There is evidence to support a claim of cross-resistance between DDT and pyrethroids. Previous studies have shown that pyrethroid resistant populations of Aedes aegypti in Thailand are frequently resistant to DDT (Brealey et al. 1984, Prasittisuk and Busvine 1977). In addition, pyrethroid resistance in An. stephensi larvae was reported for a strain that had developed DDT resistance as a result of selection experiments in Pakistan (Omar et al. 1980). The similar mode of action of DDT and synthetic pyrethroids has led, in some cases, to a cross-resistance mechanism, commonly known as knock down resistance (kdr). Kdr is conferred by single amino acid changes in the sodium-channel insecticide-binding site in the nerve sheath. Whether the cross-resistance to DDT reported here is conferred by kdr should await further studies at the molecular level.

Several factors other than frequency of insecticide spraying serve to influence the intensity of selection and development of physiological resistance in a population. The most important factors include the frequency of the resistance gene in a population, number of genes interacting to produce the resistant character, size of population, and the dominant relationship of the gene (Ferdinand 2000). The proportion of sprayed houses with undisturbed surfaces and the extent of contamination of breeding places and outdoor resting habitats with agricultural insecticides may influence resistance development (Unpublished data).

Our study provided a baseline for susceptibility and varying levels of deltamethrin resistance in An. minimus in Thailand. If the level of resistance is maintained, then the resistant colony will be used to study the actions of pyrethroid insecticides and mechanisms of resistance. It has been reported that selection by toxic subtances can increase the amount of enzymes that are responsible for detoxicification (Ferrari and Georghiou 1990). Common insecticide resistance mechanisms in insect pests were reported elsewhere, including 3 possible pyrethroid resistance mechanisms, namely mixedfunction oxydases (MFOs), elevated esterases, and reduced sensitivity of sodium channels (Georghiou 1986, Roberts and Andre 1994, Nelson et al. 1996, Scott et al. 1998, Feyereisen 1999). In addition, an increase in glutathion-S-transferases (GSTs) was reported in many pyrethroid resistant insects, such as Spodoptera litturata (Lagadic et al. 1993), Tribolium castaneum (Reidy et al. 1990), and Aedes aegypti (Grant and Matsumura 1988). Identification of elevated esterase, GSTs and MFO in this pyrethroid resistant colony will be the subject of future reports. An increase in the quantity of enzymes can be associated with gene amplification or overexpression of target genes. This appears to be the cause of protein overproduction when an organism is

under environmental stress (Mouches et al. 1990). Potential genes associated with deltamethrin resistance in our selected line are under investigation.

In malaria endemic areas, there is a need for comparative studies on susceptible and refractory populations for as many known vectors as possible. This is especially true if there has been continuous intradomicillary spraying with deltamethrin and other insecticides. Additionally, such studies should be representative of different geographical conditions and be conducted with greater frequency than in the past. Detection of incipient or operationally and unacceptably high levels of physiological resistance will help public health workers take appropriate steps to counter the reductions in effectiveness of control efforts that may accompany emerging problems of insecticide resistance. Furthermore, cross-resistance or resistance as a result of agricultural uses of insecticides may evolve and adversely impact the options to switch to an alternative insecticide for disease control.

Acknowledgments

The authors thank Donald Roberts, Uniformed Services University of the Health Sciences, Bethesda, Maryland for his valuable suggestions and review of this manuscript. We gratefully acknowledge the Malaria Division, Department of Communicable Disease Control for providing *Anopheles minimus* species A colony. Finally, we would like to thank the Thailand Research Fund (TRF) Organization, Bangkok, Thailand for funding support.

REFERENCES CITED

Annual Malaria Reports. 1995-2000. Malaria Division, Department of Communicable Disease Control. Ministry of Public Health, Thailand.

Baimai, V. 1989. Speciation and species complex of the *Anopheles* malaria vectors in Thailand. The 3rd Conference on Malaria Research, Thailand, 18-20 Oct. 1989: 146-162.

Bloomquist, J.R. 1996. Ion channels as target for insecticides. Annu. Rev. Entomol. 41: 163-190.

Brealey, C.J., P.L. Crampton, P.R. Chadwick and F.E. Rickett. 1984. Resistance mechanisms to DDT and trans-permethrin in *Aedes aegypti*. Pestic. Sci. 15: 121-132.


Brooke, B.D., R.H. Hunt, L.L. Koekemoer, J. Dossou-Yovo and M. Coetzee. 1999. Evaluation of polymerase chain reaction assay for detection of pyrethroid insecticide resistance in a malaria vector species of the *Anopheles gambiae* complex. J. Am.

- Mosq. Contr. Assoc. 15: 565-568.
- Brown, A.W.A. and R. Pal. 1971. Insecticide Resistance in Arthropods. The 2nd WHO Monograph Ser. 38. World Health Organization.
- Chakravorthy, B.C. and M. Kalyanasundaram. 1992.
 Selection of permethrin resistance in malaria vector
 Anopheles stephensi. Ind. J. Malar 29: 161-165.
- Chandre, F., F. Darriet, L. Manga, M. Akogbeto, O. Faye, J. Mouchet and P. Guillet. 1999. Status of pyrethroid resistance in *Anopheles gambiae s.l.* Bull. Wld. Hlth. Org. 77: 230-234.
- Chareonviriyaphap, T., D.R. Roberts, R.G. Andre, H.J. Harlan, S. Manguin, and M.J. Bangs. 1997. Pesticide avoidance behavior in *Anopheles albimanus*, a malaria vector in the Americas. J. Am. Mosq. Contr. Assoc. 13: 171-183.
 - Chareonviriyaphap, T., B. Aum-Aung and S. Ratanatham. 1999. Current insecticide resistance patterns in mosquito vectors in Thailand. Southeast Asian J Trop Med Public Health 30: 131-141.
 - Chareonviriyaphap, T., M.J. Bang, and S. Ratanatham. 2000. Status of malaria in Thailand. Southeast Asian J. Trop. Med. Publ. Hlth. 31: 225-237.
 - Chareonviriyaphap, T., S. Sungvornyothin, S. Ratanatham and A. Prabaripai. 2001. Insecticide-induce behavioral responses of Anopheles minimus, a malaria vector in Thailand. J. Am. Mosq. Contr. Assoc. 17: 13-22.
 - Ferndinand, V.S. 2000. Effect of pyrethroid impregnated bed nets selection on *Anopheles minimus* and *Anopheles dirus*. M.S. (Tropical Medicine) Thesis. Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand, 103 pp.
 - Ferrari J.A. and G.P. Georghiou. 1990. Esterase B1 activity variation within and among insecticide resistant, susceptible, and heterozygote strains of Culex quinquefasciatus. J. Econ. Entomol. 83: 1704-1710.
 - Feyereisen, R. 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44: 507-533.
 - Finney, J.D. 1971. *Probit Analysis* (Third edition). Cambridge University Press. Cambridge.
 - Ford, H.R. and E. Green. 1972. Laboratory rearing of *Anopheles albimanus*. Mosq. News 32: 509-513.
 - Georghiou, G.P. 1986. The Magnitude of Resistance Problem. Pesticide Resistance: Strategies and Tactics for Management. National Academy Press: Washington D.C.: 14-43.
 - Grant, D.F. and F. Matsumura. 1988. Glutathion Stransferase in *Aedes aegypti* larvae. Purification and properties. Insect Biochem. 18: 615-622.
 - Hargreaves, K., L.L. Koekemoer, B.D. Brooke, R.H. Hunt, J. Mthembu and M. Coetzee. 2000. *Anopheles*

- funestus resistant to pyrethroid insecticides in South Africa. Med. Vet. Entomol. 14: 181-189.
- Lagadic, L., A Cuany, J.B. Berge, and M. Echaubard. 1993. Purification and partial characterization of glutathion S-transferases from insecticide resistant and lindane-induced susceptible Spodoptera littoralis (Boisd.) larvae. Insect Biochem. Molec. Biol. 23: 467-474.
- Mouches, C., Y. Pauplin, M, Agarwal, L. Lemieux, M. Herzog, M. Abadon, V. Beyssat Arnaouty, O. Hyrien, B.R. deSaint Vincent, GP. Georghiou and N. Pasteur. 1990. Characterization of amplification of esterase B1 gene responsible for insecticide resistance in Culex mosquitoes. Proc. Natl. Acad. Sci. USA. 87: 2574-2578.
- Nelson, D.R., L. Koymans, T. Kamataki, J.J. Stegeman, R. Feyereisen, D.J. Waxman, M.R. Waterman, O. Gotoh, M.J. Coon, R.W. Eastbrook, I.C. Gunsalus, D.W. Nebert. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1-42.
- Nutsathapana S., P. Sawadiwongphon, U. Chitprarop, and J.R. Cullen. 1986. The behavior of *Anopheles minimus* subjected to differing levels of DDT selection pressure in northern Thailand. Bull. Entomol. Res. 76: 303-312.
- Omar, S.M., G.P. Georghiou, and N. Irving. 1980. DDT-pyrethroid resistance interrelationship in *Anopheles stephensi*. Mosq. News 40: 200-209.
- Penilla, R.P., A.D. Rodriguez, J. Hemingway, J.L. Torres, J.L. Arrendo-Jimenez, and M.H. Rodriguez. 1999. Resistant management strategies in malaria vector mosquito control. Baseline data for a large scale field trial against *Anopheles albimanus* in Mexico. Med. Vet. Entomol. 12: 217-233.
- Prasittisuk, C. 1985. Present status of malaria in Thailand. Southeast Asian J Trop Med Public Health 16: 141-145.
- Prasittisuk, C. and J.R. Busvine. 1977. DDT resistance mosquito strains with cross-resistance to pyrethroids. Pest. Sci. 8: 527-533.
- Prasittisuk, M. 1994. Comparative study of pyrethroids impregnated nets with DDT residual spraying for malaria control in Thailand. Ph.D. Thesis. Faculty of Graduate Studies, Mahidol University. 221 pp.
- Reidy, G.F., H.A. Rose, S. Visetson and M. Murray. 1990. Increased glutathion S-transferase activity and glutathion content in an insecticide-resistant strain of *Tribolium castaneum* (Herbst.). Pestic. Biochem. Physiol. 36: 269-276.
- Roberts, D.R. and R.G. Andre. 1994. Insecticide resistant issues in vectors. Am. J. Trop. Med. Hyg. 50 (Suppl): 21-34.

- Scott, J.G., N. Liu and Z. Wen. 1998. Insect cytochromes P450: Diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. 121C: 147-155.
- Verma, K.V.S. and S.J. Rahman. 1986. Development of knockdown resistance (KDR) against fenvalerate in a DDT resistant strain of *Anopheles stephensi*. Curr. Sci. 55: 914-916.
- WHO 1975. Manual on practical entomology in malaria part 2. Methods and techniques.
- WHO 1981a. Instructions for determining the susceptibility or resistance of adult mosquitoes to

- organochlorine, organophosphate and carbamate insecticide-diagnostic test. WHO/VBC/81.806, Geneva, Switzerland, 6 pp.
- WHO 1981b. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Unpublished document. WHO/VBC/81.807.
- WHO 1998. Test procedure for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. Document WHO/CDS/CPC/MAL/98.12. Geneva, Switzerland.

Biochemical detection of pyrethroid resistance mechanisms in *Anopheles minimus* in Thailand

Theeraphap Chareonviriyaphap^{1.5}, Pompimol Rongnoparut², Piyanuch Chantarumpom³, and Michael J. Bangs⁴

Department of Entomology, Faculty of Agriculture, Kasetsart University; Bangkok 10900 Thailand Department of Biochemistry, Faculty of Science, Mahidol University; Bangkok 10400 Thailand Department of Pest Management, Faculty of Natural Resources, Prince of Songkhla University; Songkhla 90110 Thailand

U.S. Naval Medical Research Unit No. 2, Kompleks P2M/PLP, Jl. Percetakan Negara No. 29, Jakarta 10560 Indonesia *Corresponding author

Received 25 September 2002; Accepted 27 January 2003

ABSTRACT: Enzyme-based metabolic mechanisms of insecticide resistance were investigated, comparing a deltamethrin-susceptible parent stock and resistant colonies of Anopheles minimus species A using biochemical assays. The control parent colony was determined susceptible to the diagnostic lethal concentration of deltamethrin (0.05%), whereas the 6 resistant test populations at selected 4, 8, 12, 14, 16, and 18 filial generations (F₃, F₈, F₁₂, F₁₄, F₁₆, and F₁₈) demonstrated varying levels of tolerance/resistance to deltamethrin. Expression of levels of nonspecific esterases, monooxygenases, and glutathione S-transferases (GSTs) were measured. Results indicated that monooxygenase activity was consistently elevated in resistant-selected test populations compared to the parent colony and increased as resistance intensified from F_8 to F_{18} . There was a 5-fold increase in monooxygenase in the Fix generation compared to the parental stock. Fluctuations in alpha and beta-esterase activity, measured by hydrolysis of alpha and beta-naphthylpropionate, provided no conclusive evidence of an association with pyrethroid resistance in this mosquito species. GSTs were not clevated in the 6 resistant test populations. Based on our results, it appears likely that the development of physiological resistance to deltamethrin in laboratory, resistant-selected generations of An. minimus is primarily associated with increased detoxification by over-expression of monooxygenases. The oxidases are the major contributors to pyrethroid resistance and the importance of kdi has yet to be convincingly determined. This finding represents the first report from Thailand of this metabolic mechanism of resistance in anophelines. Journal of Vector Ecology 28(1): 108-116. 2003.

Keyword Index: Pyrethroids, deltamethrin, resistance, esterases, monooxygenases, glutathione s-transferases, Anopheles minimus, Thailand.

INTRODUCTION

Over half of the world's population resides in malarial areas, resulting in an estimated 2 to 3 million deaths annually from the disease (WHO 1996). The burden of malaria is increasing, in part, because of drug and insecticide resistance and complex social and rapid environmental changes that have intensified in the last several decades (Greenwood and Mutabingwa 2002), as well as a general breakdown of organized effective malaria control activities. In general, most countries in Southeast Asia where malaria is endemic are experiencing increased malaria problems resulting from sociological and

ecological changes stemming from poorly controlled population movement and extensive exploitation of natural environments. In Thailand, malaria remains one of the most important infectious diseases affecting rural populations with over 100,000 cases reported annually during each of the last 10 years (Chareonviriyaphap et al. 2000). Recent medical surveillance indicates that malaria has expanded in the country and continues to be a serious concern along the undeveloped frontier borders with eastern Myanmar and western Cambodia (Annual Malaria Reports 1995-2001).

The prevention of malaria transmission in Thailand has relied mainly on accurate diagnosis, prompt effective

treatment of infection and reduction of the human-vector contact using residual chemical compounds (Chareonviriyaphap et al. 1999, 2000). For decades, DDT was used for malaria vector control as an interdomicilary spray. Use of DDT in Thailand was gradually discontinued between 1995-2000 because of social and environmental concerns and replaced with synthetic pyrethroids, the current class of compounds used for vector abatement in Thailand. Pyrethroids have been used extensively for the insecticide treatment of bednets (ITN) and as indoor residual spray (IRS) in many parts of the country. The two most common compounds in use, permethrin and deltamethrin, have shown to be effective in both killing and eliciting behavioral avoidance responses (irritancy and repellency) on mosquitoes (Chareonviriyaphap et al. 2001).

Anopheles minimus (Theobald) species A is an important malaria vector throughout much of Thailand (Baimai 1989). This sibling species is considered sufficiently anthropophilic, readily entering houses and coming into contact with residual insecticides placed on bednets and interior wall surfaces (Nutsathapana et al. 1986, Chareonviriyaphap et al. 2001). Repeated contact with these insecticides has led, in some cases, to high levels of resistance in vector populations. Pyrethroid resistance has been documented in species of malaria vectors in Thailand (Charconviriyaphap et al. 2002). Development of resistance to pyrethroids occurred in a population of An. minimus species A from northern Thailand within only 1 year following the introduction of pyrethroids into the vector control program (Chareonviriyaphap et al. 1999).

The increased development of mosquito resistance to pyrethroids is of particular concern for many integrated malaria control programs that utilize insecticides for vector transmission control (Brogdon and McAllister 1998). Common insecticide resistance mechanisms in insect pests against pyrethroids include P450 mediated monooxygenases, elevated non-specific esterases, and reduced sensitivity of sodium ion channels along nerve axons (Oppenoorth 1985, Georghiou 1986, Nelson et al. 1996, Roberts and Andre 1994, Scott et al. 1998, Feyereisen 1999). Moreover, increased levels of glutathione S-transferases (GSTs) have been associated with conferring pyrethroid inhibition in many insect species (Lagadic et al. 1993, Reidy et al. 1990), including Aedes aegypti (Grant and Matsumura et al. 1988), Anopheles gambiae (Ranson et al. 2001) and Anopheles dirus B (Prapanthadara et al. 1998). More recently, elevated GSTs have been found to bind to molecules of many pyrethroid insecticides compromising effectiveness and toxicity by a sequestering mechanism (Kostaropoulos et al. 2001).

Although the spread of pyrethroid resistance has increased in disease vectors worldwide, the actual operational impact of resistance in control of disease vectors and transmission remains limited, especially with malaria vectors in Thailand. Deltamethrin resistant An minimus were established through a careful series of laboratory selection procedures. This strain conferred 52% resistance to deltamethrin with a > 25-fold merease in the LD₈₀ from the parent colony (Charconviriyaphap et al. 2002). In this study, we conducted a series of biochemical enzyme assays integrated with dose-mortality bioassays for detection of resistance and to define the underlined mechanisms involved in pyrethroid resistance in An minimus.

MATERIALS AND METHODS

Test populations

A susceptible colony of *Anopheles minimus* species A was received from the Malaria Division, Department of Communicable Disease Control, Ministry of Public Health, Nonthaburt, Thailand in 1997. The origin and detailed background of this colony has been reported elsewhere (Charconviriyaphap et al. 2002).

Deltamethrin-susceptible female mosquitoes were subjected to selection pressure against deltamethrin using dose and time mortality relationships at 50% mortality (LD_{co}/LT_{co}) cut off points per generation, as monitored by the World Health Organization (WHO) adult mosquito bioassay procedure (WHO 1998) as previously described (Charconviriyaphap et al. 2002). One susceptible and 6 deltamethrin-selected generations were used for comparisons, F_{ij} (susceptible colony), F_{ij} , F_8 , F_{12} , F_{14} , F_{16} , and F_{18} to measure levels of detoxifying enzymes over the period of increasing selection pressure. The parent F0 control generation was completely susceptible to deltamethrin and DDT at recommended diagnostic dosages (0.05% and 4% respectively). This colony was maintained in the separate, deltamethrin contamination-free room and was tested repeatedly to monitor for independent occurrence of resistance. The subsequent deltamethrin tolerant/resistant generations of An. minimus, F_4 , F_{8^4} , F_{12} , F_{14} , F_{36} , and F_{18} test populations were obtained and preserved after each selection period. Based on the WHO diagnostic test eriteria (WHO 1998), the F_a and F_k colony were defined as "tolerant" to deltamethrin and DDT. With increasing selection, F_{12} , F_{14} , and F_{16} demonstrated approximately 20%, 24% and 36% resistance to deltamethrin and 20%, 24% and 30% to DDT, and this increased further in F₁₈ to 50% and 35% resistance to deltamethrin and DDT, respectively.

Mosquito rearing

Standard procedures for rearing anophelines followed Ford and Green (1972). All life stages were reared in an environmentally controlled insectary (25 ± 3°C, 80 ± 10%RH) at the Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, as described previously (Charconviriyaphap et al. 2002).

Diagnostic susceptibility assay

Insecticide susceptibility bioassays were conducted using WHO test kits for adult mosquitoes (WHO 1981a). Anopheles minimus females were exposed to diagnostic dosages of 0.05% deltamethrin. For each test, 5 cylinders, 2 serving as controls and 3 as treatments, were used. Control cylinders contained filter paper impregnated with carrier only, while treatments contained paper impregnated with the diagnostic dosage of insecticide plus carrier. Twenty unfed female mosquitoes were allowed contact for 1 h within the cylinder placed in a vertical position. Mosquitoes were then transferred to clean holding containers and provided with cotton pads soaked with 10% sucrose solution. Mortality was recorded at 24 h post-exposure. Each test was replicated 3 times. Resistant status was determined according to WHO criteria; populations were considered resistant if more than 20% of individuals survived the diagnostic dose after 24 h compared to the susceptible control (WHO 1981b). Susceptibility to DDT (4%) was measured using the same method in generations undergoing selection against deltamethrin to assess levels of cross-resistance between insecticides.

Protein assay

The total protein content of individual An. minimus mosquitoes was determined using a commercial protein assay system (BioRad, Hercules, CA). Individual, freshly-killed mosquitoes were homogenized in 0.5 ml of phosphate buffer (0.2 mol, pH 7.0) with plastic microcentrifuge tube and pestle. The homogenate was frozen at -70° C until the assay was performed using 5 μ l aliquots in microtiter plates, and results were compared to a derived standard curve. The plates were read after 5 min using an ELISA plate reader at 595 nm wavelength.

Enzyme determination assays

Monooxygenases

The procedure described by Vulule et al. (1999) was followed with only minor modifications. Fresh individual mosquitoes were homogenized in 50 ml distilled water in a 1 ml plastic vial. Homogenates were diluted with an additional 150 μ l distilled water. Twenty μ l of each homogenate was transferred to a microplate followed by addition of 80 μ l 0.0625 M potassium phosphate buffer

(PPB) at pH 7.0. 0.01 g of 3,3,5',5'-Tetramethyl Benzidine (TMBZ) in 5 ml methanol was prepared and a 0.25 M sodium acetate buffer (pH 5.0) was added. Two hundred μl of TMBZ solution was then added with the 100 μl of mosquito homogenate plus PPB in each well followed by 25 μl of 3% hydrogen peroxide. The plates were read after 5 and 10 min using an ELISA plate reader at 620 nm wavelength. The quantity of monooxygenases was calculated from a standard curve using control enzyme reagents. Results were expressed as in-mole of product/min/mg protein per mosquito.

Non-specific esterases

The method of Peiris and Hemingway (1990) was used with one modification: alpha and beta-naphthyl propionate replaced alpha and beta-naphthyl acetate. The quantity of naphthol produced from the esterase reactions was calculated from standard curves of alpha and beta naphthol. The plates were read immediately after 10 min using the ELISA plate reader at 450 nm wavelength. Results were expressed as m-mole of product/min/mg protein per mosquito triturate.

Glutathione S- transferases

GST activity was assayed following the method of Brogdon and Barber (1990) with some minor technical modifications. Individual mosquitoes were homogenized in 50 μl of distilled water in 1 ml plastic vials. The homogenates were diluted with an additional 150 μl of distilled water, and 20 μl of each homogenate was transferred to a microplate well. Fifty μl of glutathione solution [0.03 g of glutathione in 50 ml PPB] and 50 μl of 1-chloro-2, 4-dinitrobenzene (CDNB) (0.01 g CDNB in 0.5 ml acetone, plus 50 ml of PPB) were added into each well. The plates were read after 30 min with the ELISA plate reader at a wavelength of 414 nm.

Data analysis

Abbott's formula was used to correct the observed mortality in adult susceptibility tests (WHO 1981a). The LC₅₀ and LC₉₀ values were estimated using dosage-mortality regression probit analysis (Finney 1971). Observed differences in resistance between generations were analyzed by Student's z-test. A one-way analysis of variance (ANOVA) was used to compare the protein content and enzyme expression levels within and between populations. All levels of statistical significance were determined at PC0.05.

RESULTS

Anopheles minimus species A was artificially selected for deltamethrin resistance and each generation

Table 1. Results of contact susceptibility bioassays of parent control population F_0 , and F_4 , F_8 , F_{12} , F_{16} and F_{18} serial generations of *An. minimus* selection against deltamethrin esposure using WHO diagnostic test procedures with 0.05% deltamethrin and 24 h post-exposure mortality (Chareonviriyaphap et. al. 2002).

Sample	No.tested	LD ₅₀ (%)	LD _% (%)	Level of Resistance to Deltamethrin (%)	Level of Resistance to DDT (%)
F _o	240	0.00035	0.00137	0	0
F ₄	360	0.00030	0.00283	0	0
F ₈	360	0.00603	0.02060	10	10
Sample	No. tested	LT _{se} (min)	LT ₉₀ (niin)	Level of Resistance to Deltamethrin (%)	Level of Resistance to DDT (%)
F ₁₂ F ₁₄ F ₁₆ F ₁₈	NA	NA	NA	20	20
	360	19.07	75.22	24	22
	360	31.97	97.82	36	30
	360	47.54	185.25	52	37

NA: Not Applicable.

of adult female mosquitoes was measured independently for susceptibility to deltamethrin using contact bioassays (Table 1). Resistance to deltamethrin steadily increased with succeeding generations of exposure during the selection process (Chareonviriyaphap et al. 2002). An ANOVA found no significant differences in the total protein content among the susceptible control and the 6 generations exposed to deltamethrin (P>0.05) despite different levels of resistance (Table 2). All enzyme activities were calculated based on 1 mg protein levels (Table 2). Non-specific esterases, monooxygenase and GST assays were performed on the susceptible and resistant generations of An. minimus with sample sizes ranging from 20 to 30 mosquitoes per generation and assay (Tables 2 and 3). Alpha and beta-esterase activities fluctuated greatly between generations tested, whereas monoxygenase activity consistently increased throughout the selection period (Table 2). Alpha-esterase activity increased from the susceptible parent control to $F_8(0.1165 \pm 0.0375)$, but decreased in $F_{12}(0.0704 \pm 0.0160)$, and was again elevated in F_{IR} (0.1336±0.0542). In all 6 exposed generations alpha-esterase was significantly elevated above the parent control (0.0325 \pm 0.0182). Betaesterase activity was found significantly reduced in Fig. (0.0484 ± 0.0165) compared to F₁ (0.0503 ± 0.0211) , F₁ (0.1079 ± 0.0519) , F_{12} (0.0634 ± 0.0393) , and F_{14} (0.0638±0.0280) generations despite increased insecticide selection pressure (A<0.05). There were no significant

differences in beta-esterase levels observed between susceptible parent (0.0404 \pm 0.0216) and the F_{1x} (0.0484 \pm 0.0165) resistant generation (P>0.05).

There was clear evidence of higher levels of monooxygenase detected in selected colonies over the parent colony. Increased specific enzyme activity was correlated well with the increased development of physiological resistance to deltamethrin (Table 2). There was an approximately 5-fold increase in monooxygenase expression in F_{18} (50% resistance level) compared to the parent susceptible (F_{10}), and a 4.5 fold increase in F_{18} compared to F_{17} .

The intensity of GST indicated no statistically significant differences in enzyme expression between control and selected colonics (Table 3). There were no significant differences in protein content for all 4 generations tested (Table 3). The results suggest that monooxygenases are the probable mechanism for detoxification of pyrethroids and are involved in the development of physiological resistance to deltamethrin in An. minimus species A in Thailand. The inconsistent levels of alpha-esterase activity among the different generations provide inconclusive evidence as to the possible role of non-specific esterases in resistant populations, but they may play a contributing role in resistance development.

DISCUSSION

Vector control in Thailand relies mainly on the reduction of human-vector contact by using chemical compounds. Indoor residual spray with deltamethrin and insecticide treated nets (ITN) using permethrin are advocated as standard tools for malaria vector control in Thailand (Annual Malaria Reports 1995-2001). Anopheles minimus is regarded as a major malaria vector and distributed throughout the country, closely associated with humans in the foothill rural village areas where malaria remains a serious health problem (Nutsathapana et al. 1986, Annual Malaria Reports 1995-2001). Based on field and laboratory data, this species is likely to be regularly exposed to residual insecticides used for IRS and ITN (Chareonviriyaphap et al. 2000, 2001). Selection pressure on natural vector populations exposed to frequent contacts with residual chemicals during blood locating activities and exposure to sprayed resting sites may increase the amount of detoxification enzymes produced that are responsible for insecticide resistance (Ferrari and Georghiou 1990). For these reasons, An. minimus was selected as a representative vector for the study of development of deltamethrin resistance in response to vector control in Thailand.

Insect populations may survive the effect of toxic chemical compounds by different physiological mechanisms including reduced target site sensitivity and elevated detoxifying enzyme production (Martinez-Torres et al. 1998, Brooke et al. 1999). Four primary insecticide resistant mechanisms have been reported associated with pyrethroid resistance, i.e., overexpression and increased production of monooxygenases (sometimes referred to as mixed function oxidases), nonspecific esterases, GSTs and reduced sensitivity of sodium ion channels on the nerve membrane ('kdr' knock down resistance), the target site for DDT and pyrethroids (Oppenoorth 1985, Georghiou 1986, Grant and Matsumura et al. 1988, Neison et al. 1996, Chandre et al. 1999). All three of these major groups of enzymes have been implicated in promoting detoxification of pyrethroids in resistance insects (Brogdon and McAllister 1998, Vulule et al. 1999). In general, quantitative increases in these enzymes, associated with gene amplification or over-expression of target genes, can result in protein overproduction in insects under selection pressure, thus conferring insecticide resistance (Mouches et al. 1990).

Monooxygenases have been associated with pyrethroid resistance in mosquitoes (Hemingway and Ranson, 2000), although it appears a much more common phenomenon in house flies. Elevated monooxygenases have been responsible for degradation of pyrethroids in

Anopheles pseudopunctipennis (Ocampo et al. 2000) and Anopheles funestus in Africa (Brooke et al. 2001). Monooxygenases are a chain of enzymes, with the ratelimiting enzyme usually being cytochrome P450 (Nelson et al. 1996). Alterations in this rate-limiting enzyme can dictate levels of resistance to pyrethroids, organophosphates, and carbamate insecticides using this metabolic mechanism. In our study, increases in specific enzyme activity in selected generations accompanied decreased toxicity changes based on contact bioassay results on adult insects. There was a 5-fold increase in specific monooxygenase activity in the Fig deltamethrinresistant generation compared to the initial parent colony. Anopheles minimus species A used in this study was collected from Rong Kwang District, Prae Province in 1993. This area was previously sprayed as IRS with DDT, either once or twice a year for malaria control, beginning in 1950. Additionally, DDT and other related chlorinated hydrocarbon pesticides were commonly used for crop protection against agricultural pests and termite protection of structures. In our study, An. minimus demonstrated susceptibility levels to DDT from 90% mortality in F₈ to 63% mortality by F₁₈, indicating possible cross-resistance between deltamethrin and DDT. Deltamethrin resistance may have been promoted from previous DDT usage in the area, wherein selection of resistance by one insecticide leads to a much broader spectrum of resistance, including insecticides an insect does not normally encounter. Cross-resistance can occur as a consequence of the similar mode of action of DDT and pyrethroids on sodium channels target sites on nerve axons, resistance resulting in a phenomenon known as "knock down resistance" (kdr). Kdr is conferred by the substitution of one amino acid in the sodium-channel insecticide-binding site in the nerve sheath. The actual mechanism of the apparent cross-resistance in An. minimus to DDT reported here must await further studies at the molecular level (Bloomquist 1996, Brooke et al. 1999). Nevertheless, there is good evidence to support cross-resistance between DDT and pyrethroids in various mosquito species. Previous studies have shown that pyrethroid-resistant populations of Aedes aegipti in Thailand are frequently resistant to DDT (Prasittisuk and Busvine 1977, Brealey et al. 1984). Pyrethroid resistance in Anopheles stephensi has been reported from DDT resistant strains (Omar et al. 1980, Verma and Rahman 1986), and more recently, pyrethroid resistance in .In. gambiae in many West Africa countries has been linked, to a certain extent, by the past intensive use of DDT (Chandre et al. 2000).

Elevation of one or more broad substrate spectrum esterases is a common mechanism of insecticide resistance, especially in a number of *Culex* species, but

Table 2. Comparison of specific activities of α and β non-specific esterases and monooxygenases from *An. minimus* susceptible control and 6 deltamethrin-exposed selected test populations.

Total protein Mean (+SD) mg-protein/ml per mosquito (n)	α Esterase Mean (+SD) m-mole α naphthol/min/mg protein (n)	β Esterase Mean (+SD) m-mole β naphthol/min/ing protein (n)	Monooxygenases Mean (+SD) m-mol-products /min/mg protein (n)
0.7818+0.1836 ³ (20) 0.7490+0.0668 ³ (20)	0.0325+0.0182 ⁴ (20) 0.0577+0.0143 ⁶ (20)	0.0404+0.0216*(20) 0.0503+0.0211*(20)	4.2550+0.2261 ² (20) 4.1695+0.2097 ^a (20)
0.7476+0.1725*(30)	0.1165+0.0375°(30)	0.1079+0.0519(20)	4.74+1.1988 ⁶ (20)
0.7405+0.1247*(20)	0.0754+0.0365 ^b (20)	0.0634+0.0393*(20)	4.8200+0.2239°(20) 5.14+2.8156°(20)
0.7185+0.1083*(20) 0.7385+0.1230*(30)	0.0854+0.0372 ^b (20) 0.1336+0.0542 ^d (30)	0.0441+0.0245 ² (20) 0.0484+0.0165 ⁴ (30)	15.24+1.8520 ⁴ (20) 21.90+0.8534 ^e (20)
	Mean (+SD) mg-protein/ml per mosquito (n) 0.7818+0.1836*(20) 0.7490+0.0668*(20) 0.7476+0.1725*(30) 0.7405+0.1247*(20) 0.6885+0.1438*(20) 0.7185+0.1083*(20)	Mean (+SD) Mean (+SD) mg-protein/ml m-mole per mosquito (n) α naphthol/min/mg 0.7818+0.1836*(20) 0.0325+0.0182*(20) 0.7490+0.0668*(20) 0.0577+0.0143*(20) 0.7476+0.1725*(30) 0.1165+0.0375*(30) 0.7405+0.1247*(20) 0.0704+0.0160*(20) 0.6885+0.1438*(20) 0.0754+0.0365*(20) 0.7185+0.1083*(20) 0.0854+0.0372*(20)	Mean (+SD) Mean (+SD) Mean (+SD) mg-protein/ml m-mole m-mole per mosquito (n) α naphthol/min/mg β naphthol/min/mg protein (n) protein (n) protein (n) 0.7818+0.1836*(20) 0.0325+0.0182*(20) 0.0404+0.0216*(20) 0.7490+0.0668*(20) 0.0577+0.0143*(20) 0.0503+0.0211*(20) 0.7476+0.1725*(30) 0.1165+0.0375*(30) 0.1079+0.0519*(20) 0.7405+0.1247*(20) 0.0704+0.0160*(20) 0.0634+0.0393*(20) 0.6885+0.1438*(20) 0.0754+0.0365*(20) 0.0638+0.0280*(20) 0.7185+0.1083*(20) 0.0854+0.0372*(20) 0.0441+0.0245*(20)

Within a column, same letter denotes no significant differences at 0.05 level of probability. (n) = sample size in parenthesis.

Table 3. Optical density (OD) of glutathione S-transferases towards CDNB from *An. minimus* susceptible control and 3 deltamethrin-exposed test populations.

Test population Generation time deltamethrin exposure	Mean (+SD) mg protein/ml/ mosquito (n)	OD value at 414 nm
F _o (susceptible)	0.5887+0.1977*(20)	0.0279 ± 0.0121°
F ₄ (tolerant)	0.6319+0.0962"(20)	0.0156+0.0088 ^b
F ₁₂ (20% resistance)	0.4999+0.2050*(20)	0.0254 ± 0.0111°
F ₁₈ (50% resistance)	0.6385+0.1230*(30)	0.0306 ± 0.0139°

Within a column, same letter denotes no significant difference at 0.05 level of probability. (n) = sample size in parenthesis.

is apparently much less common in Anopheles. Most pyrethroid compounds, including deltamethrin, contain an ester linkage that is susceptible to hydrolysis by esterase (Oppenoorth 1985). Previous use of organophosphate and carbamate compounds may induce increased esterase production that confers crossresistance to pyrethroids as seen in Anopheles albimanus from Guatemala (Brogdon and Barber 1990). Associated elevated esterase levels have been documented in many pyrethroid-resistant insects (Abdel-Aal and Soderlund 1980, Riskallah 1983, Beach et al. 1989, Rodriguez et al. 1997, Penilla et al. 1998), including An. gambiae from Africa (Vulule et al. 1999, Chandre et al. 1999). In our study, there was approximately a 1.8 to 4.1fold increase in hydrolysis of alpha-naphthylpropionate to alpha-naphthol in homogenates from selected generations compared to the susceptible parent colony, but there was no observed increase in specific activity of beta esterase in F18 compared to the control. This indicates that the beta structure of the esterase enzymes does not appear to be responsible for resistance in .1n.

GSTs have been reported to play a significant role in detoxification and resistance to DDT (Ranson et al. 1997, Prapanthadara et al. 1998) and appear as a defense against pyrethroids in certain insects (Kostaropoulos et al. 2001). This enzyme appears to play an important role in many DDT-resistant insects including *Anopheles dirus* species B from Thailand and *An. gambiae* in Africa (Prapanthadara et al. 1998, Ranson et al. 2001). In contrast, GSTs were found to play only a minor role as a detoxifying enzyme in pyrethroid-resistant *An. funestus* (Brooke et al. 2001). Likewise, this enzyme was not associated with pyrethroid/DDT resistance in our *An. minimus* selected generations.

Because IRS and ITN applications depend on the use of synthetic pyrethroids as a primary malaria vector control method in Thailand, careful and routine detection and monitoring of insecticide susceptibility levels of vector populations in malaria endemic areas should be conducted over a wide geographical range to include as many known vector species as possible. Early detection of operationally unacceptable levels of resistance can prompt public health authorities to take appropriate mitigating steps to counter problems of resistance (Penilla et al. 1998). Furthermore, cross-resistance or unsusceptibility as a consequence of unintentional or extensive use of the same or related chemicals against mosquito populations and agricultural pests, remains poorly investigated in Thailand. Ongoing research will attempt to identify genes coding for deltamethrin resistance in our resistant colony. Metabolic detoxification of pyrethroids involved with increased

monooxygenase production in mosquitoes will also be the subject of further investigation.

Acknowledgments

We gratefully thank the assistance of Thailand Research Funds (TRF), Bangkok Thailand for financial support. Special thanks to Dr. Patjaraporn Wongvithoonyaporn, Division of Biochemistry, Faculty of Liberal Arts and Science, Kasetsart University, Bangkok, for her valuable assistance and suggestions in biochemical techniques, Ms. Atchariya Parbaripai, Division of Mathematics, Statistics and Computer, Faculty of Liberal Arts and Science, Kasetsart University for data analysis, and to the Malaria Division, Department of Communicable Disease Control, Ministry of Public Health, Nonthaburi for providing the parent Anopheles minimus colony for use in this study.

REFERENCES CITED

Abdel-Aal, Y.A.I. and D.M. Soderlund. 1980. Pyrethroid hydrolysing esterase in southern armyworm larvae: tissue distribution, kinetic properties, and selective inhibition. Pest. Biochem. Physiol. 14: 282-289.

Annual Malaria Reports. 1995-2001. Malaria Division, Department of Communicable Disease Control. Ministry of Public Health, Thailand.

Baimai, V. 1989. Speciation and species complex of the *Anopheles* malaria vectors in Thailand. The 3rd Conference on Malaria Research, Thailand, 18-20 October 1989: 146-162.

Beach, R.F., C. Rosale, and W.G. Brodgon. 1989. Detoxifying esterases may limit the use of pyrethroids for malaria control in the Americans. Parasitol. Today 5: 326-327.

Bloomquist, J.R. 1996. Ion channels as target for insecticides. Annu. Rev. Entomol. 41: 163-190.

Brealey, C.J., P.L. Crampton, P.R. Chadwick, and F.E. Rickett. 1984. Resistance mechanisms to DDT and transpermethrin in *Aedes aegypti*. Pest. Sci. 15: 121-132.

Brogdon, W.C. and J.C. McAllister. 1998. Insecticide resistance and vector control. Emerg. Infect. Dis. 4: 605-613.

Brogdon, W.G. and A.M. Barber. 1990. Microplate assay of glutathione s-transferase activity for resistance detection in single mosquito triturates. Comp. Biochem. Physiol. 96B: 339-342.

Brooke, B.D., H.H. Richard, L.K. Lizctte, J. Dossou-Yovo, and C. Maureen. 1999. Evaluation of polymerase chain reaction assay for detection of pyrethroid insecticide resistance in a malaria vector species of

- Anopheles gambiae complex. J. Am. Mosq. Contr. Assoc. 15: 565-568.
- Brooke, B.D., G. Kloke, R.H. Hunt, L.L. Koekemoer, E.A. Temu, M.E. Taylor, G. Small, J. Hemingway, and M. Coetzee. 2001. Bioassay and biochemical analyses of insecticide resistance in southern African *Anophele funestus* (Diptera: Culicidae). Bull. Entomol. Res. 91: 265-272.
- Chandre, F., F., Darriet, S. Duchon, L. Finot, S. Manguin, P. Carnevale, and P. Guillet. 2000. Modifications of pyrethroid effects associated with kdr mutation in *Anopheles gambiae*. Med. Vet. Entomol. 14: 81-88.
- Chandre, F., F. Darriet, S. Manguin, C. Brengues, P. Carnevale, and P. Guillet. 1999. Pyrethroid cross resistance spectrum among populations of *Anopheles gambiae* from Cote D'Ivoire. J. Am. Mosq. Contr. Assoc. 15: 53-59.
- Chareonviriyaphap, T., B. Aum-Aung, and S. Ratanatham. 1999. Current insecticide resistance patterns in mosquito vectors in Thailand. Southeast Asian J. Trop. Med. Pub. Hlth. 30: 131-141.
- Charconviriyaphap, T., M.J. Bangs, and S. Ratanatham 2000. Status of malaria in Thailand. Southeast Asian J. Trop. Med. Pub. Hlth. 31: 225-237.
- Chareonviriyaphap, T., S. Sungvornyothin, S. Ratanatham, and A. Prabaripai. 2001. Insecticide-induced behavioral responses of *Anopheles minimus*, a malaria vector in Thailand. J. Am. Mosq. Contr. Assoc. 17: 13-22.
- Chareonviriyaphap, T., P. Rongnuparat, and P. Chantarumporn. 2002. Selection for pyrethroid resistance in a colony of *Anopheles minimus* species A, a malaria vector in Thailand. J. Vector Ecol. 27: 222-229.
- Ferrari, J.A. and G.P. Georghiou. 1990. Esterase B1 activity variation within and among insecticide resistant, susceptible, and heterozygote strains of *Culex quinquefasciatus*. J. Econom. Entomol. 83: 1704-1710.
- Feyercisen, R. 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44: 507-533.
- Finney, D.J. 1971. *Probit Analysis*. 3rd ed. Cambridge Univ. Press, London. 333 pp.
- Ford, H.R. and E. Green. 1972. Laboratory rearing of *Anopheles albimanus*. Mosq. News 32: 509-513.
- Georghiou, G.P. 1986. The Magnitude of Resistance Problem. Pesticide Resistance: Strategies and Tactics for Management. National Academy Press: Washington D.C. pp. 14-43.
- Grant, D.F. and F. Matsumura. 1988. Glutathione Stransferase in Aedes aegypti larvae. Purification and properties. Insect Biochem. 18: 615-622.
- Greenwood, B. and T. Mutabingwa. 2002. Malaria in

- 2002. Nature. 415: 670-672.
- Hemingway, J. and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45: 371-391.
- Kostaropoulos, I., A.I. Papadopoulos, A. Metaxakis, E. Boukouvala, and E. Papadopoulou-Mourkidou. 2001. Glutathione S-transferase in the defense against pyrethroids in insects. Insect Biochem. Molec. Biol. 31: 313-319.
- Lagadic, L., A Cuany, J.B. Berge, and M. Echaubard. 1993. Purification and partial characterization of glutathione S-transferases from insecticide resistant and lindane-induced susceptible *Spodoptera littoralis* (Boisd.) larvae. Insect Biochem. Molec. Biol. 23: 467-474.
- Martinez-Torres, D., F. Chandre, M.S. Williamson, F. Darriet, J.B. Serge, A.L. Devonshire, P. Guillet, N. Pasteur, and D. Pauron. 1998. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector *Anopheles gambiae s.s.* Insect Molec. Biol. 7: 179-184.
- Mouches, C., Y. Pauplin, M, Agarwal, L. Lemieux, M. Herzog, M. Abadon, V. Beyssat Arnaouty, O. Hyrien, B.R. deSaint Vincent, GP. Georghiou, and N. Pasteur. 1990. Characterization of amplification care and esterase B1 gene responsible for insecticide resistance in *Culex* Proc. Natl. Acad. Sci. USA. 87: 2574-2578.
- Nelson, D.R., L. Koymans, T. Kamataki, J.J. Stegeman, R. Feyereisen, D.J. Waxman, M.R. Waterman, O. Gotoh, M.J. Coon, R.W. Eastbrook, I.C. Gunsalus, and D.W. Nebert. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nonnenclature. Pharmacogenetics 6: 1-42.
- Nutsathapana, S., P. Sawadiwongphorn, U. Chitprarop, and J.R. Cullen. 1986. The behavioral of *Anopheles minimus* subjected to different levels of DDT selection pressure in Northern Thailand. Bull. Entomol. Res. 76:313-320.
- Ocampo, C.B., W.G. Brogdon, C.M. Orrego, G Toro, and J. Montoya-Lerma. 2000. Insecticide susceptibility in *Anopheles pseudopunctipennis* from Colombia: comparison between bioassays and biochemical assays. J. Am. Mosq. Contr. Assoc. 16: 331-338.
- Omar, S.M., G.P. Georghiou, and N. Irving. 1980. DDTpyrethroid resistance interrelationship in *Anopheles* stephensi. Mosq. News 40: 200-209.
- Oppenoorth, F.J. 1985. Biochemical and genetic in insecticide resistance. In: G.A. Kerkut and L.I. Gilbert (eds.) Comprehensive Insect Physiology Biochemistry and Pharmacology. 12: 731-773. Pergamon Press.
- Peiris, H.T.R and J. Hemingway. 1990. Temephos

- resistance and the associated cross-resistance spectrum in a strain of *Culex quinquefasciatus* from Peliyagoda, Sri Lanka. Bull. Entornol. Res. 80: 49-55.
- Penilla, R.P., A.D. Rodriguez, J. Hemingway, J.I. Torres, J.I. Arredondo-Jimenez, and M.H. Rodriguez. 1998. Resistant management strategies in malaria vector mosquito control. Baseline data for a large scale field trial against *Anopheles albimanus* in Mexico. Med. Vet. Entomol. 12: 127-233.
- Prapanthadara, L., H. Ranson, P. Somboon, and J. Hemingway. 1998. Cloning, expression and characterization of an insect class I glutathione Stransferase from *Anopheles dirus* species B. Insect Biochem. Molec. Biol. 28: 321-329.
- Prasittisuk, C. and J.R. Busvine. 1977. DDT resistance mosquito strains with cross-resistance to pyrethroids. Pest. Sci. 8: 527-533.
- Ranson, H., A.J. Cornel, D. Fournier, A. Vaughan, F.H. Collins, and J. Hemingway. 1997. Cloning and localization of a glutathione S- transferase Class I gene from *Anopheles gambiae*. J. Biol. Chem. 272: 5464-5468.
- Ranson, H., L. Rossiter, F. Ortelli, B. Jensen, X. Wang, C.W. Roth, F.H. Collins, and J. Hemingway. 2001. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector *Anopheles gambiae*. Biochem. J. 15: 295-304.
- Reidy, G.F., H.A. Rose, S. Visetson, and M. Murray. 1990. Increased glutathione S-transferase activity and glutathione content in an insecticide-resistant strain of *Tribolium castaneum* (Herbst.). Pestic. Biochem. Physiol. 36: 269-276.
- Riskallah, M.R. 1983. Esterases and resistance to synthetic pyrethroids in Egyptian cotton leafworm. Pest. Biochem. Physiol. 19: 184-189.
- Roberts, D.R. and R.G. Andre. 1994. Insecticide resistant

- issues in vectors. Am. J. Trop. Med. Hyg. 50 (Suppl): 21-34
- Rodriguez, M.M., J.A. Bisset, I. Rodriguez, and C. Diaz. 1997. Determination of insecticide resistance and its biochemical mechanisms in 2 strains of *Culex quinquefasciatus* from Cuba. Abstract: Rev. Cubana. Med. Trop. 49: 209-214.
- Scott, J.G., N. Liu, and Z. Wen. 1998. Insect cytochromes P450: Diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. 121C: 147-155
- Verma, K.V.S. and S.J. Rahman. 1986. Development of knockdown resistance (KDR) against fenvalerate in a DDT resistant strain of *Anopheles stephensi*. Curr. Sci. 55: 914-916.
- Vulule, J.M., R.F. Beach, F.K. Atieli, J.C. McAllister, W.G. Brogdon, J.M. Roberts, R.W. Mwangi, and W.A. Hawley. 1999. Elevated oxidase and esterase levels associated with permethrin tolerance in *Anopheles gambiae* from Kenyan villages using permethrin impregnated nets. Med. Vet. Entomol. 13: 239-244.
- World Health Organization. 1981a. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticide-diagnostic test. WHO/VBC/81.806. Geneva, Switzerland, 6 pp.
- World Health Organization. 1981b. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Unpublished document, WHO/VBC/81.807.
- World Health Organization. 1996. World Health Report. WHO, Geneva, Switzerland.
- World Health Organization. 1998. Test procedure for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. Document WHO/CDS/CPC/MAL/98.12. Geneva, Switzerland.

APPENDIX C

Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin

Pompimol Rongnoparut^{1,3}, Soamrutai Boonsuepsakul¹, Theeraphap Chareonviriyaphap², and Naowarat Thanomsing ¹

¹Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand ² Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand ³Corresponding author

Received 30 September 2002; Accepted 8 February 2003

ABSTRACT: Two new genes in the cytochrome P450 (CYP6) family 6 with complete coding sequences were cloned and sequenced from deltamethrin-resistant Anopheles minimus, a major malaria vector in Thailand. CYP6P5 encodes a protein of 508 amino acids, while CYP6AA2 contains 505 residues. Each encoded protein contains a hydrophobic N-terminal region and a highly conserved heme-binding region typical of P450s. Alignments of deduced amino acid sequences with other insect P450 genes indicate a high degree of identity to insect CYP6 genes. Comparative mRNA expression studies using semi-quantitative RT-PCR analysis indicated that the relative amount of CYP6AA2 transcript was greater in the deltamethrin-resistant An. minimus compared to the susceptible strain. The expression of CYP6AA2 in deltamethrin-resistant mosquitoes is associated with development of deltamethrin resistance in An. minimus mosquito. The CYP6P5 transcript is equally expressed in both resistant and susceptible mosquitoes. Journal of Vector Ecology 28(2): 2003.

Keyword Index: Cytochrome P450 monooxygenases, cloning, insecticide resistance, deltamethrin, Anopheles minimus.

INTRODUCTION

The cytochrome P450 monooxygenases (P450s) or CYPs constitute a family of enzymes involved in the metabolism of a wide variety of endogenous and exogenous compounds such as steroids, fatty acids and xenobiotics (Feyereisen 1999). These divergent enzymes have multiple and overlapping substrate specificities. Examining P450 gene diversity in insects has revealed numerous P450 forms. For example, 17 genes of the CYP4 family were identified from Anopheles albimanus mosquitoes (Scott et al. 1994), 14 P450 genes were identified from the Mediterreanean fruit fly Ceratitis capitata (Danielson et al. 1999), and 8 CYP4 genes from Helicoverpa armigera (Pittendrigh et al. 1997). Recently, sequencing of Drosophila melanogaster genome has uncovered total P450 diversity in this species, with 90 P450 genes found (Adams et al. 2000).

Insect P450s have been implicated in insect growth, development, reproduction, insecticide resistance and tolerance to plant toxins (Feyereisen 1999, Hodgson and Kulkarni 1983, Scott et al. 1998). The cytochrome P450 enzymes confer insecticide resistance in populations of

insects via an increased level of P450 activities resulting from elevated expression of P450 genes. An example is provided by CYP6D1, a P450 isolated from the house fly, Musca domestica (Tomita and Scott 1995). CYP6D1 was previously shown to metabolize pyrethroids at a higher level in a Learned Pyrethroid Resistant strain (Wheelock and Scott 1992), leading to increased pyrethoid detoxification and resistance. Consequently, the levels of CYP6D1 transcript and protein are elevated in the pyrethroid resistant flies compared to a susceptible strain (Kasai and Scott 2000, Tomita et al. 1995). In the multiresistant Rutgers strain of house fly, the CYP6A1 mRNA level was higher than in the susceptible strain (Carino et al. 1994, Feyereisen et al. 1995). Other instances have shown that resistance is associated with increased expression of certain P450 mRNAs. This includes the over-expression of Cyp6a2 in the RDDTR insecticideresistant strain of Drosophila melanogaster compared to the Canton's sensitive strain (Brun et al. 1996), CYP6B7 in a pyrethroid-resistant strain of Helicoverpa armigera (Ranasinghe and Hobbs 1998), CYP6F1 in pyrethroid resistant Culex quinquefasciatus Say (Kasai et al. 2000), CYP9A1 in a thiodicarb-selected resistant population of

Heliothis virenscens (Rose et al. 1997), and CYP4G8 in a pyrethroid-resistant strain of Helicoverpa armigera (Pittendrigh et al. 1997). These broad comparative forms of P450s involved in insect detoxification have made it difficult to identify individual P450 genes that confer insecticide resistance.

Anopheles minimus is one of the most efficient malaria vectors in the Mekong region of Southeast Asia, including Thailand, Laos, Cambodia and Vietnam. This species is considered endophagic and endophilic, allowing contact with insecticide residues sprayed in houses and thus considered as an excellent model for the study of insecticide resistance in Thailand (Nutsathapana et al. 1986). In Thailand, indoor house spraying with DDT has been used in malaria control for decades4. Synthetic pyrethroids are promising insecticides that have replaced DDT in vector control in Thailand (phase out period, 1995-1999). The intensive and sometime indiscriminate use of pyrethroids in agriculture and for the control of disease vectors can lead to development of pyrethroid resistance (Miller, 1988). Pyrethroid resistance was recently reported in a population of An. minimus from northern Thailand⁴.

We have recently established a deltamethrinresistant mosquito strain of An. minimus species A (Chareonviriyaphap et al. 2002). The resistant strain showed an elevated level of mixed function oxidases compared to a susceptible strain, implicating P450 as a primary route of detoxification in this strain of An. minimus. Although insecticide resistance mechanisms mediated by cytochrome P450s in insects have been extensively studied, there is no published report of the role that the CYP6 family plays in pyrethroid resistance in malaria vectors. To identify resistance-associated cytochrome P450 in An. minimus, we focused on isolation of CYP6 gene members and investigated whether there is increased expression at the transcription level in the pyrethroid-resistant mosquito. In this article we report the isolation and sequence analysis of 2 genes encoding cytochrome P450s in An. minimus. Semi-quantitative RT-PCR analysis indicated an increased expression of CYP6AA2 mRNA in the An. minimus resistant to deltamethrin, while CYP6P5 mRNA are equally expressed in both resistant and susceptible mosquitoes.

MATERIALS AND METHODS

Mosquito test populations

Three test populations of An. minimus, one susceptible (F_0) and 2 deltamethrin-resistant $(F_{13}$ and $F_{19})$, were used for this study. At the time of selection, the parent colony remained susceptible to both deltamethrin (0.05%) and DDT (4%) based on WHO bioassay^{5,6}. The resistant colonies $(F_{13}$ and $F_{19})$ are established from the susceptible strain (F_0) by sequential exposure of females to increasing doses of deltamthrin and measuring the progress of selection by the standard WHO diagnostic test⁶. The original and detailed backgrounds of An. minimus from this study were recently published (Chareonviriyaphap et al. 2002).

Genomic DNA amplification and cloning

Genomic DNA was isolated from the F,, adult mosquitoes. The degenerate primers used were the antisense Frimer 5' CG (G/A/T/C) (T/G) G (G/T/C) CC(T/ C) TC (A/G/T) CC (G/A) AACGG 3' (CYPR) corresponding to conserved amino acids FGDGPR surrounding the heme binding site, and the sense primer 5 GATGTGAT (T/C) GG (A/C/T) AG (C/T) GT (G/A/C/T) GC (C/G) TT (G/T/C) GG 3' (CYPFL) corresponding to VIGXCAFG (see Figure 2 for locations of primers). PCR reaction was performed in a DNA thermal cycler (PE Applied Biosystems, Boston, Maryland, USA) using one denaturation step at 94°C for 10 min, followed by 30 cycles of 1 min each at 94°C, 58°C, and 72°C. The last elongation step was lengthened to 10 min at 72°C. PCR product with the expected size was subjected to cloning in the pGEM-T Easy vector (Promega, Madison, Wisconsin, USA). Clone products were sequenced with dye terminator sequencing using an ABI 377 automated DNA sequencer at Bioservice unit, National Science and Technology Development Agency, Bangkok, Thailand.

RT-PCR and cloning of partial cDNA

Completely F0 susceptible or the F₁₃ deltamethrin selected adult mosquitoes were homogenized and total RNA was prepared using NucleoSpin RNA II kit (Macherey-Nagel, rue Gutenberg, France) following manufacturer's instructions. RNA was reverse transcribed to single-stranded cDNA using Superscript RNaseH reverse transcriptase kit (Gibco/BRL, Rockville,

Annual Malaria Reports 1980-2001. Malaria Division, Department of Communicable Disease Control, Ministry of Public Health, Thailand.

⁵WHO 1981. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamated insecticide-diagnostic test. WHO/VBC/81.806, Geneva, Switzerland, 6 pp.

⁶WHO 1998. Test procedure for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces.

Maryland, USA) and CYPR primer. PCR was performed on the resulting cDNAs with CYPFS, 5 'A (G/A) AC (T/G) CTTCG (C/T) AAGTA (T/C) CC 3', corresponding to the amino acid residues ETLRKYP in the ETLR motif and a CYPR primer (Figure 2). PCR products from susceptible and resistant strains were cloned into pGEM-T Easy vector and clone products were sequenced as previously described.

Genomic DNA walking, 5' RACE, 3'RACE and full coding regions of CYP6P5 and CYP6AA2

The corresponding genomic DNA for AN1 and AN40 clones were walked towards the 5' region of the genes employing Genome WalkerTM kit (Clontech, Hampshire, UK). Thereafter, 5'- and 3'-RACE were performed to identify transcriptional ends of the AN1 and AN40 gene fragments. 5' and 3' RACE followed the Smart RACE cDNA amplification protocol (Clontech). Genome walking, 5' and 3' RACE by PCR were conducted with the primers provided with the kits. Typical PCR cycle parameters on the PE 2400 Thermal Cycler (PE Applied Biosystems) followed the conditions recommended by the supplier. To obtain intact CYP6P5 genomic DNA containing full coding region, primers synthesized spanning start and stop codon sequences (derived from the sequence information of 5'RACE and 3'RACE products) of CYP6P5 were used for PCR amplification. PCR amplification on CYP6P5 on genomic DNA used AN40F (5' ATGGAGCTCATTAACCT AGT 3') and INTAN40R (5' CTACACCTTTTCCACCTTCA 3') primers. To obtain full coding CYP6AA2 cDNA, RT-PCR was performed following the Smart RACE cDNA amplification protocol. The full coding CYP6AA2 cDNA was synthesized using antisense primers provided with the kit for first strand

cDNA synthesis and PCR amplified with AN1F (5' GTCGAGCGCAGTTGTATG 3') sense primer and the kit's antisense primer. All PCR products were cloned into pGEM-T Easy vector (Promega) and sequenced. All sequence information in this study was derived from sequencing on both strands of DNA.

Semi-quantitative RT-PCR analysis

RT-PCR was performed with RNA samples isolated from F₁₃ and F₁₉ deltamethrin-resistant and susceptible adult mosquitoes. A comparative study of the expression of CYP6P5 and CYP6AA2 in resistant and susceptible strains was carried out with specific oligonucleotide primer pairs for the two genes. Two pairs of primers were designed according to CYP6AA2 sequence. One pair, QAN1-1 (5' AACGGAATGCGATAGTACGGC 3') and QAN1-2 (5' TTTCCAACACTTCGGCACGCA3') and another pair, QAN1-3 (5' CTGGAGGCATCATTCCGGTT 3') and QAN1-4 (5' CGATCTCACAAATCGTGGTAAA CATC 3') were used for RT-PCR in F₁₃ and F₁₉ deltamethrin-resistant mosquitoes, respectively. The primer pair INTAN40F:

(5'GTTGAGGAGAATGATGGACA3') and INTAN40R: (5'CTACACCTTTTCCACCTTCA3') was used in RT-PCR of CYP6P5. For RT-PCR of internal actin gene control, actin primer pair sequences (ACTF, 5'-AGCAGGA GATGGCCACC-3' and ACTR, 5'-TCCACATCTGCTGGAAGG-3') were designed following previously published primer sequences (Kasai et al. 1998). Upon obtaining actin cDNA product, we sequenced to confirm its identity as actin 1 D cDNA (data available upon request). Antisense primers were used for first strand cDNA synthesis using SuperscriptTM II RNaseH reverse transcriptase (Gibco/BRL). RT-PCR performed

Table 1. Occurrence of cDNA clones in F₁₃ deltamethrin-resistant and F₀ susceptible populations of Anopheles minimus.

Clone	Řesistant (nº)	Percent	Mosquito strain Susceptible (n²)	. Percent
AN1	9	42.8	3	17.6
AN40	3	14.3	3	17.6
AN10	4	19.0	0	0
AN36	2	9.5	The state of the s	5.9
AN4	1	4.8	n in production	5.9
AN17	1	4.8	2	11.8
AN8		4.8	5	29.4
AN38	0	0		5.9
AN35	0	0	T.	5.9
Total	21	100	17	100

Number of cDNA clones sequenced

Table 2. Percentage identity of the deduced amino acid sequences of the P450 genes^a

P450	Percent deduced amino acid identity		
	CYP6P5	CYP6AA2	
CYP6AA2	41		
CYP6P5		41	
CYP6A1	43	40	
CYP6B1	31	33	
CYP6D1	32	33	
CYP6E1	39	40	
CYP6F1	38	40	

^aCYP6A1 and CYP6D1 from M. domestica (Feyereisen et al. 1989, Tomita and Scott 1995), CYP6B1 from Papilio polyxenes (Cohen et al 1994); CYP6E1 and CYP6F1 from Cx. quinquefasciatus (Kasai et al. 1998, 2000).

with the predetermined PCR cycle at the exponential phase was compared between susceptible and resistant strains. Each cycle included denaturation at 94°C for 1 min, primer annealing at 58°C for 30 sec, and extension at 72°C for 1 min. PCR band intensities were compared between those of resistant and susceptible strains after normalization with actin standard band intensities. Band intensities were measured on a densitometer (Biorad's Image analysis model) using Molecular AnalystR TM software version 1.4.

RESULTS

Cloning of PCR and RT-PCR products

Our goal was to run a preliminary screen for sequences of CYP6 fragments from An. minimus. We amplified a partial genomic DNA fragment of cytochrome P450 gene using a pair of degenerate primers in the PCR reaction. The primer sequences were based on amino acid sequences of previously isolated CYP6 P450s from the mosquito Culex quinquefasciatus Say (Kasai et al. 1998, 2000), Drosophila melanogaster (Brun et al. 1996) and Musca domestica (Tomita and Scott 1995). An antisense CYPR primer was designed corresponding to

amino acids of the most conserved heme-binding region among all P450 enzymes. The sense CYPFL primer specified the VIGXCAFG peptide sequences among CYP6 amino acid sequences. PCR amplification products of the expected size of ~900 bp were cloned and sequenced. One clone, the AN40, showed high amino acid sequence identity in deduced amino acids compared to those of other insect CYP6 genes. Deduced amino acid sequence of AN40 fragment showed 49% identity to CYP6A1 from M. domestica (Feyereisen et al. 1989) and 43 % identity to CYP6F1 from Cx. quinquefasciatus, (Kasai et al. 2000). Alignment of AN40 sequence and of other CYP6 genes provided information on conserved regions of a CYP6 sequence in An. minimus, further facilitating the isolation of CYP6 cDNA sequences in this mosquito.

In an attempt to isolate a CYP6 cDNA associated with pyrethroid resistance in An. minimus, we carried out RT-PCR on total RNA isolated from completely susceptible and F13 deltamethrin-resistant strains to determine which cDNA(s) was over-represented in the resistant strain. Although several primer choices based on sequence information of the AN40 clone were selected, we found the primer pair CYPFS and CYPR the

Figure 1. Alignment of amino acid sequences deduced from the nucleotide sequences of cloned RT-PCR products, excluding priming sites.

ANI	1	PVPQLIRVSTQPYTVEATNVTLDRDTMLMVPIYAIHHDANIYPEPERFDPDRFAPDAVHSRHTHAFL	67
AN5	1	PLESLTRVPVRDYTIPGTKHVIPKDTVIQIPVYALQHDPEFYPDPDQFNPDRFLPEEVKQRHPYVFL	67
		TEMEDICAL MEDICAL CONTROL OF THE CON	67
AN10	1	PLESITRAPEQDYTIPGTKHVIPKAHDGQIPIYALHHDPEYYPEPERFDPERSSRSGKRTSPYVYM	66
AN35	1	GLPILNRECTIDYPVPDSDIVIRKGTQVIIPLLSISMNEKYFPNPELYSPERF-DEATKNYDPDAYY	66
		PLETTVRVTSQDYTIPGTEHVIPRKVGVQIPVFAIHRDPELYPDPECFDPDRFTKEESKKRPAYTFL	67
AN38	1	ALAVLNRECTIDYPVPDSDVVIRKGTQVIIPLLGISMNEKYFPNPELYSPERF-DEATKNYDPDAYY	66
		PVESLNRVPSVDYLIPGTKHVIPKRTLVQIPVHAIQNDPDHYPDPERFDPDRFNPEEVKKRHPFTFI	67
AN41	1	PVETLTRKPARDYVIPGTKHIIPEGTIVQIPIYAIQRDPDHFPDPEHFDPDRFMPEEVK-RHPYVFL	66

Figure 2. Comparison of deduced amino acid sequences of CYP6P5 and CYP6AA2 from An. minimus to those of other insect P450s: CYP6E1 and CYP6F1 from Cx. quinquefasciatus (Kasai et al., 1998, 2000); CYP6A1 and CYP6D1 from M. domestica (Feyereisen et al., 1989; Tomita and Scott, 1995). Gaps in the alignment are indicated by

—. Conserved amino acids across all compared sequences are bold letters. Degenerate primers synthesized corresponding to amino acids are shown as bers. Oxiginals

CYP6A1	MDFGSFLLYALGVLASLALYFVRWNFGYWKRRGIPHE-EPHLVMGNVKGLRS-KYHIGEI	58
CYP6B1	MLYLLALVTVLAGLLHYYFTRTFNYWKKRNVAG-PKPVPFFGNLKDSVLRRKPQVMV	56
CYP6D1	MLLLLLIVVTTLYIFAKLIIYTKWERLGFESD-KATIPLGSMAKVFHKERPFGLV	54
CYP6E1	MLLYLVTIVTWLVYVWIKRRYSYWKDRGVPSL-RVSFPAGNLQGIG—HRHLGLI	52
CYP6F1	MFAWIICAAAAVPLVYFLIVYQFSYWKRRGITQL-TPSFPFGDLGPFFRQRSSLGVV	56
CYP6P5	MELINLVLAAFIFVWSVVYLFIRNKHNYWKDNGFPYAPNPHFLFGHAKGQTL-TKHAADI	59
CYP6AA2	MGYVNVVFYLVLPALGLLYYYVKQHYRYWANRNIPQL-EASFPVGNMKGVGS-KLHFNDV	58
CYP6A1	IADYYRKFK-GSDPLPGIFLGHKPAAVVLDKELRKRVLIKDFSNFANRGLYYNEKDDPLT	117
CYP6B1	YKSIYDEFPN—EKVVGIYRMTTPSVLLRDLDIIKHVLIKDFESFADRGVEFS—LDGLG	112
CYP6D1	MSDIYDKCHEK—VVGIYLFFKPALLVRDAELARQILTTDFNSFHDRGLYVDEKNDPMS	111
CYP6E1	MODLYGKLKGSGAKFGGIYSFLKPMVMVLDLDFAKDVLVREFQYFHDRGMYYNERDDPLS	112
CYP6F1	YADVYRLCKRLP—FVGIYLSLRPMLVVNDPELIKNVLVRDFDHFHDRGLYVNEEKDPLS	114
CYP6P5		119
	HLELYKQFKQRGDRYVGMSQFIIPSVFVIDPELVKTIMVKDFNVFHDRGVFTNAKDDPLS	
CYP6AA2	LGEAYDKGKSKTAPLVGLYFMLKPVLIVTDLDMVKRILVKDFNSFHDRGLYVNERDDPLS	118
CYP6A1	GHLVMVEGEKWRSLRTKLSPTFTAGKMKYMYNTVLEVGQRLLEVMYEKLEVSS—ELDMR	175
CYP6B1	ANIFHADGDRWRSLRNRFTPLFTSGKLKSMLPLMSQVGDRFINSIDEVSQTQPEQSIH	170
CYP6D1	ANLFVMEGQSWRTLRMKLAPSFSSGKLKGMFETVDDVADKLINHLNERLKDGQTHVLEIK	171
CYP6E1	AHLVSLEGDKWKSLRTKLTPTFTSGKMKMMFGTIEEVVDRLEGCIRVRVESGE—CIEIR	170
CYP6F1	GHLFALGGEQWRHHRSKLTPTFTSGRLKEMFTNLVQIGRVLQDHVAKRAGED——IEIR	170
CYP6P5	GHLFALEGNPWRLLRQNVTPTFTSGRMKQMFGTLWDVALELDKYMEENYRQP—DMEMK	176
CYP6AA2	GHLFALDGERWRYLRNKLSPTFTSGKIKLMFTTICEIGDEFLASVTRYVDREA—PIDVK	176
01/0/	DV - DESTRUCTION - POLECTION DATE - A CONTROL - A CONT	
CYP6A1	DILARFNTDVIGSVAFGIECNSLRNPHDRFLAMGRKSIEVPRHNALIMA—FIDSFPEL	232
CYP6B1	NLVQKFTMTNIAACVFGLNLDEGMLKTLEDLDKHIFTVNYSAELDMM	221
CYP6D1	SILTTYAVDIIGSVIFGLEIDSFTHPDNEFRVLSDRLFNPKKSTMLERIRNLSTFMCPPL	231
CYP6E1	DIISRFAMDVIGSCAFGLDCNSLVLSDPPFWKMSLKASTSTKLQFLISL—FATTYRKF	227
CYP6F1	DVMARYTTDIIASVGFGIENDSINEKGNIFREMGTKVFSPDLKTILRLT—STFFTPKL	227
CYP6P5	DVLGRFTTDVIGTCAFGIECNTLKTPDSEFRKYGNKAFEFNLSIMIKIF—LASSYPEL	233
CYP6AA2	LLSQCFTCDVVGSVAFGLKCNSLKNEGSKLLEIGDKVFKPPAWRNMLTF—MLISCKKM	233
	CYPFL	
CYP6A1	SRKLGMRVLPEDVHQFFMSSIKETVDYREKNNIRRNDFLDLVLDLKNN	280
CYP6B1	LKKLNGSLFPKVVSKFFDNLTKNVLEMRKGTPSYQKDMIDLIQELREKKTLELSRKHE—	279
CYP6D1	AKLLSRLGAKDPITYRLRDIVKRTIEFREEKGVVRKDLLQLFIQLRNTGKISDDNDKLWH	291
CYP6E1	SNQIGICVLPNDVSDFYLGAVRDTIKFRMDNQASRKDFMDLLIKLED	274
CYP6F1	NALFGFKFIAQEIEDFIMNVVRETLEYRESNKVVRKDMMQLLMQLRNSGTVSIDDR—W	284
CYP6P5	VRALKMKITFDDVERFFLKIVRETVDYREQNNVKRNDFMNLLLQIKNKGKLDD	286
CYP6AA2	AKRLHLPALPSEVGSFFMPLVSETVHDRERNAIVRPDFLNLLIQLKNKG——T	283
CYP6A1	PESISKLG—GLTFNELAAQVFVFFLGGFETSSSTMGFALYELAQNQQLQDRLREEVNEV	220
CYP6B1	PESISALU—OLLIFNELAAQVFVFFLOGFE ISSS IMGFALYELAQNQQLQDKLKEEVNEV	338
	-NEDVKALELTDGVISAQMFIFYMAGYETSATTMTYLFYELAKNPDIQDKLIAEIDEV	336
CYP6D1	DVESTAENLKAMSIDMIASNSFLFYIAGSETTAATTSFTIYELAMYPEILKKAQSEVDEC	351
CYP6E1		324
CYP6F1	DIEVSTN-KKKLSLEQVTAHAFVFFIAAYETSSTTISFCLFELARNPEIQKKVQQEIDQV	343
CYP6P5	SEDIVGKGEVGMTQLELAAQAFVFFLAGFETSSTTQSFCLYELAKNPEIQERLRQEINQA	346
CYP6AA2	VEDESSEGLEKLTLDEVAAQAFVFFFAGFETSSTTLSFALFELANNPAIQERVRAEVLEK	343
CYP6A1	FDQFK—EDNISYDALMNIPYLDQVLNETLRKYPVGVGSALTRQTLNDYVVPHNPKYVL	395
CYP6B1	LSRH—DGNITYECLSEMTYLSKVFDETLRKYPV—ADFTQRNAKTDYVFPG-TDITI	389
CYP6D1	LQRHGLKPQGRLTYEAIQDMKYLDLCVMETTRKYPG—LPFLNRKCTQDFQVPD-TKLTI	408
CYP6E1	LKRH—GSFSYETIQDMEFLNCCVKETLRKYPP—VANLFREITKNYKVPE-TDITL	376
CYP6F1	LASH——NGEITYDNINEMKYLENCIDETLRKYPA—VPFLNRECSKDYKIPG-TDTTI	396
CYP6P5	VEEN——DGQVTYDVAMNIQYLDNVINETLRKYPP—VESLNRVPSVDYLIPG-TKHVI	399
CYP6AA2	LKLH—DGQITYDALKEMTYLDQVINETLRMYPP—VPQLIRVSTQPYTVEA-TNVTL	399
	CYPFS	290
	CITIO F	

508

508

505

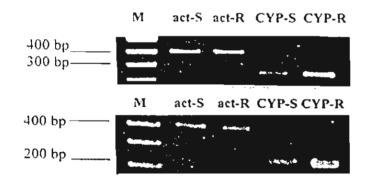
Figure 2. Continued.

CYP6A1	PKGTLVFIPVLGIHYDPELYPNPEEFDPERFSPEMVKQRDSVDWLGFGDGPRNCIGMRFG	455
CYP6B1	KKGQTIIVSTWGIQNDPKYYPNPEKFDPERFNPENVKDRHPCAYLPFSAGPRNCLGMRFA	449
CYP6D1	PKETGIIISLLGIHRDPQYFPQPEDYRPERFADE-SKDYDPAAYMPFGEGPRHCIAQRMG	467
CYP6E1	EKGYRVVIPVYGIHHDPDIYPNPEVFNPERFIPELSTNRHPMAYLPFGEGPRTCIGERFA	436
CYP6F1	EKGTSLVIPVLGLHRDPDHYPEPDRFIPERFSN—FEDISTKPYLPFGAGPRNCIGLRLG	454
CYP6P5	PKRTLVQIPVHAIQNDPDHYPDPERFDPDRFNPEEVKKRHPFTFIPFGEGPRICIGLRFG	459
CYP6AA2	DRDTMLMVPIYAIHHDANIYPEPERFDPDRFAPDAVHSRHTHAFLP <u>FGDGPR</u> NCIGMRFG	456
	← CYPR	
CYP6A1	KMQSRLGLALVIRHFRFTVCSR—TDIPMQINPESLAWTPKNNLYLNVQAIRKKIK	509
CYP6B1	KWQSEVCIMKVLSKYRVEPSMK—SSGPFKFDPMRLFALPKGGIYVNLVRR	498
CYP6D1	VINSKVALAKILANFNIQPMPR—QEVEFKFHSAPVLVPVNGLNVGLSKRW	516
CYP6E1	LMETKIGLSRLLQKFRFKLAPQTSTRIELNKTGVFLSIQGNLWMKVKKTCHNLTVVTEPAAEN	499

 \mathbf{A}

CYP6F1

M act-S act-R CYP-S CYP-R


KLQTKAGLVMMLSKFNVRLADETYASKELALDARSVVLMPVGGIKVSISERRAS

VMQTKVGLITLLRKFRFSPSAR—TPDRVTFEPKMITLSPNAGNYLKVEKV

CYP6AA2 LLEVKFGIVQMLSKLRFTVNSR-MQLPIKLSKAAAMLEVEGGIWLNATKL

В

C

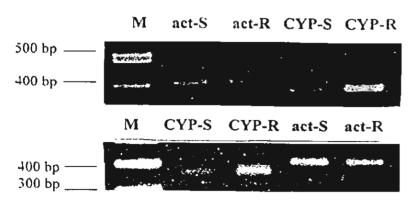


Figure 3. Expression of CYP6P5. CYP6AA2 and actin mRNAs. Total RNA template isolated from F₀ deltamethrin susceptible (lane S) and F13 & F19 resistant (lane R) strains of An. minimus were RT-PCR amplified with CYP6P5, CYP6AA2 and actin specific primers. A: RT-PCR product of CYP6P5 and actin mRNAs in susceptible and F10 pyrethroid resistant mosquitoes. B: RT-PCR product of CYP6AA2 amplified with QAN1-1 and QAN1-2 primers and actin mRNAs in susceptible and pyrethroid resistant strains. C: RT-PCR product of CYP6AA2 amplified with QAN1-3 and QAN1-4 primers and actin mRNAs in susceptible and pyrethroid resistant strains. Top panels, F13 deltamethrin resistance; Bottom panels, F₁₀ deltamethrin resistance. Lanes M: Marker; Act-S and CYP-S: actin and CYP products from deltamethrin sensitive strain; Act-R and CYP-R: actin and CYP products from deltamethrin resistant strain.

best choice (based on sequence information of the derived clones thereafter) for the purpose of this study. We used the degenerate CYPR antisense primer targeting at heme-binding region and the low degenerated sense CYPFS primer binding at the ETLR motif sequence. The primers amplified partial cDNAs from susceptible and resistant strains producing the expected product size of ~240 bp and the products were cloned.

A total of 40 cDNA clones was screened and sequenced. Two clones showed sequences unrelated to P450 genes. The remaining 38 clones (21 from resistant strains and 17 from susceptible strains) were scored highly with P450 genes. Deduced amino acids of the cDNA clones showed relatively high diversity and were classified into 9 isoforms (Table 1) with alignment excluding the primer targeting sites (Figure 1). The AN1 cDNA clone was found predominantly and represented 42.8% of the clones sequenced in the F13 resistant strain, while in the F0 susceptible strain the AN1 clone represented only 17.6% (Table 1). The number of AN1 cDNA clones found multiple times could be correlated with the level of resistance expression in each mosquito strain. Thus we selected the AN1 clone for further characterization. All 9 isoforms showed deduced amino acid sequence homology to CYP6 family.

Isolation of complete coding sequence of CYP6P5 and CYP6AA2 genes

To attain complete coding sequences for the AN1 and AN40 clones, genome walked, 5' and 3' RACE products of the two corresponding genes were obtained. Thereafter, intact full coding CYP6AA2 cDNA and CYP6P5 full coding genomic DNA was obtained. Upon alignment of DNA sequences from genomic and cDNA PCR products, the CYP6P5 and CYP6AA2 genes each had a short intron in the same amino acid position as that of CYP6 gene family from the house fly (Cohen et al. 1994). The genes containing complete coding regions for clones AN1 and AN40 were named CYP6P5 and CYP6AA2. The complete CYP6P5 (Genbank Accession no. AY128947) and CYP6AA2 (Genbank Accession no. AY129952) combined sequences each contained an open reading frame coding for 508 and 505 amino acid residues, respectively (Figure 2). Multiple amino acid alignment of both CYP6AA2 and CYP6P5 with other insect CYP6 sequences revealed a high degree of identity with numerous amino acid residues conserved across all insect CYP6 enzymes (Figure 2, Table 2). These sequences contained conserved residues representing typical features of cytochrome P450s, including a hydrophobic N-terminal membrane anchor domain, the putative heme binding site and ETLR motif.

CYP6P5 and CYP6AA2 mRNA expression in deltamethrin-susceptible and resistant An. minimus strains

To assess the transcription expression level of CYP6P5 and CYP6AA2 genes in deltamethrin-resistant and susceptible strains, we used semi-quantitative RT-PCR to measure the expression level of each mRNA in An. minimus. PCR products of CYP6P5 using INTAN40F and INTAN40R primers and of CYP6AA2 using QAN1-1 and QAN1-2 primers were 500 bp and 240 bp, respectively (Figure 3). The internal standard, PCR product of actin 1D cDNA, with the size of 400 bp, was generated with actin-specific primers. Band intensity for CYP6P5 amplified from F₁₀ resistant mosquitoes was similar to that amplified from the susceptible strain (Figure 3A). A similar result was obtained when F₁, resistant mosquitoes were used (unpublished data). In contrast, RT-PCR band intensities for CYP6AA2 amplified from F₁₃ resistant mosquitoes were approximately twice those from the F₀ susceptible strain after normalization with actin 1D (Figure 3B), and were approximately 3-4 fold higher when amplified from F₁₉ resistant mosquitoes. A different pair of primers, QAN1-3 and QAN1-4, based on a different region of CYP6AA2 cDNA sequence was used for semiquantitative RT-PCR in susceptible and resistant mosquitoes. This was to ensure that the mRNA level increase was the resultant product of CYP6AA2 mRNA and not due to a high level of sequence identity between members of P450 gene family as has been reported high sequence similarities among CYP6B genes in Helicoverpa species and Papilio species (Li et al. 2001; 2002). The resulting 360 bp band intensity was reproducible when QAN1-3 and QAN1-4 primers were used demonstrating approximately 2 and 3-4 fold increases in band intensity in the RT-PCR amplification of F₁₃ and F₁₉ resistant mosquitoes, respectively, compared to the F₀ susceptible mosquito (Figure 3C). Thus, the level of CYP6AA2 mRNA increase is correlated well with the increased level of deltamethrin resistance in An. minimus.

DISCUSSION

We used the deltamethrin-resistant colony (F_{13} and F_{19}) established from a pyrethroid susceptible An. minimus mosquito strain (F_0) by systematic selection against deltamethrin (Chareonviriyaphap et al. 2002). The F_{13} and F_{19} resistant mosquitoes showed approximately 1.2 and 5 fold increase in specific activity of mixed function oxidases (MFOs) compared to the F_0 susceptible strain (Chareonviriyaphap et al., unpublished data). The higher MFOs activity was increased in the test populations of mosquitoes as the selection against

deltamethrin continued and the increase was found associated with changes in bioassay analysis (Chareonviriyaphap et al. 2002, Chareonviriyaphap et al. unpublished data). The results implicated the involvement of P450 in deltamethrin resistance in the An. minimus. We have therefore placed an emphasis on the study of P450 and cloned P450 genes as a first step towards an understanding of pyrethroid resistance mechanisms in An. minimus.

A pair of primers used to amplify partial P450 cDNAs and cloned sequences from both F₁₁ resistant and F₀ susceptible strains were compared. The first primer was a degenerate primer targeted to the P450 heme-binding site, which is conserved in all P450 proteins. The second was based on the ETLR motif of the AN40 sequence and those that shared high homology among CYP6 sequences. This was similar to previously published approaches for isolation of CYP4 and CYP6F1 genes from An. albimanus and Cx. quinquefasciatus Say mosquitoes (Kasai et al. 2000, Scott et al. 1994). This strategy allowed isolation of expressed cytochrome P450 genes from An. minimus, probably limiting the isolation coverage to the family six. The sequences of partial cDNA clones, although not full complements of the P450 genes, nevertheless revealed P450 isoforms expressed in An. minimus (Figure 1). Among these, seven isoforms were detected in the resistant strain and eight in the susceptible strain, of which six were commonly found in both strains (Table 1). The cDNAs showed > 40% deduced amino acid identity to known CYP6 genes indicating that they belong to family six The nine isoforms exhibited a wide range of variation, as measured by deduced amino acid sequences. The level of CYP6 diversity sampled in this study is comparative to that sampled in Cx. quinquefasciatus Say using a similar strategy (Kasai et al. 2000) and that sampled in the adult Mediterranean fruit fly, Ceratitis capitata (Danielson et al. 1999). However, this level is much less than that previously reported in Drosophila melanogaster, where 22 CYP genes were found belonging in the CYP6 family (Tijet et al. 2001). Thus, the degree of heterogeneity observed in this study does not reflect total CYP6 diversity in An. minimus.

The sequenced partial cDNA clones may not correlate with the relative abundance of product expressed by CYP6 genes in the resistant strain. To some extent, the abundance of the PCR products could depend on the binding affinity of the priming sites. However, we can only roughly associate the transcript level and relative abundance of a particular cDNA sequence in the PCR products by the multiple number of cDNA clones found. One predominant cDNA clone (AN1), accounted for ~43% among the clones of the resistant strain (Table

1), could be the most highly expressed gene in the F_{13} deltamethrin resistant strain. Moreover there were increases of ~2 and ~3-4 in expression of the CYP6AA2 transcript (the AN1 full complement) in the F_{13} resistant compared to the F_0 susceptible strain. However, the AN40 (identified as CYP6P5), representing ~14% and ~17% in the resistant and susceptible strains, respectively, was shown to have equal levels of mRNA in both strains. These data support the congruence of the occurrence of the multiple cDNA clones with the relative amount of particular cDNAs in PCR products in relation to the transcription level.

We compared mRNA expression level of CYP6P5 and CYP6AA2 in the F₁₃ and F₁₉ deltamethrin-resistant and the F₀ susceptible strains. The CYP6P5 mRNA level was unchanged in the resistant strain compared to the sensitive strain indicating that CYP6P5 is not associated with deltamethrin resistance in this strain of An. minimus. In contrast, a 3-4 fold higher CYP6AA2 mRNA level in the F₁₉ resistant strain over the F₀ susceptible strain is comparable to that observed for MFOs activity. These results suggest that there is an association between increased CYP6AA2 mRNA level and deltamethrin resistance. Although at present there is no direct evidence showing the involvement of CYP6AA2 in deltamethrin resistance, the CYP6AA2 mRNA increase was stepwise in association with elevated resistance suggesting that CYP6AA2 could play a role in pyrethroid resistance in An. minimus. Other unidentified isoforms of cytochrome P450 that might play a role in resistance could not be ruled out. Further proof is required to confirm that CYP6AA2 could play a role in deltamethrin resistance. This could involve analysis of pyrethroid metabolism in vitro by virtue of heterologous expression of the CYP6AA2 gene and exploitation of its enzyme activity against pyrethroids. Its metabolic role in pyrethroid insecticide, biochemical properties and specificity, the regulatory processes and the genetic mechanisms remain to be clarified.

Acknowledgments

We thank Michael J. Bangs, U.S. NAMRU2, Jakarta, Indonesia for his critical reading and valuable comments. This work was funded by the Thailand Research Fund Organization, Bangkok, Thailand.

REFERENCES CITED

Adams, M.D., S.E. Celniker, R.A. Holt, et al. 2000. The genome sequence of *Drosophila melanogaster*. Science. 287: 2185-2195.

Brun, A., A. Cuany, T. Le Mouel, J. Berge, and M. Amichot.

- 1996. Inducibility of the *Drosophila melanogaster* cytochrome P450 gene, *CYP6A2*, by phenobarbital in insecticide susceptible or resistant strains. Insect Biochem. Molec. Biol. 26: 697-703.
- Carino, F.A., J.F. Koerner, F.W. Plapp Jr., and R. Feyereisen. 1994. Constitutive overexpression of the cytochrome P450 gene *CYP6A1* in the house fly strain with metabolic resistance to insecticides. Insect Biochem. Molec. Biol. 24: 411-418.
- Chareonviriyaphap, T., P. Rongnoparut, and P. Chantarumporn. 2002. Selection of pyrethroid resistance in colony of *Anopheles minimus* species A, a malaria vector in Thailand. J. Vector Ecol. 27: 222-229.
- Cohen, M.B., J.F. Korner, and R. Feyereisen. 1994. Structure and chromosomal localization of *CYP6A1*, a cytochrome P450 encoding gene from the house fly. Gene. 146: 267-272.
- Danielson, P.B., J.L.M. Foster, S.K. Cooper, and J.C. Fogleman. 1999. Diversity of expressed cytochrome P450 genes in the adult Mediterranean fruit fly, *Ceratitis capitata*. Insect Molec. Biol. 8: 149-159.
- Feyereisen, R. 1999. Insect P450 enzymes. Annu. Rev. Entomol. 44: 507-533.
- Feyereisen, R., J.F. Anderson, F.A. Carino, M.B. Cohen, and J.F. Koener. 1995. Cytochrome P450 in the housefly: Structure, catalytic activity and regulation of expression of *CYP6A1* in an insecticide-resistant strain. Pest. Sci. 43:233-239.
- Feyereisen, R., J.F. Koener, D.E. Farnsworth, and D.W. Nebert. 1989. Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-resistant strain of the house fly, *Musca domestica*. Proc. Natl. Acad. Sci. USA. 86: 1465-1469.
- Hodgson, E. and A.P. Kulkarni. 1983. Characterization of cytochrome P-450 in studies of insecticide resistance. In: GP Georghiou and T. Saito (Eds.), Pest resistance to pesticides. Plenum, New York., pp. 207-228.
- Kasai, S. and J.G. Scott. 2000. Overexpression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in house flies from Georgia. Pest. Biochem. Physiol. 68:34-41.
- Kasai, S., T. Shono, and M. Yamakawa. 1998. Molecular cloning and nucleotide sequence of a cytochrome P450 cDNA from a pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochem. Molec. Biol. 7: 185-190.
- Kasai, S., I.S. Weerashinghe, T. Shono, and M. Yamakawa. 2000. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6FI) from the pyrethroid-resistant mosquito.

- Culex quinquefasciatus Say. Insect Biochem Molec. Biol. 30: 163-171.
- Li, W., M.R. Berenbaum, and M.A. Schuler. 2001. Molecular analysis of multiple *CYP6B* genes from polyphagous *Papilio* species. Insect Biochem. Molec. Biol. 31: 999-1011.
- Li, X., M.R. Berenbaum, and M.A. Schuler. 2002. Cytochrome P450 and actin genes expressed in *Helicoverpa zea* and *Helicoverpa armigera*: paralogy/orthology identification, gene conversion and evolution. Insect Biochem. Molec. Biol. 32: 311-320
- Miller, T.A. 1988. Mechanisms of resistance to pyrethroid insecticides. Parasitol. Today 4: S8-S12.
- Nutasathapana, S., P. Sawadiwongphorn, U. Chitprarop, and J.R. Cullen. 1986. The behavior of *Anopheles minimus* Theobald (Diptera: Culicidae) subjected to differing levels of DDT selection pressure in northern Thailand. Bull. Entomol. Res. 76: 303-312.
- Pittendrigh, B. K.Aronstein, E. Zinkovsky, O. Andreev, B. Campbell, J. Daly, S.Trowell, and R.H. ffrench-Constant. 1997. Cytochrome P450 genes from *Helicoverpa armigera*: Expression in a pyrethroid-susceptible and resistant strain. Insect Biochem. Molec. Biol. 27: 507-512.
- Ranasinghe, C. and A.A. Hobbs. 1998. Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from *Helicoverpa armigera* (Hubber): possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochem. Molec. Biol. 28: 571-580.
- Rose, R.L., D. Goh, D.M. Thompson, K.D. Verma, D.G. Heckel, L.J. Gahan, R.M. Roe, and E. Hodgson. 1997. Cytochrome P450 (CYP)9A1 in *Heliothis virescens*: the first member of a new *CYP* family. Insect Biochem. Molec. Biol. 27: 605-615.
- Scott, J.A., F.H. Collins, and R. Feyereisen. 1994. Diversity of cytochrome P450 genes in the mosquito, *Anopheles albimanus*. Biochem. Biophys. Res. Comm. 205: 1452-1459.
- Scott, J.G., N. Liu, and Z. Wen. 1998. Insect cytochrome P450: diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. Part C. 121: 147-155
- Tijet, N., C. Helvig, and R. Feyereisen. 2001. The cytochrome P450 gene superfamily in *Drosophila melanogaster*: Annotation, intron-exon organization and phylogeny. Gene 262: 189-198.
- Tomita, T. and J.G. Scott. 1995. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Biochem. Molec. Biol. 25: 275-283.

- Tomita, T., N.Liu, F.F. Smith, P. Sridhar, and J.G. Scott. 1995.

 Molecular mechanisms involved in increased expression of a cytochrome P450 responsible for pyrethroid resistance in the house fly, *Musca domestica*. Insect Mol. Biol. 4: 135-140.
- Wheelock G.D. and J.G. Scott. 1992. The role of cytochrome P450lpr in deltamethrin metabolism by pyrethroid resistant and susceptible strains of house flies. Pest. Biochem. Physiol. 43: 67-77.