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Abstract

Rationale: Most of statistical methods used in meta-analysis assume individual subjects as
units of randomization. Meta-analyses involving cluster randomized trials may lead to
additional sources of heterogeneity beyond those elevated by meta-analyses involving only
individually randomized trials. The appropriate statistical analysis to these meta-analyses
must take into account potential heterogeneity in the cluster randomized trials. A substantial
amount of literature covering statistical methodologies used in meta analyses can now be
found. Most of them, however, assume individual subjects as units of randomization.
Therefore, there may remain some questions that need to be investigated in the area of meta
analyses related to the inclusion of cluster randomized trials.

The generat linear mixed model (GLM) has been proposed to explain heterogeneity in
meta-analysis where the treatment effect is measured in binary outcome. Log-relative
measure is used as a response variable. The parameter estimation is based on assumption of
normal distribution of random effects. The generalized linear mixed model (GLMM) under
unspecified distribution of random effects may be an alternative choice. The two approaches
allow the inclusion of some covariates of trial level and subject level. Therefore it is
interesting to explore potential of the two approaches in meta-analysis involving cluster
randomized tnals in binary outcome.

Objective: Two potential non-Bayesian approaches of GLLM and GLMM are explored to
identify and explain heterogeneity in meta-analyses involving cluster randomized trials
comparing two treatment groups measured in binary outcome.

Methods: The two approaches of GL.M and GLMM are studied and evaluated their potential
in term of methodological aspects, results provided, strengths and limitations of these
approaches and exemplified in three published meta-analyses involving cluster randomized
trials. The first meta-analysis includes eight community-based trials. They were performed in
developing countries to examine the relationship of vitamin A supplementation and mortality
in children aged 6 to 72 months. None of the trials assigned individual children to treatment
groups. The second meta-analysis comprises fewer trials of 8, which is performed to evaluate
the effect of mammographic screening on reduction of breast cancer mortality. The third
meta-analysis is done to assess the effectiveness of multiple risk factor interventions to
reduce cardiovascular risk factors from coronary heart disease. Analysis is performed in the
14 trials included that provided smoking prevalence outcome. For each meta-analysis,
observed log-relative risks for individual trials are fitted to the GLM as a continuous
response. The trials included are classified to two categories according to randomization
units, clusters and individually, and called randomization design variable. This variable is
treated as a covariate of the model. The model parameters are estimated with the restricted
maximum likelihood (REML) under the normality assumption of random effects via MLwiN
software. For the GLMM, observed frequencies of the cutcome for each treatment group are
used rather than the observed log-relative risks for individual trials. A canonical link function
of the observed mean proportions is associated with linear predictors model of which
treatment and randomization design are treated as covariates. Here, the treatment effect can
be treated as random treatment effects. The maximum likelihood estimates of the model
parameters are obtained non-parametrically under a discrete mixture distribution of random
effects for K components, which is implemented by the EM-algorithm procedure via S-plus
software. Maximum posterior probability is used to classified trials to each compenent.

Results: The two approaches shown that the covariates effects and variability of random
effects from the models easily explained heterogeneity between trials. Results of numerical



examples are presented in topic 6 and 7. The GLMM is superior to the GLM in some aspects.
The GLMM gives further heterogeneity information from random treatment effects. In
addition, the approach provides component (or subgroup)-specific treatment effect and trial
classification according to the optimal components. This is very useful in further explaining
the heterogeneity that might be beyond the effects found in the model.

Conclusions: The GLMM approach provides more information for explaining heterogeneity
effect in meta-analyses involving cluster randomized trials. However, care should be taken
when interpreting the covariates effects of the model because inference on these effects
obtained from a discrete mixing distribution have not been ruled out. Nevertheless, the
GLMM would be much more efficient when it is applied to large meta-analyses.
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Executive Summary
Title: Combining Cluster and Individual Randomized Trials in Meta-analysis

Summary

In this study, the main aim is to explore and compare two potential non-Bayesian approaches
of GLM and GLMM to identify and explain treatment heterogeneity in meta-analyses
involving cluster randomized trials measured in binary outcome. General concepts on designs
and analysis of cluster randomized trials are illustrated in topic 2. A review of current
practice on meta-analysis related to cluster randomized trials is discussed in topic 3. Three
meta-analyses (1-3) on different situations according to number of trials and randomization
designs, which are described in topic 4, are selected from the published literature. They are
used to illustrate application of individual approaches. A review of some essential issues in
meta-analysis and simple conventional approaches are discussed in topic 5.

Exploration starts with the GLM approach, a linear regression mixed model. Details
of the approach are presented in topic 6. The model allows potential factors to be added both
in continuous and discrete form. For the three examples, log-relative risks of individual trials
are used as a continuous response variable. The covariate is a randomization design, which is
a binary variable for the two examples(2, 3). Estimation of model parameters is based on the
assumption of normal distributions of random effects. The parameters are estimated by
REML via the RIGLS algorithms. Because the number of trials in the examples are smalil,
standard errors of the estimates provided by the REML based on asymptotic properties,

especially for the variancet?, may be unreliable. Therefore, the parametric bootstrap
estimation is used to calculate confidence intervals for all the parameters. The GLM produces
estimates of an adjusted overall treatment effect, covariate effects and variance of random
effects to explain heterogeneity. Applications of the GLM to the three examples are
implemented using the MLwiN software. This approach is logically appropriate to the meta-
analyses related to cluster randomized trials.

Further investigation is performed in the GLMM. The approach is described in topic
7. This is a regression mixture model allowing the inclusion of some covariates of trial level
and subject level. The GLMM is utilized in a two-levels mixed poisson regression models,
applied to the three examples. Observed numbers of events from individual trials are used as
a response variable. For the investigation of random treatment effects, the two treatment
groups are treated as a binary covariate in the model. The other covariate is randomization
design, which is also a binary variable. The random treatment effect is obtained from an
interaction term between intercept and treatment variable. The NPML estimates of the
parameters are obtained from the discrete mixing distribution of the random effects via the
EM-algorithm. The optimal number of components is selected using the BIC- criterion. The
results of component-specific mean treatment effect and component weight reflect the
heterogeneity due to random treatment effects. When the optimal number of component is
more than one (K>1), further trial classification is performed using the posterior probability.
Applications of the GLMM to the three examples are implemented using the S-plus software.

These different approaches are then evaluated in topic 8 for their potential in terms of
application to the meta-analyses related to cluster randomized trials. Items to be evaluated are
methodological issues, heterogeneity information provided, model complexity, interpretation
of the results, strengths and limitations and numerical results of the three examples.

In conclusion, the GLMM are comparable in term of methodology aspects. Their aim
of analysis is appropriate to investigate heterogeneity effect in the meta-analyses. They are
both attainable approaches that provide results to be used to explain all dimensions of sources



of the heterogeneity in the meta-analyses. The GLMM is superior to the GLM in some
aspects. The GLMM gives further heterogeneity information from random treatment effects.
In addition, the approach provides component (or subgroup)-specific treatment effect and
trial classification according to the optimal components. This is very useful in further
explaining the heterogeneity that might be beyond the effects found in the model. However,
some limitations of the two approaches have to be considered. Meta-analysts should have
literate statistical modelling to perform the approaches in meta-analyses data. The results
obtained from the GLM may be unreliable if the normal distributed assumption of random
effects is misspecified. Also, the GLMM may have some difficulty in generalizability of the
estimated treatment effect as the unsolved problem in asymptotic inference from
nonparametric approach. This issue should be kept in mind and carefully considered when
interpreting the treatment effect. According to the considerations, GLMM is a preferable
choice.

Suggestions

Although the proposed GLMM in this study is investigated under the scope of meta-analyses
involving cluster randomized trials, they can also be applied to other meta-analyses that have
some potential covariates available at trial level and subject level. In terms of software, the S-
plus is used in this study. For this approach several software, such as GLIM and STATA, are
also available.

Although heterogeneity is one of the main issues in meta-analysis, interpretation of
treatment effects is also sometimes required. Therefore, researches need to be done to solve
the problem in the interpretation of estimated treatment effect from the NPML estimator of
mixing distribution. '
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Topicl: Introduction

1.1 Background

The randomized controlled trial is a well-established method used to evaluate the
effectiveness of treatments in health care. Most of the trials involve treatment allocation to
individual subjects, such as patients, school children and villagers. Such trials are called
individually randomized trials (IRTs). The effect of treatments is measured at individual
subjects, which is the unit of randomization. The individual subjects are, therefore, assumed
to be independent in terms of their responses. Variation of the responses comes from
variation among the individual subjects of each treatment group.

Throughout the 1980s and 1990s, different trial designs have been increasingly used
to evaluate treatment effectiveness. An important modification of the IRT is the cluster
randomized trials (CRTs). The cluster randomized trials are particularly relevant in field
trials on tropical diseases in developing countries such as in Thailand. In these trials,
treatments are randomly assigned to clusters {or groups) of individuals. Examples of the units
of treatment allocation are villages, schools, work sites, general practices, and hospitals.

An example of the cluster randomized trial is the WHO trial (4) conducted to evaluate
a new antenatal care programme compared to the standard antenatal care programme in
pregnant women. Fifty-three antenatal care clinics are stratified by countries and clinic sizes.
The clinics are randomly atlocated to each of the antenatal care programmes. Therefore, each
clinic would have only one antenatal care programme. Such that would make it more
convenient for investigators to manage the trial and also to avoid pregnant women receiving
more than one antenatal care programme. This is why cluster randomization is used instead
of individual randomization.

The treatment effects of cluster randomized trials are measured for individual subjects
nested within the clusters. Hence, the responses of individuals in the same cluster cannot be
regarded as independent. The responses in the same cluster tend to be more similar,
compared to those obtained from subjects in different clusters. For example, newborn babies
in the same nursery ward would likely have similar infection rate as compared to the babies
in different nursery wards. This is because the newborn babies within the same nursery would
be exposed to the same temperature as compared to those in different nurseries. So, variations
of the responses in a cluster randomized trial are measured from two sources, i.e. within a
cluster and between clusters.

The similarity of individual responses within the same cluster is reflected in a
measurable infracluster correlation coefficient(ICC). The ICC is a ratio of the variation of
between clusters to the overall variation, which is the addition of between and within cluster
variations. The ICC is used to calculate clustering effect, which is the specific characteristic
of cluster randomized trials. The ICC introduces one or more extra sources of random
variation that must be reflected in the sample size determination and data analysis. The
clustering effect is generally known as design effect. To account for the clustering effect in
data analysis, an analysis at cluster or individual level can be done depending on the research
question.

The randomization designs of cluster randomized trials used in health care evaluation
are commonly classified into three designs, completely randomized, matched-pair
randomized and stratified randomized. The choice of the designs depends on nature and
available number of clusters. Rationale for each design is given in the next section. The units
of randomization may vary even though the trials are conducted to evaluate similar
treatments. For example the eight cluster randomized trials included in the meta-analysis of
Vitamin A supplementation and child mortality(1) differ in the units of randomization. The
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randomization units are clusters of children, households, villages, areas, sub-districts and
wards. This issue may raise heterogeneity in the meta-analysis.

A large amount of the literature on randomized controlled trials has been published in
the last two decades. There is, however, some controversy on conclusions found in the trials
to assess similar or the same treatment effect. Furthermore, some trials were done in very
small sample sizes. The conclusions on the treatment effect of such trials are, thus,
questionable.

Meta-analysis is known as the statistical method used to gather and combine
information from many related trials(5). The method aims to compare and potentially
combine estimates of treatment effect across trials(6). Meta-analysis may provide a clear
overall picture when single trials may appear inconsistent with regards to degree or direction
of the treatment effects of interest. By including several trials, the results can be more precise
and may also allow investigation and identification of variability of treatment effects across
tnals (7, 8).

Since the mid-1980s meta-analysis has become an important part of health care
research not only primarily for randomized controlled tnals but also for observational
epidemiological studies(9). Continuing activities on meta-analysis have increased steadily
since the past decade. When the PubMed electronic database of the National Library of
Medicine is searched using ‘meta analysis’ as a key word, only 6 papers are found in the year
1980. The number increased to 323 papers in 1990. A big increase of up to 1,175 papers is
seen ten years later in 2000. One reason of such an increase is the awareness of a demand to
obtain not just evidence but reliable evidence from all the relevant studies(10). The reliable
evidence is used to justify any decision in health care activity, such as whether to give a new
therapeutic treatment to diabetic patients and whether mammographic screening should be
kept or abandoned, etc.

Meta-analysis can yield numerical statistics for overall treatment effects of interest,
such as relative risk, odds ratio, mean differences, and confidence intervals via several
existing estimation approaches both in Frequentist and Bayesian perspectives(11, 12). These
statistics have been most commonly applied to the results of individually randomized trials,
which is the most common type of randomized controlled trials.

The variability of treatment effects between the tnials is likely, because of the random
chance, known as sampling error. If estimates of treatment effect vary among trials beyond
that expected by chance alone, it is generally known as ‘heferogeneity’' in meta-analyses.
Potential sources of heterogeneity may be from some biases due to different trial and subject
characteristics between trials, and unobserved random effects(13). It would be clearly
remarkable if all the trials being meta-analysed yield the same treatment effect. However, in
practice it is hardly possible for such trials to be included in the meta-analyses. So,
heterogeneity is an important issue that must be explored and identified when a meta-analysis
is applied(6, 14-17). .

Meta-analyses involving cluster randomized trials are increasingly found in many
health care publications, These meta-analyses may lead to additiona! sources of heterogeneity
beyond those elevated by meta-analyses involving only individually randomized trials.
Papers of cluster randomized trials may be different in eligibility criteria on both the cluster
and individual level, in randomized designs and units of randomization. In addition, they may
present results from different levels of units of analysis, cluster and individual. Simple
conventional methods, both in the area of fixed effect and random effects models, ignoring
this heterogeneity may result in incorrect inferences for the treatment effects. However, the
empirical evidence from a review of 25 published meta-analyses related to cluster
randomized trials shows that 15 of the meta-analyses used simple conventional methods of
the fixed effect model as method of analysis. Detail of the review is illustrated in Topic 3.
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The appropriate statistical analysis to these meta-analyses must take into account potential
heterogeneity in the cluster randomized tnals.

A substantial amount of literature covering statistical methodologies used in meta
analyses can now be found. Most of them, however, assume individual subjects as units of
randomization. Therefore, there may remain some questions that need to be investigated in
the area of meta analyses related to the inclusion of cluster randomized trials.

1.2  Aims and objectives

In this study some potential non-Bayesian approaches are explored to identify and explain

heterogeneity in meta-analyses involving cluster randomized trials comparing two treatment

groups measured in binary outcome.

The specific objectives are:

. to investigate the potential of general linear mixed model (GLM) and generalized
linear mixed model(GLMM) with nonparametric maximum likelihood estimator
(NPMLE) to identify and explain heterogeneity in the meta-analyses;

. to compare methodological aspects, results provided, strengths and limitations of
these approaches to the common approaches of simple conventional methods, and
. to propose appropriate approaches to apply to the meta-analyses related to cluster

randomized trials.

1.3  Sequences of further topics

This study covers 8 topics. Literature review is presented in topics two, three and five. Topic
2 describes general concepts of design and analysis in cluster randomized trials. Topic 3
presents a review of meta-analyses involving cluster randomized trials and discusses current
practice in the meta-analyses. Topic 4 introduces examples of three published meta-analyses
in binary outcome to be used in the study. Topic § discusses important elements in the
analytical approach of meta-analysis. This topic also discusses simple conventional
approaches. Methodology, results and discussion are presented together in topics six, seven
and eight. Topic 6 discusses the GLM and illustrates its application to the three examples.
Topic 7 discusses the GLMM and illustrates its application to the three examples. Topic 8
presents a comparison of the two approaches in terms of their methodology issues, results
provided and interpretation of results. The topic also discusses strengths and limitations of
individual approaches. Finally, the topic presents the proposed approaches to be used in
meta-analyses related to cluster randomized trials under the discussed situations in the topic.
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Topic 2: General concepts of design and analysis in cluster randomized trials

2.1 Introduction

Most randomized controlled trials involve treatment allocation to individual subjects.
However, there are many situations in health care areas where such allocation is not desirable
or even possible. Instead, clusters or groups of individuals may be randomized to a treatment
or control group. Such trials are often called cluster-randomized trials. This term wiil be used
throughout this study. Other terms are group-randomized trials, community intervention
trials, etc. The units of treatment allocation of cluster-randomized trials vary. They range
from relatively small clusters like households or families to relatively large ones like entire
villages or, communities (18). '

This topic describes the general concepts of a cluster randomized trial. Section 2.2
discusses the rationale for performing cluster randomization. Section 2.3 presents variation in
cluster randomized trials and clustering effect. Section 2.4 describes the common alternative
designs of cluster randomized trials applied to health research. Section 2.5 discusses the
analysis issue. Section 2.6 discusses the problems found in published papers on cluster
randomized trials.

2.2  Rationale for cluster randomized trials

Over the past two decades cluster-randomized trials have been markedly increasingly used to
study effectiveness of health intervention. There are reasons for using clusters as the units of
treatment allocation (19-24).

The first reason is specific to the circumstance of infectious disease (24). Some
treatments are aimed primarily at disease transmission to the other persons come in contact
with the subjects receiving the treatments. The treatment effect is also expected on decreasing
the susceptibility of subjects receiving such treatment. An example is the randomized
community trial of improved control sexually-transmitted diseases (STDs) conducted for
AIDS prevention in Uganda (25). The STDs treatment was expected to block onward HIV-
infected subjects from passing the infection to their partners. This situation cannot be
answered by individually randomized trial where the effect of treatment is measured from the
subjects who received treatment. Alternatively, a cluster-randomized trial allows the overall
treatment effect on both infectious and susceptibility to be captured at community level (24).

The second reason is that some treatments may be maximized if the treatments are
received by a large proportion of the population (24). An example is the trial on providing
impregnated bednets for malaria control in Africa (26). The investigators expected that, with
the high usage of nets in a village, the overall level of transmission of malaria might be
reduced through the mass killing of the mosquito vectors, which in turn would also protect
non-net users from infection.

The third reason is when treatment implementation cannot-be directed to individual
subjects. An example is a community trial on the impact of improved sexually-transmitted
diseases (STD) on HIV epidemic in rural Tanzania (27). The STD treatment intervention
involves the provision of improved services at health facilities. The services offered by each
facility are available to the entire population. This necessitates the randomization of whole
communities, rather than individuals.

Other reasons include administrative convenience, political aspect and avoiding
treatment contamination (19, 20). In some instances it may not be convenient from an
administrative or political viewpoint to allocate individuals of the same cluster to different
intervention groups (23). An example is 8 WHO trial carried out to evaluate whether a new
programme of antenatal care, which only includes item of care of proven effectiveness, has
similar outcomes to current standard care. Fifty-three antenatal care clinics were randomized
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to each of the two intervention groups rather than randomizing women within the same clinic
to different intervention groups.

The need to avoid treatment contamination s also a common reason for choosing the
cluster randomization design (20, 21). The WHO antenatal care trial is one example of this. If
the women within the same clinic were randomly allocated to different intervention groups,
the women allocated to the new intervention group may adopt the antenatal care strategies of
the standard group. This is because the women of the intervention group have less antenatal
care visits than the standard group.

2.3 Variation and clustering effect

In the individually randomized trial, different treatments are randomly allocated to individual
subjects. Analysis is also performed for the individual subjects. These individual subjects are
then assumed to be independent in terms of their responses. Therefore, variation of the
treatment outcome comes from variation among the individual subjects due to treatment
group.

In contrast, for the cluster randomized trial, the unit of randomization is the cluster of
individual subjects, which is a higher aggregated level than that of the individual randomized
trial. The responses of the subjects within the same cluster may be more similar than those of
other clusters. For example, children in the same class receive the same teaching pattern
from the same teacher. They also share the same discussion experience in their class. This
combination increases the likelihood that the children will respond similarly in trial where
classes are the randomization units. In such a situation, the outcome of interest is measured
for individual subjects nested within individual clusters. So, variation of the outcome comes
from two sources; within a cluster and between clusters.

The intra-cluster correlation coefficient (ICC;p) is a measure of within-cluster

similarity or homogeneity. It is defined (28) as the proportion of the total variation of the
response accounting for differences among the clusters. The ICC is expressed as

o

p=—Sb @1
B+l )
where of is the between-cluster variance and o2, is the within-cluster variance.

By applying the analysis of variance, of and & can be estimated (29) by
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where MSB is the between-cluster mean square and MSW is the within-cluster mean square,
Ny is the average cluster size obtained by
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where J is the number of clusters, N is the total number of individuals, and n;is the number of
individuals in the j™ cluster. Equation (2.2) and (2.3) can substitute into equation (2.1) and

thenp is given by
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Commonly, the ICC is a positive value with maximum at 1. Negative values of the
ICC are usually set to zero because values of ICC less than zero are generally considered

(2.5)
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implausible in the context of cluster randomized trial(19). The values of ICC tend to be larger
in smaller clusters but with a non-linear relationship (30, 31).
The design effect (Deff) of cluster randomization is defined (28) as a ratio of the

variance of the estimated outcome under the cluster randomization (o) to the variance of

that under simple random sampling (céps) with the same number of individuals (or sample

size),
o2
Deff = =& (2.6).
OGRS
The design effect is sometimes called clustering effect in cluster randomized trials. It
can be interpreted as the multiplying factor of the number of subjects in cluster randomized
trials, compared with the number of subjects in individually randomized trials required to get
the same power. The sample size obtained by the standard method should be multiplied by
the design effect to compensate for clustering effect in a cluster randomized trial. The
analysis of cluster randomized trial also needs to account for the design effect so that the
inference will be identified as valid (23, 32). The design effect can also be obtained by,
Deff = 1+ (n-1) p 27
where n is the average cluster size for balanced cluster sizes trials (28). But when the trials
vary in cluster size, n is recommended to replace with ny from the formula (2.4) (23).

The design effect can be large for large clusters even with small ICC. It can be unity
if there is no between-cluster variation (o= 0) because p is zero.

2.4  Strategies for randomization in cluster trials

When performing cluster randomized trials, the decision to apply an appropriate
randomization design depends on a number of factors, e.g. number of potential clusters in the
study and baseline characteristics. In the completely randomized design, assigning different
treatments to clusters is done without pre-matching or stratification by potential factors
related to outcome. It is most appropriate when there are many clusters available to be
randomized(33). When there are small numbers of clusters, it may vield an unbalance
between treatment groups with respect to baseline characteristics. The completely
randomized design is not recommended under these circumstances (23, 29).

An example is a randomized control community trial done to evaluate the impact of
vitamin A supplementation on child mortality in northern Sumatra, Indonesia (34). 450
villages were randomly assigned to either participate in a vitamin A supplementation scheme
(n=229) or serve for one year as a control {(n=221). Child mortality rate at one year of follow-
up was the measure of the effect of vitamin A supplementation.

Matched-pair randomization is a design where clusters are matched in pairs according
to baseline characteristics such as cluster size, demographic characteristics or other potential
factors associated with the outcome. From every pair, one cluster is then assigned to each
treatment group at random. The main advantage of this design is that it gives very close
balancing of important baseline risk factors (20). However, there are also disadvantages(19,
20, 23, 29, 35-38). When there are few clusters, it may be difficult to get close matches on all
potential risk factors. In addition when a particular cluster of any pair drops out, the pair has
to be deleted from the study. This will lead to a decrease in the study degrees of freedom.
Furthermore, one cannot estimate all the variance components since the between-cluster
variation cannot usually be estimated within pairs. This is because each cluster within a pair
receives a different treatment. In addition, between-clusters variation within the same
treatment group cannot be estimated due to confounding with differences between pairs.
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An example is a randomized community trial conducted to assess impact of improved
treatment of sexually-transmitted disease (STD) on HIV infection in rural Tranzania (39).
Twelve large communities were matched on area, type and prior STD rate into six pairs. One
of each pair is then randomized to the intervention group. Two years of HIV incidence is the
outcome measure.

Stratification is an extension of the matched-pair design, in which several clusters
within each stratum are randomly assigned to each treatment group. This design should
reduce the probability of large imbalances on important prognostic factors (19, 20, 23).
Stratified design provides some advantages. Since there is more than one cluster within each
treatment-stratum combination, it is possible to estimate between-cluster variation. This is
because the clustenng effect can be separated from both the treatment effect and the stratum
effect. Stratification by cluster size is considered desirable not only to accomplish balancing
the number of individuals in each treatment group, but also the cluster size may be a marker
for within-cluster dynamics that is predictive for outcome. When a large number of clusters
relative to the number of confounding factors exist, it is easier to construct meaningful strata
under the stratified design as compared to the pair-matched design.

An example is a WHO trial to evaluate a new antenatal care programme (4). The trial
was done to evaluate whether a new programme of antenatal care, which only includes items
of care of proven effectiveness, has similar outcomes to the current standard care. Fifty-three
antenatal care clinics were randomized to each programme after stratification by country (4
different countries) and clinic size (small, medium and large). Stratification according to
country is expected to provide some contro! over confounding by country. Clinic size is an
additional stratification factor that is expected to be a marker for a range of baseline factors.
The main ocutcomes are: low birth weight, pre-eclampsia/eclampsia, severe postpartum
anemia and treated urinary-tract infection.

2.5 Analysis issues

As clusters are the units of randomization rather than individuals, the clustering effect must
be taken into account in the analysis. The simplest approach is to use the cluster as the unit of
analysis. Then, a summary statistic for all individuals within each cluster is the outcome
variable, e.g. hospital mean length of stay, area utilization rate, proportion of smokers.
Standard statistical methods can be used to compare the cluster responses between different
treatments, and thus if it is necessary, cluster-level baseline risk factors, such as cluster sizes
or urban/rural location, can be adjusted for. Obviously, it is appropriate to do cluster level
analyses when the inference of the trial focuses directly on the randomization unit as a whole
rather than on the individual subjects. However, one has to keep in mind that a large number
of clusters is needed. Otherwise, it may lack power of study (19).

Another appropriate approach is to use the individual as the unit of analysis, adjusting
for the dependency among individua! responses within the same cluster. To do valid
individual level analyses, a large number of clusters per treatment group are required to
adequately account for the clustering effect(19).

Substantial literature on basic approaches without considering covariates and
advanced approaches of modelling analysed at individua! subjects have been proposed to use
in the cluster randomized trials (23). Mixed effect models that account for the variability
between clusters have appeared frequently in the literature on cluster randomized trials. Most
of these are based on assumption of normal distribution of random effects. Furthermore,
Bayesian approaches as an extension to the hierarchical modelling are becoming increasingly
used for cluster randomized trials (40). This development took place because of some
deficiencies found in the former approaches based upon the normality assumption of the
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random effects. Another reason might be because of the availability of advances in
computational methods.

2.6 Problems in published papers of cluster randomized trials
Three papers have specifically reviewed the methodology of design and analysis aspects in
the published literature of the cluster randomized trials in areas of health care(23, 32, 33, 41).
The problems found seem to persist from 1979 to 1996. Most studies did not recognise the
clustering effect in the sample size estimation. Thus the sample size may not be big enough to
give reliable estimate of treatment effects. Studies are often designed in smal!l number of
clusters. Sometimes only one cluster is randomized to each of two or more treatment groups
(23, 41). Studies often provide the results at an individual level without adjusting for
clustering effect. This potentially leads to spurious statistical significance and too narrow
confidence interval of the treatment effect of interest. Few studies explicitly published
clustering effect information in their trials. This might possibly lead to difficulties to the
statistical considerations for future investigators in planning the total number of clusters to be
randomized.

These problems need to be considered when including cluster randomized trials from
the published literature to meta-analyses.
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Topic 3: Review of meta-analyses involving cluster randomized trials

3.1 Introduction

Meta-analysis of the trial results is now a common tool used in health care research. It could
yield more reliable conclusion of treatment effects than that obtained from individual trials
alone. There is now substantial literature to be found covering the statistical methodology
used in meta-analyses. Most of them relate to meta-analyses of trials, which randomize
individual subjects. Cluster randomized trials have received less research attention in the
literature on meta-analysis. Thus, to obtain empirical evidence of the current situation, a
review is conducted in published meta-analyses involving cluster randomized trials. The
objectives are to describe statistical approaches for handling heterogeneity and estimation of
treatment effects in the meta-analyses involving cluster randomized trials.

Section 3.2 describes the methods used for the review, including strategies to search
and identify trials from the published literature. The reviewing procedure for each paper is
also provided in this section. Section 3.3 describes results obtained from the review. Section
3.4 presents comprehension of the results and makes a conclusion from the review.

3.2 Methods
3.2.1 Study search and identification
Electronic search was performed for reports in English on meta-analyses involving cluster
randomization trials. We were aware of difficulty in searching the reports related to cluster
randomization trials. It was because using the keywords of ‘cluster randomization” might not
be able to identify some of the meta-analyses involving such trials. Therefore other keywords
related to ‘cluster randomization’ were also combined with the keywords of meta-analyses.
The search keywords were presented in Table 3.1. The following electronic databases were
used: Medline, Health Star, Embase, SCIsearch and the Cochrane Library. The SClIsearch
database was used to identify further references that cited the relevant papers. The search was
done from the first year of each electronic database to 2000.

Once a meta-analysis was identified, papers on the relevant cluster randomization
trials included were also requested.

Table 3.1 Keywords used for electronic databases searching
1 meta-analysis 14 (10) and (13)
2 randomized controlled trials 15 (10)and (4)
3 randomised controlled trials 16 trials
4 (Q)or(3) ' 17 intervention trials
5 (1)and (4) 18 (16)or (17)
6 cluster 19 (10) and (18)
7 group 20 cluster effect
8 community 21 design effect
9 field 22 inflation factor
10 (6) or (7) or (8) or (9) 23 intracluster correlation
11 randomization 24 clustering
12 randomisation 25 (14) or (15) or (19)
13 (1) or (12) 26 (1) and (25)
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3.2.2 Review process

Each cluster randomization trial was reviewed with respect to designs of randomization and
adjustment for clustering effect in the analysis. Each meta-analysis was then reviewed with
respect to number of trials included, particularly the number of cluster randomization trials,
types of intervention of interest, outcome measure, methods to obtain an overall treatment
effect and heterogeneity consideration regarding the inclusion of cluster randomization trials.
The interventions of interest were classified into three main types, educational, health care
and screening. The cducational intervention was referred to the interventions related to
health promotion or non-therapeutic treatments, e.g. mass media, group behavior therapy, etc.
The health care intervention was referred to the interventions related to therapeutic or
preventive treatments, e.g. routine antenatal care, vitamin A supplementation, etc. The
screening was referred to the interventions related to investigation of disease in general
people, e.g. memmographic screening, etc.

3.3  Results

The search identified 25 eligible meta-analysis reports published between January 1990 and
2000. Sixteen reports were from the Cochrane Library, and two were from the British
Medical Journal. Each of the remaining seven was from the American Journal of Public
Health, American Journal of Tropical Medicine and Hygiene, Bulletin of the World Health
Organization, International Journal of STD&AIDS, Journal of American Medical
Association, Journal of the National Cancer Institute Monographs and The Medical Journal
of Australia, respectively.

Table 3.2 presents types of intervention studied and trals included in each of the 25
meta-analyses. Health care intervention was the majority, which accounted for 64.0 per cent
(16/25) of the meta-analyses. A total of 89 cluster randomization trials and 297 individually
randomization trials were included in these 25 meta-analyses. A mean number of 15 trials
was found for individual meta-analyses ranging from 2 to 41. For the cluster randomization
trials included, a mean of 4 ranging from 1 to 17 was found. There were 15 meta-analyses
that included more than one cluster randomization trials. The randomized units of cluster
randomization trials within the same meta-analysis were mostly different. For example, in a
meta-analysis on mass media interventions to prevent smoking among children (42), the three
included cluster randomization trials had area, school and community as a randomized unit,
respectively. Moreover, eligibility criteria at both cluster and individual level of the trials
included in the same meta-analysis were quite different. These differences among the cluster
randomization trials might lead to extra sources of heterogeneity beyond those already
existed in meta-analysis including only individually randomization trials. Consequently, they
might raise more difficulties in methodologic issues.

From the 89 cluster randomization trials, 83 original papers_could be reviewed. In two
of the remaining six cluster randomization trials, the required information was extracted from
the meta-analyses in which they were included. One of them was an unpublished paper, and
the other was written in Russian. The remaining four cluster randomization trials could not be
accessed as they were referenced incorrectly. We attempted 1o search for these four trial
papers but did not succeed to access the correct papers. Consequently, a total of 85 cluster
randomization trials could be reviewed. References of the trials reviewed are presented in
Appendix 1. The following results were thus based on the accessible papers.

Twenty-two meta-analyses had a binary endpoint as the primary outcome. One meta-
analysis had a binary and a continuous endpoints as the co-primary outcomes. Fifteen meta-
analyses reported simple conventional methods of fixed effect model as methods of analysis.
They treated the cluster randomization trial results as individually randomization trial results.



20

Six meta-analyses did not incorporate the cluster randomization trial results in the
quantitative synthesis. They described the results of cluster randomization trials separately.
Three meta-analyses reported the synthesis methods that account for clustering effect. One
was unclear, as it did not report the synthesis method.

Details of randomized design and unit of analysis for each cluster randomization trials
included in each meta-analysis and the combining methods were presented in Table 3.3. Here
the last three columns were considered together. In the group of fifteen meta-analyses that
reported simple conventional methods in the quantitative synthesis, two meta-analyses(43,
44) likely provided reasonable evidence because the results of cluster randomization trials
included were analysed at individual unit adjusted for clustering effect. Nine of the fifteen
meta-analyses included cluster randomization trials with a mixture of different randomized
designs. They were completely randomized, matched-pair randomized and stratified
randomized. The cluster randomization trials included in the nine meta-analyses also had a
mixture of different units of analysis, some at cluster level and some at individual level.
These mixtures certainly raised additional heterogeneity in the meta-analyses and needed to
be considered in the synthesis procedures. However, none of these meta-analyses reported
any concern on the heterogeneity that might be due to cluster randomization trials.

For the six meta-analyses that did not incorporate the results of cluster randomization
trials into the quantitative synthesis, three included more than one cluster randomization
trials. The trials for each meta-analysis were mixed up with different randomized designs and
units of analysis. These meta-analyses probably the ones that used sensible methods because
the reviewers were aware of heterogeneity that might be due to cluster randomization trials.

Three meta-analyses that included cluster randomization trials with a mixture of
different randomized designs and units of analysis, attempted to adjust for clustering effect in
the quantitative synthesis. Details of adjustment for each meta-analysis were presented in
Table 3.4. The outcome measures of these three meta-analyses were binary data. The meta-
analyses had individual explanation for the clustering effect adjustment in the following three
paragraphs.

First was the meta-analysis evaluating the value of mammographic screening for
women under 50 years of age (45). It included six individually randomization trials and two
cluster randomization trials. For the two cluster randomization trials, one (46) used the design
of stratified randomization and individual level as the unit of analysis adjusted for clustering
effect. The other (47) used matched-pair design and also individual level as the unit of
analysis but ignored clustering effect. The applied technique of Mantel-Haenszel for
clustered binary data, proposed by Rao and Scott (48), was used in the sensitivity analysis.
The technique aimed to estimate an overall odds ratio of K 2 x 2 tables of independent
clustered data in binary outcome. By using the Rao and Scott’s method, each included trial of
the meta-analysis was taken fo represent an independent group of the clustered binary data.
The method required clustering effect of each treatment group for each trial to be adjusted for
in the analysis. Since there was less information on this process in the methodology part of
the meta-analysis, it was unclear exactly how the authors managed this issue. But they
reported that each of the two cluster randomization trial results was allowed for the same
degree of clustering effect of relative 90 per cent (=100(1/design effect)) in the synthesis
without any explanation on the adjustment. This might elevate the problem of inappropriate
adjustment. It was because only one cluster randomization trial (46) reported the estimate of
relative efficiency due to cluster sampling of 87 per cent. In addition, the six individually
randomization trials seemed to be treated as having one cluster in each arm of the trial. This
issue did not satisfy the requirement of the method that needed a large number of clusters in
each arm of each trial to provide valid results. Thus the Rao and Scott’s method would be
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inappropriate for estimating an overall odds ratio of any meta-analysis including a mixture of
individually and cluster randomization trials, which was the case of this meta-analysis.

Second was the metza-analysis assessing effect of vitamin A supplementation on child
mortality(1). All eight trials included were cluster randomized. Six of them used a
completely randomized design, one used matched-pair and the other reported unclear
information on the randomized design. The analyses were reported at cluster level in one trial
and at individual level in seven trals, of which three trials adjusted for clustering effect. The
meta-analysis reported the common method of DerSimonian&Laird (49), which was the
random effects model, used to estimate an overall odds ratio. Each pooled odds ratioc was
adjusted for clustering effect by increasing the variance with equal estimate of 30 per cent.
The report presented that the figure was determined from some included cluster
randomization trials that provided sufficient information on the clustering effect ranging from
10 to 44 per cent. In fact the cluster randomization trials were quite different in terms of types
of unit of treatment allocation like wards, household, clusters, villages, districts areas and
slums, and number of clusters of each trial. Thus it seemed to be unfair to account for
clustering effect with the same degree for individual pooled odds ratio. In addition, some
resuits of the cluster randomization trials (34, 50, 51) were already adjusted for clustering
effect, and one (52) had the result at cluster level. The approach of adjustment for clustering
effects used in this meta-analysis might be reasonable if the tdals included have quite similar
units of treatment allocation and number of clusters of each arm for each trial.

The third meta-analysis was on vitamin A supplementation on childhood pneumonia
mortality(53). This meta-analysis included five cluster randomization trials, four(34, 50-52)
of which overlapped with trials of former meta-analysis (1). Four of these five cluster
randomization trials used a completely randomized design and one used a matched-pair
design. Three of the five trials reported analyses performed at individual level, two of them
adjusted for clustering effect. The remaining two trials reported analyses done at cluster level.
The meta-analysis reported the fixed effect model of Mantei-Haenszel method used to pool
the results. Individual pooled results were adjusted for clustering effect by increasing the
variances of their odds ratios with different degrees. The estimates of the adjusted effects
were obtained from the meta-analysis studied by Beaton et al. (54), which was done in a
related topic to this meta-analysis. We did not review the Beaton et al.’s study (54) because it
could not be accessed from any electronic database searched by our study. However, Donner
et al.(55)mentioned that Beaton et al. (54) used the method of Rao and Scott (48) in their
meta-analysis with satisfaction to the method assumption. The adjustment for different
degrees of clustering effects seemed to be a reasonable procedure because the unit of
randomization for each cluster randomization trial was quite different. But there were two
trials(52, 53) that had the results analysed at cluster level and whether they needed to be
adjusted for clustering effects. Therefore, if excluding the two trials, the adjustment approach
shown in this meta-analysis seemed to be justified. 2

3.4 Comprehension of review results

In principle, when doing a meta-analysis including individually randomization trial resulits, an
overall treatment effect could be estimated in a straightforward way, if the valid estimated
treatment effects and their variances were provided. This concept could also be further
applied to the meta-analyses that included results from cluster randomization trials with the
same randomized designs and analyzed at individual level adjusted for clustering effect or at
cluster level. Furthermore, even if the cluster randomization trials results were analyzed at
individual level not adjusted for clustering effect, if all information on appropriate clustering
effects was available, the results could be pooled. In practice this was unlikely to happen as
seen in this review,
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One simple approach for adjustment of clustering effect in binary cutcome was the
approach of Mantel-Haenszel proposed for clustered datz by Rao and Scott (48). This
approach couid be applied to the meta-analysis of cluster randomization trials comparing two
treatment groups with a completely randomized design(56). Requirements of the approach
that relate to the results of cluster randomization trials were the results analysed at individual
level. In addition, total sample size, count number of treatment outcome and clustering effect
of each treatment group were needed. Furthermore, the method required a large number of
clusters for each treatment group of each of individual cluster randomization trials. It might
be impossible, however, to use this approach in real situations, because all the data required
estimating an overall odds ratio by the approach were unlikely to be available.

The results show that 44.0 per cent (11/25) of the meta-analyses reported the methods
considering the clustering effect in the synthesis. This figure was quite low. In addition, the
meta-analyses that reported estimation approaches adjusted for clusterng effect might
provide imprecise estimates of overall treatment effects. Various issues needed to be
considered.

It was found that 15 meta-analyses included more than one cluster randomization
trials. The trials included in each of the meta-analyses had various randomizied designs as
shown in Table 3. This was an additional source of heterogeneity and might raise more
difficuities in methodologic issues beyond those already existed in meta-analysis including
only individually randomization trials. The conventional approaches might be inappropriately
used for estimating overall treatment effects from these trial results. However this issue was
not considered properly in any meta-analysis reviewed and might lead to inappropriate use of
the synthesis procedures. This difficulty would possibly produce imprecise result of the
overall treatment effect.

Invalid results obtained from cluster randomization trials, which were the results
without adjusting for clustering effect, were crucial and lead to a difficulty in estimating the
effects in the meta-analysis including the trial results, especially when the trials did not report
clustering effect information.

The figure of 56.8 per cent (42/74) of the cluster randomization trial results that
adjusted for clustering effect was found in this review. It was interesting that the results
reflected the persisting figure on analysis of cluster randomization trials, compared to the
reviews by Donner A, et al. in 1990 on cluster randomized non-therapeutic intervention trials
from 1979-1989(41), and later by Simpson JM, et al. in 1995 on cluster randomized primary
prevention trials from 1990-1993 (32). They found that 50.0 per cent (8/16) and 57.1 per cent
(12/21) respectively, took account of clustering effect in the analyses. One reason might be
that the cluster randomization trials reviewed in this study were performed around the same
period as those of the previous reviews. In addition, three cluster randomization trials(34, 47,
57) in the previous reviews were included in this study.

Recently, some authors(58-60) have proposed to report design effects and intra cluster
cotrelation when publishing cluster randomization trials. Thus, hopefully, the difficulty
situation as mentioned above would be corrected in the near future.

There were 52 per cent (13/25) of the meta-analyses used inappropriate methods that
ignored clustering effect to combine invalid results of cluster randomization trials. Here, we
could speculate about the reasons. First, as 9 out of 13 meta-analyses were obtained from the
Cochrane library. The Cochrane collaboration lacked the appropriate software to analyse the
cluster randomization trial results during the study period. Some authors were aware of this
constraint and warned readers that the confidence intervals provided might be too narrow.
Second, there was generally neither guideline nor proposal methods to combine cluster
randomization trial results. Finally, some meta-analysts might not know that variation of the
estimated outcome obtained from the cluster randomization trials differed from that of the
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individually randomization trials and that would have an impact on the combined resuits.
However, recently some approaches involving binary outcome variable have been proposed
by Donner et al(55, 56).

The results show three meta-analyses(1, 45, 53) involving binary endpoints attempted
to take clustering effect into account in the analysis. They were done to solve the problem of
invalid results. The invalid results were due to not adjust for clustering effect in the analysis
at individual level. The synthesis attempted to esttmate the clustering effects, some from
internal available clustering effect information and some from external clustering effects.
Some unclear issues were still found. First, no rationale for the methods used to estimate
clustering effects was seen. Second, some cluster randomization trials providing results with
appropriate analysis seemed to be forced to adjust for clustering effect. Third, complex
situations, different randomized designs, heterogeneity in units of randomization and
variation of the randomization units, and different levels of units of analysis among the
cluster randomization trials included were found but not taken into account in the three meta-
analyses.

Some limitations of the review are considered. One meta-analysis (54) satisfied
inclusion criteria was not reviewed because we could not retrieved it from the searched
electronic database. It is, however, mentioned in Donner at al.(55) that the Rao and Scott’s
method was used in the meta-analysis. The method is not different from what we found in the
review. In addition, four incorrect references of cluster randomization trials could not be
accessed. With these limitations we believe the finding of this review could reflect the recent
practice of meta-analyses involving cluster randomization.

From the difficulties found in the reviewed meta-analysis involving cluster
randomization trials, some suggestions are introduced. The first suggestion focuses on some
specific issues in reporting cluster randomization trials that relate to the information needed
in meta-analysis. Number of clusters assigned to each treatment group is required in the
report. This is because when the trial has only one cluster for each treatment arm, variation
between clusters, even exists, is confounded by the treatment effect and cannot be measured
from the trial(60). Consequently, including this trial in a meta-analysis, there is a need to
adjust for clustering effect from similar available source. Unit of analysis must be clearly
stated whether at cluster or individual level. If analysis is performed at individual level, the
degree of clustering effects for each treatment group that is adjusted for in the analysis must
be reported. This information is benefit not only to the meta-analysis where the trial is
included, but also to any future plan for performing a cluster randomization trial in related
field. There, however, have been more complete suggestion for reporting the trials provided
by Donner and Klar (61), and Elbourne and Campbell (59).

The second suggestion focuses on the synthesis approach. If the number of cluster
randomization trials included is relatively small and diverse in randomized designs and units,
it might be reasonable to do qualitative synthesis, ie. explaining individual cluster
randomization trials separately as was done in some reviewed meta-analyses (42, 62-66).
Alternatively, if number of the trials is large, subgroup analyses, which are meta-analyses on
subgroups of the studies, might be sensible when the categories of interest factors are quite
small, like three types of randomized designs: completely randomized, matched pair and
stratified randomized. Some approaches involving binary outcome vanable have been
proposed by Donner et al (55, 56). They are recommended to be used for the included trials
involve a completely randomized design. Advantages and disadvantages of each approach are
also provided. In addition, recommendations of application of the approaches to combine:
results from different designs under limitation issues have also been discussed in the
literature (55).
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In conclusion, attempts to work on some difficulties due to involving cluster
randomization trials in meta-analysis were seen. Some suggestions on the methods for meta-
analyses of cluster randomization trials measured in a binary outcome have been proposed
(55, 56). The problem of heterogeneity results, from complex situations on various
randomized designs and units, different eligibility criteria at cluster and individual level, and
unit of analysis that might be beyond the heterogeneity results obtained from individually
randomization trials, have been found and still needed further methodologic investigation.
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Table 3.2 Numbers of individually and cluster randomization trials included for

individual meta-analyses reviewed

Meta-analysis | Type of Intervention Number of trials included
reference individually randomization cluster randomization

{67) Health Care 1 (ay
62) Health Care 1 it
(68) Health Care 6 ?
(69 Health Care 6 . N
(43) Screening 7 1!
(44) Health Care 13 1?
(63) Health Care 14 1
an Health Care 16 1
[td)) Health Care 2% 1*
{64) Educational 39 1’
(45) Screening 6 S
{42) Educational 2 3
(72) Educational 13 v
{65) Edycational 34 i
(73) Educational 38 3haaedl
{14 Health Care 10 4=
(15 Educational 15 L
(76) Health Care 23 432
N Health Care - i
[eXM Health Care - se-»
(18) Health Care 13 s
{(66) Educational 2 gl
(79) Health Carc 3. PO yee
(m Health Care - _ S
{80) Health Care 1 - 17 #5256 300

Total 297 89 (5)

Numbers in the parentheses were papers on cluster randomization trials, for whick original papers cannot be retrieved.
Superscrift is number of references, presented in Appendix

* Paper iz in Russian, its detail was extracted from the meta-analysis

b Missing papers as incorrectly referenced
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randomization design and analysis level, and combining method of meta-analysis

. Meta-analysis No. CRT® Randornization Analysis Jevel Combining
reference included design method
{36) 1 1C 11U T
33) 1 1C 1TU T
(5) 1 18 1IA T
(32) 1 Iu 1U T
“4) 1 I8 11IA T*
(35) 1 1S 1C T
a7 3 ic, IM1U 210,10 T
(38) 3 1§,1U 1IA 2 U T
39 4 1C,3 M 2C. 210 T
(40) 4 1C,. 1M, 2U 1C,1IA LIU, 11U T
(41) 4 2C, 18, 1U 11A,31U T
(16) 5 4C 1M 1C31A 11U T
{43) 5 3CLIM LS 2IA,31U0 T
(44) 6 1C,2M, 38 1C, 51U T
{45) 14 4C,6M 485 9C, 51U T
(26) 1 1M 1C D*
27 1 1C 1C D*
(28) 3 18 1IA D*
3) 3 2C, 1M 3 1A D#
29 3 icC 2C, 11A D+
30) 6 5C, 1M 1C,21A,3U D*
6) -2 1M 18 1IA,11U A
(42) 5 4C, 1M 2C,21IA 11U A
{10) 8 6C, 1M, 1U 1C,31A, 410 A
(34) 1 1M 1C 1]
Total 85
izati Combining method

C completely randomized A wecount for clustering effect

M matched-pair D describe CRT results separately

8 stratified randomized T treated CRT resuits as if of IRT and use fixed offect madels

u unclear method

Analysis jevel
cluster . Reasonable method
individual adjusted for clustering effoct @ Cluster randomized trial

C
1A
11 individual unadjusted for clustering effect
U unclesr
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Design of randomization and analyses level of the individual included CRT® of the 3

meta-analyses managing clustering effect in the combtnation

A Meta-analysis on mamographic screening trials (45)

Number of CRTs® reviewed

Management of clustering effect in
the combination

Randomized design Analyses level
Stratified 1 Adjusted at individual Proposed method of Mantel-Haenszel by
level | Rao & Scott ° for clustered binary data is
Matched-pair 1 Unadjusted at individual used in a sensitivity analysis to examine
level the clustering effect of the fwo including
CRTs®
Total 2

Total

B. Meta-analysis on vitamin A supplementation (1)

Number of CRTs® reviewed

Management of clustering effect in
the combination

Randomized design Analysis level
Completely 6 | Adjusted at individual level Dersimonian&Laird method'' adjusted
randomized for clustering effect by increasing
Unadjusted at individual level variance of each pooled log-odds ratio
Matched-pair 1 with a fixed estimate of 30 %.
Cluster level The estimate is determined from some
Unclear 1 included CRTs® which provided
sufficient clustering effect.
Total 8 Total

C. Meta-analysis on vitamin A supplementation (53)

Management of clustering effect in
the combination

Number of CRTs® reviewed
Randomized design Analysis level
Completely 4 | Adjusted at individual level
randomized
Unadjusted at individual level
Matched-pair 1
Cluster level
Total 3 Total

Mantel-Haensze! method adjusted for
clustering effect for each pooled result
differently.

The adjustett effects are estimated from
the external CRT*® study done in a similar
topic to the including CRTs®

@ Cluster randomization trial
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Topic 4: Examples of published meta analyses involving cluster randomized trials in
binary outcome

Three published meta analyses involving cluster randomized trials in different situations are
used as examples in this study. The first is a meta analysis to evaluate the effect of vitamin A
supplementation on child mortality (1). All eight trials included are cluster randomized trials.
The second meta analysis investigates the effect of mammographic screening on breast
cancer mortality in women under 50 years(2, 81). It includes eight trials. Five of the trials
included are cluster randomized trials. The third meta analysis examines effects of multiple
risk factor interventions on primary intervention of coronary heart disease(3). This meta-
analysis includes fourteen trials. Five of the trials randomly allocate treatments to groups or
clusters of subjects.

4.1 Meta-analysis of vitamin A supplementation trials

This meta-analysis(1) includes eight community-based trials. They were performed in
developing countries to examine the relationship of vitamin A supplementation and mortality
in children aged 6 to 72 months, which is in a wide age range. None of the trials assigned
individual children to treatment groups. The units of treatment allocation vary between trials
The treatments are vitamin A supplementation and control group. The control groups also
vary from trial to trial. Detail of treatments for individual trials are presented in the original
meta-analysis(1). Here, some design characteristics and summary statistics of the outcome
are shown in table 4.1. Five of the eight trials provide mean follow- up periods of the children
for 12 months. One trial observed the children for a mean period of 42 months. Each trial has
similar sample sizes for each treatment group. The trial sizes of children studied ranged from
3,428 to 28,740 with a mean of 12,399

Child mortality is the outcome in each trial. Details like number of child deaths and
children assigned to each treatment group of individual trials are also presented in table 4.1.
The observed odds ratio range from 0.20 to 1.04. The meta-analysis reports DerSimonian and
Laird pooled overall odds ratio of 0.70 (95 per cent CI 0.58 to 0.85).

Data available for reanalysing this meta-analysis are the number of child deaths, total
number of children assigned and the mean foliow-up period in months for each trial. Since
the trials have different mean follow-up periods, reanalysis in the next four chapters is
performed using relative risk adjusted for mean follow-up period. Details of the calculation is
described in topic 5. The same procedure is done for the next two examples.

4.2  Meta-analysis of mammographic screening trials
The meta-analysis(2) is performed to evaluate the effect of mammographic screening on
reduction of breast cancer mortality in women aged less than 50 years.

The meta analysis includes 8 identified trials perfomed on women from various
western countries. The treatments are mammographic screening and a control group. Four of
the trials included randomly assigned treatments to clusters of women. The clusters consist of
various types such as area, practice, birth date and birth year. The remaining four trials had
randomly assigned treatments to individual women. One trial presents 18 per cent of the
subjects as cluster randomized by birth date, and the other 82 per cent as individually
assigned to receive treatments. Because individual randomization occurred in most of the
women studied, the trial is classified here as an individully randomized trial. The trials are
also different in other design characteristics, like the population studied, contamination rates
(unlikely up to 51%), and mean follow-up periods. The mean follow-up periods range from
10 to 18 years. This information is extracted from another paper (81) that included the same
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eight trials. In addition, radiation dose per breast and blinding process are different among
tnials. Some design characteristics are presented in table 4.2.

The primary outcome is breast cancer mortality. Details of number of breast cancer
deaths and total number of women in each treatment group are also shown in the table. Two
trials, trial 4 and 6, show high imbalance of women studied for each treatment group. The
trial sizes range from 25,941 to 89,835 with a2 mean of 57,044. The observed relative risks
range from 0.55 to 1.08.

The meta-analysis reports two fixed effect pooled relative risk estimates. The first is
1.04 (95 per cent CI 0.84 to 1.27) for the two trials, trial 2 and 3, with adequate
randomization methods and baseline comparability. The second pooled relative risk is 0.75
(95 per cent CI 0.67 to 0.83) for the other six trials that had not been adequately randomized
and had more favorable outcomes for screening than those two trials. Their results were
homogeneous (p=0.23 for test of heterogeneity). This estimate is significantly different from
that for the two adequately randomized trials (z=2.60, p=0.005).

Data available for reanalysing this meta-analysis are the estimated relative risk that
are recalculated with adjustment for mean follow-up periods in years, and treatment
allocation, called randomization design in this thesis.

4.3  Meta-analysis of multiple risk factor interventions trials

The meta analysis (3) was done to assess the effectiveness of multiple nsk factor
interventions to reduce cardiovascular risk factors from coronary heart disease. Study
subjects are adults aged at least 40 years and having no clinical evidence of established
cardiovascular disease.

A total of 18 trials are included, of which thirteen randomly assigned interventions to
individual subjects. The other five trials assigned interventions to different groups of
individuals, such as families, households, worksites and factories. The interventions included
counselling or educational approaches with or without pharmacological interventions aimed
to reduce more than one cardiovascular risk factor.

QOutcome measures were total mortality, coronary heart disease(CHD)} mortality, net
change in blood pressure, smoking and total blood cholesterol. Some measures were not
available in some trials. Hence, various number of trials could be analysed for individual
outcome measures. In this thesis reanalysis is performed only for smoking prevalence as it is
the outcome that could be analysed from the biggest number of trials, which is 14 trials.
Details of some trial designs and the results of individual trials are presented in table 4.3.

Duration of the interventions vary between trials and range from 1 to 11.5 years. One
trial, trial 4, shows a very remarkable imbalanced number of subjects between intervention
and control group; 16,908 for intervention and 1,902 for the control. The trial sizes range
from 335 to 18,810 with a mean of 3674. The observed odds ratio for individual trials range
from 0.57 to 1.12. The meta-analysis reports an overall odds reduction of 16 per cent (95 per
cent CI 3 to 27 per cents) using a random effects model.

The reanalysis of this meta-analysis is based on the recalculated relative risk adjusted
for duration of the interventions, to adjust for varing.
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Table 4.1* Design characteristics and summary statistics of outcome for individual trials
Trial Location Treatment unit, | Follow up No.deaths Odds Ratio
Published years No. Period, Total (95per cent CI)
{months} | Vitamin A Control

1 Aceh, Indonesia Village, 450 12 101 130 0.73
1986 12,991 12209 | {0.56 10 0.95)

2 Java, Indonesia Area, 2 12 186 250 0.69
1988 5,775 5,445 (0.57 to 0.84)

3 Hyderabad, India Village, 84 12 39 41 1.0
1990 7,691 8,084 (0.64 to 1.55)

4 Tami! Nadu, India | Cluster, 206 12 37 80 0.45
1990 7,764 7.655 {0.31 t0 0.67)

5 Bombay, India Shum, 2 42 7 32 0.20
1991 1,784 1,644 (0.09 10 0.45)

6 Jumla, Nepal District, 16 5 138 167 0.73
1991 3,786 3411 {0.58 10 0.93)

7 Sarlahi, Nepal, Ward, 261 12 is2 210 0.70
1991 14 487 14,143 {0.57 10 0.87)

8 Northern, Sudan Household, 18 123 117 1.04
1992 16,789 14 446 14,294 {0.8% to 1.34)

* data is modified from table 4 in Fawzi, 1993(1)

Table 4.2* Design characteristics and summary statistics of outcome for individual trials
Trial Location Treatment Follow up No.death Relative nisk
Published allocation Period, Total (95 per cent CI
years (vears) Screen Caontrol

1 New York Age-matched mandom 18,0 153 196 0.79

1988 30,131 30,565 (0.64 to 0.98)
2 Malmo Cluster by birth date 10.0 63 66 0.96

1988 21,088 21,195 (0.68 to 1.35)
3 Canadian | Individual 10.5 120 111 1.08

1997 44,925 44,910 (0.84 to 1.40)
4 Cluster by area 13.0 126 104 0.58

1995 38,589 18,582 (04516 0.76) -
5 Ostergotland | Cluster by area 13.0 135 173 0.76

1995 38,491 37,403 (0.61 t00.95)
6 Stockholm Cluster by birth date 11.4 66 45 0.73

1997 49,318 19,943 {0.50 to 1.06)
7 Goteborg 18%cluster by birth date 10.0 18 40 0.55

1997 82% individual 11,724 14,217 {0.31 10 0.95)
8 | Edinburgh Cluster by practice 14.0 156 167 0.87

1999 22,926 21,342 (0.70 10 1.08)

* data is modified from table 2 of Gotzsche, et al in 2000¢2) and from table 2 of Ringash in 2001(81)
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Table 4.3* Design characteristics and summary statistics of outcome for individual trials
No. Trial, Treatment Interven- Smoking prevalence (Odds Ratio
Published years unit tion period Total (95 per cent CI)
(years) [ Intervention | Control
1 MRFIT Study, Individual 6.0 1,847 2,554 0.57
1982 men 5,754 5,638 (0.53 to 0.62)
2 Gothenberg | Individual 11.8 691 699 0.89
Study, 1986 men 1,473 1,404 (0.77t0 1.03)
3 Oslo Study, Individuals 5.0 428 496 0.65
1986 604 628 {0.50100.84
4 w H O | Factories 6.0 7,910 897 .93
Factories, 1989 16,908 1,902 (0.90 to 1.08)
5 Abingdon, Individual 1.0 46 42 1.12
1990 adults 168 167 {0.69 101.82)
6 Tromso men, Ingividual 6.0 247 284 0.79
1991 men 525 535 0.62 to 1.00
7 Tromso wives, Individual 6.0 186 178 0.93
1991 | women 422 387 (0.70t0 1.22)
8 Family Heart Families 1.0 337 500 0.79
-men, 1994 1,767 2,174 (0.68 10 0.92)
b Family Heart Households 1.0 215 301 0.79
-women, 1994 1,217 1,402 {0.65 10 0.95)
10 O X CHE C K | Houscholds 3.0 544 506 0.91
Study,1994 2,205 1,216 (0.79 10 1.05)
11 | Swedish RIS, Individual 3.0 55 70 0.74
1994 men 253 255 (0.49 to 1.10)
12 | CELL Study, Individual 1.0 139 148 0.99
1995 adults 292 310 (0.72to 1.37)
13 Finnish men, Volunteer 5.0 125 131 0.95
1995 men 575 580 {0.72 10 1.26)
14 Take heart, Worksites 1.5 190 166 1.00
1995 1,057 920 {0.7910 1.25)

* data is modified from the table of outcome: Smoking prevalence of Ebrahim et al. in 2001 3)
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Topic 5: Meta-analysis: some essential issues in quantitative synthesis and simple
conventional approaches

5.1 Introduction

Meta-analysis is well accepted as an essential tool used to evaluate health care. One of the
main aims of meta-analysis is to produce a more accurate estimate of the treatment effect of
interest than the estimate obtained by possibly using a single trial. As different trials are
conducted using different populations, different designs and a2 whole range of other trial-
specific factors, it has been suggested that pooling them would yield an estimate that has
wider generalizability than any single trial. In addition, by performing a meta-analysis, it may
be possible to explain the differences between results from individual trials (82).

Once meta-analysts have finished with their critical appraisal of the primary trials,
they will be involved in the statistical analysis. This topic provides some essential elements
of the analysis and also describes the estimation of simple conventiona! approaches. Section
5.2 discusses the quantification of treatment effects required from individual trials and
scaling of the treatment effects. Section 5.3 presents a discussion on heterogeneity. Section
5.4 discusses publication bias. Section 5.5 discusses modelling of variation and simple
conventional approaches of the models. It also discusses some extension methods used to
overcome the problem of a constant variance to measure heterogeneity between trials.

8.2 Quantitative requirement and scaling of treatment effects

To obtain a numerical conclusion from & meta-analysis, the same measurement scale of
observed treatment effects with their variances from individual trials is needed. However, it is
hardly possible to obtain such information from published trials(15). The trials may present
their treatment effect in different ways. An example is found in the meta analysis of 6 studies
performed to investigate the effect of screening for diseases on the levels of psychological
morbidity (Chapter2;pp29-63 in(17)). The level of long-term anxiety is considered as the
outcome measure of the screening programmes. The difference of mean change between
treatment and control groups is the observed treatment effect. However, the meta analysis
presents only 2 studies measuring the treatment effects on this scale. The other 4 studies
present means of each treatment group at baseline and after a follow-up period. In addition,
some information, such as the variance, may not be available. Other information available,
like p value, may be used to obtain the missing information. However, the original authors of
the trials are usually requested to provide the necessary information(15).

In medical research, effect of treatment is often measured in binary outcomes, such as
dead/alive and response/non-response. Risk difference (often called absolute risk reduction),
relative risk (risk ratio) and odds ratio are common measures of such effect. The risk
difference is more common in clinical trials. This measure is easily understood and
interpreted. It is also usually used to estimate sample size. Nevertheless, the risk difference is
not a common one in meta-analysis. A discussion on this issue is presented in the following
paragraph.

It is still a debatable issue as to which measures should be used in meta-analyses(10).
Even any measure can be used, the absolute risk is likely to yield severe heterogeneity of
treatment effects across trials(10, 15). This is because the absolute risk is based on the
underlying risk of the study subjects of individual trials(11, 15). Relative measure is more
common in meta-analysis. However, between the two relative measures of odds and risk
ratios, the odds ratio is more common than the risk ratio or relative risk. This is because the
odds ratio is the measure of most statistical methods available in meta-analyses(15).
Eventually, some literature showing that both odds ratio and relative risk are equally likely to
present less heterogeneity of treatment effects across trials(10).
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The treatment effect is frequently measured as a continuous outcome in medical
research. Examples are the change of blood pressure in hypertension patients and body mass
index in malnourished children. Mean difference is a common measure for continuous
outcome. However, there may be different trials that measure effect of the same treament but
in a different scale. For example, some trials may measure birth weight in units of pound
while others may measure it in units of gram. Standardized difference, sometimes called
effect size, is always suggested for comparing such trials in meta-analysis. The standardized
difference is calculated from a ratio of means difference to its standard deviation.

This study involves examples of three published meta-analyses of trials that measure
treatment effect in binary outcome with different follow-up periods as presented in Topic 4.
Although the relative risk is used as a measure of treatment effect, the natural logarithm
tranformation of relative risk is used for the purpose of combining via meta-analysis(11). A
formal description of the calculations of a relative risk, log-relative risk and variance of log-
relative risk from data of individual trials are presented in table 5.1.

Table 5.1 Summary statistics of I individual trials for two treatments comparison in binary
outcome with different mean follow-up periods in a meta-analysis
Trial Mean Groups Frequencies of Total Event rate Relati Log-RR Var{Log
evernt # R 8) -RR]
follaw-up ve risk Var(6)
g o (RR)
1 T Treatment Ay M, Pi= A MTy | B/Q Log (P/Q; ) 1.1
A, By
B, N, Q=B Ny
2 T Treatment A My Pr=A M Ty | P2fQ Log(f/Q;) | L. +,Bl_
. A; B
Conteo! & N | QBT
1 T Treatment A M P=AMT | R/Q Log(R/Q) | 1 1
Ay B
Control
° B, N | QBT

* in any units of time, ¢.g. years, months, etc. # e.g number of children deaths, etc.

5.3  Heterogeneity issue and testing

Different studies are likely to yield different treatment effects even when they address similar
scientific questions. In meta-analysis, difference of treatment effects across trials beyond
chance alone (sampling error), usually called ‘heferogenmeity’, is a very important issue.
Information of size of heterogeneity not only leads to a choice of pooling methods but also
affects the conclusion of meta-analysis.

The heterogeneity of treatment effects across trials may be due to some biases in the
difference in trial designs, treatment procedures and subject characteristics between trials,
and unobserved random effects (83, 84). When difference of treatment effects across trials is
due to chance alone, sampling error or within trial variation is solely the variation allowed in
the synthesis method. This is well known as the fixed effect model described in section 5.5.
When heterogeneity is detected, identification of sources of the heterogeneity is needed.
Potential characteristics of subject and trial levels are one possible source of systematic error
that must be considered. Another possibility is to consider the random effects of between
trials. This potential variability needs to be taken into account in the synthesis methods.
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The challenge is how to investigate and quantify heterogeneity. A test for
heterogeneity in form of the Q statistic is a common statistical tool used to investigate the
evidence of heterogeneity results across trials. The Q statistic is valid for both binary and
continuous outcome. To perform the test, a null hypothesis of homogeneity results across
trials is set, which is

H, :6, =8 forall i where 6, is the true treatment effect of trial i and @ is a common
true treatment effect,

or H, : t = 0 where t%is the variance of random effects between trials.

It versus an alternative hypothesis that there is at least one ; different, or H, : 1 > 0.
Under H,, for a large sample sizes,

I A A
=1

It has an approximatey?, distribution where® is a weighted average of estimated overall

A I A 1 !
treatment effect, 6= w,6, / > w,, andw;is the weight given to trial i. Here, w; is the
b1 E1
2

inverse variance of the observed treatment effect, i.e. w, =[1/ ;| 1.

The H, would be rejected when the Q statistic exceeds the upper-tail critical value of
%}, distribution. It means that the variance of the treatment effects between trials is
significantly greater than what would be expected by sampling error when all trials estimate
the same underlying treatment effect. Hence, we can conclude that there is evidence of
heterogeneity(13, 85). This conclusion leads to the choice of random effects model in the
synthesis. Alternatively, the choice of fixed effects model is introduced in the synthesis if no
further evidence to support heterogeneity is found. Application of this test is illustrated in
section 5.6.

This test is, however, appropriate when a fixed number of trials with large trial sizes
are available. Some limitations of the Q statistics have been pointed out {6, 7, 15, 84, 86-89).
A main concemn is that power of the test can be low, especially in the case of sparse data or
when one trial has much more precise estimate effect than the rest (90).

Fleiss(11) suggests using an arbitrary significant level at 10 per cent rather than 5 per
cent in the test for heterogeneity by Q statistic, because it would allow higher probability to
detect significant heterogeneity. Some authors (85, 90) recommend the use of random effects
model routinely to evaluate sensitivity of the fixed effect model. If the results of overall
treatment effect from the two methods are likely to be similar, and the variance of random

effects between trals is close to zero (x* = 0), the conclusion of fixed effect approaches

would be accepted.
Hardy and Thompson (89) suggest using likelihood ratio statistic based on the
marginal likelthood of each trial to test for the null hypothesis of homogeneous treatment

effects across trials (H, : 1 = 0). The likelihood ratio statistic (LRT) is expressed as(89)

A2
- 2{L(0) - LL(x )}
where L1.(0) is the log-likelihood for 1% = 0 under null hypothesis of

homogeneity, and
2

LL(; ) is the maximum log-likelihood for 12 20.
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Since H, : ©? = 0 is part of the boundary of H, : t* > 0, the asymptotic distribution of the
likelihood ratio test under H,is no longer chi-square at 1 degree of freedom. In this case, it is

shown (91) that the square root of LRT can be compared to a one-tailed standard normal
distribution. This implied that the p value for the likelihood ratio test can be obtained from '4
of the probability of LRT on the chi-square distribution with 1 degree of freedom.

Application of this test will be presented in the next topic. Also, the results obtained
from the regression models in relation to the results obtained from the Q statistic will be
discussed. Some other tests have been suggested but they are all appropriate only to the odds
ratio (90).

5.4 Publication bias

Meta-analysis relies heavily on the published literature. However, the studies included in the
literature may not represent all relevant studies conducted on the topic of interest. There is
empirical evidence (92) that statistical significance is an important key issue of publication.
Studies with non-significant results may not be submitted by investigators for publication,
and editors may not publish studies with non-significant results even if they were submitted
(93). Therefore, studies with statistical significant or interesting results are potentially more
likely to appear in the published literature. This is the cause of publication bias.

The evidence of publication bias is well demonstrated. When meta-analysis includes
only the published literature, this can potentially lead to biased over-optimistic conclusions
(94). These biased conclusions may have a further impact on health policy, clinical decision
and outcome of patient management. However, there is little empirical evidence on the latter
issue(94).

Attempts have been made to alleviate the problem of publication bias, such as by
encouraging publication of previously unpublished trials(95), and the establishment of
registries for the prospective registration trials (96). This issue is currently a big concern
among meta-analysts (82). Searching for relevant unpublished trials is the other attempt to
improve publication bias. However, it may be difficult to identify such trials. Therefore,
many authors (85, 97-99) encourage routine assessment publication bias based on available
data in the meta-analysis.

The funnel plot, proposed by Light and Pillemer in 1984 (100), is perhaps the most
common method used to informally identify the existence of publication bias in meta-
analysis(85, 101). To construct a funnel plot, each trial-specific effect is plotted against a
measure of its precision. Precision may be defined differently according to the inverse of
standard error of the estimate effect or the trial sizes. An interpretation of the funnel plot is
given(100, 102) that if there is no publication bias, the plots are symmetrically distributed
around the overall effect in the shape of an inverted funnel. Altematively, the plots will
become asymmetrical and the overall effect of the meta-analysis will be biased. However,
there are some disputes concerning the asymmetry of the funne! plot. It is argued that this
may be due to other factors such as real heterogeneity(103) and heterogeneity in treatment
effect between low and high risk groups(104). Furthermore Tang, et al(103) show that shapes
of the funne! plots are different according to different definition of precision. So, because of
this evidence, care should be taken when interpreting asymmetrical funnel plots.

Some comparative methods of testing for bias have been proposed to detect
publication bias. They are based on symmetry assumptions as a funnel plot assessment. The
first method is the rank correlation method using Kendall's tau to evaluate the association
between the effect and variance of the treatment effect(105). The second is the simple linear
regression of the standardized estimate of treatment effect on the precision of the estimate
(102). The third is the regression of the treatment effect on sample size(99).
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There is no standard method on further process after assessing publication bias.
However, some methods to investigate impact of publication bias on the estimate of overall
treatment effect have been developed and proposed (95, 101, 106). Most of the methods,
however, are still complex and difficult to implement(82). They are, therefore, not widely
used. Nevertheless, these methods are beneficial tools to be used for sensitivity analysis.

5.5  Modelling of variation and simple conventional approaches

It is generally believed that treatment effects of different trials will be considered to
differentiate with some level(85). The difference of treatment effects between trials is
introduced in the synthesis process as quantity of variation. The variation is considered as
fixed effect and random effects models.

The fixed effect model is assumed that each trial estimates the same underlying true
treatment effect (9, 11, 85, 107). Here there is no consideration in variation between trials.
Sampling error alone is considered to be the variation of treatment effect. Conversely, the
random effects model assumes each trial to have its own underlying true treatment effect. But
there is a distribution of all these underlying effects around a central valve. Thus the overall
variation is beyond the sampling error as it further accounts for the variation between trials.
These two models lead to different pooling approaches.

To understand the concept of fixed effect and random effects models easily, this issue is
discussed in conjunction with the simple conventional approaches. For the simple
conventional approaches, inverse variance weighted average is the common method used for
a large number of trals. The inverse variance weighted average produces an estimate of
overall treatment effect from a weighted average of observed treatment effects across trials
when each weight is given to each trial. The weight is usually obtained from an inverse
variance of that trial The approaches under fixed effect and random effects models are
described as follows.

5.5.1 Fixed effect model
Assuming that there is a collection of I tnals, i = 1, ..., 1, each trial with a treatment group
and a control group. Further let,

8, = atrue treatment effect for trial i,

A
8; = an observed treatment effect for trial i,

The 8y, for example, can be the observed log-odds ratic or log-relative risk in a trial with
binary outcome or the observed means difference in a trial with continuous outcome.

Under the fixed effect model, it is assumed that each observed treatment effect 6, is an
estimate of unknown parameter 6;, when 6,=0 for all i. This means all individual trials

estimate the same true treatment effect. This is often called an ‘assumption of homogeneity’.
For individual large trials, a model is then specified by

el = 9 + £| (5.2)
The g; represents a random deviation of each observed treatment effect 6, from the true

treatment effect 0, and is assumed independent with mean zero and variance of.

The observed treatment effects é.s, then, are asymptotically normally distributed and
approximately unbiased (13), with a mean @ and variance of.
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In practice ofis not known but it is generally estimated from each specific trial i. The of is
2
N
often called within trial variance. In consequence, the estimated variance o, is then used to
estimate both the true overall treatment effect and its associated variance.
An estimated weighted average of overall treatment effect is then estimated by means
of the least squares method and expressed as

A I A~ &a ] A
9=ZW|9,/ZW| (5.3)
1 i1
N A f\z
where w,is the weight given to trial i. and w,=[1/ac ].
1

Consequently, 6 is further has a mean 0 and variance, var(d) =1/ ZWI , assuming an
i=1

asymptotic normal distribution for 6. It allows calculating 100(1-a ) per cent confidence
interval for@ . It is in the range of
- I A
etz 173 wy)H/? 54
(1—925)( /E ) CRY
where 2

o

2

The weighted average log-relative risk and the confidence interval are usually
transformed back to be the relative risk by taking exponential log-relative risk.

Some other methods have been proposed to combine odds ratios in meta-analysis.
They are the Mantel-Haenszel method, the Peto method and the Maximum likelihood
estimator. Detail of the methods can be seen in many literature (11, 85, 108). These methods,
however, provide very similar results for relatively large sample sizes(15, 109). Although the
Peto method is a common one in the fixed effect model, it could produce serious
underestimates or overestimates of the odds ratio in some extreme situations (11, 15, 108),
e.g. in the trials with very unbalanced number of subjects between treatment groups.

As discussed in several literature(6, 7, 15, 17, 87-90), the fixed effect methods, which
have a strong assumption of homogeneous treatment effect between trials, may not be
appropriate in a real clinical practice. This is because it is mostly impossible to obtain an
identical treatment effect from different trials, even when the same protocol is performed
under different settings by different trained clinicians.

is the 100(1—% )Y® percentile value of the normal distribution.

5.5.2 Random effects model

A random effects model is the one where treatment effects between different trials are
different. This situation is usually named when there are heterogeneous treatment effects
across trials. A random effects model supposes that each observed treatment effect 0, has its
own distribution with a trial-specific mean 6, and variance o?. Moreover, each 6, is assumed

to obtain from some super-population of treatment effects with mean 6 and variance t>. This
provides the two levels of hierarchical model

6: =0, +¢, where var(e|8,) = of
and 6, =0+y;  where var(y,) = (5.5)
The u; indicates random deviation of each-specific mean 8, from the overall meano,
and is assumed fo be independent from ,. Thus © and t?represent the overall treatment
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effect and between-trial variation, respectively. The variance t?

measure of the heterogeneity between trials(87).
The random effects model allows for both within trial variation o? and between trial

is usually known as a

variation t? to estimate the overall treatment effect and its variance. Thus, marginally the
observed treatment effects are assumed normal with mean® and variance of +12.

Note that when T°= 0, the random effects model corresponds to the fixed effect modet.
The weighted average treatment effect is then calculated in the same manner as in the
fixed model. Here, the weight is allowed for an extra variation of between trials for each

wéight. The weight w, that minimise the variance of 8 is an inverse variance of each trial,
w1
[oF +7]

In practice t“is not known. The common approach to estimate “ is the moment

estimator given by DerSimonian and Leird(49). It is & non-iterative procedure and commonly
2

used in meta-analysis. The estimated variance of between tralst is then given by equating
Q statistic from (5.1) with its corresponding expected value, i.e.

A2 — —_—
v —maxjo,— =D (5.6)

A I A2 n
ZW[—(ZW: /iw;)
[ =1 1

where Wiis the estimated weight provided by the fixed effect model. The estimated variance

a2 at Al Al
of between trials t , then, gives the estimated weights w, = 1/ {(si + 1 ]. Thus, an estimate

of weighted average treatment effect under the random effects model is expressed as
A I A%a [f1 A°
OpL = ZW[ GI/ZWI 5.7
=1 El

A
The O is assumed approximate normal, with a mean 6 and variance

ie.

2 2

I A
D wi
[ury
Then, an approximate 100(1-a ) per cent confidence interval for the true treatment effect © is
within a range

Boctz , (13 Wi )2 (5:8)

o
-3 1

a

where z
( 2

is the 100(1-% Y* percentile value of the normal distribution.

The random effects approach allows for additional variation between trial 12 to
estimate overall treatment effect and gives a wider confidence interval for the overall
treatment effect as compared to the fixed effect approaches. This can be explained in the
following. As the weights given to individual trial in the random effect methods,
A- I\z I\z
wi =1/[o1 +1 ] are generally lower than the weights of the fixed effect methods,

2

vAw ={1 /:n ]. Consequently, the variance of estimated overall treatment effect 1/ ZLM in
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the random effects approach is definitely greater than that, ]/ Z; W, , in the fixed effect

approach.

However, there are some concerns over the approach of random effects model(87).
The first concern is that the validity of normality assumption of the random effects remains
questionable. The second is the difficulty in verifying normality assumption of random

effects for meta-analyses. Third, is the inclusion of random effects to the estimation, only the
2

single value of estimated variance between trials © is added into the weight. The model does
not take into account the uncertainty associated with the estimate of the variance . Thus,
the given confidence intervals for the overall treatment effect may remain insufficiently
conservative and still too narrow(89).

Two extension approaches have been proposed to overcome the problem of
imprecision of estimated variance between trials from a frequentist perspective. One
approach, proposed by Hardy and Thompson(89), uses the profile likelihood intervals method

to allow for asymmetric intervals and uncertainty in the estimate of t? for further estimation
of overall treatment effect. The approach also provides information on the confidence interval

of t2. Thus, the approach yields a wider confidence interval than the standard random
effects approaches. The approach is suggested to be used instead of the standard methods in

random effects meta-analysis when the value of =2 has a merit impact on the overall estimated
treatment effect. Details of the method are provided in the paper by Hardy and Thompson
(89).

Another approach is proposed by Biggerstaff and Tweedie (88). They also attempt to
take into account variation of the point estimate of t? of DerSimonian and Laird in
estimating the overall treatment effect. They propose a new method to calculate the weights
given to individual trials. One benefit of the new method is to obtain an approximate

distribution of DerSimonian and Laird :? from developing a simple form for the variance of

Q statistic. Another way is by obtaining the distribution of DerSimonian and Laird+* from
asymptotic likelihood methods. Details of the method are provided in the Biggerstaff and
Tweedie paper (88). This approach produces down-weighting of the results for large studies
and up-weighting of the results for small studies. The authors discuss that their method will
give different results from those of the standard random effects model when the number of
trials is fairly small (< 20 based on the results of Larholt, et al(110)).

5.5.3 Fixed effect model versus random effects model

Although the assumptions of fixed and random effects models are clearly different, in
practice it is still difficult to decide on an appropriate model for combining the trial results of
interest, especially when the homogeneity testing result is marginal. In fact, none of the two
epproaches is considered to be the perfect mode! for all meta-analyses, especially when small
number of trals are included in the meta-analyses.This is, however, common in meta-
analyses. Many comments and disputes on the selection of an appropriate model have been
discussed(85). Nevertheless, the random effects approaches always give a wider confidence
interval of the overall treatment effect than the fixed effect approaches when the between trial

variance is larger than zero{z?>0). Currently, several authors(7, 15, 90, 111) suggest to use

the random effects model routinely, since similar results to the fixed effect model will be

obtained when t2 =0. In addition, the results can be used to evaluate robustness of the
resuits obtained from fixed effect model.
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Topic 6: General linear mixed models (GLM)

6.1 Introduction

General linear mixed models (GLM) are the statistical approaches incorporating both fixed-
and random-effects terms allowing for heterogeneity between trials in the effect of treatment
of interest(109). The approaches are often called mixed effect models, as suggested by
Hedges in Chang et al (112). The GLM can be used to detect and explain heterogeneity in
meta-analyses. Treatment effect of individual trals, e.g. log-relative risk, is treated as a
response variable, which is related to potential factors, called covariates, from the same trials
and some random effects terms. In some situations, variability between trials within each
category of some categorical covariates need to be considered. Here, the GLM can be
extended to incoporate random components of individual categories of the covariates. This
extension is also illustrated in the application section.

The covariates may be some potential factors at trial level, such as trial designs,
treatment schedule, outcome measures, etc, and at subject level such as different gender
proportions, age of subjects and follow-up period. The data at subject level is usually in
aggregated form, e.g. subject mean age, mean follow-up period, etc. This is because most of
the data analysed in meta-analysis is extracted from completed trials unless individual subject
data on each trial could be gathered from the authors. However, the latter situation is rather
difficult to achieve and is hardly possible in most practices.

In this topic, section 6.2 discusses setting of GLM for meta-analyses related to cluster
randomized trials when the binary outcome is measured in log-relative risk. Section 6.3
describes the assumption of the model. Section 6.4 discusses the approach used to estimate
parameters of the model. Section 6.5 discusses the estimation of confidence intervals for
parameters of the model. Section 6.6 provides the application of GLM to the three published
meta-analyses. Finally, section 6.7 gives a summary of the application of GLM on the meta-
analyses.

6.2 The model

The simple two-level variance components model that allows for within-study variation at
level-one and between-study variation at level-two is used to pool the treatment effects from
individual trials. In the model, log-relative risk obtained from each trial i, 6;, is treated as a
continuous dependent variable. The randomization design is treated as a binary covariate X at
trial level. X equals 1 for cluster randomized design and equals 0 for individually randomized
design. Adding other potential covariates can extend the model. The model can be expressed
(113) as

G, =0+ lell +jizﬁjxlj + W + g (61)

where 0 is a fixed coefficient that represents an overall treatment effect and
Xi; is the randomization design covariate for trial i.
Xi2,..,Xip are the values of the j known potential covariates, j=2,...,p, for trial i.
By s---/Bp are the fixed coefficients indicating association between its related covariate

and outcome of treatment effect.
y; is an unobserved random effects term, which represents the deviation of trial i

specific-mean§; from the overall effect © adjusted for the effect of covariates,
fﬂ X .
2Py

g; is the random effects term that represents sampling error of trial i.
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6.3 Assumptions
In the parametric approach the random effects are usually assumed to be independent normal
distributions. For the simple GLM involving continuous response 8,, random effects in the

sampling errors g; i u al with mean zero and variance o .
lin ors g; is assumed normal with mean d 2

In the level-two model, the unobserved random effects y; is also assumed to be normally

distributed with mean zero and variance 2.

The level-one random error g; and level-two unobserved random effects u; are assumed

to be independent, consequently
COV(U;, g)=0

and E(Gi)=6+ iﬁjxu , Var‘(Gi)=0‘i2 +1:2.
§=1

To fit the model (6.1) to the data, 8,B,and the variances 0,2, 1% are estimated. In practice

A2
the estimated variance of log-relative risk o is available from individual trial i. It is usually

used as an estimate for of.

6.4  Parameter estimation

Under the assumption of multivariate normal distribution of random effects, the model
parameters are estimated by restricted maximum likelihood(REML). For computation
procedure, the restricted iterative generalized least squares (RIGLS) algorithm is used via the
MLwiN software{]114). Even when standard errors for variance estimates are provided, they
are based on asymptotic properties and may be unreliable except in very large samples. Thus,
it might be better to make inferences based on bootstrapped standard errors (115).

6.5  Confidence interval calculation
The parametric bootstrap estimation is used in this study. The estimation requires no
normality assumption for the estimate from which the confidence interval is calculated. Thus,

it is useful when the sample sizes are small, especially for the variancet®. Furthermore,
ranges obtained from the method are interpreted as approximate confidence interval for 6

and t? with relaxing the normality assumption strongly required in the likelihood method
(116).

The bootstrap confidence intervals for the true overall treatment effect 6 and the
variances t2are generated from 1000 replications using the MLwiN software(117). The 2.5
and 97.5 percentiles are used as a range of the 95 per cent confidence for the parameters. The

Jower limit of confidence interval for the variance 1> will always be zero when the 2.5
percentile of the bootstrap distribution is in the negative value, This is because a negative
variance cannot be interpreted.

6.6  Application to published meta-analyses

In this section, the applications of GLM to the meta-analyses related to cluster randomized
trials are illustrated in the three different examples. The analysis is implemented using the
MLwiN software.
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6.6.1 Meta-analysis of vitamin A supplementation trials
The observed log-relative risks of child mortality for individual trials are considered as a
continuous response variable. The model (6.1) is fitted with only the intercept representing an
overall treatment effect, and random effects components of level-one and level-two as

B, =8+ U +¢ (a)

Here, the main parameters of interest from the model are @ and 1%. They are
presented in table 6.1.

Table 6.1 Estimated parameters (95 per cent CI) for model (a)} on log scale
Model Estimated parameters
Fixed effect Random effect -2log-likelihood
A a2
0 T
Fixed effect -0.31 ' - 10.01
(-0.40, -0.22)
(a) -0.36 0.08 7.55
(-0.60, -0.15) (0.00, 0.15)

The GLM produces an estimated effect of vitamin A supplementation compared to
the control group as a log-relative risk of -0.36 (95 per cent CI -0.60 to -0.15). The figure
gives the significant protective effect of vitamin A supplementation. The estimated variance
of between trials is 0.08 (95 per cent CI 0.00 to 0.15). The likelihood ratio obtained from the
regression model can be used to test heterogeneity effect. The likelihood ratio statistic is
calculated from a difference between -2log-likelihood of fixed effect model, 10.01 and
model (a), 7.55. The square root of the ratio of 2,46 gives p = 0.058 on the asymptotic
distribution of the likelihood ratio statistic. This figure shows the marginal evidence of
heterogeneity of the treatment effect across trials.

The results show evidence of the beneficial effect of vitamin A supplementation to
reduce child mortality and non-significant variability of treatment effect between trials. Some
other factors affecting the log-relative risk may exist but these are not available for
investigation in the model such as various units of treatment allocation and different control
groups across trials.

6.6.2 Meta-analysis of mammographic screening trials
The meta analysis is performed to evaluate effect of mammographic screening on reduction
of breast cancer mortality in women aged less than 50 years. It includes eight identified trials
perfomed in many western countries. The primary outcome is breast cancer mortality. Log-
relative risks for individual trials are used as a continuous response variable. The steps of
fitting data to the model (6.1) are similar to those in the previous example. The model is
expressed as
9; =0+ U; + ¢ (b)
The design variable is then added to the model (b) as a fixed effect. The extended model
is shown as
Bi =0+ ﬂIDESign| +U +g (C)
The model (c) is extended to consider whether any difference in heterogeneity exists
between trials of each group according to the randomization design. This allows the effect of
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randomization design to vary between trials. Defining u, ~ N0, t2zr) and up ~ N(O, t&7)
as the independent random effects, the model is then written as
6, = 6 + B;Design; + uyDesign; +u;; (1 — Design,) +¢, (d)
Here t&qy represents the variance between trials of cluster randomized design group and
1 represents the variance between trials of individually randomized design group.
They are presented in table 6.2.

Table 6.2 Estimated parameters (95 per cent CI) for model (b) to (d) on log scale
Model Estimated parameters -2log-likelihood
Fixed effect Random effects
N ~ a2 Y] A2
6 By T T RT T ®T
(Design)
Fixed -0.22 - - - - -1.03
effect | (-0.32,-0.13)
®) -0.23 - 0.02 - - -2.60
(-0.40, -0.10 (0, 0.04)
(c) -0.17 -0.10 0.03 - - -2.91
(-0.45,0.10) | (-0.36,0.17) | (0, 0.05)
(d) -0.19 -0.08 - 0.02 0.06 -2.88
(-0.55,0.15) | (-0.44,0.27) (0, 0.03) | (0,0.10

The model (b) produces an estimated log- relative risk of -0.23(95 per cent CI -0.40 to -
0.10). The result shows the significant protective effect of mammographic screening,
compared to the control group. The estimated variance of random effects is found to be 0.02
(95 per cent CI 0.00 to 0.04). It reflects a slight heterogeneity between trials. The likelihood
ratio statistic is 1.57 (-1.03-(-2.60)) and its square root gives p = 0.11 on the asymptotic
distribution of the likelihood ratio statistic.

When the covariate of randomization design is added to the model as in (c), its effect on
log-relative risk is small and non-significant. In addition, the estimated variance of random
effects is about the same, which is as small as the variance of model (b). These figures may
explain the slight change in estimate of the adjusted overall log-relative risk if compared to
model (b). There is inconclusive benefit of the mammographic screening on breast cancer
mortality after the randomization design has been adjusted for.

When allowing for random effects to log-relative risk in the two randomization design
groups as in model (d), the estimated variance of between trials for individually randomized
design group is larger than that of the cluster randomized design group. However, both are in
small values. The result may reflect a more similar effect of mammographic screening effect
on breast cancer mortality in the group of cluster randomized trials. Here, the estimate of
adjusted effect of mammographic screening in model (d) is —0.19 (95 per cent CI —0.55 to
0.15). It does not differ from the results of model (c).
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The results show inconclusive evidence on the benefits of mammographic screening on
breast cancer mortality in women aged less than 50 years, after the randomization design is
adjusted.

6.6.3 Meta-analysis of multiple interventions trials
The original meta-analysis is done to assess the effectiveness of multiple risk factor
interventions to reduce cardiovascular risk factors from coronary heart disease. Study
subjects are adults aged at least 40 years and having no clinical evidence of established
cardiovascular disease.

Log-relative risks of smoking for individual trials are fitted to the GLM as a continuous
response. Sequences of fitting data to the model (6.1) follow the previous example. The
estimates and 95 per cent confidence intervals of the parameters are presented in table 6.3.

Table 6.3 Estimated parameters (95 per cent CI) for model (e) to (g) on log scale
Model Estimated parameters -2log-likelithood
Fixed effect Random effect
A ~ A2 Al a2
0 By T T CRT T ®T
(Design)
Fixed -0.15 - - - - 2538
effect | (-0.18, -0.12)
(e) -0.11 - 0.01
(-0.18, -0.04) (0, 0.02) - - -20.56
® -0.12 0.03 0.01 - - -20.68
(-0.21, -0.03) | (-0.10,0.15) | (0,0.02)
() -0.12 0.03 - 0.005 0.013 -21.56
(-0.20,-0.02) (-0.09,0.14) (0,0.01) (0,0.03)

Modei (e), which has no covariate, yields the estimated overall log-relative risk of -
0.11 (95 per cent CI -0.18 to -0.04). This figure shows the significant protective effect of
multiple interventions compared to the control. The estimated variance of treatment effect
between trials is 0.01(95 per cent CI 0.00 to 0.02), which gives light variability in the effect
of intervention from trial to trial. The likelihood ratio statistic is 45.97 (25.38-(-20.56)) and
its square root gives p = 6.00e-12 on the asymptotic distribution of the likelihood ratio-
statistic.

The effect of the randomization design in model (f) is very small, with a log-relative
risk of 0.03 (95 per cent CI -0.10 to 0.15). The estimate of adjusted overall log-relative risk of
multiple interventions is quite similar to the unadjusted results in model (e). The estimate of
adjusted variance of between trial log-relative risks is also similar to the unadjusted results in
model (e).

When two random components for the randomization design are incorporated as in
model (g), the adjusted effects of multiple interventions and randomization design remain
similar to the results in model (f). The estimate of adjusted variance of between trial log-
relative risk for the group of individual randomized design, 0.013 (95 per cent CI 0, 0.03), is
about two times larger than that for the group of cluster randomised design, 0.005 (95 per
cent CI 0.00, 0.01). However, these variances still remain very small.
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Table 6.3 shows that the models (e) to (g) provide quite similar log-likelihood results.
This information is relevant to the finding of similar estimated log-relative risk of treatment
effect and other covariates.

The results from this example show that adjustment of randomization design hardly
affects the overall intervention effect. The variability of treatment effect between trials is also
very small.

6.7 Summary

The GLM shows that putting the potential covariates and some random effects components to
the model easily provides investigation of heterogeneity between trials. More information is
also given to explain heterogeneity between trials due to covariates effects and variability of
random effects, compared to the simple conventional methods. Despite these advantages,
care should be taken when using the model, as it needs a strong assumption of normality
distribution of random effects components. It is also difficult to verify validity of the
assumption,
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Topic7: Generalized linear mixed model {(GLMM)

7.1 Introduction

Heterogeneity or variability in trial results is common in meta-analysis. Several researchers
(7, 109, 111, 118-121) have proposed GLMM to fit the meta-analysis data to investigate and
explain heterogeneity, Available potential factors at the trial and subject levels in the
reviewed papers and unobserved random effects are included to the models to explain
heterogeneity. The normality assumption of unobserved random effects is usually adopted to
estimate the model parameters. There are some concerns on the validity of such an
assumption. This may, therefore, lead to misleading conclusions from the model.

Nonparametric maximum likelihood estimator (NPML) is an alternative approach
proposed by some authors (119, 122-124)for approximate estimation in GLMM. The NPML
is estimated from discrete mixing distributions. Aitkin(122) and Dietz (118) have shown the
approach in some problems of the meta-analyses. This chapter discusses the GLMM with
NPML in particular emphasis on meta-analyses involving cluster randomized trials. The
performance of NPML is examined to solve the problems of heterogeneity of treatment effect
between trials.

In the previous topics, observed log-relative risk, which is a common summary
measure for a binary outcome in meta-analysis, is used as a response variable. Here, to
investigate more information of random treatment effects, observed number of events for
each treatment group of individual trials is used as a response variable and treatment groups
are treated as a covariate of a model.

Section 7.2 discusses the model setting for meta-analysis involving cluster
randomized trials with two treatment groups measured in binary outcome. Section 7.3
presents the NPML to estimate parameters of the models. Section 7.4 discusses classification
of trials to explain heterogeneity between trials. Section 7.5 iilustrates application of the
approach to the three meta-analyses published in the literature. Section 7.6 presents a
summary on the GLMM in the meta-analyses studied.

7.2  The model for meta-analysis involving CRT's
To fit the GLMM to meta-analysis involving cluster randomized trials with binary outcome,
the simple two-level variance components is used. The model allows for within-trial variation
at level-one and between-trial variation at level-two.

Here the observed number of eventsy,, in the treatment group t, t=1,2, with a sample
size n, from individual trials i, i=I,...I, is a response variable. The observed y, may have a
binomial distribution,

_ Y.~ Binomial(p, ,n,)
or poisson distribution, Y~ Poisson(p,)
where p, is the mean of individual events of treatment group t in trial i. The mean p,is
associated with linear predictors through a canonical link function,
a(Pg ) =LP,

From the meta-analysis studied, effects of treatment, randomization design and other
potential factors are treated as covariates of the model, thus

LP, = otreat, + 8x, + ydesign, +Bx, + U, (7.1)
where treat,  is the binary variable of treatments t that assigns 1 for treatment and 0 for
control.

design, is the binary variable of randomization design of trial i that assigns 1 for
cluster randomized trials and © for individually randomized trials.
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Xy is a vector of other potential factors of subjects in treatment group t for trial
i, such as mean blood pressure of subjects in treatment and control groups.

X is a vector of other potential factors or may be the interaction effect between
randomization design and treatment effect.

€ is an unknown fixed effect of the treatment on log scale.

5,7, are unknown fixed effect parameter vectors on log scale.

y, is random effects of between trials, It has a distribution ¢{u)that remains
unspecified.

For the binomial model, the canonical link function g(p,) = log(p, /(1 —p,)) thus
model (7.1) can be replaced to be
log(py /{1 -p,)) = 6treat, + 8x, +ydesign, +Bx; +y, (7.2)
The estimate of adjusted odds ratio of treatment effect is easily calculated from the
exponential of g
When the trials have different follow-up periods, the poisson model is an appropriate
model to fit this kind of data because it takes into account the follow-up period for each trial
by adding the offset term of log transformation of person-time to the model. For the poisson
model, the canonical link function is g{p, ) =log(p, ). The model (7.1) can be rewritten as
log{p, ) = 6treat, +&x, + ydesign, +Bx; +u, +iog(person -time), (7.3)
Here, the estimate of adjusted relative risk is also the exponential of g
The fixed treatment effect can extend to be a random treatment effects to evaluate
treatment heterogeneity. To achieve this purpose, 6treat, is replaced by the term
(8 +z,)treat, in model (7.1). It becomes
g(p, ) =P, = 6treat, +5x, + ydesign, + px, +ztreat, +u, (7.49)
where 2, is a random effect of the treatment. Thus u, and z have an unknown joint
distribution ¢{u,z).

7.3 Nonparametric maximum likelihood (NPML) estimator of parameters

At this step the likelihood function is determined to obtain maximum likelihood estimates of
the model parameters. When the treatment is fitted to the model as a fixed effect, like model
(7.1), the likelihood function is then

I 2
100,8,7,8,0) = [T f[TTf(velo,8,B.v,u )0 )du, (7.5)
E1 =1

where A is a parameter vector of ¢.

The function f(y,[,8,B,¥,4,) = f(y.|.P.) denotes the probability density for y, given
the linear predictors. Since the distribution ¢{u)is not known, the model parameters are
estimated non-parametrically. Here, it is reasonable to consider the ¢(u) as a discrete

distribution with K components, when K <I(118). Aitkin and Dietz (118, 119, 122) discuss
this point and show that
o) == forall (u)=(u)
= 0 orelse
might give a good approximation for the free distribution ¢{u) if u and =are chosen

approximately.
In the distribution ¢{U), u=(u,,...,uc)and =n=(=n,,....,nx_;) are the parameters, and

K-1 . .
®e =1— k}_“iuk . m denotes the mixture proportion at known mass point Uy .
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The likelihood function (7.5) can now replace the integral over u,by a finite sum of K
components. Some authors (119, 123, 125, 126) discuss this concept to be due to the integral
not having a closed form except for the normal distribution of the response variable. The
likelihood then becomes

I K 2
L(etaf'frprxru) = Hzﬂknf(ynpu) (7.6)
k=1 k=1 t=1
The log-likelihood function is as follows:
1 K 2
LL(6,8,7,8,%,u) = 35109 7, [T (Y| Prs) (7.7)

k=1 k=1 t=1
Therefore, the functions (7.6) and (7.7) are respectively the likelihood and log
likelihood of a finite mixture GLMM with known proportionm, at known mass point u,,
with the linear predictor for the trial i in the mixture component k being (123)
LP,, = 6treat, +8x, + ydesign, +BX; + U, (7.8)
Although the number K component is an unknown parameter, it is treated as fixed,
and successively increased until the likelihood is maximized (127). If K is the number of

components that maximizes the likelihood, then = and u are the NPML estimates of ¢. The

maximum likelihood of such interest models is implemented by the EM-algorithm procedure,
discussed in Dietz and Bohning 1994(128), Dietz and Bohning 1995(129) and Aitkin(119).
Implementation is done using the PORML macro programme in S-plus software. This macro
programme is supported by Dr Dietz (130). The optimal K component is then selected by
using the Bayesian Information Criterion (BIC). The BIC is estimated (131, 132) as

BIC = 2LL(8, 5, 7,8, &,0) -Plog(l) (7.9)
where LL(6,8,7,B,#,0) is the log-likelihood of estimates for K component.
P is the number of parameters estimated freely. For example; if we have 2
components, there must be P=3. This number comes from 2 component-specific
means of treatment effect (6, and 6,) plus one component weight (p,) to be

estimated, as p,is equal to (1-py).
I is the number of trials in meta-analysis.
The K component that gives the largest value of BIC is the optimal K.

When adding treatment effect as a random effect, the nonparametric maximum
likelihood estimates of parameters are obtained from the model in the same way as for the
fixed treatment effect model. First, the likelihood function to be maximized is summed over
K components under the discrete join distribution $(u, z),

I K 2
L(Brarffﬂt"rutz) = HZ“RH“Y&[LPI&) (7'10)
t=1

=1 k=1 =
and then the log-likelihood is

1 K 2
LL(B,5,7,B,m,u,2) = D Jog> " m [ | F(Vee|-Pu) (7.11)
1 k=1 t=1

Function (7.10) and (7.11) are likelihood and log likelihood of a finite mixture
GLMM with known proportion n, at known mass point (U, , 2, ), with the linear predictor for
the trial i in the mixture component k being(123)

LPy = Otreat, +8x,, +ydesign, +px, +u, +2 treat, (7.12)
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The maximum likelihood estimates of u,z,x and other fixed effect parameters at the K®
component are obtained by using the same procedure as in the previous discussion. However,
to implement model (7.12) in the S-plus, an interaction term between u, and treat, is needed.

At this stage the estimates U,z, = obtained from the model can be used to calculate a
weighted average treatment effect as

K .3 ~

6=3r,2, (7.13)
k=1

and the variance of the mixing distribution on 2,
A K A "‘2 K ~ ~ ,
as Var(8) = Y =, z; - (D m 2,) (7.14)
k=t k=1

This information can provide an explanation for treatment heterogeneity. If the 0 obtained

from (7.13) is similar to the results obtained from model (7.1) and Var(e) approaches zero, no
evidence of variability between K components of trials is shown. The estimate of fixed
treatment effect may be the appropriate answer for treatment effect.

In addition, a variance of the baseline heterogeneity among the K components is
estimated as

~ ~

= Em Uk (Em Uk)2 (7.15)

This value is expressed as the vanabnhty between K components beyond the treatment effect.
It can be used as an indicator of heterogeneity of unobserved random effects.

Many authors (118, 119, 122, 123, 133) have pointed out that interpretation of
estimate treatment effect under the discrete distribution of random effects is rather difficult
since the exact distribution of the random effects is unknown. The results obtained from the
finite mixture distribution of the NPML approach could, however, provide reasonable
information on heterogeneity. If only one component in a mixture distribution is obtained, no
heterogeneity across trials is considered.

7.4 Classification of trials
When the maximum likelihood estimates of parameters are cbtained at the K™ mixture
component where K >1, the trials can be classified to each component of the mixture
distribution. Class:ﬁcanon is achieved by using the maximum posterior probability that the
tral 1 comes from the K™ component (118, 127). The maximum posterior probability is
expressed(118) as
A 2 ry

annana [ FVe]Py)

pr(triall € Ck YurYa ™, u,2,0,7,p)= =1

(7.16)

faS

LPir)

K A

2
2w [ e
t=t

r=1

where C, is the k™ component and

LPw is the estimated linear predictor for trial i in the component k of the mixture
distribution.
The results obtained from the classification can be used to explain the finding of
heterogeneity that may be beyond the effect found in the model. This is a superior point of
the NPML estimator as compared to the parametric maximum likelihood estimator.
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7.5  Applications to published meta-analyses

In this section, the GLMM via NPML estimator is illustrated in the three published meta-
analyses described in topic 4. Because each of these meta-analyses includes trials with
different follow-up periods, the analysis is therefore performed by using the maximum
likelihood estimation of a 2-level mixed poisson regression models, PORML macro
programme in S-plus sofiware. To account for mean follow-up periods from individual trials,
the log transformation of multiplication of sample size and mean follow-up period must be
taken as an OFFSET for the model (134).

7.5.1 Meta-analysis of vitamin A supplementation trials

This meta analysis(1) includes eight community-based trials to determine the relationship of
vitamin A supplementation and mortality in children aged 6 to 72 months. To fit a poisson
regression model to the data, the observed number of child deaths from each treatment group
of individual trials is the response variable.

The analysis of mixed poisson regression models for this data set is performed in two
steps. First, the baseline heterogeneity from the random effects term of the model is -
investigated. The model is fitted with a fixed effect of treatment and a random intercept term,
ignoring any covariate, as model A in table 7.1. The mixing distribution is estimated non-
parametrically starting from K=2 mixture components. The number of component is
increased systematically until the deviance is stable and it gives the largest BIC value. The
non-parametric maximum likelihood estimates are obtained at K = 5 with the BIC of
1451.24. The model produces an estimate of the fixed effect of vitamin A supplementation as
log-relative risk of ~0.31(95 per cent CI -0.45 to -0.17). The variance of mixing distribution
is 0.93. Tt represents a huge variation of the baseline between mixture components on log
scale.

In the second step, the treatment effect is included as a random part of the model to
evaluate the treatment effect heterogeneity, as model B in table7.1. This model is called a full
random siope and intercept model. The maximum likelihood of a finite mixture model is also
estimated by the NPML. At K= S again the maximum likelihood estimate is obtained with the
BIC value of 1463.65. The estimate of weighted average log-relative risk of treatment effect
is ~0.43 (95 per cent CI —1.37 to 0.51). At this step even the estimate of the average effect of
vitamin A supplementation is more effective, the confidence interval is much wider than the
result obtained from model A, The upper limit of confidence interval is also higher than zero.
This figure represents evidence of random treatment effects. The variance of mixture
distribution for the baseline remains at a very high value of 0.89.

Table 7.1 NPML estimates of treatment effect and variance of random effects for each model in
meta-analysis of vitamin A supplementation trials

Model K BIC Baseline Overzll treatment effect
Components ", . | Estimated log-relative risk | 95 per cent CI for 6
variance (17 ) ~
©)
A 5 1451.24 0.93 -0.31 -0.45, -0.17
B 5 1463.65 0.89 -0.43 -1.37,0.51

A = k components mixture distribution of baseline effect and fixed treatment effect
B = k components mixture distribution of baseline effect and treatment effect
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The model produces further results of the classification of trials to K components of
the mixture distribution. This information is used to further explain the results of treatment
effect and baseline heterogeneity. Table 7.2 presents a wide range of component- specific
log-relative risk from -1.60 to 0.03. Three, at k =3,4,5, of the five components show evidence
of relative similar log—relatwe risk in beneficial effect of treatment. The component-speclﬁc
log-relative risk of the 2°! component presents increasing risk, but one that is inconclusive.
Some explanation can be given for these results.

The 1% component shows a very high effect of the treatment, determined by trial 5.
The trial has a small sample size and very small number of child deaths in the vitamin A
supplementatlon group. In addition, this trial has a mean follow-up period of 42 months
which is a much longer period than the other trials of around 5-18 months. The 4™
component is determined by trial 7 havmg substantial different units of treatment allocation,
wards, compared to the other trials. The 2™ component is determmed by trial 3 and trial 8,
which have similar inconclusive treatment effects. The 3™ and 5™ components are determined
by trials 1, 4, 2, and 6 respectively. These trials have likely similar units of treatment
allocation and the follow-up periods.

Table 7.2 NPML estimates of treatment effect distribution and classification of trials according
to the 5 components of the maximum likelihood estimates for model B

K" component .| Estimated log-relative risk Weight Trial oumber
{95 per cent CI)

1 -1.60 0.125 5
(-2.76, -0.44)

2 0.03 0.250 3,8
(-0.28, 0.34)

3 -0.46 0.250 1,4
(-0.77, 0.16)

4 0.35 0.125 7
{-0.64, -0.05)

5 0.32 0.250 2,6
(-0.53, 0.12)

For this example, the GLMM via NPML approach provides evidence of inconclusive
effect of vitamin A supplemention on child mortality with a wide confidence interval of the
true treatment effect. It also presents heterogeneity of treatment effect. The result obtained
from this study does not correspond to the result from the original meta-analysis paper. The
model also gives a huge variability of baseline characteristics. One point to note is that this
meta-analysis has a small number of trials.

7.5.2 Meta-analysis of mammographic screening trials

This meta-analysis (2) is performed to evaluate the effect of mammographic screening on
reduction of breast cancer mortality in women aged less than 50 years. It includes eight
identified trials perfomed in many western countries. The number of woman deaths with
breast cancer from individual trials are treated as a response variable of the poisson
regression model.

Analysis is similar to the steps in the previous example. The first step is to investigate
baseline heterogeneity. The model is fitted with screening programme as a fixed effect and 2
random intercept term, ignoring covariates, as model C in table 7.3. The NPML approach is
used to produce maximum likelihood estimates of the model parameters with successive
mixture components from K= 2. Estimating the mixing distribution non-parametrically gives
the maximum likelihood estimates at K= 4 with the BIC of 146.00. Estimated variance of the
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mixing distribution is 0.10. This reflects modest baseline heterogeneity on log scale. The
estimated log-relative risk of the fixed treatment effect is —0.21( 95 per cent CI -0.35 t0-0.07).

In the second step, the heterogeneity effect of screening programme is investigated.
Here it is fitted into the model as a random effects, as model D in table 7.3. The NPML gives
the maximum likelihood estimate at 4 mixture components with the BIC of 145.37. This BIC
value is similar to the result obtained from model C. Estimated variance of the baseline
mixture distribution adjusted for the random treatment effects is 0.09, which is similar to the
result of model C. The estimate of weighted average log-relative risk is -0.25 (95 per cent CI-
0.58 to 0.08). The confidence interval here is much wider than the result from model C. This
figure represents some evidence of random treatment effects.

The third step is to investigate heterogeneity of some available covariates. In this
meta-analysis, some trials randomly allocated the screening programme to groups of women
rather than to individual women. This difference of treatment randomization design is
considered as a binary variable: 1 for group randomized and O for individual randomized, in
the mixed poisson regression model. The randomization design is added to the model D as a
fixed effect, and now in model E in table 7.3. The NPML gives the maximum likelihood
estimate at K=3 with the BIC of 142 .46. The randomization design gives the non-significant
effect with an estimated log-relative risk of 0.12 (95 per cent CI -0.04 to 0.28 ). Estimated
variance of the mixing treatment distribution is 0.07 on log scale. It is slightly different from
the results of previous models. The estimate of adjusted effect of screening programme on
breast cancer mortality is the log-relative risk of -0.23 (95 percent CI -0.35,-0.11). This
adjustment illustrates similar effects of screening programme to the results obtained from the
fixed treatment effect in model C.

In addition, the interaction terms of (design*treat) is added to the model for further
investigation. The effect is not significant and the model gives similar results of the treatment
effect to model E. The model including an interaction term s not presented .

Table 7.3 NPML estimates of treatment effect and vanance of random effects for each model in
the meta-analysis of mammographic screening trials

Model K BIC Baseline Overall treatment effect
Components % Estimated log-relative risk | 95 per cent CI for @
vanance (1° ) ~
(8)
C 4 146.00 0.10 -0.21 -0.35, 0.07
D 4 145.37 0.09 -0.25 -0.58, 0.08
E 3 142 .46 0.07 023 .35, -0.11

C = k components mixture distribution of baseline effect and fixed treatment effect
D = k components mixture distribution of baseline effect and treatment effect
E = k components mixture distribution of baseline effect and treatment effect plus fixed randomization design

The classification of trals according to model E, which adjusts for randomization
design, is presented in table 7.4. The table shows various component-specific log-relative
risks from —0.33 to -0.08. Confidence intervals for the component-specific log-relative risk in
the 1" component and 3™ component are very wide and inconclusive. The 1® component is
determined by trial 6, with very imbalanced treatment groups. The 3™ component is
determined by trial 8, with practices as units of treatment allocation, where it differs from the
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rest. Most of the trials belong to the 2™ component, where the results of mammographic
screening are found to be significant beneficial effect.

The results illustrate some heterogeneity effects of mammographic screening and
moderate baseline heterogeneity. These results may indicate that the estimate of overall log-
relative risk may not appropriately represent the treatment effect for this example, even when
there is little baseline variability.

Table 7.4 NPML estimates of treatment effect distribution and classification of trials according
to the 3 components of the maximum tikelihood estimates of model E
K" Component Estimated log-relative risk Weight Trial number
(95 per cent CI)
1 -0.33 0.130 6
(-0.86, 0.20)
2 023 0.745 1-5,7
(-0.38, -0.08)
3 0.08 0.125 8
(0.39,0.22)

7.5.3 Meta-analysis of multiple interventions trials

This meta-analysis (3) is done to assess the effectiveness of multiple risk factor interventions
to reduce cardiovascular risk factors from coronary heart disease. Study subjects are adults
aged at least 40 years and having no clinical evidence of established cardiovascular disease.
In this thesis, reanalysis is performed for the fourteen trals providing the outcome of
smoking prevalence.

First, baseline heterogeneity is evaluated by fitting the mixed regression mode! with a
fixed intervention effect and a random intercept term, ignoring covariates, as model F in table
7.5. The NPML approach with sequentially mixture components from K=2 is used to obtain
the maximum likelihood estimate from the model. The NPML approach gives the maximum
likelihood estimate at 4 mixture components with the BIC of 2652.91. The variance of the
mixing distribution is 0.29 on log scale. This figure shows considerable baseline
heterogeneity. The estimate effect of multiple interventions on smoking prevalence is the log-
relative risk of -0.16 (95 per cent CI-0.20 to-0.12), which gives the significant protective
effect of the multiple interventions.

Next, the fixed effect of multiple interventions is replaced by a random effects as in
model G. This is performed to evaluate the heterogeneity effect of multiple interventions. The
NPML again gives the maximum likelihood estimate at K=4 with the BIC of 2737.61. The
estimated variance of mixing distribution of baseline is 0.31, representing similar variation to
the previous model results. The estimate of weighted average log-relative risk of multiple
interventions is -0.11 (95 per cent CI-0.25, 0.03), which is relatively similar to the result of
model F. Here, the result is inconclusive. _

In the third step, further heterogeneity is investigated by adding the covariate of
randomization design as a fixed effect to the model G, becoming the model H. The NPML
produces the maximum likelihood estimate again at K=4 with the BIC of 2740.23. The effect
of randomization design is not significant. The results of estimated variance of mixing
distribution of baseline and estimate of adjusted weighted average log-relative risk of the
multiple interventions are still similar to the result of model G.
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Next, the interaction between treatment and randomized design is fitted to the model
H, now becoming model 1. A significant effect of the interaction is seen. Estimates of the
parameters of this model are presented in table 7.6. Here, a slight raise in the estimate of
adjusted weighted average log-relative risk of the multiple interventions is seen in protective
effect with a significant result of -0.19 (95 per cent CI-0.35, -0.03).

Table7.5 NPML estimates of treatment effect and variance of random effects for each model in
the meta-analysis of multiple interventions trials

Model K BIC Baseline Overall treatment effect
Components "2 Estimated log-relative risk | 95 per cent CI for &
variance(t“ ) A
(8)
F 4 2692.91 0.29 .16 0.20, -0.12
G 4 273761 031 -0.11 -0.25, 0.03
H 4 2740.23 0.30 0.12 -0.25, 0.02
1 4 2750.74 0.28 -0.19 -0.35,-0.03

F = k components mixture distribution of baseline effect and fixed treatment effect

G = k components mixture distribution of baseline effect and treatment effect

H = k components mixture distribution of baseline effect and treatrnent effect phus fixed randomization design

I = Xk components mixture distribution of baseline effect and treatment effect plus fixed randomization design and
interaction of treatment and randomization design

Table 7.6 Estimates of effects for the variables of model [
Variable Estimated log-relative nisk 95 per cent CI
a} Randomization design 0.13 (0.04) 0.05, 0.21
_b) Multiple interventions -0.19 (0.08) (.35, 0.03
<) Interaction a and b 0.21 (0.05) 0.11,0.31

The classification of trials to each component according to model I, which adjusts for
randomization design and the interaction effect, is presented in table 7.7. There is some
difference in specific Jog-relative risk for individual components ranging from -0.29 to -0.06.
The 2™ and 4" components show similar figures of significant protective effect of the
muitiple interventions. Even the 1* and 3™ components show non-significant protective
effects of the multiple interventions. The upper limits of the confidence intervals close to
zero. There is also little variation between the four components with a standard deviation of
0.08.

The results obtained from this example show that there is evidence of slight protective
effect of multiple interventions on smoking prevalence among the adults aged at least 40
years and having no clinical evidence of established cardiovascular disease. Baseline
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heterogeneity is found. The NPMIL approach also presents evidence of different
randomization designs providing the different effect of multiple interventions.

Table 7.7 NPML estimates of treatment effect distribution and classification of trials according
to the 4 components of the maximum likelihood estimates of model I
K" Estimated log-relative risk Weight Trial number
Component (95 per cent CI)

1 -0.06 0.143 2,13
{(-0.20, 0.08)

2 0.29 0.218 1,4,10
(0.37,0.21)

3 0.13 0.282 6,7,11, 14
{-0.29, 0.03)

4 -0.24 0.357 3,5,8,9,12
(-0.36, -0.12)

7.6  Summary

The GLMM shows that by assuming free-distribution for the random effects and with the
procedure of NPML estimator via EM algorithm, information on heterogeneity between trials
is easily provided from sources of treatment effect, some potential covariates and random
effects. Estimated variance of random effects is obtained from the variation of baseline in the
K component mixing distribution. Despite this benefit, care should be taken when
interpreting treatment effect in terms of risk since some of the asymptotic generalizibility
issues remain unsolved in the nonparametric approach.
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Topic 8: Comparing GLM and GLMM approaches,
application to meta-analyses involving cluster randomized trials

In the previous two topics, GLM and GLMM approaches applied for the meta-analyses
related to cluster randomized trials are discussed individually. In this topic an evaluation is
performed for these approaches in terms of methodology, heterogeneity information
provided, model complexity and numerical results.

Section 8.1 compares different approaches in several aspects of their methodology.
Section 8.2 provides a discussion on the heterogeneity information obtained from individual
approaches and model complexity. Section 8.3 discusses strengths and limitations of the
individual approaches. Section 8.4 discusses comparison of the approaches in numerical
results. Finally, section 8.5 concludes and proposes the approach for quantitative synthesis of
the binary outcome in meta-analyses involving cluster randomized trials.

8.1 Methodology comparison

In terms of methodology for different approaches, the issues to be considered are estimation
of parameters and assumption requirements for the estimation, and computation procedure.
Table 8.1 shows procedures and required assumptions to estimate overall treatment effect for
different approaches in the meta-analysis involving cluster randomized trials with binary
outcome. Three aspects of the treatment effect are considered: an estimated overall treatment

effect (0), standard error of © and a confidence interval for 6.

For the GLM, restricted maximum likelihood (REML) estimator is a common
estimator suggested to estimate the overall log-relative risk of treatment effect. The estimator
requires the assumption of a normal distribution of observed treatment effect that is
conditional on the linear mixed model of covariate and random effects. The random effect
distribution here is approximately normal. The GLMM use nonparametric maximum
likelihood approach to estimate the overall log-relative risk of treatment effect. The observed
number of response variable has a poisson distribution given covariates and random effects.
The random effects distribution is left unspecified.

In GLM, the REML estimator also provides the standard error of 6 under the
additional required assumption as for the estimation of overall treatment effect. But since the
standard error calculation is based on asymptotic properties, it may be unreliable. Therefore,
the standard error is not used to calculate a confidence interval for 8. For the GLMM, the

NPML estimator also provides the standard error of 6 under the additional required
assumptions as mentioned to estimate the overall treatment effect.

To calculate a confidence interval for ©, the standard method for a mean parameter
requiring an asymptotic normal distribution of estimated overall treatment effect can be used
for the GLMM. For the GLM, parametric bootstrapping estimation is used to produce the
confidence interval. The lower and upper limits of the interval are obtained from smoothed
percentiles of bootstrap distributions. The procedure does not require any assumption for
producing the confidence interval.
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Table 8.1 Procedure and required assumption for estimating overall treatment effect for
different approaches in the meta-analyses of situation studied

Treatment effect Approaches
GLM GLMM
QOverall effect (9)
o Estimation REMI. NPMLE
procedure
* I;‘:gl“r‘f’gm Normaldistribute observed Normal/Poisson/Binomial distributed observed
P treatment effect given covariate and | response given covariate and random effects.
random effects.
Unspecified distribution of random
Normal distributtion of random effects.
effecis.
Standard error ¢
estimated ©
» Estimation REML NPMLE
Procedure . .
e Required [ndependent estimated © Independent estimated 6
assumption Normal distributed observed Normal/Poisson/Binomial distributed observed
treatment effect given covariate response given covariate and random effects.
and random effects. Unspecified distribution of random effects
Normal distribution of random
effects
Confidence interval
for ©
» Procedure Parametric bootstrapping estimation | Standard method for mean parameter
. i . Asymptotic normal distribution of estimated
!::qsuli:::gon No requirement treatment cffect

The comparative information presented in table 8.1 is also applied to the estimation of
covariates effects.

~

For the random effects, three measures are considered: an estimated variance 12,

sl

standard error of t2and a confidence interval for t?. Procedures and assumption for
estimating variance components for different approaches are presented in table 8.2. The GLM

also employs the REML estimator to provide the estimated variance t* and a standard error

of 2 under the assumption of normal distributed random effects. It is not advisable to use the
standard error to calculate a confidence interval for t° because the calculation of standard

A

error is performed under asymptotic properties, and thus the standard error of t° may be
unreliable. The parametric bootstrapping estimation is used instead to produce the confidence

interval for t? without any assumption requirement.

ol

2

For the GLMM, a weighted variance method is used to estimate t° without any

assumption requirement. In fact the approach can provide a standard error of t?and a
confidence interval for 1? by bootstrapping estimation without requirement of any
assumption. However, the software used for the approach in this study does not have
programmes for the bootstrapping estimation to provide these figures.
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Table 8.2 Procedures and required assumptions for estimating variance of random effects
for different approaches in meta-analyses of situation studied

Random effect Approeach
GLM GLMM

Variance (+*)
o Estimation REML Weighted variance method
procedure
¢ Reguired Normal distribution of random effects No requirement
assumption
Standard error
of estimated +*
» Estimation REML Bootstrapping estimation*
procedure
s Required Normal distribution of random effects No requirement
assumption
Confidence
interval for <
* Procedure Smoothed percentiles of bootstrapping Smoothed percentiles of bootstrapping
distribution distribution®

" » Required No requirement No requirement

assumption
* could be oblained by the appraach but not available in the software used bere

Table 8.3 shows the computation procedure, software available and the software used
for different approaches. They all use the iterative procedure for computing. For the GLM,
the RIGLS algorithm is used to implement the estimations as provided in the MLwiN
software used in this study. However, as discussed(117), it produces results similar to those
from other algorithms.

For the GLMM, by using the macro programme of 2- level poisson regression of S-
plus software, the iterative EM-algorithm is the procedure provided in the programme. This
algorithm has been proposed (124) to estimate maximum likelihood of the GLMM
parameters for many years. It is commonly used in this area.

Several software are available for the two approaches. The STATA software does not
provide complete results in the available commands. Meta-analysts need to write more
programmes for obtaining the complete results of the approaches. Thus, different software
are selected to analyze the data of individual approaches for this study. The software is
selected under the criteria that it provides most of the results needed. In addition, a familiar
and friendly software is preferably chosen. The choice for each approach is believed to be
appropriate.
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Table 8.3 Computation procedure and software available for different approaches
Computation Approach
GLM GLMM
¢ Procedure Iterative Herative

(RIGLS algorithm for this study) {EM-algorithm for this study)

. ; Meta Graphs, GLIM
Software available GLIM GLIMMIX
MLwiN* STATA Macros,
SAS Macro Suite S-plus*
STATA Macros

* goftware used in this study

8.2 Heterogeneity information for different approaches

Here the heterogeneity information obtained from each approach is discussed. The
summaries are presented in table 8 4. The GLM approach produces the estimated overall
treatment effect and confidence interval for 6. Since the observed treatment effect is
conditional upon a linear mixed model of covariates and random effects, the approach can
provide covariate effect of continuous and categorical variables at trial level and individual
level with the confidence intervals for the true parameters. For the random effects

information, the GLM also provides an estimated variance t* and a confidence interval for

1?for the whole meta-analyses and subgroups of some categorical covariate variables. An
example is the randomization design variable for the meta-analysis of mammographic
screening trials with two categories. Here, for each category a variance of random effects can
be specified.

The GLMM provides the most general results compared to the GLM approach. The
results not provided here by the GLMM are confidence intervals for t*and estimated
variances of covariate subgroups. These deficiencies are due to incomplete results provided
by the software rather than the approach.

In terms of interpretation and generalizability, the results obtained from the GLM
performed under normality assumption are straightforward to interpret. The GLMM obtain
the estimated treatment effects from a discrete mixing distribution. For ones who believe in
smoothing distribution, this may make it difficult to interpret and make an inference on the
results. However, the issue of misspecified and unproved normal distribution of random
effects is still questionable, especially for the common case of meta-analysis with small
number of trials.



