H,, Hy)

has to be equal to zero, then Hy, = F(g,, —
3(9eer 92e) ‘ 2 = Floe:

X(9zz, 9z, 2,1)). In our case
H, = @y H? + @, H, + o,

The coefficients @; must be constant and ap = 0. Note that

d, = bix + b, Go = bsx® + bax + bsg2, + Degaz + b,
where 3.- are functions of the variables g, z,t and

@z = by = by = (1 + G)bs, bs = (2GeeGeeee — 3G¢c)-

If bl # 0, then x = —b1 1((,2 G,) does not depend on g... This case has already been studied.
Also note that if Gg, = 0, then @; = b, = b3 = bs = bg = 0. This requires by = b, = 0.
Analysis of these coefficients by splitting them with respect to g, leads to the condition that
az = a3 = 0 in equation (49) and that a; is linear with respect to g:: a1 = a(z,1)g. + ¢(z, z, t),
where a # 0. This contradicts g;z9.y = 0. Therefore, bl = 0 and G # 0 or

G=-—§ln()\f+ﬁ)+p{+’y.

37



* In this case
a0 - bdx + bﬁgIz + b7 =0.

If the coefficient by = 0, then as done earlier, an analysis of the coefficients by = bg = b- = 0
by splitting them with respect to g; leads to the condition that equation (49) be written as

al(g:rx - 20-'(’\91 + /8)) =0,

where a, = a(z,t)g: + ¢(z, z,t) with a # 0. These cases have already been studied.
If by # 0, then

X = _Stl_l(gﬁgzz + 87)

Returning to the equation H, = 0, which becomes a cubic polynomial with respect to g,.
and analyzing the coefficients of this polynomial, which have to be equal to zero, leads to a
contradiction. This completes the study of the case k # [.

Assume that £ = {. Note that if a; = 0 in equation (49), then equation (46) is reduced to

(gIngg + G{:Z)z =+ Ggf(guGE =+ 2(1)2 + (ngG@E)Q = 0.

Hence, a; # 0 and from equation (49) one can define g,. = —aj '(a29:: + ao). Substituting g,
into (46) gives a polynomial of second degree with respect to g,.:

S = a7?Gee(a? + aj(1 + G§))gz. + biges +bo = 0.
This means that equations (46), (49) can be solved with respect to g, and g;.:
gzz = ®1(9z,2,1), gzz = Pa(gs, 2, 1). (61)
Because g, # 0, then the first equation of (61) can be integrated
8(gz,2,1) = 2 +qly, 2, 1)

or
gz = ®(z + qly, z,t), 2, t).

Here the function ¢ = g(y, z, t) is an arbitrary function. The general solution of the last equation
is expressed by the formula

g9(z,y, z,t) = O (z + q(y, 2, t), 2, 1) + Pa(y, 2,t)

Note that

o~

G(g., z,t) = G(z + q(y, z,1), 2, t)

and the equation g, — (2ax + G) = 0 is rewritten as
g, (2, 2, t) + Pay(y, 2, 1) = 202’ + G(z', z,t) — 2ag,
where 7' = = + q(y, z,t). Differentiating the last equation with respect to y one obtains
Gy @1, (7', 2, 1) + Doy (y, 2,t) = —2aq,. (62)
Differentiating once more with respect to z’ gives

ny(pl,:r’:r' = 0.
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If ) »» = 0, then this is a particular case of the representation (38). If g, = 0 or ¢
yki{z,t) + Aa(z, 1), then integrating equation (62) we have

il

Dy = —akiy® + yui (5, 1) + valz, t).

 This is a particular case of the representation (41).

The case & = 2(k —[) is studied in a similar way as the previous case & = 0. Note that
in this case a(k —{) # 0. A detailed analysis leads either to contradictions or to the already
- studied cases.

5.8 Group classification of system (39)
Svstem (39) is split into three parts: the system of the first two equations
Lf.~k+l=0a% La=aof. +k—1 (63)
is determined and can be studied independently; the equation
LA =naA

is for determining the function A(z.f): and the equation

Lo — 2y — (yla+ f)+ Mgy, +ap =0

is for the function £{y.=.f). In this subsection svstem (63} is studied.

5.8.1 Equivalence transformations

The first stage of group classification requires determining a group of equivalence transforma-
tions of equations (63). An equivalence transformation [35] is a nondegenerate change of the
dependent and independent variables and arbitrary elements, which transforms any system of
differential equations of a given class to a system of equations of the same class. It allows using
the simplest representation of the given equations.

Since the arbitrary elements are & = £(t), { = I(t), then for calculating group of equivalence
transformations we have to append the equations

to equations (63). All coefficients of the infinitesimal generator of the equivalence group
X =0, + (PO, + PO + (%0, + CFB + ('O
are dependent on all independent, dependent variables and arbitrary elements
t,z, foa kL

Our calculations show that the group of equivalence transformations of equations (63) cor-
responds to the Lie algebra with generators

X¢ = 8, X§ = 26()0, + £'(1)dy,
X& = —2t0, — 20, + fO) + 208, + 4k + 413,
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5.8.2 Admitted group

Finding an admitted group consists of seeking solutions of determining equations [35]. We are
looking for the generator

X =¢'0+ ¢, +¢fo; + ¢,
with the coefficients depending on t, z, f, @. Calculations lead to the following result.
The equations that determine the extensions are
e (th" +2k) + ek’ =0, o (! + 21) + o’ = 0,

where ¢, and c; are constant. The analysis of these equations is similar to the analysis of the
group classification of the gas dynamics equations [33]. Let us consider the vectors v,(f) =
(tk' + 2k, k") and v,(t) = (¢!’ + 2,!'). If they generate a two-dimensional space {where ¢ is
changed), then ¢; = 0, ¢ = 0. This corresponds to the kernel of the fundamental Lie algebra
that is made up of the generators

X =26(8)0, + E(1)9;.

An extension of the kernel of the main Lie algebra occurs by specializing the functions k£ =
k(t), I =1(2).
Let the vectors v (), vo(t) generate a one-dimensional space
vi(t) = s1(k1, ka), va(t) = sa(ky, k2),

with some scalars s; = s,(¢), 5o = s2(t). Note that in this case s7 + s3 # 0 and kZ + k2 # 0.
If k; = 0, then k(¢), [(t) are constants and k # [ (otherwise the space is zero-dimensional).
Hence, ¢; = 0 and the kernel is extended by the generator

){2 == 8:.

If ks £ 0, then
(t — k'K +2k=0, (¢t — k3 k)" + 20 =0.

By virtue of an equivalent transformation (shift with respect to t), one can without loss of
generality assume that &, = 0. The general solution of the last equations is

k=qt™? =gt (¢ +¢; #0).
In this case ¢c; = 0 and the extension of the kernel is
X3 = Qtat + sz - faf — 20’8(1

Assume that the vectors v,(t), v»(t) generate a zero-dimensional space. This gives that
k(t) = I(t) = const. If this constant is not equal to zero, then the kernel is extended by the
generator Xo = &,. If k(t) = i(t) = 0, the kernel is extended by the generators X, Xj.

The result of the group classification is given in the following table

functions extension
1. | k= qlt“2, l = Q'zt_2 X3
2. | k = const, | = const X,
3. k=101=0 Xy, X3

Remark. A detailed analysis of the invariant solutions of the case X = [ = 0 has been done
in [33].
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5.8.3 Group stratification and invariant solutions

The group admitted by equations (63) is infinite-dimensional. The classification of an infinite-
dimensional group is more difficult than that of a finite-dimensional group. This obstacle can
be overcome by studyving the group stratification of an infinite-dimensional group 35 Group
stratification allows splitting the initial system into automorphic and resolving svstems. Ay
solution of the automorphic system is obtained from one fixed solution Ly a transformation
belonging to the group.

The infinite-dimensional group with the operator X| has the prolonged operator

A= 25(2?)8; -+ g(t)(af - szaf: - Qazaat - 23:83r) - Ejn(f)afr'

where 3 = f.. The universal invariant of the first order of the operators. which are ubtained
as coefficients of £, &', " is

J=(t, 3, a.a..3,3+2f3.0,+2fa.).
Hence, the automorphic system AG of rank 2 can be written in the form
& = O’(t,ﬁ), r; = '{J(T,!j). ,’3: = 7"'(t:.‘f3)r Bt + kaj:: = gl(t: ‘j)a ey + QfO": - %z(fa d) (G‘l’)

where a(t, 3), w(t.3), ~(t.3), «i(f, 3) and (¢, 3) are unknown functions. The compatibility
conditions for the last system and the initial system (63) are

@& = g, S1 = T3 -+ Cl’z -+ ,32. (G‘-))

a, + (0 + 32—k —Doag - ~2a33 — 28 —k+1 =10,

v + (C1'2 + ,'32 -k — l)'-:r.j — ’jf"z"f‘gj — 2(}"'}’ = 0. (66)

Thus, the group stratification of syvstem (63) with respect to the infinite-dimensional group
with the operator .X'; is the union of the automorphic system (64} with the functions (65) and
the resolving system, which consists of equations (66).

The group of equivalence transformations of equations (66) corresponds to the Lie algebra
with generators

Y =0, Yy =-2t0, + 2893 + 200, + 3v0, + 1kdx + 410,

The kernel of the admitted group is empty. The group classification with respect to the arbitrary
elements £ = k(t) and { = (¢} is summarized in the following table

functions extension
1| k=gt =gt * Y
2.1k =const, I = const Y
3. k=1=0 1.1

where
Y, =06, Yo =2t0, — 2303 — 200, — 3~0,.

System (64), (66) is equivalent to the initial system (63) provided that f.. # 0. Let us
consider the degenerate case f.. = 0. In this case the function f = f(¢, 2} has the representation

<<
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= zq(t) + q:(t) . where the functions ¢ = ¢(t) and q, = g, (#) are arbitrary., After substitutine
this representation into system (63) one obtains that the function o depends onlv on 7. and

(g—a) —{g—a) = -2k
(g+ca) —(g—a)? = =21

One can consider these equations either as equations for the functions a = () and ¢ = i
with known functions & = k(¢) and ! = {{#). or the functions & = al{fi and ¢ = it can b
considered as arbitrary functions. and the functions & = £(#) and / = {(¢) are detined I the
equations.

Let us consider invariant solutions of the resolving svstem with foo £ U {or ~ = 0} Becanse
the case k = [ = 0 has been studied in 33 . then we only need to comsider the Two cases
k=const, { =const (k* =1*#0):b) k=qit72 [ = gt7% (g7 — ¢ # 0V

The case?' k = const. | = const. The admitred algebra of the resolving svstem consists of
the generator Y, = @;. An invariant solution has the representation

a=alJd). ~ =~ (GT

where these functions have to satisfv the equations

(dz—i—a—k—l)a—é‘ '—2a3—k—1=0,
(3 +a? =k =D =% =200’ =0,
Note that ~ # 0, because the case v = 0 corresponds to f.. = 0. In order to find a solution of

the initial S}stem (63) one has to solve the automorphic system. One of the equations of the
automorphic system is 3, = ~(J3). By virtue of ~ # 0 and 3 = f.. the function f = f{¢{. 2)
has the representation f = H{(z + q(t)) — ¢(¢) with arbitrary functions ¢ = ¢{f) and s = «(f}).
Hence, the solution of system (63). which corresponds to the invarnant solution (67) has the
representation

a=alz=+q(t), f=Hlz+q(t)) + s(t). (68)

After substitution of this representation into system (63) one has

('7H+q’+2 YH" — H" — (H') + k+ 1 = ”,
(2H + ¢ =28}’ —a" —2cH —k+1=0.

From the first equation {by considering Z = z +¢(?) and t = t as new independent variables and
differentiating the first equation with respect to t) one can obtain H"(¢" + 25') = 0. Because
fee = H" # 0, then ¢’ + 2s = sy = const and the last system becomes

(H' — )" — (2H + so)(H' — a)' + (H — a)? = 2k.
(H'+a)" — (2H + s)(H + ) = (H' + a)* = 2L

The case k = t72¢q,. | = t~2q, (the case ¢{ — g; = 0 is included). The admitted group of
the resolving systerm consists of the generator Y, = 2t9, — 2303 ~ 209, — 3~d,. An invariam
solution has the representation

a=1t""A(t3). ~ =170t I). (69)

'Further study is also valid for k =1 =0.



By the same way as in the previous case one can obtain that the solution of system (63), which
corresponds to the invariant solution (G9) has the representation

a=t""AE), f=t"PHE) + 5(1), (70)
where € = t7'2(z + ¢(#)) and ¢ = ¢(¢) is an arbitrary function. After substitution of this
representation into system (63) one has that ¢ '/2(¢' + 25} = sy = const and the function

A(€), H(&) must satisfy the equations

(H"— \) +(

—2H — s} (' =AY + (H — A+ (H' — A) =2q,,
(H'+=\)"+ (5 —-2H —

so) (T + A)Y + (H + A)? + (H' + A) = 2¢q,.

[N ¥ g Ay Ve o

5.9 Group classification of system (37)
System (37) is split into two parts: the system of the four equations

Lf;-f-k-f—l‘:—("}-}-(yz? La=aof, +k—1, (,-.1
[~ = [ Le= fuc )

is closed and can be studied independently; the two equations
LA =Xa = by, Lb= Ac—ab (72)

are for determining the functions A{z.¢) and b{z.t).
Calculations showed that the group of equivalence transformations of equations (71) corre-
sponds to the Lie algebra with the generators

Nt =0 X§=26(0)0, +€'(1)0y, X§ =0y — cle
N = =20, — 20, + fIy + 200, + 210, + 2¢O, + 4k, + 40,
The equations that determine the admitted Lie group are
C[(tkf + Qk) -+ ('Qk’ = O, (T](ill + 2[) -+ (,'211 = 0, Cg(k - l) = O, C.1(k — l) = 0,

where ¢, ¢, ¢3 and ¢4 are constants. The same analysis as in the previous case gives that the
kernel of the fundamental Lie algebra is made up of the generator

Xy =28(8)0. + & (t)0y, Xo =70, — ..

An extension of the kernel of the main Lie algebra occurs by specializing the functions k(#) and

I[(t):

| functions | extension

k£ 1

L[k=qt? =gt (g #q) s

2. k = const, | = const Ng
k=1

3, X X,

4. k=l=qt‘2 X3, Xy, X5

d. k=1=const ?1: 0 )&’3, .«Yzl,Xﬁ

6. k=1=0 X3, X4, X5 Xg

where

X3 = ’)’aa -+ 2&66, X4 = Caa + 20437, X5 = 2t3¢ + z@z - faf — 2&60 - 4’}’67, XB = 65.
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5.9.1 Group stratification and invariant solutions

The group admitted by equations (71} is infinite-dimensional. The infinite-dimensional group
with the operator X; has the prolonged operator

X = 26(15)8: =+ éf(t)(af - szaft — 2004, — 262851: - 2'7"387: — 2¢.0,,) + 5”“)8;’:-

where 8 = f,. The universal invariant of first order is

J = (t:.ﬁyaaazaﬁzayzzcz:ﬁt + .2f.‘3::'af + Qfa‘:rnf"t =+ Qf‘-:"R'SC‘t + 2f(\:)'

Hence, the automorphic system AG of rank 2 can be written in the form

& = a(taﬁ)w’y = 7(t76)5 C= C(t3.6)7 G, = (igl(ta;’g)y .[32 - (p?(ta J) Y = 933(#1 ‘)))- . = &:‘l(f }.‘”‘
ﬁt + Qfﬁz = 995(151 /8)! Qp + Qf(l’z = Qﬁ(tﬁ)a Vi + Qfmz = WT(T‘B): Ct + Qf(-': - ‘1:5“- 'j):
(730
where a(t, 3), v(t,B3), c(t,3), w:i(t,3) (i =1,2,...,8) are unknown functions. The compatibility
conditions for the last system and the initial system (71) are

@1 = Pelp, ©3 = 992’}73: ¥4 = @203,
05 = popog + B2+’ — ey —k— |, (74)
WYe = Qp + Qg¥s, @1 = Ve + V395, P8 = Ct + Ca¥s,

ap+ (@°+ 0% —ey—k— Doy — piass — 2083 — k+1 =0,
o + (02 + 5% — oy — k = U)pag — hipaa3 — 20208 + Yipacs + Cpays = 0,
Yo+ (@ + 8 — ey —k = Dvg — wives — 298 =0, (
e+ (@?+ 82 —cy — k — ez — pacss — 2¢8 = 0.

Thus, the group stratification of system (71) with respect to the infinite-dimensional group
with the operator X is the union of the automorphic system (73) with the functions (65) and
the resolving system, which consists of equations (73).

The group of equivalence transformations of equations (75) corresponds to the Lie algebra
with generators

Y =0, Y§= =210, + 20303 + 200, + 270, + 2¢0. + 3020, + 4k0x + 413,
Yy =~08, — cd..

73)

The kernel of the admitted group is one-dimensional and consists of the group, corresponding

to the generator
}/1 - "}’67 - Cac.

The group classification with respect to the arbitrary elements £ = k(t) and [ = [(¢) is summa-
rized in the following table,

| functions | extension

k#£1

L | E=qt™?, [ =gt ? (g1 # ¢2) Y,

2. k = const, | = const Y5
k=1

3. Ys, Yy

4 k=1=qt 2 Vi, Ya, Y

5. Ek=10l=const#0 Yy, Yy, V)

6. F=1=0 Y0, Yo, ¥3. ¥,
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where _
Yo = =2t + 2303 + 200, + 320, + 278, + 2¢0,,
Y3 =0, Yy =90, + 200, Y5 = O + 200,.

5.9.2 Conclusion of the second part of the research

In this article we have systematically investigated the class of partially invariant solutions of the
Navier-Stokes equations, where the Monge- Ampere equation (42) is hyperbolic (Lf,+k+{ > 0).
[t was shown that this class of solutions is a particular case of a solution either of system (37)
or svstem (39). Note that the representation (31) is very rich and includes some solutions that
were studled earlier. The presence of two arbitrary functions &(#) and [{¢t) gives additional
possibilities for satisfving boundary conditions. The problem of describing all solutions of the
given representation {34) where the Monge-Ampere equation (42) is elliptic (Lf, + k +{ <
0) still remains, although there are examples of solutions of such tyvpe of the Navier-Stokes
equations(constructed here and known hefore).

In this paper the group classifications of systems (39} and (37) was discussed. These systems
have infinite-dimensional admitted groups. Infinite-dimnenstonality is an obstacle for classifica-
tion of such groups. To overcome this difficulties. group stratification of these groups was done.
Group stratification allows splitting the initial system into automorphic and resolving systems.
Anv solution of the automorphic system 1s obtained from one fixed solution by a transformation
belonging to the group. Therefore the problem of constructing solutions is reduced to finding
solutions of the resolving svstems. Group classification of resolving systems was done. The
admitted groups are finite-dimensional. All invariant solutions of system (39} were presented.

Note that we did not present here a comprehensive study of invariant =olutions of the group
admitted by (39). This study is a subject for the construction of new solutions of the Navier-
Stokes equations.



6 Discussion

In this section we discuss two problems that are related with topics studied in the project.
These problems have not been solved.

The first problem is. One of the main problems after obtaining an admitted group is
a constuction of invariant or partially invariant solutions. In order to construct essentially
different solutions one needs to classify the set of subgroups of the admitted group. The Lie
group admitted by the Navier-Stokes equations is infinite. Up to now there is no theory for
classifying infinite Lie groups. For some infinite groups one can apply group splitting: in the
project we used this method. But for the group admitted by the Navier-Stokes equations this
method was not applied: even for simiple equations this method is very cumbersome. For
the Navier-Stokes equations there is only one article devoted to the classification of infinite
subgroups of the Lie group admitted by the Navier-Stokes equations. For finite subgroups
there is no any study. For understanding the structure of the finite subgroups admitted by the
Navier-Stokes equations one needs to accumulate more results about finite subgroups. In the
project we have studied two fintte subgroups of the admitted by the Navier-Stokes equations
group. There is still big interest to the study more examples of finite subgroups.

Another problem related with the second part of our reseach is the problem of solving the
Monge-Ampere equation. In vur study this equation was obtained as intermidiate result. If
the Monge-Ampere has a hvperbolic tvpe. then it has a first integral. This property helps to
construct the general solution of the partially invariant solution for the studied four-parameter
subgroup. In the project we considered this case. If the Monge-Ampere equation is elliptic.
then there are some methods. by using integral or hodograph-like transformations. The integral
transformation is known for a long time. but there is no way tor applying it to our problem. The
second method (hodograph-like} found recently allows transforming the elliptic Monge-Ampere
equation to the Laplace equation.
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7 Obtained output

1. Article accepted in the International journal "Nonlinear Dynamics”.

A .HEMATULIN and 5.V.MELESHKO Rotationally Invariant and Partially Invariant
Flows of a Viscous Incompressible Fluid and a Viscous Gas (the manuscript is presented
'in Appendix).

2. Article submitted to the International journal ” European Journal of Applied Mathematics™.

S.V.MELESHKO A particular class of partially invariant solutions of the Navier—
‘Stokes equations (the manuscript is presented in Appendix).

3. Article submitted to the Proceedings of the conference ”"Progress in Mathematics”.

A P.CHAIYASENA Differential Constraints Through the Wave and Boussinesq
Equations (the manuscript is presented in Appendix).

Presentations:

1. International Workshop and Conference on Analysis and Applications (Chiangmai, 15-19
May 2000).

Hematulin A. and Meleshko S.V. Singular Vortex of the Navier-Stokes Equations.

2. The 5-th Conference in Mathematics, Department of Mathematics. Institute of Science.
Khon Kaen University (Khon Kaen, 2-3 November 2000);

Hematulin A. and Meleshko S.V. One class of invariant solutions and partially in-
variant solutions of Viscous gas Dynamics Equations.

3. The 1-st Conference on Mathematics. Department of MNMathematics. Rachapart College
(Mahasarakam, 4-6 December 2000).

Hematulin A. Application of group analysis to the Navier-Stokes equations

4. The conference "Progress in Mathematics”, Department of Mathematics. Mahidol Uni-
versity, 12-13 December, 2000.

A.P.Chaiyvasena Differential Constraints Through the Wave and Boussinesq Equa-
tions.
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8 Use

8.1 Public use

Partially invariant solutions of the Navier-Stokes equations are special interests of the academic
School of Professor V.V.Pukhnachov (Institute of Hvdrodvnamics. Novosibirsk, Russia), T'he
research continued created links with this School.

8.2 Academic use

New Ph.D. thesis in frame of this research was defended:

A.HEMATULIN

Invariant and partially invariant solutions of the Navier-Stokes equations related
with the group of rotations. School of Mathematics, Institute of Science. Suranaree Umni-
versity of Technology. August, 2001.
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