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A graph G is said to be k-Y-critical if the size of any minimum dominating set of

vertices is k, but if any edge is added to G the resulting graph can be dominated with k — 1

vertices. The structure of k-Y-critical graphs remains far from completely understood when Y =
3.

A graph G is k-factor-critical if G — S has a perfect matching for every set of k vertices
in G. In this paper, we establish the relationship of k-Y-critical and (k+1)-Y-critical graphs for k
= 1 and 2. We also explore the toughness of 3-Y-critical graphs and some of their matching
properties. In particular, we obtain some properties which are sufficient for a 3-Y-critical graph

to be k-factor-criticat for k = 1, 2 and 3. Further, two conjectures involving matching in 3-V-

critical graphs are set forth.
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1. Introduction

Let G denote a finite undirected graph with vertex set V(G) and edge set E(G).
" A near-factor matching in a graph G is one which covers all but exactly one of the
vertices of G. A graph G is factor-critical if G — {v} has a perfect matching for every
vertex v € V(G) and is bicritical if G — {u, v} has a perfect matching for every pair of
distinct vertices u,v € V(G). More generally, a graph G is said to be k-factor-critical if
G — 5 has a perfect matching for every set of & vertices in G.

A set SC V(G) is a (vertex) dominating set for G if every vertex of GG either be-
longs to S or is adjacent to a vertex of . The minimum cardinality of a vertex dominating
set in graph G is called the (vertex) domination number (or simply the domination
number) of G and is denoted by v(G). Graph G is said to be k-~-critical if v(G) = k.
but v(G +e) = k —1 for each edge e ¢ £(G). The structure of A-y-critical graphs remains
far from completely understood when v > 3. Sumner and Blitch [SB] were the first to
srudy 3-~-critical graphs. For summaries of most known resuits. see [HHS;Chapter 16] ax
well as [FTWZ].

Suppose G is k-y-critical and uw and v are non-adjacent vertices of G. Then there exists
aset S € V(G) of order £ — 2 such that SU {u} dominates G — {v} or SU {v} dominates
G — {u}. We will follow previously accepted notation and write [u, S] — v in the fArst
case and [v,S] — u in the second case. For the case k = 3. clearly |S| = 1. If § = {w}
and [u, §] — v. then we will write [u, w] — v instead of [u. {w}] — v.

Finally, we refer the reader to [LP] for further notation, terminology and background
for matching theory. In particular, we shall denote by N(v) the neighborhood of vertex v.
that is. the set of all vertices adjacent to v. In addition, we denote by w{G) the number of
components of the graph G and by w,(G), the number of components of odd order in .

2. Preliminaries

In this section we state a number of results which we make use of in our work. Qur
first result is a characterization of k--y-critical graphs for & = 1 and 2 proved by Sumner
and Blitch [SB].

Theorem 2.1. The only 1-y-critical graphs are K, and a graph G is 2-y-critical if
and only if it is the complement of a union of stars; i.e., G = Ui_, Ky, ny. for t > 1.
i
Sumner and Blitch [SB] also established the following result which can be viewed as
a toughness result for 3-y-critical graphs.

Theorem 2.2, Let G be a connected 3-7-critical graph. Then if § is a vertex cutset

in &G, G — S has at most |S| + 1 components.

This result was recently extended by Flandrin et al. [FTWZ] as follows.

1



Theorem 2.3. Let G be a connected 3--y-critical graph. If S is a vertex cutsct in G

~such that w(G — 8§) = |S| + 1, then each vertex v € § is a cutvertex of G.

\ |

In addition to Theorem 2.2, Sumner and Blitch [SB] also proved the following lemina
for the case n > 4. The cases n = 2 and 3 were proved in [FTWZ; Lemma 1]. This lemma

» will be used repeatedly throughout our paper.

Lemma 2.4. Let G be a connected 3-y-critical graph and let S be an independent
set of n > 2 vertices in V(G).

(1) Then the vertices of S can be ordered a,, asy, ..., a, in such a way that there exists a
sequence of distinct vertices xy1,Z2,....Zn_1 so that [a;,z;] —> a;4; fori=1,2,... . n— 1.

(i1) If. in addition. n > 4, then the x;’s can be chosen so that x x5 -x,_; is a path
and SO {ry... . x,_1} =0
|

Two additional results from [SB] which will be of help to us are the next two lemmas.

Lemma 2.5. If G is a connected 3-v-critical graph, then no two endvertices of &
have a common neighbor.

Lemma 2.6. The diameter of any connected 3-y-critical graph is at most three.

Blitch [B] proved the next result.

Lemma 2.7. If G is a connected 3-v-critical graph and v is a cutvertex of G, then v
1s adjacent to an endvertex of G.

The following two results of Wojcicka [W] will also prove useful to us.

Theorem 2.8. If G is a connected 3-v-critical graph with more than six vertices,
then G has a Hamiltonian path.

To state the next theorem, we make use of the concept of a full 3-y-critical graph.
Forany p > 8, let a + b+ ¢ = p — 3 be any partition of p — 3. Let f be a conplete
graph on p — 3 vertices and let AU BUC = V(H) be a partition of the vertices of 4 with
|[Al = a,|B| = b and |C| = ¢. Form a new graph G by adding to H three new vertices u.v
and w with N(u) = A, N(v) = B and N(w) = C. Then G is clearly 3-y-critical and is said
to be full

Theorem 2.9. Let G be a connected 3-y-critical graph having two endvertices. Then
G is full. :



The next result which will prove useful to us was conjectured by Wojcicka [W] and
in a series of three papers ([FTZ, FTWZ, TWZ]) proved by Favaron, Flandrin, Tian, Wei
~and Zhang. (In hér survey [My], however, Mynhardt refers to this result as “Wojcicka's
Theorem”. See also [Mo].)

Theorem 2.10. Every connected 3-y-critical graph having minimum degree at least
2 has a Hamiltonian cycle.

|
We conclude this section by stating a result proved by Favaron[F].

Theorem 2.11 A graph G is &-factor-critical if and only if w,(G — S) < |S| — &, for
every S C V(@) and |S| > k.
"

3. Some basic results
We begin this section by stating a basic property of k-+-critical graphs.

Theorem 3.1. In k--critical graphs, every vertex lies in some minimum dominating
set.

Proof: Suppose to the contrary that there is a vertex = € V(') such that « ¢ S for
every minimum dominating set S.

Choose a minimum dominating set Sg. Then there exists a vertex y € Sg such
that yzr € E(G). Since Sg — {y} is not a dominating set, therc exists a vertex z €
V(G) — (So U {z}) such that yz € E(G) and zz ¢ E(G) as otherwise (So U {x}) — {y}
becomes a dominating set of GG, a contradiction.

Now consider G + zz. Since G is k-y-critical graph, there exists a set W of V(G) such
that [W| =& — 2 and [z, W] — z or [z, W] — . In cither case, W U {z.z} becones
a dominating set of order k, contradicting a choice of z. This completes the proof of our
theorem.

Our next two results establish the relationship of k-vy-critical and (k + 1)--y-critical
graphs for k = 1 and 2.

Theorem 3.2. Every 1-y-critical graph is an induced subgraph of a 2-y-critical graph.

Proof: Let A be an 1l-y-critical graph of order n. By Theorem 2.1, H is K,,. Let
G be a graph obtained by joining two copies of K, except a perfect matching. Figure 3.1
displays the graph G which the vertex set of K,,’s are {z1,z2,...,Zn} and {y1.¥2,--..¥n},
respectively. Since z;y; ¢ E(G) fori =1,2,...,n,v(G) > 2. On the other hand, it is clear
that {z,,z2} dominates G.



Figure 3.1.

Thus v(G) = 2. Notice that only missing edges in G are z;y; fort = 1,2,...,n.
Clearly, {x,} dominates G + z,;y;. Thus v(G + z;y;) = 1. This proves that & is critical
and completes the proof of our theorem.

Theorem 3.3. Every 2-vy-critical graph is an induced subgraph of a 3-y-critical graph.

Proof: Let H be a 2-v-critical graph of order n. Put G, = Hv K,V K, Vv K, for a
positive integer ¢t > 1.

Let V(H) = {z1,z2,...,zn} and V(K,) = {y1,v2, -, ¥Un}.- Put F={xy; : 1 <1 <
n} and G = G, - F. Figure 3.2 displays our graph G. Throughout the paper we adopt the
convention that a "+” in our diagram denotes the join between the corresponding graphs.

Figure 3.2.

We will first show that v(G) = 3. Let ¢ be a vertex of K;. Then {c,y,y2} dominates
G. Suppose G is dominated by a pair of vertices, u© and v say. Clearly, © and v are
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not both in H or K,; as otherwise, {u,v} cannot dominate K;. Thus one of {w,v}. u
sav must be a vertex of K; U K. Hence v must be a vertex of #/ U K,,. Since u is not
adjacent to any vertex of H, if v was in V{(H), then v would have to dominate ff. This is
impossible because y(f) = 2. Thus v belongs to V(K,). Without any loss of generality.,
we may assume that v = y;. Clearly {u,y:} does not dominate G since uz, ¢ E(G) and
r1y1 € E(G). This proves that v(G) = 3.

Next. we will show that G is critical. Let w and z be a pair of non-adjacent vertices
of G. Consider G + wz. We have only four possible cases to consider:

Case 1: w € V(H) and z € V(H).

Since H is 2-y-critical, y(H + wz) = 1. Thus H + wz is dominated by w or z, w say.
Then {w. w;} dominates G + wz for any choice of w; € V(K,).

Case 2: we V(H) and z € V(K,,).

Suppose w = z; for some j, 1 < j < n. Then, clearlv. z = y,;. Hence {y;.w}
dominates G + wz for any cheice of wy € V(Ky).

Case 3: we V(H)and z € V(K,;)U V(K;).

Suppose w = x; for some j. 1 < 7 < n. Since z is adjacent. in G+wz, to every vertex of
(VKU (K1) U{z;})— {2z} and y; is adjacent to every vertex of (K, —{y; DU(H —{z;}).
{z.y;} dominates G + wz.

Case 4: w € V(K,) and z € V(K,).

Suppose w = y; for some j. 1 < 7 < n. Then {y;,z;} dominates G + wz since y; is
adjacent to every vertex of G — {z;} in G + wz.

This proves that G is critical and completes the proof of our theorem.

Finally, in what is to follow, we shall also make frequent use of the following easy
result.

Lemma 3.4. Let G be a 3-y-critical graph and let u© and v be non-adjacent vertices
of G. If = is a vertex of G such that [u,z] — v, then xv ¢ E(G) and if £ is a vertex of G
with [v, 2] — u then zu € E(G).

Proof: Suppose [u,z] — v. If zv € E(G), then v and r dominate G, contradicting
the assumption that v(G) = 3. Similarly, if [v, z] — u, then zu ¢ E(G).
|

4. Some results on a vertex cutset and its consequence

Our first result in this section significantly sharpens Theorem 2.2. It can also be
viewed as a toughness result for 3 — y-critical graphs.

Theorem 4.1. Let G be a connected 3 — «y-critical graph and let S be a vertex cutset
in G. Then

(1) if |S| > 4, G — S has at most |S| — 1 components,

)



(i1) if |S| = 3, then G — § contains at most | S| components, and if G — S has exactly
three components, then each component is complete and at least one is a singleton.

A
(iii) if |S| = 2, then & — S has at most three components and if G — S has exactly
three components, then G must have the structure shown below in Figure 4.1.

(iv) if |S] = 1, then G — 5 has two components, exactly one of which is a singleton.
Furthermore, G has exactly one or two cutvertices and if it has two, GG is isomorphic to a
graph of the type shown in Figure 4.1.

Ce=>

e e
9
(o]

Figure 4.1.

Proof: To prove part (i), suppose that S is a vertex cutset in G and |S| > 4.
Suppose, to the contrary, that G — S has at least |S| > 4 components. Forz = 1,2,3,... k&,
let H; be a component of G — S. Choose a vertex w; € V(H;),1 < i < k. Clearly
W = {w;,w2,...,wx} is an independent set. By Lemma 2.4, the vertices of W may be
ordered as a;,as,...,a; in such a way that there exists a path ziz2... 24 In &G - W
such that {a;, ;] — @iy, for i =1,2,...,k — 1. By Lemma 3.4, z:a,4; ¢ E(G) for each
1=1,2,...,k—1. Clearly z; € Sfori =1,2,...,k— 1. By Theorem 2.2, k —1 < |5| < k.
Without loss of generality, we may renumber the components of G — .5 in such a way that
a, € V(H;). In what is to follow, we make frequent use of the following two observations:

(O1). For:=1,2,...,k — 1, z; is adjacent to every vertex of

[(ULIV(H,-)) _(V(H)U {a,-ﬂ})]

since [a;', .’L‘,‘] — Qi41-

(O2). By O1, a, is adjacent to every vertex of {z2,Z3,...,Tk—1} and for i = 2,... &,
a; is adjacent to every vertex of {x,,Z2,...,Ti—2, Tit1, Tig2,--- ,Tx_1}. Figure 4.2 depicts
this situation.



2 4 .
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Figure 4.2.

Now consider G + ajaz. There must exist a vertex y € G — {a;, a3} such that cither
l[az,y] — a1 or [a1,y] — a3z. Clearly in either case y € S. We first suppose that
S| = k — 1. If [a3,y] — a1, then y = z, since z;a;41 ¢ E(G), for i = 1,... k — 1.
But this contradicts Lemma 3.4 since a;r; € E(G). Hence [a1,y] — a3. By the same
argument, y = . Now z, is adjacent to every vertex of UX_, V() — {a3}. By this fact
and observation O2, vertices z» and az together dominate &, a contradiction. Therefore
S| = k. In this case there exists exactly one vertex in § — {z1,...,zx—1} and we shall
denote it by xx.

Case 1: Suppose {a3,y] — a,. Since z;a;41 € E(G) for t = 1,... .k — 1, it follows
that y = 45 or y = zx. By O2 and Lemma 3.4, y # x2. Thus y = x,. That is, [a3, zx] —>
ay. Consequently, zpa; € E{(G). Since [a1,z1] — a2, o172 € E(G). Now consider
G + azas. By arguments similar to those above and using the fact that z;a;41 € E(G), for
1=1,2,...,k — 1, there are only six possible cases which must be considered.

Subcase 1.1: [z,a2] — aq,
Subcase 1.2: [z3,a;] — a4,
Subcase 1.3: [z, a2] — ay,
Subcase 1.4: [z,,a4] — a3,
Subcase 1.5: [z3,a4] — a2,
Subcase 1.6: [zg,a4] — a2.

Since by O1, z1a4 € E{(G) and z3a, € E(G), by Lemma 3.4, Subcases 1.1 and 1.5
are impossible. Recall also that zxa; € F(G), so Subcases 1.3 and 1.6 are also impossible.
Suppose next that [z3,a3] — as. This implies that z3 is adjacent to every vertex of H;.
Thus by O1, z; is adjacent to every vertex of UX_, V(H;) — {a4}. Since [a3, zx] — @, and
azas ¢ E(G), agzr € E(G). By this fact and O2, vertex a4 is adjacent to every vertex of
S—{za,z4}. Hence z3 and a4 dominate G, contradicting the fact that v(G) = 3. Therefore,
Subcase 1.2 is impossible. By similar arguments, Subcase 1.4 is also impossible; otherwise

7



r; and az dominate G. a contradiction. Thus v(G + azay) > 2. again a contradiction.
Hence [az. y] — ay s false for all y € S.
\

Case 2: Suppose [a1,y] — az. Since x;a;41 € E(G) for ¢ = L, ... &k — L. it lollows
that ¥y = x> or y = xx. We treat each of these two cases separately.

Case 2.1: Suppose ¥y = x2. That is, [ay, r2] — a3. This implies that @s is adjacent to
every vertex of Hy. Therefore by Ol. vertex z» is adjacent to every vertex of WS V(H,) —
{az}. If azxy € E(G). then by O2, vertex aj is adjacent to every vertex of § — {x2.r3}.
Thus r» and a3z dominate G, a contradiction. Hence azzy € E((G). Since [as.x3] — aj.
and azrr € E(G). r3zrr € E(G). Now consider the graph G + asa,;. By the fact that
rigiyy € E(G) fort = 1..... A — 1. and v(G + asaq) = 2. we have only six possible
subcases to consider:

Subcase 2.1.1: [x).a2] — ay.
Subcase 2.1.2: [r3.a2] — a,.
Subcase 2.1.3: [xry.a2] — ay.
Subcase 2.1.4: [r;.ay4] — ao.
Subcase 2.1.5: [x3.a4] — a-.
Subcase 2.1.6: [y, ay] — a2,

Since ryay € E(G) and rzaz € E(G) by Lemma 3.4, Subcase 2.1.1 and Subcase 2.1.5
are impossible. Recall that azre € E(G). so that Subcase 2.1.3 and Subcase 2.1.6 are
also impossible. Now suppose that [z3.a2] — a,. This implies that r3 is adjacent to
every vertex of Hz. Thus by O1, z3 is adjacent to every vertex of US_, V(H;) — {a,}. Now
recall that xyxy € E(G). By this fact and 02, r3 and ay dominate G, a contradiction.
Thus Subcase 2.1.2 is impossible. Finally, consider Subcase 2.1.4. Suppose [z, a4] — a2.
Then r; is adjacent to every vertex of Hy. Thus by Ol. 21 i1s adjacent to every vertex of
S VI(HL) — {a2}. If zras € E(G).then by O2. 2, and a2 dominate G. a contradiction.
Hence asxi ¢ E(G). Since {az,z2] — a3, voxx € E(G). By the assumption of Case 2.1
that [ay.x2] — a3 and Ol. x» is adjacent to every vertex of US_ V(H;) — {a3}. By O2
and the fact that zsxr € E(G). r2 and a3z dominate . This contradiction proves that
Subcase 2.1.4 is impossible. Hence v(G +azay) > 2. a contradiction. Thus Case 2.1 cannot
happen.

Case 2.2: y = zy,. That is, [a),zx] — a3. By Lemma 3.4, zraz ¢ E(G). Since
[az.x3] — a4, 3z € E(G). Now consider G + asay. Since z;a,41 ¢ E(G) for i =
1..... k — 1, and ¥(G + azay) = 2, we have only six possible cases to consider.

Subcase 2.2.1: [1,,a2] — ay,
Subcase 2.2.2: [r3,a2] — ay,
Subcase 2.2.3: [z, a2] — ay,
Subcase 2.2.4: [z1,a4] — a3,
Subcase 2.2.5: [z3,a4] — ag,
Subcase 2.2.6: [zx,a4] — as.

By arguments similar to those used in the treatment of Case 2.1 and the fact that
Traz ¢ E(G) while 23z, € E(G), Subcases 2.2.1, 2.2.2. 2.2.3, 2.25 and 2.2.6 are all

8



" impossible. It remains to consider Subcase 2.2.4. So supposc that [z, ay] — az. This
implies that x{ is adjacent to every vertex of ;. Thus by O1, x; is adjacent to every

vertex of UF_ | V(;) — {a2}. Since [zx.a,] — a3, zras € I5(G). By 02, x; and s
" dominate G, a contradiction. Hence Y{G + azaq) > 2. This contradicts the fact that (7 is
3-v-critical. Thus Case 2.2 is also impossible. It therefore follows that (G + aya3) > 2.
_ again a contradiction. Hence G — § has at most |[S| — 1 components and (i) is proved.

We turn now to part (il). Suppose S is a vertex cutset in & and |S]| = 3. We want
to show that G — S contains at most |S| components. Suppose, to the contrary, that
(G — S contains at least |S| + 1 = 4 components. Then by Theorem 2.2, & — S contains
exactly four components. Let H; denote these four components, i = 1,...,4. Choose a
vertex w; € V(H;),1 < i < 4. Clearly W = {w;, ws, w3, w4} is an independent sct. By
Lemma 2.4, the vertices in W may be ordered as a;,as2,a3,a; in such a way that there
exists a path x1z2x3 in G — W such that [a;, z;] — @441, for i = 1,2.3. By Lemuna 3.1,
r.aiv1 € E(G), for each 2 = 1,2,3. Clearly z; € § for 7 = 1.2.3. Since o,z — a4
and ra,+1 ¢ L(G), x; is adjacent to every vertex of szl‘l/(Hj) —(V{H) U {a,,}). for
: =1,2.3. Soz; #xj forall 1 <7# j <3. Thus {z,,z2, 23} = 5.

By applying an argument similar to that used in part (i) when |S] = £ = 1, we can
prove that v(G + ayaz) > 2, a contradiction. So G — § contains at most threc components
as claimed.

Now suppose G — S contains ezactly threce components. We now show that in this
instance, each of the three components must be complete. Suppose to the contrary that
there exists a component C of G — S such that |V(C)| > 2 and C is not complete. Then
there exist two non-adjacent vertices wy, and wq in C. Let C) and Ch be the other two
components of G — S. Choose wy € V(C,) and wy € V(C32). Then W = {w, wa, w3, w,y}
15 an independent set. So by Lemma 2.4 the vertices of W may be ordered a;,as, 03.a,
in such a way that there exists a path z,zoz3 in G — W such that [a,.x;] — a,4, for
1 = 1,2.3. Clearly z; # z; for 1 <i# j < 3 and by Lemma 3.-1. x4 & FE(G).

Claim 1: {x,,z2,z3} # S.

Suppose to the contrary that {z;,z2,23} = S and consider G + aja,4. Since y(G +
ayaq) = 2. there exists a vertex z € V(G)—{a1, a4} such that [ay. 2] — a) or [a,, 2| — a4,
Suppose [a4,2] — a;. If z € S, then z = 3 since z1a2 € E(G) and zan3 ¢ E(G). But
this contradicts Lemma 3.4 since [a3, T3] — a4 and ajaz € E(G). Thus z ¢ S. But this
implies that as and a3 are in the same component of G — 5; call it H. But then z € V(H).
Hence z is adjacent to every vertex of H — {z}. Since [a2, 2] — a3, vertex z, is adjacent
to every vertex of H, U H, where H, and H, are the components of G — S containing
vertices a; and a4 respectively. Since z,z,xz3 is a path, vertex x, is adjacent to x; and xj.
Hence {z,, z} dominates GG, a contradiction.

Hence [a1, 2] — a4. Suppose z € S. Since xiaz ¢ F(G) and z2a3 ¢ E(G), 2 = 3.
By using this fact and the fact that [az, 3] — a4, vertex z3 is adjacent to every vertex
of G — &, except as. Since [az,z2] — a3, edge z2a4 € E(G). Because x1z2x3 is a path,
edge T1z2 € E(G). Hence {x;,z3} dominates G, a contradiction. Hence z ¢ §S.

By applying the same argument as above, one can show that {z;, 2} dominates G,
again a contradiction. This completes the proof of Claim 1.
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Claim 2: |Sﬂ {_’E]_,IQ,I:;}I < 2.
Suppose to the contrary that |SN{x;, x>, z3}| > 2. Then by Claim 1, {SN{x,za,z3}| =
\

[sw]

Case 2.1: Suppose z; and z, € S.

Since [as,z3] — a4, and {a,, a2, a3,aeq} is independent, edge z3a, € E(G) and
edge zza, € E(G). Thus a;,a2 and z3 belong to the same component of G — S, say
H,. Moreover, then, vertex 3 dominates all of H,. Let H; and H3 be the components of
G — S containing a3 and a4 respectively. Clearly H; # H;, for 1 <1 7 j < 3. Furthermore,
V(H3z) = {aas}. Choose w € §— {z,,z2}. If zyw € E(G), then {z,,z3} dominates G since
z3 dominates H; and x, dominates Hy U 3 U {z2,w}, a contradiction.

Hence xw ¢ E(G). Similarly, rzw ¢ E(G). Since a1, 1] — a2 and [a3, z3] — ag,
we have ayw € F(G) and azw € E(G). Figure 4.3 depicts this situation.

Figure 4.3

Recall that z;a;4, ¢ E(G), fori = 1,2,3. Now consider G+aray. Since v(G+a1a4) =
2, there exists a vertex z € G — {ay, a4} such that [a4, 2] —> a1 or [a,, 2] —> a4. Suppose
first that [aa, 2] —> a;. Since a» and a3 are in different components of G — S, z € 5. But
z # x, since z1a; ¢ E(G) and 2z 5% z3 since zqa3 ¢ E(G). Thus z = w. But this is also
impossible since wzz ¢ E(G).

Hence [a), 2] — a4. Because aiaz ¢ FE{G) and a3 and a3 are in different components
of G — G, it follows that z € S. By Lemma 3.4, z # z; and z # z3 since x:1a4 € E(G) and
Zza4 € E(G). Thus z = w. But then ways ¢ E(G) by Lemma 3.4.

Now consider G+azay4. Since v(G+azaq) = 2, there exists a vertex z € V(G)—{az,a4}
such that [aj, 2] — a4 or [a4, 2] — a2. Suppose (a2, z] — a4. Since a a2 ¢ E(G) and
ay and a3 are in different components of G — S, it follows that z € S. Since zya4 and
zz2a4 € E(G), by Lemma 3.4 it follows that z ¢ {z;,z2}. But then z = w. However, this
is also impossible since wz, ¢ E(G) and axz; ¢ E(G).

Hence [a4,z] —+ a2. Because a; and a3 are in different components of G —~ S, it
follows that z € S. Clearly z # z, and z # w since z2a3 ¢ E(G) and wzz ¢ E(G). Thus
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z = x;. But this is also iinpossible since x;w ¢ L(G) and aqw ¢ [£{G). This contradiction

proves Case 2.1.
\

Case 2.2: Supposc z, and x5 € S.

Since [az,z2] — a3z and {a;,az,a3,a4} is independent, edge ayz2 € E(G) and edge
a4z € E(G). Thus a;,a,4 and z; all belong to the same component of G — S, say f/,. Let
H> and H3 be the components of ¢ — S containing a; and a3 respectively.

Clearly H; # Hj; for 1 < i # j < 3. Furthermore, V(I{3) = {a3}. Choosc w €
S—{z1,z3}. fxyw € E(G), then {z,,z3} dominates G since z3 dominates (M —{aq })UH
and z; dominates (H, — {a2}) U H13 U {a4, w}, a contradiction.

Hence x,w ¢ E(G). Similarly, zaw ¢ FE{(G). Since [a),z1] — a2, edge a,w € E(Q)
and since [a3, 3] — a4, edge a3w € E(G). Figure 4.4 illustrates this situation.

Figure 4.4

Now consider G + ajaz. since y(G + aa3) = 2, there exists a vertex z € G — {ay, a3}
such that [a(, z] — a3 or [a3z, 2] — ;.

Suppose [ay, z] — a3. Since ayaq4 ¢ £(G) and az and a4 are in diflerent components
of G — S, it follows that vertex z € S. Because x a3 and waz € (G}, vertex z ¢ {z,,w}
by Lemma 3.4. Thus z = x3. But this is impossiblc since z3aq and a104 € E(G).

Hence [a3,z] — a,. Because as and a4 are in different components of G — S, it
follows that vertex z € S. By Lemma 3.4, vertex z ¢ {x3,w}, since z3a; and wa, € E(G).
Thus z = z;. But this is also impossible since z1a; ¢ F(G). Thus Case 2.2 is settled.

Case 2.3: Suppose 2 and 3 € S.

Since [ey,z;] — a2 and {a),a2,a3,a4} is independent, edge azx; € £(G) and edge
aqxy € E(G). Thus ajz,aq and z, belong to the same component of G - S, say Hj.
Morcover, vertex r; dominates all of M. Let H; and I/, be the components of G — S
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containing a and az respectively. Clearly H; # H;, for | < i # 7 < 3. Furthermore,
V(Hz) = {a2}. Choose w € § — {z;,z3}. If z3w € E(G), then {z,, z3} dominates G since
z3 dominates H; U H, U {z;,w} and z; dominates K3, a contradiction.

Thus zaw ¢ E(G). Similarly, zyw ¢ E(G). Since [a1, 1] — a2, edge a,w € E(G)
and since [aa, T3] — a4, edge azw € E(G). Figure 4.5 shows this situation.

H H
Hl 2 3

Figure 4.5

Now consider G + a,a3. Since v(G + a1a3) = 2, there exists a vertex z € G — {ay,a3}
such that [a, z] — a3 or [aa, 2] — a;.

Suppose first that [a3, 2] — a;. Since a; and a, are in different components of G- 5,
vertex z € S. Because [a;,x;] — a;41 for i = 1,2,3, edges a1z, and a,z3 € E({). Since
ayw € E(G), by Lemma 3.4 vertex z ¢ {z2,z3,w} = 5, a contradiction.

Hence [a1, 2] — a3. By the same argument as above, vertex z € 5. By Lemma 3.4,
z # w since waz € E(G). Clearly z # x3, since z3a4 ¢ F(G). Thus z = z5. By this fact
and the fact that [a,, 2] — a3, vertex z» dominates (fy U H, U H3 U {z3}) — {a3}. But
then since azw € F(G), {w, z2} dominates G, a contradiction.

This completes the proof in Case 2.3 and hence Claim 2 is proved.

By Claim 1 and Claim 2, |Sn{z,,z2,z3}| < 1. Suppose z; € §. Then x; and z; are
in some component of G — S. Because {a,, a2, a3, a4} is independent and [as, 2] —-> aa,
vertex xz, is adjacent to both a; and a4. Similarly, vertex x3 is adjacent to both a; and
a2. Hence a1,a; and a4 are in the same component. But this contradicts our choice of the
a;. Hence =, ¢ S. Similarly, 3 ¢ S. By applying a similar argument, if £, € S, then a,
and a; are in the same component of G — S and a3 and a4 are in the same component of
G — § which again contradicts the choice of a;. Hence SN {z,,x2,z3} = §. This implies
that each z; belongs to some component of G — S.

Since [a;, z;] — ai;q, for i = 1,2, 3, it follows that x; is adjacent to a3 and a4, z, is
adjacent to a; and a4 and z3 is adjacent to a; and az. This implies that a;, as, a3 and a4
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are in the same component of G — S, again contradicting the choice of the a;. Hence cach
component of G — § is complete.

Next we show that at least one of the three complete components must be a singleton.
‘Suppose to the contrary that each component of G — S has at least two vertices. Let H,
be the components of G — S5, 1 = 1,2,3. For each i = 1,2,3. choose w; € V(H,). Clearly
{wi,we. w3} is an independent set. By Lemma 2.4 the vertices in W may be ordered as
ay.az2,a3 in such a way that there exist vertices x; and z» such that [a;,z;] — a,4 for
¢ = 1,2. Without loss of generality, we may renumber the components of G — S in such a
way that a; € V(H;). Since each component of G — S has at least two vertices, z, and x5
must belong to S. Clearly z, # z,. Let 5 — {z,,22} = {w}. Choose a} € V(H;) — {a}
and af € V(H3) — {aa}. Consider G + aja%. Since v(G + aja%) = 2, there exists a vertex
z € V(G) — {a!, a5} such that [a], z] — a5 or |a}, 2] — 4. In either case, z € S.

Suppose first that [a}, z] — a%. Since z,a2 ¢ E(G) and z2a3 ¢ E(G), z # z, and
z # z2. Thus z = w. This implies that w dominates (H, U H3) — {a}}. Since x a2 ¢ F(G)
and [az, r2] — a3, vertex xz dominates (HyUHzU{z1})— {az}. Thus {w,z2} dominates
(. a contradiction.

Hence [a}, 2] — a). Because z1a2 ¢ E(G), z # 11. Since z2a] € E(G). by Lemma
3.4, z # ro. Thus z = w. This implies that w dominates (H, U H,) — {a|}. Now consider
G + a1r;. Since ¥(G + aialy) = 2, there exists a vertex z; € & — {ay.al} such that
[ay, z21] — af or [af, z;] — a,. In either case z; € S.

Suppose [a;, z1] — af. Since xzyas € E(G) and xpa3 ¢ E(G), z1 # x, and z1 # 2.
Thus z; = w. By using this fact and the fact that [a}. w] — a}, we see that w dominates
(Hy U Ha U H3) — {a},a%}. Since xria; ¢ E(G) and [aa.z2] — a3. vertex z; dominates
(HiUHz U {x1}) — {a3z}. Thus {z2,w} dominates (¢, a contradiction,

Hence [a%, 1] — a;. Since z1a2 ¢ E(G) and wa) € E(G). 21 # =1 and z; # w:. Thus
zy = 9. But this contradicts Lemma 3.4 since a,x9 € E{G). This completes the proof ot
part (ii).

Next we turn to part (iii). Suppose therefore that S is a vertex cutset with 15| =
2. Then by the Theorem 2.2, w(G — §) < 3. Suppose that G — 5 has precisely three
components. Let s; and s> be the vertices of § and let H;,¢ = 1.2,3. be the three
components of G — 5. By Theorem 2.3, both s; and s are cutvertices. So each s,.
1 = 1,2, is adjacent to an endvertex of G by Lemma 2.7. So & has at least two endvertices.
say ay and a,. Furthermore, neither a; nor aj is in §. Since no two endvertices of &
have a common neighbor by Lemma 2.5, we may assume. without loss of generality. that
a;8; € E(G) and a; € V(H,) fori=1,2.

I IV{G)| = 7. then G must have exactly two endvertices since & has a Hamiltonian
path by Theorem 2.8. Hence by Theorem 2.9, graph G is of the type shown in Figure 4.1.
where n > 3.

So now let us assume that |V (G)| < 6. Since a; is an endvertex of G and a;s; € E(G).
for © = 1,2, V(H;) = {a;}. If |[V(H3)] = 1, then, since G is connected, v(G) = 2. a
contradiction. Hence |V (H3)| = 2. Let V(H3) = {a3,a4}. Since G is connected, we may
assume that azs; € E(G). But then ays; ¢ E(G) for « = 1 and 2; otherwise {s1.s2}
dominates G. Thus a4 is an endvertex of G. Suppose azs2 € £(G) and consider G + azss.
Since v(G + azsz) = 2, there is a vertex z of G — {a3, s2} such that either [a3.2] — s,
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or [sg,z] — a3. Suppose [a3, z] — s5. Then by Lemrma 3.4, z # a3 since azsy € £(G).
Thus [a3,2z] — s2 is impossible since N(az) = {s2}. Similarly, [s2,2] — a3 is also
impossible. This contradiction proves that spa; € E(G). By applying a similar argument,
‘edge s152 € E(G). Hence G is a graph of the type shown in Figure 4.1 where n = 2.

This completes the proof of part (iii).

Finally, suppose |S| = 1. Let ¢ be a cutvertex of G. Then G — {c} has exactly two
Icomponents by the Theorem 2.2. Moreover, one of the two components is a singleton by
Lemma 2.7. (Clearly it cannot happen that both components of G — {c} are singletons,
for then |V (G} = 3 and so 7(G) # 3 since G is connected.} If |V(G)| < 6, it is easy to
see that G must be isomorphic to the six-vertex graph shown in Figure 4.6(a). So suppose
|V(G)| > 7. Then &G has a Hamiltonian path by Theorem 2.8. But then G has at most
two endedges. If it has two endedges, then by [SB; Remark, pg70] it must be isomorphic
to a graph of the type shown in Figure 4.1.

This completes the proof of part (iv) and hence the theorem is proved.
i

Pertaining to part (ii) of the preceding theorem, we point out that it is not possible
to say more about the number of singleton components, for in Figure 4.6 below we present
examples in which G — § has three, two and one singleton component respectively.

(a) ®) ()
Figure 4.6
The following result is an immediate corollary to our Theorem 4.1.
Corollary 4.2. Let G be a connected 3-v-critical graph and let S be a cutset in G.

If G — § has exactly |S|+ 1 components, then |S| < 2.
E

Recall that the toughness of a (connected) graph G, 7(G), is defined as follows.
7(G) = min {|S|/w(G — 5)} where the minimum is taken over all cutsets S of G. It follows
from Theorem 4.1(iv) that every connected 3-y-critical graph has toughness at least 1/2
and it was shown in [FTWZ] that every 2-connected 3--y-critical graph has toughness at
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east 1. In view of part (i) of Theorem 4.1, we can sharpen this result slightly via the
following immediatg corollary.

Corollary 4.3. If G is a 4-connected 3-y-critical graph, then G has toughness strictly
greater than 1.

Qur next result 1s an extension of Theorem 4.1.

Theorem 4.4. If G is a connected 3-v-critical graph and S is a vertex cutset in G.
then if |S] > G, it follows that w(G — §) < |S] — 2.

Proof: Suppose to the contrary that G — S has at least |5| — 1 components for some
vertex cut S. Then by Theorem 4.1(i), G — S must have exactly |S| — 1 components and
|S|—1 > 5. Let the components of G — S be denoted by Hy..... Hy. Foreachi,1 <1+ < k.
choose a vertex w; € V(H;). Clearly, W = {w,,...,wx} is an independent set. By Lemma
2.4, the vertices of W may be ordered as a;,....ar in such a way that there exists a path
r1Zz---Tr—1 in G — W such that [a;,z,] — a,41 for each ¢ = 1,....k — 1. By Lemma
3.4, z;a,4q ¢ E(G) foreach e = 1....,k - 1. Clearly, z; € 5. for i = 1,.... k — 1. Now
let So = S —{x1,....zx_1}. Then |So| = 2. So let 5, = {s;.32}. Without any loss of
generality, we may renumber the components of G — S in such a way that a; € V(H;). In
what is to follow. we make frequent use of the following four observations:

(O1) Fori=1..... k — 1, vertex z; is adjacent to every vertex of
[(US_ V(H;)) = (V(H) U {age })]
since [@;, T;i] — @is1-

(0O2) By O1, vertex a; is adjacent to every vertex of S—(SouU{z })and for+ =2... .. k.
vertex a; is adjacent to every vertex of § — (Sq U {z;_1,2,}).

(O3) By O1, O2, Lemma 3.4 and the fact that |So| > 2. if [a;, 2] — a; and |i —j| > 2.
then 2z =x;_; or 2 € Sp for j > 2 and z € Sy for j = 1.

(O4) By O1, for 7 > 2 and | — j| > 2, if [a;, ;1] — ay, then z;_; dominates
(G —5) — {a;} and thus {z;_1,a;} dominates G — Sy by O2.

Let us now begin by considering the graph & + aj;a3. Since v(G + aja3) = 2, there
is a vertex z € G — {a1,a3} such that [a;,z] — a3 or [a3, 2] — a1. We distinguish two

cases.

Case 1: Suppose [a, 2] — a3.
Then by O3, either z = z, or z € 9.

Subcase 1.1: Suppose z = z,. That is, suppose we have [a;,z2] — a3. Then
by O4, {z2,a3} dominates G — Sp. Since v(G) = 3, there is a vertex of Sy, say without
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loss of generality si, such that x;s; ¢ E(G) and azs; ¢ E(G). Thus a;s, € E(G),
since [a1,z2] — a3. Furthermore, since [a;, z;] — aiy1. edge azs, € E(G) and edge
_r35) € E(G). Figure 4.7 depicts this situation.

Figure 4.7.

Now consider G + asas. Since (G + aszas) = 2, there is a vertex z; of G — {a3,as}
such that (a3, z21] — as or [as, z1] — a3. Again we distinguish two cases.

Subcase 1.1.1: Suppose [ag, z:} — as.
By 03, it follows that z; = x4 or z; € 5p.

Subcase 1.1.1.1: Suppose z; = z4. That is, {a3,z4] — as. Since azs; ¢ F(G), edge
z4s1 € E(G). If z4s5 € E(G) or if asss € E(G), then by O4, the set {z4,as} dominates
G, a contradiction. Thus z4s2 € E(G) and assz ¢ E(G).

Since [a4, 4] — as, edge ags; € E(G). Figure 4.8 illustrates this situation.
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Figure 4.8

Now let us consider G+aza4. Since vy(G+azayq) = 2, there is a vertex z; of G—{az, a4}
such that [az2, z2] — a4 or |aq, 22] — a2. In either case, zo ¢ Sp since azs, ¢ F(G) and
552 Q_f E(G)

Suppose first that [as, 22} — as4. By O3 and the above we note that zo = z3. Then
by O4, {z3,a4} dominates G — Sy. But then since z3s5; € E(G) and asss € E(G), {z3,a4}
dominates G, a contradiction.

Hence [a4,22] — a». By an argument similar to that above, z; = z,. By 04,
{z1,a2} dominates G — Sy. Recall that azs; € E(G). If zys2 or assz is an edge of G,
then {z;,a;} dominates G, a contradiction. Thus x5, ¢ F(G) and a3s2 ¢ E(G). Because
(@i, zi] — ait1, a152 € E(G) and x,3, € E(G). Now consider G + ajas. There must be a
vertex z3 of G — {a1, a4} such that [ay, 23] — a4 or [a4, 23] — a1. In either case, z3 ¢ Sy,
since s1a3 ¢ F(G) and szas ¢ E(G). Thus by O3, the case (a4, z3] — a1 is impossible.

Thus [a), 23] — a4. Then by 03 and 04, {z3,a4} dominates &G — Sp. Since z3s, €
E(G) and a4s; € E(G), {z3,a4} dominates G, a contradiction. This completes the proof
of Subcase 1.1.1.1.

Subcase 1.1.1.2: Suppose z; € Sy. Since z25; € E(G) and azzs € E(G), it follows
that z; # s;. Thus z; = s; and it then follows that [aa, sz] —* as. Thus s; dominates
((G - S)u{z2}) — (HaU {as}). By Lemma 3.4, szas ¢ E(G). Figure 4.9 now depicts the
present situation.
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Figure 4.9

Now consider G + aja4. Since v(G + ayaq) = 2, there is a vertex zo of G — {a;,a3}
such that [ay, z2] — a4 or [as, z2] — a;. In either case, z2 ¢ Sp since s1a3 ¢ E(G) and
s2a5 ¢ E(G). Thus by O3, the case [a4, z2] — a; is impossible.

Thus [a;, z2] — a4. Then by O3 and 04, {x3,a4} dominates G — Sp. Since s2
dominates ((G — S) U {x2}) — (H3z U {as}), edge s2a4 € E(G). Recall that z3s, € E{G).
Therefore, {z3,a4} dominates G, a contradiction. This completes the proof of Subcase
1.1.1.2 and hence also the Subcase 1.1.1.

Subcase 1.1.2: Suppose [as,z1] —> a3. By O3, it follows that either z; = z; or
z; € 5p.

Subcase 1.1.2.1: Suppose z; = z2. That is, [as, z2] — a3. Recall that 25, ¢ F(G)
and azs); ¢ E(G), but z3s;,a151,2251 € E(G). Since [as.z2] — a3z, by 04, {z3,a3}
dominates G — Sp. Because z3s) ¢ E(G) and [as, 2] — ag, it follows that ass; € E(G).
Furthermore, either ass; € E(G) or z352 € E(G).

First suppose that asss € E(G). Then as is adjacent to both s; and s2. Figure 4.10
now illustrates the present situation.
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Figure 4.10

Consider now G +aas. Since v(G+ayas) = 2, there must be a vertex z; of G —{a,,as}
such that [a), z,] — as or [as, z2] —> a;.

Suppose first that [a;, z2] — as. Since as is adjacent to s; and s3, vertex z» ¢ Sy by
Le.rnma 3.4. Then by O3, z = z4. Hence {z4,as} dominates G by O4 and the fact that ag is
adjacent to s, and s;. This contradiction proves that for all z, € G—{a,.as}, {a,. 22} does
not dominate G — {as}. Hence [as, z2] — a;. Then z2 € Sg by O3. Since azs; € E(G), it
follows that z, = s,. Thus [as, s2] — a1 and s» dominates ((G —S)U {z4}) — (HsuU{a1}).
Hence a5 is adjacent to both s; and s,.

Next consider G +azas. Since v(G +azas) = 2, there is a vertex z3 of G — {a2, as} such
that [a2, 23] — as or [as, z3] — a». But in cither case, z3 ¢ Sp by Lemma 3.4 and the fact
that ap and as are adjacent to both s, and s,. If [az, z3] — as, then {z4, a5} dominates
G_ by O3 and O4 and the fact that as is adjacent to s; and sp. But this is a contradiction.
Similarly, if [as, 23] — a2, then {z,, a2} dominates G, again a contradiction. This proves
that ass; € E(G). Therefore, edge 25, € E(G) since [as, 2] — a3. Figure 4.11 now
depicts the present situation.
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Figure 4.11

Now consider G + ayja4. Then there is a vertex zq4 of G — {a,, a3} such that [a, z4] —
as or [a4, z4] — ay. In either case, z4 & Sp since azs; ¢ F(G) and assz ¢ E(G). By O3,
(a4, 24] — a; is impossible. Hence [a,z4] —> @4 and z4 = z3. Then by O4, {z3,a4}
dominates G — Sp. Since z3s; € E(G), it follows that z3s2 ¢ E(G) and ass ¢ £(G), for
otherwise {z3,a4} would dominate GG, a contradiction. Since [a4,T4] — as and ays2 &
E(G), it follows that z4s, € E(G).

Now consider G+ajas. There must be a vertex zs of G — {a;, as} such that [a;, z5] —
as or [as, zs] —> a;. In either case, z5 ¢ Sg since azs1 ¢ E(G) and ays2 € E(G). By O3,
the case [as, z5] —> a; is impossible. Thus [a1, 2s] — a5. But then 25 = 24 by O3 and
hence {z4,as} dominates G by O4 and the facts that ass; € E(G) and 2452 € E(G). This
proves that x;s, ¢ E(G). Hence [as, z2] — a3 is impossible. This completes the proof in
Subcase 1.1.2.1.

Subcase 1.1.2.2: Suppose z; € Sp and z; = s1. That is, {as,s1] — a3. Then s,
dominates ((G — S)u {z4}) — (Hs U {a3}).

Consider G + asa4. Since v(G + aza4) = 2, there is a vertex zp of G — {az, a4} such
that [aj, 23] — a4 or [a4, 22] —> a2. We distinguish two subcases.

Subcase 1.1.2.2.1: Suppose [az, z2] — a4. Then z; = 3 or 22 € Sy by O3. Recall
that 25, ¢ E(G) and a3s, ¢ E(G), but z3s,,a15) and azs; are all edges of G.
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Suppose that 22 = x3. That is, [az, 23] — ay. By O-. {z3,a4} dominates G — S,.

Since z3s1 € E(G), it follows that z3s, ¢ E(G) and ays, ¢ E(G): otherwise {iri.a,}
dominates &, a coutradiction. Since [az, 23] — ay and x3s2 € E(G). it follows that
1259 € E(G). Thus a» is adjacent to both s; and s2. Furthermore. since [ay..0y] — a5
and ays2 € E(G). 1t follows that z4s; € E(G). Because s, dominates ((G — S) U {uy}) —
(Hs U {a3}), it follows that syzy € E(G). Thus ry is also adjacent to s; and s.
I Consider G + a2as. Since v(G + asas) = 2. there must be a vertex z3 of ¢ — {ta.as}
such that [az2,23] — as or [as,z3) — as. In either case. z3 € Sy since azsy & E(C)
and assa € E(G). If [as. 23] — aa. then {z,,a2} dominates GG by O4 and the [act that
as is adjacent to s; and to s». a contradiction. Hence la;, 23] — as. But then {ry. a5}
dominates & by O4 and the fact that x; s adjacent to s; and to s» and again we have
a contradiction. This proves that if [az.22] — ay. then 25 % r3. Thus 23 € 55, Since
agsy € E(G). 22 # s1. Therefore zo = s5. That is. [az.52] — ay. Now s» dominates
(G~ S Yu{x}) — (H2U {as}). Hence a; is adjacent to both s and s».

Now consider G + ai1as. There must be a vertex 23 of G — {a;.a3} such that cither
a1, 23] —> as or [as.z3] —> ay. In either case, z3 ¢ Sy since agsy ¢ E{(G) and ayss &
E(G). But then the case [as. 23] — a; is impossible by O3.

Therefore [a;. 23] — as. Thus {&,. a5} dominates G — Sy by O4. Since s dominates
(G — S)U {z4}) — (Hs U {asz}), s1xy € E{G). Furthermore, since s2 dominates ((& —
SYu{m}) — (H2U {a4}). sa2as € E(G). Therefore {r,,as} dominates G. once more a
contradiction. This contradiction proves that for every z; in G — {az.ay}. {a». 22} does

2
2

Subcase 1.1.2.2.2: Suppose [ay.z2] — a2, Then 22 = &y or 20 € 53 by O3.
Recall that 2,8, ¢ E(G) and azs, € E(G), but rzsy.ars; and azs; are all edges of G.
Furthermore. s; dominates (G — S) U {uwy}) — (Hs U {az}).

Suppose z2 = x;. That is. [ay.a1] —> a2. By O4. {r1. a2} dominates & — Sy, Since
azs1 € E(G). it follows that r1s2 € E(G) and asso € E{(G): otherwise {r), a2} would
dominate G, a contradiction.

Next consider G+a,ay. Since v(G-+ajay) = 2, there must be a vertex z3 of G—{ay. a4}
such that either [a;, 23] — a4 or [a4. 23] — a1. In either case, z3 € Sp since syaz ¢ E(G)
and sqas; ¢ E(G). By O3, the case [ay. 23] — a1 is impossible. Thus [a1. 23] — ay. By
O3 and O4, {zr3.a4} dominates G — Sp. Since x3s; € E(G). it follows that x3s: ¢ E(G)
and ays, ¢ E(G). Otherwise, {z3.as} would dominate G. a contradiction. Because
[as, z4] — a5 and ays. ¢ E(G). it follows that xys: € E(G). So x4 is adjacent to both s,
and s».

Next we counsider G + ajas. Since v(G + aias) = 2, there must be a vertex z; of
G — {a1,as} such that either [a;,zs] — as or [as,z4] — a1. In either case, z, ¢ So.
since s;a3 ¢ E(G) and sza» ¢ E(G). By 03, the case [as.z3] —> a; is impossible.
Thus [a), z4] — as. By O3 and O4, {xi.as} dominates G — Sp. Since z, is adjacent to
both s, and s». {z4.as} dominates G. This contradiction proves that if [a4, 22] — a5,
then z5 # z,. Thus zo € Sy. Since s a3z € E(G), it follows that 2z, # s;. Therefore,
22 = so. That is. [ay, s2] — a2. Then s; dominates ((G — S)U {z3}) — (HyU {a2}). Thus
s2x3 € E(G) and ssa-> € E(G). Then x3 is adjacent to both s; and s2 since z3s) € E(G).
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Now consider G+aiaa. Since y(G+ajay) = 2, there must be a vertex zs of G — {a,, ay}
such that either [a;. 25] — a4 or [a4. z5) —> a,. In cither case. zs € Sg since s a3 € F(G)
and sea2 € E(G).. By O3, the case {ay, 2z5] — a is impossible. Hence {a;, z5] — .
‘Then z5 = z3 by O3. But then {z3, a4} dominates G by O4 and the fact that xs is adjacent.
to s; and sg. This contradiction completes the proof of Subcase 1.1.2.2.2 and thus of the
Subcase 1.1.2.2,

Subcase 1.1.2.3: Suppose z; € Sp and z; = s. That is. [a5,52] — a3. Recall
that z281 € E(G) and aszsy € E(G). but r3s,a,15, and azs; are all edges of . Since
las, s21 —> a3. vertex so dominates ((G — S)yU {za}) — (s U {a3}). Since sauz € E(G).
edge x3s2 € E(G), because (a3, r3] — ay. Now x3 and ay arce adjacent to both s; and s».

Consider G + azay. Since ¥(G + azay) = 2, there must be a vertex zp of G — {aq. ay}
such that either [ag, z2] — a4 or [as. 20] — as. In either case, 25 ¢ Sp since s1a3 € £(G)
and szaz € E(G). If [az,z2] — ay. then zo = r3 and hence {z3, a4} dominates GG by
03. 04 and the fact that rq s adjacent to both s; and s» and we have a contradiciion.
Hence [ay. 22] — a>. But then a similar arguinent shows that {r,. a2} dominates G. This
coutradiction commpletes the proof of Subcase 1.1.2.3 and hence of Subcase 1.1.2. But then
~(G + azas) > 2, contradicting the 3-~-criticality of ¢¢. Thus Subcase 1.1 cannot occur.

Subcase 1.2: Suppose z € 5.

Without loss of generalitv, we may assume that = = 5. That is. |ay, s1] — o3.
Then vertex s; dominates (G — S) — (H, U {a3}). Since sjaz ¢ £E(G) by Lemina 3.4, edge
s1r3 € E(G) because [az, 3] — ay.

Consider G + a-ay. Since +{G + ansay) = 2. there is a vertex zp of G — {aq. a4} such
that either [as. =] — ay or [a;. 2] — a2, We distinguish two subcases.

Subcase 1.2.1: Suppose [ug, 2] — «y. By O3 and the fact that syaz € (). i
follows that either z, = r3 or z; = s».

Subcase 1.2.1.1: Supposc =, = r3. That is. {a2. 23] — ay. Then by Od, {x3. a4}
dominates G — Sy. Because s; dominates (G —S)—~(HyU{asz}). edges s103 and s)a, belong
to E(G). If 352 € E(G) or if ayss € E(G), then {z3,a4} dominates G, a contradiction.
Hence z3s7 ¢ E(G) and ayss ¢ E(G). Since [a,.0]| — a4 forall 2. 1 <2 <& — 1.1t
follows that azs, € E(G) and z452 € E(G).

Consider G + asas. Since ¥(G + azas) = 2, there is a vertex 29 of G — {ag. a5} such
that either [as,22] — as or [as.zz] — ao. In either case. 22 ¢ Sy since s1az ¢ E(G)
and sqay & E(G). If lag, 20] — as, then {r,, a5} dominates G — Sy by O3 and O, Since
s1 dominates (G — S) — (H; U {a3}), edge s1as € £(G). Because 452 € E(G), {zy.as5}
dominates G, a contradiction. Hence [as, z2] — a2. By O3 and the fact that 2o € So.
it follows that zo = z;. Then by O4, {z;.a2} dominates G — Sp. Since s; dominates
(G ~ 8) — (Hy, U {as}), edge sya2 € E(G). If azsz € E(G) or if x152 € E(G), then
{z1,a2} dominates G, a contradiction. lence azse ¢ E(G) and w152 ¢ E(G). Because
[@i,zi] —> aj4q for 1 < i < k — 1, it follows that z3s, € E(G) and ays2 € E(G).

Now consider G + ajas. Since ¥(G + a1as) = 2, there is a vertex z3 of G — {a,,as}
such that either [a;, z3] —> a5 or [as, 23] — ay. In cither case z3 ¢ So since s1a3 ¢ £(G)
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and sza2 € E(G). Then by O3, the case [ag, 23] —> a1 is impossible. Thus [a1, 23] — as,.
Then za3 = z4. But then {z4,as} dominates G by O4 and the fact that z4s, € F{G) and

ass, € E(G). This contradiction completes the proof of Subcase 1.2.1.1.

Subcase 1.2.1.2: Suppose z; = s,. That is, (az.82] — «@4. Then s; dominates
(G = SYu{z1}) — (H2U {a4}). Recall that s; dominates (G — S) — (H; U {a3}). More
specifically, szaq € E(G), s1a3 ¢ E(G), but as is adjacent to both s; and s-.

Consider G + azas. Since v(G + asas) = 2, there is vertex zo of G — {az,as} such
that either [a3, z2] — as or [as, 22] — a2, In ecither case, zo ¢ Sp since sya3 ¢ £(G) and
soay ¢ E(G). Suppose [az, 22] — as. By O3 and 04, {z4,as5} dominates G — Sp. Since
as is adjacent to s, and sq, it follows that {x4.as} dominates (G. a contradiction.

Hence [as. z2] — a2. By O3 and O4, {z, a2} dominates G — Sy. Since $; dominates
(G —8) — (U {a3}) and s, dominates ((G — S)u {x1}) — (H> U {as}), it follows that
s1a2 € E(G) and sax; € E(G). But then {x;.a2} dominates G, a contradiction. This
completes the prool of Subcase 1.2.1,

Subcase 1.2.2: Suppose [ay, z1] — az. By O3 and the fact that s,a3 ¢ E(G). it
follows that either z; = r; or z; = s4.

Subcase 1.2.2.1: Suppose z; = x;. That is, [a4, 1] — a2. Then by Od. {x1. a2}
dominates G — Sg. Recall that s dominates (G — 5) — (H, U {az}). Since s1a; € E(G).
it follows that ass: ¢ E(G) and z1s: ¢ E(G); for otherwise {x,,a»} dominates G, a
contradiction. Since [a;.x;] —> a;q forall 1 <7 < k—1, it follows that x25; € F(G) and
182 € E(G)

Consider G + ayay. Since v(G + ayay) = 2, there must be a vertex z» of G — {ay. a4}
such that either [ay. z2] — a4 or [a4. z2] — a1. In either casc. zo € Sy since s a3 ¢ E(G)
and sq,a-» € E(G). By O3, the case [ay, z2] — a1 is impossible. Hence [a;. 2] — ay.
Then {z3.a,} doininates G — Sy by O3 and O-. Since s; dominates (G —S5) — (H, U {as}).
it follows that sjaqy € E(G). Then ays, ¢ E(G) and z3s2 ¢ E(G). for otherwise {z3. a4}
dominates G. a contradiction. Since [a;,z;] — a;41 forall 1 < ¢ < k — 1, 482 € E(G)
and a3zs-» € E(G)

Now consider G 4+aas. Since v(G +ajas) = 2, there is a vertex z3 of G— {a;,as} such
that either {a;, z3] — as or [as, 23] — a;. In either case, z3 ¢ So since sja3 € E(G) and
s:ay € E(G). By O3, the case [as, z3] —» a) is impossible. Hence [a), 23] — a5. Then
by O3, z3 = z4. But then {z4,as} dominates G by O4 and the fact that s;as € £(G) and
Tys9 € E(G). This contradiction completes the proof of Subcase 1.2.2.1.

Subcase 1.2.2.2: Suppose z; = s3. That is, [a4,52] — a. Then 55 dominates
(G~ S)u{zx3}) — (H4U {as}). Recall that s; dominates (G — S) — (H; U {as}). More
specifically, s1as4 € E(G) and saz3 € E(G), but s1a3 € E(G) and sqa2 ¢ E(G).

Consider G + aja4. Since v(G + ajas) = 2, there is a vertex z; of G — {a1, a4} such
that either [a,, z2] — a4 or [a4,22] — a1. In either case, z2 ¢ Sop since sa3 ¢ E(G)
and szas ¢ F(G). By O3, the case [a4, 22] — @1 is impossible. Hence [ay, 2] — a4. By
03 and O4, {z3,a4} dominates G — Sy. Since sya4 € E(G) and s2zx3 € L(G), it follows
that {z3,a4} dominates G, a contradiction. This completes the proof of Subcase 1.2.2.2
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and hence Subcase 1.2.2. Hence 4(G + asay) > 2, contradicting the 3-v-criticality of ¢,
Thus the Case 1.2 cannot occur. Hence for all z in G — {ay, a3}, {ay. 2} does not dominate

G - {as}.

Case 2: Supposc [a3, z] —» a;.

By O3, z € Sg. Without loss of generality, we may assume that z = s;. Then
las, s1] — a1 and s, dominates ((G — S)U {z2}) ~ (f{3U {a1}). Since sya, € E(G) by
Lemma 3.4, it follows that edge x,5, € F(G) since [a,, ;] —* a».

Consider &G + azay4. Since v(G + ajzay) = 2, there is a vertex z; of & — {a,, a4} such
that either [az, 2] — a4 or [a4, 2] — a2, We distinguish two casces,

Subcase 2.1: Suppose [az,z;] —* aq. By O3 and the fact that sy, ¢ E(G), it
follows that z; = =3 or z; = s,.

Subcase 2.1.1: Suppose first that zy = z3. That is, [az,x3] — ay. By 4, ry

' dominates (G —.S) — {a4}. Since sy dominates ((G —S)U{z2}) - (fau{a,}), it lollows that

s1a4 € E(G). If 352 € E(G) or ags2 € E(G), then {x3,a4} dominates G, a contradiction.

Hence xz3s; ¢ I2(G) and ays: ¢ E(G). Since [a,,x,| — aiy1 for 1 <@ <k — 1,1t follows
that aasy € £(G) and z45; € F(G). Figure 4.12 now depicts our situation.

Figure 4.12

Now consider G + asas. Since v(G + azas) = 2, there 1s a vertex zp of G — {aj.uy}
such that either {aa, 2] — as or [as, 22] — a3. In either case, 22 & So since sya, ¢ £(G)

")‘1
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and s2ay € E(G). Supposc [as, 22] — a5, By O3 and OJd, {r,. a5} dominates G — S,
Since sy dominates ((G ~ SYU {z2}) — (H3 U {a,}). it follows that s,a5 € F((). Becanse
rys2 € E(G), {z4, 85} dominates G, a contradiction. Hence [as5. 22] — a3. By O3 and O,
{r2,a3} dominates G — Sp. Since s, dominates ((G—S)YU{x2}) - (H3U{a}), s1ra € E(G).
But then {z2,a3} dominates G since azsy € E(G). This contradiction completes the proofl
of Subcase 2.1.1.

Subcase 2.1.2: Suppose z; = s. That is, [a2,52] — ay. Then s> dominates
(G — S)u{x1}) — (H2U {as}). Recall that [a3,s1] — a; and @15, € E(G). Thus ag is
adjacent to both s; and sz, 510, & () and saay € E(G).

Consider G + aq2as. Since v(G + azas) = 2, there is a vertex 22 of G — {az. as}
such that [as2, z2] — as or [as, z2] — az. In cither casc, zo € Sy since syay ¢ 12(G)
and spay € E(G). Suppose a2, z2] — as. By O3 and Od. {x4.a5} dominates & — 8.
Thus {x4.a5} dominates G since as is adjacent to both s, and so. and again we have a
contradiction. Hence [us, 22] — w2, By 03 and O4, {&. a2} dominates G — Sy, Since
r151 € E(G) and 182 € E(G), {x1.a2} dominates G. This contradiction completes the
proof of Subcase 2.1.2 and thercfore also Subcase 2.1.

Subcase 2.2: Suppose [a4,21] — a2. Recall that [az.s )| — a1 s1a & E(G).
s1zxe2 € E(G) and z,s; € E(G). Since [ay, 21] — ap and sya; € E(G), it {ollows from O3
that either zy = x| or z; = s».

Subcase 2.2.1: Suppose z; = z;. That is, [aq,z1] — a2. By O3 and Od. {1, a2}
dominates G — Sp. Since x5, ¢ E(G). if either 152 € E(G) or azse € I/(G). theu {1, az}
dominates G, a contradiction. Hence x1s; € E(G) and azs: ¢ E(G). Since [a;, ;] — a4
forl1 <i:<k—1,a18: € E(G) and x2s2 € E(G). Figure .13 illustrates our situation.
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Figure 4.13

Now consider G+ azas. Since v(G +aszas) = 2, there is a vertex 2z, of G~ {a3, as} such
that either [a3, z2] — a5 or [as, 22] — a3. In either case, z» ¢ Sy since s;a, ¢ E(G) and
s2a2 ¢ E(G). Suppose [as, 22] — az. Then by O3 and O4, {z2,a3} dominates G — Sj.
Since z35, € E(G) and z352 € E(G), {z2,a3} dominates (G, a contradiction. Hence
(a3, z2] —> as. Then by O3 and 04, {z4,as} dominates G — Sg. Since [az, s,] — a, it
follows that syas € E(G). If z45y € E{(G) or asse € E(G), then {z4,as5} dominates G, a
contradiction. Thus z4s2 ¢ E(G) and assa2 € E(G).

Now counsider G + azas. Since v(G + azas) = 2, there is a vertex z3 of G — {az,as}
such that either [az, z3] — as or [as, 23] — a2. In either case, z3 # 51 since sy1a; € E(G).

Suppose [asz, z3] — as. By O3 and the fact that z3 # s,, it follows that either z3 = z,
or zz = 55. Since azss ¢ E(G) and z4s2 ¢ E(G), it follows that 23 # z4. Thus z3 = s,.
But this is impossible since s;z; € E(G) and azx; ¢ E(G). Hence [as, 23] — a>. By O3
and the fact that z3 # s,, it follows that either z3 = z; or 23 = s3. Since z,152 ¢ E(G)
and assy ¢ E(G), z3 # ;1. Thus 23 = s2. But this is impossible since saz4 ¢ F(G) and
aszq4 ¢ E(G). This contradiction completes the proof of Subcase 2.2.1.

Subcase 2.2.2: Suppose z; = s3. That is, [a4,52] — a2. Then s, dominates
((G—=S)u{z3}) — (H4U{az}). Recall that [a3,s1] — a1, s1a1 € E(G), s1z2 € E(G) and
z15) € E(G). More specifically, sya; € F(G) and sqaz2 ¢ E(G), but s1a4 € E(G), s213 €
E(G) and s,a; € E(G).
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Consider G +ayay. Since v(G+a,aq) = 2, there is a vertex zo of G — {ay, 4} such that
cither [a). 22] — @q or [a4, z2] — a;. In cither case, zo # s since sqas & B(G). Suppose
. ay.z2] — aq. By O3, 20 = 23 or zo = 5. By Lemma 3.4, z, # s, since sqay € F{G).
Thus z2 = x3. By OJ4. {23, a1} dominates G — Sg. Since s1ay € E(G) and syry € E(G).
it follows that {z3,ay} dominates G| a contradiction. Hence [a4, z2] — a;. By O3 and
the fact that z2 7 s2. it [ollows that z5 = 5;. That is, [a4, s1] —> a;. Since [a3, 5] — a,.
vertex s; dominates (G — S) — {a,}. Because syzy € E(G) and saay, € E(G). {s1.a,}
dominates (G. This contradiction completes the proof of Subcase 2.2.2 and hence also
Subcase 2.2. Hence ¥(G + azay) > 2. contradicting the 3-v-criticality of G. Hence for all
: € V(G)—{ar.az}. {as. 2} does not dominate G—{«; }. This implies that v(G +a,a3) > 2.
again a contradiction. This comipletes the proof of the theorem.

Our final result in this section may be viewed as yet another extension of Theorem
+.1.

Theorem 4.5 Let G be a connected 3-5-critical graph and let § be a vertex enrset
m G with 4 < |5 < 5. If cach commponent of ¢ — 8 has ar least three vertices. then
(G —-85)y< |5 -2

Proof: Suppose. to the contrary. that w{G'—8) > |S|—1. By Theorem 4.1(1). it follows
that w(G — §) = |S| - 1. Putt = |5] = 1. Note that 3 <t < 1 Let /, be a component
of G —Sfori = 1,2...., t. Choose a vertex w; € V(H;) for ¢ = 1.2..... t. Clearlv.
W= {uwy wa. ... we} is an independent set. By Lemma 2.4(1). the vertices of 117 may
be ordered as ay,as,....a, in such a wayv that there exist distinet vertices oy aa. .. ... 'y 3
such that [a;,z,] — a1, for i = 1.2,.... £ — 1. By Lemma 34. rya,41 € E(G) for
i = 1,2....,t = 1. Thus ryz2---z,_7 18 a path. Without loss of generalitv. we may
renumber the components of G — 5 in such a way that a; € V({];). Since |V (H;)| > 3. it

Let So = S~ {x).72.....2,-1}. Then |Sp| = 2 and so we may set Sp = {s.s2}. Note
that obvervations O1., 02, O3 and O4 made in the proof of Theorem L4 are still valid
in the present situation. Furthermore. O4 is still true if we replace a; with b,. where b,
belongs to the same component as a;.

Since |V (H,)| > 3, there are vertices b,.c, € V() — {a.}. Consider G + a,b,. Since
(G + ayb,) = 2, there is a vertex z of G — {a;.b} such that cither [a,.z] — b or
[be. 2] —> ay. In either case, z € §. We distinguish two cases.

Case 1: Suppose [a1, z] — be.

By O1 and Lemma 3.4, z ¢ {x,,z2,...,2¢—1}. Then it follows that z € 5p. Without
loss of generality, we may assume that z = s;. That is, [a1,51] — b:. Then s; dominates
Ui,V (H;) — {b}. If 2252 € E(G) or s1s2 € E(G), then {z2.s1} dominates G by Ol
together with the fact that z,z5---z,_1 is a path with 2 < ¢ ~ 1 < 3 and s; dominates
Ui_,V(H;) — {b,}. But this is a contradiction and so z2s52 ¢ E(G) and s1s2 ¢ E(G).
Since [az, 2] — a3 and z959 ¢ E(G), azs, € E(G). Furthermore, since [a1, 1] — b,
and s;1s0 € E(G), a152 € E(G).



Figure 4.14 illustrates the present situation.

Figure 4.14

Now consider G +a;c;. Since v(G +a,c:) = 2, there must be a vertex z; of G — {a;, ¢, }
such that either [a;, z1] — ¢; or [c¢, z1] — a,. In either case, z; € §. We distinguish
two cases.

Subcase 1.1: Suppose [a1, 21] — ¢;.

By O1 and Lemma 3.4, z; ¢ {z1,Z2,...,Ti_1}. Since s1b, € E(G) and a,1b, ¢ F(G),
it follows that z; # s;. But then z; = s,. That is, [a), $2] — ¢;. Hence s, dominates
LJ;:ZV(HJ-) — {c:}. Since si1s2 ¢ E(G) and [a1, s2] — ¢;. it follows that a5, € E(G).
Now a; is adjacent to both s; and s;. Further, a; is also adjacent to both s; and s, since
s1 dominates U%_,V (H;) — {b,} and sz dominates U_,V(H;} — {c}.

Consider G + a,a,. Since v(G + a,a,) = 2, there must be a vertex z; of G — {a,,a,}
such that either [a;, z2] — a, or [a;, z2] — a1. In either case, z; € 5. By Lemma 3.4
and the fact that a; and a, are adjacent to both s; and s;, z2 ¢ So. By O3, [as, z2] — a;
is impossible. Hence [a;, z2] — a,;. By O3 and O4, {z,.:.a,} dominates G — Sp. Since
a;s; € F(G) and a;s, € E(G), it follows that {zx,_1,a.} dominates G. This contradiction
completes the proof of Subcase 1.1.

Subcase 1.2: [¢, 2:] — a;.

Since z,as ¢ E(G) and aqc, ¢ E(G), 21 # z1. By O, z,a, € E(G) for2 <i <t - 1.
Thus by Lemma 3.4, z; € {z2,...,z,—1}. Furthermore, z; # 52 since ays2 € E(G). Thus
z1 = s1. That is, [¢;,s1] — a1. Recall that [a1,s1] — b, T252 ¢ E(G), s152 & E(G),
but azs; € E(G) and a,s, € E(G). Since ¢, s1] — a1 and [a1, s1] — b, 51 dominates
(G — 8) — {ay,b:}. Furthermore, since sys; ¢ E(G) and [¢;, s1] — a1, ¢;52 € E(G). Now
¢ is adjacent to every vertex of S by O1 and the fact that sy dominates (G — S) — {a, b, }.

Since |V (Hy)| > 3, there are vertices b1,c; € V(H;) — {a:}. Consider G + b,c,. Since
Y(G + bycy) = 2, there is a vertex z, of G — {b1, ¢/} such that either (b, z2] — ¢, or
[ce, z2] —> by. In either case, z; € S. Suppose [b1, 22] — ¢,. By Lemma 3.4, z5¢, ¢ E(G).
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Thus z; ¢ S since ¢; is adjacent to every vertex of S, a contradiction. Hence [c,, Zp| —— by

Since zya2 € E(G) and ciaz € F(G), 29 # 7,. By Ol, z;b; € E(G) for 2 < ¢ < t — 1.

~ Thus by Lemma 34, z2 & {x2,...,7¢_1}. Furthermore, 2, # sy since 5,6, € £(G). Thus
22 = 52. Now 53 dominates U2V (H;) — {b1}.

Now consider G + ¢ ¢;. Since v(G + c1¢) = 2, there is a vertex z3 of G — {c1,¢¢}
such that either [¢y, z3] — ¢ or [ce, z3] —> ¢;. In either case, z3 € §. By applying the
same argument as above, the case [¢;, z3] — ¢ is impossible. Hence [c;, 23] — ¢;. Since
z1a2 ¢ E(G) and ciax ¢ E(G), z3 # 1. Then z3 € {s1,s52} U {z2,...,z,-1}. But this
contradicts Lemma 3.4 since for 2 <z <t — 1,x;,5, and s, are all adjacent to ¢;. This
completes the proof of Subcase 1.2 and hence the proof of Case 1 is complete.

Case 2: Suppose, therefore, that [by, z] — a;.

By 03, 2z € So. Without loss of generality, we may assume that z = s;. That
is, [b¢,51] — a1. Thus s; dominates U;ZIV(Hj) — {a1}. Since [a1,z1] —— ap and
s1a1 & E(G), 18y € E(G). Figure 4.15 depicts our situation.

Hi H: H,

Figure 4.15

Since |V (H,)| > 3, there is a vertex by of V(I,) — {a1}. Consider G + b1b,. Since
¥(G + byb,) = 2, there is a vertex z; of G — {by1,b;} such that either [61,2,] — b, or
[be, 21] — b1. In either case, z; € §. We distinguish two subcases.

Subcase 2.1: Suppose (b1, z1] — b:.
Since [a;, ;] —* i1, 0e7; € E(G) for 1 <4< ¢—1by OL Then 2y ¢ {z1,...,Z¢—1}

by Lemma 3.4. Hence z; = s; or z; = S».

Subcase 2.1.1: Suppose z; = s;. That is, [by, 51] — be. Since [by, 51] —> ay, s,
dominates (G — S) — {a1, b:}. Since Tq01 € FE(G) and z3b, € E(G) by O1, if 2252 € E(G)
or 5,52 € E(G), then {z»,s:} dominates G, a contradiction. Hence z2s52 ¢ E(G) and
s159 € E(G). Because [a2, T2] —* a3 and z252 ¢ E(G), azs2 € F(G). Since [by, s1] — b,
and s,52 ¢ E(G), bisy € E(G). Since s, dominates (G — S) — {a1, b}, edges s1by, 5109
and sia, belong to E(G). Figure 4.16 illustrates our situation.
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Figure 4.16

We will now show that s,a, ¢ E(G). Suppose, to the contrary, that s:a, € E(G).
Consider G+bya,. Since v(G+byas) = 2, there is a vertex zo of G —{by, a;} such that either
[61, 22] — a; or [a¢, z2] — b;. In either case, z2 € S, but by Lemma 3.4, z, ¢ {51,532}
since by and a, are adjacent to both s; and s;. Suppose [b1,22] —> a;. Then by O1
and Lemma 3.4, 2o = z;,_,. That is, [b1,z:-1] — a.. By 04, and the fact that a, is
adjacent to both s, and s3, it follows that {z,_,,a,} dominates (G, a contradiction. Hence
[@¢, z2) — b,. But then by O1 and Lemma 3.4, 2z # z; for 2 < 7 <t — 1. Furthermore,
22 # 71 since Tia; € FE(G). Hence z, ¢ S, a contradiction. This proves that s.a, ¢ E(G).
By applying similar arguments, we also obtain that spc; ¢ E(G).

Now consider G + asc;. Since v(G +azc,) = 2, there is a vertex z3 of G — {as, ¢, } such
that either (a2, z3] — ¢ or [c;, z3] — a2. In either case, z3 € S. Suppose that [a3, 23] —
ce. By O1, z; is adjacent to ¢; for 1 < ¢ < t — 1. Since sy dominates (G — S) — {a1,b,},

sicy € E(G). By Lemma 3.4, 23 ¢ {s1,%1,%2,...,T¢—1}. Therefore, z3 = s5. But this is
impossible, since sza; ¢ E(G) and asa,; ¢ E(G). Hence [¢;, 23] —> a2. Since a2 is adjacent
to sy and sz, 23 € {s1,s2} by Lemma 3.4. Therefore, 23 € {z1,22,...,Z:-1}. Suppose

z3 = ). Then z, dominates Uj;l V{(H;) — {az}. Thus {z1,a2} dominates G by O1, O2
and the fact that z,z2 --7,_1 15 a path with 2 <t —1 < 3 and e, 1s adjacent to both s,
and s, a contradiction. Hence z3 # x,. Since z;s52 € E(G) and ¢s2 € E(G), 23 # z».
This implies that ¢ = 4 and 23 = z3 = 1,—;. But this also contradicts Lemma 3.4 since

z3a; € E(G) by O1. This completes the proof of Subcase 2.1.1.

Subcase 2.1.2: Suppose z; = $3.

That is, [b;, s2] — b;. Then s dominates U;-=2V(Hj) — {b:}. Recall that (b, s1] —
a,. Since s3b, ¢ E(G), 5152 € E(G). But then {z2, sz} dominates G by O1, together with
the facts that z 22 - -z, is a path with 2 <t -1 < 3, 5152 € F(G) and s; dominates
Ui_,V (H;) — {b:}. This contradiction completes the proof of Subcase 2.1.2 and hence also

of Subcase 2.1.
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Subcase 2.2: Suppose, then, that [b,, z;] — by.
By Ol and Lemma 3.4, z; # x; for 2 <: < t—1. Since xyas & I2{GY and s a € E(G).
T {x,.s51}. But then z; = $5. Thus s, dominates U;;llV(Hj) — {b1}. Recall that
be.si) — a1 and x15) € E((G). Then y and w must be adjacent to s; and so for all
y € V(Hy) — {ai, 01} and for all v € V(IH,_,). Since V(H,))| =2 3, for 1 <4 < ¢, there
must be a vertex ¢y € V(H ) — {a;. b} and a vertex by € V(H,_,) — {a, 1}. Then ¢
and b,_, are adjacent to both s, and s».
Consider, finally, G + ¢1b,_;. Since ¥(G + ¢1h,_1) = 2, there must be a vertex zo of
G — {c1.b,_1} such that either {¢), z2] — &) or [by_1,22] — ¢;. In either case, 2, € S,
but z3 ¢ {s1,s2} by Lemma 3.0 and the fact that ¢; and b,_, arc adjacent to s, and s».
Suppose c1,22] — b_1. By Ol and Lemma 3.4, 2z, # z,. Since zqa3 € E(G), 20 # x».
Then t = 4 and z» = 3. But this is impossible since ciay € I2{(G) and z3a, & E(G).
Hence {be_1,22] — c1. Since zo ¢ {sy. 850} |(£ — 1) — 1] < 2 by O3. This implies that
t —1 =2 Then by Ol and Lemima 301 25 # rp. Thus 2o = . But then r; dominates
(G —8) — {c1.ax}. IHence {ry so} dominates GLosinee oys, € E(GY . 20 € (G and s
dominates (H; U f13) — {b1}. This contradiction completes the proof of Subcase 2.2 and
hence Case 2. This proves that ~(G + ayly) > 2. contradicting the 3-~-criticality of G.
This completes the proof of Theorem 1.5,

5. 3-~-criticality and /A-factor-criticality

In this section, by using above assemnbled known results. we prove several theorems
which say that under certain assumptions on connectivity and minimum degree. a 3-7y-
critical graph G is A-factor-critical for k = 1. 2, and 3. We begin with a result concerning
a perfect matching and a near perfect matching.

Lemma 5.1. Let & be a connectod 3-vy-critical graph.
(1) Then if |V (G)] s even. (7 contains a perfect matching. while

() 1if [V{G)] 1s odd. 7 contains a near-perfect. matehing.

Proof: Part (i) is due to Summner and Blitch [SB]. We prove only part {ii). Suppose
G is a 3-~-critical graph with an odd number of vertices and suppose G does not contain a
near-perfect matching. Consider the Gallai-Edmonds decomposition of G. (See [LP].) That
15. let D(G) denote the set of all vertices v € V(G) such that some maximum matching of
G does not cover v. Let A(G) denote the set of all neighbors of vertices of D(G) which are
not themselves in D(G) and finaliy, let C(G) = V(G) - D(G) — (G}, Since G contaius 1o
near-perfect matching, the number of odd components of D(G') is at least two larger than
|A(G)|. If A(G) = @, then G is disconnected, a contradiction. So A(G) # @ and hence is a
vertex cutset of G. But w(G — A(G)) > |A(G)| + 2 which contradicts Theorem 2.2. 1

Now let us turn our attention to the family of factor-critical graphs. (We refer the
reader again to [LP?] for a more extensive treatment of these graphs.) The following result
is an immediate result of “Wojcicka’s Theorem” {Theorem 2.10). (Note also that for a
3-y-critical graph G, the assumptions that G is 2-connected and that G has minimum
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degree at least two are equivalent. This is an immediate consequence of Lemma 5.5.8 of

BJ.)

Theorem 5.2. Let G be a 2-connected 3-v-critical graph having odd order. Then ¢
is factor-critical.

The graphs shown in Figure 4.1 (with n even) are 3-v-critical and connected, but
not factor-critical. Thus our lower bound on the connectivity stated in the hypotheses of
Theorem 5.2 is best possible. More gencrally, if G is a 3-y-critical graph with a cutvertex
. then ¢ is adjacent to an endvertex {cf. [13]) and hence mindeg & = 1 and hence G is
not factor-critical.

Qur next result shows that if the connectivity and minimum degree are sutliciently high
in a 3-vy-critical graph of even order. then the graph must be bicritical (2-factor-critical).

Theorem 5.3. If (& is a 3-connected 3-y-critical graph with minimum degree at least
1 and having even order. then (7 is bieritical.

Proof: Suppose, to the contrary, that ( is a 3-connected 3-y-critical graph with
minimum degree at least 4 and having even order, but G is not bicritical. Then there exist
vertices u and v in G such that G = G - {w. v} has no perfect matching. By Tutte's
1-factor theorem. there then must exist an 8 € V(G’) such that

we(G' = 8") > |5,

where w,(G’ — S’) denotes the number of components of odd order in G — 8. Since
V(G")| is even, by parity wo(G' = S8') > |5/ +2. Put § = S’u{u. v} Clearly. w,{(G' = 5) =
wWo(G' — 57). But by Lemma 5.1(1). G has a perfect matching. =o

|1S| = |S|+2 < W (G = 8" = w, (G =-S5 < |5,

and hence |5 = wo(G — 5).

By Theorem -1.1(i), |S| < 3. Since G is 3-connected. 'S| = wo(G - 5) = 3 and
G — S has no even components. By Theorem 4.1(ii). at least one component of G — 5 is
a singleton. Let H, denotc such a singleton component of G — § and let V(H,) = {x}.
Then deg (z) < 3. a contradiction. Hence G is bicritical.

The minimum degree bound in Theorem 5.3 is best possible as there exist 3-connected
3-v-critical graphs having minimum degree 3 which are not bicritical. Two such graphs
are shown in Figure 5.1. The first is due to Sumner and Blitch [SB].
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(a) (b)

Figure 5.1

On the other hand, if we consider planar graphs, then this minimum degree bound
can be relaxed.

Theorem 5.4. If G is a 3-connected 3-vy-critical planar graph having even order, then
(; is bicritical.

Proof: Suppose GG is not bicritical. Using exactly the same argument as in the proof of
Theorem 5.3, again we arrive at the conclusion that the Tutte Set S defined there has size
3 and w,(G — S) = 3 as well. Since G is 3-connected, each of the three (odd) components
of G — S has edges to each of the three vertices of 5. But then ( is contractible to a K33

and hence is non-planar, a contradiction.
|

We conclude this section by establishing a result involving 3-factor-critical graphs.

Theorem 5.5 If (& is a 4-connected 3-v-critical graph of odd order and having mini-
mum degree at least 5, then & is 3-factor-critical.

Proof: Suppose, by way of contradiction, that GG is not 3-factor-critical. By Theorem
2.11, there is a set S ¢ V(G) with |§| > 3 such that w,(G — 5) > |5 — 3.

Since G is factor-critical, by Theorem 5.2, wo(G —8) < |5| —1. Since G has odd order,
Wo(G — 8) # |S| — 2. But then w,(G — S) = |S| — 1. By Theorem 4.4 and our connectivity
hypothesis, 4 < |S| < 5. Since G — S has |5]| — 1 odd components, there is a component
of G — S, say H1, such that [V(H,)| =1 by Theorem 4.5. Let V(H,) = {w}. If |S| = 4,

then d(w,) < 4, a contradiction of our minimum degree hypothesis. Hence |S| = 5. By
Theorem 4.1(i), G — S has no even components. For: = 1,...,4, let H; be the components
of G —S. Choose a vertex w; € V(H;), foreachz: =1,...,4. Clearly W = {wi, w2, w3, wa}

is an independent set. By Lemma 2.4, the vertices of W may be ordered as a,,a3,a3 and
a4 in such a way that there exists a path z,z2z3 in G — W such that lai, ;] — aisv1,
for cach i = 1,2,3. By Lemma 3.4, x,a;41 ¢ E(G) for each i = 1,2,3. Clearly, z; € S
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for i = 1,2,3. Let So = 8§ — {x1,z2,23}. So |So| = 2. Let Sy = {s1,52}. With loss of
generality, we may renumber the components of G — S in such a way that a; € V().
Note that obvervations O1, O2, O3 and 04, stated in the proof of Theorem 4.4, remain
valid in the present situation. Since for cach i = 1,2,3, z;a;4; € FE(G), it follows that
|[V(H;)| = 3 for 2 < 2 < 4 because mindeg (G) > 5 and |S] = 5. Further, V(H,) = {a;},
by Theorem 4.5 and a,; is adjacent to every vertex of §. But then for each 7, 2 < ¢ < 4,
there exist two distinct vertices b; and ¢; in V(H,;) — {a;}.

Let y be a vertex of (H3 U Hy) — {aa3,as4}. Consider G + a1y. Since (G + a,y) = 2,
there is a vertex z of G — {a,y} such that either [a;,2z] — y or [y, 2] — a;. In either
case, z € S. Since a; is adjacent to cvery vertex of Sp, the case [y, z] — a; is impossible
by O3 and Lemma 3.4. Hence, [a;,2z] — y. By Ol and Lemma 3.4, z ¢ {z,,x2}. Since
z3as € E(G) and ayaq € F(G), it follows that z # 3. Thus z € Sp.

Now let y = b3 and consider G + a,b3. Then, by the above argument, there is a
vertex z € Sg such that [ay, z] — b3. Without any loss of generality, we may assume that
z = s,. That is, [a;, s1] — b3. By Lemma 3.4, s,b3 ¢ E(G). Next let y = c3 and consider
G + ayc3. Again there is a vertex z; € Sg such that [a;, 2] — ¢3. Since 5,63 € E(G) and
a1bs ¢ E(G), z1 # s1. Thus z, = s;. That is, [a1, s2] — ¢3 and s2c3 ¢ E(G). Finally, we
let y = b4 and consider G + a;by. Then there is a vertex zz € Sp such that [a), zo] — b4.
But z; # s, since s1b63 ¢ E(G) and a b3 ¢ E(G). Thus z3 = s,. But this is impossible
since sqoc3 ¢ E(G) and ayc3 ¢ E(G). This proves that v(G + a1b4) > 2, contradicting the

3-criticality of G. This completes the proof of our theorem.
|

| 2

The bound on the minimum degree stated in the hypotheses of Theoremn 5.5 is best
possible since there is a 4-connected 3-v-critical graph with minimum degree 4 and having
odd order, but which is not 3-factor-critical. Such a graph Gy is shown in Figure 5.2 below.

Gg:

Figure 5.2

6. Results about 3-v-criticality in claw-free graphs

A graph is said to be claw-free if it contains no induced subgraph isomorphic to K, 3.

In [P] the following result was proved.
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Theorem 6.1. If G is a 3-connected claw-free graph of even order, then 7 is bicritical.
|

\.
If the even graphs involved are 3-v-critical, we can lower the demand on connectivity
and still obtain bicriticality.

Theorem 6.2. Let G be a 3-y-critical 2-connected claw-free graph of even order.
Then if mindeg G > 3, G is bicritical.

Proof: Suppose to the contrary that G is not bicritical. Then there exist vertices w
and v of G such that G’ = G — {u, v} has no perfect matching. By Tutte's theorem. there
is a subset S’ C V(G’) such that we(G' —~ S’) > |S’| and so by parity since |V (G)| is even,
wo(G' — 8') 2 |8+ 2. Let S =S U {u,v}. Clearly |S| = |S/|+ 2 and |S]| = |§'|+2 <
wo(G' — 8") = wo(G — 8) < |S| = |S’| + 2, since G contains a perfect matching by Lemma
5.1(1). Thus wo(G — S) = |S|.

By Theorem 4.1(1), |S| < 3. Let H;,i=1,..., |S]. denote the odd components of G- 5.
First suppose that |§]| = 3. Clearly &G — S has no even components. Set S = {u.v. w}. By
Theorem 4.1(ii}, at least one component of G — S is a singleton. Without loss of gencrality,
we may assume that |V (/)| = 1 and that V(H;) = {z}. Since mindeg G > 3. vertex «
is adjacent to every vertex of S. Since (' is 2-connected, there are at least two vertices of
S which are adjacent to some vertex of H,. Similarly, there are at least two vertices of S
which are adjacent to some vertex of H3. Because |S| = 3, there must be a vertex, say u,
such that u is adjacent to some vertex of Ho and a vertex of H3. Thus u is a claw center
in GG, a contradiction. This proves that |S| < 2. Moreover, since G is 2-connected, |S] = 2.

Suppose S = {u,v}. If G — S contains an even component then ¢(G — S) = 3. Thus.
by Theorem 4.1(ii1), G must have the structure shown in Figure 1.1 and hence G is not
2-connected, a contradiction. Therefore, G — S has no even components. Thus we need
only consider the case when G — S contains exactly two odd components and no even
component.

Since mindeg G > 3, it follows that |V (H )| > 3 and |V (H2}| = 3. Now ¥(G) = 3.
so there exists a vertex z € V(G) — {u,v} such that z ¢ N(u) U N(v). Let 4 = V(G) ~
(SUN(u)U N(v)). Thus A # 0. Furthermore. suppose z1,z, € A. If 27 € V() and
zg € V(H3), then d(zy, z2) > 3, contradicting Lemma 2.6. Thus z; and zz must belong
to the same component of G — S, say Hs. This implies that V(H,) = Ny, (u) U Ny, (v)
and V(H2) = Ny, (u) U Ng,(v) U A. Moreover, since G is 2-connected and |V(H,)| = 3
for i = 1,2, it follows that N(u) N V(H;) # ® and N(v) NV (H;) # 0, for i = 1,2. Now
suppose z € Ny, (u) and y € Ny, (v). Figure 6.1 illustrates the situation.
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Figure 6.1.

Consider G + zy. Since G is 3-~-critical, there exists a vertex w € V(G) — {z, v} such
that either [z, w] — ¥y or [y, w] — z. We distinguish these two cases.

Case 1: Suppose [z,w] — y. Clearly, w € V(I;) and wy ¢ E(G); otherwise {z, w}
dominates G. If w € Ny, (v), then G[{v,w,y,v'}] is a claw centered at v for some vertex
v' € Ny, (v), a contradiction. Thus w € Ny, {u) — Ny, (v) or w € A.

Case 1.1: Suppose w € Ny, (u) — Ny, (v). Since [z,w] — vy, w is adjacent to
every vertex of V (H2) — {y} and = is adjacent to every vertex of V(H,)uU {v}. Figure 6.2
illustrates this situation.

Figure 6.2.

Now consider G +vw. There is a vertex z € V(G) —{v, w} such that either [v, z] — w.
or (w, z] — v. Suppose [v,z] —> w. Since A # @ and v is not adjacent to any vertex of
A, it follows that z € V(H,). Because zw ¢ E((G) and w is adjacent to cvery vertex of
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V(Ha) — {y}, it follows that z = y. Furthermore, since (v, z] — w and z = y. vertex v is
adjacent to every vertex of Hy. But then {v, w} dominates G, a contradiction.
‘ Thus [w, z] — v. Since wy ¢ E£(G) and |w, z] — v, z = u. lence zy = uy € £(G)

and Gl{u,z,y,w}] is a claw centered at vertex u, a contradiction. This proves that w ¢
.NH2 (u) — NH.) (l').

Case 1.2: Suppose w € A. Recall that A = V(Hy) — (Ny,(u) U Ny, (v)). Since

[z,w] — y and w € A, z is adjacent to every vertex of V{(H\YuU {u,v} and wzis adjacent
to every vertex of V{(Fl2) — {y}. Figure 6.3 depicts this situation.

Figure 6.3.

Since dg{w) > 3 and wy ¢ E(G), |V(H,)| = 5. We distinguish two subcases.

Subcase 1.2.1: Suppose uy ¢ E(G). We will show that N, (u) N Ny, (v) = 0.
Suppose not; say vertex y, € Ny, {u) N N, (v). If yiy € E(G), then G[{y1,u,y. w}| is
a claw centered at y,, a contradiction. Thus yy ¢ E(G). But then Gl{v,z,y,n1}]is a
claw centered at v, again a contradiction. This proves that Ny, (1) O Ny, (v) = 0. Since
Np.(u) # 0, there is a vertex uy € Ny, (u). Since N, (W) N Ny (v) = 0, urv ¢ E(G).
If uyy € E(G), then G[{u1,u,y, w}] is a claw centered at wu, a contradiction. Thus
w1y ¢ E(G). Figure 6.4 illustrates this situation.
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Figurc 6.41.

Now consider G +vu;. There exists a vertex z € V(G) = {v, uy} such that either {v, z] — u,
or {uy, z)] — v. First suppose that [v, z] —» u;. Then zu; ¢ E(G). Since v is not adjacent
to any vertex of A and [v,z] — uy, z € V(I{2) = {n1}. If 2 € Ny, (u), then G{u,z,nu, z}]
15 a claw centered at u since u;z ¢ E((G), a contradiction. Hence z € Ny, (v) — Ny, (u)
or z € A. In either case, zu ¢ /(G). Since [v,z] — uy, v is adjacent to every vertex
of V(H,) U {u}. Because yv € E(G) and w is adjacent to every vertex of V(Hy) — {y},
{v,w} dominates G, a contradiction. lence {v, z} does not dominate G — {u;}. Therefore
[u1,z] — v. Since u,y € £(G) and =z must be adjacent to y and to every vertex of FHy, it
follows that z = u. But this is impossible since uy ¢ E(G). This proves that {u,, z} does
not dominate G — {v} and contradicts the 3-y-criticality of ;. Hence uy € FE(G).

Subcase 1.2.2: So suppose uy € F(G). We will show that |4| > 2. Suppose not.
Then |A| = 1 and A = {w}.

Since |V (H3)| = 5. it follows that [Ny, (u) U Ny, (v)| = 4. We will show that
G[NH2 (u)U Ny, (v)] is a complete graph. Suppose not. Then there exist a pair of vertices
wy and w3 in Ny, (u) U Ny, (v) such that wyws ¢ FE(G). Since G is claw-free, we may
assume without loss of generality that wy € Ny, (u) — Ny, (v) and w2 € Ny, (v) — Ny, (u).

Now consider &G + vw,. By applying an argument similar to that presented in Case
1.2.1 for G + vu,, but replacing u, with w; and y with ws, we get a contradiction. Hence
G[Ng, (u)UNgy, (v)] is complete. But then if we choose any vertex y1 € (N, (u)UNg, (v))—
{v}, we find that {z,y;} dominates &, a contradiction. This proves that |A| > 2.

Recall that [z, w] — y and that w € A. Since |A] > 2, there is a vertex wy, € A—- {w}.

Figure 6.5 depicts the situation.
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Figure 6.5.

Consider G + zw. There exists a vertex = € V(G) — {z,w} such that [w,z] — z or
[z,z] — w. Suppose first that [w,z] —» x. By Lemma 3.4, zz ¢ E(G). Since z is
adjacent to every vertex of V(H ) U {u,v}, 2 ¢ V({{})U {u,v}. But then {z,w} does not
dominate G — {z}, a contradiction.

Hence we can suppose that [z, z] — w. By Lemma 3.4, zw ¢ F(G). Since A~ {w} #
@ and w is adjacent to every vertex of V(fly) — {y}, z = y. Hence y is adjacent to every
vertex of V(1) — {w}. Consequently, uwv € E(G); otherwise G[{y,u,v,w}] is a claw
centered at y.

Next we consider G +uw. There exists a vertex z € V(G) — {u, w} such that [w, z] —
vor (u,z] — w.

Suppose first that [w, z] — u. Since wy ¢ E(G) and [w, z] — u, z must be adjacent
to y and to every vertex of £{/;. Thus z = v. This implies that {w, z} dominates G since
2u = vu € E(G), a contradiction. Hence [u, 2] — w. since A — {w} # 0 and [u, z] — w,
it follows that z € V(H3;). Thus u is adjacent to every vertex of /. Recall that uwv € £(G)
and uy € F(G). Hence {u,w} dominates G, contradicting the 3--criticality of G. This
completes the proof in Subcase 1.2.2 and consequently the proof of Case 1.

Case 2: Suppose [y, w] — z. Clearly wz ¢ E(G). This implies that w # u. Since
y€ V(H,;) and [y,w] — =, w € {v} U (V(H) — {z}).

Case 2.1: Suppose w = v. Then [y,v] — z. Thus v is adjacent to every vertex of
V(H,) — {z} and y is adjacent to every vertex of A. If y is not adjacent to some vertex of
V(H3) - (Au {y)), say y1, then vy; € E(G) since [y,v] —> =. But then G[{v,y,1,v'}]
is a claw centered at v for some vertex v’ € Ny, (v), a contradiction. Hence vertex y is
adjacent to every vertex of V{(H2) — (A U {y}) and thus to every vertex of V(H3y) — {y}.
Figure 6.6 illustrates this situation.
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Figure 6.6.

Since G is claw-free and v is not adjacent to any vertex of A, ([ A] is complete. We will
show that G[Ng,(u) U Ng,(v)] is complete. Suppose, to the contrary, that there exist
a pair of vertices y; and y» of Ny, (w) U Ny, (v) such that yyys ¢ £(G). This implics
that y3 € Ny, (u) — Ny, (v) and y2 € Ny, (v) — Ny, (u) or 1 € Ny, (v) — N, (u) and
Y2 € Ny, (u) — Ny, (v), since G is claw-frece and Ny, (1) # 0 and Ny, (v) # @. Without loss
of generality, assume that y; € Ny, (u) — Ny, (v) and yo € Ny, (v) — Ngr, (). Now consider
G + uys. There exists a vertex z € V(G) — {u, y2} such that [u, z] — y, or ly2, z] — wu.

Suppose first that [u, z] — y2. By Lemma 3.4, 2y ¢ £(G). Thus z # v. Further,
since G is claw-free, z € Npy,(v). Since [u,z] — yp and A # @, z € Ny, (u) — Ny, (v)
or z € A. In either case, zv ¢ E£(G). Thus u is adjacent to every vertex of V{#H,) U {v}.
But then {u,y} dominates G, a contradiction. Hence {u, z} does not dominate G — {y»},
a contradiction, so [yz,z] — uw. By Lemma 3.4, uz ¢ E(G). Since y1y2 ¢ £(G) and
[y2, 2] —> w, z must be adjacent to every vertex of V(H 1)U {y,}. This implies that z = .
But this is impossible since vy, ¢ E(G). This proves that G[Ny, (u)U Ny, (v)] is complete.

Next we will show that G[V(#2)] is complete. Recall that G[Ny, (1) U Ny, (v)] is
complete, G|A] is complete, and y is adjacent to every vertex in A. Thus we need only
show that each vertex of [Ny, (u) U Ny, (v)] — {y} is adjacent to cvery vertex of A.

Suppose y, € [Ng,(u) U Ny, (v)] — {y}. Consider G + zy,. There exists a vertex
z € V(G) — {z,y1} such that [z,2] — y; or [y1,2] — =.

Suppose first that [z, z]) — y1. Since z € V(H1), A # @ and G[Np, (u) U Ny, (v)] is
complete, it follows that z € A. Thus zv ¢ E(G) and since zv ¢ E(G), {z, z} does not
dominate G — {y;}, a contradiction. Hence [y1, 2] — z. Consequently, y; is adjacent to
every vertex of A as required. This proves that G[V(H3)] is complete.

Now consider the vertex z. Since mindeg G > 3 and zv ¢ E(G), z is adjacent to at
least two vertices if V(H,) — {z}. Let two such vertices be designated =, and z,. Since
[v,y) — z and |V(H,)| > 3, it follows that G[V (H,) — {z}] is complcte because of claw-
freedom at vertex v. Choose y; € Ny, (v). Then {x,,y,} dominates G since z, is adjacent
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to every vertex of V(H ) U {v} and v, is adjacent to every vertex of V(H2) U {u}. This
contradicts the fact that v(G) = 3 and thus proves that w # .

Case 2.2: 3o suppose w € V(H;) — {x}. Since [y, w] — £, w is adjacent to every
vertex of V(H1) — {z} and y is adjacent to every vertex of V(H3). Figure 6.7 depicts this
situation.

Nyl o N

Figure 6.7.

Recall that Ny, (u) U Ny, (v} = V(H)) and zu € E(G). Since wx ¢ F(G) in the present
Case 2.2 and zu € E(G), it follows that wu ¢ E(G), for otherwise G{{u, w, z, 1 }] is a claw
centered at u for some yy € Ny, (u). Since V() = Ny, (u) U Ny, (v) and wu ¢ E(G),
it follows that wv € E(G). Because of claw-freedom at v, zv ¢ E(G). We will show
that Ng, (u) N Ny, (v) = 0. Suppose not. Then there is a vertex w; € Ny, (u) N Ny, (v).
Clearly wy, ¢ {w,x}. Since w,u and wiv € E(G) and each vertex of V(H,) belongs to
Ny, (u)UNg, (v), it follows that w, is adjacent to every vertex of V(H;) since G is claw-[ree.
But then {w;,y} dominates GG, a contradiction. This proves that Ny (u) N Ny (v) = 0.
Since |V (f1;)] is odd and is at least 3, there exists a vertex wp € V(H) — {z,w}.
Without loss of generality, we may assume that wy € Ny, (v). Now consider G+uw. There
exists a vertex z € V(G) — {u,w} such that [u, z] — w or (w, z] — u. Suppose first that
[u,z] — w. By Lemma 3.4, zw ¢ E(G). Since [u,z] — w and u is not adjacent to any
vertex of Ny, (v), vertex z must be adjacent to every vertex of V(H2) U (Ngy, (v) — {w}).
But this is impossible since A # @ and, since wz € Ny, (v) —{w}, Ng,(v)—{w} # 0. Hence
(w, z] — u. Since wz ¢ F(G), vertex z must be adjacent to every vertex of V(Hz) U {z}.
But this is impossible since vz ¢ E(G) and v is not adjacent to any vertex of A. This

contradiction completes Case 2.2 and the proof of the theorem.
B

We now prove a similar result involving 3-factor-criticality.

Theorem 6.3 Let G be a 3-v-critical 3-connected claw-free graph of odd order. Then
if mindeg G > 4, G is 3-factor-critical.

41



Proof: Suppose. to the contrary, that ¢ is not 3-factor-critical. Then by Theorem
211, there is a subset S of V() sueh that [S] > 3 and w,, () — 5) > 9] S5 Bt (B
Theorem 3.2, G is factor-critical. Thas w, (- &) < 1S = 1. Sinee [V s odd, it follows
by parity that w,{G' —S8) = |S| - 1. Then by Theorem ., |ST < 5. Since G is 3-connect ed.
3< 8] £5.

We first suppose that [S] = 4. By Theorem 1L1(1). ¢ — S has no even Components.
'Since G is 3-connccted. there are at least three vertices of S which are adjacent to sone
vertices of ecach component of (7 — 5. Because |8 = 1. there must be a vertex of S, sav

w. such that s adjacent to at least one vertex of cach cotnponent of €0 — 8. Thus o s o
claw center in ¢/ which contradicts the assumption that (7 is claw-free. Henee (S| £ 1 By
asimilar argument. |5 # 5 Thus |S] - 3.

Since G is claw-frees it is casy to see that (¢ — 5 has no even components. Farther-
more, since G is 3-connected, S is o minimuam cuset in (L Because mindeg & > <, each
component of (¢ — 8 has at least three vertices. Let Hy and £ be the odd components of
OG-8 and let & = {uy ua, g}

We now define several sets of vertices in 0 as follows. For 1< 7 < 3, let

A V) NG,

3, Vo N,
O N U7 ED IR WA

1

and
[ Vi) - o D

Claim 1: For I =/ < 3., » 0/ B, Purthermore. both Gy and G, are
complete.

This claim follows direct]y from the fact that S is a minimum eatset and G is clivw-free.

Claim 2: [Sither ¢ =0 or (.

Suppose. to the contrary, that there is o vertex @ € C and a vertex y € ). Then the
distance between vertices o and i is at least 4, since @ ¢ U;’:l.—l,- and ¢ & U;‘le,_ But this
contradicts Lemina 2.6, thus proving the Claim.

So without loss of generality, let us assume that ¢ = V. We now distinguish two cases,

according to whether £ is empty or not.

Case 1: Suppose ) # 0.
Choose vertices ay € A and by € 13, Consider G+ ayby. Since & 1s 3-v-critical, there

is a vertex z; € V(G) — {ay, by} such that either [ay, z1] — by or [by, 2] — ay.

Subcase 1.1: Suppose [ay, 21] —* by. By Lemma 3.4, 210, ¢ E(G). Since D #
andd By is complete, z, € V(H3) — 3). Thus a; dominates V(1)U {wu;}.
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Subcase 1.1.1: Suppose z; € (B U B3) — B,.
Without loss of generality, we may assume that z; € B, — B;. Then z;, dominates
CV(H2) — {b1}. Since u; is not adjacent to any vertex of D, G[D] is complete. To see this
just suppose that |V{(D)| > 1 and suppose that z; and x, are two non-adjacent vertice::;
in D. Then Glzy;uz,z1,x2] is a claw centered at z,. Furthermore, since z;b, ¢ (G)
it follows that zyu; ¢ E(G) by Claim 1. Similarly, uzby ¢ E(G). Figure 6.8 depicts 0u1:
present situation.

B[UB}UB:;

AIUAzLJA]

Figure 6.8

Since [a;, z1] — b, either zju3 € E(G) or ayuz € E(G).

Suppose first that zyu3 € E(G). Then there is a vertex v € A; U Az such that u; 1s
not adjacent to v, for otherwise {u;, z1} dominates (', a contradiction.

Now consider (¢ + u,z;. There must be a vertex z2 of G — {u1, z1} such that either
[u1,29] — 2z, or [2y,22] — u;. First suppose that [uy,z2] — z1. By Lemma 3.4,
z1z2 ¢ E(G). Since z; dominates (V(H2) — (b )U{uz, us}, 22 ¢ (V(Hz) — {01} U{ua, uz}-
Thus z; = b, or z, € V(F,). In either case, {u;, 22} does not dominate G — {z,} since
biv ¢ E(G) and D # ©. Hence [z1,22] — u1- Since z1b1 ¢ E(G), byuz ¢ £(G) and
V(H,) # @, it follows that z3 = uz. Thus usb, € E(G). But then Glua; by, z1,a3] is a claw
centered at u, for any a3 € A3. Thus zyus3 ¢ E(G).

Hence a,u; € E(G).

Now consider G + byuz. There must be a vertex z3 of G — {b1,u2} such that either
(b1, z3) —> ug or [u2, z3) — by. Suppose first that [b), za] — uz. Since b1z) ¢ E(G) and
V(H,) # 0. z3 € {u;,u3}. But this is impossible since zu, ¢ E(G) and zyus € E(G).
Thus {b,, z3} does not dominate G — {u2}-
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Hence [uz, z3] — b1. By Lemina 3.4, z3by & E(G). Since D # 0, z3 ¢ V(Hy) — 3.
since By 1s complete. But then us; must dominate V(H{)U{u:}. Suppose there is a vertex
v € V(H1) such that u; is not adjacent to x. Then Gluz;uy, z, 21] is a claw centered at
ug. a contradiction. Hence u; also dominates V(H,).

Next we will show that usus ¢ E(G). Suppose, to the contrary, that usuy € F(G).
By an argument similar to the one immediately above, u; dominates V(H,), for otherwise
G contains a claw centered at up. But then wiyuz € E(G), for otherwise Glua: uy, ug. 2]
is a claw centered at u;. Consequently, {u1, 21} dominates G, a contradiction. Hence
urus & E(G).

Since [u2. 23] — b1, z3uz € E(G). Because zjus € E(G), z3 # 2. Now choose
a3 € A3. Since up dominates V(Hy) U {wu,}, G[V ()] is complete by Claim 1. Thus ag
dominates every vertex of V/(H,) U {uq, uz,uz}. Consider now G + a3z;. There must be
a vertex zy of G — {a3,z1} such that cither [a3, 23] — 2, or [z1,24] — a3. Suppose
[as, z4] — 2z1. By Lemma 3.4, z4z, ¢ E(G). Since z; dominates V(Hz) — {01}, z4 &
V{Ha) = {1} But D # @ s0 z; = b;. This is impossible since byzz ¢ E(G) aud
azzz ¢ E(G). Thus {a3.z:} does not dominate G — {z;}. Hence [z,,24] — a3. By
Lemma 3.4. zyaz € E(G). Since V(Hy) — {az} # 0 (rccall that |[V(Hy)| > 3). zy €
(V(Hy)={aa})U{u1. uz, uz}. But thisis impossible since as dominates V (H1)U{wy. us. us}.
This proves that Subcase 1.1.1 cannot occur.

Subcase 1.1.2: Suppose z; € D. .

Recall first that [a,,z;] — b;. Since z; € D, 2z, is adjacent to every vertex of
V(H) — {b1} and a; dominates V(H,) U {u1, us,uz}. Consider G + a1z;. There must be
a vertex zo of G — {a;, z1} such that either [z1, 23] — a; or [a1. 22] — z;. Suppose first
that (23, 20] — a,. By Lemma 3.4. zpa; ¢ E(G). Since 2; € D and V(H,) — {a1} # 0.
z2 € (V(H1) U {ur.u2,u3}) — {a1}. But this is impossible since a, dominates V() U
{ur.u2,u3}. Thus {z;, z2} does not dominate G — {a;}. Hence [ay, 22] —» 2;. By Lemma
3.4, 2221 ¢ E(G). Since z; is adjacent to every vertex of Ho — {b1} and V(H,) — {2z} # 0.
z2 = by or z € {uy.uz,uz}. Suppose z» € {uy,us,uz}. Then D = {z1} and G[V(H>,) — D]
must be complete by Claim 1. But then {a,, b2} dominates &G, where b; is any vertex in
B different from b;. since G[V(H,) — D] is complete and bpz; € E(G), a contradiction.
Hence z; = b;. That is, [a;.b,] — 2z1. Thus b; is adjacent to every vertex of Ha — {b1. 2, }.
For ¢ = 2.3, if byu; € E(G). then G[b;1 b, u;, 1] is a claw centered at b; where b; € B;. a
contradiction. Hence b,u; € E(G) for 1 = 2,3. Furthermore, since b, € By, biu; € E(G).
for i = 1.2.3. Figure 6.9 now depicts our situation.
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Figure 6.9

Choose r € V(H;)—{a1} and consider G+ zb,. There must be a vertex z3 of G—{z, by }
such that either [z, z3] — by or [by1, z3] — z. Suppose that [by, 23] — z. Since b2z, ¢
E(G), z3z, € E(G). But because V(H,) — {z} # 0, z3 must dominate H; — {z} as well.
But this is clearly impossible. Thus {b,, z3} does not dominate G — {z}. So [z, z3] — b;.
By Lemma 3.4, z3b; ¢ F(G). Since b; dominates (V(Hz) — {z1}) U {u1, uz2,ua}, z3 = 2;.
Then z dominates V (H;)U {u,,uz2,uz}. But = is an arbitrary member of V() — {a,}
and also a, is adjacent to all vertices of V(H,) U {u;,uz,u3z}. Consequently, G[V(H;)]
is complete and every vertex of H; is adjacent to every vertex of {u, uz,u3}. Note that
G[{uy, ua, 13 }] must contain an edge, for otherwise any vertex of £/, becomes the center of
aclaw in G. In fact, G[{u1, uz2, ua}] contains exactly one edge; otherwise G is dominated
by z; and one of the u;, for 1 < 7 < 3. Then there exist vertices u; and u; for some ¢, j,
1 €17 < 7 < 3such that u;u; ¢ E(G). This implies that z; is the only vertex of D as
otherwise b, is a claw center in G.

Without loss of generality, we may suppose that uyu; € £(G). Then uius ¢ E(G) and
uzuz ¢ E(G). Thus no vertex of By — {b;} can be adjacent to ua, otherwise G[ba; ua, ug, z1]
is a claw centered at b, for every vertex b, € Ba — {b1}. Similarly, each vertex of B3 — {6, }
is not adjacent to u,. Note that u; dominates V(H,)U B, U {uz}.

Now first suppose that Bz = {b1}. Recall that {a,,b,] —> 2z, so b; is adjacent to
every vertex of B, U By U Ba. If any two vertices of B; U B, are non-adjacent, we obtain
a claw at b;, a contradiction. Hence G[B; U B, U B3] is complete. But then choose any
ba # by, by € By U B3 and see that b,, together with any vertex in H,, dominates G, again
a contradiction. So Bz — {b;} # 0. So choose a vertex b3 € Bz — {b1}. If G[B; U Bj]
is complete, then {u;,bs} dominates &, since b3 dominates By U Bz U {us, 21} and u,
dominates Hy U {uz}. This contradiction implies that G[B2U B3] is not complete. This, in
turn, implies that there are vertices w € By, — B3 and y € B3z — B> such that wy ¢ F(G),

since both G[B;] and G[Bj3] are complete.
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Now consider G + wug. There st be a vertex zg of G = {w, uz} such that cither
qa, 24) —> w or w, za] —> wua. Suppose first that |u3, 23] — w. By Lemma 3.4,
sw € E(G). Since uy 1s not adjacent to any vertex of {w, us, 21}, it follows that z4 €
B, N Bz) — {w}. But this s impossible since {zq, w} C By and G[B3] is complete. Thus
u3, z4} does not dominate G — {w}. Hence [w, z4] —> uz. By Lemma 3.4, z4us ¢ E(G).
decall that each vertex of VI(ffy) s adjacent to every vertex of {u;,us,u3}. Thus z4 &
J{Hy). But then zy € {uy, u2} since V() # 0. Since wy ¢ E(G) and yua ¢ F(G), this
mplies that z4 = uy and then wyy € E(G). Hence Gly; uy, ug, z1) 1s a claw centered at y.
This contradiction completes the proof of Subcase 1.1.2 and hence also Subcase 1.1.

Subcase 1.2: So [by. =] —» uy.
By Lemma 3.4, a1z ¢ I(G). Then 2, € A4y U {w}. Since V{(H,) — {a1} # 0,
1€ AaU Aj or 2y € {ug, w3} We distinguish two cases.

Subcase 1.2.1 Suppose 2; € 45U A5 Without loss of generality we may assuine that
1 € Ay, Since [by, 2] — ay and by € V' {{{2). 21 dominates [, — {a;} and b; dominates
Hs. Since ayzy ¢ E(G), uyzp & E(G) by Claim 1. Similarly, ayus ¢ E(G).

Now consider G + u; 2y, There must be a vertex 2 of G — {u1, 21} such that either
[z1,22] — wuy or [ui,za] — z;. Suppose first that [z,,2z2] — u;. By Lemma 3.4,
up & E(G). Since zyay & E(G) and D # @, zo must be adjacent to a; and every vertex
of D. But this i1s impossible since £ M N{w,) = @, for 1 <4 < 3. Then {z,,z22} does
not dominate G — {w;}. Hence [wy, 22] — z;. By Lemma 3.1, 5120 ¢ E(G). Since
D # @, it follows that z» € V(Fy). This implies that u; dominates V (/1) — {z:} and
then GIV(H,) — {z1}] is complete because of Claim 1. Thus G[V (H,)] = K¢ - a1z, where
t = |V(H). since z; 1s adjacent to every vertex of V() - {a,}. (See Figure 6.10.)

e S

B,w B)ywu B,

Figure 6.10
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Now choose az € V(Hy) — {ay, z1}. Consider G + azb;. Then there is a vertex 23 of
"— {az,b1} such that either [a2, 23] — by or [y, 23] — a2. Suppose that [az, z3] — b;.
'y Lemma 3.4, z3b1, ¢ E(G). Then 23 ¢ V(H,) since b, dominates V(H3). Because
) # 0, 23 € V(H2) — {b1}. This contradiction proves that {az, 23} does not dominate
7 —{b1}. Hence it must be the case that [b1, 23] — a2. By Lemma 3.4, z3a, ¢ E(G).
ince G[V(H,)] = K;—ayz; and u; dominates Hy—{ay}, it follows that z; ¢ V{H))U{u, }.
ince V(H)) — {az2} # @ and by € V(H,), it follows that z3 € {ua,u3}. But z3 # u, since
201 ¢ E(G) and bia; ¢ E(G). Hence z3 = uz. Then uza, € E(G) and uzz, € E(G).
his contradicts Claim 1 since ayz, ¢ E(G). But then it is false that [b1. 23] — a2. Hence
subcase 1.2.1 cannot occur.

Subcase 1.2.2: So z; € {ua, u3}.

Without loss of generality, we may assume that 2, = us. That is, [b;, us] — a;. By
wemma 3.4, uza; € E(G), uz dominates Hy — {a;} and b, dominates (B, U B; U D) — B>.
3y Claim 1, H; — {a} is complete. Choose a3z € V(H) — {a;}. Then a3 € A» since u»
lominates H, — {a1}. Now consider G + a3b;. There must be a vertex zo of G — {asz. 01}
such that either [ag, z2] — by or [b1, 22] — a3.

Subcase 1.2.2.1: Suppose (a3, 22] — b. By Lemma 3.4, z:b, ¢ E(G). Since b,
dominates (B1 U B3 U D) — By and D # 0, 2o € B2 and 29b; ¢ [{G). Furthermore.
z2 dominates Hp — {b;}. By Claim 1, bjus ¢ E(G) and ujz2 ¢ E(G). Recall that
uza; ¢ E(G). Since uzb; ¢ E(G), uiu, ¢ E(G); otherwise. Gluy; uz, b1,a,] is a claw
centered at wu;.

Now consider G + u;z2. There must be a vertex z3 of G — {uj. 22} such that either
[u1.23] — 22 or [z2,23] — u;. Suppose first that [u;.23] — z2. By Lemma 3.4.
2322 € E(G). Since zo dominates Hy — {b,} and D # 0. z3 = b;. This is impossible
since byus ¢ E(G) and vyus € E(G). Thus {u;, 23} does not dominate G — {z2}. Hence
[22.23] — wuy,. By Lemma 3.4, z3u; € E(G). Then z3 ¢ A, U {b1}. Since zob; ¢
E(G), z3by € E(G). Because V(H,) # 0 and b, € V(H2). it follows that z3 € {ua, usz}.
But usb;, ¢ E(G), so z3 = uz. By Lemma 3.4, uzu; ¢ E(G). Since by dominates D.
G[by;uy. ua, w) is a claw centered at by, for any w € D. This contradiction completes the
proof of Subcase 1.2.2.1.

Subcase 1.2.2.2: So suppose that [b,22] — a3. By Lemma 3.4, z2a3 ¢ E(G).
Then, since H, — {a.} is complete, z2 € (V(H) — {a1}) U {uz}. Since V(H,) — {a3} # 0.
2y &€ {al.ul,U3}.

Suppose zo = a,. That is, [b;,a;] — a3. Then a, dominates H, — {az} and b,
dominates H,. Recall that usa; ¢ E(G). Therefore, byus € E(G). Since H, — {ay} is
complete, G[V(H,)] = K; — a1a3, where ¢t = |V (I)]. Since |V(H,)| > 3, there is a vertex
y € V(H;) — {a1,a3}. Clearly y dominates H,. If byuz € E(G) or if yuz € E(G), then
{b1.y} dominates G, a contradiction. Hence b u3 ¢ E(G) and yus ¢ E(G) for every choice
of y € V(H,) — {a1,a3}. Since [b),a1] — a3z and byus ¢ E(G), a,uz € E(G). Because of
Claim 1. azuz ¢ E(G). Recall that [, uz] — ai. Since byuz € E(G), upuz € E(G). But
then Glus; us,as, b1] is a claw, a contradiction. Hence 23 # a;.

Next we suppose that zo = u;. That is, [b;,u1] — a3. Then b; dominates (B; U
B3z U D) — B;. Since by € B, and G[B,] is complete, b; also dominates B;. Thus now b,
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jominates H;. Since [by,u;] — a3, it follows that u; dominates fI; — {a3}. By Claim I,
4, — {a3} is complete. Since H, — {a,} is complete, we have G|V (H,)] = K, or K, —a,ay
vhere ¢t = |V(H))|. By a similar argument, there is a vertex y of If; — {a;,a3} such that
; dominates H,. Furthermore, y € A; N A; since [by,u1] — a3 and [by,uz] —— a;. If
juz € E(G) or bhyua € E(G), then {y, b, } dominates G, a contradiction. Hence yuz ¢ E(G)
ind byuz € E(G). Since [by,u1] — a3 and bjuz ¢ E(G), wvjuz € E(G). But then
I'}[ul; us, ¥y, b1] is a claw centered at u,, a contradiction. Hence 29 # u,.

Thus 22 = u3. That is, [0y, u3]) — @3.Then uz dominates H, — {a3}. By an argument
similar to that above, we have G[V(H,)] = K; or K; — a,a3, where t = |V (H,)| and
-here is a vertex y of Hy — {ay, a3} such that y dominates H,. Since [b;, u3] — a3 and
by, uz] — a1, ¥y € A2NAjz. Furthermore, b; dominates V(H3) —(B2NB3). If by dominates
Ha, then {y,b,} dominates G, a contradiction. Hence there is a vertex w € B, N B3 such
:hat hyw ¢ E(G). Because of Claim 1, uyw ¢ FE(G), biuz ¢ E(G) and biuz ¢ E(G).
Consequently, ujus ¢ E(G).

Now consider G + u;w. There must be a vertex zz such that either [uy, z3] — w
‘ror [w, 23] — wu1. Suppose first that [u;, 23] — w. By Lemma 3.4, zaw ¢ E(G). Then
f33 ¢ B> U B3 U {'U.g,’u.g}. Since u;u» g E(G), Z3Ug € E(G) Thus z3 € By U {‘U.g},
a contradiction. So it must be the case that [w, 23] — wu;. Since wb;, ¢ FE(G) and
V(H,) # 0, z3 € {ua,u3}. But this is also impossible since b us ¢ E(G) and bjus € E(G).
This contradiction completes the proof in Subcase 1.2.2.2 and hence Case 1 is settled.

Case 2: So suppose now that D = {.
Choose a; € A, and b, € B; and consider G + a1b;. There must be a vertex z; €

G — {ay, b1} such that either [ay, z1] — by or [by, z1] —> a1. Without loss of generality,
suppose [21,21] — b1. By Lemma 3.4, 215y ¢ E(G). So z; € (V(H2)U {uz,u3}) — By,
since By is complete and V(H2) — {b1} # 0.

Subcase 2.1: Suppose z; € V(Hz) — B,. Then a; dominates V(H,). Since D = 0,
without loss of generality we may assume that z; is adjacent to u;. Then z; dominates
Hy — {b1}. By Claim 1, uzb; € E(G) and z1u; € E(G). (See Figure 6.11.)

Figure 6.11
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Consider G + ai1z;. There must be a vertex 22 in G — {a,,z;} such that ecither
2y.z2] — 21 or (21, 22] — a;.

Subcase 2.1.1: Suppose [21,22] — a;. By Lemma 3.4, z;a; ¢ E(G). But then
¢ V(H) U {u}. Furthermore, 22 # uq since z1b; ¢ E(G) and uzby ¢ £(G). Hence
., = uz. Hence ujz dominates (V(H,) — {a1}) U {u;,b1}. So H; must be complete since a,
s adjacent to all vertices of V(H;) — {a1} and because of Claim 1.

If u; dominates V(H,), then {u,, 2} dominates G, a contradiction. So there exists a
rertex ap € V(Hy) — {a,} such that a, is not adjacent to u;. Hence u3 is not adjacent to
:; by claw freedom. (See now Figure 6.12.)

' u /f—cr'—‘_‘\& \/ o

.
A= ¢

Figure 6.12

Now choose a3 € V(H;) — {a1,a2} and consider G + byaz. There must be a vertex z3
in G — {b;,as} such that either [b;, 23] — a3 or (as, z3] — b1.

Subcase 2.1.1.1: Suppose [b;, 23] — a3. By Lemma 3.4, z3 is not adjacent to asz
and hence z3 € {u;,us2}. But z3 # u, since viaz ¢ E(G) and bjaz ¢ E(G), so z3 = us.

Then u, dominates V(H;) ~ {aa}. If uyus € E(G), then Glug;uy,az,z1) is a claw
centered at u,, a contradiction. Hence u,us ¢ E(G).

Now consider G + ujus. There must be a vertex z4 in G — {u, uz } such that either
[ur, z4] — w2 or [uz,z4] — ui. Suppose first that [uy, z4] —> uz. Since ujyaz € E(G)
and u,z, ¢ E(G), it follows that z4 = uz. But this is impossible since uzz ¢ E(G). Thus
{u1, 24} does not dominate G — {u,}. Hence [u3, z3] — uy. By Lemma 3.4, z4u; € E(G).
Since ujuz € E(G), z4 # us. Because uzaz ¢ E(G) and uzby ¢ E(G), z4 = u3, a
contradiction. This completes the proof in Subcase 2.1.1.1.

Subcase 2.1.1.2: So [a3, z3] — b1. By Lemma 3.4, 235, ¢ E(G) and hence z3 ¢
B; U {u;,us}. But then z3 = up or z3 € V(H2) — By.

Subcase 2.1.1.2.1: Suppose z3 = uz. Then u, dominates V(H>2) — {b1}. Hence
GV (H3) — {b1}] is complete by Claim 1. If uza; € E(G), then {uz,us} dominates G,
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contradiction. Hence w3 is not adjacent to a;. Choose by € V(H,) — {b,} such that
20y € E(G). So b, # z,. Consider G + azb,. There is a vertex zq4 1in G — {a3,’b2} such
hat either (a3, z4] = b2 or (b2, z4] — aj.

Subcase 2.1.1.2.1.1: Suppose (a3, z4] — b2. So z4 ¢ V(H,) U {uz} by Lemma 3.4.
0 z4 € {uy,u3}. But this is impossible because u, is not adjacent to z; and ug is not

'djacent to z;.

Subcase 2.1.1.2.1.2: So [bz,2z4] — a3. By Lemma 3.4, z4 ¢ V(H,), since H, is
omplete. So z4 € {u, uz,u3z}. But z; # u, because u; is not adjacent to a;. Moreover,
‘4 7 Uz Or ug either, because u; 15 not adjacent to a; and wuwsy 15 not adjacent Lo a;. So we

1ave a contradiction.

Subcase 2.1.1.2.2: So suppose z3 € V(i) — B;. Then u; is not adjacent to z3 by
Claim 1 and the fact that 236, ¢ FE(G) . Therefore, azu, € E(G), since [az, z3] — b;1.
lecall that uz dominates (V(H) — {a;}) U {u1,b:}. Now az dominates V() U {u;,ua}.
' We claim that By C B3. Suppose not. Choose y € B, — B3. Then we have a claw
{uy;ua, vy, a1], a contradiction. Similarly, we claim that B3 € B,. Suppose not. Choose
y € B3 — B;. Then Gua; uy,y,a2] is a claw and again we have a contradiction.

Thus B, = Bs.

Next we claim that BN B, = . Suppose not. Choose y € ByNEB2. Then y is adjacent
-0 u#1, u2 and us. Furthermore, y dominates I3, U B; = V(H;). Thus {y, a3} dominates G,
1 contradiction. Hence 3, N B> = §. Figure 6.13 illustrates the present situation.

Figure 6.13

Now consider G + b u;. There must be a vertex zs in G — {b;,u2} such that either
[b1,25] — u2 or [uz,2zs] —> by. Suppose first that [by, z5] — uz. Then, by Lemma
3.4, zsup, ¢ F(G) and so z5s ¢ B,. So zs € V(H,)U {uy,u3}. But then it is false that

| [b1,25] — us, since neither b, nor zs is adjacent to z;.
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So we may suppose that [uz, 25] —> by, Then by Lemma 3.1, 25, ¢ E(G). Therefore,
2 € By U {wr,u3}. Since By N By, = @, y is not adjacent to ., for all y € By, If
|B1| > 2, then z5 € B2. But then us dominates V(/1;) and hence {uz,b1} dominates G, a
* contradiction. Hence [B;]| = 1. Since 5 is connected, there is a vertex b, € By such that
bibs € E(G). Because D is complete, vertex by dominates V{Ho) U {uz}. Thus {az, b2}
dominates G since az dominates V(H;) U {u;,u3}. This contradiction settles Subcase
2.1.1.2.2 and hence also Subcase 2.1.1.

Subcase 2.1.2: Supposc [a;.z3] — z;. Then, by Lemma 3.1, z02; ¢ E(G) and so
2@ (V(H2) — {1 }) U {u2}. Hence 25 € {uy. us. by},

Subcase 2.1.2.1: Suppose z; = ;. That is, {ay,u1] —> 2z1. Hence u; dominates
V(Hs)—{z1}. But then by Claimm 1, G[V(H2)—{z1}] is complete. Recall that z; dominates
V(Hy) — {b1}. Hence G[V(H3)] = K; — byz1. where t = |V (HJ)].

If ayus € E(G). then uyuy € E(G) since [ay. uy] — 2. But then Gluy:ay. ., by] is a
claw centered at u;, a contradiction. Hence ayusy € F{G).

Now if ajus € £(G). then {ay. 4} dominates G for any choice of yy € VI(Hg)—{b1.21}.
a contradiction. Thus a,uz ¢ E((). But then, because [ay, uy] — 7y, viug € E(G).
Moreover, because of claw [reedom at wuy, ugz is adjacent to every y € V(Hz) — {z1}. This
implies that {a;,y1} dominates G for every choicc ol iy € V(H2)—{b1, 21}, a contradiction.
Hence 25 # u,.

Subcase 2.1.2.2: Suppose z; = u3. That is, [ay, u3] — z;. Then. by Lemma 3.4.
uzz; ¢ E(G) and uj dominates V(H2) — {z,}. So G[V(H?) — {z1}] is complete because of
Claim 1. Recall that z; dominates V(i) — {b1}. Thus G[V(H3)] = K¢ — byz1, where t =
V(H2)|. If ayus € E(G), then {a1, y2} dominates G for any choice of y» € V(H2)—{b1. 21},
a contradiction. So aju, ¢ F(G). But then uzup € E(G) since [ay,uz] — z1. By
claw freedom at us, a, is not adjacent to uz. But this contradicts our assumption that
[@1.2] — by. Hence 20 # us3.

Subcase 2.1.2.3: Suppose zo = b;. That is, [a1,b1] — 2z1. Then b; dominates
V(H3) — {z1}. Since byuy ¢ E(G), a; is adjacent to us. (See now Figure 6.14.)
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Figure 6.14

Consider G + u;2;. There mnust be a vertex z3 in G — {u1r, 21} such that either

[U1,23] — 2y Or [21,23J — U).

Subcase 2.1.2.3.1: Supposc [u;, 23] — z;. Hence by Lemma 3.4, z3z, ¢ E(G).
Thus z3 € (V(H2) — {b1}) U {uz2}. But then zz € {by,ua} U V(H,).

Subcase 2.1.2.3.1.1: Suppose z3 = by; that is, [uy, 6] ~— z;. Then u; dominates
V(H)U{uz}. By Claim 1, G[V ()] is complete. If uyuz € E(G}), then {u;, z;} dominates
G, a contradiction. Hence u,; is not adjacent to uz. Therefore, b, is adjacent to uz. Now
since there is no claw at u;, us dominates V(H,). Therefore {b;,u2} dominates G, a

contradiction.

Subcase 2.1.2.3.1.2: Next, suppose that zz3 = uz. That is, [u;,uz] — 2z,. By
Lemma 3.4, u3 is not adjacent to z,. But since [a1, 2] — b; and 2z, is not adjacent to us,
a1 must be adjacent to ;.

We now claim that G[V (H,}] is complete. Suppose not. Say zy ¢ E(G) for some
choice of x and y in V(H,). Then {z,y} N {a)} = 0. Consider G + zy. There must be
a vertex z3 of G — {z,y} such that cither [z,24] — y or [y, z4] — . Without loss of
generality, suppose [z, z4] — y. Clearly, 24 € {u1,u2,u3} U V(H3). But z4 # u; because
4y is not adjacent to zy, z4 # uo, since up is not adjacent to by, and z34 # uga, since uj
1s not adjacent to z;. Thus z4 € V(H3). But then 24 dominates H> and hence {z4,a,;}
dominates G, a contradiction. This completes the proof of the claim.

We now have the situation depicted in Figure 6.15.
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H ) (compleic) H,

Figure 6.15

Now since mindeg G > 4, |V(H;)| > 5. Choose z, € V(H,) — {b1,21}. Consider
G + a1z,. There exists a vertex z5 in G — {ay,z.} such that either [a),25] — =z, or
[£1,25] — a,. Suppose [z;, z5] — a;. Then, by Lemma 3.4, z5 is not adjacent to a, and
hence z5 € V(H,) which is impossible since V(H,;)} — {a1} # ¢. So we may assume that
[@1,z5] — z,. Therefore z5 € {ry,ug, ua} U (V(H2) — {x1}). But z5 # u,, since u; is not
adjacent to zj, z5 7 ua, since u, is not adjacent to by, zs # us, since ug is not adjacent to
Z1, 25 ¥ b1, since b, is not adjacent to 2y, and zs # z;, since z, is not adjacent to b;. So
zs € V(H3z) — {z1,b1,z1}. Let z5 = y,. Then y, dominates V(H3) — {z,}.

Similarly, there is a vertex zg such that [a1,26] — v and by Lemma 3.4, z¢ is not
adjacent to y;. So z¢ = x; and z, dominates V(H3) — {y1}. Continuing in this manner,
we can get a sequence of distinct vertices zy,y1, T2,¥2, ..., such that x;y; & E(G), for all
i, but z;b, € E(G),zi2) € E(G), for all i, z;z; € E(G), for all j # i, z;y; € E(G), for all
J#F L yiz; € E(G), for all j # 1, yy; € E(G), for all j # ¢, y;b, € E(G) and y,z, € E(G),
for all j, But |V (H3)| is odd and this contradiction settles Case 2.1.2.3.1.2,

Subcase 2.1.2.3.1.3: So z3 € V(H}). So since [u;, 23] —> z;, vertex u; dominates
V(H3) — {z1}. Hence G|V (H2)]) = K, — biz,, where t = |V (H3)[, because of Claim 1 and
because z; dominates Hy — {b1}. If there exists a vertex y € V(f2) — {by, z;} such that
Y is adjacent to ug, then {a;,y} dominates G, a contradiction. So Bz C {b;,21}. But
B3 # {b1, 21} because of Claim 1. So B3 = {b1} or B3 = {z;}.

Choose c; € V(H,)— {b1, z1} and consider G+a,c1. There is a vertex z4 € G—{a), ¢}
such that either [a;,24] — ¢, or [c1,2z4] — a1. Suppose first that [ay, z4] — ¢;. By
Lemma 3.4, 2, is not adjacent to c¢y. Hence z4 ¢ V(Hz) and therefore z4 € {u;,uz,u3}.
But z; # w, since u; is not adjacent to z;, 24 # uz since ua is not adjacent to b; and
Z4 # u3 since either uj is not adjacent to z; or uz is not adjacent to b;. So we have a

contradiction.



Hence [c1,2a] — ai1. By Lemma 3.4, z; is not adjacent to ay;. So zq4 ¢ V(H,) U
{u1,u2}. So z4 = uz and so uz dominates V(H,) — {a;}. But then G[V(H,)] is complete
because of Claim 1 and because ay is adjacent to z, for every = € V(fy). Now recall that
'uy; dominates V' (Hz) — {z1}. Thus u; is not adjacent to uz by claw freedom at u.

We now claim that for all y € V(1) — {b1, 21}, ©2 is not adjacent to Y. Suppose not.
That is, suppose there is a yy € V(/2) — {b1, 21} such that yus € E(G). Then {y1.a2}
'dominates & for any az € V(H,) — {a.}, a contradiction. This proves the claim.

Since usby & E(G), B2 = {z1}. Now if us is adjacent to as for some ay € V(H)—{a1}.
then {a2.c2} dominates G for any choice of ¢3 € V(H,) — {b1.z1}, a contradiction. So
uy is adjacent to no vertex in V(H,) —~ {a,}. Therefore, since mindeg G > 4, 1, must
be adjacent to both u; and uz. Now if By = {b1}. we get a claw Glug; uy, us, z,]. Hence
Bz = {z1}. But then {uy.u3} dominates G, a contradiction. This completes the proof of
Subcase 2.1.2.3.1.3, and hence also 2.1.2.3.1.

Subcase 2.1.2.3.2: So suppose [z1. 23] — 1. Recall that (e, z1] — b1, [a1. 1] —
51wz € E(G) and uxby € E(G) . Since 27 € V(Ha) and 216, ¢ E(G). vertex zz must
dominate H; U {b1}. So z3 = wy. Therefore, 11 is complete by Claim 1. Note that ws is
adjacent to a; and b;. Then uy is not adjacent to 27 or we would have a claw at u3. So
the situation is similar to that depicted i FFigure 6,15 and an argument analogous to the
one given there results in a contradiction.

So Subcase 2.1.2.3.2 is scttled and hence also Subcease 2.1.

Subcase 2.2: Suppose [a;,z;] — by and z; € {u2.u3}. Without loss of generality.
we may suppose that z; = wus. That is, [a;.up] — b;. By Lemmmna 3.4, us is not adjacent
to by and us dominates 71> — {h}. Hence GV (/) — {b1}] is complete by Claim 1. Now
choose b, € V(Ha) — {b1} such that byb, € [£(G). Consider G + ai1b2. There must be a
vertex za € G — {a;.bo} such that either [ay, 2] — bo or [ba. z2] — a;.

Subcase 2.2.1: Suppose [a;.22] — bo. By Lenuma 3.4 z2 is not adjacent to bs.
Then 2; € V(H,) U {u2}. So z0 € {uy,uz}.

Subcase 2.2.1.1: Suppose z; = u;. That is. [y wy] — b2 So a; dominates
V(H,) — A,. Since a, € A; and A, is complete, a; dominates V (/). Also u; dominates
VI(H3) — {bs}, since [a;.uy] — b2. So G[V ({2} - {b2}] is complete by Claim 1. But since
G[V(H,) — {b1}] is also complete and since by is adjacent to bz. it must be the case that
H, is complete. In fact, B, N B, = V(H,) — {b1.b2}. Then a; is not adjacent to ug, for
otherwise {a,, b3} dominates G, for any choice of by € V(Hz) — {b1,b2}. a contradiction.
Now because [ay, u;] — bs, vertex u; is adjacent to ug.

We now claim that B3 = {b;}. Since B3 # @ by Claim 1, so suppose there is a
¥ € V(Hy) — {b;} such that y is adjacent to uz. Then {a1,y} dominates G, a contradiction,
and the claim is proved.

Choose by € V(Hz) — {by,b2}. Then b3 is adjacent to u; and u) is adjacent to both
u3 and a;, so we obtain a claw at u;, a contradiction and hence Subcase 2.2.1.1 is settled.

Subcase 2.2.1.2: So z, = uz. That is, [a1,u3] —> b2. Therclore, uz dominates
V(Hy)— {b2}; that is, By = V(H3)— {b2}. By an argument similar to that used in Subcase
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2.2.1.1, G[V (H2)] is complete. Now if a; dominates V(H,), then {ay, b3} dominates G, for
any choice of b3 € V(H2) — {b1, b2}, a contradiction. Hence a, does not dominate V(H;).
But [a),uz] — b1.and {a1,u3} — b3, s0 a; dominates V(H;) — (A3 N A3). Therefore,
‘there exists a vertex az; € Az M Aj such that a; is not adjacent to a;. Now, by Claim 1,
auz § E(G), a1uz ¢ E(G) and au, € E(G). Thus ujusy ¢ E(G) because of claw freedom
at uy.

' Consider G +azb;. There is a vertex z3 in G — {az, b1} such that either [az, z3] — b;
or (b1, 23] — a2. Suppose [a3, z3] — b;. By Lemma 3.4, z3 is not adjacent to b,. Then
zz3 ¢ V(H2) U {u;,u3}. But then 23 = u;. However, this is impossible since u, is not
adjacent to a; and a; is not adjacent to a,. Hence [b;,z3] —+ a3. By Lemma 3.4, z3 is
not adjacent to az. But then z3 ¢ {uz2,u3z} U A U Az. But b; is not adjacent to u,, so
z3 must dominate uz. Because V(H;) — {a2} # 0, 23 € A2 U {u2}, a contradiction. This
settles Subcase 2.2.1.2 and hence Subcase 2.2.1.

Subcase 2.2.2: So [b2,22] — a;. By Lemma 3.4, z;a; ¢ E(G). Then z3 # u,.
Since V(H,) — {a1} # 0, it follows that zo € {us, uz} U(V(H,) — {a1}).

Subcase 2.2.2.1: Suppose 23 = up. That is, [by, u2] — a). By Lemma 3.4, u is not
adjacent to a;. So us dominates V(H,) — {a,}. Therefore, G[V(Hy)— {a.}] is complete by
Claim 1. If vyu3z € E(G) or if uquz € E(G), then {u;,u2} dominates , a contradiction.
So uz is adjacent to neither u;, nor u;. But [a;,u2) — b, and u» is not adjacent to ug,
so @y is adjacent to uz. Moreover, b2, u2] — a; and uz is not adjacent to uz, so by is
adjacent to uz. So we have the configuration depicted in Figure 6.16.
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Figure 6.16

Now since V (H,) is connected, there is a vertex az € V(H,) — {a1} such that a, is
adjacent to a,. If u; is adjacent to bz, then {bz, a2} dominates G, a contradiction. Hence
u) is not adjacent to by. Since [ba, uz] — a1, and bauy ¢ E(G), uz must be adjacent to
uy. But then G[ui;a),us, bi] is a claw at uy. This completes the proof in Subcase 2.2.2.1.
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Subcase 2.2.2.2: Suppose 23 = uj. That is, b2, u3] —>» a;. By Lemma 3.4, usa, ¢
E(G). So ug dominates £, — {a;}. Because of Claim 1, V(H,) - {a,} is complete.
Recall that [a1,u2] — b, and G[V(H,) — {01}] is complete. Since ayuz ¢ E(G), us
" must be adjacent to uz. Furthermore, vertex a; dominates V(H1) — As. Also since Hy is
connected, there is a vertex az € V(Hy) — {a;} such that a; is adjacent to a,.

First we claim that u, is not adjacent to y, for all y € V(#,) — {b1}. Suppose not.
' Then there is a yy € V(H2) — {b1} such that y, is adjacent to u;. Then v, is adjacent to
by also, by Claim 1. Hence y; dominates V(H3) U {u,, uz}. Thus {y;,a2} dominates G, a
- contradiction and the claim is proved. Hence B; = {b,}.

. Next we claim that uwyz ¢ E(G), for all z € V(H;) — {a,}. For suppose not. Then

there is a vertex £1 € V(H1) — {a1} such that z, is adjacent to u,. But then z, is adjacent
to a1 also, by Claim 1. Hence z, dominates V(H;)U{u;,u3}. But then {z,, b} dominates
G, a contradiction and this claim is proved also.

Hence A; = {a:}. But then since mindeg G > 4, N(u;) = {a, by, u2,u3}. Thus
a\uz € E(G), for otherwise Gluy;a1,u2,b;] is a claw. So a; € A,. Since A, is complete
and a; dominates V(H;) — A,, a; dominates V (H,).

So by claw freedom at us, bous € E(G). So b, dominates V(H3) U {uz,u3}. Hence
{a1,b2} dominates G, a contradiction, and Subcase 2.2.2.2 is settled.

Subcase 2.2.2.3: So suppose finally that 22 € V(H,) — {a,}.

Recall that [a@1,uz] — b;. So a; dominates V(H,) ~ A, and u, dominates V(H,) —
{b1}. Since [ba, z2] — a1, 22 is not adjacent to a; by Lemma 3.4 and then z dominates
V(H,) — {a:}. Because a; dominates V(H;) — A; and by Claim 1, it follows that z; €
Ay — A;. Furthermore, a; is not adjacent to us. Now if uyusx € E(G), then Gluy; ay, uz, b1
is a claw. So uiusz € E(G). Moreover, since (b, 23] — a; and zpu; ¢ E(G), it follows
that b, is adjacent to u;. So our current situation is depicted in Figure 6.17.

Figure 6.17

Next we claim that u, is not adjacent to u3. Suppose, by way of contradiction, that
uy is adjacent to uz. Consider G + zabz. There must be a vertex 23 in G — {z2, b2} such
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that either [22,23] — by or [b2,23] —> z3. Suppose that [:2, :3] — ba. By Lemma 3.4,
:352 ¢ E(G) Then <3 ¢ {ul,uQ}UV(H‘E)- Since V(ffg) — {hg} = A, it follows that I T oy,
Thus [z2,u3] — b2. But then uz dominates Aoy — {b2} and uz is adjacent to a,. But then

'G[U3;u2.a1,f31] 1s a claw.

So [b2, 23] — 22. By Lemma 3.4, 2320 ¢ E(G). But then 24 ¢ {u2 U (VD) — {a }).
Since V/(H1) — {22} # 0, z3 € {u1,u3,a1}. If 23 = u,, then u, dominates Iy - {:}. and
then {u),u2} dominates G, a contradiction. So z3 # uy. I 23 = wa. then wy dominates
Hy — {z2}. So G[V(H:) — {22}] is complete because of Claim 1. Since zo dominates
V(Hy) — {a1}, G[V(H,1)] = K, — a1z where t = |V (i1)].

Now choose az € V(H;) — {a;,22}. Then {az, b2} dominates (. a contradiction. So
33 # uz. Hence z3 = ay; that is, [by,a1] — 2. So a; dominates #H, — {=2}.

Suppose a; is adjacent to uz. Then uz is not adjacent to b1 by claw freedom at wus.
Also by Claim 1, zouz ¢ E(G). Moreover, claw freedom at us together with the fact that

uz2p € E(G) implies that uz must dominate V(H,) — {b1}.

Now choose az € V(H;)— {a1, 22} and consider G+ azbs. There must be a vertex =; €

' V(G) — {a2, b2} such that either [az, z4] — b2 or [b2. 24] — a». Suppose [aa. 24] — ba.

By Lemma 3.4, z4b2 ¢ E(G). So 24 ¢ {uy, w2, uz} UV (Hy). But V(H,) — {ba} # 0. 50 24 €

{urua ua} U(V(HR) — {b2}), a contradiction. So [by, 25] — as. Since V(H,) — {a-} # 0.

23 € {uy, uz, us UV (Hy) — {a2}). But z3 # uq since u,; is not adjacent to z». =3 % s since
uz 1s not adjacent to a1, z4 ¥ ug since wug is not adjacent to z,. 2y # a; and z; # z,. since
a1 and z are not adjacent. So z4 € V(H,) — {az, 22,a1} and z; dominates V(H) — {us}.
Let z4 = c3. Then ¢y dominates V(H,) — {a2}. Similarly, there is a vertex z; such that
b2.25] —> c3. By Lemma 3.4, z5 is not adjacent to ¢». So z5 = a, and a- dominates
V(H) — {ca}.

Now choose a3z € V(H;) — {a1,z2,a2,c2} and repeating a previous argument. we
produce a sequence of distinct vertices @y, z2, @2, €2, a3, ¢3. ... such that a, is not adjacent
to 22, a; is not adjacent to ¢;, for all ¢ > 2, but a; is adjacent to a; for all ¢ # j. ¢, is
adjacent to ¢; for all 7 # 7, a; is adjacent to ¢; for all ¢ # 7 and zp is adjacent a,; and ¢
for all # > 2 and for all j > 1. But this is a contradiction to the fact that |V (H )| is odd.
So a; is not adjacent to ug. Since [b2,a;] — 22, vertex by is adjacent to wus.

Now choose a; € V(H,) —{a;, z2} and consider G +a2b2. There must be a vertex z5 €
V(G) — {a2z, b2} such that either [as, z6] — b2 or [b2, z¢] —> a2. Suppose [az. 26] — bo.
Then by Lemma 3.4, zgbo ¢ F(G). Then zg & {uy,uz, uz} U V(H3). But this is impossible
since zg must dominate V (Hy) — {b2}.

So [ba, z6] —> a2. Since V(H)) — {a2} # 0, z6 € {u1,uz, ua} U (V(H) — {az}). But
25 # u; since u; is not adjacent to za, z¢ # ug or uz since up and uz are not adjacent to
a1, zg 7 a1 Or zp since a; and zp are not adjacent. But then 2 € V(H,) — {a;.a2.22}.
Let zg = c3. Note that ¢z dominates V(H:) — {az2}. So again we argue as above to get a
sequence of distinct vertices ai, z3, az, C2, a3, €3, ... contradicting the fact that |V ()| is
odd.

So the claim is proved; that is, uz is not adjacent to ugz.

Since [a1,uz] — b, and usus ¢ E(G), it follows that a; is adjacent to us. Because
of Claim 1 and since a; is not adjacent to zz, it follows also that 2, is not adjacent to us.
But [z, b2] — aq, so b, is adjacent to uz. But then because of claw freedom at by, wu, is
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adjacent to u3. (Figure 6.18 now represents the present situation.)

Figure 6.18

Now consider G + byz5. There must be a vertex z3 in G ~ {bs, z2}, such that either
(b2,23] — z2 or [2;, 23] — b,. Suppose (22, 23] — bz. By Lemma 3.4, 23 is not adjacent
to by. So Z3 ¢ {ul,uz,u;;} (] V(f']g) But 1”(H2) - {bz} # 0, so I3 € (V(Hg) — {bg}) U
{u1,u2,u3} and we have a contradiction.

Hence [b2, 23] — 22. By Lemma 3.4, z3 is not adjacent to z; and so z3 ¢ (V(Hy) —
{a1})U{u2}. Furthermore, z3 ¢ V(1) because V(H1)— {a1} # 0. Thus z3 € {u1,u3,a1}.

Suppose first that 23 = u;. So [bs, u;] — z2. Then u; dominates V(F,) — {z,}. But
then {u,,uz} dominates G, a contradiction. So 23 # u;.

Suppose next that z3 = u3. So (b2, u3] — z2 and so u3 dominates V(H;) — {z2}. So
G[V(H,) — {z2}] is complete because of Claim 1. But z, is adjacent to every vertex of
V(H)) — {a1}, so G[V(H,)) = K, — a1z, where t = |V(H,)|. Now choose x € V(H,) —
{@1,22}. We then have {z, b2} dominates &, a contradiction. So z3 # uas.

S0 z3 = a;. That is, [ba,a,] -—— z2. But then a; dominates V(H) — {z2}. Now
choose a; € V(H,) — {ai1,z2} and consider G + axb;. There must be a vertex zy in
G — {a2,b2} such that either [aj, z3] —> bz or [by, 24] — a2. Suppose [aa, z4] — bs.
Then 2, ¢ V(H2)U {u;, u2,u3} by Leinma 3.4 and so z4 € V(H,). But V(H2) — {b2} # 8,
$0 we have a contradiction. _

So [bz, z4] — a,. But then z4 # wu, since u; is not adjacent to z», z4 # uz since
Uz Is not adjacent to a;, z4 # uz since us is not adjacent to zz, z4 # a; since a, is not
adjacent to zy, and z4 # z2 since zp 13 not adjacent to a;. Furthermore, z4 & V{(i2). E}o
it follows that 2z, € V(H,) — {ay, z2,a2}. Let z4 = c» and if we argue as before, we obtain
a sequence of distinct vertices a, z1, @2, ¢2, a3, 3, .. -, such that a; is not adjacent to 2,
a; is not adjacent to ¢; for all i > 2, a;a; € E(G), for all © # j, cia; € E(G), for all
1 # g, cic; € E(G), for all 7 # j and z; is adjacent to @; and ¢; for all ¢ > 2 and for a.lll
J 2 1. That each time we obtain the vertex a;, we can always get the next vertex ¢; in
the sequence. But once again this contradicts the fact that |V(H;)| is odd and the proof

of the theorem is complete.
|
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As a final remark, we point out that both the connectivity bound and the minimumn
degree bound stated as hypotheses in Theorems 6.2 and 6.3 are sharp. Indeed. Favaron
has proved [F; Thegrcms 2.5 and 2.6] that for all & > 0, every A-factor-critical graph of
-order n > k is k-(vertex)-connected and for all k > 1, every A-factor-critical graph of order
n >k is (k + 1)-edge-connected (and hence has minimum degree at least & + 1).

7. Conjecture

We conclude our paper by set forth two conjectures involving matching in 3-domination
critical graphs.

Conjecture 1: Suppose G is a graph with & > 2 and suppose k& — 1 and |V(G)| have
the same parity. Then if G is k-connected and 3-y-critical with mindeg G > &k + 1. then &
is (k — 1)-factor-critical.

Conjecture 2: Suppose G is a graph with & > 2 and suppose & and |V ()] have the
same parity. Then if G is k-connected and 3-v-critical with mindeg G > & 4+ 1 and G is
claw-free, then G is k-factor-critical.

Conjecture 1 is known to be true when & = 2 ([AP1; Theorem 2.4]), when k& = 3
([AP1; Theorem 2.1]) and when k& = 4 ([AP2; Theorem 2.5]). Conjecture 2 is known to be
true when k& = 2 ([AP1; Theorem 3.3]) and when kA = 3 ([AP2; Theorem 3.4]). However.
the proofs of Conjecture 1 when & = 14 and Conjecture 2 when & = 3 are quite long and
difficult. This leads us to think that settling either of these conjectures for any further
values of & will be very difficult, if not impossible, using the methods we employ for the
small values of £ mentioned above. In our opinion, some new methods must be discovered
and utilized.
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Abstract

A graph G is said to be k-y-critical if the size of any minimum dominating set of
vertices is &k, but if any edge is added to G the resulting graph can be dominated with
k—1 vertices. The structure of k-v-critical graphs remains far from completely understood,
even In the special case when the domination number v = 3. In a 1983 paper, Sumner
and Blitch proved a theorem which may regarded as a result related to the toughness of
3 —vy—critical graphs which says that if S is any vertex cutset of such a graph, then G — §

' has at most |S| + 1 components. In the present paper, we improve and extend this result

considerably.

1. Introduction

Let G denote a finite undirected graph with vertex set V' (G) and edge set E(G). A
t set S C V(G) is a (vertex) dominating set for G if every vertex of G either belongs
to S or is adjacent to a vertex of S. The minimum cardinality of a vertex dominating
set in GG is called the vertex domination number (or simply the domination number)
of G and is denoted by v(G). Graph G is said to be k-domination critical (or simply
k-y-critical) if (@) = k, but v(G + ) = k — 1 for each edge e ¢ E(G). In this paper, we

* work supported by The Thailand Rescarch Fund Grant #BRG4380016
T work supported by NSF Grant # INT-9816113
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will be concerned only with the case & = 3. Although a number of results exist concerning
3-y-critical graphs, their structure is far from completely understood. (For summaries of
.most known results, see [HHHS; Chapter 16] as well as [FTWZ].)

If G is 3-v-critical and disconnected, then G is the disjoint union of a 2-v-critical
graph and a complete graph. (See [SB].) Hence we will consider only connected 3-v-critical

1graphs.
Sumner and Blitch {SB] were the first to study 3-vy-critical graphs. Qur main purpose

in this paper is to extend their result which follows. It can be viewed as a toughness result
for 3-y-critical graphs.

Theorem 1.1. Let GG be a connected 3-y-critical graph. Then if § is a vertex cutsct

in G, G — S has at most |S|+ 1 components.
' N

This result was recently extended by Flandrin et al. [F'TWZ] as follows. We denote
the number of components of G — S by w(G — §).

Theorem 1.2. Let G be a connected 3-y-critical graph. If § is a vertex cutset in (&

such that w(G — §) = |S| + 1, then each vertex v € § is a cutvertex of G.
]

If u, v and w are vertices of G and u and v dominate G — w, we will follow previously
accepted notation and write [u,v] — w. Suppose G is 3-y-critical. If v and v are non-
adjacent vertices of G, then (G + uv) = 2 and so there is a vertex z € V(G) such that

either [u,z] — v or [v, z] — u.
In addition to Theorem 1.1, Sumner and Blitch [SB] also proved the following lemma
for the case n > 4. The cases n = 2 and 3 were proved in [FTWZ; Lemma 1]. This lemma

will be used repeatedly throughout our paper.

Lemma 1.3. Let G be a connected 3-y-critical graph and let .S be an independent
set of n > 2 vertices in V(G).

(i) Then the vertices of S can be ordered a;, az, ..., an, in such a way that there exists a
sequence of distinct vertices T, Tz, .., Tn—1 S0 that [a;, 7;] — a4y fori =1,2,... ., n—1.

(3i) If, in addition, n > 4, then the z;’s can be chosen so that z1z5---x,_ is a path

and SN {l‘],...,.’Bn_l} = 0
1

Two additional results from [SB] which will be of help to us are the next two lemmas.
Lemma 1.4. If G is a connected 3-v-critical graph, then no two endvertices of G

have a common neighbor.

Lemma 1.5. The diameter of any connected 3-vy-critical graph is at most three.



Blitch [B] proved the next result.

Lemma 1.6. If G is a connected 3-y-critical graph and v is a cutvertex of G, then v
is adjacent to an endvertex of .

|
The following two results of Wojcicka [W] will also prove useful to us.

Theorem 1.7. If (¢ is a connected 3-v-critical graph with more than six vertices,

then G has a Hamiltonian path.
|

To state the next theorem, we make use of the concept of a full 3-y-critical graph.
Forany p > 6, let a + b+ c = p — 3 be any partition of p — 3. Let H be a complete
graph on p — 3 vertices and let AU BUC = V(H) be a partition of the vertices of £/ with
|A| = a,|B| = b and |C| = ¢. Form a new graph G by adding to I/ three new vertices
g,v and w with V(u) = A, N(v) = 1?2 and N(w) = C. (Here as usual, N(v) denotes the
neighborhood of vertex v.) Then G is clearly 3-v-critical and is said to be full.

Theorem 1.8. Let G be a connected 3-y-critical graph having two endvertices. Then

G is full.
|

Finally, in what is to follow, we shall also make frequent use of the following easy
result.

Lemma 1.9. Let GG be a 3-v-critical graph and let 2 and v be non-adjacent vertices
of G. If z is a vertex of G such that [u,x] — v, then zv ¢ E(G) and if z is a vertex of G
with [v, z] — u then zu ¢ E(G).

Proof: Suppose [u,z] —> v. If zv € E(G), then v and z dominate &, contradicting

the assumption that v(G) = 3. Similarly, if [v, z] — w, then zu ¢ E(G).
|

2. The Main Theorem

Theorem 2.1. Let G be a connected 3 — -y-critical graph and let S be a vertex cutset
in G. Then

(a) if |S| > 4, G — S has at most |S| — 1 components,

(b) if | S| = 3, then G — S contains at most |S| components, and if ¢ — S has exactly
three components, then each component is complete and at least one Is a singleton.

(c) if |S| = 2, then G — S has at most three components and if G — 5 has exactly
three components, then ¢ must have the structure shown below in Figure 2.1.
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(d) if [S] = 1, then G — & has two compenents, exactly one of which is a singleton.
Furthermore, G has exactly onc or two cutvertices and if it has two, G is isomorphic to a

graph of the type shown in Figure 2.1.

Figure 2.1.

Proof: Part (a) follows immediately from Lemma 6 of [SB) and Lemma 3 of [CTW].

We turn now to part (b). Suppose S is a vertex cutset in G and |S| = 3. We want
to show that G — § contains at most |S| components. Suppose, to the contrary, that
G — S contains at least |S| + 1 = 4 components. Then by Theorem 1.1, G — S contains
exactly four components. Let H; denote these four components, ¢ = 1,...,4. Choose a
vertex w; € V(H;),1 <1 < 1. Clearly W = {w, w2, w3, wy} 13 an independent set. By
Lemma 1.3, the vertices in 1 may be ordered as a;,aq,a3,ay in such a way that there
exists a path ryzox3 in G — W such that |a,,z;] — a;41, for ¢ = 1,2,3. By Lemma 1.9,
T.8i4y € E(G), for each 1 = 1,2, 3. Clearly =, € S for ¢ = 1,2,3. Since [a;, ;] — a4
and z;a,41 € E(G), z; is adjacent to every vertex of Uj=lV(Hj) — (V(H;) U {a;41}), for
1=1,2,3. Soxz; # z; forall 1 <i¢3# j <3 Thus {z;,x2,73} = S.

Consider now G + ajas. There must exist a vertex ¥ € & — {ay, a3z} such that either
[as,y] — a; or [a1,y] —» a3. Clearly in either case y € S. By Lemma 1.9 and the
fact that z,ae;4, ¢ E(G), for i = 1,2,3, the case [a3,y] — a; is impossible. Hence
[61,4) —> a3. But then y = z». Now xz, is adjacent to every vertex of Ul_, V(H;) — {az}.
By this fact and the fact that ;1,73 is a path, vertices zp and a3 together dominate G,
a contradiction. So G — S contains at most three components as claimed.

Now suppose G — S contains eractly three components. We now show that in this
Instance, each of the threec components must be complete. Suppose to the contrary that
there exists a component C of G — S such that |V(C)| > 2 and C is not complete. Then
there exist two non-adjacent vertices w; and wz in C. Let C; and C3 be the other two
components of G — 5. Choose w3 € V(C)) and wy € V(C3). Then W = {w), w2, w3, wye}
is an independent set. So by Lemma 1.3 the vertices of W may be ordered ay,as, a3, a4
In such a way that there exists a path z,z2z3 in G ~ W such that [a;,z;] — a4, for
1=1,2,3. Clearly z; # z; for 1 <i# j <3 and by Lemma 1.9, z;a;4: ¢ E(G).

Claim 1: {2:111:2,1:3} 7{—' S
Suppose to the contrary that {z,,z2,z3} = S and consider G + a a4. Since v(G +

aja4) = 2, there exists a vertex z € V(G)—{a1,as} such that [a4, 2] — a; or [a1, 2] — a4.
.SUPPOSe [(14:2-'] —r ). If z € S, then z = 3 since T1a2 g E‘(G) and Taas ¢ E(G) But
this contradicts Lemma 1.9 since [as, z3] — a4 and ayaz ¢ £(G). Thus z ¢ S. But this
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implies that az and ag are in the same component of G — 55 call it H. But then z € V(H).
Hence z is adjacent to every vertex of H — {z}. Since [az, z2] — ag, vertex z, is adjacent
to every vertex of H, U H, where Hy and H, are the components of G — § containing
vertices a; and a4 respectively. Since xxox3 is a path, vertex z» is adjacent to z; and 3.
Hence {1‘2, z} dominates G, a contradiction.

} Hence [a1,2] — as. Suppose z € S. Since ziaz ¢ E(G) and z,a3 ¢ E(G), z = z3.

By using this fact and the fact that [aa,x3] — a4, vertex x3 is adjacent to every vertex
of G— S — (N(a1) N N(a3z)), except ay. Since [az, z2] — az, edge z2a04 € E(G). Because
I1Z2T3 IS a path, edge z,22 € E(G). Hence {2, r3} dominates G, a contradiction. Hence

z¢ 8.

By applying the same argument as above, one can show that {z;,z} dominates G,

again a contradiction. This completes the proof of Claim 1.

Claim 2: |SN {x,z2,z3}] < 2.
Suppose to the contrary that [SN{z, z2,z3}| > 2. Then by Claim 1, |SN{z1, z2,z3}| =

Case 2.1: Suppose z; and 75 € S.

Since [a3,z3] — a4, and {a),az,a3,a4} is independent, edge z3a; € E(G) and
edge z3a2 € F(G). Thus a;,az and z3 belong to the same component of G - 5, say
H,. Moreover, then, vertex 3 dominates all of H,. Let H; and H3 be the components of
G — S containing a3 and a4 respectively. Clearly H; # H;, for 1 <1 # 3 < 3. Furthermore,
V(H3) = {as}. Choose w € S — {z,,z2}. If zyw € E(G), then {z,,r3} dominates G since
r3 dominates H; and z, dominates H, U A3 U {z2,w}, a contradiction.

Hence z;w ¢ E(G). Similarly, zz3w ¢ E(G). Since [a,z1] — a2 and [a3, 3] — aa,
we have a1w € E(G) and azw € E(G). Figure 2.2 depicts this situation.

Figure 2.2

Recall that z;a;,1 € E(G), fori =1,2,3. Now consider G+aia4. Since y(G+ajay) =
2, there exists a vertex z € G — {a, as} such that [a4,z] — ay or [ey,z] — a4. Suppose
first that [a4, z] — a;. Since a2 and ag are in different components of G — 5, z € S. But
z # x; since zja, ¢ E(G) and z # z» since z2a3 ¢ E(G). Thus z = w. But this is also
impossible since wzs ¢ E(G).

Hence [a), z] — a4. Because a1az ¢ E(G) and a2 and aj are in different cornponents
of G — S, it follows that z € S. By Lemma 1.9, z # z; and z # x3 since 1,a4 € E(G) and
zZza4 € E(G). Thus z = w. But then way € E(G) by Lemma 1.9.
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Now consider G —aza4. Since ¥(G+aza,) = 2, there exists a vertex z € V(G) — {ax, a4}

such that [a2. z] —=ay or [ay. 2] — a2, Suppose [az,z] — a4. Since aya; ¢ E(G) and
o, and a3 are in different components of G — S, it follows that z € §. Since z,a4 and
1204 € E(G). by Lemma 1.9 it follows that z ¢ {z;,z,}. But then z = w. However, this
is also impossible since wz, ¢ E(G) and axry € E(G).
' Hence [a3,2] — ap. Because a; and a3 are in different components of G — S, it
follows that = € 5. Clearly z # x2 and z # w since z3a3 ¢ E(G) and wzs ¢ E(G). Thus
z=zy. But this is also impossible since z;w ¢ F(G) and ayw ¢ FE(G). This contradiction
proves Case 2.1.

Case 2.2: Suppose z; and z3 € S.

Since [az.x2] —— a3 and {a1, a2, a3, a4} is independent, edge a;z, € E(G) and edge
‘6472 € E(G). Thus a1, a4 and z, all belong to the same component of G — S, say I;. Let
H; and Hj3 be the components of G — S containing as and a3 respectively.

Clearly H; # H; for 1 < i # 5 < 3. Furthermore, V(II3) = {a3}. Choose w €
S—{z1,z3}. If ;yw € E(G), then {z1,x3} dominates G since z3 dominates (H;— {a4})UH>
and 71 dominates (H2 — {a2}) U H3 U {as, w}, a contradiction.

Hence ziw ¢ E(G). Similarly, z3w ¢ E(G). Since [ay, 1] — a2, edge a1w € E(G)
and since [a3. T3] — a4, edge azw € E(G). Figure 2.3 illustrates this situation.

Figure 2.3

Now consider G + ajas. since v(G + ayaz) = 2, there exists a vertex z € G — {a1,a3}
such that [ay, 2] — a3 or [ag, z] — a1.

Suppose [a1, 2] — a3. Since aya4 € E(G) and a2 and a4 are in different components
of G — S, it follows that vertex z € S. Because a3 and waz € E(G), vertex z ¢ {z1,w}
by Lemma 1.9. Thus z = z3. But this is impossible since z3a4 and aia4 ¢ F(Q).

Hence [a3,z] — a;. Because a; and a4 are in different components of G — 5, it
follows that vertex z € S. By Lemma 1.9, vertex z ¢ {3, w}, since z3a; and wa, € E(G).
Thus z = x,. But this is also impossible since T1a; ¢ E(G). Thus Case 2.2 is settled.

Case 2.3: Suppose z; and z3 € S.
Since [a;,z;] — a2 and {a1, a2, aa, aq} is independent, edge azz; € E(G) and edge

8471 € E(G). Thus a3, as and x; belong to the same component of G — S, say Hj.
Moreover, vertex z, dominates all of H3. Let Hy and H; be the components of G — S
containing a; and a, respectively. Clearly H; # H;, for 1 < # 3 < 3. Furthermore,
" V(Hy) = {az}. Choose w € § — {z2,7a}. If zzw € E(G), then {z1,z3} dominates G since
z3 dominates H; U Hy U {z2,w} and =, dominates H3, a contradiction.
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Thus 3w ¢ E(G). Similarly, ziw ¢ F(G). Since [a1,7,] — az, cdge ajw € (G
and since [az, T3] — a4, edge aaw € F(G). Figure 2.4 shows this situation.

Figure 2.4

1

Now consider G + a1a3. Since (G + arjaz) = 2, there exists a vertex z € & — {a;,a3}
such that [a1, z] — a3 or [a3, z] — a;.

' Suppose first that [a3, z) — a). Since a2 and a4 are in different components of G — S,
vertex z € S. Because [a;, z;] — a,41 for i = 1,2,3, edges ay1z2 and a,z3 € F(G). Since
‘myw € E(G), by Lemma 1.9 vertex z ¢ {z2,x3,w} =5, a contradiction.

Hence [a;, 2] — a3. By the same argument as above, vertex z € S. By Lemma 1.9,
z # w since waz € E(G). Clearly z # x3, since z3aq ¢ E(G). Thus z = z,. By this fact
and the fact that [az,z2] — a3, vertex z, dominates (Hy U H, U Hz U {z3}) — {a3}. But
then since azw € E(G), {w, z2} dominates G, a contradiction.

This completes the proof in Case 2.3 and hence Claim 2 is proved.

By Claim 1 and Claim 2, |[SN {z,z2,x3}| < 1. Suppose x; € S. Then z, and z3 are
in some component of G — S. Because {a;,az,as, a4} is independent and [az, z2] —> a3,
vertex r; is adjacent to both a; and a4. Similarly, vertex xz3 i1s adjacent to both a; and
az. Hence a;,as and a4 are in the same component. But this contradicts our choice of the
a;. Hence z; ¢ S. Similarly, z3 ¢ S. By applying a similar argument, if zo € S, then a,
and a; are in the same component of G — S and a3 and a4 are in the same component of
G — S which again contradicts the choice of a;. Hence S N {z;,z2,z3} = @. This implies
that each z; belongs to some component of G — S.

Since [a;, z;] —> a;41, for i = 1,2, 3, it follows that z; is adjacent to a3z and a4, =2 is
adjacent to a; and a4 and z3 is adjacent to a; and a;. This implies that a1, az, a3 and ay
are in the same component of G — S, again contradicting the choice of the a;. Hence each
component of G — S is complete.

Next we show that at least one of the three complete components must be a singleton.
Suppose to the contrary that each component of G — § has at least two vertices. Let H;
be the components of G — S,1=1,2,3. For each i = 1,2,3, choose w; € V(H;). Clearly
{w1, w2, w3} is an independent set. By Lemma 1.3 the vertices in W may be ordered as
ai, as, a3 in such a way that there exist vertices z; and z; such that {ai,zi] — aijqy for
1= 1,2. Without loss of generality, we may renumber the components of G — S in such a
way that a; € V(H;). Since each component of G — S has at least two vertices, £, and z,
must belong to S. Clearly z, # z3. Let S — {z1,z2} = {w}. Choose a] € V(H,) — {a1}
. and aj € V(H3) — {a3}. Consider G + a)a%. Since v(G + ejaj) = 2, there exists a vertex
-2 € V(G) — {a}, a4} such that [a}, z] —> aj or [a}, 2] — a). In either case, z € S.
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Suppose first that [a}, z] — a5. Since z1a2 ¢ E(G) and zaa3 ¢ E(G). z # r, and
. # 2. Thus z = w. This implies that w dominates (H,U H3) — {a3}. Since xya, € E(G)
ind [az,xz] — a3, vertex > dominates (H1 U H3U{z1}) - {a3}. Thus {w, z2} dominates
7, a contradiction.

Hence [ag,z] — a}. Because z,a, ¢ F(G), z # z,. Since zza} € E(G), by Lemma
1.9 z # z2. Thus z = w. This implies that w dominates (f{{ U H>) — {a]}. Now consider
5+ aiay. Since ¥(G + aiaj) = 2, there exists a vertex z; € G — {a;,a%} such that
‘ay,z1) —» a3 or (a5, z1] — ai. In either case z; € S.

Suppose (a1, z1] — aj. Since zyaz ¢ E(G) and 203 ¢ E(G), 2, # 1 and 27 # x4,
Thus z; = w. By using this fact and the fact that [a}, w| — af, we sec that w dominates
(HiU Hp U H3) — {a},a%}. Since z1a, ¢ F(G) and [az, 2] — a3, vertex z, dominates
(HiUH3U {z1}) — {a3}. Thus {z2, w} dominates G, a contradiction.

Hence [a%, z1] — ai. Since z1a2 ¢ F(G) and wal ¢ E(G), z1 # o, and z; # w. Thus

=TIz But this contradicts Lemma 1.9 since a 22 € E(G). This completes the proof of
part (b).
. Next we turn to part (c¢). Suppose therefore that § is a vertex cutset with |§| =
2. Then by the Theorem 1.1, w(G — 5) < 3. Suppose that G — 5 has preciscly three
components. Let s; and s; be the vertices of S and let H;,z = 1,2,3, be the three
components of G — 5. By Theorem 1.2, both s; and s2 are cutvertices. So each s;,
1=1,2, 1s adjacent to an endvertex of G by Lemma 1.6. So G has at least two endvertices,
say a; and a,. Furthermore, neither a; nor a, is in . Since no two endvertices of &G
have a common neighbor by Lemma 1.4, we may assume, without loss of generality, that
a;8; € E(G) and a; € V(H;) for i = 1,2.

If [V(G)| > 7, then G must have exactly two endvertices since G has a Hamiltonian
path by Theorem 1.7. Hence by Theorem 1.8, graph G is of the type shown in Figure 2.1,
where n > 3,

So now let us assumne that |V (G)| < 6. Since a; is an endvertex of ¢ and a;s; € ££(G),
for i = 1,2, V(H;) = {a;}. If |V(H3z)| = 1, then, since G is connected, y(G) = 2, a
contradiction. Hence |V (H3)| = 2. Let V(Hj3) = {aa,as}. Since G is connected, we may
assume that azs; € E(G). But then ays; ¢ E(G) for ¢ = 1 and 2; otherwise {s,s2}
dominates G. Thus ay is an endvertex of G. Suppose azsz € E(G) and consider G + a3s).
Since (G + azsy) = 2, there is a vertex z of G — {a3, s2} such that either [a3, z] — s
or [sz,z] —> a3. Suppose [az, z] — s2. Then by Lemma 1.9, z # a since azs; € E(G).

" Thus [a3,2z] — s, is impossible since N(a2) = {s2}. Similarly, [s2,2] — a3 is also
impossible. This contradiction proves that sza3 € E(G). By applying a similar argument,
edge 5152, € E(G). Hence G is a graph of the type shown in Figure 2.1 where n = 2.

This completes the proof of part (c).

Finally, suppose |S| = 1. Let ¢ be a cutvertex of ¢. Then & — ¢ has exactly two
components by the Theorem 1.1. Morcover, one of the two components 1s a singleton by
Lemma 1.6. (Clearly it cannot happen that both components of G — ¢ are singletons, for
then |V(G)| = 3 and so 7{G) # 3 since G is connected.) If |[V(G)| < 6, it is easy to see
that G must be isomorphic to the six-vertex graph shown in Figure 2.5(a). So suppose
[V(G)| > 7. Then G has a Hamiltonian path by Theorem 1.7. But then G has at most
two endedges. If it has two endedges, then by [SB; Remark, pg70] it must be isomorphic
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» a graph of the type shown in Figure 2.1.
This completes the prool of part (d) and hence the theorem is proved.

Pertaining to part (b) of the preceding theorem, we point out that it is not possible
o say more about the number of singleton components, for in Figure 2.5 below we present
xamples in which G — § has three, two and one singleton component respectively.

Figure 2.5

On the other hand, if one assumes that S is a cutset with |[S| = 3, w(G - §) = 3
and, in addition, x(G) = 3, it is shown in [CTW] that one can say a bit more. Namely,
in this case each of the three components of G — S is complete and if one orders the three
components by size as |V (C)| < |V(Ch)| < |V(C3)|, then either (i) C, = C; = K; and
G belongs to an infinite family of graphs G, or (ii) C;, = K;,Cs = K3 and G belongs
to a second infinite family of graphs G,. (The graph families §; and G> are described in
cTW).)

However, if 1 < x(G) < 2, Lemmas 4,5 and 6 of [CTW] do not apply, whereas, on the
other hand, parts (¢) and (d) of Theorem 2.1 hold.

The following result is an immediate corollary of Theorem 2.1.

Corollary 2.2. Let G be a connected 3-y-critical graph and let S be a cutset in G.

If G — S has exactly |S| + 1 components, then |S] < 2,
a

The results of the present paper, together with those in [CTW], can be applied to the
study of toughness in a 3-y-critical graph. Recall that the toughness of a (connected)
graph G, 7(G), is defined as follows. 7(G) = min {|S]|/w(G — S)} where the minimum
is taken over all cutsets S of . It follows from Theorem 2.1(d)} that every connected
3-v-critical graph has toughness at least 1/2 and it was shown in [FTWZ] that every 2-
connected 3--y-critical graph has toughness at least 1. If G is a 3-y-critical graph with
x(G) > 3, then 7(G) > 1 and 7(G) = 1 if and only if G belongs to a special infinite family
described in [CTW]. If G is a 3-v-critical graph with #(G) = 2, then by Theorem 3 of
[CTW], 7(G) = 1. Finally, if G is a 3-y-critical graph with «(G) = 1, then G has the
structure described in part (d) of Theorem 2.1 and in particular, 7(G) = 1/2.

Remark 1: We use the results of the present work in a paper to follow in which we
obtain new information on matchings in 3-y-critical graphs.

9



Remark 2: We are very grateful to one of the referees who, while referceing our
yaper, pointed out the existence of paper [CTW] Although we have an independent. proof
of part (a) of Theorem 2.1, we have omitted it here in favor of [CTW] which has publication

rrecedence.
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Abstract

A graph G is said to be A-v-critical if the size of any minimann dominatime set of
vertices is A. but if any edge is added to 7 the resulting sraph can be dominated with
k—1vertices. The structure of k-y-critical graphs remains far from completely understood.
even in the special case when the domination number - = 3. Tu o 1OS3 paper. Sumner and
Blitch proved a theorem which savs that il S is any verrex cutset of such a0 arnphe then
(= S has at most |S| + 1 components.

A graph G is factor-critical il G — ¢ Lias a perfect matching lor every vertex e V()
and is bicritical if G — u — ¢ has a perfect mateling for every pair ol distinet vertices
v € V(G). In a previous paper [ADP1]. we improved and extended the Summner-Blitch
result above. Using these improvements. we show in the present paper that under certain
assumptions regarding connectivity and mininnun degree, o 3-n-critical vraph Gowill be
either factor-critical (if V(G| s odd) or bicritical {if (3G even).

Keywords: domination, critical edge. muatching, facior-critical bicritical. claw-froe

1. Introduction

Let G denote a finite undirected graph with vertex set VIGH and edge sett £(G) . A
set S C V(G) is a vertex dominating set for G if every vertex of G either belongs to S

* work supported by the Thailand Research Fund Cirant #BRGI3S0016
T work supported by NSF Grant # INT-9316113



,is adjacent to a vertex ol . The minimum cardinality of a vertex dominating sct in a
aph G is called the vertex domination number {or siiplv the domination mnnber) of
cand is denoted by v(G). Graph ¢ is said to be A-~-domination critical it ~((;/) = &,
it WG +e) = k=1 for cach edge ¢ ¢ E(G). In this paper. we will he coneerned only
ith the case & = 3.

If u. v and w are vertices of G and v and ¢ dominate G — w. we will follow previous|v
cepted notation and write [u, v] — w. Suppose G is 3-v-critical. If ¢ and ¢ are non-
fjacent vertices of G. then v(G + wv) = 2 and so there is a vertex « € V(G such that
ther [u.x] — v or [v.a] — .

Sumner and Blitech [SB] initiated work on matchings in 3-5-critical ecraphs. The fol-
wing lemma from that paper will be very useful in our work to fotlow.

Lemma 1.1. Let G be a connected 3-y-critical graph and let 8 be an independent
et of n > 2 vertices in 1V (G).

(i) Then the vertices of S can be ordered ayaq. .00 (1, 1 such awav that there exists a
equence of distinct vertices &y .ra ... .. I, 1 =0 that [(1,;.1',] — iy for i = 1.2, .. n—1.
(i1} If. in addition. n > 4, then the »,’s can be chosen so that s -« -, s a path

md SN {ry,....z,.1} = 0.
i

In what is to follow. we shall also make [requent use of the following easy result.

Lemma 1.2. Let G be a 3-y-critical graph and let « and © be non-adjacent vertices
of G. If r is a vertex of (& such that (. a] — vothen e & E(G) and if v s a vertex of G
with {v. 7] — w then xu ¢ E(G).

Proof: Suppose (u.z] — v. If oo € E(G). then v and o dominate & contradicting
the assuinption that ~{G) = 3. Similarlyv. if {e. 0] — w. then vu ¢ EF(G).
i

The next result which will prove useful to us was conjectured by Wojeicka [W] and
in a series of three papers ([FT7Z. FTWZ. TWZ]) proved by Favaron, Flandrin, Tian, Wei
and Zhang. (In her survey [M\V]. however., Mynhardt refers to this result as “Wojcicka’s
Theorem™. See also [Mo].)

Theorem 1.3. Every connected 3-~-critical graph having minimum degree at least 2
has a Hamiltonian cycle.

The following lemma, which may be viewed as a toughness result. is due to Sumner
and Blitch [SB] and leads to the first results on matchings m 3-y-critical graphs which we
then state as Lemma 1.5.

Lemma 1.4. Let G be a connected 3-vy-critical graph. Then if T is a separating set
of vertices for G. it follows that G — T has at most |T| 4+ 1 components.
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A near-perfect matching i a eraph ¢/ is one which covers all hat exactly one of the
rtices of . A factor-critical graph ¢ is one with the property that ¢ — {0} contains
cperfect matching lor every vertex o < V() Tleoughout the rest of this paper, (G
spectively ¢, (G)) will denote the muber of components (respectively odd coniponents)

eraph G.

Lemma 1.5. Let 0 be o connected S-s-eritieal graph.
(i) Then if [V(G) 15 even. (¢ contains a perlect matching, while

(1) i |V Gy s oddl G oeontains o near-perfect mmatching,

Proof: Part (i) is due to Sunmmer and Blitelr [SB]0We prove only part (ii). Suppose
718 a 3-y-critical graph with an odd munber of vertices ad suppose G does not contain a
ear-perfect matching. Consider the Gallad-1Idimonds decommposition of (o (See [LI?].) That
solet D(G) denote the set of all vertices ¢ € V() such that some maximuim matching of
7 does not cover ¢. Let A{G) denate the set of all neighbors of vertices of D(G) which are
wt themselves in D(GY and finally, let C(G) = VI(G) — D(G) — A(G). Since G contalns no
war-perfect matching. the number of odd components of D{G) 1s at least two larger than
A(G@)]. If A1GY = 0. then G is disconnected, o contradiction. So A(G) # @ and hence is a
vertex cutset of G But o — A(G) ) = UG+ 2 which contradicts Lemmea 141 |

The next result proved in [ADP1] (see also the related paper [CTW]) significantly
sharpens Lemima 1.4 and will be of considerable nuportaice in our work to follow.

Theorem 1.6. Let & be a counceted 3-v-critical graph and let S be a vertex cutset
in G. Then

(1) if |S) = 1. G — S has at most |[S| — 1 components,

(ii) if |S1 = 3, then G — S contains at most |S| components, and if G —~ S has exactly
three components, then each component is complete and at least one is a singleton.

(iil) if |S| = 2, then G — S has at most thrce components and if G — S has exactly
three components, then &G must have the structure shown below in Figure 1.1.

(iv) if |$] = 1, then G — S has two components, exactly one of which is a singleton.
Furthermore. G has exactly one or two cutvertices and if it has two, (' is isomorphic to a
graph of the type shown in Figure 1.1.



IFigure 1.1.

A graph G is said to he bicritical if (7 — « — ¢ contains a perfect matehing for every
coice of two distinct vertices w and v € V(). Bicritical graphs play an important role
¢ a canonical decomposition theory for arbitrary graphs in terms of their inatchines. The
cerested reader is referred to [LP’} tor muech more on this subject.

Qur purpose in the present paper s to use the above assembled known results to help
ove several new theorems which say that under certain assumptions on connectivity and
inimum degree, a 3-vy-critical graply ¢ cither is [actor-critical {(when |17 (G s odd) or
critical (when [V (G)] is even).

2. 3-~-criticality, Bicriticality and Factor-criticality

Our first main result shows rhat if the connectivity and minimum degree are suffi-
iently high in a 3-vy-critical graph of even order. then the graph must be bieritical.

Theorem 2.1. If (7 is a 3-connected 3-~v-critical graph with minimum degree at least
cand having even order. then G is bicritical.

Proof: Suppose. to the contraryv. that G is a 3-connected 3-v-critical graph with
ninimum degree at least 4 and having even order, but G 1s not bicritical. Then there exist
certices u and v in G such that ¢/ = G — {w. v} has no perfect matching. By Tutte’s
I-factor theorem. there then must exist an S € V(') such that

Since |V(G')! is even. by parity ¢ (G = 8") = |8'f+ 2. Pm § = 57U {w. v} Clearly,
colG ~ S) = co(G' — §'). But by Lenuna 1.5(1). & has a perfect matching, so

S| = {S"1+2 < o = 8) = oG = 5) = IS,

and hence |S| = (G — S).

By Theorem 1.6(i), |S] < 3. Since & i3 3-connected, |S| =c(G —S) =3 and G - &
has no even components. By Theorem 1.6(ii}, at least one component of G — 5 is a
singleton. Let H; denote such a singleton component of G —.5 and let V(H,) = {}. Then

deg (z) < 3. a contradiction. Hence G is bicritical.

The minimum degree bound in Theorem 2.1 is best possible as there exist 3-connected
3-vy-critical graphs having minimum degree 3 which are not bicritical. Two such graphs
are shown in Figure 2.1. The first is due to Sumner and Blitch [SB].
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Figure 2.1

~ On the other hand, if we consider planar egraphs, then this minimum degree bound
cu be relaxed.

Theorem 2.2. If G is a 3-connected 3-y-critical planar graph having even order. then
('is bicritical.,

Proof: Suppose G is not bicritical. Using exactly the sanie argimment as in the proof of
‘heoremn 2.1. again we arrive at the conclusion that the Tutte Set S defined there has size
and ¢c,{G — §) = 3 as well. Since G is 3-connected. each of the three {(odd) components
G = 5 has edges to each of the three vertices of S° But then G is contractible to a K33
1d hence is non-planar, a contradiction.

1
|

Let & be an integer such that 0 < & < |V(G)|/2. & is said to be k-extendable
every matching of size & in & extends to (i.e.. 15 a subset of) a perfect matching in
7 (“0-extendable” will be taken to mean that & has a perfect matching.) Note that a
-connected 3-y-critical even graph is not necessarily l-extendable. In Figure 2.1, graph
a}) is l-extendable, but graph (b) is not.
In the case when G is not bipartite, 2-extendable is a stronger property than that of
icriticality. More particularly. we have the following theorem [1].

Theorem 2.3. If (G is 2-extendable. then either (7 is bipartite or & is bicritical.

Theorem 2.1 is also sharp in the sense that there exist graphs which are 3-connected (in fact
l-connected) with minimum degree at least Lo 3-~-critical and eveu. but not 2-exteudable.
Jdne such family of grapls is shown in Figure 2.2, (This graph family is a subclass of a
larger class of 3-y-critical graphs first discovered by Sumner and Blitch [SB].)

Figure 2.2,

Now let us turn our attention to the family of factor-critical graphs. (We refer the
reader again to [LP] for a more extensive treatment of these graphs.) The following result
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; an immediate result of "Wojcicka's Theorem™ (sce above), (Note also thit for a 3-~-
Jtical graph G, the assumptions that G is 2-connected and that & has mininnm decree
. least two are equivalent. This is an innnediate conseqpience of Lemma 5.5.8 of (131

Theorem 2.4. Let & be a 2-connected 3-v-critical graph havine odd order. Then ¢
 factor-critical.

The graphs shown in Figure 1.1 (with » even) are 3---critical and connected, bt
ot factor-critical. Thus our lower bound on the connectivity stated in the hyvpotheses of
heorem 2.4 is best possible. More generallv. if ¢ is a 3-v-critical graph with a entvertex
. then v is adjacent to an endvertex (cf. [B}) aud hence mindeg & = 1 and hence G s
ot factor-critical.

3. A Result About Claw-free Graphs

A graph is said to be claw-free if it contains no induced subgaraph isomorphic to A 4.
n [P2] the following result was proved.

Theorem 3.1. If (G is a 3-connected claw-free vraph of even order, then G is bicritical,

If the even graphs involved are 3-~-critical. we can lower the demand on connectivity
ind still obtain bicriticality. Before we state our result. however. we recail another result
of Sumner and Blitch [SB] which will be useful in onr proof.

*J

Theorem 3.2. The diameter of a 3-~-critical graph is at most 3.

Theorem 3.3. Let G be a 3-~-critical 2-connected claw-free graph of even order.
Then if mindeg G > 3. G is bicritical.

Proof: Suppose to the contrary that & is not bicritical. Then there exist vertices u
and v of G such that G' = G — {w, v} has no perfect matching,. By Tutte's theorem, there
s a subset S’ C V(G’) such that ¢, (G’ — §') > |57| and so by parity since V(G| is even,
co(G' — S > |8+ 2. Let S = S"U{u v} Clearly [S] = S|+ 2 and |S] =[S +2 <
(G’ = §') = ¢, (G ~ S) < |S| = |8’| + 2. since GG contains a perfect matching by Lemma

1.5(1). Thus ¢,(G — S) = |S].
By Theorem 1.6(i). |S| < 3. Let H;.e=1...., |5]. denote the odd components of &'— 5.

First suppose that |S| = 3. Clearly G — S has no even components. Set 5 = {w.v,w}. By
Theorem 1.6(ii), at least one component of G— 5 is a singleton. Withont loss of generality.
we may assume that |V (H,)| = 1 and that V(f;) = {r}. Since mindeg G > 3, vertex z
18 adjacent to every vertex of S. Since G is 2-connected. there are at least two vertices of

- § which are adjacent to some vertex of H>. Similarly, there are at least two vertices of S

S| = 3. there must be a vertex, say .,

which are adjacent to some vertex of H;. Because

t



ceh that u 1s adjacent to some vertex of oy and o vertex of /1y Thus o is el center
- G. acontradiction. This proves that |[S] < 2. Morveover, sinee (4 s 2-connected . [N = 2

N

Suppose S = {w.0}. If G — 5 contains an even component then (G — 8) = 3. Thus,
- Theorem 1.6(iii), G must have the structure shown in Fioure LU onud henee 8 is not
“Iconnected. a contradiction. Therelore, G — 5 has no even components. Thus we need
ilv consider the case when (G — 8 contains exactly two odd components and no even

ymponent.

Since mindeg G > 3, it follows that |V (H,)| > 3 and (V' ({f2)] = 3. Now ~{(y) = 3,
) there exists a vertex z € V(G) — {w, v} such that z & N{u) U N(v). Let A4 = V() -
JUN(u) L N(v)). Thus A # 0. Furthermore, suppose zy. 20 € A It zy € V() and
, € V(H2). then d(z1. 22) > 3. contradicting Theorem 3.2, Thus zp and 22 must belong
'y the same component of G — S, say Ha. This implies that V(H,) = Ny, (u) W Ny (0)
nd V(Ha) = Ny, () U Ny, (v} u 4. Morcover, since G is 2-connected and [V{I1)] = 3
wio=1,2. it follows that N(w) NV ({L) # O and N(e) N0 V(L) # O for 7 = 1.2, Now
uppose T € Ng, (u) and y € Ny, (v). Figure 3.1 illustrates the situation,

Figure 3.1.

Consider G + zy. Since G is 3-y-critical. there exists a vertex w € V(G) — {x, y} such
that either [x.w] — y or [y, w] — . We distinguish these two cases.

Case 1: Suppose [z, w] — y. Clearly, w € V(H,) and wy ¢ E(G); otherwise {z,w}
dominates G. If w € Ny, (v), then G[{v,w, y,v'}] is a claw centered at v for some vertex
v’ € Ny, (v). a contradiction. Thus w € Ny, (1) — Np,(v) or w € A.

Case 1.1: Suppose w € N, (u) — Np,(v). Since [z,w] — y, w is adjacent to
- every vertex of V (Hg) — {y} and z is adjacent to every vertex of V(H) U {v}. Figure 3.2

llustrates this situation.

=1



Figurc 3.2.

" Now consider G+wvw. There is a vertex = € V() — {eowh suchthat cither 27— o
- lw, z]) — v. Supposc [, 2] — w. Since A4 #Z O and ¢ 3= not adjacent o ;m._\- vertex of
Cit follows that = € V(H,). Because o ¢ E{(G) and a0 ix adjacent 1o every vertex of
(Hq) — {u}, it follows that z = y. Furthermore. since {r'. sh—r e i o= vertex eois
djacent to every vertex of Hy. But then {v. w} dominates ¢ conradiction.

Thus {w, z] — v. Since wy ¢ E(G) and lw. 2] — v, 2 = w. Henee zy = vy o2 E(G)
'nd G[{u. x.y,w}] is a claw centered at vertex w. o contradiction. This proves that e ¢
() — N, ().

Case 1.2: Suppose w € A. Recall that U = V{I1>) — (N (e 0 Ny (e)) Sinee
cow] — yand w € A, x is adjacent to every vertex of VA ) U {ws e and was adjacent
o every vertex of V(H,) — {y}. Figure 3.3 depicts this situation.

Figure 3.3 .

Since dg(w) > 3 and wy ¢ E(G), |V (H2)| = 5. We distinguish two subcases.

Subcase 1.2.1: Suppose uy € E(G). We will show that Ny (u) 0 Ny, (v) = O
Suppose not; say vertex y; € Ny, (u) 0 Ny, (v). [y € E(G), then G{yy.w, v w}| is
a claw centered at v, a contradiction. Thus iy ¢ E(G). But then G{v,z,y.m}] is a
claw centered at v, again a contradiction. This proves that Ny (u) N Ny, (v) = 0. Since
Ny, (u) # 0, there is a vertex u; € Ny, (u). Since Ni, () OO Ny (v} = Q0 wqo ¢ E(G).
I uyy € E(G), then G[{uy, u,y. w}] is a claw centered at up, a contradiction. Thus

wmy ¢ E(G). Figure 3.4 illustrates this situation.
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Figure 3.4.

ow consider G +wviy. There exists a vertex = € V() - {v.wy} such thar either [o. 2]y
.[“1_3] — v. First suppose that [o. 21— w0 Then zuy € E(G). Since ¢ is not adjacent
yany vertex of A and [u. ) ==y, 2 € V() - {ul bl e Ny (u). then G[{u__z-, ty. s}
v a claw centered at w since wyz € F{(G), a contradiction. Hence z € Ng. (v) — Ny ()
¢z £ A In either case. zu € E{(). Since [v, z] — uy. v is adjacent to every vertex
FV(H) U{u}. Because yo € E(G) and w is adjacent to every vertex of V (/) — {y}.
v,w'} dominates G, a contradiction. Hence {v.z} does not dominate G — uy. Therefore
1.z —r v, Since wyy € E(G) and 2 must be adjacent to y and 1o every vertex of £, it
sllows that = = u. But this is iinpossible since uy ¢ £(G). This proves that {uy, =} does
ot dominate G — v and contradicts the 3-y-criticality of G. Hence uy € E(G).

» Subcase 1.2.2: So suppose uy € £(G). We will show that |4l > 2. Suppose not.
Then (A =1 and 4 = {w}.

Since |VI(H3)| > 5, it follows that | Ny, (u) U Nyg.(v)] = 1. We will show that
F[INg, (u) U Ny, (v)] is a complete graph. Suppose uot. Then there exist a pair of vertices
wp and wy in Vg, (u) U Ny, (v) such that wywe ¢ E(G). Since G is claw-free. we may
wsume without loss of generality that wy € Ny, (w) — Ny, (v) aud wy € Ny, (0) — Ny, (1),

Now consider G + vw,. By applying an argument similar to that presented in Case
1.2.1 for G + vuy, but replacing uy, with w; and y with wo. we get a contradiction. Hence
GINH, (u)UN 4. (v)] is complete. But then if we choose any vertex yy € (Ng, (u)UN g, (0)) —
{y}, we find that {z,y,} dominates (. a contradiction. This proves that |A| > 2.

Recall that [z, w] —> y and that w € A. Since |-1] > 2. there is a vertex wny € A= {w}.
Figure 3.5 depicts the situation.

Figure 3.5.

Consider G + zw. There exists a vertex z € V(G) — {z,w} such that [w,z] — =z or
[t,z] — w. Suppose first that [w,z] — z. By Lemma 1.2, zz ¢ £(G). Since z is

adjacent to every vertex of V(H) U {u,v}, z € V(H1) U {u,v}. But then {z,w} does not

dominate G — {z}, a contradiction.
Hence we can suppose that [z, z] —> w. By Lemma 1.2, zw ¢ E(G). Since A — {w} #

0 and w is adjacent to every vertex of V(Hz) — {y}, = = y. Hence y is adjacent to every
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3

ertex of V(H2) — {w}. Consequently. we € E(G): otherwise Gy, u, v, uy H obs o claw
entered at oy

Next we consider G+ uw. There exists a vertex = € V() — {us w} such that [, 2] —
cor (u. 2] —— w.

Suppose frst that [w, 2] — . Since wy & E(G) and [w. 2] — o, 2 must be adjacent
oy and to every vertex of £y Thus = = v This nuplies that {w. z} dominates ¢ since
o =ru € E{G), a contradiction. Hence lu 2] — w. since A — {w} # 0 and [u z] — w,
t follows that = € V(H>). Thus « is adjacent to every vertex of Hy. Recall that un € E(G)
md wy € F(G). Hence {u,w} dominates ¢ contradicting the 3-y-criticality of . This
-ompletes the proof in Subcase 1.2.2 and consequently the proof of Case 1.

Case 2: Suppose [y, w] — . Clearly wo ¢ FE(G). This implies that w # «. Since
JEV(HS) and [y, w] — =, w € {v}w (V' (1) — {r}).

Case 2.1: Suppose w = v. Then [y 0l — . Thus ¢ is adjacent to every vertex of
U(Hy) — {x} and y is adjacent to every vertex of oL If 38 not adjacent to some vertex of
V(H2) — (A {y}), say yi. then vy € E(G) sinee [yoo] —— a0 But then G{o oy, . 0"}

s a claw centered at v for some vertex o € Ny (v). a contradiction. Jlence vertex y is
adjacent to every vertex of V(Fo) — (A U {#}) and thus to every vertex of V(L) - {y}.
Figure 3.6 illustrates this situation.

Figure 3.6.

Since G is claw-free and v is not adjacent to anyv vertex of A, G[] is complete. We will
show that G[Ngy,(u) U Ny, (v)] is complete. Suppose, to the contrary, that there exist
-a pair of vertices y; and ya of Ny, (1) U Ny, (v) such that yiy» ¢ E(G). This implies
that y, € Ny, (u) — Ng,(v) and y2 € Ny, (v) = Ny, (u) or y1 € Ny, (v) — Ny, (uw) and
Y2 € Np,(u) — Ny, (v), since G is claw-free and Ny, (u) # 0 and Ny, (v) #£ 0. Without loss
of generality, assume that y, € Ny, (u) — Ny, (v) and y2 € Ny, (v) — Ny, (). Now consider
G + uyz. There exists a vertex z € V(G) — {u, y2} such that [u, 2z} — y2 or [y2. 2] — wu.

Suppose first that [u, 2] — 75. By Lemma 1.2, 2y2 ¢ E(G). Thus z # ». Further,
since G is claw-free, z ¢ Ny, (v). Since [u,z] — y2 and A # 0, = € Ny, (v) — Ny, (v)
or z € A. In either case, zv ¢ E(G). Thus u is adjacent to every vertex of V(H ) U {v}.
But then {u,y} dominates G, a contradiction. Ilence {u, z} does not dominate &' — ya,
+ a contradiction, so [yz,2] — ». By Lemma 1.2, uz ¢ E(G). Since yyy2 ¢ F£(G) and
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. 2] —> u. z must be adjacent to every vertex of V(H )y w {4y, Lo This implies that = = .
ut this is impossible since vyy ¢ F (G This proves that GUN YU N (0)] 1s complete.

Next we will show thar GV (207 is complete. Reeall that G[Ng (1) U N ()] is
smplete, G A] is complete. and y is adjacent to every vertex i -4, Tlins we need only
aow that each vertex of [Ny, (n) 0w Ny (0)] = {y} s adjacent to every vertex of AA.

Suppose y; € ['\!f'{'g(“) o N tey = Ayt Consider 0+ ry. There exists a vertex
e V(GY — {a oy} such that woz] — gy or [f;l Y

Suppose first that [x.z] — 5. Since € 1 (1!1) A B and GINg, (u) U Ny, ()] s
omplete, it follows that = ¢ 4 Thus ze ¢ J2(G) amd since we 2 F(G). {2} does not
lominate G — y;, a contradiction. Henee [y, ~] —— . Consequently, y, is adjacent to
very vertex of A as required. Thix proves that GV (H2)] is complete.

Now consider the vertex oo Since mindeg = 3 and ro € E(G), 15 adjacent to at
east two vertices if V(//) — {r}. Let two H"ll('h Ve 1‘tir-( w be desionated oy and 1. Since
oyl —— o and [V(H D) > 3000 tollows that G — {r}] iz complete hecause of claw-
reedomn at vertex v. Choose iy € Nyoca). Then {.r .yl} dominates & since .y is adjacent,
co every vertex of VA ) U {e} and 4 is adjacent to every vertex of V() U {u}. This
contradicts the fact that ~ (G = 3 and thus proves that w # o,

Case 2.2: So suppose w = V(i — {0} Sinee [yow] — 00w is adjacent to every
vertex of VI{H ) — {x} and y is adjacent to every vertex of V(). Figure 3.7 depicts this
situation.

Figure 3.7.

Recall that Ny, (u) U Ny, (v) = V() and zu € E(G). Since wa ¢ E(G) in the present
Case 2.2 and zu € E(G), it follows that wu € E(G), for otherwise G[{u, w.z,y}] is a claw
centered at u for some y; € Ny, (u). Since V(H) = Ny, (u) U Ny, (v) and wu ¢ E(G),
it follows that wv € E(G). Because of claw-freedomn at v, zv ¢ E(G). We will show
that Ny, (u) 0 Ny, (v) = 0. Suppose not. Then there is a vertex wy € Ny, (u) N Ny, (v).
Clearly wy ¢ {w,z}. Since w;n and wiv € £(G) and each vertex of V(H,) belongs to
Ny, (u)UNg, (v), it follows that w, is adjacent to every vertex of V(H,) since G is claw-frce.
But then {w,. y} dominates G. a contradiction. This proves that Ny, (u) N Ny, (v) = 0.

and is at least 3. there exists a vertex we € V(H,) — {z, w}.
Without loss of generality, we may assutne that ws € Ny, (v). Now consider G +uw. There
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xists a vertex z € V(G) — {wu,w} such that [u, 2] — w or [w. 2] — «. Suppose first that
2] — W, By Lemuma 1.2, zw € E(G). Since [u. 2] — w and « is not adjacent to any
ertex of Ng, (v), vertex z must be adjacent to every vertex of V(IH,) U (Ny (v) — {w}).
3ut this is impossible since A % @ and. since wy € Ny, () = {w}. Ny, (v) = {w} # 0. Hence
w, 2] — u. Since wx ¢ E(G), vertex z must be adjacent to every vertex of V(1)U {r}.
jut this is impossible since v ¢ L(G) and v is not adjacent to anv vertex of -4, This
ontradiction completes Case 2.2 and the proof of the theorem.

As a final remark, we point out that the preceding result is elearly hest possible with
espect to the minimum degree condition as the minimum degree of any bicritical graph
nust be at least 3.
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Abstract

A graph G is said to he A-~-eritical il the size of any minimum dominaring set of
vertices 15 A. but if auy edee is added to 0 the resulting graph can bhe dominated with
k=1 vertices. The structure of k-~-critical graphs remains far from completely understood
when v > 3.

A graph G is factor-critical if (- ¢ has a perfect matching for every vertex ¢ € 17(G)
and 1s bicritical if G — w — ¢ has o perfect matching for every pair of distinct vertices
w.v € V(G). More gencrally, a oraph is =aid to be k-factor-eritical if ¢ — & has a perfect
matching for every set of & vertices in (. [n two previous papers [APL AP2] we explored
respectively the toughness of J-~-critical praphs and some of their matching properties. In
particular. we Obtail-lt‘(,i sonte properties whiclh are suflicient for a 3-y-critical graph to be
factor-critical and. respectively, bicritical. In the present work. we obtain similar resulis

for k-factor-critical graphs when & = 3,

1. Introduction

Let (¢ denote a finite undirected graph with vertex set V(&) and edge set E(GY. A

set S C V(G) is a (vertex) dominating set for & if every vertex of G either belongs

to S or is adjacent to a vertex of 8. The minimum cardinality of a vertex dominating

set in graph G is called the (vertex) domination number (or siimply the domination

* work SllI)I)OrL(‘(l l).\f Ll](‘ Tll;li]éll](i I{(‘H(’EI]'(:}I 1'\“1(1 C‘:I"{lllt #]3RG438001()
T work supported by NSIT Grant 74 INT-0316113



umber) of G and is denoted by v(G). Graph G is said to be k-~y-critical if v(G) = k.
it v(G +e) =k —1 for each edge e ¢ E(G). In this paper, we will be concerned only
ith the case k = 3. h

Ifu,v and w are vertices of G and v and v dominate G — w. we will follow previously
xcepted notation and write [u,v] — w. Suppose G is 3-v-critical. If u and v are nomn-
djacent vertices of G, then v(G + wv) = 2 and so there is a vertex r € V(G such that
her [u,z] — v or [v,z] — u.

Sumner and Blitch [SB] initiated work on matchings in 3-y-critical eraphs. The fol-
wing lemma from that paper will prove very useful in our work to follow.

Lemma 1.1. Let G be a connected 3-v-critical graph and let S be an independent
et of n > 2 vertices in V(G).

(i) Then the vertices of S can be ordered ay. aa, .. .. a, insuch a way that there exists a

(ii) If, in addition, n > 4, then the z;'s can be chosen so that ry72---7,, 1 is a path

and SN {zy,...,zp_1} = 0.

In what is to follow, we shall also make frequent use of the following easy result.

Lemma 1.2. Let (G be a 3-vy-critical graph and let v and ¢ be non-adjacent vertices
of G. If z is a vertex of G such that [u. 2] — v, then zv € E(G) and if r is a vertex of G
with [v, 2] — w then zu ¢ E(G).

In [AP1] the following result was obtained. (Sce also [CTW].)

Theorem 1.3. Let GG be a connected 3-y-critical graph and let S be a vertex cutset
in G. Then

(i) if |S| > 4, G — S has at most S| — 1 components,
(ii) if S| = 3, then G — S contains at most |S| components, and if G — § has exactly

three components, then each component is complete and at least one is a singleton,

(iii) if |S| = 2, then G — S has at most three components and if G — S has exactly
three components, then G must have the structure shown below in Figure 1.1,

(iv) and if |S| = 1, then G - § has two components, exactly one of which is a
singleton. Furthermore, in case (iv), G has exactly one or two cutvertices and if it has

two, G is isomorphic to a graph of the type shown in Figure 1.1.
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Figure 1.1.

Finally, we refer the reader to [LIP] for further notation, terminology and background
or matching theory . In particular, we shall denote by N(v) the neighborhood of vertex
, that is, the set of all vertices adjacent to v. In addition, we denote by w(G) the number
f components of the graph ¢ and by w,(G), the nutuber of components of odd order in

IJ'

2. 3-y-criticality and factor-criticality
The following result may be viewed as an extension of Theorem 1.3,

Theorem 2.1. If ¢ 15 a connected 3-v-critical graph and S is a vertex cutset in G,

Cthen if |S] > 6, it follows that w(G — §) < [S] - 2.

Proof: Suppose to the contrary that ¢ — S has at least |S| — 1 components for some
vertex cut S. Then by Theorcin 1.3(1). ¢ — § st have exactly [S| — 1 components and
|S|—1 > 5. Let the components of (¢ — .5 be denoted by I1 ..., Hy. Tor each i, 1 <9 < k,
choose a vertex w, € V(H,). Clearhv. VW = {uo. ... wy }is an independent set. By Lemma
1.1, the vertices of W may be ordered as a0 ap inosuch a way that there exists a path
T1Tg - Tr_1 in G — W osuch that [u,.r,] — a,41 for cach 2 = 1,.... & — 1. By Lemma
12, ziai4, ¢ E(G) for cach ¢ = 1. ... I — 1. Clearly, ; € S, for i = 1,...,k— 1. Now
let So =S — {zy,....2r_1}. Then [Sy] = 2. Solet 5, = {s1,82}. Without any loss of
generality, we may renumber the components of G — 8 in such a way that o, € V(H;). In
what is to follow, we make frequent use of the following four observations:

(O1) Fori = 1. o= 1. vertex o, is adjacent to every vertex of

“L—}k ‘.{[]j));(1'(11?)U{u'1+1})]

2=1
since [a;, 2;] — ajq1.

(02) By O1, vertex a; is adjacent to every vertex of S—(SoU{z 1 }) and fori =2,.. ., &,
vertex a; is adjacent to cvery vertex of § — (SoU {7 -1, 24}).

Sol = 2,if [a;, 2] — aj and |1 = 7] > 2,

(03) By O1, O2. Lemma 1.2 and the fact that
then z = ;. or z € Sg for j > 2 and z € Sp for j = 1.

(04) By O1, for j > 2 and | — j| = 2, if [a;.aj-1] — a;, then ;) dominates
(G — S) — {a;} and thus {x;_,.a;} dominates G — S, by O2.

Let us now begin by considering the graph & + aias. Since v(G + ayaz) = 2, there
is a vertex z € G ~ {a, a3z} such that [a, 2] — a3 or [aa, 2] — a;. We distinguish two

cases.

Case 1: Suppose a1, z] — a3.



Then by O3, cither z = x5 or z € S,,.
. Subcase 1.1: Suppose : = r,. That is, supposc we have [ay,z2] — a3. Then
b 04, {z2,a3} dominates G — Sy Since 7(G) = 3. there is a vertex of So. sy withont
Is of generality s1. such that rosy ¢ E(G) and aszs; ¢ F(G). Thus ars, € E(G),
sce [a1, 7o) — az. Furthermore: sinee [a,.0,] — a4, edge ass; € E{G) and edge
c51 € E(G). Figure 2.1 depicts this situation.

Figure 2.1.

Now consider (¢ = s, Since ~i(0 « agan) = 2. there is a vertex 2, of G — {as.as}
ich that [az. 2] — ay or jern. 2~ wy Acadn we distinguish two cases.
Subcase 1.1.1: Suppose 1y 5y - - an,

By O3, 0t follows that 2y = o) o0 7 & S0

Subcase 1.1.1.1: Suppose 7; =« That 18, [ay. 0y] — a5. Since azs; € E(G). edge
981 € E(G). If ryss € IN(G) or i a-sy = E(GY then by Od, the set {ry.as} dominates
-a contradiction. Thus wysy @ FGH and ey & LG,

Since [ay.ry) — a5, edoe ggse Z P0G Fioure 2.2 illustrates this situation.

Ny

Figure 2.2

Now let us consider G +anay. Since 7{G+azay) = 2. there is a vertex zo of G—{a>. a4}
such that [ay, zo] ay or [ayg, za] —> az. In either case, z2 & Sy since azsy € E(G) and
assy € F(G).

Suppose first that [aq, z2] — ay. By O3 and the above we note that z, = 3. Then
by O4, {z3, a4} dominates G — Sp. But then since z381 € £(G) and aqs; € E(G). {73, a4}
dominates G, a contradiction.

Hence [a4, 2] — a2. By an argument similar to that above, zo = z,;. By O4,
{z1,a2} dominates G — Sy. Recall that ass) € £(G). If z182 or azsy is an edge of G,
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en {a:l,az} dominates (7, a contradiction. Thus x,5: ¢ E(G) and azs: ¢ F(GY. Because
nZi] = Git+1, Q152 € E(G) and 225, € E(G). Now consider G+ ajay. “There must be a
atex z3 of G — {al’ a4} such that [(1.1, 33] T agor [(1.1‘ :3] — ay. Ineither case, 4 &€ So
wce spas & E(G) and spas ¢ E(G). Thus by O3, the case [ay. 23] — 1y is impossible, '

Thus [a;, 23] — a4. Then by O3 and OJ. {rz.ay} dominates ¢ — So. Since rasy €
i(G) and ass2 € E(G), {x3, a4} dominates G, a contradiction. This completes the }wonf
{ Subcase 1.1.1.1.

Subcase 1.1.1.2: Supposc 21 € Sp. Stuee wasy & [(G) and azre ¢ L2(G) at follows
hat z; # s1. Thus 27 = s and it then follows that [a3.52] = ag. Thus s dominates
(G- S)U{z2}) — (H3W{as}). By Lemma L2, spas ¢ E(G). Flgure 2.3 now depicts the
resent situation.

Figure 2.3

Now consider G + ajay. Since 3G+ apay) = 2, there is o vertex 2o of G — {ay aq}
such that [ay, z2] — a4 or [y, 22] —> a1 In cither case, 2o & Sy since syag € I9(G) and
ssas ¢ E(G). Thus by O3, the case [y, 22] — ay 18 inpossible.

Thus [ay, 2z2] — aq. Then by O3 and O, {r3.aq} dominates (¢ — Sp. Since sa
dominates ((G — §) U {wa2}) — ({3 U {as}), cdue s204 € I2((7). Recall that ags, € £(G).
Therefore, {x3,a4} dominates (7. a contradiction. This completes the proof of Subcase

1.1.1.2 and hence also the Subcase 1.1.1.

Subcase 1.1.2: Suppose [ag, 21) —* a3 By O3, it follows that either =z = w2 or
21 € 5.

Subcase 1.1.2.1: Supposc z; = 2. That is, as, x2] — az. Recall that 228, ¢ E(G)
and azs, € E(G), but xas;,aps), azst € L(G). Since [as, 12] — a3, by O4, {22. a3}
dominates G — Sp. Because x2s1 ¢ F(G) and [as, w2] — az, it follows that assy € £(G).
Furthermore, either agse € IE(G) or was2 € E(G).

First suppose that ass2 € E(G). Then as is adjacent to both sy and s2. Figure 2.4

now illustrates the present situation.

[}



Figure 2.4

Consider now G +ajas. Since v(G+ajag) = 2, there must be a vertex zo of G- {ay, ag}
ch that [a1, 22) — as or [as, z2] —> a;.

Suppose first that [a1, 22] — as. Since ap is adjacent to s and sa, vertex z, ¢ Sy by
ymma 1.2. Then by O3, z = x4. Hence {24, a5} dondinates G hy O4 and the fact that ag is
jacent to s1 and so. This contradiction proves that for all zp € = {ay, a5}, {ay, 22} does
it dominate G — {as}. Hence [ag, 23] —> ay. Then 25 € 5 by O3, Since ags, ¢ (), it
llows that z2 = s2. Thus [asg, s2] —» a; and s2 dominates ((G—S)u{ag}) - (HsU{ay}).
ence a2 1s adjacent to both &7 and s».

Next consider G+ asag. Since y(G'+asuy) = 2, there is avertex =3 of G — {ag, ag} such
at [az, 23] — as or [as, z3] — . But incither case, z3 ¢ Sy by Lemma 1.2 and the fact
tat @z and as are adjacent to both sy and so U [uy, 23] — ag, Lhen {goas} dominates
"by O3 and O4 and the fact that ag is adjacent to sy and s, Bul this is a4 contradiction.
imilarly, if [as, 23] — a2, then {xy, 0o} dominates () again & contradiction. T'his proves
hat assy ¢ FE(G). Therclore, cdge wasy € F(G) since |ag, o] — oy Pigare 2.5 now
epicts the present situation.

Figure 2.5

Now consider G+ ajaq. Then there is a vertex zq of (C—{aq, aq} such that fay, zq| -
aq4 or [ag, 24] — a1. In cither case, zq4 ¢ S since ags, ¢ (G and agsy ¢ 10(G). By O38,
[‘14}24] — ay 1s impossible. Tlence [(t1,24]) — aq and z; = @4, Then by O, {ug, ayl
dominates G — Sg. Since azs, € [2(G), it follows that wysy & F(G) and agsy ¢ 12((7), for
otherwise {z3, a4} would dominate ¢, a contradiction. Smce [t24, 4] — an and ags, ¢
E(G), it follows that xqs. € (0.

Now consider G +ayas. There must be a vertex zg of G — tar,ag) sach that la. z,] —
as or [ag, z5] — a;. In cither case, 25 ¢ Sy since ags) ¢ 15(G) and ags. ¢ E(G). By O3,
the case [as, 25] —» a; is impossible. Thus [ay, z5) —> a5 But then zr = x4 by O3 and
hence {z4, a,5} dominates G by O4 and the facts that agsy € F(G) and a5+ € 12(G). This
proves that xys, € E(G). Hence [ag, x2] — ag 18 impossible. This completes the prool in
Subcase 1.1.2.1.

Subcase 1.1.2.2: Supposc z; € Sy and zy = s1. That is, [as, $1] — ay. Then sy
dominates ((G — S) U {z4}) — (/s U {as}). .

Consider G + agaq. Since ¥(G + azaq) = 2, there s a vertex zz of G — {ug,ay} such
that [az, o] s aq OF [ag, 22] — a2. We distinguish two subeases,
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Figure 2.4

. Consider now G+aias. Since y(G+aas) = 2, there must be a vertex zz of G—{a;, as}
ch that [al,ZQ] — as or [a5, 22] — ay.

Suppose first that [a1, 22] — as. Since as is adjacent to s, and sy, vertex z, ¢ Sg by
xmma 1.2. Then by O3, z = z4. Hence {z4,as} dominates G by O4 and the fact that as is
ljacent to 51 and s3. This contradiction proves that for all z, € G- {a,, as}, {ai, z2} does
t dominate G — {as}. Hence [as, 22] — a1. Then z2 € Sy by O3. Since ass; ¢ E(G), it
llows that zz = s2. Thus [as, s2] — a1 and s; dominates ((G — SYu {x,}) — (Hs U {ai}).
ence as 1s adjacent to both s; and s;.

Next consider G +azas. Since v(G +aszas) = 2, there is a vertex z3 of G—{aq,as} such
1at [ag, 23] —> as or [as, 23] — a2. Butin either case, z3 ¢ So by Lemma 1.2 and the fact
wt a2 and as are adjacent to both sy and 5. If [0, 23] — as, then {z4. a5} dominates
'by O3 and O4 and the fact that as is adjacent to s; and s;. But this is a contradiction.
imilarly, if [as, 23] — a2, then {z|, a2} dominates G, again a contradiction. This proves
hat asss ¢ FE(G). Therefore, edge z:s2 ¢ E(({) since [as, 2] — a3. Figure 2.5 now
epicts the present situation.

Figure 2.5

Now consider G +ajay. Then there is a vertex z4 of G —{a, a4} such that (a1, za] —
a3 or [ag, z4] —> ay. In either case, z4 ¢ Sp since aszs; € E(G) and assz ¢ E(G). By 03,
lag, z4] — a; is impossible. Hence [a1,z4] — a1 and z4 = z3. Then by O4, {z3,a4}
dominates G — Sy. Since z3s; € E(G), it follows that r3s2 ¢ F(G) and ass, ¢ E(G), for
otherwise {x3,a4} would dominate GG, a contradiction. Since [a4, x4] — as and ags, &
E(G), it follows that z4s2 € E(G).

Now consider G+a,as. There must be a vertex z; of G'—{ai1.as} such that [ay. z5] —
as or [as, 25] — a1. In either case, z5 € Sp since a3s; ¢ E(G) and aqs. ¢ E(G). By 03,
the case [as, 2z5] — a; is impossible. Thus [y, z5] — as. But then z5 = z4 by 03 and
hence {z4,as} dominates G by O4 and the facts that ass: € F(G) and z4s2 € E(G). This
proves that zos, ¢ F(G). Hence [as, T2] — a3 is impossible. This completes the proof in

Subcase 1.1.2.1.

Subcase 1.1.2.2: Suppose z; € Sg and 21 = $1. That is, [as, $1] — a3. Then s,

dominates ({(G — 8) U {z4}) — (Hs U {as})-
Consider G + azay. Since v(G + azaq) = 2, there is a vertex z3 of G — {ay,a4} such

that [az, z2] — a4 or [a4, 22] — a2. We distinguish two subcases.
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Subcase 1.1.2.2.1: Suppose [a2, z2] — a4. Then 23 = z3 or 2; € Sy by 03. Recall

qat 2251 € E(G) and azs; ¢ E(G), but x351,a15; and ass; are all edges of G.
. Suppose that z2 = z3. That is, [az, 23] — a4. By 04, {r3,as} dominates G — S,.
ince z351 € E(G), it follows that z3s; ¢ E(G) and asse; ¢ E(G); otherwise {z3,a,}
ominates G, a contradiction. Since [az,z3] — a4 and z3s; € E(G), it follows that
252 € E(G). Thus a» is adjacent to both s; and s;. Furthermore, since [ay, 4] — ay
ad ags2 € E(G), it follows that z4s; € E(G). Because s; dominates ((G — S) U {z4}) —
HsU {a3}), it follows that s z4 € E(G). Thus z4 is also adjacent to s; and s,.

Consider G + asas. Since v(G + aszas) = 2, there must be a vertex z3 of G — {as, as}
such that [aqg, 23] — as or [as, z3] — a2. In either case, z3 € Sy since azs; ¢ E(G)
wnd ags2 ¢ E(G). If [as, 23] — a2, then {z1,a>} dominates G by O4 and the fact that
1, is adjacent to s; and to sz, a contradiction. Hence [agz, z3] — as. But then {z4,as)
Jominates G by O4 and the fact that x4 is adjacent to s; and to so and again we have
1 contradiction. This proves that if [aq, z0] — a4, then 2z, # z3. Thus 2z, € Sp. Since
138, ¢ E(G), zo # s;. Therefore zo = s5. That is, [az, s2] — as4. Now s» dominates
(G~ S)U{z1}) — (H2U {as}). Hence a; is adjacent to both s; and s».

Now consider G + a,as. There must be a vertex z3 of G — {a;, as} such that either
la1,23) — a5 or [as, z3] — a;. In either casc, z3 € So since azs; ¢ E(G) and aysy ¢
E(G). But then the case [as, z3] — a; is impossible by O3.

Therefore [a1, 23] — as. Thus {z4, as} dominates G — Sp by O4. Since s; dominates
(G- S)uU {z4}) — (Hs U {a3}), s1z4 € E(G). Furthermore, since s> dominates ((G -
SYU{z1}) — (H2 U {a4}), s2as € E(G). Therefore {z4,as} dominates G, once more a
contradiction. This contradiction proves that for every z»> in G — {a2,as}, {as2, 22} does
not dominate G — {a4} and completes the proof of Subcase 1.1.2.2.1.

Subcase 1.1.2.2.2: Suppose (a4, z2] — a2. Then z2 = x; or 23 € Sp by O3.
Recall that xps; ¢ F(G) and ags; ¢ E(G), but x3s1,a151 and azs, are all edges of G.
Furthermore, s; dominates ((G — S) U {z4}) — (s U {as}).

Suppose zp = z;. That is, [aq, z1] — a2. By O4, {#1, a2} dominates G — So. Since
a2sy € E(G), it follows that z,s; ¢ E(G) and azsy ¢ E(G); otherwise {z1.a2} would
dominate G, a contradiction.

Next consider G+a;as. Since v(G+ayas) = 2, there must be a vertex z3 of G—{a1, a4}
such that either [ay, 23] —> a4 or [a4, z3) —> a1. In either case, z3 ¢ So since s1az ¢ E(G)
-and spap ¢ F(G). By 03, the case [as, 23] — a1 18 impossible. Thus [ay, z3] — a4. By
03 and 04, {z3,as} dominates G — Sp. Since z3s1 € E(G), it follows tl?at. z3s2 ¢ E(G)
and ags; ¢ E(G). Otherwise, {x3,a4} would dominate G, a contradiction. Because
[as, 4] — a5 and a4s0 ¢ E(G), it follows that z4s2 € E(G). So x4 i1s adjacent to both s,
and S2.

Next we consider G + ajas. Since v(G + aias) = 2, there must be a vertex 24 of
G — {aj, as} such that either [a;,24) — as OT las, z4] —> a1. In either case, 24 ¢ So,
since sja3 ¢ E(G) and siaz ¢ E(G). By O3, the case (as, 4] — ay is lm.posable.
Thus [ay, 24] — as. By O3 and O4, {xs,a5} domina‘Lte‘s G — Sp. Since T4 is adjacent to
- both sy and sy, {x4,as} dominates G. This contradiction proves that if (a4, z2] — aq,
then z, # ;. Thus zo € So. Since syaz ¢ E(G), it follows that z; # s,. Therefore,
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5 = 82. That is, [, s2] — «2. Then s, dominates (G —S)u{za}) - (H4U{az}). Thus
5,03 € E(G) and szaz2 € L(G). Then o4 s adjacent to both s1 and sy since 35, € E(G).

Now consider G +ajaq. Since v(G+ajas) = 2, there must be a vertex zs of G — {a1,a4}
such that either [ay, 25] — a4 or [ay, zn] — ay. In cither case, zs ¢ So since syaz ¢ E(G)
and s2a2 € E(G). By O3, the case [uy. 25] — oy is impossible. Hence @y, zs| — ay.
Then zz = z3 by O3. But then {wy.aq} dominates ¢ by Od4 and the fact that z3 is adjacent
1w 5) and s2. This contradiction comipletes the proof of Subcase 1.1.2.2.2 and thus of the

Subcase 1.1.2.2.

Subcase 1.1.2.3: Suppose z; € S, aed 23 = 52 That is, 25,820 — a3z. Recall
that 251 ¢ E(G) and azsy & (G, but rasyaps; and ass; are all edges of G. Since
a5, 52) — @3, vertex sz dominates (G — SV U {rg ) — (Hs U {az}). Since spas ¢ E(G).
edge £352 € F((G), becanse lag ryl —— ay. Now ry and as are adjacent to both s, and s,.

Consider G + agay. Since 50+ wsayp = 2. there must be a vertex z» of G — {ay, ay}
such that either [ay. 20| — gy or [y 22] — ao. [either case, 22 ¢ Sp since s1a3 ¢ E(G)
and spa3 € E(G). If [an. 2] + ay. then zp = oy and hience {r3,as} dominates G by
03, O4 and the fact that ry s adjocent to both 51 and so and we have a contradiction.
Hence {04, zo] — as. But then sl aremnent shows that {#1. a2} dominates G'. This
contradiction completes the proof of Subease 1.1.2.3 and henee of Subcase 1.1.2. But then
(G + azas) > 2. contradicting the 3-~-criticality of . Thus Subcase 1.1 cannot occur.

Subcase 1.2: SUppose oo N

Without loss of generality, we mav assume that = = s, That is. a1, s1] — as.
Then vertex s; dominates ((F = 5) = (7, L lus}). Sinee s a3 € E(G) by Lemma 1.2, edge
s1z3 € £(G) because [(!3. ay]

Consider G + aqay. Sinee ~ (G4 asay) = 20 there is o vertex z; of G — {az, a4} such
that either [aq, =) — ay or [0y, 2] —+ a2, We distinguish two subcases.

'!(I].

Subcase 1.2.1: Suppose o2y — g By (3 and the fact that sya; ¢ E{(G). 1t

follows that either z; = Iz oOor L) =

Subcase 1.2.1.1: Suppose z; = 3. That is, [a2, 23] — ay. Then by 04, {3, a4}
dominates G — Sg. Because s; dominates (G—S5)— (11U {az}), edges s1zz and s1a4 belong
to £(G). If z3s5 € E(G) or if agsy € L(G), then {r3,as} dominates G. a contradiction.
Hence z3s, ¢ E(C) and agse € E(G). Since [a;.x,] — ajp forall 7, 1 <@« <A —1, 1t
follows that aszs, € E(G) and z4s2 € E(G).

Consider G + agas. Since v(G + azas) = 2, there is a vertex z; of G — {ag,a5} such
that either [ay, 2z2] — as or [as,22] — az. In either case, z3 ¢ So since sjaz € E_(G)
and spay ¢ E(G). If [as, 22] — a5, then {r4,as} dominates G - Sg by O3 and O4. Since
s1 dominates (G — S) — (H; U {asz}), edge s as € E(G). Because 2452 € E(G), {24, as}
dominates G, a contradiction. Hence [ag, z2] — a2. By O3 and the fact that z; & So.
it follows that z, = z;. Then by 04, {z1,a2} dominates G — Sp. Since s; dominates
(G — S) — (H; U {as}), edge s1ax € E(G). If azse € E(G) or if 150 € E(G), then
{z1,a2} dominates G, a contradiction. Hence azsz ¢ E(G) and z:52 ¢ E(G). Because
[ai, ;] — a;4y for 1 < i < k — 1, it follows that z2s2 € E(G) and ays2 € E(G).
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uch that either [a1. 23] — a5 or (a5, 23] — o, In either case =3 2 Sa sinc
ind s2a2 € E(G). Then by O3, the case [u5. 237 — a; is impossible, Thus
Then z3 = 4. But then {ry.as} dominares G bv O4 and the facr that I48) E E{G] and
1351 € E(G). This contradiction completes the proof of Subrcase 1.2.1.1,

Now consider G + ayas. Since {( + ayas) = 2, there is a vertex z3 of G — {a as}
e 31a3 z )

Subcase 1.2.1.2: Suppose z; = s> That is, 2,
(G—S)u{z1}) — (Ha2U {a:}). Recall that s dominat

-

specifically, soay € E(G). s1az < Et(i. but az is adjacent b(_w_n 57 and -53.

i

i

Consider G + asas. Since ~ (G — a-a:' = 2. there is vertex z; of G — {a-.a2:} such
that either [@2.z2] — as or [as. 22 —= a>. In either case, zp 2 55 since 23 £ E((7) and
s,04 ¢ E(G). Suppose [as. 22 - By O3 and O4. {ry. a5} dominates G — S5, Since

as 1s adjacent to s; and =.. 1t tollows rhat \‘,34_,15} dominates 7. a contradiction.
Q

Hence [as. z2] — a». By O3 and 04 3% a- b dominares G — Since 5, dominates
(G—8)— (Hy U {az}) and »> dominares :?a {rob = CH s oo {adh i follows thar
s109 € E(G) and s»ry € EiG. Bt theu {1‘-.@;} dominates 7. a conrradiction. This
completes the proof of Subease 1.2.1.

~, L

Subcase 1.2.2: Suppose ay. 0 — ao. By O3 and the tact that sia3 £ EiG)Lir
follows that either =y = ry or 7, = =-.

Subease 1.2.2.1: Suppose 2, = - Lhar is0 a0 — 220 Then by O4 {“.fzw,
dominates G — Sy. Recall thar < Joninares G — 50— Hyo {aspi Since gpas £ EiGL.
it follows that ass. & E(G1 aud ro<y £ E G for otherwise {ry. aop dominates G. 3
contradiction. Since ‘a,.r, —-a,.; for all 1w o<k = Lot follows that ros: < EiG) and
118 € E(GHY.

Consider G — ayay. Since ~1(5 — a2y = 20 rhers must be a vertex 1 of (G —{u1y.ag}
such that either [ay. z2] ay or 1y zr —-ayp Ineither case. 22 € 5p slnce s;a3 < (G

— 4 15 lmpossible. Hence la;. 22 — au.
O4d. Since s) denmiinates (G — 5 — (Hy o {as}).
EiG and rys. £ EvGo. for otherwise {r3.ag}b

—_— il for all 1 <0 < A — 1. rys> = (G\

and spas € E{G). By O3, the case ay. 22
Then {z3.a4} dominates G — 5 byv U3 and
it follows that sjay € E(G). Then ags: <
dominates G. a contradiction. Since ..
and azs; € E(G).

* Now consider G +ajas. Since ~1(G—a a5t = 2. there is a vertex =3 of G —{a;.as} such
that either [ap, z3) — as or iaj 3, — ay. In either case. 73 & 5g since #1a3 £ £(G) and
s2a4 € E(G). By O3, the case ‘as. 3 — a1 18 impossible. Hence [ay. 23] > 5. Then

by O3, z3 = z4. But then {,14 as} dominates G by U4 and the fact that s;as £ E(G) and

T4sy € F(G). This contradiction completes the proof of Subcase 1.2.2.1.

=

Subcase 1.2.2.2: Suppose 7; = sa. That is. [ay.s2] — a2 Then s> dominates
(G-95S)u {z3}) — (Hy U {a2}}. Recall that s; dominates (G — S) — (H; U {az}). More
specifically, s1ay € E(G) and s.rz € E(G). but s1a3 £ E{G) and s2a2 € E(G).

Consider G + ajay. Since (G + ayay) = 2, there is a vertex s of G — {a;. aJ‘} such
that either [ay, zo] — ay or [m.;:] — a;. In either case. zo € Sp since staz £ E(G)

and sqas ¢ E(G). By 03. the case {as. =a] — a; is impossible. Hence {a;. 220 — a4. By
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¢ and O4, {z3,04} dominates G — Sy. Since sjaq € E(G) and sy23 € E(G), it follows
tht {53,a4} dominates G, a contradiction. This completes the proof of Subcase 1.2.2.2
.| hence Subcase 1.2.2. Hence v(G + aza4) > 2, contradicting the 3-v-criticality of .
Tus the Case 1.2 cannot occur. Hence for all z in G — {a;, a3}, {a;, 2} does not dominate

(-as.

' Case 2: Suppose [a3, z] — a;.

By 03, z € Sp. Without loss of generality, we may assume that z = s,. Then
[,s1] — a1 and s; dominates ((G — S)U {z2}) — (H3 U {a,1}). Since sja; ¢ E(G) by
;mma 1.2, it follows that edge =,s5; € E(G) since [a;, z1] — 2.

Consider &G + a2a4. Since v(G + azay) = 2, there is a vertex z; of G — {az, a4} such
-at either (a2, z1] — a4 or [a4, 21] — a2. We distinguish two cases.
~ Subcase 2.1: Suppose [as,2z1] — a4. By O3 and the fact that s;a; ¢ E(G). it
lows that z; = z3 or z; = 5.

Subcase 2.1.1: Suppose first that z; = z3. That is, [az, 23] — ay. By O4. x3
sminates (G —S)—{as}. Since s; dominates ((G —S)YU{x.})— (H3U{a.}), it follows that
a3 € E(G). If 2355 € E(G) or assy € E(G), then {z3,a,} dominates G, a contradiction.
ence £352 ¢ E(G) and aqs2 € E(G). Since [a;, zi] — ajy1 for 1 <1 < & — 1, it follows
13t agsy € E(G) and z45, € E(G). Figure 2.6 now depicts our situation.

Figure 2.6

Now consider G + azas. Since v(G + azas) = 2, there is a vertex 23 of G — {as. a5}
{ such that either (a3, z2] —> as or [as, z2] — az. In cither case, z2 € So sinc_e s1ay ¢ E(G)
and 3a4 ¢ E(G). Suppose [a3,22] —* as- By 03 and O4, {z4,as} dominates G — Sp.
Since s; dominates (G — S) U {z2}) ~ (Hz U {a1}), it follows that s.as € E(G). Because
452 € E(G), {z4, a5} dominates G, a contradiction. Hence [as, zp] —* a3z. By O3 and Od,
{z2,a3} dominates G —Sy. Since s; dominates ((G=S)u{z2})— (HaU{a1}), s1iz2 € E(G).
But then {z3, a3} dominates G since azsz € E(G). This contradiction completes the proof
of Subcase 2.1.1.

Subcase 2.1.2: Suppose z; = s2. That s, [az, s2] —> as. Then s, domina“_’s
(G — S) U {z1}) ~ (H» U {as4}). Recall that [a3,s1] — a1 and 115 € E(G). Thus ag is
adjacent to both s; and s2, sya; ¢ E(G) and s2aq € E(G).

Consider G + asas. Since v(G + azas) = 2, there is a vertex z2 of G — {az.,as}
such that [ag, z3] — as or [as,z2] —* a2. In either case, z2 € Sy since sya; € E(G)

10



| a1 spaq4 ¢ E(G). Suppose [az,2z2] — as. By O3 and 04, {z4,a5} dominates G — Sp.

' us {24,(15} dominates G since a5 is adjacent to both s; and 52, and again we have a

| citradiction. Hence [as, z2] — a2. By O3 and Od4, {x1,a2} dominates G — S;y. Since
151 € E(G) and z,152 € E(G), {71,022} dominates G. This contradiction completes the
pof of Subcase 2.1.2 and therefore also Subcase 2.1.

' Subcase 2.2: Supposc [a4, 2] — as. Recall that [a3,s,] — a), s1a; ¢ E(G),
ste € E(G) and 15, € E(G). Since [ay4, 21] — a2 and s,a; ¢ E(G), it follows fromn O3
tat either z; = 21 or z; = so.

Subcase 2.2.1: Suppose 23 = x;. That is, [ay, z1] —> az. By O3 and OJ, {z, a5}
«minates G — Sp. Since x15) € E(G), if cither x15; € E(G) or aszs; € £(G), then {x),a,}
 minates G, a contradiction. Hence 152 ¢ E(G) and assy ¢ E(G). Since [a,, v,] — a4
w1<i<k—1,a152 € E(G) and z0252 € E(G). Figure 2.7 illustrates our situation.

Figure 2.7

Now consider G+ agzas. Since v(G +azag) = 2, there is a vertex z of G — {a3, a5} such

nat either [as, z2] — as or [as. z2] — a3. In either case, zo & Sy since s1a; € £(G) and
202 ¢ E(G). Suppose [as, z2] — a3. Then by O3 and O {z2.a3} dominates G — Sp.
ince zp87 € E(G) and z2s2 € E(G), {r2.a3} dominates . a contradiction. Hence
13,22] — as. Then by O3 and Od, {z4.as} dominates G — Sp. Since [as, s1] — ay, it
dllows that syas € E(G). If 2452 € E(G) or ass. € E(G). then {24,as} dominates G. a
ontradiction. Thus x5, ¢ F(G) and ass» € E(G).

Now consider G + asas. Since v(G + asas) = 2. there is a vertex z3 of G — {as,as}
uch that either [ag, 23] — a5 or [as, 23] — a2. In either case. 22 # s; since sya; € E(G).

Suppose [az, z3] —> as. By O3 and the fact that z3 5 s, it follows that either z3 = z4
X z3'= $3. Since azs, ¢ F{(G) and x5, € E(G). it follows that z3 # x4. Thus z3 = s2.
But this is impossible since s.z; ¢ E(G) and a»zy € E(G). Hence [as, 23] — «2. By O3
and the fact that 23 # s,, it follows that either z3 = z; or 23 = s2. Since x152 ¢ E(G)
and assy ¢ E(G), 23 # ;. Thus z3 = s». But this Is impossible since s»xy ¢ F(G) and
asz4 ¢ E(G). This contradiction completes the proof of Subcase 2.2.1.

Subcase 2.2.2: Suppose z; = sz. That is. [ag, 82] — a2. Then s, dominates

(G —S)u{zs}) — (HyU{a2}). Recall that [a3, s1] — a1, s1a1 ¢ E(G), s172 € E(G) and
151 € E(G). More specifically, s;a; ¢ E(G) and s2a2 & E(G), but syas € E(G), sax3 €
E(G) and sqa; € E(G).

| Consider G+ajay. Since v(G+ajas) = 2, there is a vertex 2z of G—{ai1. a4} such that
Leither [a1, 2] —> a4 or [a4, 22] — a1. In either case. 2, # 59 since sqaz € E(G). Suppose

|
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,22) — aa. By 03, z2 = r3 or 23 = s;. By Lemma 1.2, z; # s, since sjay € E(G).
'hus zz = 3. By O4, {z3,a4} dominates G — So. Since syay € E(G) and spr4 € E(G),
i follows that {z3,a4} dominates G, a contradiction. Hence [ay, za] — a;. By O3 and
we fact that zz # s2, it follows that 2, = s;. That is, [ay, s1) — a1. Since {a3, 51] — a;.
ortex 51 dominates (G — S) — {a1}. Because syz; € E(G) and s2a, € E(G), {s1,a,}
ominates G. This contradiction completes the proof of Subcase 2.2.2 and hence also
Ybcase 2.2. Hence (G + azaq) > 2, contradicting the 3-y-criticality of G. Hence for all
e V(G)—{a1, as}, {as, z} does not dominate G—{a;}. This implies that y(G+a,a3) > 2,
sain a contradiction. This completes the proof of the theorem.

In order to prove the main theorem of this section, we shall also need the following
ssult which may be viewed as yet another extension of Theorem 1.3.

Theorem 2.2 Let (G be a connected 3-y-critical graph and let § be a vertex cutset
1 G with 4 < |§] < 5. If each component of G — S has at least three vertices, then

(G-8)<|S] -2

Proof: Suppose, to the contrary, that w(G—S5) > |S|-1. By Theorem 1.3(i}, it follows
hat w(G — S) = |S| — 1. Put ¢ = |S| — 1. Note that 3 < ¢ < 4 Let H; be a component
fG— S for i = 1,2,...,t. Choose a vertex w; € V(H;) for i = 1,2,...,t. Clearly,
V = {wy,wa,...,w:} is an independent set. By Lemma 1.1(i), the vertices of 1V may

e ordered as ay,as,...,a; in such a way that there exist distinct vertices xy,x2,...,T¢—1
wch that [a;,z;] — ajqq, for i = 1,2,...,¢t — 1. By Lemma 1.2, zja;y1 ¢ LE(G) for
=1,2,...,t — 1. Thus z122---Z¢—1 15 a path. Without loss of generality, we may

enumber the components of G — S in such a way that a; € V(Fl;). Since |V(H;)| > 3, it
ollows that ; € Sfor:=1,2,...,t — 1.

Let So = S—{xy,z2,...,zt-1}. Then |So| = 2 and so we may set So = {s1,s2}. Note
chat obvervations O1, O2, 03 and O4 made in the proof of Theorem 2.1 are still valid
m the present situation. Furthermore, O is still true if we replace a; with b;, where b,
belongs to the same component as «;.

Since |V (H,)| > 3, there are vertices b;,c: € V() — {a.}. Consider G + a,b,. Since
Y(G + a1b;) = 2, there is a vertex z of G — {ay, b} such that either [a),z] — b, or
by, 2] — a;. In either case, z € S. We distinguish two cases.

Case 1: Suppose [aj, z] — b:.

By O1 and Lemma 1.2, z ¢ {z1,72, .. : .
loss of generality, we may assume that z = s,. That is, [a1, s1] — be. Then s, dominates

UiooV(H;) — {b:}. If 2252 € E(G) or 5152 € E(G)T then {z2,s;} dominates G b‘y 01,
together with the fact that z,z2-- T,—1 is a path with 2 <t -1 < 3 and s, dominates
Ui,V (H;) — {b.}. But this is a contradiction and so z282 ¢ E(G) .and s152 € E(G).
Since [ag,z2] — a3 and z2s2 ¢ E(G), a282 € E(G). Furthermore, since [ay,s;] — b,
Tand 5152 & E(G), a1s2 € FE(G).

Figure 2.8 illustrates the present situation.

.,Tt-1}. Then it follows that z € S5. Without

12




Figure 2.8

Now consider G +'a1¢;. Since v(G+ajc;) = 2, there must be a vertex z; of G — {a1, ¢}
such that either [ay, 21] — ¢ or ¢y, 2] — ay. In either case, z; € . We distinguish

W0 Cases.
!

Subcase 1.1: Suppose [a;, z1] — .

By O1 and Lemma 1.2, z; € {z,,22,...,7,-1}. Since s1b; ¢ E(G) and a,b, ¢ E(G),
it follows that z; # s;. But then z; = s;. That is, [ay, s2] — ¢;. Hence s, dominates
U;sz(HJ-) — {c:}. Since sy52 ¢ E(G) and [a;, s3] — ¢, it follows that ays; € E(G).
Now a,; is adjacent to both s; and s,. Further, a, is also adjacent to both s; and s» since
51 dominates U%_,V(H;) — {b:} and s, dominates U_,V(H;) — {c(}.

Consider G + aja;. Since 7(G + aya,) = 2, there must be a vertex z; of G — {ay, a;}
such that either [ai, z2] — a; or [a¢, 22] — ;. In either case, zo € §. By Lemma 1.2
and the fact that a; and a; are adjacent to both s, and s;, 22 ¢ Sg. By O3, [a¢, 22] — a4
is impossible. Hence [a1, z2] — a;. By 03 and O4, {z;_,,a,} dominates G — Sp. Since

'u5) € E(G) and a5, € E(G), it follows that {z;_1, a;} dominates G. This contradiction

completes the proof of Subcase 1.1.

Subcase 1.2: [¢;, z1] — a;.

Since T1a5 € E(G) and azc; € E(G), 21 # 1. By Ol. zya; € E(G)for2 <1<t — 1.
Thus by Lemma 1.2, z; ¢ {z2,...,2;_1}. Furthermore, 2, # s2 since a;s» € E(G). Thus
7 = s,. That is, [c;, s3] — aj. Recall that [a1, 51] — bs, T2s2 ¢ F(G), s182 € E(G).
but azs € E(G) and ais; € E(G). Since [c;, s1] — a1 and [a1, s1] — b, s1 dominates
(G- S) — {a1,b:}. Furthermore, since s;s2 ¢ E(G) and [ct, 1] — a1, as2 € E(G). Now
¢t is adjacent to every vertex of S by O1 and the fact that s; dominates (G —8)—{a1, b}

Since |V (H;)| > 3, there are vertices by, ¢y € V(#H1) — {a1}. Consider G + byc,. Since
(G + b1c;) = 2, there is a vertex zp of G — {b1,c:} such that either [b1,22] — ¢ or
[, 22) — by. In either case, zp € S. Suppose [b1, z2] — ¢ By Lemma 1.2, z2¢, ¢ E(G).
Thus 25 ¢ S since ¢, is adjacent to every vertex of S, a contradiction. Hence [c¢, z2] — b1
Since z1a; ¢ E(G) and ciaz ¢ E(G), z2 # z1. By Ol, ziby € E(G) for 2 <i<1t-1.
Thus by Lemma 1.2, 2o ¢ {z2,...,zt—1}. Furthermore, 22 # s, since s,b; € EF(G). Thus
Z2 = 35. Now s, dominates U;;{V(Hj) — {1}

. Now consider G + cy¢;. Since (G + cicy) = 2, there is a vertex z3 of G — _{cl,ct}
such that either [cy, z3] — ¢; or [cg, 23] — ¢1- In either case, z3 € S. By applymg-the
same argument as above, the case [c1, 23] — ¢; is impossible. Hence [ct, 23] — 1. Smc.e
Tiay ¢ E(G) and ciap ¢ E(G), 23 # 1. Then z3 € {s1,s2} U {z2,..., 741} But th}S
contradicts Lemma 1.2 since for 2 < i <t — 1,z;, 5, and sz are all adjacent to ¢;. This
completes the proof of Subcase 1.2 and hence the proof of Case 1 i1s complete.

Case 2: Suppose, therefore, that [bs, 2] —> a1
By 03, z ¢ §;. Without loss of generality, we may assgme that =z
is, [b¢, 1] — a;. Thus s; dominates U;—;:;V(Hj) — {a1}. Since [aj,z1] — a; and

sia1 ¢ E(G), z1s; € E(G). Figure 2.9 depicts our situation.

= s;. That
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Figure 2.9

 Since |[V(H1)| = 3, there is a vertex by of V(H;) — {a;}. Consider GG + b;b,. Since
.3+ biby) = 2, there is a vertex z; of G — {b,.5} such that either [(b1.21] — b, or
[.z1] — b1. In either case, z; € 5. We distinguish two subcases.

' Subcase 2.1: Suppose [b1, 21] —> b;.
Since [a;, Ti] — aiq1, bez; € E(G) for 1 < i <¢—1by Ol. Then z; ¢ {r,.. S Te_1}
" Lemma 1.2. Hence 2z, = s; or z7 = s55.

Subcase 2.1.1: Suppose z; = s;. That is, [b1,51] — b,. Since [by, 51) — a1, s,
minates (G — S) — {a1, b }. Since z2a; € E(G) and z2b; € E(G) by O, if 108, € E(G)
s182 € E(G), then {z2,s1} dominates G, a contradiction. Hence z2s5, ¢ E(G) and
s2 ¢ E{G). Because [as, 2] — a3 and w280 & E(G), azs: € F(G). Since [by.5,] — b,
d s152 € E(G), bysy € E(G). Since s; dominates (G — 5) — {a;.b;}. edges sy, 510
d s1a¢ belong to E(G). Figure 2.10 illustrates our situation.

Figure 2.10

We will now show that s.a; ¢ E(G). Suppose. to the contrary, that ssa, € E(G)
onsider G+bya;. Since v(G+bya;) = 2, there is a vertex z of G — {b1,a,} such that either
b1, 23] — a; or [ag, z2] — by, In either case. zo € 5, but by Lemma 1.2, z3 ¢ {sy.502}
since b; and a, are adjacent to both s, and s2. Suppose [b;,2z2] — a,. Then by Ol
ind Lemma 1.2, z, = z,.;. That is, [by.x¢—1)] — a.. By O4. and the fact that a, is
adjacent to both s; and s», it follows that {r,_1, .} dominates G. a contradiction. Hence
[atJZQ] — b;. But then by O1 and Lemma 1.2, zp # 1, for 2 < ¢ <t — 1. Furthermore.
23 # 1 since zi1as ¢ E{G). Hence z» ¢ S, a contradiction. This proves that soa, & F(G).
By applying similar arguments, we also obtain that szce ¢ E(G).

Now consider G + aoc;. Since v{G 4+ aacy) = 2, there is a vertex z3 of G — {az2,¢¢} such
that either [aq, 23] —> ¢, or |y, 23] —> a2. In either case, z3 € 5. Suppose that [az, z3] —
¢;. By O1, z; is adjacent to ¢, for 1 <7 <t — 1. Since §; dominates (G — S) — {a;.b}.

s1c; € E(G). By Lemma 1.2, 23 ¢ {51,11,12, o ,;1“,_1}. Therefore. 23 = s5. But this is
impossible, since sya, ¢ E(G) and aza, ¢ E(G). Hence [cr, 23] — a2. Since ay is adjacent
to s; and sg, 23 € {s1,s2} by Lemma 1.2. Therefore, 23 € {r\.Z2,...,7¢_1}. Suppose

23 = x1. Then z, dominates U;;lll"(Hj) — {a>}. Thus {7.a2} dominates G by O1. O2

. and the fact that 1z - - z¢—1 18 & path with 2 <t —1 < 3 and a2 is adjacent to both s,

and s,, a contradiction. Hence z3 # T1. Since zos2 € E(G) and crs2 € E(G). 23 # 70
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his implies that ¢ = 4 .and Z3 = T3z = Zy~1. But this also contradicts Lemma 1.2 since
jaz € E(G) by Ol. This completes the proof of Subcase 2.1.1.

Subcase 2.1.2: Suppose z; = .

That is, [b1, s2] — b:. Then s, dominates Ug',-:z‘[f(Hj) — {b+}. Recall that [b;, ;] —
. Since s2b; € E(G), s152 € E(G). But then {z9, s;} dominates G by O1, together with
se facts that z122- ¢ is a path with 2 < ¢t — 1 < 3, 5,85 € E(G) and s, dominates
lj.sz(Hj) —{b:}. This contradiction completes the proof of Subcase 2.1.2 and hence also

f Subcase 2.1.

Subcase 2.2: Suppose, then, that [b, 21} — b;.

By Ol and Lemma 1.2, z; # z; for 2 <1 < ¢t—1. Since z,a, ¢ E(G) and s1a1 ¢ E(G),
1 ¢ {z1,s51}. But then z;y = s5. Thus s, dominates Ug;llV(Hj) — {b1}. Recall that
he,s1] — a1 and z1s; € E(G). Then y and w must be adjacent to sy and s, for all
re V(Hy) — {a1, b1} and for all w € V(H, ). Since |V(H;)| > 3, for 1 < i < ¢, there
nust be a vertex ¢; € V(H,) — {a,,b,} and a vertex by_y € V(H, 1} — {a;_1}. Then ¢
ind by, are adjacent to both s; and sa.

Consider, finally, G + c1b;_;. Since v(G + ¢1b,_1) = 2, there must be a vertex z, of
5—{c1,b¢e~1} such that cither [¢1,22] > by or [by_1, 2z2] — > ¢1. In either case, 2z € S.
ut zp € {51, 52} by Lemma 1.2 and the fact that ¢; and b;_, are adjacent to s; and s».
Ssuppose [¢1, z2] — b;_;. By Ol and Lenuna 1.2, 2z # x1. Since zoaz € E(G), 22 # zs.
Then ¢ = 4 and 25 = z3. But this is impossible since c1ay ¢ F(G) and z3aq ¢ E(G).
Hence [by_q,22] — c;. Since 2o € {s1,s2}, [(f — 1) — 1| < 2 by O3. This implies that
t—1=2. Then by O1 and Lemma 1.2, z5 # z1. Thus zp = z;. But then z; dominates
(G —8) — {c1,a2}. Hence {x,, s2} dominates G, since z351 € E(G),z1z2 € E(G) and s>
dominates (H; U Hs) — {b;}. This contradiction completes the proof of Subcase 2.2 and
hence Case 2. This proves that v(G + a b} > 2, contradicting the 3-y-criticality of G.

This completes the proof of Theorem 2.2.
: |

Finally, the following two results will also be useful in proving our main theorem. The
first is due to Favaron [F] and the second is proved in [ADP2].

Theorem 2.3 A graph G is n-factor-critical if and only il w,(G — §) < |S] ~ n, for
every S C V(G) and |S| = n.
i

Theorem 2.4 Let GG be a 2-connected 3-y-critical graph having odd order. Then G

is factor-critical.
|

We now present our main result of this section.

Theorem 2.5 If G is a 4-connected 3-y-critical graph of odd order and having mini-

mum degree at least 5, then G is 3-factor-critical.
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Proof: Suppose, by way of contradiction, that G is not 3-factor-critical. By Theorem
'3, there is a set S C V(G) with |S]| > 3 such that w,(G — S) > |S| — 3.

" Since G is factor-critical, by Theorem 2.4, w,(G — S) < |S|—1. Since G has odd order,
(G—8) # S| — 2. But then wo(G — S) = |S|— 1. By Theorem 2.1 and our connectivity
spothesis, 4 < |S| < 5. Since G — S has |S| — 1 odd components, there is a component
(G — S, say Hi, such that |V (H)| = 1 by Theorem 2.2. Let V(Hy) = {ur}. If|S] =4,
-ren d(wy) < 4, a contradiction of our minimum degree hypothesis. Hence |S| = 5. By
heorem 1.3(i), G — S has no even components. Fori = 1,...,4, let H; be the components
fG—S. Choose a vertex w; € V(H;), for each i = 1,...,4. Clearly W = {w;, ws, w3, we}
; an independent set. By Lemma 1.1, the vertices of ¥ may be ordered as a;, as, a3 and
¢ in such a way that there exists a path r;z,z3 in G — W such that [a;, z;] — aiq1,
sreach i = 1,2,3. By Lemma 1.2, z;a;4, ¢ E(G) for each i = 1,2,3. Clearly, z; € S
rt=1,23 Let So =5 — {z,,22,23}. So |So| = 2. Let Sy = {s1,s2}. With loss of

- enerality, we may renumber the components of G — S in such a way that a; € V(H);).
jote that obvervations O1, 02, O3 and 04, stated in the proof of Theorem 2.1, remain
alid in the present situation. Since for each 7 = 1,2,3, z;a;41 ¢ E(G), it follows that
V(H;)| > 3 for 2 < 7 < 4 because mindeg (G) > 5 and |S| = 5. Further, V(H1) = {a1},
)y Theorem 2.2 and a, is adjacent to every vertex of 5. But then for cach ¢, 2 <7 < 4,
here exist two distinct vertices b; and ¢; in V(H,;) — {a;}.

Let y be a vertex of (H; U H4) — {aa,ay}. Consider G + ary. Since v(G + a1y) = 2,
there is a vertex z of G — {a;,y} such that either [a1,z] — y or [y, 2] —> a1. In either
case, z € S. Since a; is adjacent to every vertex of Sp, the case [y, z] — a; is impossible
by O3 and Lemma 1.2. Hence, |a;.z] — y. By O1 and Lemma 1.2, 2z ¢ {z1,z2}. Since
z3a4 ¢ E(G) and a,a4 € E(G), it follows that z # z3. Thus z € Sp.

Then, by the above argument, there is a

A

Now let ¥y = b3 and consider G + a;bs.
vertex z € Sp such that [a1, z] — bs. Without any loss of generality, we may assume that

'z=s;. That is, [a1, s;] —> b3. By Lemma 1.2, s;b3 ¢ E(G). Next let y = c3 and consider
G+ ajc3. Again there is a vertex z; € Sg such that (a1, z1] — ¢3. Since $1b3 € E(G) and
a1bs ¢ F(G), z1 # s;. Thus z; = s5. That is, (a1, s2] —* ¢3 and sz¢3 € F(G). Finally, we
let y = b, and consider G + aiby. Then there is a vertex zz € So such that (a1, z2] — bg.
But 2, # sq since sibz ¢ E(G) and a;bz € E(G). Thus z2 = sz But this is impossible
since spc3 € E(G) and ajcs ¢ E(G). This proves that v(G + aybsy) > 2, contradicting the

3-criticality of G. This completes the proof of our theorem.

The bound on the minimum degree stated in the hypotheses of Theorem 2.5 is best
possible since there is a 4-connected 3-v-critical graph with minirn‘um degr ee 4 a.nd having
odd order, but which is not 3-factor-critical. Such a graph Gy is shown in Figure 2.11
below.
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Figure 2.11

3. A Result About 3-v-criticality in Claw-free Graphs

, A graph is said to be claw-free if it contains no induced subgraph isomorphic to A 3.
o [P] the following result was proved.

Theorem 3.1. If G is a 3-connected claw-free graph of even order, then G is bicritical.
|

If the even graphs under consideration are 3-7y-critical, we can lower the demand on
sonnectivity and still obtain bicriticality. More particularly, we have the following result
oroved in [AP2).

Theorem 3.2. Let G be a 3-y-critical 2-connected claw-free graph of even order.
Then if mindeg G > 3, G is bicritical.

We now prove a similar result involving 3-factor criticality. First, however, we state a
- result of Sumner and Blitch [SB, B] which will be useful in this regard.

Theorem 3.3 The diameter of a 3-v-critical graph is at most 3.

We now present the main result of this section.

Theorem 3.4 Let G be a 3-v-critical 3-connected claw-free graph of odd order. Then
if mindeg G > 4, G is 3-factor-critical.

Proof: Suppose, to the contrary, that G is not 3-factor-critical. Then by Theorem
2.3, there is a subset S of V(G) such that |S| = 3 and wo(G — S) > |S| — 3. But by
Theorem 2.4, G is factor-critical. Thus wo(G —S) < |S|—1. Since |V(G)] is odd, it follows
by parity that w,(G —S) = |S| — 1. Then by Theorem 2.1, |S| < 5. Since G is 3-connected,
3<|S| < 5.

We first suppose that |S| = 4. By Theorem 1.3(i), G — S has no cven components.
Since G is 3-connected, there are at least three vertices of S which are adjacent to some
' vertices of each component of G — S. Because [S| = 4, there must be a vertex of S, say
u, such that u is adjacent to at least one vertex of each component of G —S5. Thusuisa
claw center in G which contradicts the assumption that G is claw-free. Hence |S| # 4. By

a similar argument, |S| # 5. Thus |S| = 3.
Since G is claw-free, it is easy to see that G — S has no even components. Further-

more, since G is 3-connected, S is a minimum cutset in G. Because mindeg G > 4, each
component of G — S has at least three vertices. Let H, and H; be the odd components of

G — S and let S = {u;, u2,us}. :
We now define several sets of vertices in G as follows. For1 <: <3, let

A, = If(Hl) N N (u;),

17

e e —_—




B, = V(Hz) 0 N(w,),
C=V(H) — U, 4,

D=1V{H,) — U’ B,

=1

Claim 1: For 1 < ¢ < 3, A, # 0 # B;. Furthermore. both G[A,] and G[B,] are
mplete.

This claim follows directly from the fact that S is a minimum cutset and ( is claw-free.

Claim 2: Either C =0 or D = (.

. Suppose, to the contrary. that there ts a vertex r € C and a vertex y € . Then the
istance between vertices x and y is at least 4. since r ¢ U?_, A; and y ¢ UJ_| B;. But this
ontradicts Theorem 3.3, thus proving the Claim.

So without loss of generality, let us assuine that C = 0. We now distinguish two cases.
ccording to whether DD is empty or not.

Case 1: Suppose D # .
Choose vertices a; € 4, and b, € 3,. Consider G+a,b;. Since G is 3-n-critical, there
savertex z; € V(G) — {a,. b} such that either [ay. 2] — by or [b1, z1] — a1.

Subcase 1.1: Suppose [a;. 2] — b1, By Lemma 1.2, 215 ¢ E(G). Since D # 0)
and B, is complete, z; € V' (/{>) — B3;. Thus a; dominates V (H) U {u;}.

Subcase 1.1.1: Suppose 21 € (B2 U Ba) — By

Without loss of generality. we may assume that z; € B> — Bi. Then z; dominates
V(Hz) — {b1}. Since uy is not adjacent to any vertex of D, G| D] is complete. To see this.
just suppose that [V (D)] > 1 and suppose that r; and xz are two non-adjacent vertices
in D. Then G[z,;us,7;.22] 1s a claw centered at 2y, Furthermore, since 7161 ¢ E(G).
it follows that zyu; ¢ F(G) by Claim 1. Similarly, usb, ¢ E(G). Figure 3.1 depicts our
. present situation.

Figure 3.1
Since [a;, z3] — by either zjuz € E(G) or ayus € E(G).
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~ Suppose first that z1u3 € E(G). Then there is a vertex v € A, U Az such that wy is
.+ adjacent to v, for otherwise {uy, z;} dominates G, a contradiction.

Now consider G + u12z;. There must be a vertex z; of G — {u;, z;} such that cither
1,2] — 21 or [z1,22] — w;. Tirst suppose that [u1,22] — z;. By Lemma 1.2,
73 ¢ E(G). Since z) dominates (V(Ha) — {b1})U {12, us}, 22 & (V(Hq) — {b1 ) U{ua, us}.
hus zz = by or zp € V(Hy). In either case, {uy, 22} does not dominate G — {2} since
v ¢ BE(G) and D # (. Hence [z1,22] — u;. Since zb; ¢ E(G), bius ¢ E(G) and
(Hy) # 0, it follows that z, = uz. Thus ugh; € E(G). But then Gluz; by, 21, az] is a claw
:ntered at ua for any az € A3. Thus z,u3 ¢ F(G).

Hence a,u3 € E(G).

Now consider G + byup. There must be a vertex 23 of G — {b;, up} such that either
n, 23] — ug or [uz, z3) — by. Suppose first that [by, z3] — u2. Since b2, ¢ E(G) and
(Hy) # 0, 23 € {u1,uz}. But this is hnpossible since zyu; ¢ E(G) and zyu3 € E(G).
“hus {b;, 23} does not dominate G — {uo}.

Hence [u2, z3] — by. By Lemima 1.2, z3b1 ¢ E(G). Since D # 0, z3 € V(H,) — By,
ince B; is complete. But then ws must dominate V(H1)U{u,}. Suppose there is a vertex
e € V(H,) such that w; is not adjacent to x. Then Glup;uy, z, z1] is a claw centered at.
Iz, a contradiction. Hence u; also dominates V{(Hy).

Next we will show that u.ug ¢ F(G). Suppose. to the contrary, that usus € E(G).
By an argument similar to the one immediately above, uz dominates V(/), for otherwise
G contains a claw centered at us. But then wyug € E(G), for otherwise Glus; uy, us, 21]
is a claw centered at us. Consequently, {u;,z;} dominates G, a contradiction. Hence
‘uuz ¢ E(G).

Since [us, 23] — by, zauz € FE(G). Because zyus ¢ E(G), 23 # z1. Now choose
a3 € A;. Since u; dominates V(H,) U {1}, G|V (H1)] is complete by Claim 1. Thus a3
dominates every vertex of V(f1;) U {u;.us,u3}. Consider now G + azz;. There must be
a vertex z5 of G — {as,z;} such that cither [as, z5] —> 21 or [z1,24] — a3. Suppose

' laz, z4]) — z;. By Lemma 1.2, z4z; ¢ E(G). Since z; dominates V(Hz) — {b1}, z3 ¢
| V(H,) — {6}. But D # 0, so z4 = bi. This is impossible since byzz ¢ FE(G) and
' azzz ¢ E(G). Thus {a3, 24} does not dominate G — {z1}. Hence [z1,z4] — a3z. By
' Lemma 1.2, zqaz ¢ E(G). Since V(H;) — {az} # 0 (recall that [V(H)] > 3), 24 €
(V(H1)—{a3})U{u1, us, ua}. But this is impossible since az dominates V{H)U{uy, uz, us}.

This proves that Subcase 1.1.1 cannot. occur.

Subcase 1.1.2: Suppose z; € D. _
Recall first that [a;,z1] — b1, Since z; € D, 21 1s adjacent to cvery vertex of

V(H>) — {b1} and a; dominates V (H,) U {u1, uz, uz}. Consider & 4 ayz;. There must be
a vertex za of G — {ai, 21} such that either (21, 22) — a1 or [ay, 22] — z1. Suppose first
that [z1, 23] — a;. By Lemma 1.2, z2a1 ¢ E(G). Since z; € D and V(Hl) —{a1} # 0,
zy € (V(H) U {u1,uz,us}) — {a1}. But this is impossible since a; dominates V(H;) U

u1, Uz, u3}. Thus {z1, z2} does not dominate G — {a1}. Hence [a1,z2] — z;. By Lemma
1.2, 2321 ¢ E(G). Since 2, is adjacent to every vertex of Hy — {b,} and V(Hq) — {21} # 0,
23 = by or zp € {u1,us, us}. Suppose 22 € {u1,uz,uz}. Then D = {z1} and G[V (i) - D]
" must be complete by Claim 1. But then {a1, bo} dominates G, where b; is any vertex in
B, different from by, since G[V(Hz) — D] is complete and b2z, € E(G), a contradiction.
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ence z2 = by. That is, [a1,b1] — z;. Thus b, is adjacent to every vertex of H, — {by,z1}.
swi= 2,3, if byuy € E(G), then Glb,: by, v, z1) is a claw centered at b; where b; ’B’,-, a
mtradiction. Hence b1u; € E(G) for i = 2,3, Furthermore, since by € By, biu; € E(G),
ri=1,2,3. Iigure 3.2 now depicts our situation.

Figure 3.2

Choose x € VI(Hy)—{u;} and consider ¢+ rby. There must be a vertex zg ot G—{x, b}
uch that either [, 23] — by or bz — 0 Suppose that [by, 23] ——> z. Since b1z, €
S(G). 232 € E(GY. But because Vil = {r} = 00 23 must dominate 5, — {2} as well.
3ut this 1s clearly impossibles Thus {5024} does not dominate G — {z}. So [z, 23] — b,.
By Lemma 1.2, 230, € E(G). Sinee by dominates (ViHz) — {z1}) U {ug, uz,uz}, 23 = 21.
Then r dominates V(A1) w {uy woowg ). Bur o is an arbitrary member of V(H) — {a;}
and also a; is adjacent to all vertices of 10 o {igcus o ug ). Consequently, GV (Hy)]
is complete and every vertex ol ) s adjacent to every vertex of {uy.ua, u3}. Note that

G{uy. ua. uz}) must conrain an cdee. for atherwise any vertex of /4, becomes the center of
aclaw m G. In fact. G{uy s wgd contains exactly one edge; otherwise G is dominated
by 21 and one of the w,. for 1~ 4 Then there exist vertices w; and uj; for some 1. 7,

I <7 < 3 < 3 such that w,oe, < £6¢/) This implies that z; 1s the only vertex of D as
otherwise by is a claw conter in (5.

Without loss of generality. we mav suppose that wyue < F(G). Then wyug ¢ E(G) and
upuy € £(G). Thus no vertex of 34— 10 b ean be adjacent to g, otherwise Gboiug, ugz. 21|
is a claw centercd at b for every vertex by = 35— {61}, Shnilarly. each vertex of Bz — {1}
is not adjacent 1o us. Note that oy dominates V(o By U {ua}.

Now first suppose that /3, = {6} Recall that [ay. 0] — 21, 50 by is adjacent to
every vertex of B, U By U Dy, If any two vertices of By U [ are non-adjacent, we obtain
a claw at by, a contradiction. Hence ({31 U 3> U By] is complete. But then choose any
b # by. by € By U By and see that ba, together with any vertex in i, dominates &, again
a contradiction. So 33 — {b,} = 0. So choose a vertex bz € B3 — {b1}. If G[B2 U B33
is complete, then {u;.b3} dominates G. since by dominates B> U B3 U {uz, z1} and uy
dominates H; U {us}. This contradiction implies that G[B2U B3} is not complete. This, in
turn, implies that there are vertices w € B — B3 and y € By — By such that wy ¢ E(G),
since both G[B;] and G[B3] are complete,

Now consider G + wus. There must be a vertex zy of G — {w, us} such that either
[u3,2:4] — w or [w,z4] —> uz. Suppose first that [uz.zs] — w. DBy Lemma 1.2,
zaw ¢ E(G). Since uj is not adjacent to any vertex of {uy, uz, 21}, itlfollows that z4 €
(B1 N By) — {w}. But this is impossible since {z4,w} C B and G[B;] is complete. Thus
{us. 24} does not dominate G — {w}. Hence [w. zq4] — ug. By Lemma 1.2, zyuz € E(G).
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1¢call that each vertex of V(H1) is adjacent to every vertex of {u1,uz,us}. Thus z, ¢
.H). But then zg4 € {uy, u2} since V(H,) # 0. Since wy ¢ E(G) and yu, ¢ E(G), this
.plies that z4 = u; and then u;y € E(G). Hence Gly; uy, us, z1] is a claw centered at y.
yis contradiction completes the proof of Subcase 1.1.2 and hence also Subcase 1.1.

, Subcase 1.2: So [by, 2;] — a;.
By Lemma 1.2, a1z ¢ E(G). Then z; ¢ A; U {u1}. Since V(H;) — {a1} # 0,
€ Ao U A3 or 23 € {uz,uz}. We distinguish two cases.

Subcase 1.2.1 Suppose z; € A,UA;. Without loss of generality we may assume that
| € A2. Since [by, 21] — a1 and by € V(H,), z; dominates Hy — {a;} and b, dominates
f,. Since a1z, ¢ E(G), u121 ¢ E(G) by Claim 1. Similarly, ajus ¢ E(G).

Now consider G + u;2;. There must be a vertex zz of G — {u;, z;} such that cither
n,22] — wuy or [uy, z2] — z;. Suppose first that [z;,22] — w;. By Lemma 1.2,

‘ouy € E(G). Since z1a; ¢ E(G) and D # 0, z; must be adjacent to a1 and every vertex
f D. But this is impossible since D N N(y;) = @, for 1 < ¢ < 3. Then {z1, 22} does
1ot dominate G — {u;}. Hence [u;,z2] — 2. By Lemma 1.2, 2,2, ¢ E(G). Since
D # 0, it follows that z, € V(H;). This implies that u; dominates V(H;) — {21} and
‘hen G[V(H1) — {z1}] is complete because of Claim 1. Thus G[V(H,)] = K; — ayz;, where
! = |V (H,)|, since z; is adjacent to every vertex of V(H,) — {a1}. (See Figure 3.3.)

Figure 3.3

Now choose a; € V(H,) — {a1,21}. Consider G + azb1. Then there is a vertex z3 of
G — {az, b1} such that either [az, z3) — by or [b1, z3] —» az. Suppose that [as, z3] — b;.
By Lemma 1.2, 23b; ¢ E(G). Then z3 ¢ V{(H>) since b, dominates V(H2). Because
D#9, z3 € V(H,) — {b,}. This contradiction proves that {a2, z3} does not dominate
G — {b;}. Hence it must be the case that [b1, 23] — a2. By Lemma 1.2, z5a; ¢ E(G).
Since G[V (H,)] = K;—a12; and u; dominates H; —{a1}, it follows that z3 ¢ V(Hl)U{t-Ll}.
Since V(H;) — {a2} # 0 and b; € V(Hz), it follows that z3 € {ug,uz}. But z3 # u» since
uza; ¢ E(G) and bya; ¢ E(G). Hence z3 = uz. Then uga; € E(G) and uzz; € E(G).
This contradicts Claim 1 since a,21 € E(G). But then it is false that [b;, 23] — a2. Hence

-‘Subcase 1.2.1 cannot occur.

Subcase 1.2.2: So z; € {uz,us}- .
Without loss of generality, we may assume that 21 = uz. That is, [by,uz] — a;. By

Lemma 1.2, usay ¢ E(G), uz dominates H, — {a1} and b; dominates (B, U B3 U D) — B,.
By Claim 1, H, — {a;} is complete. Choose a3 € V(H,) — {a1}. Then a3 € A, since u,
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.minates H1 — {a1}. Now consider G + a3b,. There must be a vertex 2z, of G — {a3,b1}
b that either [a3, z2] — by or [by, z2) — as.

Subcase 1.2.2.1: Suppose [a3, 22] — b,. By Lemma 1.2, z26; ¢ E(G). Since b,
:minates (B, U B3 U D) — By and D # 0, zo € By and 2020y ¢ E(G). Furthermore,
Idominates Hy; — {b;}. By Claim 1, bju; ¢ E(G) and u 2, ¢ E(G). Recall that
a; § E(G). Since uxby ¢ E(G), wius ¢ E(G); otherwise, Gluy;uz, by, a;] is a claw
ntered at uj.

Now consider G + u;2z2. There must be a vertex z3 of G — {uy, 22} such that either
1,23) — 22 or [22.z3] — wuy. Supposc first that [u;, z3] — z2. By Lemma 1.2,
iz2 ¢ E(G). Since zp dominates Ho — {by} and D # 0, z3 = b;. This is impossible
qnce bius € E(G) and wyuz € F(G). Thus {u,.z23} does not dominate G — {z2}. Hence
;23] — up. By Lemma 1.2. zzu; ¢ E(G). Then zz ¢ Ay U {b1}. Since z3b; ¢
)G), z3by € E(G). Because V(H;) # 0 and by € V(H3), it follows that z3 € {2, u3}.

Cut ueby € E(G), so z3 = uy. By Lemma 1.2, uszuy; ¢ E(G). Since b, dominates D,
[br;u1, u3, w] is a claw centered at by, for any w € D. This contradiction completes the
roof of Subcase 1.2.2.1.

Subcase 1.2.2.2: So suppose that [by.z2] — a3z. By Lemma 1.2, zsa3 ¢ E(G).
[hen, since Hy — {a,} is complete. 20 ¢ (V(Hy) — {a1}) U {ua}. Since V(Hy) — {az} # 0,
3 € {(11, U, ug}.

Supposec z = a;. That is, [b1.a;] — az. Then a; dominates H, — {as} and U
dominates Hy. Recall that wsay € E(G). Therclore, bius € E(G). Since Hy — {a1} is
complete, G[V (H))] = K, — ayaz. where t = [V(I{1)]. Since |[V(H1)| = 3, there is a vertex
y € V(H,) — {a1,as}. Clearly y dominates H. If byuz € E(G) or if yuz € E(G), then
{b1,¥} dominates G, a contradiction. Hence byuz ¢ E(G) and yus ¢ E(G) for every choice
of y € V(H,) — {a1,as}. Since [by.a1] — a3 and biug ¢ E(G), ayuz € E(G). Because of

| Claim 1, azus ¢ E(G). Recall that [by, uz) — a1. Since byus ¢ E(G), usuz € E{G). But
J then Guz;ug, as, by] is a claw, a contradiction. Hence z3 # a;.

Next we suppose that zp = uj. That is, [by,u1] — a3. Then b1 dominates ([3y U
 Byu D) — B,. Since b, € B, and G[[3,] is complete, by, also dominates B;. Thus now b;
dominates H,. Since [by,u;] — aa, it follows that u, dominates H; — {az}. By Claim 1,
Hy — {a3} is complete. Since H; — {a1} is complete, we have GV (H,)] = K; or Ky —aiag
where ¢t = |V (H,)|. By a similar argument. there is a vertex y of H; — {ay, a3z} snuch that
'y dominates H;. Furthermore, y € A; N A2 since (b1, u1) — a3 and [by,us] — ay. If
yuz € E(G) or byuz € E(G), then {y, by } dominates G, a contradiction. Hence yus ¢ E(G)
and b1u3 ¢ E(G) Since [bl}ull —%F a3 and b1U3 é E(G), U1z € E(G). But then
Gluy;ug, y, b1] is a claw centered at u;, a contradiction. Hence 22 % uj.

Thus z; = uz. That is, [b;, uz] — az.Then us dominates H; — {a3}. By an argument
similar to that above, we have G[V(H1)] = K¢ or K; — aja3, where t = |V (H,)| and
there is a vertex y of H, — {a1,a3} such that y dominates H,. Since [b,u3] — a3 and
[b1,u2] — a1, y € A2NAj. Furthermore, &) dominates V(HZ.)—(BgﬂB3). If b; dominates
Hy, then {y,b,} dominates G, a contradiction. Hence there is a vertex w € B, M B3 such
‘that byw ¢ E(G). Because of Claim 1, wyw ¢ E(G), bhiuz ¢ E(G) and biusg ¢ E(G).
Consequently, uus € E(G).
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Now consider G+ wypie. There must he i vertex 25 such that either w1, 23] — w
¢ [, 23] — up. Suppose first thug o] — w. By Lemma 1.2 zgm0 ¢ F{G). Then
s ¢ By u By u {vs uat. Since w0 RN 2y S F{G). Thus 23 € By U {us},
contradiction.  So it must he the cee that [ o] » uy. Since wby € E(G) and
(HY) #0023 € {uecush But this s aleo nnpossible since b us ¢ E(G) and byuz ¢ E(G).

s contradiction completes the proal in Suabease 1222 and hence Case 1 is settled.

Case 2: So supposc now that /020,

Choose ay € Ay and Ay A ood considor 7 by There st he a vertex 2z, €
= {ay. b} osuch that either a0y o -y or Aoy = o0 Withont lass of gencrality,
uppose [ay. =p) — by By Lewnec 120 0ohy 2 Boody sa sy £ (Vi) w {ua,uz}) — By,
ince By 15 complete and Vo0 (i b 200

Subcase 2.1: Suppe~c oy Vol 40 Then o dominades V(). Sincee D = §,
vithout loss of pencralioy wo oy asnnee thar o) s opaoent to ws. Then z; dominates
Hya— {0y} By Claiin 1026 2 P00 wand - 2 P iSee Flgare 3.10)

Ficure 3.4

Consider 65~ . Here eist b oovertex oo F — dagozp ) osuch that either
{01-327—’31“1':11-?; MR
Subcase 2.1.1: Supposc s o By Lemma 120 zeay 4 E(G). But then

1o sl :Il’l f,*: [j((r') and i’_l'_}bl 'g E(G) Hence

& Viilh)y o {g b Partheriore, o, _
22 = uz. Henee uy dotninates (Vo400 Loy b o fug by So st be complete since a;

is adjucent to all vertices of Vo7 Loy b and bhecanse of C b 1
Ity dominates Voffpo then Loy donmnates Groa contradiction. So there exists a

vertox aa € V() — {ay b such that ou s not adjacent to . Henee ws 1s not adjacent to

z1 by clivw freedonn. (See now Franre 3.5

Figure 3.5
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Now choose a3 € V(H)) — {a1, a2} and consider G + byas. There must be a vertex 23

G—-{bl,aa} such that either [bl, 23] — a3z or [as, 23] — by,
# \

Subcase 2.1.1.1: Suppose [by, 23] — a3. By Lemma 1.2, z3 is not adjacent to aj
nd hence z3 € {u1,u2}. But 23 # u,, since uia; ¢ E(G) and bya, ¢ E(G), so z3 = ua.
' Then uz dominates V(H)) — {a3}. If'ujus € E(G), then Gluz;u;,as,21] is a claw
[ entered at uz, a contradiction. Hence ujus ¢ E(G).

Now consider G + ujup. There must be a vertex z4 in G — {u;, w2} such that either
41,24] — ug or [ug,z4] — uy. Suppose first that [uy, z4] — uz. Since ujar; ¢ E(G)
nd u;2; € E(G), it follows that z4 = uz. But this is impossible since uzz; € E(G). Thus
uy, 24} does not dominate G — {uz}. Hence [ug, 23] — u;. By Lemma 1.2, z4u, ¢ E(G).
jince uyuz € E(G), z4 # u3z. Because uzaz ¢ E(G) and uxby ¢ E(G), z4 = uz, a
-ontradiction. This completes the proof in Subcase 2.1.1.1.

Subcase 2.1.1.2: So [a3, 23] — b1. By Lemma 1.2, z3by ¢ E(G) and hence z3 ¢
LBiuU {11.1,1{.3}. But then 23 = ug or z3 € V(Hz) — B.

: Subcase 2.1.1.2.1: Suppose z3 = u2. Then uy dominates V(H:) — {b1}. Hence
| G[V{Hz) — {b,}] is complete by Claim 1. If upa; € E(G), then {u;,u3} dominates G,
i a contradiction. Hence u» is not adjacent to a;. Choose by € V(Hz) — {b1} such that
boby € E(G). So by # z;. Consider G + agbs. There is a vertex z4 in G — {as, b2} such
that either [a3, z4] — by or [be, z4] — aa.

Subcase 2.1.1.2.1.1: Suppose [a3, z4] — bz2. S0 z4 ¢ V(H2) U {uz2} by Lemma 1.2
' So z4 € {u1,u3}. But this is impossible because u; is not adjacent to z; and uj3 is not
. adjacent to 2z;.

|

| .

I Subcase 2.1.1.2.1.2: So [ba,z4] — a3. By Lemma 1.2, z4 ¢ V{(Hp), since Hy is
' complete. So z4 € {u,us,u3z}. But 24 # u; because uy is not adjacent to as. Moreover,

| z4 £ us Or us either, because u is not adjacent to a; and u3 is not adjacent to a;. So we
. have a contradiction.

Subcase 2.1.1.2.2: So suppose z3 € V(Hz) — B1. Then u; is not adjacent to z3 by
Claim 1 and the fact that z3b; ¢ E(G) . Therefore, azuy € E(G), since [as, z3] —> b;.
Recall that u; dominates (V(H;) — {a1}) U {u1,b1}. Now a3 dominates V(H) U {uy, us}.

We claim that B; C Bs. Suppose not. Choose y € By — Ba. Then we have a claw
| G[uy;u3,y,a1], a contradiction. Similarly, we claim that B3z C Bj. Supp'oste not. Choose
F y € Bs — B;. Then G[us;u1,Y,a2] is a claw and again we have a contradiction.

Thus B; = Bj.
" Next we claim that B;NBz = 0. Suppose not. Choose y € BN B2. Then y is adjacent
' to uj,us and uz. Furthermore, ¥ dominates B, U By = V(H2). Thus {y, a3} dominates G,
" a contradiction. Hence B, N B, = 0. Figure 3.6 illustrates the present situation.
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Figure 3.6

Now consider G + biue. There must be a vertex zg in G — {b1,u2} such that either
by, 25] —* uz or [t2,25] — b1. Suppose first that [by, 25] —> us. Then, by Lemma
112, zsuz € E(G) and so z5 ¢ By So z5 € V(H;) U {u;,u3}. But then it is false that
[b1, 2] — u2, since neither by nor 25 is adjacent to 2.

So we may suppose that [us, 25] — b,. Then by Lemma 1.2, z5b; ¢ E(G). Therefore,
7 ¢ B1 U {uy,uz}. Since By N By, = @, y is not adjacent to us, for all y € B;. If
|By] 2 2, then z5 € B2. But then ws dominates V(1) and hence {uz,b,} dominates G, a
contradiction. Hence |3,| = 1. Since H, is connected, there is a vertex by € By such that
hba € E(G). Because B, is complete, vertex be dominates V(H3) U {uz}. Thus {as, b}
dominates G since a3z dominates V(H) U {u;,u3}. This contradiction settles Subcase

2.1.1.2.2 and hence also Subcase 2.1.1.

Subcase 2.1.2: Suppose [a).z2] — 21. Then, by Lemma 1.2, z22; ¢ E(G) and so
¢ (V(H2) — {b1}) U {ua}. Ilence zo € {uy, us, by}

Subcase 2.1.2.1: Suppose 2o = u;. That is, [a1,%;] — 2z1. Hence u; dominates
V(H,)~{z;}. But then by Claim 1, G|V (H3)—{z1}] is complete. Recall that z; dominates
V(Hz) — {1}. Hence GV (H2)] = Ky — byz1, where t = |V (H2)].

If ayup ¢ E(G), then ujus € E(G) since [ay, uy] — z1. But then Gluisar, uz, by] is a
claw centered at u,, a contradiction. Henee ayug € £2(G).

Now if ayuz € E(G), then {a,,y1} dominates G for any choice of yy € V(H)—{b,z1},
a contradiction. Thus ajuz ¢ F(G). But then, because [ay, 1] — 21, wyusz € E(G).
Moreover, because of claw freedom at uy, uz is adjacent to every y € V(H,;) — {z1}. This
implies that {a:, v} dominates G for every choice of y, € V(H2)—{b1, 21}, a contradiction.

Hence z, # u;.

Subcase 2.1.2.2: Supposc zp = ug. That is, lay, us] — =1 _Then, by Lemma 1.2,
uazz; ¢ E(G) and us dominates V(H2) — {z1}. S0 G|V (Hz) — {z1}] is complete because of
Claim 1. Recall that z; dominates V(Hz) — {b1}. Thus G[V(Hz)] = Ky — b1z, where t =
|V(H2)|. If ayus € E(G), then {a1,y2} dominates G for any chou:fz of y, € V(Hz)—{by, 21},
a contradiction. So ayus ¢ E(G). But then uzuz € E(G) siice (@1, us] - 21 By
claw freedom at us, a; is not adjacent to uz. But this contradicts our assumption that

(a1, z1] — by. Hence 22 # us.

Subcase 2.1.2.3: Suppose z2 = b1. That is, [a1,b1] — 2z1. Then b, dominates

V(H2) — {z1}. Since byuz ¢ E(G), ax is adjacent to uz. (Sec now Figure 3.7.)
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Figure 3.7

. Consider G + uyz;. There must be a vertex z3 in G — {uy,z1} such that either
'[81,23] — 2y Or [z1, 23] — u,.

Subcase 2.1.2.3.1: Suppose [u;, 23] — 2z;. Hence by Lemma 1.2, z32; ¢ E(G).
'Thus 23 € (V(H2) — {b1}) U {u2}. But then 23 € {b;,us} UV (H,).

Subcase 2.1.2.3.1.1: Suppose 23 = by; that is, [uy,b1] — 2z;. Then u; dominates
V(Hi)U{uz}. By Claim 1, G[V(H})] is complete. If uyuz € E(G), then {u;, z;} dominates
G, a contradiction. Hence u; is not adjacent to uz. Therefore, b, is adjacent to u;. Now
since there is no claw at u,, up dominates V(H;). Therefore {b;,u,} dominates G, a

contradiction.

Subcase 2.1.2.3.1.2: Next, suppose that z3 = uz. That is, [u;,u3] — z;. By
Lemma 1.2, u3 is not adjacent to z;. But since [a1, z;] — b; and 2; is not adjacent to ug,
a; must be adjacent to us.

We now claim that G[V(H;)] is complete. Suppose not. Say zy ¢ E(G) for some
choice of £ and y in V(H;). Then {z,y} N {a1} = 8. Consider G + zy. There must be
avertex z4 of G ~ {z,y} such that either [z,z4] — y or [y, z4] — z. Without loss of
generality, suppose [z, z4] — y. Clearly, 24 € {u1,u2,u3} U V{(H2). But 24 # u; because
¥; is not adjacent to z;, z4 # ua, since up is not adjacent to by, and z4 # ug, since uj
is not adjacent to 2;. Thus z4 € V{(H;). But then z4 dominates H, and hence {z4,a,}
dominates G, a contradiction. This completes the proof of the claim.

We now have the situation depicted in Figure 3.8.

Figure 3.8

Now since mindeg G > 4, |V(H2)| = 5. Choose z; € V (Hy) — {b1,21}. Consider
G + a,z;. There exists a vertex zs in G — {a1,z1} such that 'either [a.l,zs] — Ty or
[.'81,25] — a;. Suppose [z1, 25] — a1- Then, by Lemma 1.2, z5 is not adjacent to a; and
hence z5 € V (H,) which is impossible since V(H1) — {a1} # ¢. So we may assume that
[a1,2z5] — 1. Therefore z5 € {u1, u2,uz} U (V(Hz) — {z1})- Bu-t 25 # Uy, since u; 1s not
adjacent to 2;, z5 # us, since uz is not adjacent to b1, 25 % us, since us 1s.not adjacent to
21, zs % by, since b is not adjacent to zy, and 2s # z, since 21 18 not adjacent to &;. So
25 € V(H,) — {1,b1, z1}. Let z5 = 1. Then y; dominates V(1) — {z1}. .

Similarly, there is a vertex z¢ such that [@1,2z6] — ¥1 and by' Le'rnm.a 1.2., zg 1s not
adjacent to y;. So z¢ = ; and z; dominates V(H3) — {y1}. Continuing in this manner,
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e can get a sequence of distinct vertices ry. Yi. 2,42, ..., such that r,y, @ F(G). for all
but by € E(G),zizy € E(G), for all i, riry, € E(G), forall j # 1. ryy, € E1GY, for all
#4,4:i7; € E(G), for all j # i, yy, € E(G), for all j # i. by € E(G) and wy s € ELG).
yr all 7, But |V(H2)| is odd and this contradiction settles Case 2.1.2.3.1.2

Subcase 2.1.2.3.1.3: S0 z3 € V(H;). So since [u;, 23] — 2;. vertex «, dominates
v(Ha) — {z1}. Hence G[V(H3)] = Ky — byz;, where t = |\’(Ho)| because of Claim 1 and
recause z; dominates H, — {b;}. If there exists a vertex ve V(H-) — {b 21} such that
1 is adjacent to ugz, then {a,,y} dominates G, a contradiction. So B, C {b,.:;}. But
33 # {b1, 21} because of Claim 1. So Bz = {b,} or B3 = {21}

Choose c; € V(H2)—{b1, 21} and consider G+ayc;. Thereis a vertex 23 € G = {ay. oy}
wch that either [a1, z4] — ¢y or [c1, zq] — a1. Suppose first that [ay, 2] —— . By
.emma 1.2, z4 1s not adjacent to ¢;. Hence zy € V(H2) and therefore zy € (). us. usl.
3ut z4 # wu; since u; is not adjacent to =y, zy # wue since uwg 1% not adjacent to by oand
1y # ug since either w3 is not adjacent to zp or ws is not adjacent to by So we have i
ontradiction.

Hence [c1,24] — ay. By Lemma 1.2, zy iz not adjacent to ay. So =y & V(H) U
{u;,uz}. So z4 = uz and so uz dominates V() — {a,}. But then GV ()] 15 complete
because of Claim 1 and because a; is adjacent to r. for every r € V(/1)). Now reeall that
u; dominates V(H2) — {z1}. Thus uy is not adjacent to vz by claw freedom at .

We now claim that for all y € V{H;) — {b1. 21}, uz is not adjacent to y. Suppose not.
That is, suppose there is a yy € V{([>) — {by. =1} such that yyus € E{G). Then {1y ax}
dominates G for any a> € V(H,} — {«;}. a contradiction. This proves the el

Since uqaby € E(G), B = {z1}. Now if us is adjacent toas for some ax & V(1) - {ey b
then {az,cz} dominates G for am' t'hoiw of cp € V() — {dozh o contradiction. So
uz is adjacent to no vertex in 17( — {a1}. Therefore since mindeg 0 > 40 0y st
be adjacent to both u; and uj. \0\\ 1f By = {Ih}. we get o claw ('LHB- eyt o] Henee

. B; = {z1}. But then {u;.uz} dominates ;. a contradiction. This completes the proof of
[ Subcase 2.1.2.3.1.3, and hence also 2.1.2.3.1.

Subcase 2.1.2.3.2: So suppose (31 23] — uy. Recall that [ay. o] =2 by jay by -
21, uyzy € E(G) and usby ¢ E(G) . Since =) € Vi) and by @ F{G) vertex 2y must
dominate H,uU {b } So 23 = u3z. The refore. £, 15 complete by Claim 1. Note thit gy g8
adjacent to a; and b,. Then us is not adjacent to zp or we would hivve aelaw at g So
the situation is similar to that depicted in Figure 3.8 and an argument analogons to the

onc given there results in a contradiction.
So Subcase 2.1.2.3.2 is settled and lience also Subcase 201

Subcase 2.2: Suppose [ﬂl- R and 2y € {uaoug). Without loss of generality,
» by By Lenuma 120 us 15 not Suljneent

we may suppose that z; = ws. That is. [ay, uz] . e :
to b, and us dominates Hy — {b1}. Hence GV (H2) = {by}] is complete by Clane 1. Now
choose by € V(Hz) — {b} such that bibs € (G, Consider G+ abz. "There must be a

vertex zo € G — {ay, b2} such that either [ay. z2l —= ks or ha 22| — ay

] — by By Lemma 1.2, 22 15 not adjacent to bs.

_ Subcase 2.2.1: Supposc [ap. 22
T})Cll Za Q 1”(H2) | {112}_ So I £ {H;. 113}.




Subcase 2.2.1.1: Suppose z; = wu;. That is, [a1,u1] — bs. So a; dominates
'(H1) — A1. Since ay € A; and A, is complete, a; dominates V(H.). Also u; dominates
!(Hz) — {b2}, since [a1, us] —> b2, So G[V (H,) — {b2}] is complete by Claim 1. But since
;[V(Hz) — {b1}] is also complete and since b1 is adjacent to by, it must be the case that
1; is complete. In fact, By N By = V(H;) — {b;,b2}. Then a, is not adjacent to ug, for
therwise {1, b3} dominates G, for any choice of by € V(IH,) — {b1,b2}, 2 contradiction.
Yow because [a1, u;] — b, vertex u; is adjacent to us.

We now claim that B3 = {b1}. Since B3 # 0 by Claim 1, so suppose there is a
1€ V(Hz)— {b1} such that y is adjacent to uz. Then {a,,y} dominates G, a contradiction,
ind the claim is proved.

Choose b3 € V(H2) — {by,b2}. Then by is adjacent to u, and u, is adjacent to both
43 and ay, so we obtain a claw at u1, a contradiction and hence Subcase 2.2.1.1 is settled.

Subcase 2.2.1.2: So z; = uz. That is, [a;,u3] — ba. Therefore, uz dominates
V(H2) — {b2}; that is, By = V(H3)— {b2}. By an argument similar to that used in Subcase
22.1.1, G[V(H2)] is complete. Now if a; dominates V(H}), then {a,, b3} dominates G, for
any choice of bz € V(H;) — {b1,b2}, a contradiction. Hence a; does not dominate V (H;).
But [a;,u2] — b; and [a;,u3] — b2, so a; dominates V{(H;) — (Ay N A3). Therefore,
there exists a vertex apz € A, M A3 such that as is not adjacent to a;. Now, by Claim 1,
aiuy € E(G), ayuz ¢ E(G) and asu;y € E(G). Thus wius ¢ E(G) because of claw freedom
at Uy.

Consider G + a2b;. There is a vertex z3 in GG — {az, by} such that either [ag, 23] — b,
or [by, 23] — as. Suppose [as, z3] — b). By Lemma 1.2, z3 is not adjacent to b;. Then
z3 ¢ V(H3) U {u;,u3}. But then 23 = up. However, this is impossible since u5 is not
adjacent to a; and a; is not adjacent to a;. Hence [b;, 23] — az. By Lemma 1.2, 23 is
not adjacent to a;. But then z3 ¢ {u2,uz} U A2 U A3. But b; is not adjacent to us, so
z3 must dominate us. Because V(H,) — {a2} # 0, 23 € Az U {uz}, a contradiction. This
settles Subcase 2.2.1.2 and hence Subcase 2.2.1.

Subcase 2.2.2: So [bs, z2] — a;. By Lemma 1.2, z2a, ¢ E(G). Then 2z # u,.
Since V(H,) — {a1} # 0, it follows that 22 € {ua,us} U (V(H1) — {a1}).

Subcase 2.2.2.1: Suppose z2 = uz. That is, [b2, u2] — a;. By Lemma 1.2, u3 is not
adjacent to a;. So uy dominates V(i) — {a1}. Therefore, G[V (H,)— {a1}] is complete by
Claim 1. If uyuz € E(G) or if upuz € E(G), then {u;,uz} dominates G, a contradiction.
So u3 is adjacent to neither u; nor uz. But [a1,uz] — by and u» is not adjacent to us,
so a; is adjacent to uz. Morcover, [by, u2] — a1 and uz is not adjacent to ug, so b3 is
adjacent to uz. So we have the configuration depicted in Figure 3.9.
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Figure 3.9

Now since V(H1) is connected, there is a vertex as € V(I — (a1} such that aa is
djacent to a1. If w1 is adjacent to by, then {b>.as} dominates . a contradiction. [Henee
| is not adjacent to by. Since [by, us] — ay, and bdouy & ELG), us must be adjacent to
.. But then G[ul; ay, Uz, bl] 15 a claw at ;. This completes the proof in Siubease 2221,

Subcase 2.2.2.2: Suppose zp = uz. That is, [by, uz] — a3, By Lemma 120 g0, o
’(G). So wuz dominates Hy — {a,}. DBecausce of Claim 1, V{f11) — {u} is complete,

)
Tt

tecall that [a1,uz] — by and G[V(H:) — {01}] is complete. Sinee ayuy o EUG) un
nust be adjacent to uz. Furthermore, vertex a; dominates V(/71) — .12, Also since [1) is
onnected, there is a vertex a> € V (/1) — {a1} such that a; 1s adjacent to as.

First we claim that w«; is not adjacent to y. for all y € V(i) — {b1}. Suppose not.
Then there is a y; € V(H2) — {by} such that gy, is adjacent to wy. Then gy is adjacent to
n also, by Claim 1. Hence y; dominates V(Hy) U {ug o). Thus {yy.as} dominates G a
contradiction and the claim is proved. Hence B3y = {I}.

Next we claim that wix ¢ E(G), for all € V{H ) — {a;}. For suppose not. Then
shere is a vertex zy € V(H1) — {a;} such that ay is adjacent to wy. Bul then oy is adjacent
to a3 also, by Claim 1. Hence a1y dominates V{H ) U g ws ). But then {o ba} dominates
G, a contradiction and this claim is proved also.

Hence A, = {a1}. But then since mindeg ¢ = L N{upd = {uy by,ous, ust. Thus
ajup € E(G), for otherwise Gluy;ap, ua. ] 1s a claw. S0 ap € 1o Since Wy is complete
and a; dominates V{(H{) — Aa, ap dominates V{I7).

So by claw freedom at wus, bruz € E(G). 5o b dominates VICH)Y U Lasong ). Tlencee

Subcase 2.2.2.3: So suppose finally that 2z, € V(H1) — {u1}.

Recall that [a;, uz] — b;. So a; dominates V(1) — A and wse dowminates V() —
{b1}. Since [ba, 2] — ay, 22 is not adjacent to a; by Lenuna 1.2 and then 2o dominates
V(H;) — {a1}. Because a; dominates V{H) —~ A and by Claim 1, it follows that 2, €
Ay — Ay, Furthermore, a; is not adjacent to ws. Now if s € F(G). then Gluysay, ua, by
Is a claw. So uyus ¢ E(G). Moreover. since [(‘)3,3-_)} — ay and zouy € FE(G), it follows
that b, is adjacent to uy. So our current situation is depicted in Figure 3.10.

Figure 3.10

Next we claim that ws is not adjacent to uz. Suppose, by way of contradiction, that
u, is adjacent to us. Cousider G + zoby. There must be a vertex zz in GG — {z2,b2} such
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hat either [22, 23] — b2 or [b2, z3] — z;. Suppose that [2;, 23] —> by, By Lemma 1.2,
uby ¢ E(G). Then 23 € {w1, u2} UV (H,). Since V' (H>) —{b2} # 0, it follows that z3 = u;.
Thus {22, uz] — b2. But then us dominates H, — {by} and us is adjacent to a;. But then

Gluz; uz, a1, b1] is a claw.
So [b2, z3] — z2. By Lemma 1.2, 2325, ¢ E(G). But then 23 € {u2}U(V(H,) - {a1}).

|| Since V(Hy) — {22} # 0, 23 € {u1,uz,a1}. If 23 = uy, then u; dominates H, — {25}, and
then {u1,u2} dominates G, a contradiction. So z3 # u;. If z3 = ugz, then uz dominates

H — {z2}. So G[V(H) — {z2}] is complete because of Claim 1. Since 2z, dominates

V(H1) — {a1}, G[V(H)1)] = K¢ — a12z2 where t = |V (H4).
Now choose az € V{(H,) — {a;,z2}. Then {a;,b,} dominates G, a contradiction. So

| z3# u3. Hence z3 = ay; that is, [b2,a;] —> 22. So a, dominates H; — {22}-

e

Suppose a; is adjacent to uz. Then uz is not adjacent to b; by claw freedom at uj.
Also by Claim 1, zou3z € E(G). Moreover, claw freedom at us together with the fact that
upz2 € E(G) implies that uz must dominate V(H) — {by}.

Now choose ap € V(H)—{a1, 22} and consider G+ aaby. There must be a vertex z; €

| V(G) — {a2, b2} such that either [a;, z4] — by or [b2, z4] —> a2. Suppose [az, z4] — ba.

By Lemma 1.2, 2402 € E(G). So z4 & {uy, uz2, ug} UV (H2). But V(H,) —{ba} # 0,50 24 €
{ur,u2,u3} U (V(H2) — {b2}), a contradiction. So [bz, z4] —> az. Since V(H;) — {a2} # 0.
24 € {uy, uo, uz}U(V(H,) — {a2}). But zy # u; since u; is not adjacent to z3, 25 # u» since
uz is not adjacent to a,, z4 # usz since uz is not adjacent to z», z4 ¥ a; and zy # 25, since
a; and 22 are not adjacent. So zy € V(F;) — {a2, 22,a1} and z; dominates V{(H;) — {a»}.
Let z4 = ¢3. Then co dominates V' (H;) — {a}. Similarly, there is a vertex zs such that
[bz,zs] — ¢2. By Lemma 1.2, z5 is not adjacent to ca. So z5 = a» and a» dominates
V(H;) — {c2}.

Now choose a3 € V(H,) — {a),22,a2,¢2} and repeating a previous argument, we

produce a sequence of distinct vertices ai, z2, a2, ¢2. a3, ¢3, ... such that a) is not adjacent

to 22, a; is not adjacent to ¢;, for all i > 2, but a, is adjacent to a; for all © # j, ¢; is
adjacent to ¢; for all ¢ # 7, a; is adjacent to ¢; for all # # j and 2z is adjacent a; and ¢;
for all ¢ > 2 and for all § > 1. But this is a contradiction to the fact that [V(H))] is odd.
So a; is not adjacent to ugz. Since [ba, a;] — z2, vertex bz 1s adjacent to ug.

Now choose as € V(H,) — {a1, 22} and consider G +a2b>. There must be a vertex z¢ €
V(G) — {a2, b2} such that either [az, zg] — b2 or [b2, 26] —> a2. Suppose [as, z6] — bo.
Then by Lemma 1.2, zgby ¢ E(G). Then z¢ ¢ {ui, uz, uz} UV (H2). But this is impossible
since zg must dominate V (H>) — {b2}.

So [ba, z6] — a2. Since V(H,) — {a2} # 0, 26 € {u1,u2,us} U (V(H1) — {az}). But
zs # u, since u; is not adjacent to zz, zg # uz Or ug since uz and ug are not adjacent to
a1, zg # a1 or z since a; and z» are not adjacent. But then z¢ € V(H,) — {a1,a2, z2}.
Let zg = co. Note that c, dominates V(H1) — {az2}. So again we argue as above to get a
sequence of distinct vertices ai, z2, @2, C2, a3, €3, - - - contradicting the fact that |V (H1)| is

odd.
So the claim is proved; that is, us is not adjacent to us.
Since [ay, uz] — by and upus ¢ E(G), it follows that a, is adjacent to uz. Because

of Claim 1 and since a; is not adjacent to z2, it follows also that z, is not adjacent to us.
But [zz,bz] —> a;, so by is adjacent to us. But then because of claw freedom at b,, u, is

30



djacent to uz. (Figure 3.11 now represents the present situation. )

IMigure 3.11

Now consider G + byza. There must he a vertex =4 in (G — {b2, 22}, such that either
by, 23] — 22 OF [z2. 23] = Lo, Suppose [z, 23] — b2, By Lemma 1.2, 23 is not adjacent
by S50 23 & {uy uo ugt i VIO Dt V(L) — 1o} #0050 23 € (VL) - {ba by U
{ul,u2,u;5} and we have a contrindiction.

Hence [ba. 23] = 250 By Lemmun 120 2 s nul adjacent to 2o and so o2y F (V(H ) —

e })U{uz}. Furthermore, =5 & Vil heeause V) — {aib # 0 Thus =3 & {uy ug, a0}
f Supposc first that =5 = . S0 lhs 0] == =50 Then g dominates l'( 1) — {z2}. But
then {111. UQ} Tonnnates G o contradiction. So s
Suppose next that zy = gy So [y ] —— 22 and so g donnates 17 —{z:2}. So
GIV(H,) - {z2}] ix complete hecansc of Claim 1. But 2o is adjacent to eve 1_\ vertex of
VIHy) — {ay}. so GV = Ny - apzeswhere t = V() Now chioose o € Vi(ily) -

23 -‘r": iy

{ar. 22} We then hiave {eobo b dominares G contradiction. So 23 # ;.

So z3 = ay. That dso bocay —-+ o0 B theu oy dominates VIIT1) — |z 3} Now
choose ay € V(Ify] — foryo 2o and consider G ashs. There must he a vertex = in
G- {ag.bg} such that cither gy oy —« by or by 2] ——= aa. Suppose [0, 2} — b

Then zy @ V(o) o {uy ww b by Lenmnn 12 and so 2y 2 VY But V() — {ba} &£ 0.
$0 we have a contradiction.

S50 [bp.zy] — as. DBt then oy # uyp since wy s not adjacent to 2o 2y # s since
up 1s 110t adjacent to oy, oy uy since iy 15 not adjiacent to o zao 2y ¥ g sinee ap is not

adjacent to zy. and 2y # 2o since 2o s notadjacent g Farthermore, = & V(f15). So it

follows that zy @ VUITy) — a0 as)h. et op = o and if we argve as before. we obtain a
sequence of distinet vertices ay. 2y 0 0o iy UL such that ayp s not adjacent to zs. a,
) 1y, = ]f(('r'). for all @ # ] "y (1 = ff(G). for all 7 75 j

Is not adjacent to ¢, for all 7 > 2.
cic; € E(G), for all ¢ # ; and 22 s adjacent to a, and o; for all ¢ > 2 and for all 7 > 1

That each time we obtain the vertex o, we can alwavs g(*t the next vertex ¢, in the
sequence. But once again this contradicts the fact that [V )| is odd and the proof of

the theorem is complete,

It should be noted that both the connectivity bound and the minnnum degree bound
stated as hypotheses in the preceding theorcin arve sharp. Indeed. Favaron has proved [F:
Theorems 2.5 and 2.6] that for all & = 0, every A-factor-critical graph of order n > &
is k-(vertex)-connected and for all &£ > 1. every k-factor-critical graph of order > k is
(k + D)-edge-conuected (and hence has minimum degree at least & + 1).
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TWO CONJECTURES ON MATCHING
IN

3-DOMINATION-CRITICAL GRAPHS
by

Nawarat Ananchuen *
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and

Michael D. Plummer 1
Departiment of Mathematics
Vanderbilt University
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cmail: michael.d.plummer@vanderbilt.edu

A set of vertices S dominates a graph G if every vertex of (¢ cither belongs to S or is
adjacent to a vertex of S. The size of any smallest dominating set is called the domination
number of the graph G and is denoted by v(G&). Graph G is said to be k-domination-critical
if y(G) =k, but y(G+¢) = k-1, for any edge e not an edge of G. For & > 3, the structure
of k-domination-critical graphs is far from understood.

This note sets forth two conjectures involving matching in 3-domination-critical graphs.
Suppose G is a graph and & > 1. G is said to be k-factor-critical if for every set of vertices
S with |S| =k, G — S contains a perfect matching. (See [F].)

Conjecture 1: Suppose G is a graph with & > 2 and suppose & — 1 and |[V(G)| have
the same parity. Then if G is k-connected and 3-vy-critical with mindeg G > k + 1, then G
is (k — 1)-factor-critical.

Conjecture 2: Suppose G is a graph with & > 2 and suppose & and [V(G)] have thg
same parity. Then if G is k-connected and 3-y-critical with mindeg G > A + 1 and G is
claw-frce, then GG is k-factor-critical.

Conjecture 1 is known to be true when & = 2 ([AP1; Theorem 2.4]), when £ = 3
([AP1; Theorem 2.1]) and when k = 4 ([AP2; Theorem 2.5]). Conjecture 2 is known to be
true when k = 2 ([AP1; Theorem 3.3)) and when k = 3 ([AP2; Theorem 3.4]). However,
the proofs of Conjecture 1 when & = 4 and Conjecture 2 when & = 3 are quite long and
difficult. This leads us to think that settling either of these conjectures for any further
values of k& will very difficult, if not impossible, using the methods we employ for the small
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' values of k& mentioned above. In our opinion, some new methods must be discovered and

'Iutilized.
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