

รายงานวิจัยฉบับสมบูรณ์

โครงการ กราฟ 3 – γ – critical กับการจับคู่

โดย

รองศาสตราจารย์ ดร. นวรัตน์ อนันต์ชื่น และคณะ

31 กรกฎาคม 2545

รายงานวิจัยฉบับสมบูรณ์

โครงการ กราฟ 3-γ-critical กับการจับคู่

รศ.ดร.นวรัตน์ อนันด์ชื่น ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร นครปฐม

Prof. Dr. M.D.Plummer

และ

Department of Mathematics, Vanderbilt University

Nashville, Tennessee, USA

สนับสนุนโดยลำนักงานกองทุนสนับสนุนการวิจัย 🧓 👢 (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

ทำบัญงานถองทุบสุทัยสนุนการใช้ย (สถา.) ชั้น (จับการ เอส เก็บการ แรก) เลขที่ 979/17-21 กับบนการโกษัท และยสายสาย - ...ขณาใก สรุงการ (1630) - ...298-0455 โละสาร (298-6476 ประชาชาชาร (สมุร) (พระพาศ ครุษ) โรงพระที่ " และโพลซีลสาสเลส ก็พาสม

กิตติกรรมประกาศ

งานวิจัยฉบับนี้สำเร็จลุล่วงลงได้ด้วยดีด้วยทุนอุดหนุนการวิจัยจากสำนักงานกองทุนสนับสนุนการวิจัย ภายใต้โครงการทุนองค์ความรู้ใหม่ที่เป็นพื้นฐานต่อการพัฒนา (1 สิงหาคม 2543 – 31 กรกฎาคม 2545)

บทคัดย่อ

รหัสโครงการ

BRG 43-8-0016

ชื่อโครงการ

กราฟ 3-γ-critical กับการจับคู่

ชื่อนักวิจัย รศ.ดร.นวรัดน์ อนันด์ชื่น

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์

มหาวิทยาลัยศิลปากร นครปฐม

nawarat@su.ac.th

Prof. Dr. M.D.Plummer

Department of Mathematics, Vanderbilt University

Nashville, Tennessee, USA

michaeld.plummera.vanderbilt.edu

ระยะเวลาโครงการ

1 สิงหาคม 2543 – 31 กรกฎาคม 2545

คำหลัก

domination, critical edge, matching, k-factor-critical, claw-free

G เป็นกราฟ k- γ -critical เมื่อขนาดที่เล็กที่สุดของเชตของจุดที่เป็นเซต dominating ของ G เท่ากับ k แต่ G+e มีเชดของจุดที่เป็นเซต dominating เท่ากับ k – 1 สำหรับเส้น e ใด ๆ ที่ไม่อยู่ใน E(G) โครงสร้างของกราฟ k- γ -critical เมื่อ $\gamma \geq 3$ ยังไม่เป็นที่ทราบแน่ชัดว่ามีโครงสร้างอย่างใด

กราฟ G เป็นกราฟ k-factor-critical เมื่อ G – S มีการจับคู่สมบูรณ์ เมื่อ S เป็นเซดของจุดใด ๆ ใน G ที่มีขนาดเท่ากับ k

ในงานวิจัยฉบับนี้เราได้ศึกษาความสัมพันธ์ของกราฟ k-γ-critical กับกราฟ (k+1)-γ-critical เมื่อ k = 1 และ 2 นอกจากนั้น เราได้ศึกษา toughness ของกราฟ 3-γ-critical และคุณสมบัติของการมี การจับคู่ในกราฟเหล่านี้ เราได้ให้เงื่อนไขเพียงพอสำหรับกราฟ 3-γ-critical ที่จะเป็นกราฟ k-factor-critical เมื่อ k = 1, 2 และ 3 ยิ่งไปกว่านั้นเรายังได้เสนอข้อความคาดการณ์ที่เกี่ยวกับการจับคู่ของ กราฟ 3-γ-critical ไว้ด้วย

Abstract

Project Code

BRG 43-8-0016

Project Title

On 3-Y-critical graphs with a matching

Investigator

Asso.Prof.Dr.Nawarat Ananchuen

Department of Mathematics, Faculty of science

Silpakorn University, Nakorn Pathom

nawarat@su.ac.th

Prof. Dr. M.D.Plummer

Department of Mathematics, Vanderbilt University

Nashville, Tennessee, USA

michael.d.plummer(a vanderbilt.edu

Project Period

August 1, 2000 – July 31, 2002

Keywords

domination, critical edge, matching, k-factor-critical, claw-free

A graph G is said to be k- γ -critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k – 1 vertices. The structure of k- γ -critical graphs remains far from completely understood when $\gamma \geq$ 3.

A graph G is k-factor-critical if G-S has a perfect matching for every set of k vertices in G. In this paper, we establish the relationship of k- γ -critical and (k+1)- γ -critical graphs for k = 1 and 2. We also explore the toughness of 3- γ -critical graphs and some of their matching properties. In particular, we obtain some properties which are sufficient for a 3- γ -critical graph to be k-factor-critical for k = 1, 2 and 3. Further, two conjectures involving matching in 3- γ -critical graphs are set forth.

Contents

1.	Introduction	1
2.	Preliminaries	1
3.	Some basic results	3
4.	Some results on a vertex cutset and its consequence	5
5.	3-γ-criticality and k-factor-criticality	31
6.	Results about 3-γ-criticality in claw-free graphs	34
7.	Conjecture	58
8.	References	59
9.	Output	61
10.	Appendix	61

Research paper 1: Some results related to the toughness of 3-domination-critical graphs, Discrete Mathematics, 2002 (to appear).

Research paper 2: Matching properties in domination critical graphs, (submitted).

Research paper 3: 3-factor-criticality in domination critical graphs, (submitted).

Research paper 4: Two conjectures on matching in 3-domination-critical graphs, (submitted).

1. Introduction

Let G denote a finite undirected graph with vertex set V(G) and edge set E(G). A near-factor matching in a graph G is one which covers all but exactly one of the vertices of G. A graph G is factor-critical if $G - \{v\}$ has a perfect matching for every vertex $v \in V(G)$ and is bicritical if $G - \{u, v\}$ has a perfect matching for every pair of distinct vertices $u, v \in V(G)$. More generally, a graph G is said to be k-factor-critical if G - S has a perfect matching for every set of k vertices in G.

A set $S \subseteq V(G)$ is a (vertex) dominating set for G if every vertex of G either belongs to S or is adjacent to a vertex of S. The minimum cardinality of a vertex dominating set in graph G is called the (vertex) domination number (or simply the domination number) of G and is denoted by $\gamma(G)$. Graph G is said to be k- γ -critical if $\gamma(G) = k$, but $\gamma(G+e) = k-1$ for each edge $e \notin E(G)$. The structure of k- γ -critical graphs remains far from completely understood when $\gamma \geq 3$. Sumner and Blitch [SB] were the first to study 3- γ -critical graphs. For summaries of most known results, see [HHS;Chapter 16] as well as [FTWZ].

Suppose G is k- γ -critical and u and v are non-adjacent vertices of G. Then there exists a set $S \subseteq V(G)$ of order k-2 such that $S \cup \{u\}$ dominates $G - \{v\}$ or $S \cup \{v\}$ dominates $G - \{u\}$. We will follow previously accepted notation and write $[u, S] \longrightarrow v$ in the first case and $[v, S] \longrightarrow u$ in the second case. For the case k = 3, clearly |S| = 1. If $S = \{w\}$ and $[u, S] \longrightarrow v$, then we will write $[u, w] \longrightarrow v$ instead of $[u, \{w\}] \longrightarrow v$.

Finally, we refer the reader to [LP] for further notation, terminology and background for matching theory. In particular, we shall denote by N(v) the neighborhood of vertex v, that is, the set of all vertices adjacent to v. In addition, we denote by $\omega(G)$ the number of components of the graph G and by $\omega_o(G)$, the number of components of odd order in G.

2. Preliminaries

In this section we state a number of results which we make use of in our work. Our first result is a characterization of k- γ -critical graphs for k = 1 and 2 proved by Sumner and Blitch [SB].

Theorem 2.1. The only 1- γ -critical graphs are K_n and a graph G is 2- γ -critical if and only if it is the complement of a union of stars; i.e., $\bar{G} = \bigcup_{i=1}^t K_i$, n_i . for $t \geq 1$.

Sumner and Blitch [SB] also established the following result which can be viewed as a toughness result for $3-\gamma$ -critical graphs.

Theorem 2.2. Let G be a connected 3- γ -critical graph. Then if S is a vertex cutset in G, G-S has at most |S|+1 components.

This result was recently extended by Flandrin et al. [FTWZ] as follows.

Theorem 2.3. Let G be a connected 3- γ -critical graph. If S is a vertex cutset in G such that $\omega(G-S) = |S| + 1$, then each vertex $v \in S$ is a cutvertex of G.

In addition to Theorem 2.2, Sumner and Blitch [SB] also proved the following lemma for the case $n \geq 4$. The cases n = 2 and 3 were proved in [FTWZ; Lemma 1]. This lemma will be used repeatedly throughout our paper.

Lemma 2.4. Let G be a connected 3- γ -critical graph and let S be an independent set of $n \geq 2$ vertices in V(G).

- (i) Then the vertices of S can be ordered a_1, a_2, \ldots, a_n in such a way that there exists a sequence of distinct vertices $x_1, x_2, \ldots, x_{n-1}$ so that $[a_i, x_i] \longrightarrow a_{i+1}$ for $i = 1, 2, \ldots, n-1$.
- (ii) If, in addition, $n \ge 4$, then the x_i 's can be chosen so that $x_1 x_2 \cdots x_{n-1}$ is a path and $S \cap \{x_1, \dots, x_{n-1}\} = \emptyset$.

Two additional results from [SB] which will be of help to us are the next two lemmas.

Lemma 2.5. If G is a connected 3- γ -critical graph, then no two endvertices of G have a common neighbor.

Lemma 2.6. The diameter of any connected 3- γ -critical graph is at most three.

Blitch [B] proved the next result.

Lemma 2.7. If G is a connected 3- γ -critical graph and v is a cutvertex of G, then v is adjacent to an endvertex of G.

The following two results of Wojcicka [W] will also prove useful to us.

Theorem 2.8. If G is a connected 3- γ -critical graph with more than six vertices, then G has a Hamiltonian path.

To state the next theorem, we make use of the concept of a full 3- γ -critical graph. For any $p \geq 6$, let a+b+c=p-3 be any partition of p-3. Let H be a complete graph on p-3 vertices and let $A \cup B \cup C = V(H)$ be a partition of the vertices of H with |A| = a, |B| = b and |C| = c. Form a new graph G by adding to H three new vertices u, v and w with N(u) = A, N(v) = B and N(w) = C. Then G is clearly 3- γ -critical and is said to be full.

Theorem 2.9. Let G be a connected 3- γ -critical graph having two endvertices. Then G is full.

The next result which will prove useful to us was conjectured by Wojcicka [W] and in a series of three papers ([FTZ, FTWZ, TWZ]) proved by Favaron, Flandrin, Tian, Wei and Zhang. (In her survey [My], however, Mynhardt refers to this result as "Wojcicka's Theorem". See also [Mo].)

Theorem 2.10. Every connected 3- γ -critical graph having minimum degree at least 2 has a Hamiltonian cycle.

We conclude this section by stating a result proved by Favaron[F].

Theorem 2.11 A graph G is k-factor-critical if and only if $\omega_o(G-S) \leq |S|-k$, for every $S \subseteq V(G)$ and $|S| \geq k$.

3. Some basic results

We begin this section by stating a basic property of $k-\gamma$ -critical graphs.

Theorem 3.1. In k- γ -critical graphs, every vertex lies in some minimum dominating set.

Proof: Suppose to the contrary that there is a vertex $x \in V(G)$ such that $x \notin S$ for every minimum dominating set S.

Choose a minimum dominating set S_0 . Then there exists a vertex $y \in S_0$ such that $yx \in E(G)$. Since $S_0 - \{y\}$ is not a dominating set, there exists a vertex $z \in V(G) - (S_0 \cup \{x\})$ such that $yz \in E(G)$ and $xz \notin E(G)$ as otherwise $(S_0 \cup \{x\}) - \{y\}$ becomes a dominating set of G, a contradiction.

Now consider G+xz. Since G is k- γ -critical graph, there exists a set W of V(G) such that |W|=k-2 and $[x,W]\longrightarrow z$ or $[z,W]\longrightarrow x$. In either case, $W\cup\{x,z\}$ becomes a dominating set of order k, contradicting a choice of x. This completes the proof of our theorem.

Our next two results establish the relationship of $k-\gamma$ -critical and $(k+1)-\gamma$ -critical graphs for k=1 and 2.

Theorem 3.2. Every 1- γ -critical graph is an induced subgraph of a 2- γ -critical graph.

Proof: Let H be an 1- γ -critical graph of order n. By Theorem 2.1, H is K_n . Let G be a graph obtained by joining two copies of K_n except a perfect matching. Figure 3.1 displays the graph G which the vertex set of K_n 's are $\{x_1, x_2, \ldots, x_n\}$ and $\{y_1, y_2, \ldots, y_n\}$, respectively. Since $x_i y_i \notin E(G)$ for $i = 1, 2, \ldots, n, \gamma(G) \geq 2$. On the other hand, it is clear that $\{x_1, x_2\}$ dominates G.

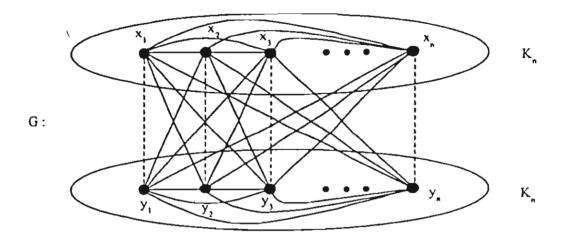


Figure 3.1.

Thus $\gamma(G) = 2$. Notice that only missing edges in G are $x_i y_i$ for i = 1, 2, ..., n. Clearly, $\{x_i\}$ dominates $G + x_i y_i$. Thus $\gamma(G + x_i y_i) = 1$. This proves that G is critical and completes the proof of our theorem.

Theorem 3.3. Every 2- γ -critical graph is an induced subgraph of a 3- γ -critical graph.

Proof: Let H be a 2- γ -critical graph of order n. Put $G_1 = H \vee K_n \vee K_t \vee K_1$ for a positive integer $t \geq 1$.

Let $V(H) = \{x_1, x_2, ..., x_n\}$ and $V(K_n) = \{y_1, y_2, ..., y_n\}$. Put $F = \{x_i y_i : 1 \le i \le n\}$ and $G = G_1 - F$. Figure 3.2 displays our graph G. Throughout the paper we adopt the convention that a "+" in our diagram denotes the join between the corresponding graphs.

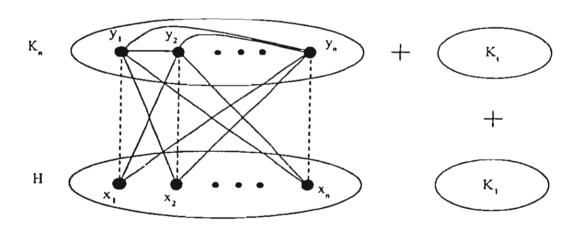


Figure 3.2.

We will first show that $\gamma(G) = 3$. Let c be a vertex of K_t . Then $\{c, y_1, y_2\}$ dominates G. Suppose G is dominated by a pair of vertices, u and v say. Clearly, u and v are

not both in H or K_n ; as otherwise, $\{u,v\}$ cannot dominate K_1 . Thus one of $\{u,v\}$, u say must be a vertex of $K_t \cup K_1$. Hence v must be a vertex of $H \cup K_n$. Since u is not adjacent to any vertex of H, if v was in V(H), then v would have to dominate H. This is impossible because $\gamma(H) = 2$. Thus v belongs to $V(K_n)$. Without any loss of generality, we may assume that $v = y_1$. Clearly $\{u, y_1\}$ does not dominate G since $ux_1 \notin E(G)$ and $x_1y_1 \notin E(G)$. This proves that $\gamma(G) = 3$.

Next, we will show that G is critical. Let w and z be a pair of non-adjacent vertices of G. Consider G + wz. We have only four possible cases to consider:

Case 1: $w \in V(H)$ and $z \in V(H)$.

Since H is 2- γ -critical, $\gamma(H + wz) = 1$. Thus H + wz is dominated by w or z, w say. Then $\{w, w_1\}$ dominates G + wz for any choice of $w_1 \in V(K_t)$.

Case 2: $w \in V(H)$ and $z \in V(K_n)$.

Suppose $w = x_j$ for some $j, 1 \le j \le n$. Then, clearly, $z = y_j$. Hence $\{y_j, w_1\}$ dominates G + wz for any choice of $w_1 \in V(K_t)$.

Case 3: $w \in V(H)$ and $z \in V(K_t) \cup V(K_1)$.

Suppose $w = x_j$ for some $j, 1 \le j \le n$. Since z is adjacent. in G+wz, to every vertex of $(V(K_t) \cup V(K_1) \cup \{x_j\}) - \{z\}$ and y_j is adjacent to every vertex of $(K_n - \{y_j\}) \cup (H - \{x_j\})$. $\{z, y_j\}$ dominates G + wz.

Case 4: $w \in V(K_n)$ and $z \in V(K_1)$.

Suppose $w = y_j$ for some j, $1 \le j \le n$. Then $\{y_j, x_j\}$ dominates G + wz since y_j is adjacent to every vertex of $G - \{x_j\}$ in G + wz.

This proves that G is critical and completes the proof of our theorem.

Finally, in what is to follow, we shall also make frequent use of the following easy result.

Lemma 3.4. Let G be a 3- γ -critical graph and let u and v be non-adjacent vertices of G. If x is a vertex of G such that $[u, x] \longrightarrow v$, then $xv \notin E(G)$ and if x is a vertex of G with $[v, x] \longrightarrow u$ then $xu \notin E(G)$.

Proof: Suppose $[u, x] \longrightarrow v$. If $xv \in E(G)$, then u and x dominate G, contradicting the assumption that $\gamma(G) = 3$. Similarly, if $[v, x] \longrightarrow u$, then $xu \notin E(G)$.

4. Some results on a vertex cutset and its consequence

Our first result in this section significantly sharpens Theorem 2.2. It can also be viewed as a toughness result for $3 - \gamma$ -critical graphs.

Theorem 4.1. Let G be a connected $3-\gamma$ -critical graph and let S be a vertex cutset in G. Then

(i) if $|S| \ge 4$, G - S has at most |S| - 1 components,

- (ii) if |S| = 3, then G S contains at most |S| components, and if G S has exactly three components, then each component is complete and at least one is a singleton.
- (iii) if |S| = 2, then G S has at most three components and if G S has exactly three components, then G must have the structure shown below in Figure 4.1.
- (iv) if |S| = 1, then G S has two components, exactly one of which is a singleton. Furthermore, G has exactly one or two cutvertices and if it has two, G is isomorphic to a graph of the type shown in Figure 4.1.

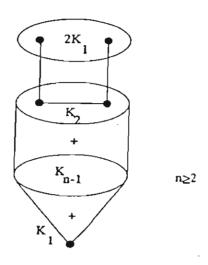


Figure 4.1.

Proof: To prove part (i), suppose that S is a vertex cutset in G and $|S| \geq 4$. Suppose, to the contrary, that G-S has at least $|S| \geq 4$ components. For $i=1,2,3,\ldots k$, let H_i be a component of G-S. Choose a vertex $w_i \in V(H_i), 1 \leq i \leq k$. Clearly $W=\{w_1,w_2,\ldots,w_k\}$ is an independent set. By Lemma 2.4, the vertices of W may be ordered as a_1,a_2,\ldots,a_k in such a way that there exists a path $x_1x_2\ldots x_{k-1}$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$, for $i=1,2,\ldots,k-1$. By Lemma 3.4, $x_ia_{i+1} \notin E(G)$ for each $i=1,2,\ldots,k-1$. Clearly $x_i \in S$ for $i=1,2,\ldots,k-1$. By Theorem 2.2, $k-1 \leq |S| \leq k$. Without loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. In what is to follow, we make frequent use of the following two observations:

(O1). For $i = 1, 2, ..., k - 1, x_i$ is adjacent to every vertex of

$$\left[(\cup_{j=1}^k V(H_j)) - (V(H_i) \cup \{a_{i+1}\}) \right]$$

since $[a_i, x_i] \longrightarrow a_{i+1}$.

(O2). By O1, a_1 is adjacent to every vertex of $\{x_2, x_3, \ldots, x_{k-1}\}$ and for $i = 2, \ldots, k$, a_i is adjacent to every vertex of $\{x_1, x_2, \ldots, x_{i-2}, x_{i+1}, x_{i+2}, \ldots, x_{k-1}\}$. Figure 4.2 depicts this situation.

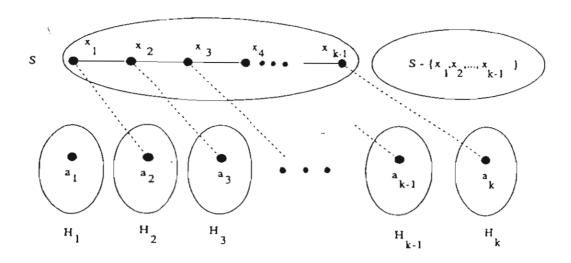


Figure 4.2.

Now consider $G + a_1a_3$. There must exist a vertex $y \in G - \{a_1, a_3\}$ such that either $[a_3, y] \longrightarrow a_1$ or $[a_1, y] \longrightarrow a_3$. Clearly in either case $y \in S$. We first suppose that |S| = k - 1. If $[a_3, y] \longrightarrow a_1$, then $y = x_2$ since $x_ia_{i+1} \notin E(G)$, for $i = 1, \ldots, k - 1$. But this contradicts Lemma 3.4 since $a_1x_2 \in E(G)$. Hence $[a_1, y] \longrightarrow a_3$. By the same argument, $y = x_2$. Now x_2 is adjacent to every vertex of $\bigcup_{i=1}^k V(H_i) - \{a_3\}$. By this fact and observation O2, vertices x_2 and a_3 together dominate G, a contradiction. Therefore |S| = k. In this case there exists exactly one vertex in $S - \{x_1, \ldots, x_{k-1}\}$ and we shall denote it by x_k .

Case 1: Suppose $[a_3, y] \longrightarrow a_1$. Since $x_i a_{i+1} \notin E(G)$ for $i = 1, \ldots, k-1$, it follows that $y = x_2$ or $y = x_k$. By O2 and Lemma 3.4, $y \neq x_2$. Thus $y = x_k$. That is, $[a_3, x_k] \longrightarrow a_1$. Consequently, $x_k a_1 \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$, $x_1 x_k \in E(G)$. Now consider $G + a_2 a_4$. By arguments similar to those above and using the fact that $x_i a_{i+1} \notin E(G)$, for $i = 1, 2, \ldots, k-1$, there are only six possible cases which must be considered.

Subcase 1.1: $[x_1, a_2] \longrightarrow a_4$, Subcase 1.2: $[x_3, a_2] \longrightarrow a_4$, Subcase 1.3: $[x_k, a_2] \longrightarrow a_4$, Subcase 1.4: $[x_1, a_4] \longrightarrow a_2$, Subcase 1.5: $[x_3, a_4] \longrightarrow a_2$, Subcase 1.6: $[x_k, a_4] \longrightarrow a_2$.

Since by O1, $x_1a_4 \in E(G)$ and $x_3a_2 \in E(G)$, by Lemma 3.4, Subcases 1.1 and 1.5 are impossible. Recall also that $x_ka_1 \notin E(G)$, so Subcases 1.3 and 1.6 are also impossible. Suppose next that $[x_3, a_2] \longrightarrow a_4$. This implies that x_3 is adjacent to every vertex of H_3 . Thus by O1, H_4 is adjacent to every vertex of H_4 . Since H_4 is algorithm of H_4 is also impossible, Subcase 1.2 is impossible. By similar arguments, Subcase 1.4 is also impossible; otherwise

 x_1 and a_2 dominate G, a contradiction. Thus $\gamma(G + a_2a_4) > 2$, again a contradiction. Hence $[a_3, y] \longrightarrow a_1$ is false for all $y \in S$.

Case 2: Suppose $[a_1, y] \longrightarrow a_3$. Since $x_i a_{i+1} \notin E(G)$ for i = 1, ..., k-1, it follows that $y = x_2$ or $y = x_k$. We treat each of these two cases separately.

Case 2.1: Suppose $y=x_2$. That is, $[a_1,x_2] \longrightarrow a_3$. This implies that x_2 is adjacent to every vertex of H_2 . Therefore by O1, vertex x_2 is adjacent to every vertex of $\bigcup_{i=1}^k V(H_i) - \{a_3\}$. If $a_3x_k \in E(G)$, then by O2, vertex a_3 is adjacent to every vertex of $S - \{x_2, x_3\}$. Thus x_2 and a_3 dominate G, a contradiction. Hence $a_3x_k \notin E(G)$. Since $[a_3, x_3] \longrightarrow a_4$, and $a_3x_k \notin E(G)$, $x_3x_k \in E(G)$. Now consider the graph $G + a_2a_4$. By the fact that $x_ia_{i+1} \notin E(G)$ for $i=1,\ldots,k-1$, and $\gamma(G+a_2a_4)=2$, we have only six possible subcases to consider:

```
Subcase 2.1.1: [x_1, a_2] \longrightarrow a_4.

Subcase 2.1.2: [x_3, a_2] \longrightarrow a_4.

Subcase 2.1.3: [x_k, a_2] \longrightarrow a_4.

Subcase 2.1.4: [x_1, a_4] \longrightarrow a_2.

Subcase 2.1.5: [x_3, a_4] \longrightarrow a_2.

Subcase 2.1.6: [x_k, a_4] \longrightarrow a_2.
```

Since $x_1a_4 \in E(G)$ and $x_3a_2 \in E(G)$ by Lemma 3.4, Subcase 2.1.1 and Subcase 2.1.5 are impossible. Recall that $a_3x_k \notin E(G)$, so that Subcase 2.1.3 and Subcase 2.1.6 are also impossible. Now suppose that $[x_3, a_2] \longrightarrow a_4$. This implies that x_3 is adjacent to every vertex of $\bigcup_{i=1}^k V(H_i) - \{a_4\}$. Now recall that $x_3x_k \in E(G)$. By this fact and O2, x_3 and a_4 dominate G, a contradiction. Thus Subcase 2.1.2 is impossible. Finally, consider Subcase 2.1.4. Suppose $[x_1, a_4] \longrightarrow a_2$. Then x_1 is adjacent to every vertex of H_1 . Thus by O1, x_1 is adjacent to every vertex of $\bigcup_{i=1}^k V(H_i) - \{a_2\}$. If $x_ka_2 \in E(G)$, then by O2, x_1 and a_2 dominate G, a contradiction. Hence $a_2x_k \notin E(G)$. Since $[a_2, x_2] \longrightarrow a_3$, $x_2x_k \in E(G)$. By the assumption of Case 2.1 that $[a_1, x_2] \longrightarrow a_3$ and O1, x_2 is adjacent to every vertex of $\bigcup_{i=1}^k V(H_i) - \{a_3\}$. By O2 and the fact that $x_2x_k \in E(G)$, x_2 and a_3 dominate G. This contradiction proves that Subcase 2.1.4 is impossible. Hence $\gamma(G+a_2a_4) > 2$, a contradiction. Thus Case 2.1 cannot happen.

Case 2.2: $y = x_k$. That is, $[a_1, x_k] \longrightarrow a_3$. By Lemma 3.4, $x_k a_3 \notin E(G)$. Since $[a_3, x_3] \longrightarrow a_4$, $x_3 x_k \in E(G)$. Now consider $G + a_2 a_4$. Since $x_i a_{i+1} \notin E(G)$ for $i = 1, \ldots, k-1$, and $\gamma(G + a_2 a_4) = 2$, we have only six possible cases to consider.

```
Subcase 2.2.1: [x_1, a_2] \longrightarrow a_4,
Subcase 2.2.2: [x_3, a_2] \longrightarrow a_4,
Subcase 2.2.3: [x_k, a_2] \longrightarrow a_4,
Subcase 2.2.4: [x_1, a_4] \longrightarrow a_2,
Subcase 2.2.5: [x_3, a_4] \longrightarrow a_2,
Subcase 2.2.6: [x_k, a_4] \longrightarrow a_2.
```

By arguments similar to those used in the treatment of Case 2.1 and the fact that $x_k a_3 \notin E(G)$ while $x_3 x_k \in E(G)$, Subcases 2.2.1, 2.2.2, 2.2.3, 2.2.5 and 2.2.6 are all

impossible. It remains to consider Subcase 2.2.4. So suppose that $[x_1, a_4] \longrightarrow a_2$. This implies that x_1 is adjacent to every vertex of H_1 . Thus by O1, x_1 is adjacent to every vertex of $\bigcup_{i=1}^k V(H_i) - \{a_2\}$. Since $[x_k, a_1] \longrightarrow a_3$, $x_k a_2 \in E(G)$. By O2, x_1 and a_2 dominate G, a contradiction. Hence $\gamma(G + a_2 a_4) > 2$. This contradicts the fact that G is 3- γ -critical. Thus Case 2.2 is also impossible. It therefore follows that $\gamma(G + a_1 a_3) > 2$, again a contradiction. Hence G - S has at most |S| - 1 components and (i) is proved.

We turn now to part (ii). Suppose S is a vertex cutset in G and |S|=3. We want to show that G-S contains at most |S| components. Suppose, to the contrary, that G-S contains at least |S|+1=4 components. Then by Theorem 2.2, G-S contains exactly four components. Let H_i denote these four components, $i=1,\ldots,4$. Choose a vertex $w_i \in V(H_i), 1 \le i \le 4$. Clearly $W=\{w_1,w_2,w_3,w_4\}$ is an independent set. By Lemma 2.4, the vertices in W may be ordered as a_1,a_2,a_3,a_4 in such a way that there exists a path $x_1x_2x_3$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$, for i=1,2,3. By Lemma 3.4, $x_1a_{i+1} \notin E(G)$, for each i=1,2,3. Clearly $x_i \in S$ for i=1,2,3. Since $[a_i,x_i] \longrightarrow a_{i+1}$ and $x_ia_{i+1} \notin E(G)$, x_i is adjacent to every vertex of $\bigcup_{j=1}^4 V(H_j) - (V(H_i) \bigcup \{a_{i+1}\})$, for i=1,2,3. So $x_i \neq x_j$ for all $1 \le i \ne j \le 3$. Thus $\{x_1,x_2,x_3\} = S$.

By applying an argument similar to that used in part (i) when |S| = k - 1, we can prove that $\gamma(G + a_1a_3) > 2$, a contradiction. So G - S contains at most three components as claimed.

Now suppose G-S contains exactly three components. We now show that in this instance, each of the three components must be complete. Suppose to the contrary that there exists a component C of G-S such that $|V(C)| \geq 2$ and C is not complete. Then there exist two non-adjacent vertices w_1 and w_2 in C. Let C_1 and C_2 be the other two components of G-S. Choose $w_3 \in V(C_1)$ and $w_4 \in V(C_2)$. Then $W=\{w_1,w_2,w_3,w_4\}$ is an independent set. So by Lemma 2.4 the vertices of W may be ordered a_1,a_2,a_3,a_4 in such a way that there exists a path $x_1x_2x_3$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$ for i=1,2,3. Clearly $x_i \neq x_j$ for $1 \leq i \neq j \leq 3$ and by Lemma 3.4, $x_ia_{i+1} \notin E(G)$.

Claim 1: $\{x_1, x_2, x_3\} \neq S$.

Suppose to the contrary that $\{x_1, x_2, x_3\} = S$ and consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there exists a vertex $z \in V(G) - \{a_1, a_4\}$ such that $[a_4, z] \longrightarrow a_1$ or $[a_1, z] \longrightarrow a_4$. Suppose $[a_4, z] \longrightarrow a_1$. If $z \in S$, then $z = x_3$ since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$. But this contradicts Lemma 3.4 since $[a_3, x_3] \longrightarrow a_4$ and $a_1a_3 \notin E(G)$. Thus $z \notin S$. But this implies that a_2 and a_3 are in the same component of G - S; call it H. But then $z \in V(H)$. Hence z is adjacent to every vertex of $H - \{z\}$. Since $[a_2, x_2] \longrightarrow a_3$, vertex x_2 is adjacent to every vertex of $H_1 \cup H_2$ where H_1 and H_2 are the components of G - S containing vertices a_1 and a_4 respectively. Since $x_1x_2x_3$ is a path, vertex x_2 is adjacent to x_1 and x_3 . Hence $\{x_2, z\}$ dominates G, a contradiction.

Hence $[a_1,z] \longrightarrow a_4$. Suppose $z \in S$. Since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$, $z=x_3$. By using this fact and the fact that $[a_3,x_3] \longrightarrow a_4$, vertex x_3 is adjacent to every vertex of G-S, except a_4 . Since $[a_2,x_2] \longrightarrow a_3$, edge $x_2a_4 \in E(G)$. Because $x_1x_2x_3$ is a path, edge $x_1x_2 \in E(G)$. Hence $\{x_2,x_3\}$ dominates G, a contradiction. Hence $z \notin S$.

By applying the same argument as above, one can show that $\{x_2, z\}$ dominates G, again a contradiction. This completes the proof of Claim 1.

Claim 2: $|S \cap \{x_1, x_2, x_3\}| < 2$.

. 2.

Suppose to the contrary that $|S \cap \{x_1, x_2, x_3\}| \ge 2$. Then by Claim 1, $|S \cap \{x_1, x_2, x_3\}| =$

Case 2.1: Suppose x_1 and $x_2 \in S$.

Since $[a_3, x_3] \longrightarrow a_4$, and $\{a_1, a_2, a_3, a_4\}$ is independent, edge $x_3a_1 \in E(G)$ and edge $x_3a_2 \in E(G)$. Thus a_1, a_2 and x_3 belong to the same component of G - S, say H_1 . Moreover, then, vertex x_3 dominates all of H_1 . Let H_2 and H_3 be the components of G - S containing a_3 and a_4 respectively. Clearly $H_i \neq H_j$, for $1 \leq i \neq j \leq 3$. Furthermore, $V(H_3) = \{a_4\}$. Choose $w \in S - \{x_1, x_2\}$. If $x_1w \in E(G)$, then $\{x_1, x_3\}$ dominates G since x_3 dominates H_1 and x_1 dominates $H_2 \cup H_3 \cup \{x_2, w\}$, a contradiction.

Hence $x_1w \notin E(G)$. Similarly, $x_3w \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$ and $[a_3, x_3] \longrightarrow a_4$, we have $a_1w \in E(G)$ and $a_3w \in E(G)$. Figure 4.3 depicts this situation.

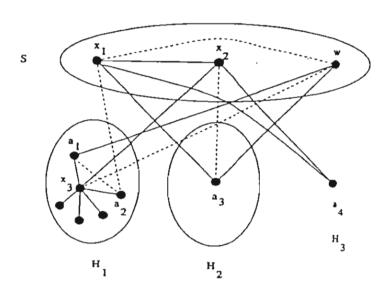


Figure 4.3

Recall that $x_ia_{i+1} \notin E(G)$, for i=1,2,3. Now consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there exists a vertex $z \in G - \{a_1,a_4\}$ such that $[a_4,z] \longrightarrow a_1$ or $[a_1,z] \longrightarrow a_4$. Suppose first that $[a_4,z] \longrightarrow a_1$. Since a_2 and a_3 are in different components of G-S, $z \in S$. But $z \neq x_1$ since $x_1a_2 \notin E(G)$ and $z \neq x_2$ since $x_2a_3 \notin E(G)$. Thus z=w. But this is also impossible since $wx_3 \notin E(G)$.

Hence $[a_1, z] \longrightarrow a_4$. Because $a_1a_2 \notin E(G)$ and a_2 and a_3 are in different components of G - S, it follows that $z \in S$. By Lemma 3.4, $z \neq x_1$ and $z \neq x_2$ since $x_1a_4 \in E(G)$ and $x_2a_4 \in E(G)$. Thus z = w. But then $wa_4 \notin E(G)$ by Lemma 3.4.

Now consider $G+a_2a_4$. Since $\gamma(G+a_2a_4)=2$, there exists a vertex $z\in V(G)-\{a_2,a_4\}$ such that $[a_2,z]\longrightarrow a_4$ or $[a_4,z]\longrightarrow a_2$. Suppose $[a_2,z]\longrightarrow a_4$. Since $a_1a_2\notin E(G)$ and a_1 and a_3 are in different components of G-S, it follows that $z\in S$. Since x_1a_4 and $x_2a_4\in E(G)$, by Lemma 3.4 it follows that $z\notin \{x_1,x_2\}$. But then z=w. However, this is also impossible since $wx_1\notin E(G)$ and $a_2x_1\notin E(G)$.

Hence $[a_4, z] \longrightarrow a_2$. Because a_1 and a_3 are in different components of G - S, it follows that $z \in S$. Clearly $z \neq x_2$ and $z \neq w$ since $x_2 a_3 \notin E(G)$ and $wx_3 \notin E(G)$. Thus

 $z = x_1$. But this is also impossible since $x_1 w \notin E(G)$ and $a_4 w \notin E(G)$. This contradiction proves Case 2.1.

Case 2.2: Suppose x_1 and $x_3 \in S$.

Since $[a_2, x_2] \longrightarrow a_3$ and $\{a_1, a_2, a_3, a_4\}$ is independent, edge $a_1x_2 \in E(G)$ and edge $a_4x_2 \in E(G)$. Thus a_1, a_4 and x_2 all belong to the same component of G - S, say H_1 . Let H_2 and H_3 be the components of G - S containing a_2 and a_3 respectively.

Clearly $H_i \neq H_j$ for $1 \leq i \neq j \leq 3$. Furthermore, $V(H_3) = \{a_3\}$. Choose $w \in S - \{x_1, x_3\}$. If $x_1 w \in E(G)$, then $\{x_1, x_3\}$ dominates G since x_3 dominates $(H_1 - \{a_4\}) \cup H_2$ and x_1 dominates $(H_2 - \{a_2\}) \cup H_3 \cup \{a_4, w\}$, a contradiction.

Hence $x_1w \notin E(G)$. Similarly, $x_3w \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$, edge $a_1w \in E(G)$ and since $[a_3, x_3] \longrightarrow a_4$, edge $a_3w \in E(G)$. Figure 4.4 illustrates this situation.

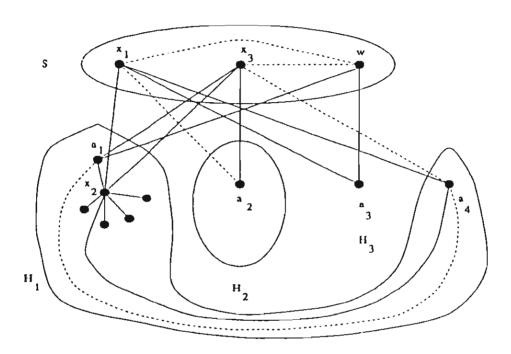


Figure 4.4

Now consider $G + a_1 a_3$. since $\gamma(G + a_1 a_3) = 2$, there exists a vertex $z \in G - \{a_1, a_3\}$ such that $[a_1, z] \longrightarrow a_3$ or $[a_3, z] \longrightarrow a_1$.

Suppose $[a_1, z] \longrightarrow a_3$. Since $a_1a_4 \notin E(G)$ and a_2 and a_4 are in different components of G - S, it follows that vertex $z \in S$. Because x_1a_3 and $wa_3 \in E(G)$, vertex $z \notin \{x_1, w\}$ by Lemma 3.4. Thus $z = x_3$. But this is impossible since x_3a_4 and $a_1a_4 \notin E(G)$.

Hence $[a_3, z] \longrightarrow a_1$. Because a_2 and a_4 are in different components of G - S, it follows that vertex $z \in S$. By Lemma 3.4, vertex $z \notin \{x_3, w\}$, since x_3a_1 and $wa_1 \in E(G)$. Thus $z = x_1$. But this is also impossible since $x_1a_2 \notin E(G)$. Thus Case 2.2 is settled.

Case 2.3: Suppose x_2 and $x_3 \in S$.

Since $[a_1, x_1] \longrightarrow a_2$ and $\{a_1, a_2, a_3, a_4\}$ is independent, edge $a_3x_1 \in E(G)$ and edge $a_4x_1 \in E(G)$. Thus a_3, a_4 and x_1 belong to the same component of G - S, say H_3 . Moreover, vertex x_1 dominates all of H_3 . Let H_1 and H_2 be the components of G - S

containing a_1 and a_2 respectively. Clearly $H_i \neq H_j$, for $1 \leq i \neq j \leq 3$. Furthermore, $V(H_2) = \{a_2\}$. Choose $w \in S - \{x_2, x_3\}$. If $x_3w \in E(G)$, then $\{x_1, x_3\}$ dominates G since $\{x_3\}$ dominates $\{x_1, x_2\}$ and $\{x_2, w\}$ and $\{x_3, x_4\}$ dominates $\{x_4, x_5\}$ and $\{x_4, x_5\}$ and $\{x_4, x_5\}$ dominates $\{x_5, x_5\}$ and $\{x_5, x_5\}$ are contradiction.

Thus $x_3w \notin E(G)$. Similarly, $x_1w \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$, edge $a_1w \in E(G)$ and since $[a_3, x_3] \longrightarrow a_4$, edge $a_3w \in E(G)$. Figure 4.5 shows this situation.

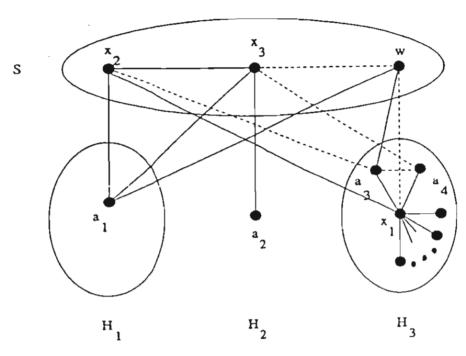


Figure 4.5

Now consider $G + a_1 a_3$. Since $\gamma(G + a_1 a_3) = 2$, there exists a vertex $z \in G - \{a_1, a_3\}$ such that $[a_1, z] \longrightarrow a_3$ or $[a_3, z] \longrightarrow a_1$.

Suppose first that $[a_3, z] \longrightarrow a_1$. Since a_2 and a_4 are in different components of G - S, vertex $z \in S$. Because $[a_i, x_i] \longrightarrow a_{i+1}$ for i = 1, 2, 3, edges a_1x_2 and $a_1x_3 \in E(G)$. Since $a_1w \in E(G)$, by Lemma 3.4 vertex $z \notin \{x_2, x_3, w\} = S$, a contradiction.

Hence $[a_1, z] \longrightarrow a_3$. By the same argument as above, vertex $z \in S$. By Lemma 3.4, $z \neq w$ since $wa_3 \in E(G)$. Clearly $z \neq x_3$, since $x_3a_4 \notin E(G)$. Thus $z = x_2$. By this fact and the fact that $[a_2, x_2] \longrightarrow a_3$, vertex x_2 dominates $(H_1 \cup H_2 \cup H_3 \cup \{x_3\}) - \{a_3\}$. But then since $a_3w \in E(G)$, $\{w, x_2\}$ dominates G, a contradiction.

This completes the proof in Case 2.3 and hence Claim 2 is proved.

By Claim 1 and Claim 2, $|S \cap \{x_1, x_2, x_3\}| \le 1$. Suppose $x_1 \in S$. Then x_2 and x_3 are in some component of G - S. Because $\{a_1, a_2, a_3, a_4\}$ is independent and $[a_2, x_2] \longrightarrow a_3$, vertex x_2 is adjacent to both a_1 and a_4 . Similarly, vertex x_3 is adjacent to both a_1 and a_2 . Hence a_1, a_2 and a_4 are in the same component. But this contradicts our choice of the a_i . Hence $x_1 \notin S$. Similarly, $x_3 \notin S$. By applying a similar argument, if $x_2 \in S$, then a_1 and a_2 are in the same component of G - S and a_3 and a_4 are in the same component of G - S which again contradicts the choice of a_i . Hence $S \cap \{x_1, x_2, x_3\} = \emptyset$. This implies that each x_i belongs to some component of G - S.

Since $[a_i, x_i] \longrightarrow a_{i+1}$, for i = 1, 2, 3, it follows that x_1 is adjacent to a_3 and a_4 , x_2 is adjacent to a_1 and a_4 and a_3 is adjacent to a_1 and a_2 . This implies that a_1, a_2, a_3 and a_4

are in the same component of G - S, again contradicting the choice of the a_i . Hence each component of G - S is complete.

Next we show that at least one of the three complete components must be a singleton. Suppose to the contrary that each component of G-S has at least two vertices. Let H_i be the components of G-S, i=1,2,3. For each i=1,2,3, choose $w_i \in V(H_i)$. Clearly $\{w_1, w_2, w_3\}$ is an independent set. By Lemma 2.4 the vertices in W may be ordered as a_1, a_2, a_3 in such a way that there exist vertices x_1 and x_2 such that $[a_i, x_i] \longrightarrow a_{i+1}$ for i=1,2. Without loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. Since each component of G-S has at least two vertices, x_1 and x_2 must belong to S. Clearly $x_1 \neq x_2$. Let $S-\{x_1, x_2\} = \{w\}$. Choose $a'_1 \in V(H_1) - \{a_1\}$ and $a'_3 \in V(H_3) - \{a_3\}$. Consider $G+a'_1a'_3$. Since $\gamma(G+a'_1a'_3) = 2$, there exists a vertex $z \in V(G) - \{a'_1, a'_3\}$ such that $[a'_1, z] \longrightarrow a'_3$ or $[a'_3, z] \longrightarrow a'_1$. In either case, $z \in S$.

Suppose first that $[a_1', z] \longrightarrow a_3'$. Since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$, $z \neq x_1$ and $z \neq x_2$. Thus z = w. This implies that w dominates $(H_2 \cup H_3) - \{a_3'\}$. Since $x_1a_2 \notin E(G)$ and $[a_2, x_2] \longrightarrow a_3$, vertex x_2 dominates $(H_1 \cup H_3 \cup \{x_1\}) - \{a_3\}$. Thus $\{w, x_2\}$ dominates G, a contradiction.

Hence $[a_3', z] \longrightarrow a_1'$. Because $x_1a_2 \notin E(G)$, $z \neq x_1$. Since $x_2a_1' \in E(G)$. by Lemma 3.4, $z \neq x_2$. Thus z = w. This implies that w dominates $(H_1 \cup H_2) - \{a_1'\}$. Now consider $G + a_1a_3'$. Since $\gamma(G + a_1a_3') = 2$, there exists a vertex $z_1 \in G - \{a_1, a_3'\}$ such that $[a_1, z_1] \longrightarrow a_3'$ or $[a_3', z_1] \longrightarrow a_1$. In either case $z_1 \in S$.

Suppose $[a_1, z_1] \longrightarrow a_3'$. Since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$, $z_1 \neq x_1$ and $z_1 \neq x_2$. Thus $z_1 = w$. By using this fact and the fact that $[a_3', w] \longrightarrow a_1'$, we see that w dominates $(H_1 \cup H_2 \cup H_3) - \{a_1', a_3'\}$. Since $x_1a_2 \notin E(G)$ and $[a_2, x_2] \longrightarrow a_3$. vertex x_2 dominates $(H_1 \cup H_3 \cup \{x_1\}) - \{a_3\}$. Thus $\{x_2, w\}$ dominates G, a contradiction.

Hence $[a'_3, z_1] \longrightarrow a_1$. Since $x_1a_2 \notin E(G)$ and $wa'_1 \notin E(G)$. $z_1 \neq x_1$ and $z_1 \neq w$. Thus $z_1 = x_2$. But this contradicts Lemma 3.4 since $a_1x_2 \in E(G)$. This completes the proof of part (ii).

Next we turn to part (iii). Suppose therefore that S is a vertex cutset with |S| = 2. Then by the Theorem 2.2, $\omega(G - S) \leq 3$. Suppose that G - S has precisely three components. Let s_1 and s_2 be the vertices of S and let H_i , i = 1, 2, 3, be the three components of G - S. By Theorem 2.3, both s_1 and s_2 are cutvertices. So each s_i , i = 1, 2, is adjacent to an endvertex of G by Lemma 2.7. So G has at least two endvertices, say a_1 and a_2 . Furthermore, neither a_1 nor a_2 is in S. Since no two endvertices of G have a common neighbor by Lemma 2.5, we may assume, without loss of generality, that $a_i s_i \in E(G)$ and $a_i \in V(H_i)$ for i = 1, 2.

If $|V(G)| \ge 7$, then G must have exactly two endvertices since G has a Hamiltonian path by Theorem 2.8. Hence by Theorem 2.9, graph G is of the type shown in Figure 4.1, where $n \ge 3$.

So now let us assume that $|V(G)| \leq 6$. Since a_i is an endvertex of G and $a_is_i \in E(G)$. for $i = 1, 2, V(H_i) = \{a_i\}$. If $|V(H_3)| = 1$, then, since G is connected, $\gamma(G) = 2$. a contradiction. Hence $|V(H_3)| = 2$. Let $V(H_3) = \{a_3, a_4\}$. Since G is connected, we may assume that $a_3s_1 \in E(G)$. But then $a_4s_i \notin E(G)$ for i = 1 and 2; otherwise $\{s_1, s_2\}$ dominates G. Thus a_4 is an endvertex of G. Suppose $a_3s_2 \notin E(G)$ and consider $G + a_3s_2$. Since $\gamma(G + a_3s_2) = 2$, there is a vertex z of $G - \{a_3, s_2\}$ such that either $[a_3, z] \longrightarrow s_2$

or $[s_2, z] \longrightarrow a_3$. Suppose $[a_3, z] \longrightarrow s_2$. Then by Lemma 3.4, $z \neq a_2$ since $a_2s_2 \in E(G)$. Thus $[a_3, z] \longrightarrow s_2$ is impossible since $N(a_2) = \{s_2\}$. Similarly, $[s_2, z] \longrightarrow a_3$ is also impossible. This contradiction proves that $s_2a_3 \in E(G)$. By applying a similar argument, edge $s_1s_2 \in E(G)$. Hence G is a graph of the type shown in Figure 4.1 where n = 2.

This completes the proof of part (iii).

Finally, suppose |S|=1. Let c be a cutvertex of G. Then $G-\{c\}$ has exactly two components by the Theorem 2.2. Moreover, one of the two components is a singleton by Lemma 2.7. (Clearly it cannot happen that both components of $G-\{c\}$ are singletons, for then |V(G)|=3 and so $\gamma(G)\neq 3$ since G is connected.) If $|V(G)|\leq 6$, it is easy to see that G must be isomorphic to the six-vertex graph shown in Figure 4.6(a). So suppose $|V(G)|\geq 7$. Then G has a Hamiltonian path by Theorem 2.8. But then G has at most two endedges. If it has two endedges, then by [SB; Remark, pg70] it must be isomorphic to a graph of the type shown in Figure 4.1.

This completes the proof of part (iv) and hence the theorem is proved.

Pertaining to part (ii) of the preceding theorem, we point out that it is not possible to say more about the number of singleton components, for in Figure 4.6 below we present examples in which G-S has three, two and one singleton component respectively.

=

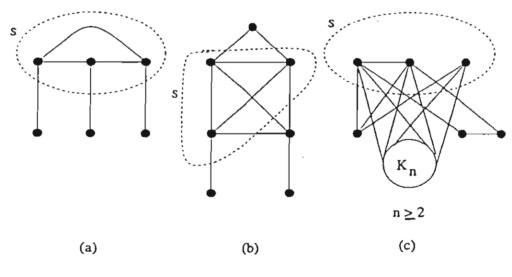


Figure 4.6

The following result is an immediate corollary to our Theorem 4.1.

Corollary 4.2. Let G be a connected 3- γ -critical graph and let S be a cutset in G. If G-S has exactly |S|+1 components, then $|S| \leq 2$.

Recall that the toughness of a (connected) graph G, $\tau(G)$, is defined as follows. $\tau(G) = \min \{|S|/\omega(G-S)\}$ where the minimum is taken over all cutsets S of G. It follows from Theorem 4.1(iv) that every connected 3- γ -critical graph has toughness at least 1/2 and it was shown in [FTWZ] that every 2-connected 3- γ -critical graph has toughness at

teast 1. In view of part (i) of Theorem 4.1, we can sharpen this result slightly via the following immediate corollary.

Corollary 4.3. If G is a 4-connected 3- γ -critical graph, then G has toughness strictly greater than 1.

Our next result is an extension of Theorem 4.1.

Theorem 4.4. If G is a connected 3- γ -critical graph and S is a vertex cutset in G. then if $|S| \geq 6$, it follows that $\omega(G - S) \leq |S| - 2$.

Proof: Suppose to the contrary that G-S has at least |S|-1 components for some vertex cut S. Then by Theorem 4.1(i), G-S must have exactly |S|-1 components and $|S|-1 \geq 5$. Let the components of G-S be denoted by H_1, \ldots, H_k . For each $i, 1 \leq i \leq k$, choose a vertex $w_i \in V(H_i)$. Clearly, $W = \{w_1, \ldots, w_k\}$ is an independent set. By Lemma 2.4, the vertices of W may be ordered as a_1, \ldots, a_k in such a way that there exists a path $x_1x_2\cdots x_{k-1}$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$ for each $i=1,\ldots,k-1$. By Lemma 3.4, $x_ia_{i+1} \notin E(G)$ for each $i=1,\ldots,k-1$. Clearly, $x_i \in S$, for $i=1,\ldots,k-1$. Now let $S_0 = S - \{x_1,\ldots,x_{k-1}\}$. Then $|S_0| = 2$. So let $S_0 = \{s_1,s_2\}$. Without any loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. In what is to follow, we make frequent use of the following four observations:

(O1) For i = 1, ..., k-1, vertex x_i is adjacent to every vertex of

$$\left[(\cup_{j=1}^k V(H_j)) - (V(H_i) \cup \{a_{i+1}\}) \right]$$

since $[a_i, x_i] \longrightarrow a_{i+1}$.

- (O2) By O1, vertex a_1 is adjacent to every vertex of $S (S_0 \cup \{x_1\})$ and for i = 2, ..., k, vertex a_i is adjacent to every vertex of $S (S_0 \cup \{x_{i-1}, x_i\})$.
- (O3) By O1, O2, Lemma 3.4 and the fact that $|S_0| \ge 2$, if $[a_i, z] \longrightarrow a_j$ and $|i-j| \ge 2$, then $z = x_{j-1}$ or $z \in S_0$ for $j \ge 2$ and $z \in S_0$ for j = 1.
- (O4) By O1, for $j \geq 2$ and $|i-j| \geq 2$, if $[a_i, x_{j-1}] \longrightarrow a_j$, then x_{j-1} dominates $(G-S)-\{a_j\}$ and thus $\{x_{j-1}, a_j\}$ dominates $G-S_0$ by O2.

Let us now begin by considering the graph $G + a_1a_3$. Since $\gamma(G + a_1a_3) = 2$, there is a vertex $z \in G - \{a_1, a_3\}$ such that $[a_1, z] \longrightarrow a_3$ or $[a_3, z] \longrightarrow a_1$. We distinguish two cases.

Case 1: Suppose $[a_1, z] \longrightarrow a_3$. Then by O3, either $z = x_2$ or $z \in S_0$.

Subcase 1.1: Suppose $z=x_2$. That is, suppose we have $[a_1,x_2] \longrightarrow a_3$. Then by O4, $\{x_2,a_3\}$ dominates $G-S_0$. Since $\gamma(G)=3$, there is a vertex of S_0 , say without

loss of generality s_1 , such that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$. Thus $a_1s_1 \in E(G)$, since $[a_1, x_2] \longrightarrow a_3$. Furthermore, since $[a_i, x_i] \longrightarrow a_{i+1}$, edge $a_2s_1 \in E(G)$ and edge $x_3s_1 \in E(G)$. Figure 4.7 depicts this situation.

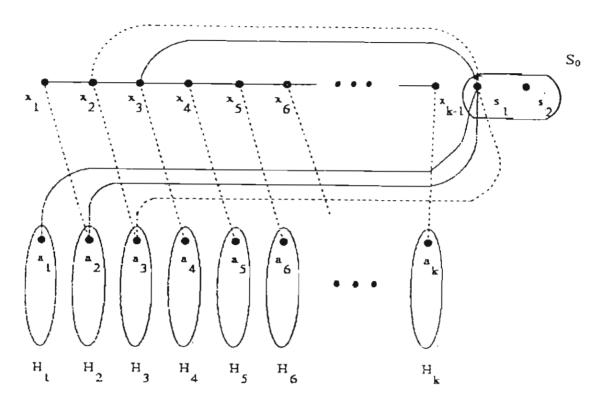


Figure 4.7.

Now consider $G + a_3a_5$. Since $\gamma(G + a_3a_5) = 2$, there is a vertex z_1 of $G - \{a_3, a_5\}$ such that $[a_3, z_1] \longrightarrow a_5$ or $[a_5, z_1] \longrightarrow a_3$. Again we distinguish two cases.

Subcase 1.1.1: Suppose $[a_3, z_1] \longrightarrow a_5$. By O3, it follows that $z_1 = x_4$ or $z_1 \in S_0$.

Subcase 1.1.1.1: Suppose $z_1 = x_4$. That is, $[a_3, x_4] \longrightarrow a_5$. Since $a_3s_1 \notin E(G)$, edge $x_4s_1 \in E(G)$. If $x_4s_2 \in E(G)$ or if $a_5s_2 \in E(G)$, then by O4, the set $\{x_4, a_5\}$ dominates G, a contradiction. Thus $x_4s_2 \notin E(G)$ and $a_5s_2 \notin E(G)$.

Since $[a_4, x_4] \longrightarrow a_5$, edge $a_4s_2 \in E(G)$. Figure 4.8 illustrates this situation.

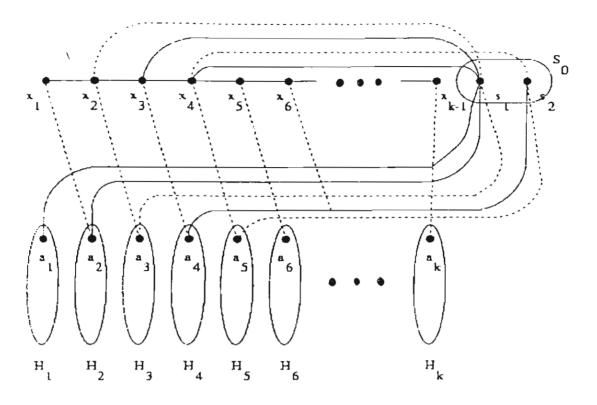


Figure 4.8

Now let us consider $G+a_2a_4$. Since $\gamma(G+a_2a_4)=2$, there is a vertex z_2 of $G-\{a_2,a_4\}$ such that $[a_2,z_2]\longrightarrow a_4$ or $[a_4,z_2]\longrightarrow a_2$. In either case, $z_2\notin S_0$ since $a_3s_1\notin E(G)$ and $a_5s_2\notin E(G)$.

Suppose first that $[a_2, z_2] \longrightarrow a_4$. By O3 and the above we note that $z_2 = x_3$. Then by O4, $\{x_3, a_4\}$ dominates $G - S_0$. But then since $x_3s_1 \in E(G)$ and $a_4s_2 \in E(G)$, $\{x_3, a_4\}$ dominates G, a contradiction.

Hence $[a_4, z_2] \longrightarrow a_2$. By an argument similar to that above, $z_2 = x_1$. By O4, $\{x_1, a_2\}$ dominates $G - S_0$. Recall that $a_2s_1 \in E(G)$. If x_1s_2 or a_2s_2 is an edge of G, then $\{x_1, a_2\}$ dominates G, a contradiction. Thus $x_1s_2 \notin E(G)$ and $a_2s_2 \notin E(G)$. Because $[a_i, x_i] \longrightarrow a_{i+1}$, $a_1s_2 \in E(G)$ and $x_2s_2 \in E(G)$. Now consider $G + a_1a_4$. There must be a vertex z_3 of $G - \{a_1, a_4\}$ such that $[a_1, z_3] \longrightarrow a_4$ or $[a_4, z_3] \longrightarrow a_1$. In either case, $z_3 \notin S_0$, since $s_1a_3 \notin E(G)$ and $s_2a_5 \notin E(G)$. Thus by O3, the case $[a_4, z_3] \longrightarrow a_1$ is impossible.

Thus $[a_1, z_3] \longrightarrow a_4$. Then by O3 and O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since $x_3s_1 \in E(G)$ and $a_4s_2 \in E(G)$, $\{x_3, a_4\}$ dominates G, a contradiction. This completes the proof of Subcase 1.1.1.1.

Subcase 1.1.1.2: Suppose $z_1 \in S_0$. Since $x_2s_1 \notin E(G)$ and $a_3x_2 \notin E(G)$, it follows that $z_1 \neq s_1$. Thus $z_1 = s_2$ and it then follows that $[a_3, s_2] \longrightarrow a_5$. Thus s_2 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_5\})$. By Lemma 3.4, $s_2a_5 \notin E(G)$. Figure 4.9 now depicts the present situation.

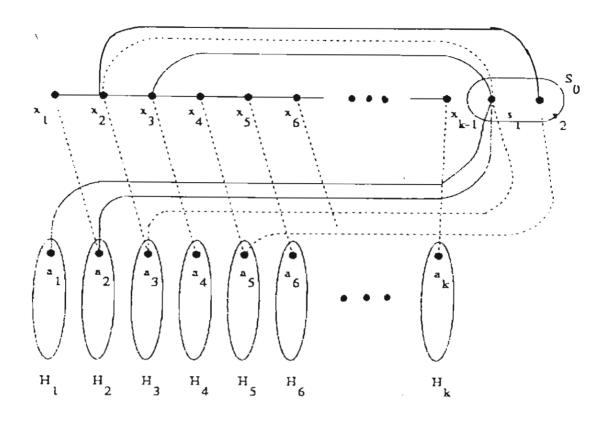


Figure 4.9

Now consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there is a vertex z_2 of $G - \{a_1, a_4\}$ such that $[a_1, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_1$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_5 \notin E(G)$. Thus by O3, the case $[a_4, z_2] \longrightarrow a_1$ is impossible.

Thus $[a_1, z_2] \longrightarrow a_4$. Then by O3 and O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since s_2 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_5\})$, edge $s_2 a_4 \in E(G)$. Recall that $x_3 s_1 \in E(G)$. Therefore, $\{x_3, a_4\}$ dominates G, a contradiction. This completes the proof of Subcase 1.1.1.2 and hence also the Subcase 1.1.1.

Subcase 1.1.2: Suppose $[a_5, z_1] \longrightarrow a_3$. By O3, it follows that either $z_1 = x_2$ or $z_1 \in S_0$.

Subcase 1.1.2.1: Suppose $z_1 = x_2$. That is, $[a_5, x_2] \longrightarrow a_3$. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but $x_3s_1, a_1s_1, a_2s_1 \in E(G)$. Since $[a_5, x_2] \longrightarrow a_3$, by O4, $\{x_2, a_3\}$ dominates $G - S_0$. Because $x_2s_1 \notin E(G)$ and $[a_5, x_2] \longrightarrow a_3$, it follows that $a_5s_1 \in E(G)$. Furthermore, either $a_5s_2 \in E(G)$ or $x_2s_2 \in E(G)$.

First suppose that $a_5s_2 \in E(G)$. Then a_5 is adjacent to both s_1 and s_2 . Figure 4.10 now illustrates the present situation.

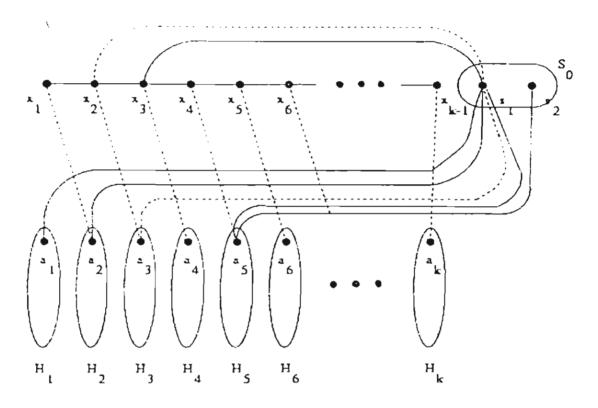


Figure 4.10

Consider now $G+a_1a_5$. Since $\gamma(G+a_1a_5)=2$, there must be a vertex z_2 of $G-\{a_1,a_5\}$ such that $[a_1,z_2] \longrightarrow a_5$ or $[a_5,z_2] \longrightarrow a_1$.

Suppose first that $[a_1, z_2] \longrightarrow a_5$. Since a_5 is adjacent to s_1 and s_2 , vertex $z_2 \notin S_0$ by Lemma 3.4. Then by O3, $z = x_4$. Hence $\{x_4, a_5\}$ dominates G by O4 and the fact that a_5 is adjacent to s_1 and s_2 . This contradiction proves that for all $z_2 \in G - \{a_1, a_5\}$, $\{a_1, z_2\}$ does not dominate $G - \{a_5\}$. Hence $[a_5, z_2] \longrightarrow a_1$. Then $z_2 \in S_0$ by O3. Since $a_3s_1 \notin E(G)$, it follows that $z_2 = s_2$. Thus $[a_5, s_2] \longrightarrow a_1$ and s_2 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_1\})$. Hence a_2 is adjacent to both s_1 and s_2 .

Next consider $G+a_2a_5$. Since $\gamma(G+a_2a_5)=2$, there is a vertex z_3 of $G-\{a_2,a_5\}$ such that $[a_2,z_3]\longrightarrow a_5$ or $[a_5,z_3]\longrightarrow a_2$. But in either case, $z_3\notin S_0$ by Lemma 3.4 and the fact that a_2 and a_5 are adjacent to both s_1 and s_2 . If $[a_2,z_3]\longrightarrow a_5$, then $\{x_4,a_5\}$ dominates G by O3 and O4 and the fact that a_5 is adjacent to s_1 and s_2 . But this is a contradiction. Similarly, if $[a_5,z_3]\longrightarrow a_2$, then $\{x_1,a_2\}$ dominates G, again a contradiction. This proves that $a_5s_2\notin E(G)$. Therefore, edge $x_2s_2\in E(G)$ since $[a_5,x_2]\longrightarrow a_3$. Figure 4.11 now depicts the present situation.

19 สำนักงานกองทุบสนับสนุมการวิจัย (สกว.) ชั้น (4 กาการ เอส เกี๋ย มาวเวอร์ ราเกี๋ 979/17-21 กบบมหาโบเรีย แขวงสามเสนใน อนูรใน กรุงเมนา 10400 298-0455 โกรสาร 298-0476 me page: http://www.trf.or.th t-mail: trf-infoamt.or.th

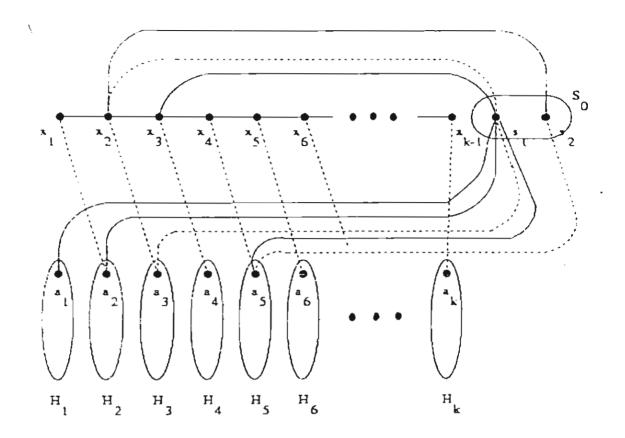


Figure 4.11

Now consider $G + a_1a_4$. Then there is a vertex z_4 of $G - \{a_1, a_4\}$ such that $[a_1, z_4] \longrightarrow a_4$ or $[a_4, z_4] \longrightarrow a_1$. In either case, $z_4 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_5s_2 \notin E(G)$. By O3, $[a_4, z_4] \longrightarrow a_1$ is impossible. Hence $[a_1, z_4] \longrightarrow a_4$ and $z_4 = x_3$. Then by O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$, for otherwise $\{x_3, a_4\}$ would dominate G, a contradiction. Since $[a_4, x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$.

Now consider $G+a_1a_5$. There must be a vertex z_5 of $G-\{a_1,a_5\}$ such that $[a_1,z_5] \to a_5$ or $[a_5,z_5] \to a_1$. In either case, $z_5 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_4s_2 \notin E(G)$. By O3, the case $[a_5,z_5] \to a_1$ is impossible. Thus $[a_1,z_5] \to a_5$. But then $z_5 = x_4$ by O3 and hence $\{x_4,a_5\}$ dominates G by O4 and the facts that $a_5s_1 \in E(G)$ and $x_4s_2 \in E(G)$. This proves that $x_2s_2 \notin E(G)$. Hence $[a_5,x_2] \to a_3$ is impossible. This completes the proof in Subcase 1.1.2.1.

Subcase 1.1.2.2: Suppose $z_1 \in S_0$ and $z_1 = s_1$. That is, $[a_5, s_1] \longrightarrow a_3$. Then s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_2 of $G - \{a_2, a_4\}$ such that $[a_2, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_2$. We distinguish two subcases.

Subcase 1.1.2.2.1: Suppose $[a_2, z_2] \longrightarrow a_4$. Then $z_2 = x_3$ or $z_2 \in S_0$ by O3. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but x_3s_1, a_1s_1 and a_2s_1 are all edges of G.

Suppose that $z_2=x_3$. That is, $[a_2,x_3] \longrightarrow a_4$. By O4, $\{x_3,a_4\}$ dominates $G-S_0$. Since $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$: otherwise $\{x_3,a_4\}$ dominates G, a contradiction. Since $[a_2,x_3] \longrightarrow a_4$ and $x_3s_2 \notin E(G)$, it follows that $a_2s_2 \in E(G)$. Thus a_2 is adjacent to both s_1 and s_2 . Furthermore, since $[a_4,x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$. Because s_1 dominates $((G-S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$, it follows that $s_1x_4 \in E(G)$. Thus x_4 is also adjacent to s_1 and s_2 .

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there must be a vertex z_3 of $G - \{a_2, a_5\}$ such that $[a_2, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_2$. In either case, $z_3 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_4s_2 \notin E(G)$. If $[a_5, z_3] \longrightarrow a_2$, then $\{x_1, a_2\}$ dominates G by O4 and the fact that a_2 is adjacent to s_1 and to s_2 , a contradiction. Hence $[a_2, z_3] \longrightarrow a_5$. But then $\{x_4, a_5\}$ dominates G by O4 and the fact that x_4 is adjacent to s_1 and to s_2 and again we have a contradiction. This proves that if $[a_2, z_2] \longrightarrow a_4$, then $z_2 \ne x_3$. Thus $z_2 \in S_0$. Since $a_3s_1 \notin E(G)$, $z_2 \ne s_1$. Therefore $z_2 = s_2$. That is, $[a_2, s_2] \longrightarrow a_4$. Now s_2 dominates $((G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$. Hence a_1 is adjacent to both s_1 and s_2 .

Now consider $G + a_1a_5$. There must be a vertex z_3 of $G - \{a_1, a_5\}$ such that either $[a_1, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_1$. In either case, $z_3 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_4s_2 \notin E(G)$. But then the case $[a_5, z_3] \longrightarrow a_1$ is impossible by O3.

Therefore $[a_1, z_3] \longrightarrow a_5$. Thus $\{x_4, a_5\}$ dominates $G - S_0$ by O4. Since s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\}), s_1x_4 \in E(G)$. Furthermore, since s_2 dominates $((G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\}), s_2a_5 \in E(G)$. Therefore $\{x_4, a_5\}$ dominates G, once more a contradiction. This contradiction proves that for every z_2 in $G - \{a_2, a_4\}, \{a_2, z_2\}$ does not dominate $G - \{a_4\}$ and completes the proof of Subcase 1.1.2.2.1.

Subcase 1.1.2.2.2: Suppose $[a_4, z_2] \longrightarrow a_2$. Then $z_2 = x_1$ or $z_2 \in S_0$ by O3. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but x_3s_1, a_1s_1 and a_2s_1 are all edges of G. Furthermore, s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$.

Suppose $z_2 = x_1$. That is, $[a_4, x_1] \longrightarrow a_2$. By O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since $a_2s_1 \in E(G)$, it follows that $x_1s_2 \notin E(G)$ and $a_2s_2 \notin E(G)$; otherwise $\{x_1, a_2\}$ would dominate G, a contradiction.

Next consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there must be a vertex z_3 of $G-\{a_1,a_4\}$ such that either $[a_1,z_3] \longrightarrow a_4$ or $[a_4,z_3] \longrightarrow a_1$. In either case, $z_3 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4,z_3] \longrightarrow a_1$ is impossible. Thus $[a_1,z_3] \longrightarrow a_4$. By O3 and O4, $\{x_3,a_4\}$ dominates $G-S_0$. Since $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$. Otherwise, $\{x_3,a_4\}$ would dominate G, a contradiction. Because $[a_4,x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$. So x_4 is adjacent to both s_1 and s_2 .

Next we consider $G + a_1a_5$. Since $\gamma(G + a_1a_5) = 2$, there must be a vertex z_4 of $G - \{a_1, a_5\}$ such that either $[a_1, z_4] \longrightarrow a_5$ or $[a_5, z_4] \longrightarrow a_1$. In either case, $z_4 \notin S_0$, since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_5, z_4] \longrightarrow a_1$ is impossible. Thus $[a_1, z_4] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Since x_4 is adjacent to both s_1 and s_2 , $\{x_4, a_5\}$ dominates G. This contradiction proves that if $[a_4, z_2] \longrightarrow a_2$, then $z_2 \neq x_1$. Thus $z_2 \in S_0$. Since $s_1a_3 \notin E(G)$, it follows that $z_2 \neq s_1$. Therefore, $z_2 = s_2$. That is, $[a_4, s_2] \longrightarrow a_2$. Then s_2 dominates $((G - S) \cup \{x_3\}) - (H_4 \cup \{a_2\})$. Thus $s_2x_3 \in E(G)$ and $s_2a_2 \notin E(G)$. Then x_3 is adjacent to both s_1 and s_2 since $x_3s_1 \in E(G)$.

Now consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there must be a vertex z_5 of $G-\{a_1,a_4\}$ such that either $[a_1,z_5] \longrightarrow a_4$ or $[a_4,z_5] \longrightarrow a_1$. In either case, $z_5 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4,z_5] \longrightarrow a_1$ is impossible. Hence $[a_1,z_5] \longrightarrow a_4$. Then $z_5=x_3$ by O3. But then $\{x_3,a_4\}$ dominates G by O4 and the fact that x_3 is adjacent to s_1 and s_2 . This contradiction completes the proof of Subcase 1.1.2.2.2 and thus of the Subcase 1.1.2.2.

Subcase 1.1.2.3: Suppose $z_1 \in S_0$ and $z_1 = s_2$. That is, $[a_5, s_2] \longrightarrow a_3$. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but x_3s_1, a_1s_1 and a_2s_1 are all edges of G. Since $[a_5, s_2] \longrightarrow a_3$, vertex s_2 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$. Since $s_2a_3 \notin E(G)$, edge $x_3s_2 \in E(G)$, because $[a_3, x_3] \longrightarrow a_4$. Now x_3 and a_2 are adjacent to both s_1 and s_2 .

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there must be a vertex z_2 of $G - \{a_2, a_4\}$ such that either $[a_2, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_3 \notin E(G)$. If $[a_2, z_2] \longrightarrow a_4$, then $z_2 = x_3$ and hence $\{x_3, a_4\}$ dominates G by O3. O4 and the fact that x_3 is adjacent to both s_1 and s_2 and we have a contradiction. Hence $[a_4, z_2] \longrightarrow a_2$. But then a similar argument shows that $\{x_1, a_2\}$ dominates G. This contradiction completes the proof of Subcase 1.1.2.3 and hence of Subcase 1.1.2. But then $\gamma(G + a_3a_5) > 2$, contradicting the 3- γ -criticality of G. Thus Subcase 1.1 cannot occur.

Subcase 1.2: Suppose $z \in S_0$.

Without loss of generality, we may assume that $z = s_1$. That is, $[a_1, s_1] \longrightarrow a_3$. Then vertex s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$. Since $s_1 a_3 \notin E(G)$ by Lemma 3.4, edge $s_1 x_3 \in E(G)$ because $[a_3, x_3] \longrightarrow a_4$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_1 of $G - \{a_2, a_4\}$ such that either $[a_2, z_1] \longrightarrow a_4$ or $[a_4, z_1] \longrightarrow a_2$. We distinguish two subcases.

Subcase 1.2.1: Suppose $[a_2, z_1] \longrightarrow a_4$. By O3 and the fact that $s_1a_3 \notin E(G)$, it follows that either $z_1 = x_3$ or $z_1 = s_2$.

Subcase 1.2.1.1: Suppose $z_1 = x_3$. That is, $[a_2, x_3] \longrightarrow a_4$. Then by O4, $\{x_3, a_4\}$ dominates $G - S_0$. Because s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, edges s_1x_3 and s_1a_4 belong to E(G). If $x_3s_2 \in E(G)$ or if $a_4s_2 \in E(G)$, then $\{x_3, a_4\}$ dominates G, a contradiction. Hence $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for all $i, 1 \le i \le k-1$, it follows that $a_3s_2 \in E(G)$ and $x_4s_2 \in E(G)$.

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_2 of $G - \{a_2, a_5\}$ such that either $[a_2, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_4 \notin E(G)$. If $[a_2, z_2] \longrightarrow a_5$, then $\{x_1, a_5\}$ dominates $G - S_0$ by O3 and O4. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, edge $s_1a_5 \in E(G)$. Because $x_4s_2 \in E(G)$, $\{x_4, a_5\}$ dominates G, a contradiction. Hence $[a_5, z_2] \longrightarrow a_2$. By O3 and the fact that $z_2 \notin S_0$, it follows that $z_2 = x_1$. Then by O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, edge $s_1a_2 \in E(G)$. If $a_2s_2 \in E(G)$ or if $x_1s_2 \in E(G)$, then $\{x_1, a_2\}$ dominates G, a contradiction. Hence $a_2s_2 \notin E(G)$ and $a_1s_2 \notin E(G)$. Because $[a_i, x_i] \longrightarrow a_{i+1}$ for $1 \le i \le k-1$, it follows that $x_2s_2 \in E(G)$ and $a_1s_2 \in E(G)$.

Now consider $G + a_1a_5$. Since $\gamma(G + a_1a_5) = 2$, there is a vertex z_3 of $G - \{a_1, a_5\}$ such that either $[a_1, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_1$. In either case $z_3 \notin S_0$ since $s_1a_3 \notin E(G)$

and $s_2a_2 \notin E(G)$. Then by O3, the case $[a_5, z_3] \longrightarrow a_1$ is impossible. Thus $[a_1, z_3] \longrightarrow a_5$. Then $z_3 = x_4$. But then $\{x_4, a_5\}$ dominates G by O4 and the fact that $x_4s_2 \in E(G)$ and $a_5s_1 \in E(G)$. This contradiction completes the proof of Subcase 1.2.1.1.

Subcase 1.2.1.2: Suppose $z_1 = s_2$. That is, $[a_2, s_2] \longrightarrow a_4$. Then s_2 dominates $((G-S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$. Recall that s_1 dominates $(G-S) - (H_1 \cup \{a_3\})$. More specifically, $s_2a_4 \notin E(G)$, $s_1a_3 \notin E(G)$, but a_5 is adjacent to both s_1 and s_2 .

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is vertex z_2 of $G - \{a_2, a_5\}$ such that either $[a_2, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_4 \notin E(G)$. Suppose $[a_2, z_2] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Since a_5 is adjacent to s_1 and s_2 , it follows that $\{x_4, a_5\}$ dominates G, a contradiction.

Hence $[a_5, z_2] \longrightarrow a_2$. By O3 and O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$ and s_2 dominates $((G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$, it follows that $s_1a_2 \in E(G)$ and $s_2x_1 \in E(G)$. But then $\{x_1, a_2\}$ dominates G, a contradiction. This completes the proof of Subcase 1.2.1.

Subcase 1.2.2: Suppose $[a_4, z_1] \longrightarrow a_2$. By O3 and the fact that $s_1a_3 \notin E(G)$, it follows that either $z_1 = x_1$ or $z_1 = s_2$.

Subcase 1.2.2.1: Suppose $z_1 = x_1$. That is, $[a_4, x_1] \longrightarrow a_2$. Then by O4, $\{x_1, a_2\}$ dominates $G - S_0$. Recall that s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$. Since $s_1a_2 \in E(G)$, it follows that $a_2s_2 \notin E(G)$ and $x_1s_2 \notin E(G)$; for otherwise $\{x_1, a_2\}$ dominates G, a contradiction. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for all $1 \le i \le k-1$, it follows that $x_2s_2 \in E(G)$ and $a_1s_2 \in E(G)$.

Consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there must be a vertex z_2 of $G - \{a_1, a_4\}$ such that either $[a_1, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_1$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4, z_2] \longrightarrow a_1$ is impossible. Hence $[a_1, z_2] \longrightarrow a_4$. Then $\{x_3, a_4\}$ dominates $G - S_0$ by O3 and O4. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, it follows that $s_1a_4 \in E(G)$. Then $a_4s_2 \notin E(G)$ and $a_3s_2 \notin E(G)$, for otherwise $\{x_3, a_4\}$ dominates G, a contradiction. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for all $1 \le i \le k-1$, $x_4s_2 \in E(G)$ and $a_3s_2 \in E(G)$.

Now consider $G + a_1 a_5$. Since $\gamma(G + a_1 a_5) = 2$, there is a vertex z_3 of $G - \{a_1, a_5\}$ such that either $[a_1, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_1$. In either case, $z_3 \notin S_0$ since $s_1 a_3 \notin E(G)$ and $s_2 a_4 \notin E(G)$. By O3, the case $[a_5, z_3] \longrightarrow a_1$ is impossible. Hence $[a_1, z_3] \longrightarrow a_5$. Then by O3, $z_3 = x_4$. But then $\{x_4, a_5\}$ dominates G by O4 and the fact that $s_1 a_5 \in E(G)$ and $x_4 s_2 \in E(G)$. This contradiction completes the proof of Subcase 1.2.2.1.

Subcase 1.2.2.2: Suppose $z_1 = s_2$. That is, $[a_4, s_2] \longrightarrow a_2$. Then s_2 dominates $((G - S) \cup \{x_3\}) - (H_4 \cup \{a_2\})$. Recall that s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$. More specifically, $s_1a_4 \in E(G)$ and $s_2x_3 \in E(G)$, but $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$.

Consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there is a vertex z_2 of $G - \{a_1, a_4\}$ such that either $[a_1, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_1$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4, z_2] \longrightarrow a_1$ is impossible. Hence $[a_1, z_2] \longrightarrow a_4$. By O3 and O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since $s_1a_4 \in E(G)$ and $s_2x_3 \in E(G)$, it follows that $\{x_3, a_4\}$ dominates G, a contradiction. This completes the proof of Subcase 1.2.2.2

and hence Subcase 1.2.2. Hence $\gamma(G + a_2a_4) > 2$, contradicting the 3- γ -criticality of G. Thus the Case 1.2 cannot occur. Hence for all z in $G - \{a_1, a_3\}$, $\{a_1, z\}$ does not dominate $G - \{a_3\}$.

Case 2: Suppose $[a_3, z] \longrightarrow a_1$.

By O3, $z \in S_0$. Without loss of generality, we may assume that $z = s_1$. Then $[a_3, s_1] \longrightarrow a_1$ and s_1 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$. Since $s_1a_1 \notin E(G)$ by Lemma 3.4, it follows that edge $x_1s_1 \in E(G)$ since $[a_1, x_1] \longrightarrow a_2$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_1 of $G - \{a_2, a_4\}$ such that either $[a_2, z_1] \longrightarrow a_4$ or $[a_4, z_1] \longrightarrow a_2$. We distinguish two cases.

Subcase 2.1: Suppose $[a_2, z_1] \longrightarrow a_4$. By O3 and the fact that $s_1a_1 \notin E(G)$, it follows that $z_1 = x_3$ or $z_1 = s_2$.

Subcase 2.1.1: Suppose first that $z_1 = x_3$. That is, $[a_2, x_3] \longrightarrow a_4$. By ()4, x_3 dominates $(G-S) - \{a_4\}$. Since s_1 dominates $((G-S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$, it follows that $s_1a_4 \in E(G)$. If $x_3s_2 \in E(G)$ or $a_4s_2 \in E(G)$, then $\{x_3, a_4\}$ dominates G, a contradiction. Hence $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for $1 \le i \le k-1$, it follows that $a_3s_2 \in E(G)$ and $x_4s_2 \in E(G)$. Figure 4.12 now depicts our situation.

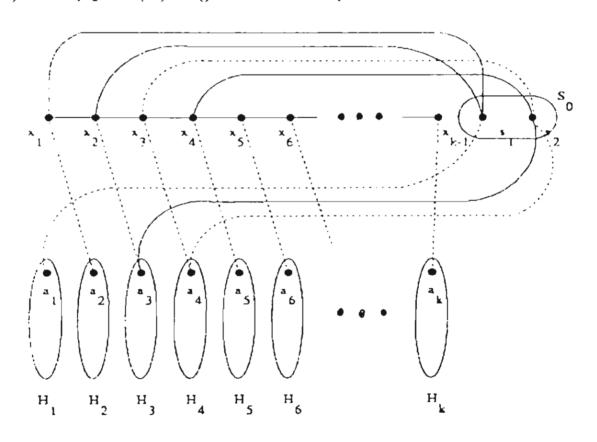


Figure 4.12

Now consider $G + a_3a_5$. Since $\gamma(G + a_3a_5) = 2$, there is a vertex z_2 of $G - \{a_3, a_5\}$ such that either $[a_3, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_3$. In either case, $z_2 \notin S_0$ since $s_1a_1 \notin E(G)$

and $s_2a_4 \notin E(G)$. Suppose $[a_3, z_2] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Since s_1 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$, it follows that $s_1a_5 \in E(G)$. Because $x_4s_2 \in E(G)$, $\{x_4, a_5\}$ dominates G, a contradiction. Hence $[a_5, z_2] \longrightarrow a_3$. By O3 and O4, $\{x_2, a_3\}$ dominates $G - S_0$. Since s_1 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$, $s_1x_2 \in E(G)$. But then $\{x_2, a_3\}$ dominates G since $a_3s_2 \in E(G)$. This contradiction completes the proof of Subcase 2.1.1.

Subcase 2.1.2: Suppose $z_1 = s_2$. That is, $[a_2, s_2] \longrightarrow a_4$. Then s_2 dominates $((G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$. Recall that $[a_3, s_1] \longrightarrow a_1$ and $x_1 s_1 \in E(G)$. Thus a_5 is adjacent to both s_1 and s_2 , $s_1 a_1 \notin E(G)$ and $s_2 a_4 \notin E(G)$.

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_2 of $G - \{a_2, a_5\}$ such that $[a_2, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_1 \notin E(G)$ and $s_2a_4 \notin E(G)$. Suppose $[a_2, z_2] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Thus $\{x_4, a_5\}$ dominates G since a_5 is adjacent to both s_1 and s_2 , and again we have a contradiction. Hence $[a_5, z_2] \longrightarrow a_2$. By O3 and O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since $x_1s_1 \in E(G)$ and $x_1s_2 \in E(G)$, $\{x_1, a_2\}$ dominates G. This contradiction completes the proof of Subcase 2.1.2 and therefore also Subcase 2.1.

Subcase 2.2: Suppose $[a_4, z_1] \longrightarrow a_2$. Recall that $[a_3, s_1] \longrightarrow a_1$, $s_1a_1 \notin E(G)$, $s_1x_2 \in E(G)$ and $x_1s_1 \in E(G)$. Since $[a_4, z_1] \longrightarrow a_2$ and $s_1a_1 \notin E(G)$, it follows from O3 that either $z_1 = x_1$ or $z_1 = s_2$.

Subcase 2.2.1: Suppose $z_1 = x_1$. That is, $[a_4, x_1] \longrightarrow a_2$. By O3 and O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since $x_1 s_1 \in E(G)$, if either $x_1 s_2 \in E(G)$ or $a_2 s_2 \in E(G)$, then $\{x_1, a_2\}$ dominates G, a contradiction. Hence $x_1 s_2 \notin E(G)$ and $a_2 s_2 \notin E(G)$. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for $1 \le i \le k-1$, $a_1 s_2 \in E(G)$ and $x_2 s_2 \in E(G)$. Figure 4.13 illustrates our situation.

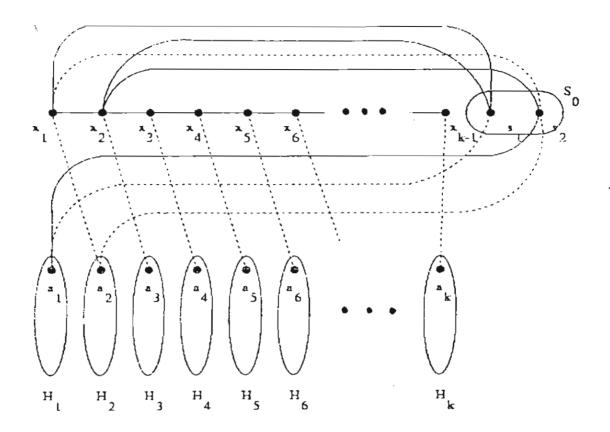


Figure 4.13

Now consider $G+a_3a_5$. Since $\gamma(G+a_3a_5)=2$, there is a vertex z_2 of $G-\{a_3,a_5\}$ such that either $[a_3,z_2]\longrightarrow a_5$ or $[a_5,z_2]\longrightarrow a_3$. In either case, $z_2\notin S_0$ since $s_1a_1\notin E(G)$ and $s_2a_2\notin E(G)$. Suppose $[a_5,z_2]\longrightarrow a_3$. Then by O3 and O4, $\{x_2,a_3\}$ dominates $G-S_0$. Since $x_2s_1\in E(G)$ and $x_2s_2\in E(G)$, $\{x_2,a_3\}$ dominates G, a contradiction. Hence $[a_3,z_2]\longrightarrow a_5$. Then by O3 and O4, $\{x_4,a_5\}$ dominates $G-S_0$. Since $[a_3,s_1]\longrightarrow a_1$, it follows that $s_1a_5\in E(G)$. If $x_4s_2\in E(G)$ or $a_5s_2\in E(G)$, then $\{x_4,a_5\}$ dominates G, a contradiction. Thus $x_4s_2\notin E(G)$ and $a_5s_2\notin E(G)$.

Now consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_3 of $G - \{a_2, a_5\}$ such that either $[a_2, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_2$. In either case, $z_2 \neq s_1$ since $s_1a_1 \notin E(G)$.

Suppose $[a_2, z_3] \longrightarrow a_5$. By O3 and the fact that $z_3 \neq s_1$, it follows that either $z_3 = x_4$ or $z_3 = s_2$. Since $a_2s_2 \notin E(G)$ and $x_4s_2 \notin E(G)$, it follows that $z_3 \neq x_4$. Thus $z_3 = s_2$. But this is impossible since $s_2x_1 \notin E(G)$ and $a_2x_1 \notin E(G)$. Hence $[a_5, z_3] \longrightarrow a_2$. By O3 and the fact that $z_3 \neq s_1$, it follows that either $z_3 = x_1$ or $z_3 = s_2$. Since $x_1s_2 \notin E(G)$ and $a_5s_2 \notin E(G)$, $z_3 \neq x_1$. Thus $z_3 = s_2$. But this is impossible since $s_2x_4 \notin E(G)$ and $a_5x_4 \notin E(G)$. This contradiction completes the proof of Subcase 2.2.1.

Subcase 2.2.2: Suppose $z_1 = s_2$. That is, $[a_4, s_2] \longrightarrow a_2$. Then s_2 dominates $((G-S) \cup \{x_3\}) - (H_4 \cup \{a_2\})$. Recall that $[a_3, s_1] \longrightarrow a_1$, $s_1a_1 \notin E(G)$, $s_1x_2 \in E(G)$ and $x_1s_1 \in E(G)$. More specifically, $s_1a_1 \notin E(G)$ and $s_2a_2 \notin E(G)$, but $s_1a_4 \in E(G)$, $s_2x_3 \in E(G)$ and $s_2a_1 \in E(G)$.

Consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there is a vertex z_2 of $G-\{a_1,a_4\}$ such that either $[a_1,z_2] \longrightarrow a_4$ or $[a_4,z_2] \longrightarrow a_1$. In either case, $z_2 \neq s_2$ since $s_2a_2 \notin E(G)$. Suppose $[a_1,z_2] \longrightarrow a_4$. By O3, $z_2=x_3$ or $z_2=s_1$. By Lemma 3.4, $z_2 \neq s_1$ since $s_1a_4 \in E(G)$. Thus $z_2=x_3$. By O4, $\{x_3,a_4\}$ dominates $G-S_0$. Since $s_1a_4 \in E(G)$ and $s_2x_3 \in E(G)$, it follows that $\{x_3,a_4\}$ dominates G, a contradiction. Hence $[a_4,z_2] \longrightarrow a_1$. By O3 and the fact that $z_2 \neq s_2$, it follows that $z_2=s_1$. That is, $[a_4,s_1] \longrightarrow a_1$. Since $[a_3,s_1] \longrightarrow a_1$. vertex s_1 dominates $(G-S)-\{a_1\}$. Because $s_1x_1 \in E(G)$ and $s_2a_1 \in E(G)$, $\{s_1,a_1\}$ dominates G. This contradiction completes the proof of Subcase 2.2.2 and hence also Subcase 2.2. Hence $\gamma(G+a_2a_4)>2$. contradicting the 3- γ -criticality of G. Hence for all $z \in V(G)-\{a_1,a_3\}$, $\{a_3,z\}$ does not dominate $G-\{a_1\}$. This implies that $\gamma(G+a_1a_3)>2$. again a contradiction. This completes the proof of the theorem.

Our final result in this section may be viewed as yet another extension of Theorem 4.1.

Theorem 4.5 Let G be a connected 3- γ -critical graph and let S be a vertex cutset in G with $4 \leq |S| \leq 5$. If each component of G - S has at least three vertices, then $\omega(G - S) \leq |S| - 2$.

Proof: Suppose, to the contrary, that $\omega(G-S) \geq |S|-1$. By Theorem 4.1(i), it follows that $\omega(G-S) = |S|-1$. Put t=|S|-1. Note that $3 \leq t \leq 4$ Let H_i be a component of G-S for $i=1,2,\ldots,t$. Choose a vertex $w_i \in V(H_i)$ for $i=1,2,\ldots,t$. Clearly, $W=\{w_1,w_2,\ldots,w_t\}$ is an independent set. By Lemma 2.4(i), the vertices of W may be ordered as a_1,a_2,\ldots,a_t in such a way that there exist distinct vertices x_1,x_2,\ldots,x_{t-1} such that $[a_i,x_i] \longrightarrow a_{i+1}$, for $i=1,2,\ldots,t-1$. By Lemma 3.4, $x_ia_{i+1} \notin E(G)$ for $i=1,2,\ldots,t-1$. Thus $x_1x_2\cdots x_{t-1}$ is a path. Without loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. Since $|V(H_i)| \geq 3$, it follows that $x_i \in S$ for $i=1,2,\ldots,t-1$.

Let $S_0 = S - \{x_1, x_2, \dots, x_{t-1}\}$. Then $|S_0| = 2$ and so we may set $S_0 = \{s_1, s_2\}$. Note that observations O1, O2, O3 and O4 made in the proof of Theorem 4.4 are still valid in the present situation. Furthermore, O4 is still true if we replace a_i with b_i , where b_i belongs to the same component as a_i .

Since $|V(H_t)| \ge 3$, there are vertices $b_t, c_t \in V(H_t) - \{a_t\}$. Consider $G + a_1b_t$. Since $\gamma(G + a_1b_t) = 2$, there is a vertex z of $G - \{a_1, b_t\}$ such that either $[a_1, z] \longrightarrow b_t$ or $[b_t, z] \longrightarrow a_1$. In either case, $z \in S$. We distinguish two cases.

Case 1: Suppose $[a_1, z] \longrightarrow b_t$.

By O1 and Lemma 3.4, $z \notin \{x_1, x_2, \ldots, x_{t-1}\}$. Then it follows that $z \in S_0$. Without loss of generality, we may assume that $z = s_1$. That is, $[a_1, s_1] \longrightarrow b_t$. Then s_1 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. If $x_2s_2 \in E(G)$ or $s_1s_2 \in E(G)$, then $\{x_2, s_1\}$ dominates G by O1, together with the fact that $x_1x_2 \cdots x_{t-1}$ is a path with $2 \le t - 1 \le 3$ and s_1 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. But this is a contradiction and so $x_2s_2 \notin E(G)$ and $s_1s_2 \notin E(G)$. Since $[a_2, x_2] \longrightarrow a_3$ and $x_2s_2 \notin E(G)$, $a_2s_2 \in E(G)$. Furthermore, since $[a_1, s_1] \longrightarrow b_t$ and $s_1s_2 \notin E(G)$, $a_1s_2 \in E(G)$.

Figure 4.14 illustrates the present situation.

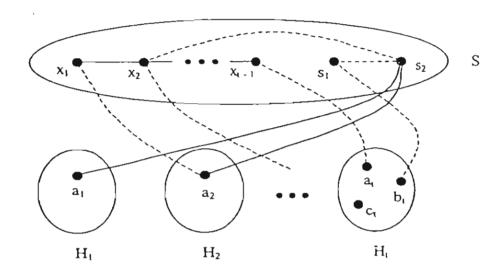


Figure 4.14

Now consider $G + a_1c_t$. Since $\gamma(G + a_1c_t) = 2$, there must be a vertex z_1 of $G - \{a_1, c_t\}$ such that either $[a_1, z_1] \longrightarrow c_t$ or $[c_t, z_1] \longrightarrow a_1$. In either case, $z_1 \in S$. We distinguish two cases.

Subcase 1.1: Suppose $[a_1, z_1] \longrightarrow c_t$.

By O1 and Lemma 3.4, $z_1 \notin \{x_1, x_2, \ldots, x_{t-1}\}$. Since $s_1b_t \notin E(G)$ and $a_1b_t \notin E(G)$, it follows that $z_1 \neq s_1$. But then $z_1 = s_2$. That is, $[a_1, s_2] \longrightarrow c_t$. Hence s_2 dominates $\bigcup_{j=2}^t V(H_j) - \{c_t\}$. Since $s_1s_2 \notin E(G)$ and $[a_1, s_2] \longrightarrow c_t$, it follows that $a_1s_1 \in E(G)$. Now a_1 is adjacent to both s_1 and s_2 . Further, a_t is also adjacent to both s_1 and s_2 since s_1 dominates $\bigcup_{j=2}^t V(H_j) - \{c_t\}$.

Consider $G + a_1 a_t$. Since $\gamma(G + a_1 a_t) = 2$, there must be a vertex z_2 of $G - \{a_1, a_t\}$ such that either $[a_1, z_2] \longrightarrow a_t$ or $[a_t, z_2] \longrightarrow a_1$. In either case, $z_2 \in S$. By Lemma 3.4 and the fact that a_1 and a_t are adjacent to both s_1 and $s_2, z_2 \notin S_0$. By O3, $[a_t, z_2] \longrightarrow a_1$ is impossible. Hence $[a_1, z_2] \longrightarrow a_t$. By O3 and O4, $\{x_{t-1}, a_t\}$ dominates $G - S_0$. Since $a_t s_1 \in E(G)$ and $a_t s_2 \in E(G)$, it follows that $\{x_{t-1}, a_t\}$ dominates G. This contradiction completes the proof of Subcase 1.1.

Subcase 1.2: $[c_t, z_1] \longrightarrow a_1$.

Since $x_1a_2 \notin E(G)$ and $a_2c_t \notin E(G)$, $z_1 \neq x_1$. By O1, $x_ta_1 \in E(G)$ for $2 \leq i \leq t-1$. Thus by Lemma 3.4, $z_1 \notin \{x_2, \ldots, x_{t-1}\}$. Furthermore, $z_1 \neq s_2$ since $a_1s_2 \in E(G)$. Thus $z_1 = s_1$. That is, $[c_t, s_1] \longrightarrow a_1$. Recall that $[a_1, s_1] \longrightarrow b_t$, $x_2s_2 \notin E(G)$, $s_1s_2 \notin E(G)$, but $a_2s_2 \in E(G)$ and $a_1s_2 \in E(G)$. Since $[c_t, s_1] \longrightarrow a_1$ and $[a_1, s_1] \longrightarrow b_t$, s_1 dominates $(G-S)-\{a_1,b_t\}$. Furthermore, since $s_1s_2 \notin E(G)$ and $[c_t, s_1] \longrightarrow a_1$, $c_ts_2 \in E(G)$. Now c_t is adjacent to every vertex of S by O1 and the fact that s_1 dominates $(G-S)-\{a_1,b_t\}$.

Since $|V(H_1)| \ge 3$, there are vertices $b_1, c_1 \in V(H_1) - \{a_1\}$. Consider $G + b_1 c_t$. Since $\gamma(G + b_1 c_t) = 2$, there is a vertex z_2 of $G - \{b_1, c_t\}$ such that either $[b_1, z_2] \longrightarrow c_t$ or $[c_t, z_2] \longrightarrow b_1$. In either case, $z_2 \in S$. Suppose $[b_1, z_2] \longrightarrow c_t$. By Lemma 3.4, $z_2 c_t \notin E(G)$.

Thus $z_2 \notin S$ since c_t is adjacent to every vertex of S, a contradiction. Hence $[c_t, z_2] \longrightarrow b_1$. Since $x_1a_2 \notin E(G)$ and $c_ta_2 \notin E(G)$, $z_2 \neq x_1$. By O1, $x_ib_1 \in E(G)$ for $2 \leq i \leq t-1$. Thus by Lemma 3.4, $z_2 \notin \{x_2, \ldots, x_{t-1}\}$. Furthermore, $z_2 \neq s_1$ since $s_1b_1 \in E(G)$. Thus $z_2 = s_2$. Now s_2 dominates $\bigcup_{j=1}^{t-1} V(H_j) - \{b_1\}$.

Now consider $G + c_1c_t$. Since $\gamma(G + c_1c_t) = 2$, there is a vertex z_3 of $G - \{c_1, c_t\}$ such that either $[c_1, z_3] \longrightarrow c_t$ or $[c_t, z_3] \longrightarrow c_1$. In either case, $z_3 \in S$. By applying the same argument as above, the case $[c_1, z_3] \longrightarrow c_t$ is impossible. Hence $[c_t, z_3] \longrightarrow c_1$. Since $x_1a_2 \notin E(G)$ and $c_ta_2 \notin E(G)$, $z_3 \neq x_1$. Then $z_3 \in \{s_1, s_2\} \cup \{x_2, \ldots, x_{t-1}\}$. But this contradicts Lemma 3.4 since for $2 \leq i \leq t-1$, x_i , s_1 and s_2 are all adjacent to c_1 . This completes the proof of Subcase 1.2 and hence the proof of Case 1 is complete.

Case 2: Suppose, therefore, that $[b_t, z] \longrightarrow a_1$.

By O3, $z \in S_0$. Without loss of generality, we may assume that $z = s_1$. That is, $[b_t, s_1] \longrightarrow a_1$. Thus s_1 dominates $\bigcup_{j=1}^{t-1} V(H_j) - \{a_1\}$. Since $[a_1, x_1] \longrightarrow a_2$ and $s_1 a_1 \notin E(G)$, $x_1 s_1 \in E(G)$. Figure 4.15 depicts our situation.

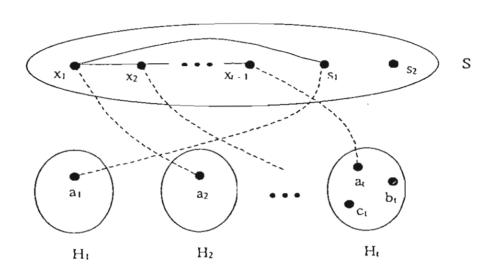


Figure 4.15

Since $|V(H_1)| \geq 3$, there is a vertex b_1 of $V(H_1) - \{a_1\}$. Consider $G + b_1b_t$. Since $\gamma(G + b_1b_t) = 2$, there is a vertex z_1 of $G - \{b_1, b_t\}$ such that either $[b_1, z_1] \longrightarrow b_t$ or $[b_t, z_1] \longrightarrow b_1$. In either case, $z_1 \in S$. We distinguish two subcases.

Subcase 2.1: Suppose $[b_1, z_1] \longrightarrow b_t$. Since $[a_i, x_i] \longrightarrow a_{i+1}, b_t x_i \in E(G)$ for $1 \le i \le t-1$ by O1. Then $z_1 \notin \{x_1, \ldots, x_{t-1}\}$ by Lemma 3.4. Hence $z_1 = s_1$ or $z_1 = s_2$.

Subcase 2.1.1: Suppose $z_1 = s_1$. That is, $[b_1, s_1] \longrightarrow b_t$. Since $[b_t, s_1] \longrightarrow a_1$, s_1 dominates $(G - S) - \{a_1, b_t\}$. Since $x_2a_1 \in E(G)$ and $x_2b_t \in E(G)$ by O1, if $x_2s_2 \in E(G)$ or $s_1s_2 \in E(G)$, then $\{x_2, s_1\}$ dominates G, a contradiction. Hence $x_2s_2 \notin E(G)$ and $s_1s_2 \notin E(G)$. Because $[a_2, x_2] \longrightarrow a_3$ and $x_2s_2 \notin E(G)$, $a_2s_2 \in E(G)$. Since $[b_1, s_1] \longrightarrow b_t$ and $s_1s_2 \notin E(G)$, $b_1s_2 \in E(G)$. Since s_1 dominates $(G - S) - \{a_1, b_t\}$, edges s_1b_1, s_1a_2 and s_1a_t belong to E(G). Figure 4.16 illustrates our situation.

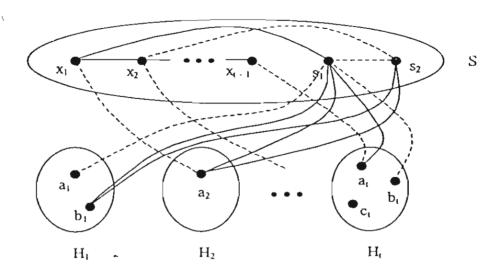


Figure 4.16

We will now show that $s_2a_t \notin E(G)$. Suppose, to the contrary, that $s_2a_t \in E(G)$. Consider $G+b_1a_t$. Since $\gamma(G+b_1a_t)=2$, there is a vertex z_2 of $G-\{b_1,a_t\}$ such that either $[b_1,z_2] \longrightarrow a_t$ or $[a_t,z_2] \longrightarrow b_1$. In either case, $z_2 \in S$, but by Lemma 3.4, $z_2 \notin \{s_1,s_2\}$ since b_1 and a_t are adjacent to both s_1 and s_2 . Suppose $[b_1,z_2] \longrightarrow a_t$. Then by O1 and Lemma 3.4, $z_2 = x_{t-1}$. That is, $[b_1,x_{t-1}] \longrightarrow a_t$. By O4, and the fact that a_t is adjacent to both s_1 and s_2 , it follows that $\{x_{t-1},a_t\}$ dominates G, a contradiction. Hence $[a_t,z_2] \longrightarrow b_1$. But then by O1 and Lemma 3.4, $z_2 \neq x_i$ for $2 \leq i \leq t-1$. Furthermore, $z_2 \neq x_1$ since $x_1a_2 \notin E(G)$. Hence $z_2 \notin S$, a contradiction. This proves that $s_2a_t \notin E(G)$. By applying similar arguments, we also obtain that $s_2c_t \notin E(G)$.

Now consider $G + a_2c_t$. Since $\gamma(G + a_2c_t) = 2$, there is a vertex z_3 of $G - \{a_2, c_t\}$ such that either $[a_2, z_3] \longrightarrow c_t$ or $[c_t, z_3] \longrightarrow a_2$. In either case, $z_3 \in S$. Suppose that $[a_2, z_3] \longrightarrow c_t$. By O1, x_i is adjacent to c_t for $1 \leq i \leq t-1$. Since s_1 dominates $(G - S) - \{a_1, b_t\}$, $s_1c_t \in E(G)$. By Lemma 3.4, $z_3 \notin \{s_1, x_1, x_2, \ldots, x_{t-1}\}$. Therefore, $z_3 = s_2$. But this is impossible, since $s_2a_t \notin E(G)$ and $a_2a_t \notin E(G)$. Hence $[c_t, z_3] \longrightarrow a_2$. Since a_2 is adjacent to s_1 and s_2 , $z_3 \notin \{s_1, s_2\}$ by Lemma 3.4. Therefore, $z_3 \in \{x_1, x_2, \ldots, x_{t-1}\}$. Suppose $z_3 = x_1$. Then x_1 dominates $\bigcup_{j=1}^{t-1} V(H_j) - \{a_2\}$. Thus $\{x_1, a_2\}$ dominates G by O1, O2 and the fact that $x_1x_2 \cdots x_{t-1}$ is a path with $2 \leq t-1 \leq 3$ and a_2 is adjacent to both s_1 and s_2 , a contradiction. Hence $z_3 \neq x_1$. Since $x_2s_2 \notin E(G)$ and $c_ts_2 \notin E(G)$, $z_3 \neq x_2$. This implies that t = 4 and $z_3 = x_3 = x_{t-1}$. But this also contradicts Lemma 3.4 since $x_3a_2 \in E(G)$ by O1. This completes the proof of Subcase 2.1.1.

Subcase 2.1.2: Suppose $z_1 = s_2$.

That is, $[b_1, s_2] \longrightarrow b_t$. Then s_2 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. Recall that $[b_t, s_1] \longrightarrow a_1$. Since $s_2b_t \notin E(G)$, $s_1s_2 \in E(G)$. But then $\{x_2, s_2\}$ dominates G by O1, together with the facts that $x_1x_2 \cdots x_t$ is a path with $2 \le t - 1 \le 3$, $s_1s_2 \in E(G)$ and s_2 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. This contradiction completes the proof of Subcase 2.1.2 and hence also of Subcase 2.1.

Subcase 2.2: Suppose, then, that $[b_t, z_1] \longrightarrow b_1$.

By O1 and Lemma 3.4, $z_1 \neq x_i$ for $2 \leq i \leq t-1$. Since $x_1a_2 \notin E(G)$ and $s_1a_1 \notin E(G)$, $z_1 \notin \{x_1, s_1\}$. But then $z_1 = s_2$. Thus s_2 dominates $\bigcup_{j=1}^{t-1} V(H_j) - \{b_1\}$. Recall that $[b_t, s_1] \longrightarrow a_1$ and $x_1s_1 \in E(G)$. Then y and w must be adjacent to s_1 and s_2 for all $y \in V(H_1) - \{a_1, b_1\}$ and for all $w \in V(H_{t-1})$. Since $|V(H_i)| \geq 3$, for $1 \leq i \leq t$, there must be a vertex $c_1 \in V(H_1) - \{a_1, b_1\}$ and a vertex $b_{t-1} \in V(H_{t-1}) - \{a_{t-1}\}$. Then c_1 and b_{t-1} are adjacent to both s_1 and s_2 .

Consider, finally, $G + c_1b_{t-1}$. Since $\gamma(G + c_1b_{t-1}) = 2$, there must be a vertex z_2 of $G - \{c_1, b_{t-1}\}$ such that either $\{c_1, z_2\} \longrightarrow b_{t-1}$ or $[b_{t-1}, z_2] \longrightarrow c_1$. In either case, $z_2 \in S$, but $z_2 \notin \{s_1, s_2\}$ by Lemma 3.4 and the fact that c_1 and b_{t-1} are adjacent to s_1 and s_2 . Suppose $[c_1, z_2] \longrightarrow b_{t-1}$. By O1 and Lemma 3.4, $z_2 \neq x_1$. Since $x_2a_3 \notin E(G)$, $z_2 \neq x_2$. Then t = 4 and $z_2 = x_3$. But this is impossible since $c_1a_4 \notin E(G)$ and $x_3a_4 \notin E(G)$. Hence $[b_{t-1}, z_2] \longrightarrow c_1$. Since $z_2 \notin \{s_1, s_2\}$, |(t-1)-1| < 2 by O3. This implies that t-1=2. Then by O1 and Lemma 3.4, $z_2 \neq x_2$. Thus $z_2 = x_1$. But then x_1 dominates $(G-S) - \{c_1, a_2\}$. Hence $\{x_1, s_2\}$ dominates G, since $x_1s_1 \in E(G)$, $x_1x_2 \in E(G)$ and s_2 dominates $(H_1 \cup H_2) - \{b_1\}$. This contradiction completes the proof of Subcase 2.2 and hence Case 2. This proves that $\gamma(G + a_1b_t) > 2$, contradicting the 3- γ -criticality of G. This completes the proof of Theorem 4.5.

5. $3-\gamma$ -criticality and k-factor-criticality

In this section, by using above assembled known results, we prove several theorems which say that under certain assumptions on connectivity and minimum degree, a 3- γ -critical graph G is k-factor-critical for k = 1, 2, and 3. We begin with a result concerning a perfect matching and a near perfect matching.

Lemma 5.1. Let G be a connected 3- γ -critical graph.

- (i) Then if |V(G)| is even, G contains a perfect matching, while
- (ii) if |V(G)| is odd. G contains a near-perfect matching.

Proof: Part (i) is due to Summer and Blitch [SB]. We prove only part (ii). Suppose G is a 3- α -critical graph with an odd number of vertices and suppose G does not contain a near-perfect matching. Consider the Gallai-Edmonds decomposition of G. (See [LP].) That is, let D(G) denote the set of all vertices $v \in V(G)$ such that some maximum matching of G does not cover v. Let A(G) denote the set of all neighbors of vertices of D(G) which are not themselves in D(G) and finally, let C(G) = V(G) - D(G) - A(G). Since G contains no near-perfect matching, the number of odd components of D(G) is at least two larger than |A(G)|. If $A(G) = \emptyset$, then G is disconnected, a contradiction. So $A(G) \neq \emptyset$ and hence is a vertex cutset of G. But $\omega(G - A(G)) \geq |A(G)| + 2$ which contradicts Theorem 2.2.

Now let us turn our attention to the family of factor-critical graphs. (We refer the reader again to [LP] for a more extensive treatment of these graphs.) The following result is an immediate result of "Wojcicka's Theorem" (Theorem 2.10). (Note also that for a 3- γ -critical graph G, the assumptions that G is 2-connected and that G has minimum

degree at least two are equivalent. This is an immediate consequence of Lemma 5.5.8 of [B].)

Theorem 5.2. Let G be a 2-connected 3- γ -critical graph having odd order. Then G is factor-critical.

•

.

The graphs shown in Figure 4.1 (with n even) are 3- γ -critical and connected, but not factor-critical. Thus our lower bound on the connectivity stated in the hypotheses of Theorem 5.2 is best possible. More generally, if G is a 3- γ -critical graph with a cutvertex v, then v is adjacent to an endvertex (cf. [B]) and hence mindeg G = 1 and hence G is not factor-critical.

Our next result shows that if the connectivity and minimum degree are sufficiently high in a 3- γ -critical graph of even order, then the graph must be bicritical (2-factor-critical).

Theorem 5.3. If G is a 3-connected 3- γ -critical graph with minimum degree at least 4 and having even order, then G is bicritical.

Proof: Suppose, to the contrary, that G is a 3-connected 3- γ -critical graph with minimum degree at least 4 and having even order, but G is not bicritical. Then there exist vertices u and v in G such that $G' = G - \{u, v\}$ has no perfect matching. By Tutte's 1-factor theorem, there then must exist an $S' \subseteq V(G')$ such that

$$\omega_o(G'-S') > |S'|,$$

where $\omega_o(G'-S')$ denotes the number of components of odd order in G'-S'. Since |V(G')| is even, by parity $\omega_o(G'-S') \geq |S'|+2$. Put $S=S' \cup \{u,v\}$. Clearly, $\omega_o(G-S)=\omega_o(G'-S')$. But by Lemma 5.1(i), G has a perfect matching, so

$$|S| = |S'| + 2 \le \omega_o(G' - S') = \omega_o(G - S) \le |S|,$$

and hence $|S| = \omega_0(G - S)$.

By Theorem 4.1(i), $|S| \leq 3$. Since G is 3-connected, $|S| = \omega_0(G - S) = 3$ and G - S has no even components. By Theorem 4.1(ii), at least one component of G - S is a singleton. Let H_1 denote such a singleton component of G - S and let $V(H_1) = \{x\}$. Then deg $(x) \leq 3$, a contradiction. Hence G is bicritical.

The minimum degree bound in Theorem 5.3 is best possible as there exist 3-connected $3-\gamma$ -critical graphs having minimum degree 3 which are not bicritical. Two such graphs are shown in Figure 5.1. The first is due to Sumner and Blitch [SB].

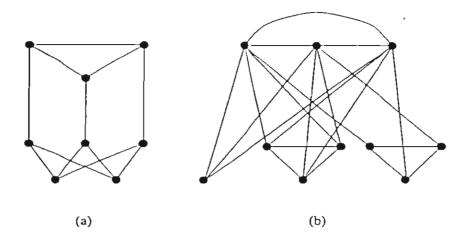


Figure 5.1

On the other hand, if we consider planar graphs, then this minimum degree bound can be relaxed.

Theorem 5.4. If G is a 3-connected 3- γ -critical planar graph having even order, then G is bicritical.

Proof: Suppose G is not bicritical. Using exactly the same argument as in the proof of Theorem 5.3, again we arrive at the conclusion that the Tutte Set S defined there has size 3 and $\omega_o(G-S)=3$ as well. Since G is 3-connected, each of the three (odd) components of G-S has edges to each of the three vertices of S. But then G is contractible to a $K_{3,3}$ and hence is non-planar, a contradiction.

We conclude this section by establishing a result involving 3-factor-critical graphs.

.

Theorem 5.5 If G is a 4-connected 3- γ -critical graph of odd order and having minimum degree at least 5, then G is 3-factor-critical.

Proof: Suppose, by way of contradiction, that G is not 3-factor-critical. By Theorem 2.11, there is a set $S \subset V(G)$ with $|S| \geq 3$ such that $\omega_o(G-S) > |S| - 3$.

Since G is factor-critical, by Theorem 5.2, $\omega_o(G-S) \leq |S|-1$. Since G has odd order, $\omega_o(G-S) \neq |S|-2$. But then $\omega_o(G-S) = |S|-1$. By Theorem 4.4 and our connectivity hypothesis, $4 \leq |S| \leq 5$. Since G-S has |S|-1 odd components, there is a component of G-S, say H_1 , such that $|V(H_1)|=1$ by Theorem 4.5. Let $V(H_1)=\{w_1\}$. If |S|=4, then $d(w_1) \leq 4$, a contradiction of our minimum degree hypothesis. Hence |S|=5. By Theorem 4.1(i), G-S has no even components. For $i=1,\ldots,4$, let H_i be the components of G-S. Choose a vertex $w_i \in V(H_i)$, for each $i=1,\ldots,4$. Clearly $W=\{w_1,w_2,w_3,w_4\}$ is an independent set. By Lemma 2.4, the vertices of W may be ordered as a_1,a_2,a_3 and a_4 in such a way that there exists a path $x_1x_2x_3$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$, for each i=1,2,3. By Lemma 3.4, $x_ia_{i+1} \notin E(G)$ for each i=1,2,3. Clearly, $x_i \in S$

for i=1,2,3. Let $S_0=S-\{x_1,x_2,x_3\}$. So $|S_0|=2$. Let $S_0=\{s_1,s_2\}$. With loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. Note that observations O1, O2, O3 and O4, stated in the proof of Theorem 4.4, remain valid in the present situation. Since for each $i=1,2,3,\ x_ia_{i+1}\notin E(G)$, it follows that $|V(H_i)|\geq 3$ for $2\leq i\leq 4$ because mindeg $(G)\geq 5$ and |S|=5. Further, $V(H_1)=\{a_1\}$, by Theorem 4.5 and a_1 is adjacent to every vertex of S. But then for each $i,2\leq i\leq 4$, there exist two distinct vertices b_i and c_i in $V(H_i)-\{a_i\}$.

Let y be a vertex of $(H_3 \cup H_4) - \{a_3, a_4\}$. Consider $G + a_1 y$. Since $\gamma(G + a_1 y) = 2$, there is a vertex z of $G - \{a_1, y\}$ such that either $[a_1, z] \longrightarrow y$ or $[y, z] \longrightarrow a_1$. In either case, $z \in S$. Since a_1 is adjacent to every vertex of S_0 , the case $[y, z] \longrightarrow a_1$ is impossible by O3 and Lemma 3.4. Hence, $[a_1, z] \longrightarrow y$. By O1 and Lemma 3.4, $z \notin \{x_1, x_2\}$. Since $x_3 a_4 \notin E(G)$ and $a_1 a_4 \notin E(G)$, it follows that $z \neq x_3$. Thus $z \in S_0$.

Now let $y=b_3$ and consider $G+a_1b_3$. Then, by the above argument, there is a vertex $z\in S_0$ such that $[a_1,z]\longrightarrow b_3$. Without any loss of generality, we may assume that $z=s_1$. That is, $[a_1,s_1]\longrightarrow b_3$. By Lemma 3.4, $s_1b_3\notin E(G)$. Next let $y=c_3$ and consider $G+a_1c_3$. Again there is a vertex $z_1\in S_0$ such that $[a_1,z_1]\longrightarrow c_3$. Since $s_1b_3\notin E(G)$ and $a_1b_3\notin E(G)$, $z_1\neq s_1$. Thus $z_1=s_2$. That is, $[a_1,s_2]\longrightarrow c_3$ and $s_2c_3\notin E(G)$. Finally, we let $y=b_4$ and consider $G+a_1b_4$. Then there is a vertex $z_2\in S_0$ such that $[a_1,z_2]\longrightarrow b_4$. But $z_2\neq s_1$ since $s_1b_3\notin E(G)$ and $a_1b_3\notin E(G)$. Thus $z_2=s_2$. But this is impossible since $s_2c_3\notin E(G)$ and $a_1c_3\notin E(G)$. This proves that $\gamma(G+a_1b_4)>2$, contradicting the 3-criticality of G. This completes the proof of our theorem.

The bound on the minimum degree stated in the hypotheses of Theorem 5.5 is best possible since there is a 4-connected 3- γ -critical graph with minimum degree 4 and having odd order, but which is not 3-factor-critical. Such a graph G_0 is shown in Figure 5.2 below.

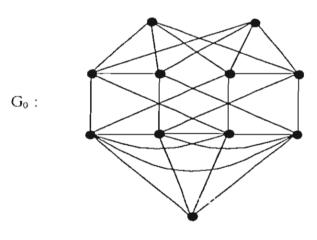


Figure 5.2

6. Results about 3- γ -criticality in claw-free graphs

A graph is said to be claw-free if it contains no induced subgraph isomorphic to $K_{1,3}$. In [P] the following result was proved.

Theorem 6.1. If G is a 3-connected claw-free graph of even order, then G is bicritical.

If the even graphs involved are 3- γ -critical, we can lower the demand on connectivity and still obtain bicriticality.

Theorem 6.2. Let G be a 3- γ -critical 2-connected claw-free graph of even order. Then if mindeg $G \geq 3$, G is bicritical.

Proof: Suppose to the contrary that G is not bicritical. Then there exist vertices u and v of G such that $G' = G - \{u, v\}$ has no perfect matching. By Tutte's theorem, there is a subset $S' \subseteq V(G')$ such that $\omega_o(G' - S') > |S'|$ and so by parity since |V(G)| is even, $\omega_o(G' - S') \ge |S'| + 2$. Let $S = S' \cup \{u, v\}$. Clearly |S| = |S'| + 2 and $|S| = |S'| + 2 \le \omega_o(G' - S') = \omega_o(G - S) \le |S| = |S'| + 2$, since G contains a perfect matching by Lemma 5.1(i). Thus $\omega_o(G - S) = |S|$.

By Theorem 4.1(i), $|S| \leq 3$. Let H_i , $i=1,\ldots,|S|$, denote the odd components of G-S. First suppose that |S|=3. Clearly G-S has no even components. Set $S=\{u,v,w\}$. By Theorem 4.1(ii), at least one component of G-S is a singleton. Without loss of generality, we may assume that $|V(H_1)|=1$ and that $V(H_1)=\{x\}$. Since mindeg $G\geq 3$, vertex x is adjacent to every vertex of S. Since S is 2-connected, there are at least two vertices of S which are adjacent to some vertex of S. Similarly, there are at least two vertices of S which are adjacent to some vertex of S. Because |S|=3, there must be a vertex, say S0, such that S1 is adjacent to some vertex of S2. Moreover, since S3 is 2-connected, S3 is a claw center in S4, a contradiction. This proves that S5 is 2. Moreover, since S6 is 2-connected, S6 is 2-connected, S7 is 2.

Suppose $S = \{u, v\}$. If G - S contains an even component then c(G - S) = 3. Thus, by Theorem 4.1(iii), G must have the structure shown in Figure 4.1 and hence G is not 2-connected, a contradiction. Therefore, G - S has no even components. Thus we need only consider the case when G - S contains exactly two odd components and no even component.

Since mindeg $G \geq 3$, it follows that $|V(H_1)| \geq 3$ and $|V(H_2)| \geq 3$. Now $\gamma(G) = 3$, so there exists a vertex $z \in V(G) - \{u,v\}$ such that $z \notin N(u) \cup N(v)$. Let $A = V(G) - (S \cup N(u) \cup N(v))$. Thus $A \neq \emptyset$. Furthermore, suppose $z_1, z_2 \in A$. If $z_1 \in V(H_1)$ and $z_2 \in V(H_2)$, then $d(z_1, z_2) > 3$, contradicting Lemma 2.6. Thus z_1 and z_2 must belong to the same component of G - S, say H_2 . This implies that $V(H_1) = N_{H_1}(u) \cup N_{H_1}(v)$ and $V(H_2) = N_{H_2}(u) \cup N_{H_2}(v) \cup A$. Moreover, since G is 2-connected and $|V(H_i)| \geq 3$ for i = 1, 2, it follows that $N(u) \cap V(H_i) \neq \emptyset$ and $N(v) \cap V(H_i) \neq \emptyset$, for i = 1, 2. Now suppose $x \in N_{H_1}(u)$ and $y \in N_{H_2}(v)$. Figure 6.1 illustrates the situation.

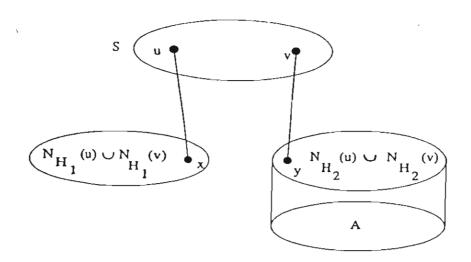


Figure 6.1.

Consider G + xy. Since G is 3- γ -critical, there exists a vertex $w \in V(G) - \{x, y\}$ such that either $[x, w] \longrightarrow y$ or $[y, w] \longrightarrow x$. We distinguish these two cases.

Case 1: Suppose $[x, w] \longrightarrow y$. Clearly, $w \in V(H_2)$ and $wy \notin E(G)$; otherwise $\{x, w\}$ dominates G. If $w \in N_{H_2}(v)$, then $G[\{v, w, y, v'\}]$ is a claw centered at v for some vertex $v' \in N_{H_1}(v)$, a contradiction. Thus $w \in N_{H_2}(u) - N_{H_2}(v)$ or $w \in A$.

Case 1.1: Suppose $w \in N_{H_2}(u) - N_{H_2}(v)$. Since $[x, w] \longrightarrow y$, w is adjacent to every vertex of $V(H_2) - \{y\}$ and x is adjacent to every vertex of $V(H_1) \cup \{v\}$. Figure 6.2 illustrates this situation.

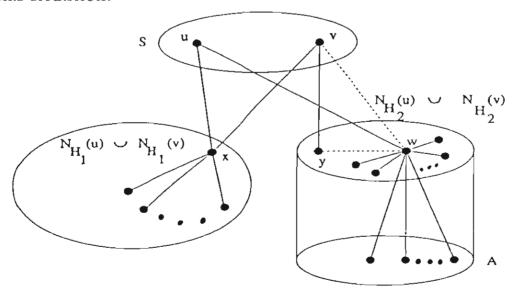


Figure 6.2.

Now consider G+vw. There is a vertex $z \in V(G)-\{v,w\}$ such that either $[v,z] \longrightarrow w$. or $[w,z] \longrightarrow v$. Suppose $[v,z] \longrightarrow w$. Since $A \neq \emptyset$ and v is not adjacent to any vertex of A, it follows that $z \in V(H_2)$. Because $zw \notin E(G)$ and w is adjacent to every vertex of

 $V(H_2) - \{y\}$, it follows that z = y. Furthermore, since $[v, z] \longrightarrow w$ and z = y, vertex v is adjacent to every vertex of H_1 . But then $\{v, w\}$ dominates G, a contradiction.

Thus $[w,z] \longrightarrow v$. Since $wy \notin E(G)$ and $[w,z] \longrightarrow v$, z=u. Hence $zy=uy \in E(G)$ and $G[\{u,x,y,w\}]$ is a claw centered at vertex u, a contradiction. This proves that $w \notin N_{H_2}(u) - N_{H_2}(v)$.

Case 1.2: Suppose $w \in A$. Recall that $A = V(H_2) - (N_{H_2}(u) \cup N_{H_2}(v))$. Since $[x, w] \longrightarrow y$ and $w \in A$, x is adjacent to every vertex of $V(H_1) \cup \{u, v\}$ and w is adjacent to every vertex of $V(H_2) - \{y\}$. Figure 6.3 depicts this situation.

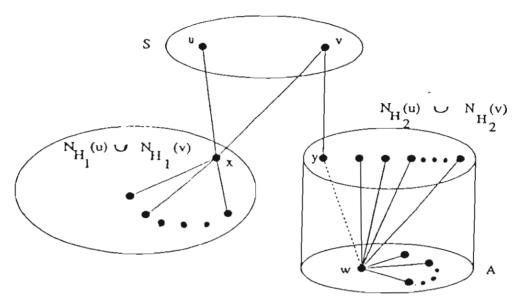


Figure 6.3.

Since $d_G(w) \geq 3$ and $wy \notin E(G)$, $|V(H_2)| \geq 5$. We distinguish two subcases.

Subcase 1.2.1: Suppose $uy \notin E(G)$. We will show that $N_{H_2}(u) \cap N_{H_2}(v) = \emptyset$. Suppose not; say vertex $y_1 \in N_{H_2}(u) \cap N_{H_2}(v)$. If $y_1y \in E(G)$, then $G[\{y_1, u, y, w\}]$ is a claw centered at y_1 , a contradiction. Thus $y_1y \notin E(G)$. But then $G[\{v, x, y, y_1\}]$ is a claw centered at v, again a contradiction. This proves that $N_{H_2}(u) \cap N_{H_2}(v) = \emptyset$. Since $N_{H_2}(u) \neq \emptyset$, there is a vertex $u_1 \in N_{H_2}(u)$. Since $N_{H_2}(u) \cap N_{H_2}(v) = \emptyset$, $u_1v \notin E(G)$. If $u_1y \in E(G)$, then $G[\{u_1, u, y, w\}]$ is a claw centered at u_1 , a contradiction. Thus $u_1y \notin E(G)$. Figure 6.4 illustrates this situation.

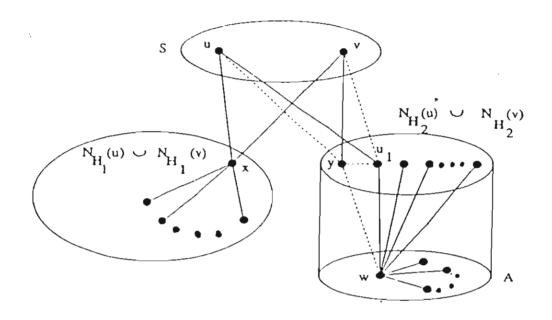


Figure 6.4.

Now consider $G+vu_1$. There exists a vertex $z\in V(G)-\{v,u_1\}$ such that either $[v,z]\longrightarrow u_1$ or $[u_1,z]\longrightarrow v$. First suppose that $[v,z]\longrightarrow u_1$. Then $zu_1\notin E(G)$. Since v is not adjacent to any vertex of A and $[v,z]\longrightarrow u_1,\,z\in V(H_2)-\{u_1\}$. If $z\in N_{H_2}(u)$, then $G[\{u,x,u_1,z\}]$ is a claw centered at u since $u_1z\notin E(G)$, a contradiction. Hence $z\in N_{H_2}(v)-N_{H_2}(u)$ or $z\in A$. In either case, $zu\notin E(G)$. Since $[v,z]\longrightarrow u_1,\,v$ is adjacent to every vertex of $V(H_1)\cup\{u\}$. Because $yv\in E(G)$ and w is adjacent to every vertex of $V(H_2)-\{y\}$, $\{v,w\}$ dominates G, a contradiction. Hence $\{v,z\}$ does not dominate $G-\{u_1\}$. Therefore $[u_1,z]\longrightarrow v$. Since $u_1y\notin E(G)$ and z must be adjacent to y and to every vertex of H_1 , it follows that z=u. But this is impossible since $uy\notin E(G)$. This proves that $\{u_1,z\}$ does not dominate $G-\{v\}$ and contradicts the $3-\gamma$ -criticality of G. Hence $uy\in E(G)$.

Subcase 1.2.2: So suppose $uy \in E(G)$. We will show that $|A| \geq 2$. Suppose not. Then |A| = 1 and $A = \{w\}$.

Since $|V(H_2)| \geq 5$, it follows that $|N_{H_2}(u) \cup N_{H_2}(v)| \geq 4$. We will show that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is a complete graph. Suppose not. Then there exist a pair of vertices w_1 and w_2 in $N_{H_2}(u) \cup N_{H_2}(v)$ such that $w_1w_2 \notin E(G)$. Since G is claw-free, we may assume without loss of generality that $w_1 \in N_{H_2}(u) - N_{H_2}(v)$ and $w_2 \in N_{H_2}(v) - N_{H_2}(u)$.

Now consider $G + vw_1$. By applying an argument similar to that presented in Case 1.2.1 for $G + vu_1$, but replacing u_1 with w_1 and y with w_2 , we get a contradiction. Hence $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete. But then if we choose any vertex $y_1 \in (N_{H_2}(u) \cup N_{H_2}(v)) - \{y\}$, we find that $\{x, y_1\}$ dominates G, a contradiction. This proves that $|A| \geq 2$.

Recall that $[x, w] \longrightarrow y$ and that $w \in A$. Since $|A| \ge 2$, there is a vertex $w_1 \in A - \{w\}$. Figure 6.5 depicts the situation.

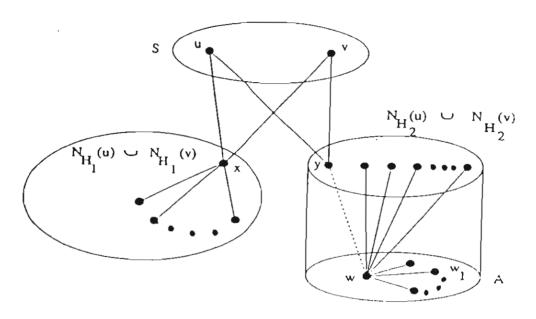


Figure 6.5.

Consider G + xw. There exists a vertex $z \in V(G) - \{x, w\}$ such that $[w, z] \longrightarrow x$ or $[x, z] \longrightarrow w$. Suppose first that $[w, z] \longrightarrow x$. By Lemma 3.4, $zx \notin E(G)$. Since x is adjacent to every vertex of $V(H_1) \cup \{u, v\}$, $z \notin V(H_1) \cup \{u, v\}$. But then $\{z, w\}$ does not dominate $G - \{x\}$, a contradiction.

Hence we can suppose that $[x,z] \longrightarrow w$. By Lemma 3.4, $zw \notin E(G)$. Since $A - \{w\} \ne \emptyset$ and w is adjacent to every vertex of $V(H_2) - \{y\}$, z = y. Hence y is adjacent to every vertex of $V(H_2) - \{w\}$. Consequently, $uv \in E(G)$; otherwise $G[\{y, u, v, w_1\}]$ is a claw centered at y.

Next we consider G + uw. There exists a vertex $z \in V(G) - \{u, w\}$ such that $[w, z] \longrightarrow u$ or $[u, z] \longrightarrow w$.

Suppose first that $[w,z] \to u$. Since $wy \notin E(G)$ and $[w,z] \to u$, z must be adjacent to y and to every vertex of H_1 . Thus z=v. This implies that $\{w,z\}$ dominates G since $zu=vu\in E(G)$, a contradiction. Hence $[u,z]\to w$. since $A-\{w\}\neq\emptyset$ and $[u,z]\to w$, it follows that $z\in V(H_2)$. Thus u is adjacent to every vertex of H_1 . Recall that $uv\in E(G)$ and $uy\in E(G)$. Hence $\{u,w\}$ dominates G, contradicting the 3- γ -criticality of G. This completes the proof in Subcase 1.2.2 and consequently the proof of Case 1.

Case 2: Suppose $[y, w] \longrightarrow x$. Clearly $wx \notin E(G)$. This implies that $w \neq u$. Since $y \in V(H_2)$ and $[y, w] \longrightarrow x$, $w \in \{v\} \cup (V(H_1) - \{x\})$.

Case 2.1: Suppose w = v. Then $[y,v] \longrightarrow x$. Thus v is adjacent to every vertex of $V(H_1) - \{x\}$ and y is adjacent to every vertex of A. If y is not adjacent to some vertex of $V(H_2) - (A \cup \{y\})$, say y_1 , then $vy_1 \in E(G)$ since $[y,v] \longrightarrow x$. But then $G[\{v,y,y_1,v'\}]$ is a claw centered at v for some vertex $v' \in N_{H_1}(v)$, a contradiction. Hence vertex y is adjacent to every vertex of $V(H_2) - (A \cup \{y\})$ and thus to every vertex of $V(H_2) - \{y\}$. Figure 6.6 illustrates this situation.

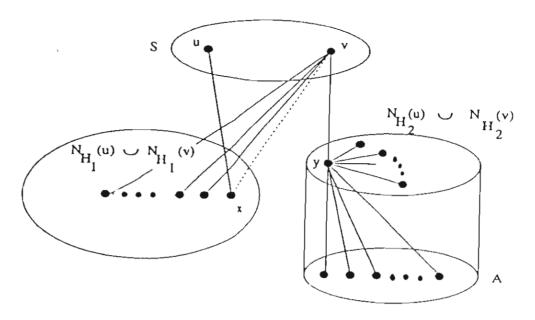


Figure 6.6.

Since G is claw-free and v is not adjacent to any vertex of A, G[A] is complete. We will show that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete. Suppose, to the contrary, that there exist a pair of vertices y_1 and y_2 of $N_{H_2}(u) \cup N_{H_2}(v)$ such that $y_1y_2 \notin E(G)$. This implies that $y_1 \in N_{H_2}(u) - N_{H_2}(v)$ and $y_2 \in N_{H_2}(v) - N_{H_2}(u)$ or $y_1 \in N_{H_2}(v) - N_{H_2}(u)$ and $y_2 \in N_{H_2}(u) - N_{H_2}(v)$, since G is claw-free and $N_{H_1}(u) \neq \emptyset$ and $N_{H_1}(v) \neq \emptyset$. Without loss of generality, assume that $y_1 \in N_{H_2}(u) - N_{H_2}(v)$ and $y_2 \in N_{H_2}(v) - N_{H_2}(u)$. Now consider $G + uy_2$. There exists a vertex $z \in V(G) - \{u, y_2\}$ such that $[u, z] \longrightarrow y_2$ or $[y_2, z] \longrightarrow u$.

Suppose first that $[u,z] \to y_2$. By Lemma 3.4, $zy_2 \notin E(G)$. Thus $z \neq v$. Further, since G is claw-free, $z \notin N_{H_2}(v)$. Since $[u,z] \to y_2$ and $A \neq \emptyset$, $z \in N_{H_2}(u) - N_{H_2}(v)$ or $z \in A$. In either case, $zv \notin E(G)$. Thus u is adjacent to every vertex of $V(H_1) \cup \{v\}$. But then $\{u,y\}$ dominates G, a contradiction. Hence $\{u,z\}$ does not dominate $G - \{y_2\}$, a contradiction, so $[y_2,z] \to u$. By Lemma 3.4, $uz \notin E(G)$. Since $y_1y_2 \notin E(G)$ and $[y_2,z] \to u$, z must be adjacent to every vertex of $V(H_1) \cup \{y_1\}$. This implies that z = v. But this is impossible since $vy_1 \notin E(G)$. This proves that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete.

Next we will show that $G[V(H_2)]$ is complete. Recall that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete, G[A] is complete, and y is adjacent to every vertex in A. Thus we need only show that each vertex of $[N_{H_2}(u) \cup N_{H_2}(v)] - \{y\}$ is adjacent to every vertex of A.

Suppose $y_1 \in [N_{H_2}(u) \cup N_{H_2}(v)] - \{y\}$. Consider $G + xy_1$. There exists a vertex $z \in V(G) - \{x, y_1\}$ such that $[x, z] \longrightarrow y_1$ or $[y_1, z] \longrightarrow x$.

Suppose first that $[x,z] \longrightarrow y_1$. Since $x \in V(H_1)$, $A \neq \emptyset$ and $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete, it follows that $z \in A$. Thus $zv \notin E(G)$ and since $xv \notin E(G)$, $\{x,z\}$ does not dominate $G - \{y_1\}$, a contradiction. Hence $[y_1,z] \longrightarrow x$. Consequently, y_1 is adjacent to every vertex of A as required. This proves that $G[V(H_2)]$ is complete.

Now consider the vertex x. Since mindeg $G \geq 3$ and $xv \notin E(G)$, x is adjacent to at least two vertices if $V(H_1) - \{x\}$. Let two such vertices be designated x_1 and x_2 . Since $[v,y] \longrightarrow x$ and $|V(H_1)| \geq 3$, it follows that $G[V(H_1) - \{x\}]$ is complete because of clawfreedom at vertex v. Choose $y_1 \in N_{H_2}(u)$. Then $\{x_1,y_1\}$ dominates G since x_1 is adjacent

to every vertex of $V(H_1) \cup \{v\}$ and y_1 is adjacent to every vertex of $V(H_2) \cup \{u\}$. This contradicts the fact that $\gamma(G) = 3$ and thus proves that $w \neq v$.

Case 2.2: So suppose $w \in V(H_1) - \{x\}$. Since $[y, w] \longrightarrow x$, w is adjacent to every vertex of $V(H_1) - \{x\}$ and y is adjacent to every vertex of $V(H_2)$. Figure 6.7 depicts this situation.

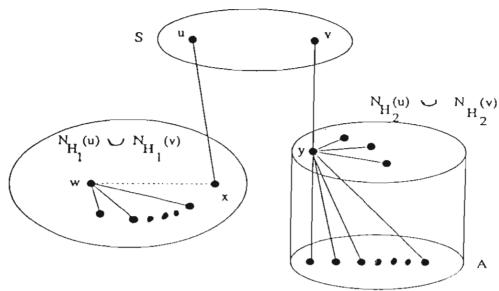


Figure 6.7.

Recall that $N_{H_1}(u) \cup N_{H_1}(v) = V(H_1)$ and $xu \in E(G)$. Since $wx \notin E(G)$ in the present Case 2.2 and $xu \in E(G)$, it follows that $wu \notin E(G)$, for otherwise $G[\{u, w, x, y_1\}]$ is a claw centered at u for some $y_1 \in N_{H_2}(u)$. Since $V(H_1) = N_{H_1}(u) \cup N_{H_1}(v)$ and $wu \notin E(G)$, it follows that $wv \in E(G)$. Because of claw-freedom at $v, xv \notin E(G)$. We will show that $N_{H_1}(u) \cap N_{H_1}(v) = \emptyset$. Suppose not. Then there is a vertex $w_1 \in N_{H_1}(u) \cap N_{H_1}(v)$. Clearly $w_1 \notin \{w, x\}$. Since w_1u and $w_1v \in E(G)$ and each vertex of $V(H_1)$ belongs to $N_{H_1}(u) \cup N_{H_1}(v)$, it follows that w_1 is adjacent to every vertex of $V(H_1)$ since G is claw-free. But then $\{w_1, y\}$ dominates G, a contradiction. This proves that $N_{H_1}(u) \cap N_{H_1}(v) = \emptyset$.

Since $|V(H_1)|$ is odd and is at least 3, there exists a vertex $w_2 \in V(H_1) - \{x, w\}$. Without loss of generality, we may assume that $w_2 \in N_{H_1}(v)$. Now consider G + uw. There exists a vertex $z \in V(G) - \{u, w\}$ such that $[u, z] \longrightarrow w$ or $[w, z] \longrightarrow u$. Suppose first that $[u, z] \longrightarrow w$. By Lemma 3.4, $zw \notin E(G)$. Since $[u, z] \longrightarrow w$ and u is not adjacent to any vertex of $N_{H_1}(v)$, vertex z must be adjacent to every vertex of $V(H_2) \cup (N_{H_1}(v) - \{w\})$. But this is impossible since $A \neq \emptyset$ and, since $w_2 \in N_{H_1}(v) - \{w\}$, $N_{H_1}(v) - \{w\} \neq \emptyset$. Hence $[w, z] \longrightarrow u$. Since $wx \notin E(G)$, vertex z must be adjacent to every vertex of $V(H_2) \cup \{x\}$. But this is impossible since $vx \notin E(G)$ and v is not adjacent to any vertex of A. This contradiction completes Case 2.2 and the proof of the theorem.

We now prove a similar result involving 3-factor-criticality.

Theorem 6.3 Let G be a 3- γ -critical 3-connected claw-free graph of odd order. Then if mindeg $G \geq 4$, G is 3-factor-critical.

Proof: Suppose, to the contrary, that G is not 3-factor-critical. Then by Theorem 2.11, there is a subset S of V(G) such that $|S| \geq 3$ and $\omega_o(G-S) > |S| - 3$. But by Theorem 5.2, G is factor-critical. Thus $\omega_o(G-S) < |S| - 1$. Since |V(G)| is odd, it follows by parity that $\omega_o(G-S) = |S| - 1$. Then by Theorem 4.4, $|S| \leq 5$. Since G is 3-connected, $3 \leq |S| \leq 5$.

We first suppose that |S| = 4. By Theorem 4.1(i), G - S has no even components. Since G is 3-connected, there are at least three vertices of S which are adjacent to some vertices of each component of G - S. Because |S| = 4, there must be a vertex of S, say u, such that u is adjacent to at least one vertex of each component of G - S. Thus u is a claw center in G which contradicts the assumption that G is claw-free. Hence $|S| \neq 4$. By a similar argument, $|S| \neq 5$. Thus |S| = 3.

Since G is claw-free, it is easy to see that G-S has no even components. Furthermore, since G is 3-connected, S is a minimum cutset in G. Because mindeg $G \geq 4$, each component of G-S has at least three vertices. Let H_1 and H_2 be the odd components of G-S and let $S=\{u_1,u_2,u_3\}$.

We now define several sets of vertices in G as follows. For $1 \le i \le 3$, let

$$A_i = V(H_1) \cap N(u_i),$$

$$B_i = V(H_2) \cap N(u_i),$$

$$C = V(H_1) \oplus \bigcup_{i=1}^3 A_i,$$

and

$$D \approx V(H_2) \sim \mathcal{G}_{i-1}^3 B_i.$$

Claim 1: For $1 \le i \le 3$, $A_i \ne \emptyset \ne B_i$. Furthermore, both $G[A_i]$ and $G[B_i]$ are complete.

This claim follows directly from the fact that S is a minimum cutset and G is claw-free.

Claim 2: Either $C = \emptyset$ or $D = \emptyset$.

Suppose, to the contrary, that there is a vertex $x \in C$ and a vertex $y \in D$. Then the distance between vertices x and y is at least 4, since $x \notin \bigcup_{i=1}^3 A_i$ and $y \notin \bigcup_{i=1}^3 B_i$. But this contradicts Lemma 2.6, thus proving the Claim.

So without loss of generality, let us assume that $C = \emptyset$. We now distinguish two cases, according to whether D is empty or not.

Case 1: Suppose $D \neq \emptyset$.

Choose vertices $a_1 \in A_1$ and $b_1 \in B_1$. Consider $G + a_1b_1$. Since G is 3- γ -critical, there is a vertex $z_1 \in V(G) - \{a_1, b_1\}$ such that either $[a_1, z_1] \longrightarrow b_1$ or $[b_1, z_1] \longrightarrow a_1$.

Subcase 1.1: Suppose $[a_1, z_1] \longrightarrow b_1$. By Lemma 3.4, $z_1b_1 \notin E(G)$. Since $D \neq \emptyset$ and B_1 is complete, $z_1 \in V(H_2) - B_1$. Thus a_1 dominates $V(H_1) \cup \{u_1\}$.

Subcase 1.1.1: Suppose $z_1 \in (B_2 \cup B_3) - B_1$.

Without loss of generality, we may assume that $z_1 \in B_2 - B_1$. Then z_1 dominates $V(H_2) - \{b_1\}$. Since u_2 is not adjacent to any vertex of D, G[D] is complete. To see this, just suppose that |V(D)| > 1 and suppose that x_1 and x_2 are two non-adjacent vertices in D. Then $G[z_1; u_2, x_1, x_2]$ is a claw centered at z_1 . Furthermore, since $z_1b_1 \notin E(G)$, it follows that $z_1u_1 \notin E(G)$ by Claim 1. Similarly, $u_2b_1 \notin E(G)$. Figure 6.8 depicts our present situation.

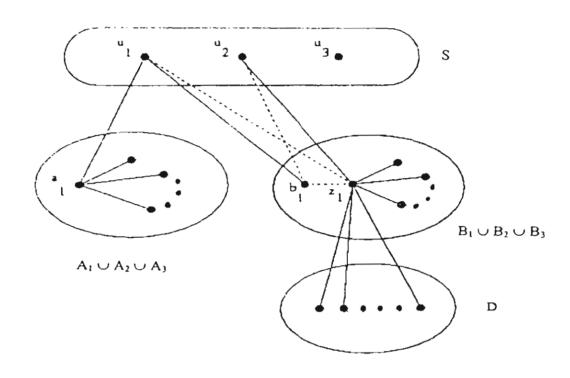


Figure 6.8

Since $[a_1, z_1] \longrightarrow b_1$ either $z_1u_3 \in E(G)$ or $a_1u_3 \in E(G)$.

Suppose first that $z_1u_3 \in E(G)$. Then there is a vertex $v \in A_2 \cup A_3$ such that u_1 is not adjacent to v, for otherwise $\{u_1, z_1\}$ dominates G, a contradiction.

Now consider $G + u_1 z_1$. There must be a vertex z_2 of $G - \{u_1, z_1\}$ such that either $[u_1, z_2] \longrightarrow z_1$ or $[z_1, z_2] \longrightarrow u_1$. First suppose that $[u_1, z_2] \longrightarrow z_1$. By Lemma 3.4, $z_1 z_2 \notin E(G)$. Since z_1 dominates $(V(H_2) - \{b_1\}) \cup \{u_2, u_3\}$, $z_2 \notin (V(H_2) - \{b_1\}) \cup \{u_2, u_3\}$. Thus $z_2 = b_1$ or $z_2 \in V(H_1)$. In either case, $\{u_1, z_2\}$ does not dominate $G - \{z_1\}$ since $b_1 v \notin E(G)$ and $D \neq \emptyset$. Hence $[z_1, z_2] \longrightarrow u_1$. Since $z_1 b_1 \notin E(G)$, $b_1 u_2 \notin E(G)$ and $V(H_1) \neq \emptyset$, it follows that $z_2 = u_3$. Thus $u_3 b_1 \in E(G)$. But then $G[u_3; b_1, z_1, a_3]$ is a claw centered at u_3 for any $a_3 \in A_3$. Thus $z_1 u_3 \notin E(G)$.

Hence $a_1u_3 \in E(G)$.

Now consider $G + b_1u_2$. There must be a vertex z_3 of $G - \{b_1, u_2\}$ such that either $[b_1, z_3] \longrightarrow u_2$ or $[u_2, z_3] \longrightarrow b_1$. Suppose first that $[b_1, z_3] \longrightarrow u_2$. Since $b_1z_1 \notin E(G)$ and $V(H_1) \neq \emptyset$, $z_3 \in \{u_1, u_3\}$. But this is impossible since $z_1u_1 \notin E(G)$ and $z_1u_3 \notin E(G)$. Thus $\{b_1, z_3\}$ does not dominate $G - \{u_2\}$.

Hence $[u_2, z_3] \longrightarrow b_1$. By Lemma 3.4, $z_3b_1 \notin E(G)$. Since $D \neq \emptyset$, $z_3 \in V(H_2) - B_1$, since B_1 is complete. But then u_2 must dominate $V(H_1) \cup \{u_1\}$. Suppose there is a vertex $x \in V(H_1)$ such that u_1 is not adjacent to x. Then $G[u_2; u_1, x, z_1]$ is a claw centered at u_2 , a contradiction. Hence u_1 also dominates $V(H_1)$.

Next we will show that $u_2u_3 \notin E(G)$. Suppose, to the contrary, that $u_2u_3 \in E(G)$. By an argument similar to the one immediately above, u_3 dominates $V(H_1)$, for otherwise G contains a claw centered at u_2 . But then $u_1u_3 \in E(G)$, for otherwise $G[u_2; u_1, u_3, z_1]$ is a claw centered at u_2 . Consequently, $\{u_1, z_1\}$ dominates G, a contradiction. Hence $u_2u_3 \notin E(G)$.

Since $[u_2, z_3] \longrightarrow b_1$, $z_3u_3 \in E(G)$. Because $z_1u_3 \notin E(G)$, $z_3 \neq z_1$. Now choose $a_3 \in A_3$. Since u_2 dominates $V(H_1) \cup \{u_1\}$, $G[V(H_1)]$ is complete by Claim 1. Thus a_3 dominates every vertex of $V(H_1) \cup \{u_1, u_2, u_3\}$. Consider now $G + a_3z_1$. There must be a vertex z_4 of $G - \{a_3, z_1\}$ such that either $[a_3, z_4] \longrightarrow z_1$ or $[z_1, z_4] \longrightarrow a_3$. Suppose $[a_3, z_4] \longrightarrow z_1$. By Lemma 3.4, $z_4z_1 \notin E(G)$. Since z_1 dominates $V(H_2) - \{b_1\}$, $z_4 \notin V(H_2) - \{b_1\}$. But $D \neq \emptyset$, so $z_4 = b_1$. This is impossible since $b_1z_3 \notin E(G)$ and $a_3z_3 \notin E(G)$. Thus $\{a_3, z_4\}$ does not dominate $G - \{z_1\}$. Hence $[z_1, z_4] \longrightarrow a_3$. By Lemma 3.4, $z_4a_3 \notin E(G)$. Since $V(H_1) - \{a_3\} \neq \emptyset$ (recall that $|V(H_1)| \geq 3$), $z_4 \in V(H_1) - \{a_3\} \cup \{u_1, u_2, u_3\}$. But this is impossible since a_3 dominates $V(H_1) \cup \{u_1, u_2, u_3\}$. This proves that Subcase 1.1.1 cannot occur.

Subcase 1.1.2: Suppose $z_1 \in D$.

Recall first that $[a_1,z_1] oup b_1$. Since $z_1 \in D$, z_1 is adjacent to every vertex of $V(H_2) - \{b_1\}$ and a_1 dominates $V(H_1) \cup \{u_1,u_2,u_3\}$. Consider $G + a_1z_1$. There must be a vertex z_2 of $G - \{a_1,z_1\}$ such that either $[z_1,z_2] oup a_1$ or $[a_1,z_2] oup z_1$. Suppose first that $[z_1,z_2] oup a_1$. By Lemma 3.4, $z_2a_1 \notin E(G)$. Since $z_1 \in D$ and $V(H_1) - \{a_1\} \neq \emptyset$. $z_2 \in (V(H_1) \cup \{u_1,u_2,u_3\}) - \{a_1\}$. But this is impossible since a_1 dominates $V(H_1) \cup \{u_1,u_2,u_3\}$. Thus $\{z_1,z_2\}$ does not dominate $G - \{a_1\}$. Hence $[a_1,z_2] oup z_1$. By Lemma 3.4, $z_2z_1 \notin E(G)$. Since z_1 is adjacent to every vertex of $H_2 - \{b_1\}$ and $V(H_2) - \{z_1\} \neq \emptyset$, $z_2 = b_1$ or $z_2 \in \{u_1,u_2,u_3\}$. Suppose $z_2 \in \{u_1,u_2,u_3\}$. Then $D = \{z_1\}$ and $G[V(H_2) - D]$ must be complete by Claim 1. But then $\{a_1,b_2\}$ dominates G, where b_2 is any vertex in B_2 different from b_1 , since $G[V(H_2) - D]$ is complete and $b_2z_1 \in E(G)$, a contradiction. Hence $z_2 = b_1$. That is, $[a_1,b_1] \to z_1$. Thus b_1 is adjacent to every vertex of $H_2 - \{b_1,z_1\}$. For i=2,3, if $b_1u_i \notin E(G)$, then $G[b_i;b_1,u_i,z_1]$ is a claw centered at b_i where $b_i \in B_i$, a contradiction. Hence $b_1u_i \in E(G)$ for i=2,3. Furthermore, since $b_1 \in B_1$, $b_1u_i \in E(G)$, for i=1,2,3. Figure 6.9 now depicts our situation.

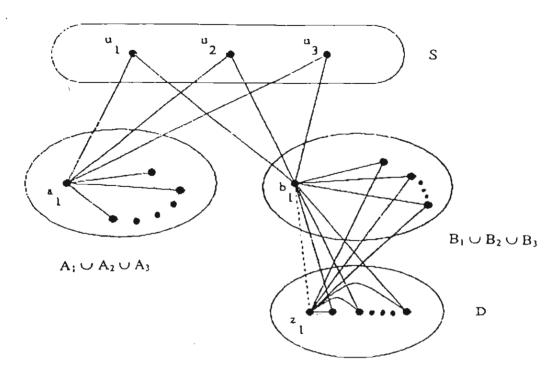


Figure 6.9

Choose $x \in V(H_1) - \{a_1\}$ and consider $G + xb_1$. There must be a vertex z_3 of $G - \{x, b_1\}$ such that either $[x, z_3] \longrightarrow b_1$ or $[b_1, z_3] \longrightarrow x$. Suppose that $[b_1, z_3] \longrightarrow x$. Since $b_1z_1 \notin E(G)$, $z_3z_1 \in E(G)$. But because $V(H_1) - \{x\} \neq \emptyset$, z_3 must dominate $H_1 - \{x\}$ as well. But this is clearly impossible. Thus $\{b_1, z_3\}$ does not dominate $G - \{x\}$. So $[x, z_3] \longrightarrow b_1$. By Lemma 3.4, $z_3b_1 \notin E(G)$. Since b_1 dominates $(V(H_2) - \{z_1\}) \cup \{u_1, u_2, u_3\}$, $z_3 = z_1$. Then x dominates $V(H_1) \cup \{u_1, u_2, u_3\}$. But x is an arbitrary member of $V(H_1) - \{a_1\}$ and also a_1 is adjacent to all vertices of $V(H_1) \cup \{u_1, u_2, u_3\}$. Consequently, $G[V(H_1)]$ is complete and every vertex of H_1 is adjacent to every vertex of $\{u_1, u_2, u_3\}$. Note that $G[\{u_1, u_2, u_3\}]$ must contain an edge, for otherwise any vertex of H_1 becomes the center of a claw in G. In fact, $G[\{u_1, u_2, u_3\}]$ contains exactly one edge; otherwise G is dominated by z_1 and one of the u_i , for $1 \leq i \leq 3$. Then there exist vertices u_i and u_j for some i, j, $1 \leq i < j \leq 3$ such that $u_iu_j \notin E(G)$. This implies that z_1 is the only vertex of D as otherwise b_1 is a claw center in G.

Without loss of generality, we may suppose that $u_1u_2 \in E(G)$. Then $u_1u_3 \notin E(G)$ and $u_2u_3 \notin E(G)$. Thus no vertex of $B_2 - \{b_1\}$ can be adjacent to u_3 , otherwise $G[b_2; u_2, u_3, z_1]$ is a claw centered at b_2 for every vertex $b_2 \in B_2 - \{b_1\}$. Similarly, each vertex of $B_3 - \{b_1\}$ is not adjacent to u_2 . Note that u_1 dominates $V(H_1) \cup B_1 \cup \{u_2\}$.

Now first suppose that $B_3 = \{b_1\}$. Recall that $[a_1, b_1] \longrightarrow z_1$, so b_1 is adjacent to every vertex of $B_1 \cup B_2 \cup B_3$. If any two vertices of $B_1 \cup B_2$ are non-adjacent, we obtain a claw at b_1 , a contradiction. Hence $G[B_1 \cup B_2 \cup B_3]$ is complete. But then choose any $b_2 \neq b_1, b_2 \in B_1 \cup B_2$ and see that b_2 , together with any vertex in H_1 , dominates G, again a contradiction. So $B_3 - \{b_1\} \neq \emptyset$. So choose a vertex $b_3 \in B_3 - \{b_1\}$. If $G[B_2 \cup B_3]$ is complete, then $\{u_1, b_3\}$ dominates G, since b_3 dominates $B_2 \cup B_3 \cup \{u_3, z_1\}$ and u_1 dominates $H_1 \cup \{u_2\}$. This contradiction implies that $G[B_2 \cup B_3]$ is not complete. This, in turn, implies that there are vertices $w \in B_2 - B_3$ and $y \in B_3 - B_2$ such that $wy \notin E(G)$, since both $G[B_2]$ and $G[B_3]$ are complete.

Now consider $G + wu_3$. There must be a vertex z_4 of $G - \{w, u_3\}$ such that either $u_3, z_4\} \longrightarrow w$ or $[w, z_4] \longrightarrow u_3$. Suppose first that $\{u_3, z_4\} \longrightarrow w$. By Lemma 3.4, $u_4 \notin E(G)$. Since u_3 is not adjacent to any vertex of $\{u_1, u_2, z_1\}$, it follows that $z_4 \in B_1 \cap B_2 \cap B_2 \cap B_3 \cap B_4$. But this is impossible since $\{z_4, w\} \subseteq B_2$ and $G[B_2]$ is complete. Thus $u_3, z_4\}$ does not dominate $G - \{w\}$. Hence $[w, z_4] \longrightarrow u_3$. By Lemma 3.4, $z_4 u_3 \notin E(G)$. Recall that each vertex of $V(H_1)$ is adjacent to every vertex of $\{u_1, u_2, u_3\}$. Thus $z_4 \notin V(H_1)$. But then $z_4 \in \{u_1, u_2\}$ since $V(H_1) \neq \emptyset$. Since $u_3 \notin E(G)$ and $u_4 \notin E(G)$, this mplies that $u_4 \in u_1$ and then $u_4 \in E(G)$. Hence $u_4 \in U_4$ and hence also Subcase 1.1.

Subcase 1.2: So $[b_1, z_1] \longrightarrow a_1$.

By Lemma 3.4, $a_1z_1 \notin E(G)$. Then $z_1 \notin A_1 \cup \{u_1\}$. Since $V(H_1) - \{a_1\} \neq \emptyset$, $z_1 \in A_2 \cup A_3$ or $z_1 \in \{u_2, u_3\}$. We distinguish two cases.

Subcase 1.2.1 Suppose $z_1 \in A_2 \cup A_3$. Without loss of generality we may assume that $z_1 \in A_2$. Since $[b_1, z_1] \longrightarrow a_1$ and $b_1 \in V(H_2)$, z_1 dominates $H_1 - \{a_1\}$ and b_1 dominates H_2 . Since $a_1z_1 \notin E(G)$, $u_1z_1 \notin E(G)$ by Claim 1. Similarly, $a_1u_2 \notin E(G)$.

Now consider $G + u_1 z_1$. There must be a vertex z_2 of $G - \{u_1, z_1\}$ such that either $[z_1, z_2] \longrightarrow u_1$ or $[u_1, z_2] \longrightarrow z_1$. Suppose first that $[z_1, z_2] \longrightarrow u_1$. By Lemma 3.4, $z_2u_1 \notin E(G)$. Since $z_1a_1 \notin E(G)$ and $D \neq \emptyset$, z_2 must be adjacent to a_1 and every vertex of D. But this is impossible since $D \cap N(u_1) = \emptyset$, for $1 \leq i \leq 3$. Then $\{z_1, z_2\}$ does not dominate $G - \{u_1\}$. Hence $[u_1, z_2] \longrightarrow z_1$. By Lemma 3.4, $z_1z_2 \notin E(G)$. Since $D \neq \emptyset$, it follows that $z_2 \in V(H_2)$. This implies that u_1 dominates $V(H_1) - \{z_1\}$ and then $G[V(H_1) - \{z_1\}]$ is complete because of Claim 1. Thus $G[V(H_1)] = K_t - a_1z_1$, where $t = |V(H_1)|$, since z_1 is adjacent to every vertex of $V(H_1) - \{a_1\}$. (See Figure 6.10.)

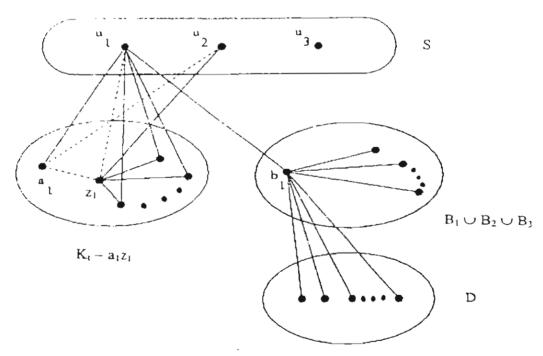


Figure 6.10

Now choose $a_2 \in V(H_1) - \{a_1, z_1\}$. Consider $G + a_2b_1$. Then there is a vertex z_3 of $[-\{a_2, b_1\}]$ such that either $[a_2, z_3] \longrightarrow b_1$ or $[b_1, z_3] \longrightarrow a_2$. Suppose that $[a_2, z_3] \longrightarrow b_1$. Lemma 3.4, $z_3b_1 \notin E(G)$. Then $z_3 \notin V(H_2)$ since b_1 dominates $V(H_2)$. Because $0 \neq \emptyset$, $z_3 \in V(H_2) - \{b_1\}$. This contradiction proves that $\{a_2, z_3\}$ does not dominate $\{a_1, a_2\} \in V(H_2) - \{b_1\}$. Hence it must be the case that $[b_1, a_3] \longrightarrow a_2$. By Lemma 3.4, $a_1a_2 \notin E(G)$. Ince $[V(H_1)] = K_1 - a_1a_1$ and $[V(H_2)] = K_2 - a_1a_1$ and $[V(H_2)] = K_3 - a_2$. By Lemma 3.4, $[V(H_3)] = K_3 - a_3$. Since $[V(H_3)] = K_3 + a_3$ and $[V(H_3)] = K_3 + a_3$. But $[V(H_3)] = K_3 + a_3$ and $[V(H_3)] = K_3 + a_3$. But $[V(H_3)] = K_3 + a_3$. But $[V(H_3)] = K_3 + a_3$. Then $[V(H_3)] = K_3 + a_3$. But $[V(H_3)] = K_3 + a_3$. Then $[V(H_3)] = K_3 + a_3$. But $[V(H_3)] = K_3 + a_3$. Then $[V(H_3)] = K_3 + a_3$. Hence subcase 1.2.1 cannot occur.

Subcase 1.2.2: So $z_1 \in \{u_2, u_3\}$.

٠,

Without loss of generality, we may assume that $z_1=u_2$. That is, $[b_1,u_2]\longrightarrow a_1$. By Lemma 3.4, $u_2a_1\notin E(G)$, u_2 dominates $H_1-\{a_1\}$ and b_1 dominates $(B_1\cup B_3\cup D)-B_2$. By Claim 1, $H_1-\{a_1\}$ is complete. Choose $a_3\in V(H_1)-\{a_1\}$. Then $a_3\in A_2$ since u_2 dominates $H_1-\{a_1\}$. Now consider $G+a_3b_1$. There must be a vertex z_2 of $G-\{a_3,b_1\}$ such that either $[a_3,z_2]\longrightarrow b_1$ or $[b_1,z_2]\longrightarrow a_3$.

Subcase 1.2.2.1: Suppose $[a_3, z_2] \longrightarrow b_1$. By Lemma 3.4, $z_2b_1 \notin E(G)$. Since b_1 dominates $(B_1 \cup B_3 \cup D) - B_2$ and $D \neq \emptyset$, $z_2 \in B_2$ and $z_2b_1 \notin E(G)$. Furthermore, z_2 dominates $H_2 - \{b_1\}$. By Claim 1, $b_1u_2 \notin E(G)$ and $u_1z_2 \notin E(G)$. Recall that $u_2a_1 \notin E(G)$. Since $u_2b_1 \notin E(G)$, $u_1u_2 \notin E(G)$; otherwise, $G[u_1; u_2, b_1, a_1]$ is a claw centered at u_1 .

Now consider $G + u_1 z_2$. There must be a vertex z_3 of $G - \{u_1, z_2\}$ such that either $[u_1, z_3] \longrightarrow z_2$ or $[z_2, z_3] \longrightarrow u_1$. Suppose first that $[u_1, z_3] \longrightarrow z_2$. By Lemma 3.4. $z_3 z_2 \notin E(G)$. Since z_2 dominates $H_2 - \{b_1\}$ and $D \neq \emptyset$. $z_3 = b_1$. This is impossible since $b_1 u_2 \notin E(G)$ and $u_1 u_2 \notin E(G)$. Thus $\{u_1, z_3\}$ does not dominate $G - \{z_2\}$. Hence $[z_2, z_3] \longrightarrow u_1$. By Lemma 3.4, $z_3 u_1 \notin E(G)$. Then $z_3 \notin A_1 \cup \{b_1\}$. Since $z_2 b_1 \notin E(G)$, $z_3 b_1 \in E(G)$. Because $V(H_1) \neq \emptyset$ and $b_1 \in V(H_2)$, it follows that $z_3 \in \{u_2, u_3\}$. But $u_2 b_1 \notin E(G)$, so $z_3 = u_3$. By Lemma 3.4, $u_3 u_1 \notin E(G)$. Since b_1 dominates D. $G[b_1; u_1, u_3, w]$ is a claw centered at b_1 , for any $w \in D$. This contradiction completes the proof of Subcase 1.2.2.1.

Subcase 1.2.2.2: So suppose that $[b_1, z_2] \longrightarrow a_3$. By Lemma 3.4, $z_2a_3 \notin E(G)$. Then, since $H_1 - \{a_1\}$ is complete, $z_2 \notin (V(H_1) - \{a_1\}) \cup \{u_2\}$. Since $V(H_1) - \{a_3\} \neq \emptyset$. $z_2 \in \{a_1, u_1, u_3\}$.

Suppose $z_2=a_1$. That is, $[b_1,a_1] \longrightarrow a_3$. Then a_1 dominates $H_1-\{a_3\}$ and b_1 dominates H_2 . Recall that $u_2a_1 \notin E(G)$. Therefore, $b_1u_2 \in E(G)$. Since $H_1-\{a_1\}$ is complete, $G[V(H_1)]=K_t-a_1a_3$, where $t=|V(H_1)|$. Since $|V(H_1)| \geq 3$, there is a vertex $y \in V(H_1)-\{a_1,a_3\}$. Clearly y dominates H_1 . If $b_1u_3 \in E(G)$ or if $yu_3 \in E(G)$, then $\{b_1,y\}$ dominates G, a contradiction. Hence $b_1u_3 \notin E(G)$ and $yu_3 \notin E(G)$ for every choice of $y \in V(H_1)-\{a_1,a_3\}$. Since $[b_1,a_1] \longrightarrow a_3$ and $b_1u_3 \notin E(G)$, $a_1u_3 \in E(G)$. Because of Claim 1. $a_3u_3 \notin E(G)$. Recall that $[b_1,u_2] \longrightarrow a_1$. Since $b_1u_3 \notin E(G)$, $u_2u_3 \in E(G)$. But then $G[u_2;u_3,a_3,b_1]$ is a claw, a contradiction. Hence $z_2 \neq a_1$.

Next we suppose that $z_2 = u_1$. That is, $[b_1, u_1] \longrightarrow a_3$. Then b_1 dominates $(B_2 \cup B_3 \cup D) - B_1$. Since $b_1 \in B_1$ and $G[B_1]$ is complete, b_1 also dominates B_1 . Thus now b_1

lominates H_2 . Since $[b_1, u_1] \longrightarrow a_3$, it follows that u_1 dominates $H_1 - \{a_3\}$. By Claim 1, $H_1 - \{a_3\}$ is complete. Since $H_1 - \{a_1\}$ is complete, we have $G[V(H_1)] = K_t$ or $K_t - a_1 a_3$ where $t = |V(H_1)|$. By a similar argument, there is a vertex y of $H_1 - \{a_1, a_3\}$ such that $f(a_1, a_2) = f(a_1, a_2)$ dominates $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$. If $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ dominates $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ and $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ and $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ and $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ and $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ and $f(a_1, a_2) = f(a_1, a_2) = f(a_1, a_2)$ but then $f(a_1, a_2) = f(a_1, a_2) = f(a_1$

Thus $z_2 = u_3$. That is, $[b_1, u_3] \longrightarrow a_3$. Then u_3 dominates $H_1 - \{a_3\}$. By an argument similar to that above, we have $G[V(H_1)] = K_t$ or $K_t - a_1a_3$, where $t = |V(H_1)|$ and there is a vertex y of $H_1 - \{a_1, a_3\}$ such that y dominates H_1 . Since $[b_1, u_3] \longrightarrow a_3$ and $[b_1, u_2] \longrightarrow a_1, y \in A_2 \cap A_3$. Furthermore, b_1 dominates $V(H_2) - (B_2 \cap B_3)$. If b_1 dominates H_2 , then $\{y, b_1\}$ dominates G, a contradiction. Hence there is a vertex $w \in B_2 \cap B_3$ such that $b_1w \notin E(G)$. Because of Claim 1, $u_1w \notin E(G)$, $b_1u_2 \notin E(G)$ and $b_1u_3 \notin E(G)$. Consequently, $u_1u_2 \notin E(G)$.

Now consider $G + u_1w$. There must be a vertex z_3 such that either $[u_1, z_3] \longrightarrow w$ or $[w, z_3] \longrightarrow u_1$. Suppose first that $[u_1, z_3] \longrightarrow w$. By Lemma 3.4, $z_3w \notin E(G)$. Then $z_3 \notin B_2 \cup B_3 \cup \{u_2, u_3\}$. Since $u_1u_2 \notin E(G)$, $z_3u_2 \in E(G)$. Thus $z_3 \in B_2 \cup \{u_2\}$, a contradiction. So it must be the case that $[w, z_3] \longrightarrow u_1$. Since $wb_1 \notin E(G)$ and $V(H_1) \neq \emptyset$, $z_3 \in \{u_2, u_3\}$. But this is also impossible since $b_1u_2 \notin E(G)$ and $b_1u_3 \notin E(G)$. This contradiction completes the proof in Subcase 1.2.2.2 and hence Case 1 is settled.

Case 2: So suppose now that $D = \emptyset$.

Choose $a_1 \in A_1$ and $b_1 \in B_1$ and consider $G + a_1b_1$. There must be a vertex $z_1 \in G - \{a_1, b_1\}$ such that either $[a_1, z_1] \longrightarrow b_1$ or $[b_1, z_1] \longrightarrow a_1$. Without loss of generality, suppose $[a_1, z_1] \longrightarrow b_1$. By Lemma 3.4, $z_1b_1 \notin E(G)$. So $z_1 \in (V(H_2) \cup \{u_2, u_3\}) - B_1$, since B_1 is complete and $V(H_2) - \{b_1\} \neq \emptyset$.

Subcase 2.1: Suppose $z_1 \in V(H_2) - B_1$. Then a_1 dominates $V(H_1)$. Since $D = \emptyset$, without loss of generality we may assume that z_1 is adjacent to u_2 . Then z_1 dominates $H_2 - \{b_1\}$. By Claim 1, $u_2b_1 \notin E(G)$ and $z_1u_1 \notin E(G)$. (See Figure 6.11.)

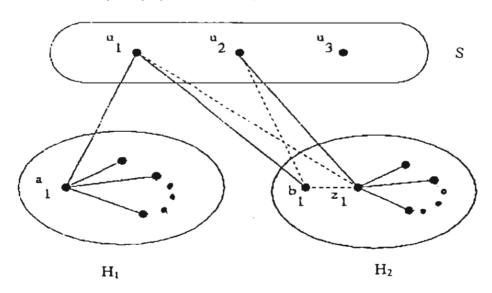


Figure 6.11

Consider $G + a_1 z_1$. There must be a vertex z_2 in $G - \{a_1, z_1\}$ such that either $a_1, a_2 \longrightarrow a_1$ or $[a_1, a_2] \longrightarrow a_1$.

Subcase 2.1.1: Suppose $[z_1, z_2] \longrightarrow a_1$. By Lemma 3.4, $z_2a_1 \notin E(G)$. But then $z_2 \notin V(H_1) \cup \{u_1\}$. Furthermore, $z_2 \neq u_2$ since $z_1b_1 \notin E(G)$ and $u_2b_1 \notin E(G)$. Hence $z_2 = u_3$. Hence u_3 dominates $(V(H_1) - \{a_1\}) \cup \{u_1, b_1\}$. So H_1 must be complete since a_1 is adjacent to all vertices of $V(H_1) - \{a_1\}$ and because of Claim 1.

If u_1 dominates $V(H_1)$, then $\{u_1, z_1\}$ dominates G, a contradiction. So there exists a vertex $a_2 \in V(H_1) - \{a_1\}$ such that a_2 is not adjacent to u_1 . Hence u_3 is not adjacent to z_1 by claw freedom. (See now Figure 6.12.)

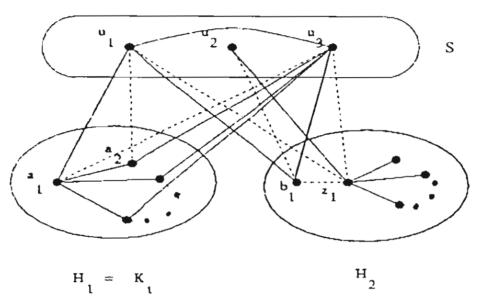


Figure 6.12

Now choose $a_3 \in V(H_1) - \{a_1, a_2\}$ and consider $G + b_1a_3$. There must be a vertex z_3 in $G - \{b_1, a_3\}$ such that either $[b_1, z_3] \longrightarrow a_3$ or $[a_3, z_3] \longrightarrow b_1$.

Subcase 2.1.1.1: Suppose $[b_1, z_3] \longrightarrow a_3$. By Lemma 3.4, z_3 is not adjacent to a_3 and hence $z_3 \in \{u_1, u_2\}$. But $z_3 \neq u_1$, since $u_1a_2 \notin E(G)$ and $b_1a_2 \notin E(G)$, so $z_3 = u_2$.

Then u_2 dominates $V(H_1) - \{a_3\}$. If $u_1u_2 \in E(G)$, then $G[u_2; u_1, a_2, z_1]$ is a claw centered at u_2 , a contradiction. Hence $u_1u_2 \notin E(G)$.

Now consider $G + u_1u_2$. There must be a vertex z_4 in $G - \{u_1, u_2\}$ such that either $[u_1, z_4] \longrightarrow u_2$ or $[u_2, z_4] \longrightarrow u_1$. Suppose first that $[u_1, z_4] \longrightarrow u_2$. Since $u_1a_2 \notin E(G)$ and $u_1z_1 \notin E(G)$, it follows that $z_4 = u_3$. But this is impossible since $u_3z_1 \notin E(G)$. Thus $\{u_1, z_4\}$ does not dominate $G - \{u_2\}$. Hence $[u_2, z_4] \longrightarrow u_1$. By Lemma 3.4, $z_4u_1 \notin E(G)$. Since $u_1u_3 \in E(G)$, $z_4 \neq u_3$. Because $u_2a_3 \notin E(G)$ and $u_2b_1 \notin E(G)$, $z_4 = u_3$, a contradiction. This completes the proof in Subcase 2.1.1.1.

Subcase 2.1.1.2: So $[a_3, z_3] \longrightarrow b_1$. By Lemma 3.4, $z_3b_1 \notin E(G)$ and hence $z_3 \notin B_1 \cup \{u_1, u_3\}$. But then $z_3 = u_2$ or $z_3 \in V(H_2) - B_1$.

Subcase 2.1.1.2.1: Suppose $z_3 = u_2$. Then u_2 dominates $V(H_2) - \{b_1\}$. Hence $G[V(H_2) - \{b_1\}]$ is complete by Claim 1. If $u_2a_1 \in E(G)$, then $\{u_2, u_3\}$ dominates G,

contradiction. Hence u_2 is not adjacent to a_1 . Choose $b_2 \in V(H_2) - \{b_1\}$ such that $2b_1 \in E(G)$. So $b_2 \neq z_1$. Consider $G + a_3b_2$. There is a vertex z_4 in $G - \{a_3, b_2\}$ such hat either $[a_3, z_4] \longrightarrow b_2$ or $[b_2, z_4] \longrightarrow a_3$.

Subcase 2.1.1.2.1.1: Suppose $[a_3, z_4] \longrightarrow b_2$. So $z_4 \notin V(H_2) \cup \{u_2\}$ by Lemma 3.4. So $z_4 \in \{u_1, u_3\}$. But this is impossible because u_1 is not adjacent to z_1 and u_3 is not adjacent to z_1 .

Subcase 2.1.1.2.1.2: So $[b_2, z_4] \longrightarrow a_3$. By Lemma 3.4, $z_4 \notin V(H_1)$, since H_1 is omplete. So $z_4 \in \{u_1, u_2, u_3\}$. But $z_4 \neq u_1$ because u_1 is not adjacent to a_2 . Moreover, $a_4 \neq a_4 \neq a_5$ or $a_4 \neq a_5 \neq a_5$ is not adjacent to $a_4 \neq a_5 \neq a_5 \neq a_5$. So we have a contradiction.

Subcase 2.1.1.2.2: So suppose $z_3 \in V(H_2) - B_1$. Then u_1 is not adjacent to z_3 by Claim 1 and the fact that $z_3b_1 \notin E(G)$. Therefore, $a_3u_1 \in E(G)$, since $[a_3, z_3] \longrightarrow b_1$. Recall that u_3 dominates $(V(H_1) - \{a_1\}) \cup \{u_1, b_1\}$. Now a_3 dominates $V(H_1) \cup \{u_1, u_3\}$.

We claim that $B_1 \subseteq B_3$. Suppose not. Choose $y \in B_1 - B_3$. Then we have a claw $\mathcal{G}[u_1; u_3, y, a_1]$, a contradiction. Similarly, we claim that $B_3 \subseteq B_1$. Suppose not. Choose $j \in B_3 - B_1$. Then $G[u_3; u_1, y, a_2]$ is a claw and again we have a contradiction.

Thus $B_1 = B_3$.

Next we claim that $B_1 \cap B_2 = \emptyset$. Suppose not. Choose $y \in B_1 \cap B_2$. Then y is adjacent to u_1, u_2 and u_3 . Furthermore, y dominates $B_1 \cup B_2 = V(H_2)$. Thus $\{y, a_3\}$ dominates G, a contradiction. Hence $B_1 \cap B_2 = \emptyset$. Figure 6.13 illustrates the present situation.

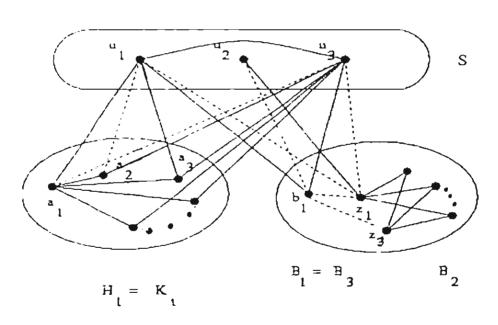


Figure 6.13

Now consider $G + b_1u_2$. There must be a vertex z_5 in $G - \{b_1, u_2\}$ such that either $[b_1, z_5] \longrightarrow u_2$ or $[u_2, z_5] \longrightarrow b_1$. Suppose first that $[b_1, z_5] \longrightarrow u_2$. Then, by Lemma 3.4, $z_5u_2 \notin E(G)$ and so $z_5 \notin B_2$. So $z_5 \in V(H_1) \cup \{u_1, u_3\}$. But then it is false that $[b_1, z_5] \longrightarrow u_2$, since neither b_1 nor z_5 is adjacent to z_1 .

So we may suppose that $[u_2, z_5] \longrightarrow b_1$. Then by Lemma 3.4, $z_5b_1 \notin E(G)$. Therefore, $z_5 \notin B_1 \cup \{u_1, u_3\}$. Since $B_1 \cap B_2 = \emptyset$, y is not adjacent to u_2 , for all $y \in B_1$. If $|B_1| \ge 2$, then $z_5 \in B_2$. But then u_2 dominates $V(H_1)$ and hence $\{u_2, b_1\}$ dominates G, a contradiction. Hence $|B_1| = 1$. Since H_2 is connected, there is a vertex $b_2 \in B_2$ such that $b_1b_2 \in E(G)$. Because B_2 is complete, vertex b_2 dominates $V(H_2) \cup \{u_2\}$. Thus $\{a_3, b_2\}$ dominates G since G since G dominates G since G subcase 2.1.1.2.2 and hence also Subcase 2.1.1.

Subcase 2.1.2: Suppose $[a_1, z_2] \longrightarrow z_1$. Then, by Lemma 3.4, $z_2 z_1 \notin E(G)$ and so $z_2 \notin (V(H_2) - \{b_1\}) \cup \{u_2\}$. Hence $z_2 \in \{u_1, u_3, b_1\}$.

Subcase 2.1.2.1: Suppose $z_2 = u_1$. That is, $[a_1, u_1] \longrightarrow z_1$. Hence u_1 dominates $V(H_2) - \{z_1\}$. But then by Claim 1, $G[V(H_2) - \{z_1\}]$ is complete. Recall that z_1 dominates $V(H_2) - \{b_1\}$. Hence $G[V(H_2)] = K_t - b_1 z_1$, where $t = |V(H_2)|$.

If $a_1u_2 \notin E(G)$, then $u_1u_2 \in E(G)$ since $[a_1, u_1] \longrightarrow z_1$. But then $G[u_1; a_1, u_2, b_1]$ is a claw centered at u_1 , a contradiction. Hence $a_1u_2 \in E(G)$.

Now if $a_1u_3 \in E(G)$, then $\{a_1, y_1\}$ dominates G for any choice of $y_1 \in V(H_2) - \{b_1, z_1\}$, a contradiction. Thus $a_1u_3 \notin E(G)$. But then, because $[a_1, u_1] \longrightarrow z_1$, $u_1u_3 \in E(G)$. Moreover, because of claw freedom at u_1 , u_3 is adjacent to every $y \in V(H_2) - \{z_1\}$. This implies that $\{a_1, y_1\}$ dominates G for every choice of $y_1 \in V(H_2) - \{b_1, z_1\}$, a contradiction. Hence $z_2 \neq u_1$.

Subcase 2.1.2.2: Suppose $z_2 = u_3$. That is, $[a_1, u_3] \longrightarrow z_1$. Then, by Lemma 3.4, $u_3z_1 \notin E(G)$ and u_3 dominates $V(H_2) - \{z_1\}$. So $G[V(H_2) - \{z_1\}]$ is complete because of Claim 1. Recall that z_1 dominates $V(H_2) - \{b_1\}$. Thus $G[V(H_2)] = K_t - b_1z_1$, where $t = |V(H_2)|$. If $a_1u_2 \in E(G)$, then $\{a_1, y_2\}$ dominates G for any choice of $y_2 \in V(H_2) - \{b_1, z_1\}$, a contradiction. So $a_1u_2 \notin E(G)$. But then $u_3u_2 \in E(G)$ since $[a_1, u_3] \longrightarrow z_1$. By claw freedom at u_3 , a_1 is not adjacent to u_3 . But this contradicts our assumption that $[a_1, z_1] \longrightarrow b_1$. Hence $z_2 \neq u_3$.

Subcase 2.1.2.3: Suppose $z_2 = b_1$. That is, $[a_1, b_1] \longrightarrow z_1$. Then b_1 dominates $V(H_2) - \{z_1\}$. Since $b_1u_2 \notin E(G)$, a_1 is adjacent to u_2 . (See now Figure 6.14.)

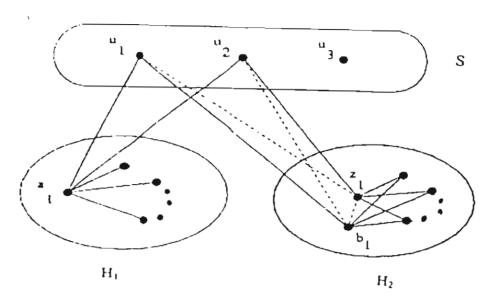


Figure 6.14

Consider $G + u_1 z_1$. There must be a vertex z_3 in $G - \{u_1, z_1\}$ such that either $[u_1, z_3] \longrightarrow z_1$ or $[z_1, z_3] \longrightarrow u_1$.

Subcase 2.1.2.3.1: Suppose $[u_1, z_3] \longrightarrow z_1$. Hence by Lemma 3.4, $z_3z_1 \notin E(G)$. Thus $z_3 \notin (V(H_2) - \{b_1\}) \cup \{u_2\}$. But then $z_3 \in \{b_1, u_3\} \cup V(H_1)$.

Subcase 2.1.2.3.1.1: Suppose $z_3 = b_1$; that is, $[u_1, b_1] \longrightarrow z_1$. Then u_1 dominates $V(H_1) \cup \{u_2\}$. By Claim 1, $G[V(H_1)]$ is complete. If $u_1u_3 \in E(G)$, then $\{u_1, z_1\}$ dominates G, a contradiction. Hence u_1 is not adjacent to u_3 . Therefore, b_1 is adjacent to u_3 . Now since there is no claw at u_1 , u_2 dominates $V(H_1)$. Therefore $\{b_1, u_2\}$ dominates G, a contradiction.

Subcase 2.1.2.3.1.2: Next, suppose that $z_3 = u_3$. That is, $[u_1, u_3] \longrightarrow z_1$. By Lemma 3.4, u_3 is not adjacent to z_1 . But since $[a_1, z_1] \longrightarrow b_1$ and z_1 is not adjacent to u_3 , a_1 must be adjacent to u_3 .

We now claim that $G[V(H_1)]$ is complete. Suppose not. Say $xy \notin E(G)$ for some choice of x and y in $V(H_1)$. Then $\{x,y\} \cap \{a_1\} = \emptyset$. Consider G + xy. There must be a vertex z_4 of $G - \{x,y\}$ such that either $[x,z_4] \longrightarrow y$ or $[y,z_4] \longrightarrow x$. Without loss of generality, suppose $[x,z_4] \longrightarrow y$. Clearly, $z_4 \in \{u_1,u_2,u_3\} \cup V(H_2)$. But $z_4 \neq u_1$ because u_1 is not adjacent to $z_1, z_4 \neq u_2$, since u_2 is not adjacent to b_1 , and $z_4 \neq u_3$, since u_3 is not adjacent to z_1 . Thus $z_4 \in V(H_2)$. But then z_4 dominates H_2 and hence $\{z_4,a_1\}$ dominates G, a contradiction. This completes the proof of the claim.

We now have the situation depicted in Figure 6.15.

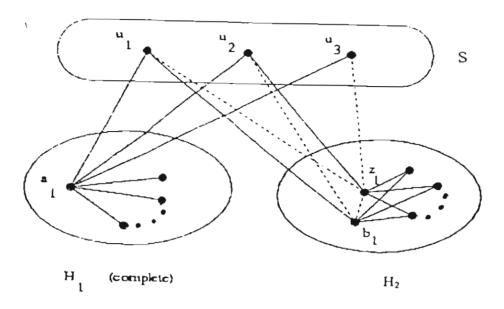


Figure 6.15

Now since mindeg $G \geq 4$, $|V(H_2)| \geq 5$. Choose $x_1 \in V(H_2) - \{b_1, z_1\}$. Consider $G + a_1x_1$. There exists a vertex z_5 in $G - \{a_1, x_1\}$ such that either $[a_1, z_5] \longrightarrow x_1$ or $[x_1, z_5] \longrightarrow a_1$. Suppose $[x_1, z_5] \longrightarrow a_1$. Then, by Lemma 3.4, z_5 is not adjacent to a_1 and hence $z_5 \in V(H_2)$ which is impossible since $V(H_1) - \{a_1\} \neq \phi$. So we may assume that $[a_1, z_5] \longrightarrow x_1$. Therefore $z_5 \in \{u_1, u_2, u_3\} \cup (V(H_2) - \{x_1\})$. But $z_5 \neq u_1$, since u_1 is not adjacent to $z_1, z_5 \neq u_2$, since u_2 is not adjacent to $b_1, z_5 \neq u_3$, since u_3 is not adjacent to $z_1, z_5 \neq b_1$, since b_1 is not adjacent to z_1 , and $z_5 \neq z_1$, since z_1 is not adjacent to b_1 . So $z_5 \in V(H_2) - \{x_1, b_1, z_1\}$. Let $z_5 = y_1$. Then y_1 dominates $V(H_2) - \{x_1\}$.

Similarly, there is a vertex z_6 such that $[a_1,z_6] \longrightarrow y_1$ and by Lemma 3.4, z_6 is not adjacent to y_1 . So $z_6 = x_1$ and x_1 dominates $V(H_2) - \{y_1\}$. Continuing in this manner, we can get a sequence of distinct vertices x_1,y_1,x_2,y_2,\ldots , such that $x_iy_i \notin E(G)$, for all i, but $x_ib_1 \in E(G), x_iz_1 \in E(G)$, for all i, $x_ix_j \in E(G)$, for all $j \neq i$, $x_iy_j \in E(G)$, for all $j \neq i$, $y_ix_j \in E(G)$, for all $j \neq i$, $y_jy_i \in E(G)$, for all $j \neq i$, $y_jb_1 \in E(G)$ and $y_jz_1 \in E(G)$, for all j, But $|V(H_2)|$ is odd and this contradiction settles Case 2.1.2.3.1.2.

Subcase 2.1.2.3.1.3: So $z_3 \in V(H_1)$. So since $[u_1, z_3] \longrightarrow z_1$, vertex u_1 dominates $V(H_2) - \{z_1\}$. Hence $G[V(H_2)] = K_t - b_1 z_1$, where $t = |V(H_2)|$, because of Claim 1 and because z_1 dominates $H_2 - \{b_1\}$. If there exists a vertex $y \in V(H_2) - \{b_1, z_1\}$ such that y is adjacent to u_3 , then $\{a_1, y\}$ dominates G, a contradiction. So $B_3 \subseteq \{b_1, z_1\}$. But $B_3 \neq \{b_1, z_1\}$ because of Claim 1. So $B_3 = \{b_1\}$ or $B_3 = \{z_1\}$.

Choose $c_1 \in V(H_2) - \{b_1, z_1\}$ and consider $G + a_1c_1$. There is a vertex $z_4 \in G - \{a_1, c_1\}$ such that either $[a_1, z_4] \longrightarrow c_1$ or $[c_1, z_4] \longrightarrow a_1$. Suppose first that $[a_1, z_4] \longrightarrow c_1$. By Lemma 3.4, z_4 is not adjacent to c_1 . Hence $z_4 \notin V(H_2)$ and therefore $z_4 \in \{u_1, u_2, u_3\}$. But $z_4 \neq u_1$ since u_1 is not adjacent to z_1 , $z_4 \neq u_2$ since u_2 is not adjacent to b_1 and $z_4 \neq u_3$ since either u_3 is not adjacent to z_1 or u_3 is not adjacent to b_1 . So we have a contradiction.

Hence $[c_1, z_4] \longrightarrow a_1$. By Lemma 3.4, z_4 is not adjacent to a_1 . So $z_4 \notin V(H_1) \cup \{u_1, u_2\}$. So $z_4 = u_3$ and so u_3 dominates $V(H_1) - \{a_1\}$. But then $G[V(H_1)]$ is complete because of Claim 1 and because a_1 is adjacent to x, for every $x \in V(H_1)$. Now recall that u_1 dominates $V(H_2) - \{z_1\}$. Thus u_1 is not adjacent to u_3 by claw freedom at u_1 .

We now claim that for all $y \in V(H_2) - \{b_1, z_1\}$, u_2 is not adjacent to y. Suppose not. That is, suppose there is a $y_1 \in V(H_2) - \{b_1, z_1\}$ such that $y_1u_2 \in E(G)$. Then $\{y_1, a_2\}$ dominates G for any $a_2 \in V(H_1) - \{a_1\}$, a contradiction. This proves the claim.

Since $u_2b_1 \notin E(G)$, $B_2 = \{z_1\}$. Now if u_2 is adjacent to a_2 for some $a_2 \in V(H_1) - \{a_1\}$, then $\{a_2, c_2\}$ dominates G for any choice of $c_2 \in V(H_2) - \{b_1, z_1\}$, a contradiction. So u_2 is adjacent to no vertex in $V(H_1) - \{a_1\}$. Therefore, since mindeg $G \geq 4$, u_2 must be adjacent to both u_1 and u_3 . Now if $B_3 = \{b_1\}$, we get a claw $G[u_2; u_1, u_3, z_1]$. Hence $B_3 = \{z_1\}$. But then $\{u_1, u_3\}$ dominates G, a contradiction. This completes the proof of Subcase 2.1.2.3.1.3, and hence also 2.1.2.3.1.

Subcase 2.1.2.3.2: So suppose $[z_1, z_3] \longrightarrow u_1$. Recall that $[a_1, z_1] \longrightarrow b_1$, $[a_1, b_1] \longrightarrow z_1$, $u_1z_1 \notin E(G)$ and $u_2b_1 \notin E(G)$. Since $z_1 \in V(H_2)$ and $z_1b_1 \notin E(G)$, vertex z_3 must dominate $H_1 \cup \{b_1\}$. So $z_3 = u_3$. Therefore, H_1 is complete by Claim 1. Note that u_3 is adjacent to a_1 and b_1 . Then u_3 is not adjacent to z_1 or we would have a claw at u_3 . So the situation is similar to that depicted in Figure 6.15 and an argument analogous to the one given there results in a contradiction.

So Subcase 2.1.2.3.2 is settled and hence also Subcase 2.1.

Subcase 2.2: Suppose $[a_1, z_1] \longrightarrow b_1$ and $z_1 \in \{u_2, u_3\}$. Without loss of generality, we may suppose that $z_1 = u_2$. That is, $[a_1, u_2] \longrightarrow b_1$. By Lemma 3.4, u_2 is not adjacent to b_1 and u_2 dominates $H_2 - \{b_1\}$. Hence $G[V(H_2) - \{b_1\}]$ is complete by Claim 1. Now choose $b_2 \in V(H_2) - \{b_1\}$ such that $b_1b_2 \in E(G)$. Consider $G + a_1b_2$. There must be a vertex $z_2 \in G - \{a_1, b_2\}$ such that either $[a_1, z_2] \longrightarrow b_2$ or $[b_2, z_2] \longrightarrow a_1$.

Subcase 2.2.1: Suppose $[a_1, z_2] \longrightarrow b_2$. By Lemma 3.4, z_2 is not adjacent to b_2 . Then $z_2 \notin V(H_2) \cup \{u_2\}$. So $z_2 \in \{u_1, u_3\}$.

Subcase 2.2.1.1: Suppose $z_2 = u_1$. That is, $[a_1, u_1] \longrightarrow b_2$. So a_1 dominates $V(H_1) - A_1$. Since $a_1 \in A_1$ and A_1 is complete, a_1 dominates $V(H_1)$. Also u_1 dominates $V(H_2) - \{b_2\}$, since $[a_1, u_1] \longrightarrow b_2$. So $G[V(H_2) - \{b_2\}]$ is complete by Claim 1. But since $G[V(H_2) - \{b_1\}]$ is also complete and since b_1 is adjacent to b_2 , it must be the case that H_2 is complete. In fact, $B_1 \cap B_2 = V(H_2) - \{b_1, b_2\}$. Then a_1 is not adjacent to u_3 , for otherwise $\{a_1, b_3\}$ dominates G, for any choice of $b_3 \in V(H_2) - \{b_1, b_2\}$, a contradiction. Now because $[a_1, u_1] \longrightarrow b_2$, vertex u_1 is adjacent to u_3 .

We now claim that $B_3 = \{b_1\}$. Since $B_3 \neq \emptyset$ by Claim 1, so suppose there is a $y \in V(H_2) - \{b_1\}$ such that y is adjacent to u_3 . Then $\{a_1, y\}$ dominates G, a contradiction, and the claim is proved.

Choose $b_3 \in V(H_2) - \{b_1, b_2\}$. Then b_3 is adjacent to u_1 and u_1 is adjacent to both u_3 and a_1 , so we obtain a claw at u_1 , a contradiction and hence Subcase 2.2.1.1 is settled.

Subcase 2.2.1.2: So $z_2 = u_3$. That is, $[a_1, u_3] \longrightarrow b_2$. Therefore, u_3 dominates $V(H_2) - \{b_2\}$; that is, $B_3 = V(H_2) - \{b_2\}$. By an argument similar to that used in Subcase

2.2.1.1, $G[V(H_2)]$ is complete. Now if a_1 dominates $V(H_1)$, then $\{a_1, b_3\}$ dominates G, for any choice of $b_3 \in V(H_2) - \{b_1, b_2\}$, a contradiction. Hence a_1 does not dominate $V(H_1)$. But $[a_1, u_2] \longrightarrow b_1$ and $[a_1, u_3] \longrightarrow b_2$, so a_1 dominates $V(H_1) - (A_2 \cap A_3)$. Therefore, there exists a vertex $a_2 \in A_2 \cap A_3$ such that a_2 is not adjacent to a_1 . Now, by Claim 1, $a_1u_2 \notin E(G)$, $a_1u_3 \notin E(G)$ and $a_2u_1 \notin E(G)$. Thus $u_1u_2 \notin E(G)$ because of claw freedom at u_1 .

Consider $G + a_2b_1$. There is a vertex z_3 in $G - \{a_2, b_1\}$ such that either $[a_2, z_3] \longrightarrow b_1$ or $[b_1, z_3] \longrightarrow a_2$. Suppose $[a_2, z_3] \longrightarrow b_1$. By Lemma 3.4, z_3 is not adjacent to b_1 . Then $z_3 \notin V(H_2) \cup \{u_1, u_3\}$. But then $z_3 = u_2$. However, this is impossible since u_2 is not adjacent to a_1 and a_2 is not adjacent to a_1 . Hence $[b_1, z_3] \longrightarrow a_2$. By Lemma 3.4, z_3 is not adjacent to a_2 . But then $z_3 \notin \{u_2, u_3\} \cup A_2 \cup A_3$. But b_1 is not adjacent to u_2 , so a_3 must dominate a_3 . Because $a_3 \notin \{u_2, u_3\} \cup \{u_2\} \neq \{u_3\} \cup \{u_2\}$, a contradiction. This settles Subcase 2.2.1.2 and hence Subcase 2.2.1.

Subcase 2.2.2: So $[b_2, z_2] \longrightarrow a_1$. By Lemma 3.4, $z_2a_1 \notin E(G)$. Then $z_2 \neq u_1$. Since $V(H_1) - \{a_1\} \neq \emptyset$, it follows that $z_2 \in \{u_2, u_3\} \cup (V(H_1) - \{a_1\})$.

Subcase 2.2.2.1: Suppose $z_2 = u_2$. That is, $[b_2, u_2] \longrightarrow a_1$. By Lemma 3.4, u_2 is not adjacent to a_1 . So u_2 dominates $V(H_1) - \{a_1\}$. Therefore, $G[V(H_1) - \{a_1\}]$ is complete by Claim 1. If $u_1u_3 \in E(G)$ or if $u_2u_3 \in E(G)$, then $\{u_1, u_2\}$ dominates G, a contradiction. So u_3 is adjacent to neither u_1 nor u_2 . But $[a_1, u_2] \longrightarrow b_1$ and u_2 is not adjacent to u_3 , so a_1 is adjacent to u_3 . Moreover, $[b_2, u_2] \longrightarrow a_1$ and u_2 is not adjacent to u_3 , so b_2 is adjacent to u_3 . So we have the configuration depicted in Figure 6.16.

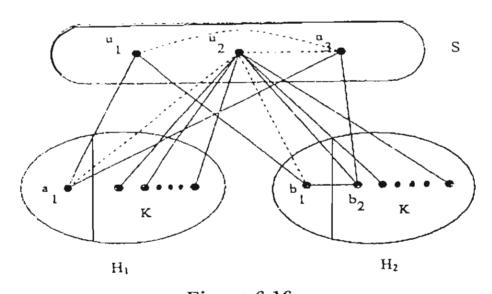


Figure 6.16

Now since $V(H_1)$ is connected, there is a vertex $a_2 \in V(H_1) - \{a_1\}$ such that a_2 is adjacent to a_1 . If u_1 is adjacent to b_2 , then $\{b_2, a_2\}$ dominates G, a contradiction. Hence u_1 is not adjacent to b_2 . Since $[b_2, u_2] \longrightarrow a_1$, and $b_2u_1 \notin E(G)$, u_2 must be adjacent to u_1 . But then $G[u_1; a_1, u_2, b_1]$ is a claw at u_1 . This completes the proof in Subcase 2.2.2.1.

Subcase 2.2.2: Suppose $z_2 = u_3$. That is, $[b_2, u_3] \longrightarrow a_1$. By Lemma 3.4, $u_3a_1 \notin E(G)$. So u_3 dominates $H_1 - \{a_1\}$. Because of Claim 1, $V(H_1) - \{a_1\}$ is complete. Recall that $[a_1, u_2] \longrightarrow b_1$ and $G[V(H_2) - \{b_1\}]$ is complete. Since $a_1u_3 \notin E(G)$, u_2 must be adjacent to u_3 . Furthermore, vertex a_1 dominates $V(H_1) - A_2$. Also since H_1 is connected, there is a vertex $a_2 \in V(H_1) - \{a_1\}$ such that a_1 is adjacent to a_2 .

First we claim that u_1 is not adjacent to y, for all $y \in V(H_2) - \{b_1\}$. Suppose not. Then there is a $y_1 \in V(H_2) - \{b_1\}$ such that y_1 is adjacent to u_1 . Then y_1 is adjacent to b_1 also, by Claim 1. Hence y_1 dominates $V(H_2) \cup \{u_1, u_2\}$. Thus $\{y_1, a_2\}$ dominates G, a contradiction and the claim is proved. Hence $B_1 = \{b_1\}$.

Next we claim that $u_1x \notin E(G)$, for all $x \in V(H_1) - \{a_1\}$. For suppose not. Then there is a vertex $x_1 \in V(H_1) - \{a_1\}$ such that x_1 is adjacent to u_1 . But then x_1 is adjacent to a_1 also, by Claim 1. Hence x_1 dominates $V(H_1) \cup \{u_1, u_3\}$. But then $\{x_1, b_2\}$ dominates G, a contradiction and this claim is proved also.

Hence $A_1 = \{a_1\}$. But then since mindeg $G \ge 4$, $N(u_1) = \{a_1, b_1, u_2, u_3\}$. Thus $a_1u_2 \in E(G)$, for otherwise $G[u_1; a_1, u_2, b_1]$ is a claw. So $a_1 \in A_2$. Since A_2 is complete and a_1 dominates $V(H_1) - A_2$, a_1 dominates $V(H_1)$.

So by claw freedom at u_2 , $b_2u_3 \in E(G)$. So b_2 dominates $V(H_2) \cup \{u_2, u_3\}$. Hence $\{a_1, b_2\}$ dominates G, a contradiction, and Subcase 2.2.2.2 is settled.

Subcase 2.2.2.3: So suppose finally that $z_2 \in V(H_1) - \{a_1\}$.

Recall that $[a_1, u_2] \longrightarrow b_1$. So a_1 dominates $V(H_1) - A_2$ and u_2 dominates $V(H_2) - \{b_1\}$. Since $[b_2, z_2] \longrightarrow a_1$, z_2 is not adjacent to a_1 by Lemma 3.4 and then z_2 dominates $V(H_1) - \{a_1\}$. Because a_1 dominates $V(H_1) - A_2$ and by Claim 1, it follows that $z_2 \in A_2 - A_1$. Furthermore, a_1 is not adjacent to u_2 . Now if $u_1u_2 \in E(G)$, then $G[u_1; a_1, u_2, b_1]$ is a claw. So $u_1u_2 \notin E(G)$. Moreover, since $[b_2, z_2] \longrightarrow a_1$ and $z_2u_1 \notin E(G)$, it follows that b_2 is adjacent to u_1 . So our current situation is depicted in Figure 6.17.

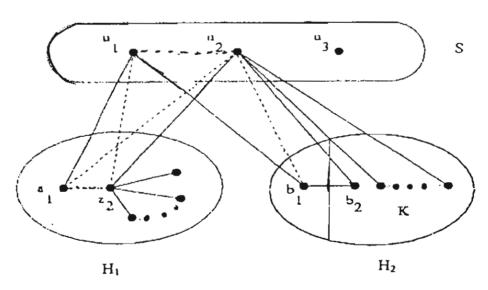


Figure 6.17

Next we claim that u_2 is not adjacent to u_3 . Suppose, by way of contradiction, that u_2 is adjacent to u_3 . Consider $G + z_2b_2$. There must be a vertex z_3 in $G - \{z_2, b_2\}$ such

that either $[z_2, z_3] \longrightarrow b_2$ or $[b_2, z_3] \longrightarrow z_2$. Suppose that $[z_2, z_3] \longrightarrow b_2$. By Lemma 3.4, $z_3b_2 \notin E(G)$. Then $z_3 \notin \{u_1, u_2\} \cup V(H_2)$. Since $V(H_2) - \{b_2\} \neq \emptyset$, it follows that $z_3 = u_3$. Thus $[z_2, u_3] \longrightarrow b_2$. But then u_3 dominates $H_2 - \{b_2\}$ and u_3 is adjacent to a_1 . But then $G[u_3; u_2, a_1, b_1]$ is a claw.

So $[b_2, z_3] \longrightarrow z_2$. By Lemma 3.4, $z_3 z_2 \notin E(G)$. But then $z_3 \notin \{u_2\} \cup (V(H_1) - \{a_1\})$. Since $V(H_1) - \{z_2\} \neq \emptyset$, $z_3 \in \{u_1, u_3, a_1\}$. If $z_3 = u_1$, then u_1 dominates $H_1 - \{z_2\}$, and then $\{u_1, u_2\}$ dominates G, a contradiction. So $z_3 \neq u_1$. If $z_3 = u_3$, then u_3 dominates $H_1 - \{z_2\}$. So $G[V(H_1) - \{z_2\}]$ is complete because of Claim 1. Since z_2 dominates $V(H_1) - \{a_1\}$, $G[V(H_1)] = K_t - a_1 z_2$ where $t = |V(H_1)|$.

Now choose $a_2 \in V(H_1) - \{a_1, z_2\}$. Then $\{a_2, b_2\}$ dominates G, a contradiction. So $z_3 \neq u_3$. Hence $z_3 = a_1$; that is, $[b_2, a_1] \longrightarrow z_2$. So a_1 dominates $H_1 - \{z_2\}$.

Suppose a_1 is adjacent to u_3 . Then u_3 is not adjacent to b_1 by claw freedom at u_3 . Also by Claim 1, $z_2u_3 \notin E(G)$. Moreover, claw freedom at u_2 together with the fact that $u_2z_2 \in E(G)$ implies that u_3 must dominate $V(H_2) - \{b_1\}$.

Now choose $a_2 \in V(H_1) - \{a_1, z_2\}$ and consider $G + a_2b_2$. There must be a vertex $z_4 \in V(G) - \{a_2, b_2\}$ such that either $[a_2, z_4] \longrightarrow b_2$ or $[b_2, z_4] \longrightarrow a_2$. Suppose $[a_2, z_4] \longrightarrow b_2$. By Lemma 3.4, $z_4b_2 \notin E(G)$. So $z_4 \notin \{u_1, u_2, u_3\} \cup V(H_2)$. But $V(H_2) - \{b_2\} \neq \emptyset$, so $z_4 \in \{u_1, u_2, u_3\} \cup (V(H_2) - \{b_2\})$, a contradiction. So $[b_2, z_4] \longrightarrow a_2$. Since $V(H_1) - \{a_2\} \neq \emptyset$, $z_4 \in \{u_1, u_2, u_3\} \cup (V(H_1) - \{a_2\})$. But $z_4 \neq u_1$ since u_1 is not adjacent to $z_2, z_4 \neq u_2$ since u_2 is not adjacent to $a_1, z_4 \neq u_3$ since u_3 is not adjacent to $z_2, z_4 \neq a_1$ and $z_4 \neq z_2$, since a_1 and a_2 are not adjacent. So $a_4 \in V(H_1) - \{a_2, a_2, a_1\}$ and a_4 dominates $a_4 \in V(H_1) - \{a_4\}$. Let $a_4 = a_4 \in V(H_1) - \{a_4\}$. Similarly, there is a vertex $a_4 \in V(H_1) - \{a_4\}$. By Lemma 3.4, $a_4 \in V(H_1) - \{a_4\}$. Similarly, there is a vertex $a_4 \in V(H_1) - \{a_4\}$. By Lemma 3.4, $a_4 \in V(H_1) - \{a_4\}$. So $a_4 \in V(H_1) - \{a_4\}$. So $a_4 \in V(H_1) - \{a_4\}$.

Now choose $a_3 \in V(H_1) - \{a_1, z_2, a_2, c_2\}$ and repeating a previous argument, we produce a sequence of distinct vertices $a_1, z_2, a_2, c_2, a_3, c_3, \ldots$ such that a_1 is not adjacent to z_2 , a_i is not adjacent to c_i , for all $i \geq 2$, but a_i is adjacent to a_j for all $i \neq j$, c_i is adjacent to c_j for all $i \neq j$, a_i is adjacent to c_j for all $i \neq j$ and a_i and a_i and a_i for all $a_i \geq 2$ and $a_i \geq 2$ and for all $a_i \geq 2$ and for all

Now choose $a_2 \in V(H_1) - \{a_1, z_2\}$ and consider $G + a_2b_2$. There must be a vertex $z_6 \in V(G) - \{a_2, b_2\}$ such that either $[a_2, z_6] \longrightarrow b_2$ or $[b_2, z_6] \longrightarrow a_2$. Suppose $[a_2, z_6] \longrightarrow b_2$. Then by Lemma 3.4, $z_6b_2 \notin E(G)$. Then $z_6 \notin \{u_1, u_2, u_3\} \cup V(H_2)$. But this is impossible since z_6 must dominate $V(H_2) - \{b_2\}$.

So $[b_2, z_6] \longrightarrow a_2$. Since $V(H_1) - \{a_2\} \neq \emptyset$, $z_6 \in \{u_1, u_2, u_3\} \cup (V(H_1) - \{a_2\})$. But $z_6 \neq u_1$ since u_1 is not adjacent to z_2 , $z_6 \neq u_2$ or u_3 since u_2 and u_3 are not adjacent to a_1 , $z_6 \neq a_1$ or z_2 since a_1 and z_2 are not adjacent. But then $z_6 \in V(H_1) - \{a_1, a_2, z_2\}$. Let $z_6 = c_2$. Note that c_2 dominates $V(H_1) - \{a_2\}$. So again we argue as above to get a sequence of distinct vertices $a_1, z_2, a_2, c_2, a_3, c_3, \ldots$ contradicting the fact that $|V(H_1)|$ is odd.

So the claim is proved; that is, u_2 is not adjacent to u_3 .

Since $[a_1, u_2] \longrightarrow b_1$ and $u_2u_3 \notin E(G)$, it follows that a_1 is adjacent to u_3 . Because of Claim 1 and since a_1 is not adjacent to z_2 , it follows also that z_2 is not adjacent to u_3 . But $[z_2, b_2] \longrightarrow a_1$, so b_2 is adjacent to u_3 . But then because of claw freedom at b_2 , u_1 is

adjacent to u_3 . (Figure 6.18 now represents the present situation.)

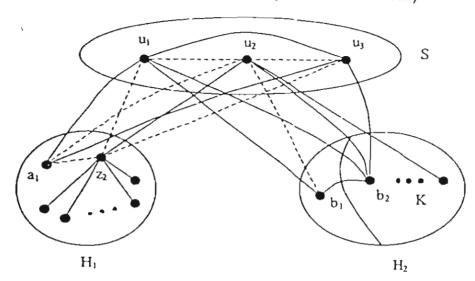


Figure 6.18

Now consider $G + b_2 z_2$. There must be a vertex z_3 in $G - \{b_2, z_2\}$, such that either $[b_2, z_3] \longrightarrow z_2$ or $[z_2, z_3] \longrightarrow b_2$. Suppose $[z_2, z_3] \longrightarrow b_2$. By Lemma 3.4, z_3 is not adjacent to b_2 . So $z_3 \notin \{u_1, u_2, u_3\} \cup V(H_2)$. But $V(H_2) - \{b_2\} \neq \emptyset$, so $z_3 \in (V(H_2) - \{b_2\}) \cup \{u_1, u_2, u_3\}$ and we have a contradiction.

Hence $[b_2, z_3] \longrightarrow z_2$. By Lemma 3.4, z_3 is not adjacent to z_2 and so $z_3 \notin (V(H_1) - \{a_1\}) \cup \{u_2\}$. Furthermore, $z_3 \notin V(H_2)$ because $V(H_1) - \{a_1\} \neq \emptyset$. Thus $z_3 \in \{u_1, u_3, a_1\}$.

Suppose first that $z_3 = u_1$. So $[b_2, u_1] \longrightarrow z_2$. Then u_1 dominates $V(H_1) - \{z_2\}$. But then $\{u_1, u_2\}$ dominates G, a contradiction. So $z_3 \neq u_1$.

Suppose next that $z_3 = u_3$. So $[b_2, u_3] \longrightarrow z_2$ and so u_3 dominates $V(H_1) - \{z_2\}$. So $G[V(H_1) - \{z_2\}]$ is complete because of Claim 1. But z_2 is adjacent to every vertex of $V(H_1) - \{a_1\}$, so $G[V(H_1)] = K_t - a_1 z_2$, where $t = |V(H_1)|$. Now choose $x \in V(H_1) - \{a_1, z_2\}$. We then have $\{x, b_2\}$ dominates G, a contradiction. So $z_3 \neq u_3$.

So $z_3=a_1$. That is, $[b_2,a_1]\longrightarrow z_2$. But then a_1 dominates $V(H_1)-\{z_2\}$. Now choose $a_2\in V(H_1)-\{a_1,z_2\}$ and consider $G+a_2b_2$. There must be a vertex z_4 in $G-\{a_2,b_2\}$ such that either $[a_2,z_4]\longrightarrow b_2$ or $[b_2,z_4]\longrightarrow a_2$. Suppose $[a_2,z_4]\longrightarrow b_2$. Then $z_4\notin V(H_2)\cup\{u_1,u_2,u_3\}$ by Lemma 3.4 and so $z_4\in V(H_1)$. But $V(H_2)-\{b_2\}\neq\emptyset$, so we have a contradiction.

So $[b_2, z_4] \longrightarrow a_2$. But then $z_4 \neq u_1$ since u_1 is not adjacent to z_2 , $z_4 \neq u_2$ since u_2 is not adjacent to a_1 , $z_4 \neq u_3$ since u_3 is not adjacent to z_2 , $z_4 \neq a_1$ since a_1 is not adjacent to z_1 , and $z_4 \neq z_2$ since z_2 is not adjacent to a_1 . Furthermore, $z_4 \notin V(H_2)$. So it follows that $z_4 \in V(H_1) - \{a_1, z_2, a_2\}$. Let $z_4 = c_2$ and if we argue as before, we obtain a sequence of distinct vertices $a_1, z_1, a_2, c_2, a_3, c_3, \ldots$, such that a_1 is not adjacent to z_2 , a_i is not adjacent to c_i for all $i \geq 2$, $a_i a_j \in E(G)$, for all $i \neq j$, $c_i c_j \in E(G)$, for all $i \neq j$ and z_2 is adjacent to a_i and a_j for all $a_j \geq 1$. That each time we obtain the vertex a_i , we can always get the next vertex a_i in the sequence. But once again this contradicts the fact that $|V(H_1)|$ is odd and the proof of the theorem is complete.

As a final remark, we point out that both the connectivity bound and the minimum degree bound stated as hypotheses in Theorems 6.2 and 6.3 are sharp. Indeed. Favaron has proved [F; Theorems 2.5 and 2.6] that for all $k \geq 0$, every k-factor-critical graph of order n > k is k-(vertex)-connected and for all $k \geq 1$, every k-factor-critical graph of order n > k is (k + 1)-edge-connected (and hence has minimum degree at least k + 1).

7. Conjecture

We conclude our paper by set forth two conjectures involving matching in 3-domination-critical graphs.

Conjecture 1: Suppose G is a graph with $k \geq 2$ and suppose k-1 and |V(G)| have the same parity. Then if G is k-connected and 3- γ -critical with mindeg $G \geq k+1$, then G is (k-1)-factor-critical.

Conjecture 2: Suppose G is a graph with $k \ge 2$ and suppose k and |V(G)| have the same parity. Then if G is k-connected and 3- γ -critical with mindeg $G \ge k+1$ and G is claw-free, then G is k-factor-critical.

Conjecture 1 is known to be true when k=2 ([AP1; Theorem 2.4]), when k=3 ([AP1; Theorem 2.1]) and when k=4 ([AP2; Theorem 2.5]). Conjecture 2 is known to be true when k=2 ([AP1; Theorem 3.3]) and when k=3 ([AP2; Theorem 3.4]). However, the proofs of Conjecture 1 when k=4 and Conjecture 2 when k=3 are quite long and difficult. This leads us to think that settling either of these conjectures for any further values of k will be very difficult, if not impossible, using the methods we employ for the small values of k mentioned above. In our opinion, some new methods must be discovered and utilized.

8. References

- [AP1] N. Ananchuen and M.D. Plummer, Matching properties in domination critical graphs, (submitted).
- [AP2] N. Ananchuen and M.D. Plummer, 3-factor-criticality in domination critical graphs. (submitted).
- [B] P. Blitch, Domination in Graphs, Ph.D. dissertation, Univ. of South Carolina. 1983.
- [F] O. Favaron, On k-factor-critical graphs, Discuss. Math., 16, 1996, 41-51.
- [FTWZ] E. Flandrin, F. Tian, B. Wei and L. Zhang, some properties of 3-domination-critical graphs, *Discrete Math.*, 205, 1999, 65-76.

- [FTZ] O. Favaron, F. Tian and L. Zhang, Independence and Hamiltonicity in 3-domination-critical graphs, J. Graph Theory, 25, 1997, 173-184.
- [LP] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Math. 29, North-Holland, Amsterdam, 1986.
- ¹[HHS] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [Mo] L. Moodley, Wojcicka's theorem: complete, consolidated proof, J. Combin. Math. Combin. Comput., 33, 2000, 129-179.
- [My] C.M. Mynhardt. On two conjectures concerning 3-domination-critical graphs. Congr. Numer., 135, 1998, 119-138.
- [P] M.D. Plummer, Extending matchings in claw-free graphs, *Discrete Math.*, **125**, 1994, 301-307.
- [SB] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Series B, 34, 1983, 65-76.
- [TWZ] F. Tian, B. Wei and L. Zhang, Hamiltonicity in 3-domination-critical graphs with $\alpha = \delta + 2$, Discrete Appl. Math., 92, 1999, 57-70.
- [W] E. Wojcicka, Hamiltonian properties of domination-critical graphs, J. Graph Theory, 14, 1990, 205-215.

9. Output

จากผลงานวิจัยเรื่องกราฟ 3-γ-critical กับการจับคู่ที่ศึกษามา ผู้วิจัยสามารถนำมาเรียบเรียง เขียนเป็นบทความทางวิชาการเพื่อส่งตีพิมพ์ในวารสารทางวิชาการได้ 4 บทความดังต่อไปนี้

- N.Ananchuen and M.D.Plummer, Some results related to the toughness of 3-dominationcritical graphs, Discrete Mathematics, 2002 (to appear).
- 1 2. N.Ananchuen and M.D.Plummer, Matching properties in domination critical graphs, (submitted).
 - N.Ananchuen and M.D.Plummer, 3-factor-criticality in domination critical graphs, (submitted).
 - N.Ananchuen and M.D.Plummer, Two conjectures on matching in 3-domination-critical graphs, (submitted).

ชึ่งจำนวนบทความข้างต้นได้บรรลุเป้าหมายที่วางไว้ว่าผลงานวิจัยดังกล่าวสามารถเขียนเรียบเรียงเป็น บทความทางวิชาการจำนวน 2 บทความ

10. Appendix

- 1. N.Ananchuen and M.D.Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Mathematics, 2002 (to appear).
- 2. N.Ananchuen and M.D.Plummer, Matching properties in domination critical graphs, (submitted).
- 3. N.Ananchuen and M.D.Plummer, 3-factor-criticality in domination critical graphs, (submitted).
- N.Ananchuen and M.D.Plummer, Two conjectures on matching in 3-domination-critical graphs, (submitted).

Research paper 1:

N.Ananchuen and M.D.Plummer, Some results related to the toughness of 3-domination-critical graphs, Discrete Mathematics, 2002 (to appear).

SOME RESULTS RELATED TO THE TOUGHNESS

OF

3-DOMINATION CRITICAL GRAPHS

by

Nawarat Ananchuen *
Department of Mathematics
Silpakorn University
Nakorn Pathom, Thailand
email: nawarat@kanate.su.ac.th

and

Michael D. Plummer †
Department of Mathematics
Vanderbilt University
Nashville, Tennessee 37240, USA
email: michael.d.plummer@vanderbilt.edu

Dedicated to Frank Harary on the occasion of his 80th birthday

Abstract

A graph G is said to be k- γ -critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k- γ -critical graphs remains far from completely understood, even in the special case when the domination number $\gamma=3$. In a 1983 paper, Sumner and Blitch proved a theorem which may regarded as a result related to the toughness of $3-\gamma$ -critical graphs which says that if S is any vertex cutset of such a graph, then G-S has at most |S|+1 components. In the present paper, we improve and extend this result considerably.

1. Introduction

Let G denote a finite undirected graph with vertex set V(G) and edge set E(G). A set $S \subseteq V(G)$ is a (vertex) dominating set for G if every vertex of G either belongs to S or is adjacent to a vertex of S. The minimum cardinality of a vertex dominating set in G is called the vertex domination number (or simply the domination number) of G and is denoted by $\gamma(G)$. Graph G is said to be k-domination critical (or simply k- γ -critical) if $\gamma(G) = k$, but $\gamma(G + e) = k - 1$ for each edge $e \notin E(G)$. In this paper, we

^{*} work supported by The Thailand Research Fund Grant #BRG4380016 † work supported by NSF Grant # INT-9816113

will be concerned only with the case k = 3. Although a number of results exist concerning 3- γ -critical graphs, their structure is far from completely understood. (For summaries of most known results, see [HHS; Chapter 16] as well as [FTWZ].)

If G is 3- γ -critical and disconnected, then G is the disjoint union of a 2- γ -critical graph and a complete graph. (See [SB].) Hence we will consider only connected 3- γ -critical graphs.

Sumner and Blitch [SB] were the first to study 3- γ -critical graphs. Our main purpose in this paper is to extend their result which follows. It can be viewed as a toughness result for 3- γ -critical graphs.

Theorem 1.1. Let G be a connected 3- γ -critical graph. Then if S is a vertex cutset in G, G-S has at most |S|+1 components.

This result was recently extended by Flandrin et al. [FTWZ] as follows. We denote the number of components of G-S by $\omega(G-S)$.

Theorem 1.2. Let G be a connected 3- γ -critical graph. If S is a vertex cutset in G such that $\omega(G-S)=|S|+1$, then each vertex $v\in S$ is a cutvertex of G.

r

If u, v and w are vertices of G and u and v dominate G - w, we will follow previously accepted notation and write $[u, v] \longrightarrow w$. Suppose G is 3- γ -critical. If u and v are non-adjacent vertices of G, then $\gamma(G + uv) = 2$ and so there is a vertex $x \in V(G)$ such that either $[u, x] \longrightarrow v$ or $[v, x] \longrightarrow u$.

In addition to Theorem 1.1, Sumner and Blitch [SB] also proved the following lemma for the case $n \geq 4$. The cases n = 2 and 3 were proved in [FTWZ; Lemma 1]. This lemma will be used repeatedly throughout our paper.

- Lemma 1.3. Let G be a connected 3- γ -critical graph and let S be an independent set of $n \geq 2$ vertices in V(G).
- (i) Then the vertices of S can be ordered a_1, a_2, \ldots, a_n in such a way that there exists a sequence of distinct vertices $x_1, x_2, \ldots, x_{n-1}$ so that $[a_i, x_i] \longrightarrow a_{i+1}$ for $i = 1, 2, \ldots, n-1$.
- (ii) If, in addition, $n \geq 4$, then the x_i 's can be chosen so that $x_1 x_2 \cdots x_{n-1}$ is a path and $S \cap \{x_1, \ldots, x_{n-1}\} = \emptyset$.

Two additional results from [SB] which will be of help to us are the next two lemmas.

Lemma 1.4. If G is a connected 3- γ -critical graph, then no two endvertices of G have a common neighbor.

Lemma 1.5. The diameter of any connected 3- γ -critical graph is at most three.

Blitch [B] proved the next result.

Lemma 1.6. If G is a connected 3- γ -critical graph and v is a cutvertex of G, then v is adjacent to an endvertex of G.

The following two results of Wojcicka [W] will also prove useful to us.

Theorem 1.7. If G is a connected 3- γ -critical graph with more than six vertices, then G has a Hamiltonian path.

To state the next theorem, we make use of the concept of a full 3- γ -critical graph. For any $p \geq 6$, let a+b+c=p-3 be any partition of p-3. Let H be a complete graph on p-3 vertices and let $A \cup B \cup C = V(H)$ be a partition of the vertices of H with |A| = a, |B| = b and |C| = c. Form a new graph G by adding to H three new vertices u, v and w with N(u) = A, N(v) = B and N(w) = C. (Here as usual, N(v) denotes the neighborhood of vertex v.) Then G is clearly 3- γ -critical and is said to be full.

Theorem 1.8. Let G be a connected 3- γ -critical graph having two endvertices. Then G is full.

Finally, in what is to follow, we shall also make frequent use of the following easy result.

Lemma 1.9. Let G be a 3- γ -critical graph and let u and v be non-adjacent vertices of G. If x is a vertex of G such that $[u, x] \longrightarrow v$, then $xv \notin E(G)$ and if x is a vertex of G with $[v, x] \longrightarrow u$ then $xu \notin E(G)$.

Proof: Suppose $[u, x] \longrightarrow v$. If $xv \in E(G)$, then u and x dominate G, contradicting the assumption that $\gamma(G) = 3$. Similarly, if $[v, x] \longrightarrow u$, then $xu \notin E(G)$.

2. The Main Theorem

Theorem 2.1. Let G be a connected $3-\gamma$ -critical graph and let S be a vertex cutset in G. Then

- (a) if $|S| \ge 4$, G S has at most |S| 1 components,
- (b) if |S| = 3, then G S contains at most |S| components, and if G S has exactly three components, then each component is complete and at least one is a singleton.
- (c) if |S| = 2, then G S has at most three components and if G S has exactly three components, then G must have the structure shown below in Figure 2.1.

(d) if |S| = 1, then G - S has two components, exactly one of which is a singleton. Furthermore, G has exactly one or two cutvertices and if it has two, G is isomorphic to a graph of the type shown in Figure 2.1.

Figure 2.1.

Proof: Part (a) follows immediately from Lemma 6 of [SB] and Lemma 3 of [CTW]. We turn now to part (b). Suppose S is a vertex cutset in G and |S| = 3. We want to show that G - S contains at most |S| components. Suppose, to the contrary, that G - S contains at least |S| + 1 = 4 components. Then by Theorem 1.1, G - S contains exactly four components. Let H_i denote these four components, $i = 1, \ldots, 4$. Choose a vertex $w_i \in V(H_i)$, $1 \le i \le 4$. Clearly $W = \{w_1, w_2, w_3, w_4\}$ is an independent set. By Lemma 1.3, the vertices in W may be ordered as a_1, a_2, a_3, a_4 in such a way that there exists a path $x_1x_2x_3$ in G - W such that $[a_i, x_i] \longrightarrow a_{i+1}$, for i = 1, 2, 3. By Lemma 1.9, $x_ia_{i+1} \notin E(G)$, for each i = 1, 2, 3. Clearly $x_i \in S$ for i = 1, 2, 3. Since $[a_i, x_i] \longrightarrow a_{i+1}$ and $x_ia_{i+1} \notin E(G)$, x_i is adjacent to every vertex of $\bigcup_{j=1}^4 V(H_j) - (V(H_i) \bigcup \{a_{i+1}\})$, for i = 1, 2, 3. So $x_i \ne x_j$ for all $1 \le i \ne j \le 3$. Thus $\{x_1, x_2, x_3\} = S$.

Consider now $G + a_1a_3$. There must exist a vertex $y \in G - \{a_1, a_3\}$ such that either $[a_3, y] \longrightarrow a_1$ or $[a_1, y] \longrightarrow a_3$. Clearly in either case $y \in S$. By Lemma 1.9 and the fact that $x_ia_{i+1} \notin E(G)$, for i = 1, 2, 3, the case $[a_3, y] \longrightarrow a_1$ is impossible. Hence $[a_1, y] \longrightarrow a_3$. But then $y = x_2$. Now x_2 is adjacent to every vertex of $\bigcup_{i=1}^4 V(H_i) - \{a_3\}$. By this fact and the fact that $x_1x_2x_3$ is a path, vertices x_2 and a_3 together dominate G, a contradiction. So G - S contains at most three components as claimed.

Now suppose G-S contains exactly three components. We now show that in this instance, each of the three components must be complete. Suppose to the contrary that there exists a component C of G-S such that $|V(C)| \geq 2$ and C is not complete. Then there exist two non-adjacent vertices w_1 and w_2 in C. Let C_1 and C_2 be the other two components of G-S. Choose $w_3 \in V(C_1)$ and $w_4 \in V(C_2)$. Then $W=\{w_1,w_2,w_3,w_4\}$ is an independent set. So by Lemma 1.3 the vertices of W may be ordered a_1,a_2,a_3,a_4 in such a way that there exists a path $x_1x_2x_3$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$ for i=1,2,3. Clearly $x_i \neq x_j$ for $1 \leq i \neq j \leq 3$ and by Lemma 1.9, $x_ia_{i+1} \notin E(G)$.

Claim 1: $\{x_1, x_2, x_3\} \neq S$.

Suppose to the contrary that $\{x_1, x_2, x_3\} = S$ and consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there exists a vertex $z \in V(G) - \{a_1, a_4\}$ such that $[a_4, z] \longrightarrow a_1$ or $[a_1, z] \longrightarrow a_4$. Suppose $[a_4, z] \longrightarrow a_1$. If $z \in S$, then $z = x_3$ since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$. But this contradicts Lemma 1.9 since $[a_3, x_3] \longrightarrow a_4$ and $a_1a_3 \notin E(G)$. Thus $z \notin S$. But this

implies that a_2 and a_3 are in the same component of G-S; call it H. But then $z \in V(H)$. Hence z is adjacent to every vertex of $H-\{z\}$. Since $[a_2,x_2] \longrightarrow a_3$, vertex x_2 is adjacent to every vertex of $H_1 \cup H_2$ where H_1 and H_2 are the components of G-S containing vertices a_1 and a_4 respectively. Since $x_1x_2x_3$ is a path, vertex x_2 is adjacent to x_1 and x_3 . Hence $\{x_2,z\}$ dominates G, a contradiction.

Hence $[a_1, z] \longrightarrow a_4$. Suppose $z \in S$. Since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$, $z = x_3$. By using this fact and the fact that $[a_3, x_3] \longrightarrow a_4$, vertex x_3 is adjacent to every vertex of $G - S - (N(a_1) \cap N(a_3))$, except a_4 . Since $[a_2, x_2] \longrightarrow a_3$, edge $x_2a_4 \in E(G)$. Because $x_1x_2x_3$ is a path, edge $x_1x_2 \in E(G)$. Hence $\{x_2, x_3\}$ dominates G, a contradiction. Hence $z \notin S$.

By applying the same argument as above, one can show that $\{x_2, z\}$ dominates G, again a contradiction. This completes the proof of Claim 1.

Claim 2: $|S \cap \{x_1, x_2, x_3\}| < 2$.

1

2.

Suppose to the contrary that $|S \cap \{x_1, x_2, x_3\}| \ge 2$. Then by Claim 1, $|S \cap \{x_1, x_2, x_3\}| =$

Case 2.1: Suppose x_1 and $x_2 \in S$.

Since $[a_3, x_3] \longrightarrow a_4$, and $\{a_1, a_2, a_3, a_4\}$ is independent, edge $x_3a_1 \in E(G)$ and edge $x_3a_2 \in E(G)$. Thus a_1, a_2 and x_3 belong to the same component of G - S, say H_1 . Moreover, then, vertex x_3 dominates all of H_1 . Let H_2 and H_3 be the components of G - S containing a_3 and a_4 respectively. Clearly $H_i \neq H_j$, for $1 \leq i \neq j \leq 3$. Furthermore, $V(H_3) = \{a_4\}$. Choose $w \in S - \{x_1, x_2\}$. If $x_1w \in E(G)$, then $\{x_1, x_3\}$ dominates G since x_3 dominates H_1 and x_4 dominates $H_2 \cup H_3 \cup \{x_2, w\}$, a contradiction.

Hence $x_1w \notin E(G)$. Similarly, $x_3w \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$ and $[a_3, x_3] \longrightarrow a_4$, we have $a_1w \in E(G)$ and $a_3w \in E(G)$. Figure 2.2 depicts this situation.

Figure 2.2

Recall that $x_i a_{i+1} \notin E(G)$, for i = 1, 2, 3. Now consider $G + a_1 a_4$. Since $\gamma(G + a_1 a_4) = 2$, there exists a vertex $z \in G - \{a_1, a_4\}$ such that $[a_4, z] \longrightarrow a_1$ or $[a_1, z] \longrightarrow a_4$. Suppose first that $[a_4, z] \longrightarrow a_1$. Since a_2 and a_3 are in different components of G - S, $z \in S$. But $z \neq x_1$ since $x_1 a_2 \notin E(G)$ and $z \neq x_2$ since $x_2 a_3 \notin E(G)$. Thus z = w. But this is also impossible since $wx_3 \notin E(G)$.

Hence $[a_1, z] \longrightarrow a_4$. Because $a_1a_2 \notin E(G)$ and a_2 and a_3 are in different components of G - S, it follows that $z \in S$. By Lemma 1.9, $z \neq x_1$ and $z \neq x_2$ since $x_1a_4 \in E(G)$ and $x_2a_4 \in E(G)$. Thus z = w. But then $wa_4 \notin E(G)$ by Lemma 1.9.

Now consider $G+a_2a_4$. Since $\gamma(G+a_2a_4)=2$, there exists a vertex $z\in V(G)-\{a_2,a_4\}$ such that $[a_2,z]\longrightarrow a_4$ or $[a_4,z]\longrightarrow a_2$. Suppose $[a_2,z]\longrightarrow a_4$. Since $a_1a_2\notin E(G)$ and a_1 and a_3 are in different components of G-S, it follows that $z\in S$. Since x_1a_4 and $x_2a_4\in E(G)$, by Lemma 1.9 it follows that $z\notin \{x_1,x_2\}$. But then z=w. However, this is also impossible since $wx_1\notin E(G)$ and $a_2x_1\notin E(G)$.

Hence $[a_4, z] \longrightarrow a_2$. Because a_1 and a_3 are in different components of G - S, it follows that $z \in S$. Clearly $z \neq x_2$ and $z \neq w$ since $x_2a_3 \notin E(G)$ and $wx_3 \notin E(G)$. Thus $z = x_1$. But this is also impossible since $x_1w \notin E(G)$ and $a_4w \notin E(G)$. This contradiction proves Case 2.1.

Case 2.2: Suppose x_1 and $x_3 \in S$.

Since $[a_2, x_2] \longrightarrow a_3$ and $\{a_1, a_2, a_3, a_4\}$ is independent, edge $a_1x_2 \in E(G)$ and edge $a_4x_2 \in E(G)$. Thus a_1, a_4 and a_2 all belong to the same component of G - S, say H_1 . Let H_2 and H_3 be the components of G - S containing a_2 and a_3 respectively.

Clearly $H_i \neq H_j$ for $1 \leq i \neq j \leq 3$. Furthermore, $V(H_3) = \{a_3\}$. Choose $w \in S - \{x_1, x_3\}$. If $x_1 w \in E(G)$, then $\{x_1, x_3\}$ dominates G since x_3 dominates $(H_1 - \{a_4\}) \cup H_2$ and x_1 dominates $(H_2 - \{a_2\}) \cup H_3 \cup \{a_4, w\}$, a contradiction.

Hence $x_1w \notin E(G)$. Similarly, $x_3w \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$, edge $a_1w \in E(G)$ and since $[a_3, x_3] \longrightarrow a_4$, edge $a_3w \in E(G)$. Figure 2.3 illustrates this situation.

Figure 2.3

Now consider $G + a_1 a_3$. since $\gamma(G + a_1 a_3) = 2$, there exists a vertex $z \in G - \{a_1, a_3\}$ such that $[a_1, z] \longrightarrow a_3$ or $[a_3, z] \longrightarrow a_1$.

Suppose $[a_1, z] \longrightarrow a_3$. Since $a_1a_4 \notin E(G)$ and a_2 and a_4 are in different components of G - S, it follows that vertex $z \in S$. Because x_1a_3 and $wa_3 \in E(G)$, vertex $z \notin \{x_1, w\}$ by Lemma 1.9. Thus $z = x_3$. But this is impossible since x_3a_4 and $a_1a_4 \notin E(G)$.

Hence $[a_3, z] \longrightarrow a_1$. Because a_2 and a_4 are in different components of G - S, it follows that vertex $z \in S$. By Lemma 1.9, vertex $z \notin \{x_3, w\}$, since x_3a_1 and $wa_1 \in E(G)$. Thus $z = x_1$. But this is also impossible since $x_1a_2 \notin E(G)$. Thus Case 2.2 is settled.

Case 2.3: Suppose x_2 and $x_3 \in S$.

Since $[a_1, x_1] \longrightarrow a_2$ and $\{a_1, a_2, a_3, a_4\}$ is independent, edge $a_3x_1 \in E(G)$ and edge $a_4x_1 \in E(G)$. Thus a_3, a_4 and x_1 belong to the same component of G - S, say H_3 . Moreover, vertex x_1 dominates all of H_3 . Let H_1 and H_2 be the components of G - S containing a_1 and a_2 respectively. Clearly $H_i \neq H_j$, for $1 \leq i \neq j \leq 3$. Furthermore, $V(H_2) = \{a_2\}$. Choose $w \in S - \{x_2, x_3\}$. If $x_3w \in E(G)$, then $\{x_1, x_3\}$ dominates G since x_3 dominates $H_1 \cup H_2 \cup \{x_2, w\}$ and x_1 dominates H_3 , a contradiction.

Thus $x_3w \notin E(G)$. Similarly, $x_1w \notin E(G)$. Since $[a_1, x_1] \longrightarrow a_2$, edge $a_1w \in E(G)$ and since $[a_3, x_3] \longrightarrow a_4$, edge $a_3w \in E(G)$. Figure 2.4 shows this situation.

Figure 2.4

Now consider $G + a_1 a_3$. Since $\gamma(G + a_1 a_3) = 2$, there exists a vertex $z \in G - \{a_1, a_3\}$ such that $[a_1, z] \longrightarrow a_3$ or $[a_3, z] \longrightarrow a_1$.

Suppose first that $[a_3, z] \longrightarrow a_1$. Since a_2 and a_4 are in different components of G - S, vertex $z \in S$. Because $[a_i, x_i] \longrightarrow a_{i+1}$ for i = 1, 2, 3, edges a_1x_2 and $a_1x_3 \in E(G)$. Since $a_1w \in E(G)$, by Lemma 1.9 vertex $z \notin \{x_2, x_3, w\} = S$, a contradiction.

Hence $[a_1, z] \longrightarrow a_3$. By the same argument as above, vertex $z \in S$. By Lemma 1.9, $z \neq w$ since $wa_3 \in E(G)$. Clearly $z \neq x_3$, since $x_3a_4 \notin E(G)$. Thus $z = x_2$. By this fact and the fact that $[a_2, x_2] \longrightarrow a_3$, vertex x_2 dominates $(H_1 \cup H_2 \cup H_3 \cup \{x_3\}) - \{a_3\}$. But then since $a_3w \in E(G)$, $\{w, x_2\}$ dominates G, a contradiction.

This completes the proof in Case 2.3 and hence Claim 2 is proved.

By Claim 1 and Claim 2, $|S \cap \{x_1, x_2, x_3\}| \le 1$. Suppose $x_1 \in S$. Then x_2 and x_3 are in some component of G - S. Because $\{a_1, a_2, a_3, a_4\}$ is independent and $[a_2, x_2] \longrightarrow a_3$, vertex x_2 is adjacent to both a_1 and a_4 . Similarly, vertex x_3 is adjacent to both a_1 and a_2 . Hence a_1, a_2 and a_4 are in the same component. But this contradicts our choice of the a_i . Hence $x_1 \notin S$. Similarly, $x_3 \notin S$. By applying a similar argument, if $x_2 \in S$, then a_1 and a_2 are in the same component of G - S and a_3 and a_4 are in the same component of G - S which again contradicts the choice of a_i . Hence $S \cap \{x_1, x_2, x_3\} = \emptyset$. This implies that each x_i belongs to some component of G - S.

Since $[a_i, x_i] \longrightarrow a_{i+1}$, for i = 1, 2, 3, it follows that x_1 is adjacent to a_3 and a_4 , x_2 is adjacent to a_1 and a_4 and a_3 is adjacent to a_1 and a_2 . This implies that a_1, a_2, a_3 and a_4 are in the same component of G - S, again contradicting the choice of the a_i . Hence each component of G - S is complete.

Next we show that at least one of the three complete components must be a singleton. Suppose to the contrary that each component of G-S has at least two vertices. Let H_i be the components of G-S, i=1,2,3. For each i=1,2,3, choose $w_i \in V(H_i)$. Clearly $\{w_1, w_2, w_3\}$ is an independent set. By Lemma 1.3 the vertices in W may be ordered as a_1, a_2, a_3 in such a way that there exist vertices x_1 and x_2 such that $[a_i, x_i] \longrightarrow a_{i+1}$ for i=1,2. Without loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. Since each component of G-S has at least two vertices, x_1 and x_2 must belong to S. Clearly $x_1 \neq x_2$. Let $S - \{x_1, x_2\} = \{w\}$. Choose $a'_1 \in V(H_1) - \{a_1\}$ and $a'_3 \in V(H_3) - \{a_3\}$. Consider $G + a'_1 a'_3$. Since $\gamma(G + a'_1 a'_3) = 2$, there exists a vertex $z \in V(G) - \{a'_1, a'_3\}$ such that $[a'_1, z] \longrightarrow a'_3$ or $[a'_3, z] \longrightarrow a'_1$. In either case, $z \in S$.

Suppose first that $[a_1', z] \longrightarrow a_3'$. Since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$, $z \neq x_1$ and $z \neq x_2$. Thus z = w. This implies that w dominates $(H_2 \cup H_3) - \{a_3'\}$. Since $x_1a_2 \notin E(G)$ and $[a_2, x_2] \longrightarrow a_3$, vertex x_2 dominates $(H_1 \cup H_3 \cup \{x_1\}) - \{a_3\}$. Thus $\{w, x_2\}$ dominates T, a contradiction.

Hence $[a'_3, z] \longrightarrow a'_1$. Because $x_1a_2 \notin E(G)$, $z \neq x_1$. Since $x_2a'_1 \in E(G)$, by Lemma 1.9 $z \neq x_2$. Thus z = w. This implies that w dominates $(H_1 \cup H_2) - \{a'_1\}$. Now consider $G + a_1a'_3$. Since $\gamma(G + a_1a'_3) = 2$, there exists a vertex $z_1 \in G - \{a_1, a'_3\}$ such that $[a_1, z_1] \longrightarrow a'_3$ or $[a'_3, z_1] \longrightarrow a_1$. In either case $z_1 \in S$.

Suppose $[a_1, z_1] \longrightarrow a_3'$. Since $x_1a_2 \notin E(G)$ and $x_2a_3 \notin E(G)$, $z_1 \neq x_1$ and $z_1 \neq x_2$. Thus $z_1 = w$. By using this fact and the fact that $[a_3', w] \longrightarrow a_1'$, we see that w dominates $(H_1 \cup H_2 \cup H_3) - \{a_1', a_3'\}$. Since $x_1a_2 \notin E(G)$ and $[a_2, x_2] \longrightarrow a_3$, vertex x_2 dominates $(H_1 \cup H_3 \cup \{x_1\}) - \{a_3\}$. Thus $\{x_2, w\}$ dominates G, a contradiction.

Hence $[a_3', z_1] \longrightarrow a_1$. Since $x_1 a_2 \notin E(G)$ and $w a_1' \notin E(G)$, $z_1 \neq x_1$ and $z_1 \neq w$. Thus $z_1 = x_2$. But this contradicts Lemma 1.9 since $a_1 x_2 \in E(G)$. This completes the proof of part (b).

Next we turn to part (c). Suppose therefore that S is a vertex cutset with |S| = 2. Then by the Theorem 1.1, $\omega(G - S) \leq 3$. Suppose that G - S has precisely three components. Let s_1 and s_2 be the vertices of S and let H_i , i = 1, 2, 3, be the three components of G - S. By Theorem 1.2, both s_1 and s_2 are cutvertices. So each s_i , i = 1, 2, is adjacent to an endvertex of G by Lemma 1.6. So G has at least two endvertices, say a_1 and a_2 . Furthermore, neither a_1 nor a_2 is in S. Since no two endvertices of G have a common neighbor by Lemma 1.4, we may assume, without loss of generality, that $a_i s_i \in E(G)$ and $a_i \in V(H_i)$ for i = 1, 2.

If $|V(G)| \ge 7$, then G must have exactly two endvertices since G has a Hamiltonian path by Theorem 1.7. Hence by Theorem 1.8, graph G is of the type shown in Figure 2.1, where $n \ge 3$.

So now let us assume that $|V(G)| \leq 6$. Since a_i is an endvertex of G and $a_is_i \in E(G)$, for $i=1,2,V(H_i)=\{a_i\}$. If $|V(H_3)|=1$, then, since G is connected, $\gamma(G)=2$, a contradiction. Hence $|V(H_3)|=2$. Let $V(H_3)=\{a_3,a_4\}$. Since G is connected, we may assume that $a_3s_1 \in E(G)$. But then $a_4s_i \notin E(G)$ for i=1 and 2; otherwise $\{s_1,s_2\}$ dominates G. Thus a_4 is an endvertex of G. Suppose $a_3s_2 \notin E(G)$ and consider $G+a_3s_2$. Since $\gamma(G+a_3s_2)=2$, there is a vertex z of $G-\{a_3,s_2\}$ such that either $[a_3,z] \longrightarrow s_2$ or $[s_2,z] \longrightarrow a_3$. Suppose $[a_3,z] \longrightarrow s_2$. Then by Lemma 1.9, $z \ne a_2$ since $a_2s_2 \in E(G)$. Thus $[a_3,z] \longrightarrow s_2$ is impossible since $N(a_2)=\{s_2\}$. Similarly, $[s_2,z] \longrightarrow a_3$ is also impossible. This contradiction proves that $s_2a_3 \in E(G)$. By applying a similar argument, edge $s_1s_2 \in E(G)$. Hence G is a graph of the type shown in Figure 2.1 where n=2.

This completes the proof of part (c).

Finally, suppose |S|=1. Let c be a cutvertex of G. Then G-c has exactly two components by the Theorem 1.1. Moreover, one of the two components is a singleton by Lemma 1.6. (Clearly it cannot happen that both components of G-c are singletons, for then |V(G)|=3 and so $\gamma(G)\neq 3$ since G is connected.) If $|V(G)|\leq 6$, it is easy to see that G must be isomorphic to the six-vertex graph shown in Figure 2.5(a). So suppose $|V(G)|\geq 7$. Then G has a Hamiltonian path by Theorem 1.7. But then G has at most two endedges. If it has two endedges, then by [SB; Remark, pg70] it must be isomorphic

) a graph of the type shown in Figure 2.1.

*

This completes the proof of part (d) and hence the theorem is proved.

Pertaining to part (b) of the preceding theorem, we point out that it is not possible o say more about the number of singleton components, for in Figure 2.5 below we present xamples in which G-S has three, two and one singleton component respectively.

Figure 2.5

On the other hand, if one assumes that S is a cutset with |S| = 3, $\omega(G - S) = 3$ and, in addition, $\kappa(G) = 3$, it is shown in [CTW] that one can say a bit more. Namely, in this case each of the three components of G - S is complete and if one orders the three components by size as $|V(C_1)| \leq |V(C_2)| \leq |V(C_3)|$, then either (i) $C_1 = C_2 = K_1$ and G belongs to an infinite family of graphs G_1 or (ii) $C_1 = K_1, C_2 = K_3$ and G belongs to a second infinite family of graphs G_2 . (The graph families G_1 and G_2 are described in [CTW].)

However, if $1 \le \kappa(G) \le 2$, Lemmas 4,5 and 6 of [CTW] do not apply, whereas, on the other hand, parts (c) and (d) of Theorem 2.1 hold.

The following result is an immediate corollary of Theorem 2.1.

Corollary 2.2. Let G be a connected 3- γ -critical graph and let S be a cutset in G. If G-S has exactly |S|+1 components, then $|S| \leq 2$.

The results of the present paper, together with those in [CTW], can be applied to the study of toughness in a 3- γ -critical graph. Recall that the toughness of a (connected) graph G, $\tau(G)$, is defined as follows. $\tau(G) = \min{\{|S|/\omega(G-S)\}}$ where the minimum is taken over all cutsets S of G. It follows from Theorem 2.1(d) that every connected 3- γ -critical graph has toughness at least 1/2 and it was shown in [FTWZ] that every 2-connected 3- γ -critical graph has toughness at least 1. If G is a 3- γ -critical graph with $\kappa(G) \geq 3$, then $\tau(G) \geq 1$ and $\tau(G) = 1$ if and only if G belongs to a special infinite family described in [CTW]. If G is a 3- γ -critical graph with $\kappa(G) = 2$, then by Theorem 3 of [CTW], $\tau(G) = 1$. Finally, if G is a 3- γ -critical graph with $\kappa(G) = 1$, then G has the structure described in part (d) of Theorem 2.1 and in particular, $\tau(G) = 1/2$.

Remark 1: We use the results of the present work in a paper to follow in which we obtain new information on matchings in 3- γ -critical graphs.

Remark 2: We are very grateful to one of the referees who, while refereeing our paper, pointed out the existence of paper [CTW]. Although we have an independent proof fpart (a) of Theorem 2.1, we have omitted it here in favor of [CTW] which has publication precedence.

References

- B] P.Blitch, Domination in Graphs, Ph.D. dissertation, Univ. of South Carolina, 1983.
- CTW] Y. Chen, F. Tian and B. Wei, The 3-domination-critical graphs with toughness one, *Utilitas Math.*, 2001, (to appear).
- FTWZ] E. Flandrin, F. Tian, B. Wei and L. Zhang, Some properties of 3-domination-critical graphs, *Discrete Math.*, **205**, 1999, 65-76.
- HHS] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs; Advanced Topics, Marcel Dekker, New York, 1998.
- SB] D.P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory Series B, 34, 1983, 65-76.
- W] E. Wojcicka, Hamiltonian properties of domination-critical graphs, J. Graph Theory, 14, 1990, 205-215.

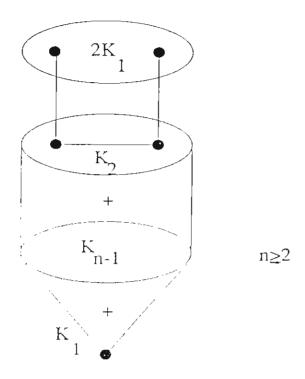


Figure 2.1

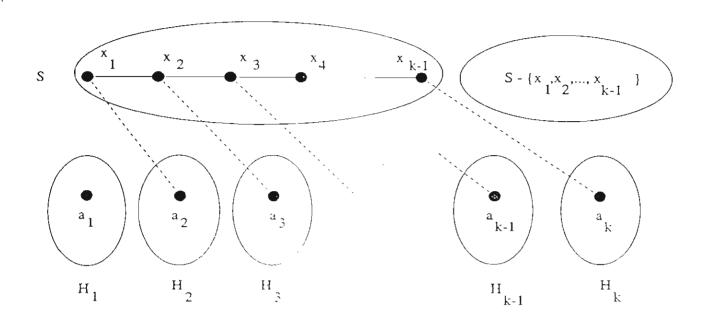


Figure 2.2

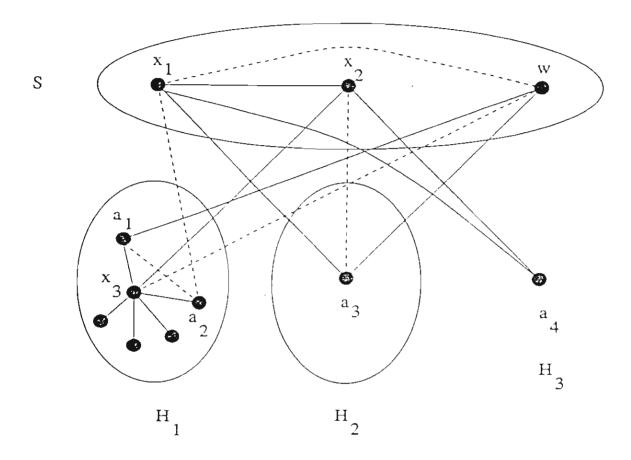
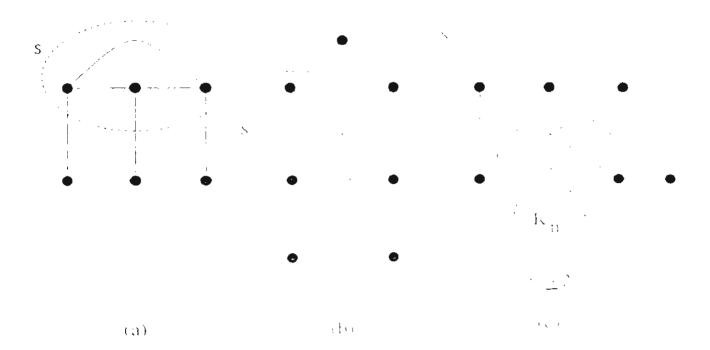


Figure 2.3



Erman So

Research paper 2:

N.Ananchuen and M.D.Plummer, Matching properties in domination critical graphs, (submitted).

MATCHING PROPERTIES

IN

DOMINATION CRITICAL GRAPHS

by

Nawarat Ananchuen *
Department of Mathematics
Silpakorn University
Nakorn Pathom. Thailand
email: nawarat@kanate.su.ac.th

and

Michael D. Plummer †
Department of Mathematics
Vanderbilt University
Nashville, Tennessee 37240, USA
email: michael.d.plummer@vanderbilt.edu

Abstract

A graph G is said to be k- γ -critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k- γ -critical graphs remains far from completely understood, even in the special case when the domination number $\gamma = 3$. In a 1983 paper, Summer and Blitch proved a theorem which says that if S is any vertex cutset of such a graph, then G - S has at most |S| + 1 components.

A graph G is factor-critical if G-v has a perfect matching for every vertex $v \in V(G)$ and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices $u,v \in V(G)$. In a previous paper [AP1], we improved and extended the Summer-Blitch result above. Using these improvements, we show in the present paper that under certain assumptions regarding connectivity and minimum degree, a 3- γ -critical graph G will be either factor-critical (if |V(G)| is odd) or bicritical (if |V(G)| is even).

Keywords: domination, critical edge, matching, factor-critical, bicritical, claw-free

1. Introduction

Let G denote a finite undirected graph with vertex set V(G) and edge set E(G). A set $S \subseteq V(G)$ is a vertex dominating set for G if every vertex of G either belongs to S

^{*} work supported by the Thailand Research Fund Grant #BRG4380016

[†] work supported by NSF Grant # INT-9816113

is adjacent to a vertex of S. The minimum cardinality of a vertex dominating set in a aph G is called the **vertex domination number** (or simply the domination number) of and is denoted by $\gamma(G)$. Graph G is said to be k- γ -domination critical if $\gamma(G) = k$, it $\gamma(G+e) = k-1$ for each edge $e \notin E(G)$. In this paper, we will be concerned only ith the case k=3.

If u, v and w are vertices of G and u and v dominate G - w, we will follow previously cepted notation and write $[u, v] \longrightarrow w$. Suppose G is 3- γ -critical. If u and v are non-djacent vertices of G, then $\gamma(G + uv) = 2$ and so there is a vertex $x \in V(G)$ such that ther $[u, x] \longrightarrow v$ or $[v, x] \longrightarrow u$.

Sumner and Blitch [SB] initiated work on matchings in 3- γ -critical graphs. The folowing lemma from that paper will be very useful in our work to follow.

Lemma 1.1. Let G be a connected 3- γ -critical graph and let S be an independent et of $n \geq 2$ vertices in V(G).

- (i) Then the vertices of S can be ordered a_1, a_2, \ldots, a_n in such a way that there exists a equence of distinct vertices $x_1, x_2, \ldots, x_{n-1}$ so that $[a_i, x_i] \longrightarrow a_{i+1}$ for $i = 1, 2, \ldots, n-1$.
- (ii) If, in addition, $n \ge 4$, then the x_i 's can be chosen so that $x_1 x_2 \cdots x_{n-1}$ is a path and $S \cap \{x_1, \ldots, x_{n-1}\} = \emptyset$.

In what is to follow, we shall also make frequent use of the following easy result.

Lemma 1.2. Let G be a 3- γ -critical graph and let u and v be non-adjacent vertices of G. If x is a vertex of G such that $[u, x] \longrightarrow v$, then $xv \notin E(G)$ and if x is a vertex of G with $[v, x] \longrightarrow u$ then $xu \notin E(G)$.

Proof: Suppose $[u, x] \longrightarrow v$. If $xv \in E(G)$, then u and x dominate G, contradicting the assumption that $\gamma(G) = 3$. Similarly, if $[v, x] \longrightarrow u$, then $xu \notin E(G)$.

The next result which will prove useful to us was conjectured by Wojcicka [W] and in a series of three papers ([FTZ, FTWZ, TWZ]) proved by Favaron, Flandrin, Tian, Wei and Zhang. (In her survey [My], however, Mynhardt refers to this result as "Wojcicka's Theorem". See also [Mo].)

Theorem 1.3. Every connected 3- γ -critical graph having minimum degree at least 2 has a Hamiltonian cycle.

The following lemma, which may be viewed as a toughness result, is due to Sumner and Blitch [SB] and leads to the first results on matchings in 3- γ -critical graphs which we then state as Lemma 1.5.

Lemma 1.4. Let G be a connected 3- γ -critical graph. Then if T is a separating set of vertices for G, it follows that G-T has at most |T|+1 components.

A near-perfect matching in a graph G is one which covers all but exactly one of the ertices of G. A factor-critical graph G is one with the property that $G = \{v\}$ contains sperfect matching for every vertex $v \in V(G)$. Throughout the rest of this paper, c(G) espectively $c_{\phi}(G)$ will denote the number of components (respectively odd components) graph G.

.

Lemma 1.5. Let G be a connected 3- γ -critical graph.

- (i) Then if |V(G)| is even, G contains a perfect matching, while
- (ii) if $|V_{\beta}(G)|$ is odd. G contains a near-perfect matching.

Proof: Part (i) is due to Summer and Blitch [SB]. We prove only part (ii). Suppose J is a 3- γ -critical graph with an odd number of vertices and suppose G does not contain a car-perfect matching. Consider the Gallai-Edmonds decomposition of G. (See [LP].) That S let D(G) denote the set of all vertices $v \in V(G)$ such that some maximum matching of G does not cover V. Let A(G) denote the set of all neighbors of vertices of D(G) which are not themselves in D(G) and finally, let C(G) = V(G) - D(G) - A(G). Since G contains no near-perfect matching, the number of odd components of D(G) is at least two larger than A(G). If $A(G) = \emptyset$, then G is disconnected, a contradiction. So $A(G) \neq \emptyset$ and hence is a vertex cutset of G. But $C(G - A(G)) \geq |A(G)| + 2$ which contradicts Lemma 1.4.

The next result proved in [AP1] (see also the related paper [CTW]) significantly sharpens Lemma 1.4 and will be of considerable importance in our work to follow.

Theorem 1.6. Let G be a connected 3- γ -critical graph and let S be a vertex cutset in G. Then

- (i) if $|S| \ge 4$, G S has at most |S| 1 components,
- (ii) if |S| = 3, then G S contains at most |S| components, and if G S has exactly three components, then each component is complete and at least one is a singleton.
- (iii) if |S| = 2, then G S has at most three components and if G S has exactly three components, then G must have the structure shown below in Figure 1.1.
- (iv) if |S| = 1, then G S has two components, exactly one of which is a singleton. Furthermore, G has exactly one or two cutvertices and if it has two, G is isomorphic to a graph of the type shown in Figure 1.1.

Figure 1.1.

A graph G is said to be **bicritical** if G + u + v contains a perfect matching for every coice of two distinct vertices u and $v \in V(G)$. Bicritical graphs play an important role a canonical decomposition theory for arbitrary graphs in terms of their matchings. The perested reader is referred to [LP] for much more on this subject.

Our purpose in the present paper is to use the above assembled known results to help ove several new theorems which say that under certain assumptions on connectivity and inimum degree, a 3- γ -critical graph G either is factor-critical (when |V(G)| is odd) or critical (when |V(G)| is even).

2. 3- γ -criticality, Bicriticality and Factor-criticality

Our first main result shows that if the connectivity and minimum degree are suffilently high in a 3- γ -critical graph of even order, then the graph must be bicritical.

Theorem 2.1. If G is a 3-connected 3- γ -critical graph with minimum degree at least and having even order, then G is bicritical.

Proof: Suppose, to the contrary, that G is a 3-connected 3- γ -critical graph with ninimum degree at least 4 and having even order, but G is not bicritical. Then there exist vertices u and v in G such that $G' = G - \{u, v\}$ has no perfect matching. By Tutte's 1-factor theorem, there then must exist an $S' \subseteq V(G')$ such that

$$c_o(G'-S') > |S'|.$$

Since |V(G')| is even, by parity $c_o(G'-S') \ge |S'| + 2$. Put $S = S' \cup \{u,v\}$. Clearly, $c_o(G-S) = c_o(G'-S')$. But by Lemma 1.5(i), G has a perfect matching, so

$$|S| = |S'| + 2 \le c_o(G' - S') = c_o(G - S) \le |S|.$$

and hence $|S| = c_0(G - S)$.

By Theorem 1.6(i), $|S| \leq 3$. Since G is 3-connected, $|S| = c_0(G - S) = 3$ and G - S has no even components. By Theorem 1.6(ii), at least one component of G - S is a singleton. Let H_1 denote such a singleton component of G - S and let $V(H_1) = \{x\}$. Then deg $(x) \leq 3$, a contradiction. Hence G is bicritical.

The minimum degree bound in Theorem 2.1 is best possible as there exist 3-connected $3-\gamma$ -critical graphs having minimum degree 3 which are not bicritical. Two such graphs are shown in Figure 2.1. The first is due to Sumner and Blitch [SB].

Figure 2.1

On the other hand, if we consider planar graphs, then this minimum degree bound on be relaxed.

Theorem 2.2. If G is a 3-connected 3- γ -critical planar graph having even order, then ϵ is bicritical.

Proof: Suppose G is not bicritical. Using exactly the same argument as in the proof of Theorem 2.1, again we arrive at the conclusion that the Tutte Set S defined there has size and $c_o(G-S)=3$ as well. Since G is 3-connected, each of the three (odd) components G-S has edges to each of the three vertices of S. But then G is contractible to a $K_{3,3}$ and hence is non-planar, a contradiction.

Let k be an integer such that $0 \le k < |V(G)|/2$. G is said to be k-extendable every matching of size k in G extends to (i.e., is a subset of) a perfect matching in \mathbb{Z} . ("0-extendable" will be taken to mean that G has a perfect matching.) Note that a -connected 3- γ -critical even graph is not necessarily 1-extendable. In Figure 2.1, graph a) is 1-extendable, but graph (b) is not.

In the case when G is not bipartite, 2-extendable is a stronger property than that of sicriticality. More particularly, we have the following theorem [P1].

Theorem 2.3. If G is 2-extendable, then either G is bipartite or G is bicritical.

Theorem 2.1 is also sharp in the sense that there exist graphs which are 3-connected (in fact 4-connected) with minimum degree at least 4, 3- γ -critical and even, but not 2-extendable. One such family of graphs is shown in Figure 2.2. (This graph family is a subclass of a larger class of 3- γ -critical graphs first discovered by Sumner and Blitch [SB].)

Figure 2.2.

Now let us turn our attention to the family of factor-critical graphs. (We refer the reader again to [LP] for a more extensive treatment of these graphs.) The following result

an immediate result of "Wojcicka's Theorem" (see above). (Note also that for a 3- γ -orical graph G, the assumptions that G is 2-connected and that G has minimum degree least two are equivalent. This is an immediate consequence of Lemma 5.5.8 of (B).)

Theorem 2.4. Let G be a 2-connected 3- γ -critical graph having odd order. Then G ifactor-critical.

The graphs shown in Figure 1.1 (with n even) are 3- γ -critical and connected, but of factor-critical. Thus our lower bound on the connectivity stated in the hypotheses of heorem 2.4 is best possible. More generally, if G is a 3- γ -critical graph with a cutvertex, then v is adjacent to an endvertex (cf. [B]) and hence mindeg G=1 and hence G is not factor-critical.

3. A Result About Claw-free Graphs

A graph is said to be claw-free if it contains no induced subgraph isomorphic to $K_{1,3}$, n [P2] the following result was proved.

Theorem 3.1. If G is a 3-connected claw-free graph of even order, then G is bicritical.

If the even graphs involved are 3- γ -critical, we can lower the demand on connectivity and still obtain bicriticality. Before we state our result, however, we recall another result of Sumner and Blitch [SB] which will be useful in our proof.

Theorem 3.2. The diameter of a 3- γ -critical graph is at most 3.

Theorem 3.3. Let G be a 3- γ -critical 2-connected claw-free graph of even order. Then if mindeg $G \geq 3$. G is bicritical.

Proof: Suppose to the contrary that G is not bicritical. Then there exist vertices u and v of G such that $G' = G - \{u, v\}$ has no perfect matching. By Tutte's theorem, there is a subset $S' \subseteq V(G')$ such that $c_o(G' - S') > |S'|$ and so by parity since |V(G)| is even, $c_o(G' - S') \ge |S'| + 2$. Let $S = S' \cup \{u, v\}$. Clearly |S| = |S'| + 2 and $|S| = |S'| + 2 \le c_o(G' - S') = c_o(G - S) \le |S| = |S'| + 2$, since G contains a perfect matching by Lemma 1.5(i). Thus $c_o(G - S) = |S|$.

By Theorem 1.6(i), $|S| \leq 3$. Let H_i , $i=1,\ldots,|S|$, denote the odd components of G-S. First suppose that |S|=3. Clearly G-S has no even components. Set $S=\{u,v,w\}$. By Theorem 1.6(ii), at least one component of G-S is a singleton. Without loss of generality, we may assume that $|V(H_1)|=1$ and that $V(H_1)=\{x\}$. Since mindeg $G\geq 3$, vertex x is adjacent to every vertex of S. Since G is 2-connected, there are at least two vertices of S which are adjacent to some vertex of H_2 . Similarly, there are at least two vertices of S which are adjacent to some vertex of H_3 . Because |S|=3, there must be a vertex, say u,

sch that u is adjacent to some vertex of H_2 and a vertex of H_3 . Thus u is a claw center |G|, a contradiction. This proves that $|S| \leq 2$. Moreover, since G is 2-connected, |S| = 2.

Suppose $S = \{u, v\}$. If G - S contains an even component then c(G - S) = 3. Thus, Theorem 1.6(iii), G must have the structure shown in Figure 1.1 and hence G is not connected, a contradiction. Therefore, G - S has no even components. Thus we need aly consider the case when G - S contains exactly two odd components and no even emponent.

Since mindeg $G \geq 3$, it follows that $|V(H_1)| \geq 3$ and $|V(H_2)| \geq 3$. Now $\gamma(G) = 3$, there exists a vertex $z \in V(G) - \{u, v\}$ such that $z \notin N(u) \cup N(v)$. Let $A = V(G) - S \cup N(u) \cup N(v)$. Thus $A \neq \emptyset$. Furthermore, suppose $z_1, z_2 \in A$. If $z_1 \in V(H_1)$ and $z_2 \in V(H_2)$, then $d(z_1, z_2) > 3$, contradicting Theorem 3.2. Thus z_1 and z_2 must belong the same component of G - S, say H_2 . This implies that $V(H_1) = N_{H_1}(u) \cup N_{H_1}(v)$ and $V(H_2) = N_{H_2}(u) \cup N_{H_2}(v) \cup A$. Moreover, since G is 2-connected and $|V(H_1)| \geq 3$ for i = 1, 2, it follows that $N(u) \cap V(H_i) \neq \emptyset$ and $N(v) \cap V(H_i) \neq \emptyset$, for i = 1, 2. Now uppose $x \in N_{H_1}(u)$ and $y \in N_{H_2}(v)$. Figure 3.1 illustrates the situation.

Figure 3.1.

Consider G + xy. Since G is 3- γ -critical, there exists a vertex $w \in V(G) - \{x, y\}$ such that either $[x, w] \longrightarrow y$ or $[y, w] \longrightarrow x$. We distinguish these two cases.

Case 1: Suppose $[x, w] \longrightarrow y$. Clearly, $w \in V(H_2)$ and $wy \notin E(G)$; otherwise $\{x, w\}$ dominates G. If $w \in N_{H_2}(v)$, then $G[\{v, w, y, v'\}]$ is a claw centered at v for some vertex $v' \in N_{H_1}(v)$, a contradiction. Thus $w \in N_{H_2}(u) - N_{H_2}(v)$ or $w \in A$.

Case 1.1: Suppose $w \in N_{H_2}(u) - N_{H_2}(v)$. Since $[x, w] \longrightarrow y$, w is adjacent to every vertex of $V(H_2) - \{y\}$ and x is adjacent to every vertex of $V(H_1) \cup \{v\}$. Figure 3.2 illustrates this situation.

Now consider G+vw. There is a vertex $z \in V(G)-\{v,w\}$ such that either $[v,z] \longrightarrow w$ $\cdot [w,z] \longrightarrow v$. Suppose $[v,z] \longrightarrow w$. Since $A \neq \emptyset$ and v is not adjacent to any vertex of , it follows that $z \in V(H_2)$. Because $zw \notin E(G)$ and w is adjacent to every vertex of $(H_2)-\{y\}$, it follows that z=y. Furthermore, since $[v,z] \longrightarrow w$ and z=y, vertex v is diagent to every vertex of H_1 . But then $\{v,w\}$ dominates G, a contradiction.

Thus $[w, z] \longrightarrow v$. Since $wy \notin E(G)$ and $[w, z] \longrightarrow v$, z = u. Hence $zy = uy \in E(G)$ and $G[\{u, x, y, w\}]$ is a claw centered at vertex u, a contradiction. This proves that $w \notin \mathcal{I}_{H_2}(u) - N_{H_2}(v)$.

Case 1.2: Suppose $w \in A$. Recall that $A = V(H_2) - (N_{H_2}(u) \cup N_{H_2}(v))$. Since $[x, w] \longrightarrow y$ and $w \in A$, x is adjacent to every vertex of $V(H_1) \cup \{u, v\}$ and w is adjacent 5 every vertex of $V(H_2) - \{y\}$. Figure 3.3 depicts this situation.

Figure 3.3.

Since $d_G(w) \geq 3$ and $wy \notin E(G)$, $|V(H_2)| \geq 5$. We distinguish two subcases.

Subcase 1.2.1: Suppose $uy \notin E(G)$. We will show that $N_{H_2}(u) \cap N_{H_2}(v) = \emptyset$. Suppose not; say vertex $y_1 \in N_{H_2}(u) \cap N_{H_2}(v)$. If $y_1y \in E(G)$, then $G[\{y_1, u, y, w\}]$ is a claw centered at y_1 , a contradiction. Thus $y_1y \notin E(G)$. But then $G[\{v, x, y, y_1\}]$ is a claw centered at v, again a contradiction. This proves that $N_{H_2}(u) \cap N_{H_2}(v) = \emptyset$. Since $N_{H_2}(u) \neq \emptyset$, there is a vertex $u_1 \in N_{H_2}(u)$. Since $N_{H_2}(u) \cap N_{H_2}(v) = \emptyset$, $u_1v \notin E(G)$. If $u_1y \in E(G)$, then $G[\{u_1, u, y, w\}]$ is a claw centered at u_1 , a contradiction. Thus $u_1y \notin E(G)$. Figure 3.4 illustrates this situation.

ow consider $G+vu_1$. There exists a vertex $z\in V(G)-\{v,u_1\}$ such that either $[v,z]\longrightarrow u_1$ $: [u_1,z]\longrightarrow v$. First suppose that $[v,z]\longrightarrow u_1$. Then $zu_1\notin E(G)$. Since v is not adjacent v any vertex of A and $[v,z]\longrightarrow u_1,\,z\in V(H_2)-\{u_1\}$. If $z\in N_{H_2}(u)$, then $G[\{u,x,u_1,z\}]$ a claw centered at u since $u_1z\notin E(G)$, a contradiction. Hence $z\in N_{H_2}(v)-N_{H_2}(u)$ of $z\in A$. In either case, $zu\notin E(G)$. Since $[v,z]\longrightarrow u_1,\,v$ is adjacent to every vertex of $V(H_1)\cup\{u\}$. Because $v\in E(G)$ and $v\in E(G)$. This proves that $v\in E(G)$ are obtained by $v\in E(G)$. This proves that $v\in E(G)$ and $v\in E(G)$ and $v\in E(G)$. This proves that $v\in E(G)$ and $v\in E(G)$ and $v\in E(G)$. This proves that $v\in E(G)$ and $v\in E(G)$ and $v\in E(G)$.

Subcase 1.2.2: So suppose $uy \in E(G)$. We will show that $|A| \ge 2$. Suppose not. Then |A| = 1 and $A = \{w\}$.

Since $|V(H_2)| \geq 5$, it follows that $|N_{H_2}(u) \cup N_{H_2}(v)| \geq 4$. We will show that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is a complete graph. Suppose not. Then there exist a pair of vertices w_1 and w_2 in $N_{H_2}(u) \cup N_{H_2}(v)$ such that $w_1w_2 \notin E(G)$. Since G is claw-free, we may assume without loss of generality that $w_1 \in N_{H_2}(u) - N_{H_2}(v)$ and $w_2 \in N_{H_2}(v) - N_{H_2}(u)$.

Now consider $G + vw_1$. By applying an argument similar to that presented in Case 1.2.1 for $G + vu_1$, but replacing u_1 with w_1 and y with w_2 , we get a contradiction. Hence $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete. But then if we choose any vertex $y_1 \in (N_{H_2}(u) \cup N_{H_2}(v)) - \{y\}$, we find that $\{x, y_1\}$ dominates G, a contradiction. This proves that $|A| \geq 2$.

Recall that $[x, w] \longrightarrow y$ and that $w \in A$. Since $|A| \ge 2$, there is a vertex $w_1 \in A - \{w\}$. Figure 3.5 depicts the situation.

Figure 3.5.

Consider G + xw. There exists a vertex $z \in V(G) - \{x, w\}$ such that $[w, z] \longrightarrow x$ or $[x, z] \longrightarrow w$. Suppose first that $[w, z] \longrightarrow x$. By Lemma 1.2, $zx \notin E(G)$. Since x is adjacent to every vertex of $V(H_1) \cup \{u, v\}$, $z \notin V(H_1) \cup \{u, v\}$. But then $\{z, w\}$ does not dominate $G - \{x\}$, a contradiction.

Hence we can suppose that $[x, z] \longrightarrow w$. By Lemma 1.2, $zw \notin E(G)$. Since $A - \{w\} \neq \emptyset$ and w is adjacent to every vertex of $V(H_2) - \{y\}$, z = y. Hence y is adjacent to every

ertex of $V(H_2) = \{w\}$. Consequently, $uv \in E(G)$; otherwise $G[\{y, u, v, w_1\}]$ is a claw entered at y.

Next we consider G + uw. There exists a vertex $z \in V(G) - \{u, w\}$ such that $[w, z] \longrightarrow v$ or $[u, z] \longrightarrow w$.

Suppose first that $[w,z] \to u$. Since $wy \notin E(G)$ and $[w,z] \to u$, z must be adjacent of y and to every vertex of H_1 . Thus z=v. This implies that $\{w,z\}$ dominates G since $\{u,u\} = vu \in E(G)$, a contradiction. Hence $[u,z] \to w$, since $A - \{w\} \neq \emptyset$ and $[u,z] \to w$, the follows that $z \in V(H_2)$. Thus u is adjacent to every vertex of H_1 . Recall that $uv \in E(G)$ and $uy \in E(G)$. Hence $\{u,w\}$ dominates G, contradicting the 3- γ -criticality of G. This completes the proof in Subcase 1.2.2 and consequently the proof of Case 1.

Case 2: Suppose $[y, w] \longrightarrow x$. Clearly $wx \notin E(G)$. This implies that $w \neq u$. Since $j \in V(H_2)$ and $[y, w] \longrightarrow x$, $w \in \{v\} \cup (V(H_1) - \{x\})$.

Case 2.1: Suppose w=v. Then $[y,v] \to x$. Thus v is adjacent to every vertex of $V(H_1)-\{x\}$ and y is adjacent to every vertex of A. If y is not adjacent to some vertex of $V(H_2)-(A\cup\{y\})$, say y_1 , then $vy_1\in E(G)$ since $[y,v]\to x$. But then $G[\{v,y,y_1,v'\}]$ as a claw centered at v for some vertex $v'\in N_{H_1}(v)$, a contradiction. Hence vertex y is adjacent to every vertex of $V(H_2)-(A\cup\{y\})$ and thus to every vertex of $V(H_2)-\{y\}$. Figure 3.6 illustrates this situation.

Figure 3.6.

Since G is claw-free and v is not adjacent to any vertex of A, G[A] is complete. We will show that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete. Suppose, to the contrary, that there exist a pair of vertices y_1 and y_2 of $N_{H_2}(u) \cup N_{H_2}(v)$ such that $y_1y_2 \notin E(G)$. This implies that $y_1 \in N_{H_2}(u) - N_{H_2}(v)$ and $y_2 \in N_{H_2}(v) - N_{H_2}(u)$ or $y_1 \in N_{H_2}(v) - N_{H_2}(u)$ and $y_2 \in N_{H_2}(u) - N_{H_2}(v)$, since G is claw-free and $N_{H_1}(u) \neq \emptyset$ and $N_{H_1}(v) \neq \emptyset$. Without loss of generality, assume that $y_1 \in N_{H_2}(u) - N_{H_2}(v)$ and $y_2 \in N_{H_2}(v) - N_{H_2}(u)$. Now consider $G + uy_2$. There exists a vertex $z \in V(G) - \{u, y_2\}$ such that $[u, z] \longrightarrow y_2$ or $[y_2, z] \longrightarrow u$.

Suppose first that $[u,z] \longrightarrow y_2$. By Lemma 1.2, $zy_2 \notin E(G)$. Thus $z \neq v$. Further, since G is claw-free, $z \notin N_{H_2}(v)$. Since $[u,z] \longrightarrow y_2$ and $A \neq \emptyset$, $z \in N_{H_2}(u) - N_{H_2}(v)$ or $z \in A$. In either case, $zv \notin E(G)$. Thus u is adjacent to every vertex of $V(H_1) \cup \{v\}$. But then $\{u,y\}$ dominates G, a contradiction. Hence $\{u,z\}$ does not dominate $G-y_2$, a contradiction, so $[y_2,z] \longrightarrow u$. By Lemma 1.2, $uz \notin E(G)$. Since $y_1y_2 \notin E(G)$ and

 $[z_1, z] \longrightarrow u$, z must be adjacent to every vertex of $V(H_1) \cup \{y_1\}$. This implies that z = v, at this is impossible since $vy_1 \notin E(G)$. This proves that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is complete.

Next we will show that $G[V(H_2)]$ is complete. Recall that $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is omplete, G[A] is complete, and y is adjacent to every vertex in A. Thus we need only now that each vertex of $[N_{H_2}(u) \cup N_{H_2}(v)] - \{y\}$ is adjacent to every vertex of A.

Suppose $y_1 \in [N_{H_2}(u) \cup N_{H_2}(v)] - \{y\}$. Consider $G + xy_1$. There exists a vertex $i \in V(G) - \{x, y_1\}$ such that $[x, z] \longrightarrow y_1$ or $[y_1, z] \longrightarrow x$.

Suppose first that $[x, z] \longrightarrow y_1$. Since $x \in V(H_1)$, $A \neq \emptyset$ and $G[N_{H_2}(u) \cup N_{H_2}(v)]$ is omplete, it follows that $z \in A$. Thus $zv \notin E(G)$ and since $xv \notin E(G)$, $\{x, z\}$ does not lominate $G = y_1$, a contradiction. Hence $[y_1, z] \longrightarrow x$. Consequently, y_1 is adjacent to very vertex of A as required. This proves that $G[V(H_2)]$ is complete.

Now consider the vertex x. Since mindeg $G \geq 3$ and $xv \notin E(G)$, x is adjacent to at east two vertices if $V(H_1) = \{x\}$. Let two such vertices be designated x_1 and x_2 . Since $[v,y] \longrightarrow x$ and $|V(H_1)| \geq 3$, it follows that $G[V(H_1) = \{x\}]$ is complete because of claw-reedom at vertex v. Choose $y_1 \in N_{H_2}(u)$. Then $\{x_1,y_1\}$ dominates G since x_1 is adjacent to every vertex of $V(H_1) \cup \{v\}$ and y_2 is adjacent to every vertex of $V(H_2) \cup \{u\}$. This contradicts the fact that $\gamma(G) = 3$ and thus proves that $w \neq v$.

Case 2.2: So suppose $w \in V(H_1) - \{x\}$. Since $[y, w] \longrightarrow x$, w is adjacent to every vertex of $V(H_1) - \{x\}$ and y is adjacent to every vertex of $V(H_2)$. Figure 3.7 depicts this situation.

Figure 3.7.

Recall that $N_{H_1}(u) \cup N_{H_1}(v) = V(H_1)$ and $xu \in E(G)$. Since $wx \notin E(G)$ in the present Case 2.2 and $xu \in E(G)$, it follows that $wu \notin E(G)$, for otherwise $G[\{u, w, x, y_1\}]$ is a claw centered at u for some $y_1 \in N_{H_2}(u)$. Since $V(H_1) = N_{H_1}(u) \cup N_{H_1}(v)$ and $wu \notin E(G)$, it follows that $wv \in E(G)$. Because of claw-freedom at $v, xv \notin E(G)$. We will show that $N_{H_1}(u) \cap N_{H_1}(v) = \emptyset$. Suppose not. Then there is a vertex $w_1 \in N_{H_1}(u) \cap N_{H_1}(v)$. Clearly $w_1 \notin \{w, x\}$. Since w_1u and $w_1v \in E(G)$ and each vertex of $V(H_1)$ belongs to $N_{H_1}(u) \cup N_{H_1}(v)$, it follows that w_1 is adjacent to every vertex of $V(H_1)$ since G is claw-free. But then $\{w_1, y\}$ dominates G, a contradiction. This proves that $N_{H_1}(u) \cap N_{H_1}(v) = \emptyset$.

Since $|V(H_1)|$ is odd and is at least 3, there exists a vertex $w_2 \in V(H_1) - \{x, w\}$. Without loss of generality, we may assume that $w_2 \in N_{H_1}(v)$. Now consider G+uw. There

xists a vertex $z \in V(G) - \{u, w\}$ such that $[u, z] \longrightarrow w$ or $[w, z] \longrightarrow u$. Suppose first that $[u, z] \longrightarrow w$. By Lemma 1.2, $zw \notin E(G)$. Since $[u, z] \longrightarrow w$ and u is not adjacent to any ertex of $N_{H_1}(v)$, vertex z must be adjacent to every vertex of $V(H_2) \cup (N_{H_1}(v) - \{w\})$. But this is impossible since $A \ne \emptyset$ and, since $w_2 \in N_{H_1}(v) - \{w\}$, $N_{H_1}(v) - \{w\} \ne \emptyset$. Hence $[w, z] \longrightarrow u$. Since $[wx \notin E(G)]$, vertex [z] must be adjacent to every vertex of [v]. This is impossible since $[vx \notin E(G)]$ and [v] is not adjacent to any vertex of [x]. This intradiction completes Case 2.2 and the proof of the theorem.

As a final remark, we point out that the preceding result is clearly best possible with espect to the minimum degree condition as the minimum degree of any bicritical graph nust be at least 3.

References

- AP1] N. Ananchuen and M.D. Plummer. Some results related to the toughness of 3-domination-critical graphs. *Discrete Math.*, 2001, (to appear).
- B] P. Blitch, Domination in Graphs. Ph.D. dissertation, Univ. of South Carolina. 1983.
- CTW] Y. Chen, F. Tian and B. Wei. The 3-domination-critical graphs with toughness one, *Utilitas Math.*, 2001. (to appear).
- FTWZ] E. Flandrin, F. Tian, B. Wei and L. Zhang, some properties of 3-domination-critical graphs, *Discrete Math.*, **205**, 1999, 65-76.
- FTZ] O. Favaron, F. Tian and L. Zhang. Independence and Hamiltonicity in 3-domination-critical graphs. J. Graph Theory. 25, 1997, 173-184.
- [LP] L. Lovász and M.D. Plummer, Matching Theory, Ann. Discrete Math. 29, North-Holland, Amsterdam, 1986.
- [Mo] L. Moodley, Wojcicka's theorem: complete, consolidated proof, J. Combin. Math. Combin. Comput., 33, 2000, 129-179.
- [My] C.M. Mynhardt, On two conjectures concerning 3-domination-critical graphs, Congr. Numer., 135, 1998, 119-138.
- [P1] M.D. Plummer, On n-extendable graphs, Discrete Math., 31, 1980, 201-210.
- [P2] M.D. Plummer, Extending matchings in claw-free graphs. Discrete Math., 125, 1994, 301-307.

- B] D.P. Sumner and P. Blitch, Domination critical graphs. J. Combin. Theory Series B, 34, 1983, 65-76.
- WZ] F. Tian, B. Wei and L. Zhang, Hamiltonicity in 3-domination-critical graphs with $\alpha = \delta + 2$, Discrete Appl. Math., 92, 1999, 57-70.
- E. Wojcicka, Hamiltonian properties of domination-critical graphs. J. Graph Theory, 14, 1990, 205-215.

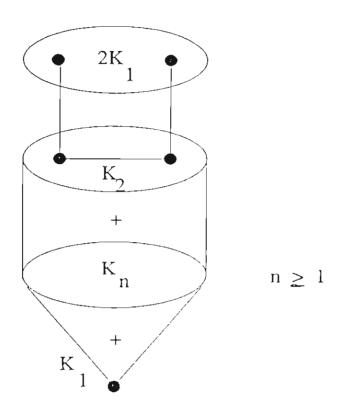


Figure 1.1

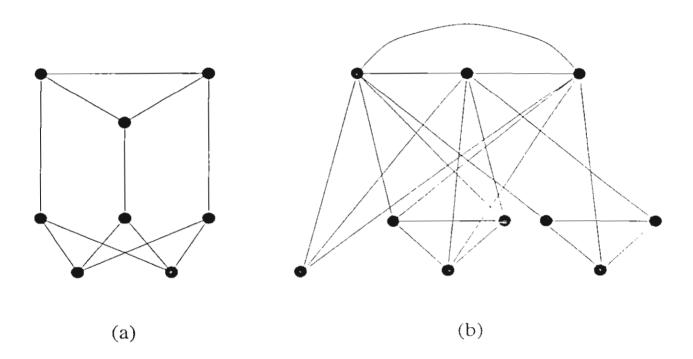


Figure 2.1

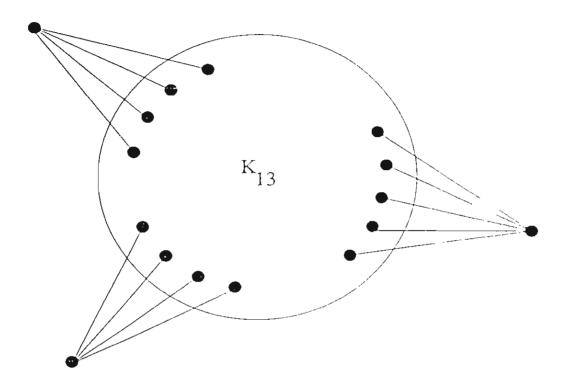


Figure 2.2

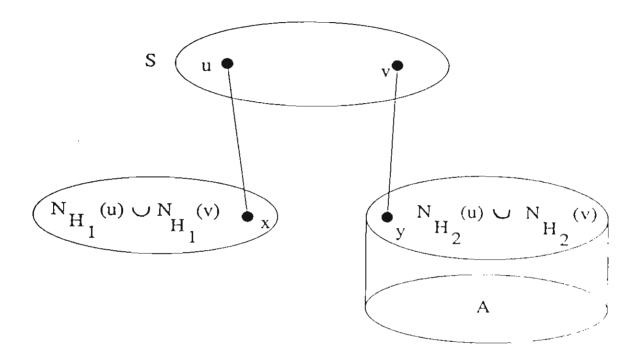


Figure 3.1

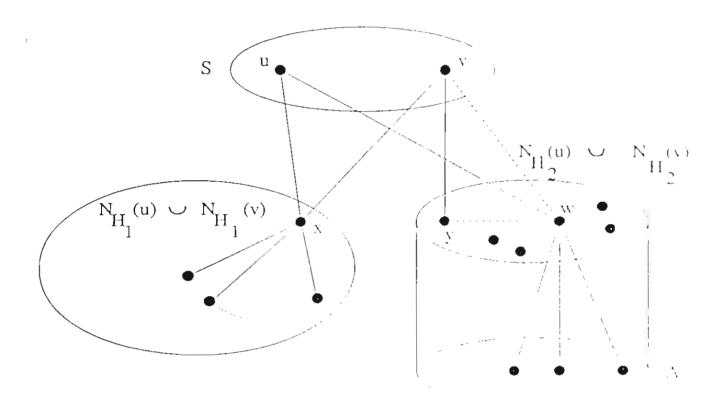


Figure 3.2

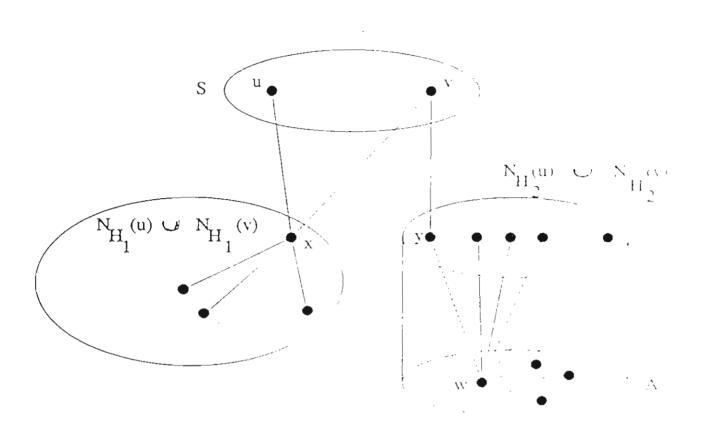


Figure 3.3

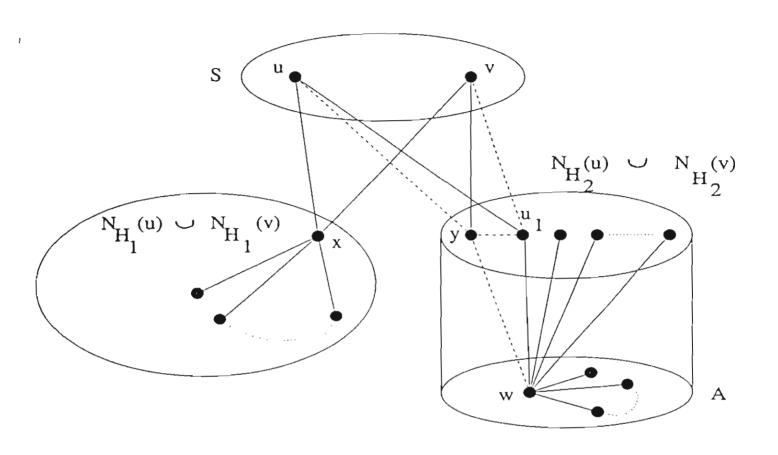


Figure 3.4

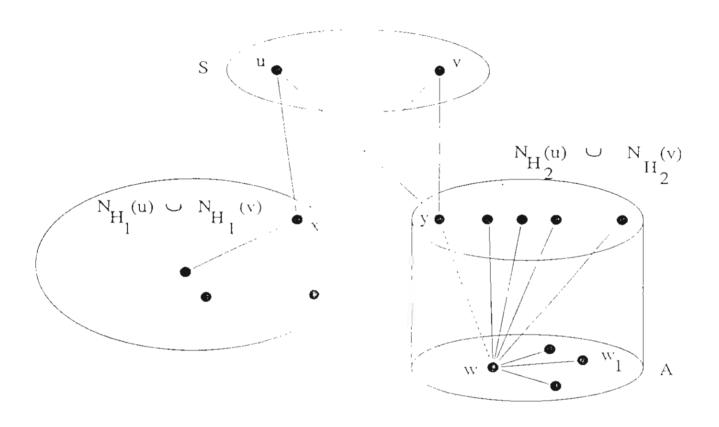


Figure 3.5

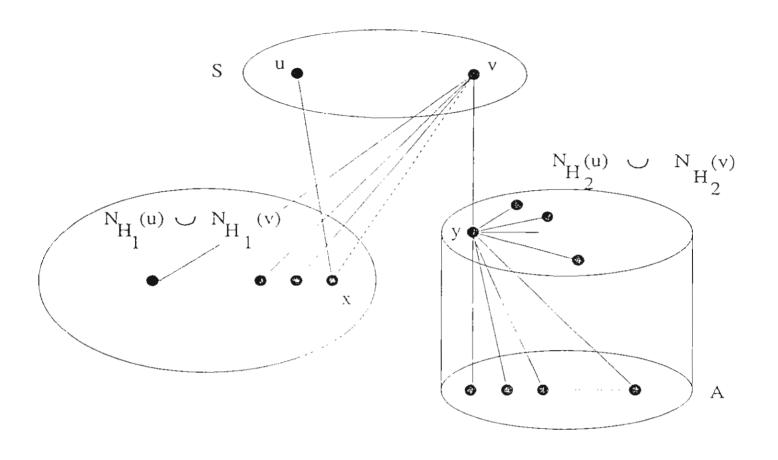


Figure 3.6

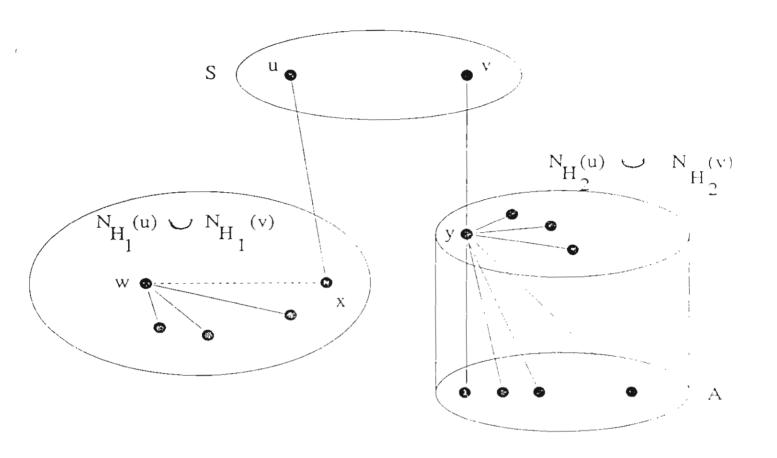


Figure 3.7

3-FACTOR-CRITICALITY

IN

DOMINATION CRITICAL GRAPHS

by

Nawarat Ananchuen *
Department of Mathematics
Silpakorn University
Nakorn Pathom, Thailand
email: nawarat@kanate.su.ac.th

and

Michael D. Plummer †
Department of Mathematics
Vanderbilt University
Nashville, Tennessee 37240, USA
email: michael.d.plummer@vanderbilt.edu

Abstract

A graph G is said to be k- γ -critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the resulting graph can be dominated with k-1 vertices. The structure of k- γ -critical graphs remains far from completely understood when $\gamma > 3$.

A graph G is factor-critical if G-v has a perfect matching for every vertex $v \in V(G)$ and is bicritical if G-u-v has a perfect matching for every pair of distinct vertices $u,v \in V(G)$. More generally, a graph is said to be k-factor-critical if G-S has a perfect matching for every set of k vertices in G. In two previous papers [AP1, AP2], we explored respectively the toughness of 3- γ -critical graphs and some of their matching properties. In particular, we obtained some properties which are sufficient for a 3- γ -critical graph to be factor-critical and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k=3.

1. Introduction

Let G denote a finite undirected graph with vertex set V(G) and edge set E(G). A set $S \subseteq V(G)$ is a (vertex) dominating set for G if every vertex of G either belongs to S or is adjacent to a vertex of S. The minimum cardinality of a vertex dominating set in graph G is called the (vertex) domination number (or simply the domination

^{*} work supported by the Thailand Research Fund Grant #BRG4380016

[†] work supported by NSF Grant # INT-9816113

umber) of G and is denoted by $\gamma(G)$. Graph G is said to be k- γ -critical if $\gamma(G) = k$. It $\gamma(G+e) = k-1$ for each edge $e \notin E(G)$. In this paper, we will be concerned only ith the case k=3.

If u, v and w are vertices of G and u and v dominate G - w, we will follow previously cepted notation and write $[u, v] \longrightarrow w$. Suppose G is 3- γ -critical. If u and v are non-djacent vertices of G, then $\gamma(G + uv) = 2$ and so there is a vertex $x \in V(G)$ such that ther $[u, x] \longrightarrow v$ or $[v, x] \longrightarrow u$.

Sumner and Blitch [SB] initiated work on matchings in 3- γ -critical graphs. The following lemma from that paper will prove very useful in our work to follow.

Lemma 1.1. Let G be a connected 3- γ -critical graph and let S be an independent et of $n \geq 2$ vertices in V(G).

- (i) Then the vertices of S can be ordered a_1, a_2, \ldots, a_n in such a way that there exists a sequence of distinct vertices $x_1, x_2, \ldots, x_{n-1}$ so that $[a_i, x_i] \longrightarrow a_{i+1}$ for $i = 1, 2, \ldots, n-1$.
- (ii) If, in addition, $n \geq 4$, then the x_i 's can be chosen so that $x_1 x_2 \cdots x_{n-1}$ is a path and $S \cap \{x_1, \ldots, x_{n-1}\} = \emptyset$.

In what is to follow, we shall also make frequent use of the following easy result.

Lemma 1.2. Let G be a 3- γ -critical graph and let u and v be non-adjacent vertices of G. If x is a vertex of G such that $[u, x] \longrightarrow v$, then $xv \notin E(G)$ and if x is a vertex of G with $[v, x] \longrightarrow u$ then $xu \notin E(G)$.

-

In [AP1] the following result was obtained. (See also [CTW].)

Theorem 1.3. Let G be a connected 3- γ -critical graph and let S be a vertex cutset in G. Then

- (i) if $|S| \ge 4$, G S has at most |S| 1 components,
- (ii) if |S| = 3, then G S contains at most |S| components, and if G S has exactly three components, then each component is complete and at least one is a singleton,
- (iii) if |S| = 2, then G S has at most three components and if G S has exactly three components, then G must have the structure shown below in Figure 1.1,
- (iv) and if |S| = 1, then G S has two components, exactly one of which is a singleton. Furthermore, in case (iv), G has exactly one or two cutvertices and if it has two, G is isomorphic to a graph of the type shown in Figure 1.1.

Figure 1.1.

Finally, we refer the reader to [LP] for further notation, terminology and background or matching theory. In particular, we shall denote by N(v) the neighborhood of vertex i, that is, the set of all vertices adjacent to v. In addition, we denote by $\omega(G)$ the number of components of the graph G and by $\omega_o(G)$, the number of components of odd order in G.

2. $3-\gamma$ -criticality and factor-criticality

The following result may be viewed as an extension of Theorem 1.3.

Theorem 2.1. If G is a connected 3- γ -critical graph and S is a vertex cutset in G, then if $|S| \ge 6$, it follows that $\omega(G - S) \le |S| - 2$.

Proof: Suppose to the contrary that G-S has at least |S|-1 components for some vertex cut S. Then by Theorem 1.3(i), G-S must have exactly |S|-1 components and $|S|-1 \geq 5$. Let the components of G-S be denoted by H_1, \ldots, H_k . For each $i, 1 \leq i \leq k$, choose a vertex $w_i \in V(H_i)$. Clearly, $W = \{w_1, \ldots, w_k\}$ is an independent set. By Lemma 1.1, the vertices of W may be ordered as a_1, \ldots, a_k in such a way that there exists a path $x_1x_2\cdots x_{k-1}$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$ for each $i=1,\ldots,k-1$. By Lemma 1.2, $x_ia_{i+1} \notin E(G)$ for each $i=1,\ldots,k-1$. Clearly, $x_i \in S$, for $i=1,\ldots,k-1$. Now let $S_0 = S - \{x_1,\ldots,x_{k-1}\}$. Then $|S_0| = 2$. So let $S_0 = \{s_1,s_2\}$. Without any loss of generality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. In what is to follow, we make frequent use of the following four observations:

(O1) For i = 1, ..., k-1, vertex x_i is adjacent to every vertex of

$$\left[(\cup_{j=1}^{k} V(H_{j})) - (V(H_{i}) \cup \{a_{i+1}\}) \right]$$

since $[a_i, x_i] \longrightarrow a_{i+1}$.

- (O2) By O1, vertex a_1 is adjacent to every vertex of $S (S_0 \cup \{x_1\})$ and for i = 2, ..., k, vertex a_i is adjacent to every vertex of $S (S_0 \cup \{x_{i-1}, x_i\})$.
- (O3) By O1, O2. Lemma 1.2 and the fact that $|S_0| \ge 2$, if $[a_i, z] \longrightarrow a_j$ and $|i-j| \ge 2$, then $z = x_{j-1}$ or $z \in S_0$ for $j \ge 2$ and $z \in S_0$ for j = 1.
- (O4) By O1, for $j \geq 2$ and $|i-j| \geq 2$, if $[a_i, x_{j-1}] \longrightarrow a_j$, then x_{j-1} dominates $(G-S)-\{a_j\}$ and thus $\{x_{j-1}, a_j\}$ dominates $G-S_0$ by O2.

Let us now begin by considering the graph $G + a_1a_3$. Since $\gamma(G + a_1a_3) = 2$, there is a vertex $z \in G - \{a_1, a_3\}$ such that $[a_1, z] \longrightarrow a_3$ or $[a_3, z] \longrightarrow a_1$. We distinguish two cases.

Case 1: Suppose $[a_1, z] \longrightarrow a_3$.

Then by O3, either $z = x_2$ or $z \in S_0$.

Subcase 1.1: Suppose $z=x_2$. That is, suppose we have $[a_1,x_2] \longrightarrow a_3$. Then $\{04, \{x_2, a_3\}\}$ dominates $G-S_0$. Since $\gamma(G)=3$, there is a vertex of S_0 , say without is of generality s_1 , such that $x_2s_1\notin E(G)$ and $a_3s_1\notin E(G)$. Thus $a_1s_1\in E(G)$, s_i ce $[a_1,x_2] \longrightarrow a_3$. Furthermore, since $[a_i,x_i] \longrightarrow a_{i+1}$, edge $a_2s_1\in E(G)$ and edge $s_1\in E(G)$. Figure 2.1 depicts this situation.

Figure 2.1.

Now consider $G + a_3a_5$. Since $\gamma(G + a_3a_5) = 2$, there is a vertex z_1 of $G - \{a_3, a_5\}$ ich that $[a_3, z_1] \longrightarrow a_5$ or $[a_5, z_1] \longrightarrow a_3$. Again we distinguish two cases.

Subcase 1.1.1: Suppose $[a_3, z_1] \leftarrow a_5$. By O3, it follows that $z_1 = x_4$ or $z_1 \in S_0$.

Subcase 1.1.1.1: Suppose $z_1 = x_4$. That is, $[a_3, x_4] \longrightarrow a_5$. Since $a_3s_1 \notin E(G)$, edge $z_4s_1 \in E(G)$. If $x_4s_2 \in E(G)$ or if $a_5s_2 \in E(G)$, then by O4, the set $\{x_4, a_5\}$ dominates \mathcal{F} , a contradiction. Thus $x_4s_2 \notin E(G)$ and $a_5s_2 \notin E(G)$.

Since $[a_4, x_4] \longrightarrow a_5$, edge $a_4s_2 \in E(G)$. Figure 2.2 illustrates this situation.

Figure 2.2

Now let us consider $G + a_2 a_4$. Since $\gamma(G + a_2 a_4) = 2$, there is a vertex z_2 of $G - \{a_2, a_4\}$ such that $[a_2, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $a_3 s_1 \notin E(G)$ and $a_5 s_2 \notin E(G)$.

Suppose first that $[a_2, z_2] \longrightarrow a_4$. By O3 and the above we note that $z_2 = x_3$. Then by O4, $\{x_3, a_4\}$ dominates $G - S_0$. But then since $x_3s_1 \in E(G)$ and $a_4s_2 \in E(G)$, $\{x_3, a_4\}$ dominates G, a contradiction.

Hence $[a_4, z_2] \longrightarrow a_2$. By an argument similar to that above, $z_2 = x_1$. By O4, $\{x_1, a_2\}$ dominates $G - S_0$. Recall that $a_2s_1 \in E(G)$. If x_1s_2 or a_2s_2 is an edge of G,

en $\{x_1, a_2\}$ dominates G, a contradiction. Thus $x_1s_2 \notin E(G)$ and $a_2s_2 \notin E(G)$. Because $[a_i, x_i] \longrightarrow a_{i+1}, a_1s_2 \in E(G)$ and $x_2s_2 \in E(G)$. Now consider $G + a_1a_4$. There must be a sitex $[a_3]$ of $G - \{a_1, a_4\}$ such that $[a_1, a_3] \longrightarrow a_4$ or $[a_4, a_3] \longrightarrow a_1$. In either case, $a_3 \notin S_0$, not $a_1 \in S_0$ and $a_2 \in S_0$. Thus by O3, the case $[a_4, a_3] \longrightarrow a_1$ is impossible.

Thus $[a_1, z_3] \longrightarrow a_4$. Then by O3 and O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since $x_3s_1 \in I(G)$ and $a_4s_2 \in E(G)$, $\{x_3, a_4\}$ dominates G, a contradiction. This completes the proof § Subcase 1.1.1.1.

Subcase 1.1.1.2: Suppose $z_1 \in S_0$. Since $x_2s_1 \notin E(G)$ and $a_3x_2 \notin E(G)$, it follows hat $z_1 \neq s_1$. Thus $z_1 = s_2$ and it then follows that $[a_3, s_2] \longrightarrow a_5$. Thus s_2 dominates $(G-S) \cup \{x_2\}) - (H_3 \cup \{a_5\})$. By Lemma 1.2, $s_2a_5 \notin E(G)$. Figure 2.3 now depicts the resent situation.

Figure 2.3

Now consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there is a vertex z_2 of $G - \{a_1, a_4\}$ such that $[a_1, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_1$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_5 \notin E(G)$. Thus by O3, the case $[a_4, z_2] \longrightarrow a_1$ is impossible.

Thus $[a_1, z_2] \longrightarrow a_4$. Then by O3 and O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since s_2 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_5\})$, edge $s_2a_4 \in E(G)$. Recall that $x_3s_1 \in E(G)$. Therefore, $\{x_3, a_4\}$ dominates G, a contradiction. This completes the proof of Subcase 1.1.1.2 and hence also the Subcase 1.1.1.

Subcase 1.1.2: Suppose $[a_5, z_1] \longrightarrow a_3$. By O3, it follows that either $z_1 = x_2$ or $z_1 \in S_0$.

Subcase 1.1.2.1: Suppose $z_1 = x_2$. That is, $[a_5, x_2] \longrightarrow a_3$. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but $x_3s_1, a_1s_1, a_2s_1 \in E(G)$. Since $[a_5, x_2] \longrightarrow a_3$, by O4, $\{x_2, a_3\}$ dominates $G - S_0$. Because $x_2s_1 \notin E(G)$ and $[a_5, x_2] \longrightarrow a_3$, it follows that $a_5s_1 \in E(G)$. Furthermore, either $a_5s_2 \in E(G)$ or $x_2s_2 \in E(G)$.

First suppose that $a_5s_2 \in E(G)$. Then a_5 is adjacent to both s_1 and s_2 . Figure 2.4 now illustrates the present situation.

Figure 2.4

Consider now $G+a_1a_5$. Since $\gamma(G+a_1a_5)=2$, there must be a vertex z_2 of $G-\{a_1,a_5\}$ ch that $[a_1,z_2] \longrightarrow a_5$ or $[a_5,z_2] \longrightarrow a_1$.

Suppose first that $[a_1, z_2] \longrightarrow a_5$. Since a_5 is adjacent to s_1 and s_2 , vertex $z_2 \notin S_0$ by gmma 1.2. Then by O3, $z = x_4$. Hence $\{x_4, a_5\}$ dominates G by O4 and the fact that a_5 is tjacent to s_1 and s_2 . This contradiction proves that for all $z_2 \in G - \{a_1, a_5\}$, $\{a_1, z_2\}$ does at dominate $G - \{a_5\}$. Hence $[a_5, z_2] \longrightarrow a_1$. Then $z_2 \in S_0$ by O3. Since $a_3s_1 \notin E(G)$, it llows that $z_2 = s_2$. Thus $[a_5, s_2] \longrightarrow a_1$ and s_2 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_1\})$. ence a_2 is adjacent to both s_1 and s_2 .

Next consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_3 of $G - \{a_2, a_5\}$ such at $[a_2, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_2$. But in either case, $z_3 \notin S_0$ by Lemma 1.2 and the fact at a_2 and a_5 are adjacent to both s_1 and s_2 . If $[a_2, z_3] \longrightarrow a_5$, then $\{x_4, a_5\}$ dominates by O3 and O4 and the fact that a_5 is adjacent to s_1 and s_2 . But this is a contradiction imilarly, if $[a_5, z_3] \longrightarrow a_2$, then $\{x_1, a_2\}$ dominates G, again a contradiction. This proves at $a_5s_2 \notin E(G)$. Therefore, edge $x_2s_2 \in E(G)$ since $[a_5, x_2] \longrightarrow a_3$. Figure 2.5 now epicts the present situation.

Figure 2.5

Now consider $G + a_1a_4$. Then there is a vertex z_4 of $G - \{a_1, a_4\}$ such that $[a_1, z_4] \longrightarrow a_4$ or $[a_4, z_4] \longrightarrow a_1$. In either case, $z_4 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_5s_2 \notin E(G)$. By O3, $[a_4, z_4] \longrightarrow a_1$ is impossible. Hence $[a_1, z_4] \longrightarrow a_4$ and $z_4 = x_3$. Then by O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$, for otherwise $\{x_3, a_4\}$ would dominate G, a contradiction. Since $[a_4, x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$.

Now consider $G + a_1 a_5$. There must be a vertex z_5 of $G - \{a_1, a_5\}$ such that $[a_1, z_5] \longrightarrow a_5$ or $[a_5, z_5] \longrightarrow a_1$. In either case, $z_5 \notin S_0$ since $a_3 s_1 \notin E(G)$ and $a_4 s_2 \notin E(G)$. By O3, the case $[a_5, z_5] \longrightarrow a_1$ is impossible. Thus $[a_1, z_5] \longrightarrow a_5$. But then $z_5 = x_4$ by O3 and hence $\{x_4, a_5\}$ dominates G by O4 and the facts that $a_5 s_1 \in E(G)$ and $x_4 s_2 \in E(G)$. This proves that $x_2 s_2 \notin E(G)$. Hence $[a_5, x_2] \longrightarrow a_3$ is impossible. This completes the proof in Subcase 1.1.2.1.

Subcase 1.1.2.2: Suppose $z_1 \in S_0$ and $z_1 = s_1$. That is, $[a_5, s_1] \longrightarrow a_3$. Then s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_2 of $G - \{a_2, a_4\}$ such that $[a_2, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_2$. We distinguish two subcases.

Figure 2.4

Consider now $G+a_1a_5$. Since $\gamma(G+a_1a_5)=2$, there must be a vertex z_2 of $G-\{a_1,a_5\}$ ch that $[a_1,z_2] \longrightarrow a_5$ or $[a_5,z_2] \longrightarrow a_1$.

Suppose first that $[a_1, z_2] \longrightarrow a_5$. Since a_5 is adjacent to s_1 and s_2 , vertex $z_2 \notin S_0$ by mma 1.2. Then by O3, $z = x_4$. Hence $\{x_4, a_5\}$ dominates G by O4 and the fact that a_5 is ligarent to s_1 and s_2 . This contradiction proves that for all $z_2 \in G - \{a_1, a_5\}$, $\{a_1, z_2\}$ does at dominate $G - \{a_5\}$. Hence $[a_5, z_2] \longrightarrow a_1$. Then $z_2 \in S_0$ by O3. Since $a_3s_1 \notin E(G)$, it llows that $z_2 = s_2$. Thus $[a_5, s_2] \longrightarrow a_1$ and s_2 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_1\})$. ence a_2 is adjacent to both s_1 and s_2 .

Next consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_3 of $G - \{a_2, a_5\}$ such at $[a_2, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_2$. But in either case, $z_3 \notin S_0$ by Lemma 1.2 and the fact at a_2 and a_5 are adjacent to both s_1 and s_2 . If $[a_2, z_3] \longrightarrow a_5$, then $\{x_4, a_5\}$ dominates by O3 and O4 and the fact that a_5 is adjacent to s_1 and s_2 . But this is a contradiction imilarly, if $[a_5, z_3] \longrightarrow a_2$, then $\{x_1, a_2\}$ dominates G, again a contradiction. This proves that $a_5s_2 \notin E(G)$. Therefore, edge $x_2s_2 \in E(G)$ since $[a_5, x_2] \longrightarrow a_3$. Figure 2.5 now epicts the present situation.

Figure 2.5

Now consider $G+a_1a_4$. Then there is a vertex z_4 of $G-\{a_1,a_4\}$ such that $[a_1,z_4] \longrightarrow a_4$ or $[a_4,z_4] \longrightarrow a_1$. In either case, $z_4 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_5s_2 \notin E(G)$. By O3, $[a_4,z_4] \longrightarrow a_1$ is impossible. Hence $[a_1,z_4] \longrightarrow a_4$ and $z_4=x_3$. Then by O4, $\{x_3,a_4\}$ dominates $G-S_0$. Since $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$, for otherwise $\{x_3,a_4\}$ would dominate G, a contradiction. Since $[a_4,x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$.

Now consider $G+a_1a_5$. There must be a vertex z_5 of $G-\{a_1,a_5\}$ such that $[a_1,z_5] \longrightarrow a_5$ or $[a_5,z_5] \longrightarrow a_1$. In either case, $z_5 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_4s_2 \notin E(G)$. By O3, the case $[a_5,z_5] \longrightarrow a_1$ is impossible. Thus $[a_1,z_5] \longrightarrow a_5$. But then $z_5 = x_4$ by O3 and hence $\{x_4,a_5\}$ dominates G by O4 and the facts that $a_5s_1 \in E(G)$ and $x_4s_2 \in E(G)$. This proves that $x_2s_2 \notin E(G)$. Hence $[a_5,x_2] \longrightarrow a_3$ is impossible. This completes the proof in Subcase 1.1.2.1.

Subcase 1.1.2.2: Suppose $z_1 \in S_0$ and $z_1 = s_1$. That is, $[a_5, s_1] \longrightarrow a_3$. Then s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_2 of $G - \{a_2, a_4\}$ such that $[a_2, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_2$. We distinguish two subcases.

Subcase 1.1.2.2.1: Suppose $[a_2, z_2] \longrightarrow a_4$. Then $z_2 = x_3$ or $z_2 \in S_0$ by O3. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but x_3s_1, a_1s_1 and a_2s_1 are all edges of G.

Suppose that $z_2=x_3$. That is, $[a_2,x_3] \longrightarrow a_4$. By O4, $\{x_3,a_4\}$ dominates $G-S_0$. Ince $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$; otherwise $\{x_3,a_4\}$ ioninates G, a contradiction. Since $[a_2,x_3] \longrightarrow a_4$ and $x_3s_2 \notin E(G)$, it follows that $a_2s_2 \in E(G)$. Thus a_2 is adjacent to both s_1 and s_2 . Furthermore, since $[a_4,x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$. Because s_1 dominates $((G-S) \cup \{x_4\}) - H_5 \cup \{a_3\})$, it follows that $s_1x_4 \in E(G)$. Thus s_4 is also adjacent to s_1 and s_2 .

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there must be a vertex z_3 of $G - \{a_2, a_5\}$ such that $[a_2, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_2$. In either case, $z_3 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_4s_2 \notin E(G)$. If $[a_5, z_3] \longrightarrow a_2$, then $\{x_1, a_2\}$ dominates G by O4 and the fact that a_2 is adjacent to a_3 and to a_4 and to a_4 and the fact that a_4 is adjacent to a_4 and to a_4 and a_4 and the fact that a_4 is adjacent to a_4 and to a_4 and again we have a contradiction. This proves that if $[a_2, a_2] \longrightarrow a_4$, then a_4 and a_4

Now consider $G + a_1a_5$. There must be a vertex z_3 of $G - \{a_1, a_5\}$ such that either $[a_1, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_1$. In either case, $z_3 \notin S_0$ since $a_3s_1 \notin E(G)$ and $a_4s_2 \notin E(G)$. But then the case $[a_5, z_3] \longrightarrow a_1$ is impossible by O3.

Therefore $[a_1, z_3] \longrightarrow a_5$. Thus $\{x_4, a_5\}$ dominates $G - S_0$ by O4. Since s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\}), \ s_1x_4 \in E(G)$. Furthermore, since s_2 dominates $((G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\}), \ s_2a_5 \in E(G)$. Therefore $\{x_4, a_5\}$ dominates G, once more a contradiction. This contradiction proves that for every z_2 in $G - \{a_2, a_4\}, \ \{a_2, z_2\}$ does not dominate $G - \{a_4\}$ and completes the proof of Subcase 1.1.2.2.1.

Subcase 1.1.2.2.2: Suppose $[a_4, z_2] \longrightarrow a_2$. Then $z_2 = x_1$ or $z_2 \in S_0$ by O3. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but x_3s_1, a_1s_1 and a_2s_1 are all edges of G. Furthermore, s_1 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$.

Suppose $z_2 = x_1$. That is, $[a_4, x_1] \longrightarrow a_2$. By O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since $a_2s_1 \in E(G)$, it follows that $x_1s_2 \notin E(G)$ and $a_2s_2 \notin E(G)$; otherwise $\{x_1, a_2\}$ would dominate G, a contradiction.

Next consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there must be a vertex z_3 of $G-\{a_1,a_4\}$ such that either $[a_1,z_3] \longrightarrow a_4$ or $[a_4,z_3] \longrightarrow a_1$. In either case, $z_3 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4,z_3] \longrightarrow a_1$ is impossible. Thus $[a_1,z_3] \longrightarrow a_4$. By O3 and O4, $\{x_3,a_4\}$ dominates $G-S_0$. Since $x_3s_1 \in E(G)$, it follows that $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$. Otherwise, $\{x_3,a_4\}$ would dominate G, a contradiction. Because $[a_4,x_4] \longrightarrow a_5$ and $a_4s_2 \notin E(G)$, it follows that $x_4s_2 \in E(G)$. So x_4 is adjacent to both s_1 and s_2 .

Next we consider $G + a_1a_5$. Since $\gamma(G + a_1a_5) = 2$, there must be a vertex z_4 of $G - \{a_1, a_5\}$ such that either $[a_1, z_4] \longrightarrow a_5$ or $[a_5, z_4] \longrightarrow a_1$. In either case, $z_4 \notin S_0$, since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_5, z_4] \longrightarrow a_1$ is impossible. Thus $[a_1, z_4] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Since x_4 is adjacent to both s_1 and s_2 , $\{x_4, a_5\}$ dominates G. This contradiction proves that if $[a_4, z_2] \longrightarrow a_2$, then $z_2 \neq x_1$. Thus $z_2 \in S_0$. Since $s_1a_3 \notin E(G)$, it follows that $z_2 \neq s_1$. Therefore,

 $z_2 = s_2$. That is, $[a_4, s_2] \longrightarrow a_2$. Then s_2 dominates $((G - S) \cup \{x_3\}) - (H_4 \cup \{a_2\})$. Thus $s_2x_3 \in E(G)$ and $s_2a_2 \notin E(G)$. Then x_3 is adjacent to both s_1 and s_2 since $x_3s_1 \in E(G)$.

Now consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there must be a vertex z_5 of $G-\{a_1,a_4\}$ such that either $[a_1,z_5] \longrightarrow a_4$ or $[a_4,z_5] \longrightarrow a_1$. In either case, $z_5 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4,z_5] \longrightarrow a_1$ is impossible. Hence $[a_1,z_5] \longrightarrow a_4$. Then $z_5=x_3$ by O3. But then $\{x_3,a_4\}$ dominates G by O4 and the fact that x_3 is adjacent to s_1 and s_2 . This contradiction completes the proof of Subcase 1.1.2.2.2 and thus of the Subcase 1.1.2.2.

Subcase 1.1.2.3: Suppose $z_1 \in S_0$ and $z_1 = s_2$. That is, $[a_5, s_2] \longrightarrow a_3$. Recall that $x_2s_1 \notin E(G)$ and $a_3s_1 \notin E(G)$, but x_3s_1, a_1s_1 and a_2s_1 are all edges of G. Since $[a_5, s_2] \longrightarrow a_3$, vertex s_2 dominates $((G - S) \cup \{x_4\}) - (H_5 \cup \{a_3\})$. Since $s_2a_3 \notin E(G)$, edge $x_3s_2 \in E(G)$, because $[a_3, x_3] \longrightarrow a_4$. Now x_3 and a_2 are adjacent to both s_1 and s_2 .

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there must be a vertex z_2 of $G - \{a_2, a_4\}$ such that either $[a_2, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_3 \notin E(G)$. If $[a_2, z_2] \longrightarrow a_4$, then $z_2 = x_3$ and hence $\{x_3, a_4\}$ dominates G by 03, 04 and the fact that x_3 is adjacent to both s_1 and s_2 and we have a contradiction. Hence $[a_4, z_2] \longrightarrow a_2$. But then a similar argument shows that $\{x_1, a_2\}$ dominates G. This contradiction completes the proof of Subcase 1.1.2.3 and hence of Subcase 1.1.2. But then $\gamma(G + a_3a_5) > 2$, contradicting the 3- γ -criticality of G. Thus Subcase 1.1 cannot occur.

Subcase 1.2: Suppose $z \in S_0$.

Without loss of generality, we may assume that $z = s_1$. That is, $[a_1, s_1] \longrightarrow a_3$. Then vertex s_1 dominates $(G - S) - (H_1 \cup \{u_3\})$. Since $s_1 a_3 \notin E(G)$ by Lemma 1.2, edge $s_1 x_3 \in E(G)$ because $[a_3, x_3] \longrightarrow a_1$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_1 of $G - \{a_2, a_4\}$ such that either $[a_2, z_1] \longrightarrow a_4$ or $[a_4, z_1] \longrightarrow a_2$. We distinguish two subcases.

Subcase 1.2.1: Suppose $\{a_2, z_1\} \longrightarrow a_4$. By O3 and the fact that $s_1a_3 \notin E(G)$, it follows that either $z_1 = x_3$ or $z_1 = s_2$.

Subcase 1.2.1.1: Suppose $z_1 = x_3$. That is, $[a_2, x_3] \longrightarrow a_4$. Then by O4, $\{x_3, a_4\}$ dominates $G - S_0$. Because s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, edges s_1x_3 and s_1a_4 belong to E(G). If $x_3s_2 \in E(G)$ or if $a_4s_2 \in E(G)$, then $\{x_3, a_4\}$ dominates G, a contradiction. Hence $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for all $i, 1 \le i \le k-1$, it follows that $a_3s_2 \in E(G)$ and $x_4s_2 \in E(G)$.

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_2 of $G - \{a_2, a_5\}$ such that either $[a_2, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_4 \notin E(G)$. If $[a_2, z_2] \longrightarrow a_5$, then $\{x_4, a_5\}$ dominates $G - S_0$ by O3 and O4. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, edge $s_1a_5 \in E(G)$. Because $x_4s_2 \in E(G)$, $\{x_4, a_5\}$ dominates G, a contradiction. Hence $[a_5, z_2] \longrightarrow a_2$. By O3 and the fact that $z_2 \notin S_0$. it follows that $z_2 = x_1$. Then by O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$, edge $s_1a_2 \in E(G)$. If $a_2s_2 \in E(G)$ or if $x_1s_2 \in E(G)$, then $\{x_1, a_2\}$ dominates G, a contradiction. Hence $a_2s_2 \notin E(G)$ and $x_1s_2 \notin E(G)$. Because $[a_i, x_i] \longrightarrow a_{i+1}$ for $1 \le i \le k-1$, it follows that $x_2s_2 \in E(G)$ and $a_1s_2 \in E(G)$.

Now consider $G+a_1a_5$. Since $\gamma(G+a_1a_5)=2$, there is a vertex z_3 of $G-\{a_1,a_5\}$ such that either $[a_1,z_3] \longrightarrow a_5$ or $[a_5,z_3] \longrightarrow a_1$. In either case $z_3 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. Then by O3, the case $[a_5,z_3] \longrightarrow a_1$ is impossible. Thus $[a_1,z_3] \longrightarrow a_5$. Then $z_3=x_4$. But then $\{x_4,a_5\}$ dominates G by O4 and the fact that $x_4s_2 \in E(G)$ and $a_5s_1 \in E(G)$. This contradiction completes the proof of Subcase 1.2.1.1.

Subcase 1.2.1.2: Suppose $z_1 = s_2$. That is, $[a_2, s_2] \longrightarrow a_4$. Then s_2 dominates $((G-S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$. Recall that s_1 dominates $(G-S) - (H_1 \cup \{a_3\})$. More specifically, $s_2a_4 \notin E(G)$, $s_1a_3 \notin E(G)$, but a_5 is adjacent to both s_1 and s_2 .

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is vertex z_2 of $G + \{a_2, a_5\}$ such that either $[a_2, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_4 \notin E(G)$. Suppose $[a_2, z_2] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G + S_0$. Since a_5 is adjacent to s_1 and s_2 , it follows that $\{x_4, a_5\}$ dominates G, a contradiction.

Hence $[a_5, z_2] \longrightarrow a_2$. By O3 and O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$ and s_2 dominates $(G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$, it follows that $s_1a_2 \in E(G)$ and $s_2x_1 \in E(G)$. But then $\{x_1, a_2\}$ dominates G, a contradiction. This completes the proof of Subcase 1.2.1.

Subcase 1.2.2: Suppose $[a_4, z_1] \longrightarrow a_2$. By O3 and the fact that $s_1a_3 \notin E(G)$, it follows that either $z_1 = x_1$ or $z_1 = s_2$.

Subcase 1.2.2.1: Suppose $z_1 = x_1$. That is, $[a_4, x_1] \longrightarrow a_2$. Then by O4, $\{x_1, a_2\}$ dominates $G - S_0$. Recall that s_1 dominates $(G - S_1 - iH_1 \cup \{a_3\})$. Since $s_1a_2 \in E(G)$, it follows that $a_2s_2 \notin E(G)$ and $x_1s_2 \notin E(G)$; for otherwise $\{x_1, a_2\}$ dominates G, a contradiction. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for all $1 \le i \le k-1$, it follows that $x_2s_2 \in E(G)$ and $a_1s_2 \in E(G)$.

Consider $G + a_1a_4$. Since $\pi(G - a_1a_4) = 2$, there must be a vertex z_2 of $G - \{a_1, a_4\}$ such that either $[a_1, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_1$. In either case, $z_2 \in S_0$ since $s_1a_3 \in E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4, z_2] \longrightarrow a_1$ is impossible. Hence $[a_1, z_2] \longrightarrow a_4$. Then $\{x_3, a_4\}$ dominates $G - S_0$ by O3 and O4. Since s_1 dominates $(G - S) + (H_1 \cup \{a_3\})$, it follows that $s_1a_4 \in E(G)$. Then $a_4s_2 \in E(G)$ and $a_3s_2 \notin E(G)$, for otherwise $\{x_3, a_4\}$ dominates G, a contradiction. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for all $1 \le i \le k-1$, $x_4s_2 \in E(G)$ and $a_3s_2 \in E(G)$.

Now consider $G + a_1a_5$. Since $\gamma(G + a_1a_5) = 2$, there is a vertex z_3 of $G - \{a_1, a_5\}$ such that either $[a_1, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_1$. In either case, $z_3 \in S_0$ since $s_1a_3 \in E(G)$ and $s_2a_4 \notin E(G)$. By O3, the case $[a_5, z_3] \longrightarrow a_1$ is impossible. Hence $[a_1, z_3] \longrightarrow a_5$. Then by O3, $z_3 = x_4$. But then $\{x_4, a_5\}$ dominates G by O4 and the fact that $s_1a_5 \in E(G)$ and $x_4s_2 \in E(G)$. This contradiction completes the proof of Subcase 1.2.2.1.

Subcase 1.2.2.2: Suppose $z_1 = s_2$. That is, $[a_4, s_2] \longrightarrow a_2$. Then s_2 dominates $((G - S) \cup \{x_3\}) - (H_4 \cup \{a_2\})$. Recall that s_1 dominates $(G - S) - (H_1 \cup \{a_3\})$. More specifically, $s_1a_4 \in E(G)$ and $s_2x_3 \in E(G)$, but $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$.

Consider $G + a_1a_4$. Since $\gamma(G + a_1a_4) = 2$, there is a vertex z_2 of $G - \{a_1, a_4\}$ such that either $[a_1, z_2] \longrightarrow a_4$ or $[a_4, z_2] \longrightarrow a_1$. In either case, $z_2 \notin S_0$ since $s_1a_3 \notin E(G)$ and $s_2a_2 \notin E(G)$. By O3, the case $[a_4, z_2] \longrightarrow a_1$ is impossible. Hence $[a_1, z_2] \longrightarrow a_4$. By

Case 2: Suppose $[a_3, z] \longrightarrow a_1$.

By O3, $z \in S_0$. Without loss of generality, we may assume that $z = s_1$. Then $[s_1] \longrightarrow a_1$ and s_1 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$. Since $s_1a_1 \notin E(G)$ by $[s_1] \longrightarrow [s_2]$ it follows that edge $s_1s_1 \in E(G)$ since $[s_1] \longrightarrow [s_2]$.

Consider $G + a_2a_4$. Since $\gamma(G + a_2a_4) = 2$, there is a vertex z_1 of $G - \{a_2, a_4\}$ such that either $[a_2, z_1] \longrightarrow a_4$ or $[a_4, z_1] \longrightarrow a_2$. We distinguish two cases.

Subcase 2.1: Suppose $[a_2, z_1] \longrightarrow a_4$. By O3 and the fact that $s_1a_1 \notin E(G)$. it llows that $z_1 = x_3$ or $z_1 = s_2$.

Subcase 2.1.1: Suppose first that $z_1 = x_3$. That is, $[a_2, x_3] \longrightarrow a_4$. By O4. x_3 pminates $(G-S)-\{a_4\}$. Since s_1 dominates $((G-S)\cup\{x_2\})-(H_3\cup\{a_1\})$, it follows that $a_4 \in E(G)$. If $x_3s_2 \in E(G)$ or $a_4s_2 \in E(G)$, then $\{x_3, a_4\}$ dominates G, a contradiction ence $x_3s_2 \notin E(G)$ and $a_4s_2 \notin E(G)$. Since $[a_i, x_i] \longrightarrow a_{i+1}$ for $1 \le i \le k-1$, it follows not $a_3s_2 \in E(G)$ and $x_4s_2 \in E(G)$. Figure 2.6 now depicts our situation.

Figure 2.6

Now consider $G + a_3a_5$. Since $\gamma(G + a_3a_5) = 2$, there is a vertex z_2 of $G - \{a_3, a_5\}$ such that either $[a_3, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_3$. In either case, $z_2 \notin S_0$ since $s_1a_1 \notin E(G)$ and $\dot{s}_2a_4 \notin E(G)$. Suppose $[a_3, z_2] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Since s_1 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$, it follows that $s_1a_5 \in E(G)$. Because $x_4s_2 \in E(G)$, $\{x_4, a_5\}$ dominates G, a contradiction. Hence $[a_5, z_2] \longrightarrow a_3$. By O3 and O4, $\{x_2, a_3\}$ dominates $G - S_0$. Since s_1 dominates $((G - S) \cup \{x_2\}) - (H_3 \cup \{a_1\})$, $s_1x_2 \in E(G)$. But then $\{x_2, a_3\}$ dominates G since $a_3s_2 \in E(G)$. This contradiction completes the proof of Subcase 2.1.1.

Subcase 2.1.2: Suppose $z_1 = s_2$. That is, $[a_2, s_2] \longrightarrow a_4$. Then s_2 dominates $((G - S) \cup \{x_1\}) - (H_2 \cup \{a_4\})$. Recall that $[a_3, s_1] \longrightarrow a_1$ and $x_1 s_1 \in E(G)$. Thus a_5 is adjacent to both s_1 and s_2 , $s_1 a_1 \notin E(G)$ and $s_2 a_4 \notin E(G)$.

Consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_2 of $G - \{a_2, a_5\}$ such that $[a_2, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_2$. In either case, $z_2 \notin S_0$ since $s_1a_1 \notin E(G)$

al $s_2a_4 \notin E(G)$. Suppose $[a_2, z_2] \longrightarrow a_5$. By O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Tus $\{x_4, a_5\}$ dominates G since a_5 is adjacent to both s_1 and s_2 , and again we have a citradiction. Hence $[a_5, z_2] \longrightarrow a_2$. By O3 and O4, $\{x_1, a_2\}$ dominates $G - S_0$. Since $a_5 \in E(G)$ and $a_1s_2 \in E(G)$, $\{x_1, a_2\}$ dominates G. This contradiction completes the pof of Subcase 2.1.2 and therefore also Subcase 2.1.

Subcase 2.2: Suppose $[a_4, z_1] \longrightarrow a_2$. Recall that $[a_3, s_1] \longrightarrow a_1$, $s_1a_1 \notin E(G)$, $s_1c_2 \in E(G)$ and $s_1s_1 \in E(G)$. Since $[a_4, z_1] \longrightarrow a_2$ and $s_1a_1 \notin E(G)$, it follows from O3 tat either $z_1 = x_1$ or $z_1 = s_2$.

Subcase 2.2.1: Suppose $z_1 = x_1$. That is, $[a_4, x_1] \longrightarrow a_2$. By O3 and O4, $\{x_1, a_2\}$ minates $G - S_0$. Since $x_1s_1 \in E(G)$, if either $x_1s_2 \in E(G)$ or $a_2s_2 \in E(G)$, then $\{x_1, a_2\}$ minates G, a contradiction. Hence $x_1s_2 \notin E(G)$ and $a_2s_2 \notin E(G)$. Since $[a_i, x_i] \longrightarrow a_{i+1}$ or $1 \le i \le k-1$, $a_1s_2 \in E(G)$ and $x_2s_2 \in E(G)$. Figure 2.7 illustrates our situation.

Figure 2.7

Now consider $G + a_3a_5$. Since $\gamma(G + a_3a_5) = 2$, there is a vertex z_2 of $G - \{a_3, a_5\}$ such nat either $[a_3, z_2] \longrightarrow a_5$ or $[a_5, z_2] \longrightarrow a_3$. In either case, $z_2 \notin S_0$ since $s_1a_1 \notin E(G)$ and $2a_2 \notin E(G)$. Suppose $[a_5, z_2] \longrightarrow a_3$. Then by O3 and O4, $\{x_2, a_3\}$ dominates $G - S_0$, ince $x_2s_1 \in E(G)$ and $x_2s_2 \in E(G)$, $\{x_2, a_3\}$ dominates G, a contradiction. Hence $a_3, a_2 \supseteq a_3 = a_5$. Then by O3 and O4, $\{x_4, a_5\}$ dominates $G - S_0$. Since $[a_3, s_1] \longrightarrow a_1$, it ollows that $s_1a_5 \in E(G)$. If $x_4s_2 \in E(G)$ or $a_5s_2 \in E(G)$, then $\{x_4, a_5\}$ dominates G, a ontradiction. Thus $x_4s_2 \notin E(G)$ and $a_5s_2 \notin E(G)$.

Now consider $G + a_2a_5$. Since $\gamma(G + a_2a_5) = 2$, there is a vertex z_3 of $G - \{a_2, a_5\}$ such that either $[a_2, z_3] \longrightarrow a_5$ or $[a_5, z_3] \longrightarrow a_2$. In either case, $z_2 \neq s_1$ since $s_1a_1 \notin E(G)$.

Suppose $[a_2, z_3] \longrightarrow a_5$. By O3 and the fact that $z_3 \neq s_1$, it follows that either $z_3 = x_4$ or $z_3 = s_2$. Since $a_2s_2 \notin E(G)$ and $x_4s_2 \notin E(G)$, it follows that $z_3 \neq x_4$. Thus $z_3 = s_2$. But this is impossible since $s_2x_1 \notin E(G)$ and $a_2x_1 \notin E(G)$. Hence $[a_5, z_3] \longrightarrow a_2$. By O3 and the fact that $z_3 \neq s_1$, it follows that either $z_3 = x_1$ or $z_3 = s_2$. Since $x_1s_2 \notin E(G)$ and $a_5s_2 \notin E(G)$, $z_3 \neq x_1$. Thus $z_3 = s_2$. But this is impossible since $s_2x_4 \notin E(G)$ and $a_5x_4 \notin E(G)$. This contradiction completes the proof of Subcase 2.2.1.

Subcase 2.2.2: Suppose $z_1 = s_2$. That is, $[a_4, s_2] \longrightarrow a_2$. Then s_2 dominates $((G-S) \cup \{x_3\}) - (H_4 \cup \{a_2\})$. Recall that $[a_3, s_1] \longrightarrow a_1$, $s_1a_1 \notin E(G)$, $s_1x_2 \in E(G)$ and $x_1s_1 \in E(G)$. More specifically, $s_1a_1 \notin E(G)$ and $s_2a_2 \notin E(G)$, but $s_1a_4 \in E(G)$, $s_2x_3 \in E(G)$ and $s_2a_1 \in E(G)$.

Consider $G+a_1a_4$. Since $\gamma(G+a_1a_4)=2$, there is a vertex z_2 of $G-\{a_1,a_4\}$ such that either $[a_1,z_2] \longrightarrow a_4$ or $[a_4,z_2] \longrightarrow a_1$. In either case, $z_2 \neq s_2$ since $s_2a_2 \notin E(G)$. Suppose

hus $z_2 = x_3$. By O4, $\{x_3, a_4\}$ dominates $G - S_0$. Since $s_1a_4 \in E(G)$ and $s_2x_3 \in E(G)$, follows that $\{x_3, a_4\}$ dominates G, a contradiction. Hence $[a_4, z_2] \longrightarrow a_1$. By O3 and he fact that $z_2 \neq s_2$, it follows that $z_2 = s_1$. That is, $[a_4, s_1] \longrightarrow a_1$. Since $[a_3, s_1] \longrightarrow a_1$. First s_1 dominates $(G - S) - \{a_1\}$. Because $s_1x_1 \in E(G)$ and $s_2a_1 \in E(G)$, $\{s_1, a_1\}$ siminates G. This contradiction completes the proof of Subcase 2.2.2 and hence also hibrary $s_1 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_1 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$. This implies that $g_2 \in V(G) - \{a_1, a_3\}$, $\{a_3, z\}$ does not dominate $G - \{a_1\}$.

In order to prove the main theorem of this section, we shall also need the following sult which may be viewed as yet another extension of Theorem 1.3.

Theorem 2.2 Let G be a connected 3- γ -critical graph and let S be a vertex cutset G with $4 \le |S| \le 5$. If each component of G - S has at least three vertices, then $|G - S| \le |S| - 2$.

Proof: Suppose, to the contrary, that $\omega(G-S) \geq |S|-1$. By Theorem 1.3(i), it follows hat $\omega(G-S) = |S|-1$. Put t=|S|-1. Note that $3 \leq t \leq 4$ Let H_i be a component of G-S for $i=1,2,\ldots,t$. Choose a vertex $w_i \in V(H_i)$ for $i=1,2,\ldots,t$. Clearly, $V=\{w_1,w_2,\ldots,w_t\}$ is an independent set. By Lemma 1.1(i), the vertices of V may be ordered as a_1,a_2,\ldots,a_t in such a way that there exist distinct vertices x_1,x_2,\ldots,x_{t-1} such that $[a_i,x_i] \longrightarrow a_{i+1}$, for $i=1,2,\ldots,t-1$. By Lemma 1.2, $x_ia_{i+1} \notin E(G)$ for $i=1,2,\ldots,t-1$. Thus $x_1x_2\cdots x_{t-1}$ is a path. Without loss of generality, we may renumber the components of $i=1,2,\ldots,t-1$.

Let $S_0 = S - \{x_1, x_2, \dots, x_{t-1}\}$. Then $|S_0| = 2$ and so we may set $S_0 = \{s_1, s_2\}$. Note that observations O1, O2, O3 and O4 made in the proof of Theorem 2.1 are still valid in the present situation. Furthermore, O4 is still true if we replace a_i with b_i , where b_i belongs to the same component as a_i .

Since $|V(H_t)| \geq 3$, there are vertices $b_t, c_t \in V(H_t) - \{a_t\}$. Consider $G + a_1b_t$. Since $\gamma(G + a_1b_t) = 2$, there is a vertex z of $G - \{a_1, b_t\}$ such that either $[a_1, z] \longrightarrow b_t$ or $[b_t, z] \longrightarrow a_1$. In either case, $z \in S$. We distinguish two cases.

Case 1: Suppose $[a_1, z] \longrightarrow b_t$.

By O1 and Lemma 1.2, $z \notin \{x_1, x_2, \ldots, x_{t-1}\}$. Then it follows that $z \in S_0$. Without loss of generality, we may assume that $z = s_1$. That is, $[a_1, s_1] \longrightarrow b_t$. Then s_1 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. If $x_2s_2 \in E(G)$ or $s_1s_2 \in E(G)$, then $\{x_2, s_1\}$ dominates G by O1, together with the fact that $x_1x_2 \cdots x_{t-1}$ is a path with $2 \le t - 1 \le 3$ and s_1 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. But this is a contradiction and so $x_2s_2 \notin E(G)$ and $s_1s_2 \notin E(G)$. Since $[a_2, x_2] \longrightarrow a_3$ and $x_2s_2 \notin E(G)$, $a_2s_2 \in E(G)$. Furthermore, since $[a_1, s_1] \longrightarrow b_t$ and $s_1s_2 \notin E(G)$, $a_1s_2 \in E(G)$.

Figure 2.8 illustrates the present situation.

Figure 2.8

Now consider $G+a_1c_t$. Since $\gamma(G+a_1c_t)=2$, there must be a vertex z_1 of $G-\{a_1,c_t\}$ such that either $[a_1,z_1] \longrightarrow c_t$ or $[c_t,z_1] \longrightarrow a_1$. In either case, $z_1 \in S$. We distinguish two cases.

Subcase 1.1: Suppose $[a_1, z_1] \longrightarrow c_t$.

By O1 and Lemma 1.2, $z_1 \notin \{x_1, x_2, \ldots, x_{t-1}\}$. Since $s_1b_t \notin E(G)$ and $a_1b_t \notin E(G)$, it follows that $z_1 \neq s_1$. But then $z_1 = s_2$. That is, $[a_1, s_2] \longrightarrow c_t$. Hence s_2 dominates $\bigcup_{j=2}^t V(H_j) - \{c_t\}$. Since $s_1s_2 \notin E(G)$ and $[a_1, s_2] \longrightarrow c_t$, it follows that $a_1s_1 \in E(G)$. Now a_1 is adjacent to both s_1 and s_2 . Further, a_t is also adjacent to both s_1 and s_2 since s_1 dominates $\bigcup_{j=2}^t V(H_j) - \{c_t\}$.

Consider $G + a_1 a_t$. Since $\gamma(G + a_1 a_t) = 2$, there must be a vertex z_2 of $G - \{a_1, a_t\}$ such that either $[a_1, z_2] \longrightarrow a_t$ or $[a_t, z_2] \longrightarrow a_1$. In either case, $z_2 \in S$. By Lemma 1.2 and the fact that a_1 and a_t are adjacent to both s_1 and $s_2, z_2 \notin S_0$. By O3, $[a_t, z_2] \longrightarrow a_1$ is impossible. Hence $[a_1, z_2] \longrightarrow a_t$. By O3 and O4, $\{x_{t-1}, a_t\}$ dominates $G - S_0$. Since $a_t s_1 \in E(G)$ and $a_t s_2 \in E(G)$, it follows that $\{x_{t-1}, a_t\}$ dominates G. This contradiction completes the proof of Subcase 1.1.

Subcase 1.2: $[c_t, z_1] \longrightarrow a_1$.

Since $x_1a_2 \notin E(G)$ and $a_2c_t \notin E(G)$, $z_1 \neq x_1$. By O1, $x_ia_1 \in E(G)$ for $2 \leq i \leq t-1$. Thus by Lemma 1.2, $z_1 \notin \{x_2, \ldots, x_{t-1}\}$. Furthermore, $z_1 \neq s_2$ since $a_1s_2 \in E(G)$. Thus $z_1 = s_1$. That is, $[c_t, s_1] \longrightarrow a_1$. Recall that $[a_1, s_1] \longrightarrow b_t$, $x_2s_2 \notin E(G)$, $s_1s_2 \notin E(G)$, but $a_2s_2 \in E(G)$ and $a_1s_2 \in E(G)$. Since $[c_t, s_1] \longrightarrow a_1$ and $[a_1, s_1] \longrightarrow b_t$, s_1 dominates $(G-S) - \{a_1, b_t\}$. Furthermore, since $s_1s_2 \notin E(G)$ and $[c_t, s_1] \longrightarrow a_1$, $c_ts_2 \in E(G)$. Now c_t is adjacent to every vertex of S by O1 and the fact that s_1 dominates $(G-S) - \{a_1, b_t\}$.

Since $|V(H_1)| \geq 3$, there are vertices $b_1, c_1 \in V(H_1) - \{a_1\}$. Consider $G + b_1c_t$. Since $\gamma(G + b_1c_t) = 2$, there is a vertex z_2 of $G - \{b_1, c_t\}$ such that either $[b_1, z_2] \longrightarrow c_t$ or $[c_t, z_2] \longrightarrow b_1$. In either case, $z_2 \in S$. Suppose $[b_1, z_2] \longrightarrow c_t$. By Lemma 1.2, $z_2c_t \notin E(G)$. Thus $z_2 \notin S$ since c_t is adjacent to every vertex of S, a contradiction. Hence $[c_t, z_2] \longrightarrow b_1$. Since $x_1a_2 \notin E(G)$ and $c_ta_2 \notin E(G)$, $z_2 \neq x_1$. By O1, $x_ib_1 \in E(G)$ for $1 \leq i \leq t-1$. Thus by Lemma 1.2, $1 \leq i \leq t-1$. Furthermore, $1 \leq i \leq t-1$. Thus by Lemma 1.2, $1 \leq i \leq t-1$. Thus $1 \leq i \leq t-1$.

Now consider $G + c_1c_t$. Since $\gamma(G + c_1c_t) = 2$, there is a vertex z_3 of $G - \{c_1, c_t\}$ such that either $[c_1, z_3] \longrightarrow c_t$ or $[c_t, z_3] \longrightarrow c_1$. In either case, $z_3 \in S$. By applying the same argument as above, the case $[c_1, z_3] \longrightarrow c_t$ is impossible. Hence $[c_t, z_3] \longrightarrow c_1$. Since $x_1a_2 \notin E(G)$ and $c_ta_2 \notin E(G)$, $z_3 \neq x_1$. Then $z_3 \in \{s_1, s_2\} \cup \{x_2, \ldots, x_{t-1}\}$. But this contradicts Lemma 1.2 since for $2 \leq i \leq t-1, x_i, s_1$ and s_2 are all adjacent to c_1 . This completes the proof of Subcase 1.2 and hence the proof of Case 1 is complete.

Case 2: Suppose, therefore, that $[b_t, z] \longrightarrow a_1$.

By O3, $z \in S_0$. Without loss of generality, we may assume that $z = s_1$. That is, $[b_t, s_1] \longrightarrow a_1$. Thus s_1 dominates $\bigcup_{j=1}^{t-1} V(H_j) - \{a_1\}$. Since $[a_1, x_1] \longrightarrow a_2$ and $s_1a_1 \notin E(G)$, $x_1s_1 \in E(G)$. Figure 2.9 depicts our situation.

Figure 2.9

Since $|V(H_1)| \geq 3$, there is a vertex b_1 of $V(H_1) - \{a_1\}$. Consider $G + b_1b_t$. Since $(G + b_1b_t) = 2$, there is a vertex z_1 of $G - \{b_1, b_t\}$ such that either $[b_1, z_1] \longrightarrow b_t$ or $[a_1, z_1] \longrightarrow b_1$. In either case, $z_1 \in S$. We distinguish two subcases.

Subcase 2.1: Suppose $[b_1, z_1] \longrightarrow b_t$. Since $[a_i, x_i] \longrightarrow a_{i+1}$, $b_t x_i \in E(G)$ for $1 \le i \le t-1$ by O1. Then $z_1 \notin \{x_1, \ldots, x_{t-1}\}$ Lemma 1.2. Hence $z_1 = s_1$ or $z_1 = s_2$.

Subcase 2.1.1: Suppose $z_1 = s_1$. That is, $[b_1, s_1] \longrightarrow b_t$. Since $[b_t, s_1] \longrightarrow a_1$, s_1 minates $(G - S) - \{a_1, b_t\}$. Since $x_2a_1 \in E(G)$ and $x_2b_t \in E(G)$ by O1, if $x_2s_2 \in E(G)$ $s_1s_2 \in E(G)$, then $\{x_2, s_1\}$ dominates G, a contradiction. Hence $x_2s_2 \notin E(G)$ and $s_2 \notin E(G)$. Because $[a_2, x_2] \longrightarrow a_3$ and $x_2s_2 \notin E(G)$, $a_2s_2 \in E(G)$. Since $[b_1, s_1] \longrightarrow b_t$ id $s_1s_2 \notin E(G)$, $b_1s_2 \in E(G)$. Since s_1 dominates $(G - S) - \{a_1, b_t\}$, edges s_1b_1, s_1a_2 and s_1a_t belong to E(G). Figure 2.10 illustrates our situation.

Figure 2.10

We will now show that $s_2a_t \notin E(G)$. Suppose to the contrary, that $s_2a_t \in E(G)$. Sonsider $G+b_1a_t$. Since $\gamma(G+b_1a_t)=2$, there is a vertex z_2 of $G-\{b_1,a_t\}$ such that either $b_1,z_2] \longrightarrow a_t$ or $[a_t,z_2] \longrightarrow b_1$. In either case, $z_2 \in S$, but by Lemma 1.2, $z_2 \notin \{s_1,s_2\}$ since b_1 and a_t are adjacent to both s_1 and s_2 . Suppose $[b_1,z_2] \longrightarrow a_t$. Then by O1 and Lemma 1.2, $z_2 = x_{t-1}$. That is, $[b_1,x_{t-1}] \longrightarrow a_t$. By O4, and the fact that a_t is adjacent to both s_1 and s_2 , it follows that $\{x_{t-1},a_t\}$ dominates G, a contradiction. Hence $[a_t,z_2] \longrightarrow b_1$. But then by O1 and Lemma 1.2, $z_2 \ne x_t$ for $2 \le i \le t-1$. Furthermore, $z_2 \ne x_1$ since $x_1a_2 \notin E(G)$. Hence $z_2 \notin S$, a contradiction. This proves that $s_2a_t \notin E(G)$. By applying similar arguments, we also obtain that $s_2c_t \notin E(G)$.

Now consider $G + a_2c_t$. Since $\gamma(G + a_2c_t) = 2$, there is a vertex z_3 of $G - \{a_2, c_t\}$ such that either $[a_2, z_3] \longrightarrow c_t$ or $[c_t, z_3] \longrightarrow a_2$. In either case, $z_3 \in S$. Suppose that $[a_2, z_3] \longrightarrow c_t$. By O1, x_i is adjacent to c_t for $1 \le i \le t-1$. Since s_1 dominates $(G - S) - \{a_1, b_t\}$. $s_1c_t \in E(G)$. By Lemma 1.2, $z_3 \notin \{s_1, x_1, x_2, \ldots, x_{t-1}\}$. Therefore, $z_3 = s_2$. But this is impossible, since $s_2a_t \notin E(G)$ and $a_2a_t \notin E(G)$. Hence $[c_t, z_3] \longrightarrow a_2$. Since a_2 is adjacent to s_1 and s_2 , $s_3 \notin \{s_1, s_2\}$ by Lemma 1.2. Therefore, $s_3 \in \{x_1, x_2, \ldots, x_{t-1}\}$. Suppose $s_3 = s_4$. Then s_4 dominates $s_4 \in S$. Thus $s_4 \in S$ dominates $s_4 \in S$ and the fact that $s_4 \in S$ and $s_4 \in S$. Since $s_4 \in S$ and $s_4 \in S$ and $s_4 \in S$ are contradiction. Hence $s_4 \notin S$ and $s_4 \in S$ and $s_4 \in S$ and $s_4 \in S$ and $s_4 \in S$. Since $s_4 \in S$ and $s_4 \in S$ and $s_4 \in S$ and $s_4 \in S$ and $s_4 \in S$. Suppose $s_4 \in S$ and $s_4 \in S$. Since $s_4 \in S$ and $s_4 \in S$

his implies that t=4 and $z_3=x_3=x_{t-1}$. But this also contradicts Lemma 1.2 since $z_3 = z_4 \in E(G)$ by O1. This completes the proof of Subcase 2.1.1.

Subcase 2.1.2: Suppose $z_1 = s_2$.

That is, $[b_1, s_2] \longrightarrow b_t$. Then s_2 dominates $\bigcup_{j=2}^t V(H_j) - \{b_t\}$. Recall that $[b_t, s_1] \longrightarrow 1$. Since $s_2b_t \notin E(G)$, $s_1s_2 \in E(G)$. But then $\{x_2, s_2\}$ dominates G by O1, together with g be facts that $x_1x_2 \cdots x_t$ is a path with $1 \le t - 1 \le 3$, $t_1s_2 \in E(G)$ and $t_2 \in E(G)$ and $t_3 \in E(G)$ and $t_4 \in E(G)$ and $t_5 \in E(G)$ and t_5

Subcase 2.2: Suppose, then, that $[b_t, z_1] \longrightarrow b_1$.

By O1 and Lemma 1.2, $z_1 \neq x_i$ for $2 \leq i \leq t-1$. Since $x_1a_2 \notin E(G)$ and $s_1a_1 \notin E(G)$, $1 \notin \{x_1, s_1\}$. But then $z_1 = s_2$. Thus s_2 dominates $\bigcup_{j=1}^{t-1} V(H_j) - \{b_1\}$. Recall that $b_t, s_1] \longrightarrow a_1$ and $x_1s_1 \in E(G)$. Then y and w must be adjacent to s_1 and s_2 for all $t \in V(H_1) - \{a_1, b_1\}$ and for all $w \in V(H_{t-1})$. Since $|V(H_i)| \geq 3$, for $1 \leq i \leq t$, there nust be a vertex $c_1 \in V(H_1) - \{a_1, b_1\}$ and a vertex $b_{t-1} \in V(H_{t-1}) - \{a_{t-1}\}$. Then c_1 and b_{t-1} are adjacent to both s_1 and s_2 .

Consider, finally, $G+c_1b_{t-1}$. Since $\gamma(G+c_1b_{t-1})=2$, there must be a vertex z_2 of $G-\{c_1,b_{t-1}\}$ such that either $[c_1,z_2] \longrightarrow b_{t-1}$ or $[b_{t-1},z_2] \longrightarrow c_1$. In either case, $z_2 \in S$, but $z_2 \notin \{s_1,s_2\}$ by Lemma 1.2 and the fact that c_1 and b_{t-1} are adjacent to s_1 and s_2 . Suppose $[c_1,z_2] \longrightarrow b_{t-1}$. By O1 and Lemma 1.2, $z_2 \neq x_1$. Since $x_2a_3 \notin E(G)$, $z_2 \neq x_2$. Then t=4 and $z_2=x_3$. But this is impossible since $c_1a_4 \notin E(G)$ and $x_3a_4 \notin E(G)$. Hence $[b_{t-1},z_2] \longrightarrow c_1$. Since $z_2 \notin \{s_1,s_2\}$, |(t-1)-1| < 2 by O3. This implies that t-1=2. Then by O1 and Lemma 1.2, $z_2 \neq x_2$. Thus $z_2=x_1$. But then x_1 dominates $(G-S)-\{c_1,a_2\}$. Hence $\{x_1,s_2\}$ dominates G, since $x_1s_1 \in E(G), x_1x_2 \in E(G)$ and s_2 dominates $(H_1 \cup H_2)-\{b_1\}$. This contradiction completes the proof of Subcase 2.2 and hence Case 2. This proves that $\gamma(G+a_1b_t)>2$, contradicting the 3- γ -criticality of G. This completes the proof of Theorem 2.2.

Finally, the following two results will also be useful in proving our main theorem. The first is due to Favaron [F] and the second is proved in [AP2].

Theorem 2.3 A graph G is n-factor-critical if and only if $\omega_o(G-S) \leq |S|-n$, for every $S \subseteq V(G)$ and $|S| \geq n$.

Theorem 2.4 Let G be a 2-connected 3- γ -critical graph having odd order. Then G is factor-critical.

We now present our main result of this section.

Theorem 2.5 If G is a 4-connected 3- γ -critical graph of odd order and having minimum degree at least 5, then G is 3-factor-critical.

Proof: Suppose, by way of contradiction, that G is not 3-factor-critical. By Theorem 3, there is a set $S \subset V(G)$ with $|S| \geq 3$ such that $\omega_o(G-S) > |S| - 3$.

Since G is factor-critical, by Theorem 2.4, $\omega_o(G-S) \leq |S|-1$. Since G has odd order, $\omega_o(G-S) \neq |S|-2$. But then $\omega_o(G-S) = |S|-1$. By Theorem 2.1 and our connectivity pothesis, $4 \leq |S| \leq 5$. Since G - S has |S| - 1 odd components, there is a component |G - S|, say H_1 , such that $|V(H_1)| = 1$ by Theorem 2.2. Let $V(H_1) = \{w_1\}$. If |S| = 4, hen $d(w_1) \leq 4$, a contradiction of our minimum degree hypothesis. Hence |S| = 5. By heorem 1.3(i), G-S has no even components. For $i=1,\ldots,4$, let H_i be the components G-S. Choose a vertex $w_i \in V(H_i)$, for each $i=1,\ldots,4$. Clearly $W=\{w_1,w_2,w_3,w_4\}$ an independent set. By Lemma 1.1, the vertices of W may be ordered as a_1, a_2, a_3 and 4 in such a way that there exists a path $x_1x_2x_3$ in G-W such that $[a_i,x_i] \longrightarrow a_{i+1}$, preach i=1,2,3. By Lemma 1.2, $x_i a_{i+1} \notin E(G)$ for each i=1,2,3. Clearly, $x_i \in S$ or i = 1, 2, 3. Let $S_0 = S - \{x_1, x_2, x_3\}$. So $|S_0| = 2$. Let $S_0 = \{s_1, s_2\}$. With loss of enerality, we may renumber the components of G-S in such a way that $a_i \in V(H_i)$. Note that obvervations O1, O2, O3 and O4, stated in the proof of Theorem 2.1, remain alid in the present situation. Since for each $i=1,2,3, x_ia_{i+1} \notin E(G)$, it follows that $|V(H_i)| \geq 3$ for $2 \leq i \leq 4$ because mindeg $(G) \geq 5$ and |S| = 5. Further, $V(H_1) = \{a_1\}$, by Theorem 2.2 and a_1 is adjacent to every vertex of S. But then for each $i, 2 \le i \le 4$, there exist two distinct vertices b_i and c_i in $V(H_i) - \{a_i\}$.

Let y be a vertex of $(H_3 \cup H_4) - \{a_3, a_4\}$. Consider $G + a_1 y$. Since $\gamma(G + a_1 y) = 2$, there is a vertex z of $G - \{a_1, y\}$ such that either $[a_1, z] \longrightarrow y$ or $[y, z] \longrightarrow a_1$. In either case, $z \in S$. Since a_1 is adjacent to every vertex of S_0 , the case $[y, z] \longrightarrow a_1$ is impossible by O3 and Lemma 1.2. Hence, $[a_1, z] \longrightarrow y$. By O1 and Lemma 1.2, $z \notin \{x_1, x_2\}$. Since $x_3a_4 \notin E(G)$ and $a_1a_4 \notin E(G)$, it follows that $z \neq x_3$. Thus $z \in S_0$.

Now let $y=b_3$ and consider $G+a_1b_3$. Then, by the above argument, there is a vertex $z \in S_0$ such that $[a_1,z] \longrightarrow b_3$. Without any loss of generality, we may assume that $z=s_1$. That is, $[a_1,s_1] \longrightarrow b_3$. By Lemma 1.2, $s_1b_3 \notin E(G)$. Next let $y=c_3$ and consider $G+a_1c_3$. Again there is a vertex $z_1 \in S_0$ such that $[a_1,z_1] \longrightarrow c_3$. Since $s_1b_3 \notin E(G)$ and $a_1b_3 \notin E(G)$, $z_1 \neq s_1$. Thus $z_1=s_2$. That is, $[a_1,s_2] \longrightarrow c_3$ and $s_2c_3 \notin E(G)$. Finally, we let $y=b_4$ and consider $G+a_1b_4$. Then there is a vertex $z_2 \in S_0$ such that $[a_1,z_2] \longrightarrow b_4$. But $z_2 \neq s_1$ since $s_1b_3 \notin E(G)$ and $a_1b_3 \notin E(G)$. Thus $z_2=s_2$. But this is impossible since $s_2c_3 \notin E(G)$ and $a_1c_3 \notin E(G)$. This proves that $\gamma(G+a_1b_4) > 2$, contradicting the 3-criticality of G. This completes the proof of our theorem.

The bound on the minimum degree stated in the hypotheses of Theorem 2.5 is best possible since there is a 4-connected 3- γ -critical graph with minimum degree 4 and having odd order, but which is not 3-factor-critical. Such a graph G_0 is shown in Figure 2.11 below.

3. A Result About 3- γ -criticality in Claw-free Graphs

A graph is said to be claw-free if it contains no induced subgraph isomorphic to $K_{1,3}$. n [P] the following result was proved.

Theorem 3.1. If G is a 3-connected claw-free graph of even order, then G is bicritical.

If the even graphs under consideration are 3- γ -critical, we can lower the demand on connectivity and still obtain bicriticality. More particularly, we have the following result proved in [AP2].

Theorem 3.2. Let G be a 3- γ -critical 2-connected claw-free graph of even order. Then if mindeg $G \geq 3$, G is bicritical.

We now prove a similar result involving 3-factor criticality. First, however, we state a result of Sumner and Blitch [SB, B] which will be useful in this regard.

Theorem 3.3 The diameter of a 3- γ -critical graph is at most 3.

We now present the main result of this section.

Theorem 3.4 Let G be a 3- γ -critical 3-connected claw-free graph of odd order. Then if mindeg $G \geq 4$, G is 3-factor-critical.

Proof: Suppose, to the contrary, that G is not 3-factor-critical. Then by Theorem 2.3, there is a subset S of V(G) such that $|S| \geq 3$ and $\omega_o(G-S) > |S| - 3$. But by Theorem 2.4, G is factor-critical. Thus $\omega_o(G-S) \leq |S| - 1$. Since |V(G)| is odd, it follows by parity that $\omega_o(G-S) = |S| - 1$. Then by Theorem 2.1, $|S| \leq 5$. Since G is 3-connected, $3 \leq |S| \leq 5$.

We first suppose that |S| = 4. By Theorem 1.3(i), G - S has no even components. Since G is 3-connected, there are at least three vertices of S which are adjacent to some vertices of each component of G - S. Because |S| = 4, there must be a vertex of S, say u, such that u is adjacent to at least one vertex of each component of G - S. Thus u is a claw center in G which contradicts the assumption that G is claw-free. Hence $|S| \neq 4$. By a similar argument, $|S| \neq 5$. Thus |S| = 3.

Since G is claw-free, it is easy to see that G-S has no even components. Furthermore, since G is 3-connected, S is a minimum cutset in G. Because mindeg $G \geq 4$, each component of G-S has at least three vertices. Let H_1 and H_2 be the odd components of G-S and let $S = \{u_1, u_2, u_3\}$.

We now define several sets of vertices in G as follows. For $1 \le i \le 3$, let

$$A_i = V(H_1) \cap N(u_i),$$

$$B_{i} = V(H_{2}) \cap N(u_{i}),$$

$$C = V(H_{1}) - \bigcup_{i=1}^{3} A_{i},$$

$$D = V(H_{2}) - \bigcup_{i=1}^{3} B_{i}.$$

.d

Claim 1: For $1 \le i \le 3$, $A_i \ne \emptyset \ne B_i$. Furthermore, both $G[A_i]$ and $G[B_i]$ are implete.

This claim follows directly from the fact that S is a minimum cutset and G is claw-free.

Claim 2: Either $C = \emptyset$ or $D = \emptyset$.

Suppose, to the contrary, that there is a vertex $x \in C$ and a vertex $y \in D$. Then the istance between vertices x and y is at least 4, since $x \notin \bigcup_{i=1}^3 A_i$ and $y \notin \bigcup_{i=1}^3 B_i$. But this ontradicts Theorem 3.3, thus proving the Claim.

So without loss of generality, let us assume that $C = \emptyset$. We now distinguish two cases, according to whether D is empty or not.

Case 1: Suppose $D \neq \emptyset$.

Choose vertices $a_1 \in A_1$ and $b_1 \in B_1$. Consider $G + a_1b_1$. Since G is 3- γ -critical, there s a vertex $z_1 \in V(G) - \{a_1, b_1\}$ such that either $[a_1, z_1] \longrightarrow b_1$ or $[b_1, z_1] \longrightarrow a_1$.

Subcase 1.1: Suppose $[a_1, z_1] \longrightarrow b_1$. By Lemma 1.2. $z_1b_1 \notin E(G)$. Since $D \neq \emptyset$ and B_1 is complete, $z_1 \in V(H_2) - B_1$. Thus a_1 dominates $V(H_1) \cup \{u_1\}$.

Subcase 1.1.1: Suppose $z_1 \in (B_2 \cup B_3) - B_1$.

Without loss of generality, we may assume that $z_1 \in B_2 - B_1$. Then z_1 dominates $V(H_2) - \{b_1\}$. Since u_2 is not adjacent to any vertex of D, G[D] is complete. To see this, just suppose that |V(D)| > 1 and suppose that x_1 and x_2 are two non-adjacent vertices in D. Then $G[z_1; u_2, x_1, x_2]$ is a claw centered at z_1 . Furthermore, since $z_1b_1 \notin E(G)$, it follows that $z_1u_1 \notin E(G)$ by Claim 1. Similarly, $u_2b_1 \notin E(G)$. Figure 3.1 depicts our present situation.

Figure 3.1

Since $[a_1, z_1] \longrightarrow b_1$ either $z_1u_3 \in E(G)$ or $a_1u_3 \in E(G)$.

Suppose first that $z_1u_3 \in E(G)$. Then there is a vertex $v \in A_2 \cup A_3$ such that u_1 is at adjacent to v, for otherwise $\{u_1, z_1\}$ dominates G, a contradiction.

Now consider $G + u_1 z_1$. There must be a vertex z_2 of $G - \{u_1, z_1\}$ such that either $[a_1, a_2] \longrightarrow [a_1, a_2] \longrightarrow$

Hence $a_1u_3 \in E(G)$.

Now consider $G + b_1u_2$. There must be a vertex z_3 of $G - \{b_1, u_2\}$ such that either $[a_1, z_3] \longrightarrow u_2$ or $[u_2, z_3] \longrightarrow b_1$. Suppose first that $[b_1, z_3] \longrightarrow u_2$. Since $b_1z_1 \notin E(G)$ and $f(H_1) \neq \emptyset$, $z_3 \in \{u_1, u_3\}$. But this is impossible since $z_1u_1 \notin E(G)$ and $z_1u_3 \notin E(G)$. Thus $\{b_1, z_3\}$ does not dominate $G - \{u_2\}$.

Hence $[u_2, z_3] \longrightarrow b_1$. By Lemma 1.2, $z_3b_1 \notin E(G)$. Since $D \neq \emptyset$, $z_3 \in V(H_2) - B_1$, since B_1 is complete. But then u_2 must dominate $V(H_1) \cup \{u_1\}$. Suppose there is a vertex $z \in V(H_1)$ such that u_1 is not adjacent to x. Then $G[u_2; u_1, x, z_1]$ is a claw centered at u_2 , a contradiction. Hence u_1 also dominates $V(H_1)$.

Next we will show that $u_2u_3 \notin E(G)$. Suppose, to the contrary, that $u_2u_3 \in E(G)$. By an argument similar to the one immediately above, u_3 dominates $V(H_1)$, for otherwise G contains a claw centered at u_2 . But then $u_1u_3 \in E(G)$, for otherwise $G[u_2; u_1, u_3, z_1]$ is a claw centered at u_2 . Consequently, $\{u_1, z_1\}$ dominates G, a contradiction. Hence $u_2u_3 \notin E(G)$.

Since $[u_2, z_3] \longrightarrow b_1$, $z_3u_3 \in E(G)$. Because $z_1u_3 \notin E(G)$, $z_3 \neq z_1$. Now choose $a_3 \in A_3$. Since u_2 dominates $V(H_1) \cup \{u_1\}$, $G[V(H_1)]$ is complete by Claim 1. Thus a_3 dominates every vertex of $V(H_1) \cup \{u_1, u_2, u_3\}$. Consider now $G + a_3z_1$. There must be a vertex z_4 of $G - \{a_3, z_1\}$ such that either $[a_3, z_4] \longrightarrow z_1$ or $[z_1, z_4] \longrightarrow a_3$. Suppose $[a_3, z_4] \longrightarrow z_1$. By Lemma 1.2, $z_4z_1 \notin E(G)$. Since z_1 dominates $V(H_2) - \{b_1\}$, $z_4 \notin V(H_2) - \{b_1\}$. But $D \neq \emptyset$, so $z_4 = b_1$. This is impossible since $b_1z_3 \notin E(G)$ and $a_3z_3 \notin E(G)$. Thus $\{a_3, z_4\}$ does not dominate $G - \{z_1\}$. Hence $[z_1, z_4] \longrightarrow a_3$. By Lemma 1.2, $z_4a_3 \notin E(G)$. Since $V(H_1) - \{a_3\} \neq \emptyset$ (recall that $|V(H_1)| \geq 3$), $z_4 \in V(H_1) - \{a_3\} \cup \{u_1, u_2, u_3\}$. But this is impossible since a_3 dominates $V(H_1) \cup \{u_1, u_2, u_3\}$. This proves that Subcase 1.1.1 cannot occur.

Subcase 1.1.2: Suppose $z_1 \in D$.

Recall first that $[a_1, z_1] \to b_1$. Since $z_1 \in D$, z_1 is adjacent to every vertex of $V(H_2) - \{b_1\}$ and a_1 dominates $V(H_1) \cup \{u_1, u_2, u_3\}$. Consider $G + a_1 z_1$. There must be a vertex z_2 of $G - \{a_1, z_1\}$ such that either $[z_1, z_2] \to a_1$ or $[a_1, z_2] \to z_1$. Suppose first that $[z_1, z_2] \to a_1$. By Lemma 1.2, $z_2 a_1 \notin E(G)$. Since $z_1 \in D$ and $V(H_1) - \{a_1\} \neq \emptyset$, $z_2 \in (V(H_1) \cup \{u_1, u_2, u_3\}) - \{a_1\}$. But this is impossible since a_1 dominates $V(H_1) \cup \{u_1, u_2, u_3\}$. Thus $\{z_1, z_2\}$ does not dominate $G - \{a_1\}$. Hence $[a_1, z_2] \to z_1$. By Lemma 1.2, $z_2 z_1 \notin E(G)$. Since z_1 is adjacent to every vertex of $H_2 - \{b_1\}$ and $V(H_2) - \{z_1\} \neq \emptyset$, $z_2 = b_1$ or $z_2 \in \{u_1, u_2, u_3\}$. Suppose $z_2 \in \{u_1, u_2, u_3\}$. Then $D = \{z_1\}$ and $G[V(H_2) - D]$ must be complete by Claim 1. But then $\{a_1, b_2\}$ dominates G, where b_2 is any vertex in B_2 different from b_1 , since $G[V(H_2) - D]$ is complete and $b_2 z_1 \in E(G)$, a contradiction.

ence $z_2 = b_1$. That is, $[a_1, b_1] \longrightarrow z_1$. Thus b_1 is adjacent to every vertex of $H_2 - \{b_1, z_1\}$. or i = 2, 3, if $b_1 u_i \notin E(G)$, then $G[b_i; b_1, u_i, z_1]$ is a claw centered at b_i where $b_i \in B_i$, a ontradiction. Hence $b_1 u_i \in E(G)$ for i = 2, 3. Furthermore, since $b_1 \in B_1$, $b_1 u_i \in E(G)$, if i = 1, 2, 3. Figure 3.2 now depicts our situation.

Figure 3.2

Choose $x \in V(H_1) - \{a_1\}$ and consider $G + xb_1$. There must be a vertex z_3 of $G - \{x, b_1\}$ uch that either $[x, z_3] \longrightarrow b_1$ or $[b_1, z_3] \longrightarrow x$. Suppose that $[b_1, z_3] \longrightarrow x$. Since $b_1z_1 \notin \mathcal{E}(G)$, $z_3z_1 \in E(G)$. But because $V(H_1) - \{x\} \neq \emptyset$, z_3 must dominate $H_1 - \{x\}$ as well. But this is clearly impossible. Thus $\{b_1, z_3\}$ does not dominate $G - \{x\}$. So $[x, z_3] \longrightarrow b_1$. By Lemma 1.2, $z_3b_1 \notin E(G)$. Since b_1 dominates $(V(H_2) - \{z_1\}) \cup \{u_1, u_2, u_3\}$, $z_3 = z_1$. Then x dominates $V(H_1) \cup \{u_1, u_2, u_3\}$. But x is an arbitrary member of $V(H_1) - \{a_1\}$ and also a_1 is adjacent to all vertices of $V(H_1) \cup \{u_1, u_2, u_3\}$. Consequently, $G[V(H_1)]$ is complete and every vertex of H_1 is adjacent to every vertex of $\{u_1, u_2, u_3\}$. Note that $G[\{u_1, u_2, u_3\}]$ must contain an edge, for otherwise any vertex of H_1 becomes the center of a claw in G. In fact, $G[\{u_1, u_2, u_3\}]$ contains exactly one edge; otherwise G is dominated by z_1 and one of the u_i , for $1 \leq i \leq 3$. Then there exist vertices u_i and u_j for some i, j, $1 \leq i < j \leq 3$ such that $u_iu_j \notin E(G)$. This implies that z_1 is the only vertex of D as otherwise b_1 is a claw center in G.

Without loss of generality, we may suppose that $u_1u_2 \in E(G)$. Then $u_1u_3 \notin E(G)$ and $u_2u_3 \notin E(G)$. Thus no vertex of $B_2 - \{b_1\}$ can be adjacent to u_3 , otherwise $G[b_2; u_2, u_3, z_1]$ is a claw centered at b_2 for every vertex $b_2 \in B_2 - \{b_1\}$. Similarly, each vertex of $B_3 - \{b_1\}$ is not adjacent to u_2 . Note that u_4 dominates $V(H_1) \cup B_1 \cup \{u_2\}$.

Now first suppose that $B_3 = \{b_1\}$. Recall that $[a_1, b_1] \longrightarrow z_1$, so b_1 is adjacent to every vertex of $B_1 \cup B_2 \cup B_3$. If any two vertices of $B_1 \cup B_2$ are non-adjacent, we obtain a claw at b_1 , a contradiction. Hence $G[B_1 \cup B_2 \cup B_3]$ is complete. But then choose any $b_2 \neq b_1, b_2 \in B_1 \cup B_2$ and see that b_2 , together with any vertex in H_1 , dominates G, again a contradiction. So $B_3 - \{b_1\} \neq \emptyset$. So choose a vertex $b_3 \in B_3 - \{b_1\}$. If $G[B_2 \cup B_3]$ is complete, then $\{u_1, b_3\}$ dominates G, since b_3 dominates $B_2 \cup B_3 \cup \{u_3, z_1\}$ and u_1 dominates $H_1 \cup \{u_2\}$. This contradiction implies that $G[B_2 \cup B_3]$ is not complete. This, in turn, implies that there are vertices $w \in B_2 - B_3$ and $y \in B_3 - B_2$ such that $wy \notin E(G)$, since both $G[B_2]$ and $G[B_3]$ are complete.

Now consider $G + wu_3$. There must be a vertex z_4 of $G - \{w, u_3\}$ such that either $[u_3, z_4] \longrightarrow w$ or $[w, z_4] \longrightarrow u_3$. Suppose first that $[u_3, z_4] \longrightarrow w$. By Lemma 1.2, $z_4w \notin E(G)$. Since u_3 is not adjacent to any vertex of $\{u_1, u_2, z_1\}$, it follows that $z_4 \in (B_1 \cap B_2) - \{w\}$. But this is impossible since $\{z_4, w\} \subseteq B_2$ and $G[B_2]$ is complete. Thus $\{u_3, z_4\}$ does not dominate $G - \{w\}$. Hence $[w, z_4] \longrightarrow u_3$. By Lemma 1.2, $z_4u_3 \notin E(G)$.

| call that each vertex of $V(H_1)$ is adjacent to every vertex of $\{u_1, u_2, u_3\}$. Thus $z_4 \notin H_1$. But then $z_4 \in \{u_1, u_2\}$ since $V(H_1) \neq \emptyset$. Since $wy \notin E(G)$ and $yu_2 \notin E(G)$, this uplies that $z_4 = u_1$ and then $u_1y \in E(G)$. Hence $G[y; u_1, u_3, z_1]$ is a claw centered at y. his contradiction completes the proof of Subcase 1.1.2 and hence also Subcase 1.1.

Subcase 1.2: So $[b_1, z_1] \longrightarrow a_1$.

By Lemma 1.2, $a_1z_1 \notin E(G)$. Then $z_1 \notin A_1 \cup \{u_1\}$. Since $V(H_1) - \{a_1\} \neq \emptyset$, $f \in A_2 \cup A_3$ or $f \in \{u_2, u_3\}$. We distinguish two cases.

Subcase 1.2.1 Suppose $z_1 \in A_2 \cup A_3$. Without loss of generality we may assume that $1 \in A_2$. Since $[b_1, z_1] \longrightarrow a_1$ and $b_1 \in V(H_2)$, z_1 dominates $H_1 - \{a_1\}$ and b_1 dominates I_2 . Since $a_1z_1 \notin E(G)$, $u_1z_1 \notin E(G)$ by Claim 1. Similarly, $a_1u_2 \notin E(G)$.

Now consider $G + u_1 z_1$. There must be a vertex z_2 of $G - \{u_1, z_1\}$ such that either $z_1, z_2] \longrightarrow u_1$ or $[u_1, z_2] \longrightarrow z_1$. Suppose first that $[z_1, z_2] \longrightarrow u_1$. By Lemma 1.2, $z_1 \notin E(G)$. Since $z_1 a_1 \notin E(G)$ and $D \neq \emptyset$, z_2 must be adjacent to a_1 and every vertex of D. But this is impossible since $D \cap N(u_i) = \emptyset$, for $1 \leq i \leq 3$. Then $\{z_1, z_2\}$ does not dominate $G - \{u_1\}$. Hence $[u_1, z_2] \longrightarrow z_1$. By Lemma 1.2, $z_1 z_2 \notin E(G)$. Since $D \neq \emptyset$, it follows that $z_2 \in V(H_2)$. This implies that u_1 dominates $V(H_1) - \{z_1\}$ and then $G[V(H_1) - \{z_1\}]$ is complete because of Claim 1. Thus $G[V(H_1)] = K_t - a_1 z_1$, where $z_1 \in V(H_1)$, since z_1 is adjacent to every vertex of $V(H_1) - \{a_1\}$. (See Figure 3.3.)

Figure 3.3

Now choose $a_2 \in V(H_1) - \{a_1, z_1\}$. Consider $G + a_2b_1$. Then there is a vertex z_3 of $G - \{a_2, b_1\}$ such that either $[a_2, z_3] \longrightarrow b_1$ or $[b_1, z_3] \longrightarrow a_2$. Suppose that $[a_2, z_3] \longrightarrow b_1$. By Lemma 1.2, $z_3b_1 \notin E(G)$. Then $z_3 \notin V(H_2)$ since b_1 dominates $V(H_2)$. Because $D \neq \emptyset$, $z_3 \in V(H_2) - \{b_1\}$. This contradiction proves that $\{a_2, z_3\}$ does not dominate $G - \{b_1\}$. Hence it must be the case that $[b_1, z_3] \longrightarrow a_2$. By Lemma 1.2, $z_3a_2 \notin E(G)$. Since $G[V(H_1)] = K_t - a_1z_1$ and u_1 dominates $H_1 - \{a_1\}$, it follows that $z_3 \notin V(H_1) \cup \{u_1\}$. Since $V(H_1) - \{a_2\} \neq \emptyset$ and $b_1 \in V(H_2)$, it follows that $z_3 \in \{u_2, u_3\}$. But $z_3 \neq u_2$ since $u_2a_1 \notin E(G)$ and $b_1a_1 \notin E(G)$. Hence $z_3 = u_3$. Then $u_3a_1 \in E(G)$ and $u_3z_1 \in E(G)$. This contradicts Claim 1 since $a_1z_1 \notin E(G)$. But then it is false that $[b_1, z_3] \longrightarrow a_2$. Hence Subcase 1.2.1 cannot occur.

Subcase 1.2.2: So $z_1 \in \{u_2, u_3\}$.

Without loss of generality, we may assume that $z_1 = u_2$. That is, $[b_1, u_2] \longrightarrow a_1$. By Lemma 1.2, $u_2a_1 \notin E(G)$, u_2 dominates $H_1 - \{a_1\}$ and b_1 dominates $(B_1 \cup B_3 \cup D) - B_2$. By Claim 1, $H_1 - \{a_1\}$ is complete. Choose $a_3 \in V(H_1) - \{a_1\}$. Then $a_3 \in A_2$ since u_2

minates $H_1 - \{a_1\}$. Now consider $G + a_3b_1$. There must be a vertex z_2 of $G - \{a_3, b_1\}$ that either $[a_3, z_2] \longrightarrow b_1$ or $[b_1, z_2] \longrightarrow a_3$.

Subcase 1.2.2.1: Suppose $[a_3, z_2] \longrightarrow b_1$. By Lemma 1.2, $z_2b_1 \notin E(G)$. Since b_1 minates $(B_1 \cup B_3 \cup D) - B_2$ and $D \neq \emptyset$, $z_2 \in B_2$ and $z_2b_1 \notin E(G)$. Furthermore, dominates $H_2 - \{b_1\}$. By Claim 1, $b_1u_2 \notin E(G)$ and $u_1z_2 \notin E(G)$. Recall that $a_1 \notin E(G)$. Since $u_2b_1 \notin E(G)$, $u_1u_2 \notin E(G)$; otherwise, $G[u_1; u_2, b_1, a_1]$ is a claw intered at u_1 .

Now consider $G + u_1 z_2$. There must be a vertex z_3 of $G - \{u_1, z_2\}$ such that either $[u_1, z_3] \longrightarrow z_2$ or $[z_2, z_3] \longrightarrow u_1$. Suppose first that $[u_1, z_3] \longrightarrow z_2$. By Lemma 1.2, $[u_1, u_2] \notin E(G)$. Since $[u_2, u_3] \notin E(G)$ and $[u_1, u_2] \notin E(G)$. Thus $[u_1, u_3] \notin E(G)$ and define $[u_1, u_2] \notin E(G)$ and $[u_1, u_2] \notin E(G)$. Then $[u_1, u_3] \notin E(G)$ and define $[u_1, u_2] \notin E(G)$. Since $[u_2, u_3] \mapsto [u_1, u_3] \notin E(G)$. Because $[u_1, u_3] \notin E(G)$. Then $[u_1, u_3] \notin E(G)$ it follows that $[u_2, u_3] \notin E(G)$. Since $[u_2, u_3] \notin E(G)$ is a claw centered at $[u_1, u_3] \notin E(G)$. Since $[u_2, u_3] \notin E(G)$ is a claw centered at $[u_1, u_3] \notin E(G)$. This contradiction completes the groof of Subcase 1.2.2.1.

Subcase 1.2.2.2: So suppose that $[b_1, z_2] \longrightarrow a_3$. By Lemma 1.2, $z_2a_3 \notin E(G)$. Then, since $H_1 - \{a_1\}$ is complete, $z_2 \notin (V(H_1) - \{a_1\}) \cup \{u_2\}$. Since $V(H_1) - \{a_3\} \neq \emptyset$,

 $z_2 \in \{a_1, u_1, u_3\}.$

Suppose $z_2=a_1$. That is, $[b_1,a_1] \longrightarrow a_3$. Then a_1 dominates $H_1-\{a_3\}$ and b_1 dominates H_2 . Recall that $u_2a_1 \notin E(G)$. Therefore, $b_1u_2 \in E(G)$. Since $H_1-\{a_1\}$ is complete, $G[V(H_1)]=K_t-a_1a_3$, where $t=|V(H_1)|$. Since $|V(H_1)| \geq 3$, there is a vertex $y \in V(H_1)-\{a_1,a_3\}$. Clearly y dominates H_1 . If $b_1u_3 \in E(G)$ or if $yu_3 \in E(G)$, then $\{b_1,y\}$ dominates G, a contradiction. Hence $b_1u_3 \notin E(G)$ and $yu_3 \notin E(G)$ for every choice of $y \in V(H_1)-\{a_1,a_3\}$. Since $[b_1,a_1] \longrightarrow a_3$ and $b_1u_3 \notin E(G)$, $a_1u_3 \in E(G)$. Because of Claim $1, a_3u_3 \notin E(G)$. Recall that $[b_1,u_2] \longrightarrow a_1$. Since $b_1u_3 \notin E(G)$, $u_2u_3 \in E(G)$. But then $G[u_2;u_3,a_3,b_1]$ is a claw, a contradiction. Hence $z_2 \neq a_1$.

Next we suppose that $z_2=u_1$. That is, $[b_1,u_1] \longrightarrow a_3$. Then b_1 dominates $(B_2 \cup B_3 \cup D) - B_1$. Since $b_1 \in B_1$ and $G[B_1]$ is complete, b_1 also dominates B_1 . Thus now b_1 dominates H_2 . Since $[b_1,u_1] \longrightarrow a_3$, it follows that u_1 dominates $H_1 - \{a_3\}$. By Claim 1, $H_1 - \{a_3\}$ is complete. Since $H_1 - \{a_1\}$ is complete, we have $G[V(H_1)] = K_t$ or $K_t - a_1 a_3$ where $t = |V(H_1)|$. By a similar argument, there is a vertex y of $H_1 - \{a_1, a_3\}$ such that y dominates H_1 . Furthermore, $y \in A_1 \cap A_2$ since $[b_1, u_1] \longrightarrow a_3$ and $[b_1, u_2] \longrightarrow a_1$. If $yu_3 \in E(G)$ or $b_1u_3 \in E(G)$, then $\{y, b_1\}$ dominates G, a contradiction. Hence $yu_3 \notin E(G)$ and $b_1u_3 \notin E(G)$. Since $[b_1, u_1] \longrightarrow a_3$ and $b_1u_3 \notin E(G)$, $u_1u_3 \in E(G)$. But then

 $G[u_1; u_3, y, b_1]$ is a claw centered at u_1 , a contradiction. Hence $z_2 \neq u_1$.

Thus $z_2 = u_3$. That is, $[b_1, u_3] \longrightarrow a_3$. Then u_3 dominates $H_1 - \{a_3\}$. By an argument similar to that above, we have $G[V(H_1)] = K_t$ or $K_t - a_1a_3$, where $t = |V(H_1)|$ and there is a vertex y of $H_1 - \{a_1, a_3\}$ such that y dominates H_1 . Since $[b_1, u_3] \longrightarrow a_3$ and $[b_1, u_2] \longrightarrow a_1, y \in A_2 \cap A_3$. Furthermore, b_1 dominates $V(H_2) - (B_2 \cap B_3)$. If b_1 dominates H_2 , then $\{y, b_1\}$ dominates G, a contradiction. Hence there is a vertex $w \in B_2 \cap B_3$ such that $b_1w \notin E(G)$. Because of Claim 1, $u_1w \notin E(G)$, $b_1u_2 \notin E(G)$ and $b_1u_3 \notin E(G)$. Consequently, $u_1u_2 \notin E(G)$.

Now consider $G + u_1w$. There must be a vertex z_3 such that either $[u_1, z_3] \to w$ $[w, z_3] \to u_1$. Suppose first that $[u_1, z_3] \to w$. By Lemma 1.2, $z_3w \notin E(G)$. Then $g \notin B_2 \cup B_3 \cup \{u_2, u_3\}$. Since $u_1u_2 \notin E(G)$, $z_3u_2 \in E(G)$. Thus $z_3 \in B_2 \cup \{u_2\}$, contradiction. So it must be the case that $[w, z_3] \to u_1$. Since $wb_1 \notin E(G)$ and $[H_1] \neq \emptyset$, $z_3 \in \{u_2, u_3\}$. But this is also impossible since $b_1u_2 \notin E(G)$ and $b_1u_3 \notin E(G)$. This contradiction completes the proof in Subcase 1.2.2.2 and hence Case 1 is settled.

Case 2: So suppose now that $D = \emptyset$.

Choose $a_1 \in A_1$ and $b_1 + B_1$ and consider $G = a_1b_1$. There must be a vertex $z_1 \in \mathcal{G} - \{a_1, b_1\}$ such that either $[a_1, z_1] + [b_1]$ or $[b_1, z_1] \longrightarrow [a_1]$. Without loss of generality, uppose $[a_1, z_1] \longrightarrow [b_1]$. By Lemma 1.2. $z_1b_1 \notin E(G)$. So $z_1 \in (V(H_2) \cup \{u_2, u_3\}) - B_1$, since B_1 is complete and $V(H_2) = \{b_1\} \neq \emptyset$

Subcase 2.1: Suppose $z_1 \in V(H_2) \cap B_1$. Then a_1 dominates $V(H_1)$. Since $D = \emptyset$, without loss of generality we may assume that z_1 is adjacent to u_2 . Then z_1 dominates $H_2 = \{b_1\}$. By Claim 1, $u_2b_1 \notin F(G)$ and $z_1u_1 \notin E(G)$. (See Figure 3.4.)

Figure 3.4

Consider $G = a_1 z_1$. There must be a vertex z_2 in $G = \{a_1, z_1\}$ such that either $[a_1, z_2] \longrightarrow z_1$ or $[z_1, z_2] \longrightarrow a_1$

Subcase 2.1.1: Suppose $z_1, z_2 \to a_1$. By Lemma 1.2, $z_2a_1 \notin E(G)$. But then $z_2 \notin V(H_1) \cup \{u_1\}$. Furthermore, $z_2 \neq u_2$ since $z_1b_1 \notin E(G)$ and $u_2b_1 \notin E(G)$. Hence $z_2 = u_3$. Hence u_3 dominates $(V(H_1) \cup \{a_1\}) \cup \{u_1, b_1\}$. So H_1 must be complete since a_1 is adjacent to all vertices of $V(H_1) \cup \{a_1\}$ and because of Claim 1.

If u_1 dominates $V(H_1)$, then $\{u_1, z_1\}$ dominates G, a contradiction. So there exists a vertex $a_2 \in V(H_1) = \{a_1\}$ such that a_2 is not adjacent to u_1 . Hence u_3 is not adjacent to z_1 by claw freedom. (See now Figure 3.5.)

Now choose $a_3 \in V(H_1) - \{a_1, a_2\}$ and consider $G + b_1 a_3$. There must be a vertex $a_3 \in G - \{b_1, a_3\}$ such that either $[b_1, a_3] \longrightarrow a_3$ or $[a_3, a_3] \longrightarrow b_1$.

Subcase 2.1.1.1: Suppose $[b_1, z_3] \longrightarrow a_3$. By Lemma 1.2, z_3 is not adjacent to a_3 and hence $z_3 \in \{u_1, u_2\}$. But $z_3 \neq u_1$, since $u_1 a_2 \notin E(G)$ and $b_1 a_2 \notin E(G)$, so $z_3 = u_2$.

Then u_2 dominates $V(H_1) - \{a_3\}$. If $u_1u_2 \in E(G)$, then $G[u_2; u_1, a_2, z_1]$ is a claw entered at u_2 , a contradiction. Hence $u_1u_2 \notin E(G)$.

Now consider $G + u_1u_2$. There must be a vertex z_4 in $G - \{u_1, u_2\}$ such that either $u_1, z_4] \longrightarrow u_2$ or $[u_2, z_4] \longrightarrow u_1$. Suppose first that $[u_1, z_4] \longrightarrow u_2$. Since $u_1a_2 \notin E(G)$ and $u_1z_1 \notin E(G)$, it follows that $z_4 = u_3$. But this is impossible since $u_3z_1 \notin E(G)$. Thus u_1, z_4 does not dominate $G - \{u_2\}$. Hence $[u_2, z_4] \longrightarrow u_1$. By Lemma 1.2, $z_4u_1 \notin E(G)$. Since $u_1u_3 \in E(G)$, $z_4 \neq u_3$. Because $u_2a_3 \notin E(G)$ and $u_2b_1 \notin E(G)$, $z_4 = u_3$, a contradiction. This completes the proof in Subcase 2.1.1.1.

Subcase 2.1.1.2: So $[a_3, z_3] \longrightarrow b_1$. By Lemma 1.2, $z_3b_1 \notin E(G)$ and hence $z_3 \notin B_1 \cup \{u_1, u_3\}$. But then $z_3 = u_2$ or $z_3 \in V(H_2) - B_1$.

Subcase 2.1.1.2.1: Suppose $z_3 = u_2$. Then u_2 dominates $V(H_2) - \{b_1\}$. Hence $G[V(H_2) - \{b_1\}]$ is complete by Claim 1. If $u_2a_1 \in E(G)$, then $\{u_2, u_3\}$ dominates G, a contradiction. Hence u_2 is not adjacent to a_1 . Choose $b_2 \in V(H_2) - \{b_1\}$ such that $b_2b_1 \in E(G)$. So $b_2 \neq z_1$. Consider $G + a_3b_2$. There is a vertex z_4 in $G - \{a_3, b_2\}$ such that either $[a_3, z_4] \longrightarrow b_2$ or $[b_2, z_4] \longrightarrow a_3$.

Subcase 2.1.1.2.1.1: Suppose $[a_3, z_4] \longrightarrow b_2$. So $z_4 \notin V(H_2) \cup \{u_2\}$ by Lemma 1.2. So $z_4 \in \{u_1, u_3\}$. But this is impossible because u_1 is not adjacent to z_1 and u_3 is not adjacent to z_1 .

Subcase 2.1.1.2.1.2: So $[b_2, z_4] \longrightarrow a_3$. By Lemma 1.2, $z_4 \notin V(H_1)$, since H_1 is complete. So $z_4 \in \{u_1, u_2, u_3\}$. But $z_4 \neq u_1$ because u_1 is not adjacent to a_2 . Moreover, $z_4 \neq u_2$ or u_3 either, because u_2 is not adjacent to a_1 and a_2 is not adjacent to a_1 . So we have a contradiction.

Subcase 2.1.1.2.2: So suppose $z_3 \in V(H_2) - B_1$. Then u_1 is not adjacent to z_3 by Claim 1 and the fact that $z_3b_1 \notin E(G)$. Therefore, $a_3u_1 \in E(G)$, since $[a_3, z_3] \longrightarrow b_1$. Recall that u_3 dominates $(V(H_1) - \{a_1\}) \cup \{u_1, b_1\}$. Now a_3 dominates $V(H_1) \cup \{u_1, u_3\}$.

We claim that $B_1 \subseteq B_3$. Suppose not. Choose $y \in B_1 - B_3$. Then we have a claw $G[u_1; u_3, y, a_1]$, a contradiction. Similarly, we claim that $B_3 \subseteq B_1$. Suppose not. Choose $y \in B_3 - B_1$. Then $G[u_3; u_1, y, a_2]$ is a claw and again we have a contradiction.

Thus $B_1 = B_3$.

Next we claim that $B_1 \cap B_2 = \emptyset$. Suppose not. Choose $y \in B_1 \cap B_2$. Then y is adjacent to u_1, u_2 and u_3 . Furthermore, y dominates $B_1 \cup B_2 = V(H_2)$. Thus $\{y, a_3\}$ dominates G, a contradiction. Hence $B_1 \cap B_2 = \emptyset$. Figure 3.6 illustrates the present situation.

Now consider $G + b_1u_2$. There must be a vertex z_5 in $G - \{b_1, u_2\}$ such that either $[b_1, z_5] \longrightarrow u_2$ or $[u_2, z_5] \longrightarrow b_1$. Suppose first that $[b_1, z_5] \longrightarrow u_2$. Then, by Lemma 1.2, $z_5u_2 \notin E(G)$ and so $z_5 \notin B_2$. So $z_5 \in V(H_1) \cup \{u_1, u_3\}$. But then it is false that $[b_1, z_5] \longrightarrow u_2$, since neither b_1 nor z_5 is adjacent to z_1 .

So we may suppose that $[u_2, z_5] \longrightarrow b_1$. Then by Lemma 1.2, $z_5b_1 \notin E(G)$. Therefore, $z_5 \notin B_1 \cup \{u_1, u_3\}$. Since $B_1 \cap B_2 = \emptyset$, y is not adjacent to u_2 , for all $y \in B_1$. If $|B_1| \ge 2$, then $z_5 \in B_2$. But then u_2 dominates $V(H_1)$ and hence $\{u_2, b_1\}$ dominates G, a contradiction. Hence $|B_1| = 1$. Since H_2 is connected, there is a vertex $b_2 \in B_2$ such that $b_1b_2 \in E(G)$. Because B_2 is complete, vertex b_2 dominates $V(H_2) \cup \{u_2\}$. Thus $\{a_3, b_2\}$ dominates G since G since G dominates G since G dominates G subcase 2.1.1.2.2 and hence also Subcase 2.1.1.

Subcase 2.1.2: Suppose $[a_1.z_2] \longrightarrow z_1$. Then, by Lemma 1.2, $z_2z_1 \notin E(G)$ and so $z_2 \notin (V(H_2) - \{b_1\}) \cup \{u_2\}$. Hence $z_2 \in \{u_1, u_3, b_1\}$.

Subcase 2.1.2.1: Suppose $z_2 = u_1$. That is, $[a_1, u_1] \longrightarrow z_1$. Hence u_1 dominates $V(H_2) - \{z_1\}$. But then by Claim 1, $G[V(H_2) - \{z_1\}]$ is complete. Recall that z_1 dominates $V(H_2) - \{b_1\}$. Hence $G[V(H_2)] = K_t - b_1 z_1$, where $t = |V(H_2)|$.

If $a_1u_2 \notin E(G)$, then $u_1u_2 \in E(G)$ since $[a_1, u_1] \longrightarrow z_1$. But then $G[u_1; a_1, u_2, b_1]$ is a claw centered at u_1 , a contradiction. Hence $a_1u_2 \in E(G)$.

Now if $a_1u_3 \in E(G)$, then $\{a_1, y_1\}$ dominates G for any choice of $y_1 \in V(H_2) - \{b_1, z_1\}$, a contradiction. Thus $a_1u_3 \notin E(G)$. But then, because $[a_1, u_1] \longrightarrow z_1$, $u_1u_3 \in E(G)$. Moreover, because of claw freedom at u_1 , u_3 is adjacent to every $y \in V(H_2) - \{z_1\}$. This implies that $\{a_1, y_1\}$ dominates G for every choice of $y_1 \in V(H_2) - \{b_1, z_1\}$, a contradiction. Hence $z_2 \neq u_1$.

Subcase 2.1.2.2: Suppose $z_2 = u_3$. That is, $[a_1, u_3] \longrightarrow z_1$. Then, by Lemma 1.2, $u_3z_1 \notin E(G)$ and u_3 dominates $V(H_2) - \{z_1\}$. So $G[V(H_2) - \{z_1\}]$ is complete because of Claim 1. Recall that z_1 dominates $V(H_2) - \{b_1\}$. Thus $G[V(H_2)] = K_t - b_1z_1$, where $t = |V(H_2)|$. If $a_1u_2 \in E(G)$, then $\{a_1, y_2\}$ dominates G for any choice of $y_2 \in V(H_2) - \{b_1, z_1\}$, a contradiction. So $a_1u_2 \notin E(G)$. But then $u_3u_2 \in E(G)$ since $[a_1, u_3] \longrightarrow z_1$. By claw freedom at u_3 , a_1 is not adjacent to u_3 . But this contradicts our assumption that $[a_1, z_1] \longrightarrow b_1$. Hence $z_2 \neq u_3$.

Subcase 2.1.2.3: Suppose $z_2 = b_1$. That is, $[a_1, b_1] \longrightarrow z_1$. Then b_1 dominates $V(H_2) - \{z_1\}$. Since $b_1u_2 \notin E(G)$, a_1 is adjacent to u_2 . (See now Figure 3.7.)

Figure 3.7

Consider $G + u_1 z_1$. There must be a vertex z_3 in $G - \{u_1, z_1\}$ such that either $[u_1, z_3] \longrightarrow z_1$ or $[z_1, z_3] \longrightarrow u_1$.

Subcase 2.1.2.3.1: Suppose $[u_1, z_3] \longrightarrow z_1$. Hence by Lemma 1.2, $z_3 z_1 \notin E(G)$. Thus $z_3 \notin (V(H_2) - \{b_1\}) \cup \{u_2\}$. But then $z_3 \in \{b_1, u_3\} \cup V(H_1)$.

Subcase 2.1.2.3.1.1: Suppose $z_3 = b_1$; that is, $[u_1, b_1] \longrightarrow z_1$. Then u_1 dominates $V(H_1) \cup \{u_2\}$. By Claim 1, $G[V(H_1)]$ is complete. If $u_1u_3 \in E(G)$, then $\{u_1, z_1\}$ dominates G, a contradiction. Hence u_1 is not adjacent to u_3 . Therefore, b_1 is adjacent to u_3 . Now since there is no claw at u_1 , u_2 dominates $V(H_1)$. Therefore $\{b_1, u_2\}$ dominates G, a contradiction.

Subcase 2.1.2.3.1.2: Next, suppose that $z_3 = u_3$. That is, $[u_1, u_3] \longrightarrow z_1$. By Lemma 1.2, u_3 is not adjacent to z_1 . But since $[a_1, z_1] \longrightarrow b_1$ and z_1 is not adjacent to u_3 , a_1 must be adjacent to u_3 .

We now claim that $G[V(H_1)]$ is complete. Suppose not. Say $xy \notin E(G)$ for some choice of x and y in $V(H_1)$. Then $\{x,y\} \cap \{a_1\} = \emptyset$. Consider G + xy. There must be a vertex z_4 of $G - \{x,y\}$ such that either $[x,z_4] \longrightarrow y$ or $[y,z_4] \longrightarrow x$. Without loss of generality, suppose $[x,z_4] \longrightarrow y$. Clearly, $z_4 \in \{u_1,u_2,u_3\} \cup V(H_2)$. But $z_4 \neq u_1$ because u_1 is not adjacent to z_1 , $z_4 \neq u_2$, since u_2 is not adjacent to b_1 , and $z_4 \neq u_3$, since u_3 is not adjacent to z_1 . Thus $z_4 \in V(H_2)$. But then z_4 dominates H_2 and hence $\{z_4,a_1\}$ dominates G, a contradiction. This completes the proof of the claim.

We now have the situation depicted in Figure 3.8.

Figure 3.8

Now since mindeg $G \geq 4$, $|V(H_2)| \geq 5$. Choose $x_1 \in V(H_2) - \{b_1, z_1\}$. Consider $G + a_1x_1$. There exists a vertex z_5 in $G - \{a_1, x_1\}$ such that either $[a_1, z_5] \longrightarrow x_1$ or $[x_1, z_5] \longrightarrow a_1$. Suppose $[x_1, z_5] \longrightarrow a_1$. Then, by Lemma 1.2, z_5 is not adjacent to a_1 and hence $z_5 \in V(H_2)$ which is impossible since $V(H_1) - \{a_1\} \neq \phi$. So we may assume that $[a_1, z_5] \longrightarrow x_1$. Therefore $z_5 \in \{u_1, u_2, u_3\} \cup (V(H_2) - \{x_1\})$. But $z_5 \neq u_1$, since u_1 is not adjacent to $z_1, z_5 \neq u_2$, since u_2 is not adjacent to $b_1, z_5 \neq u_3$, since u_3 is not adjacent to $z_1, z_5 \neq b_1$, since b_1 is not adjacent to z_1 , and $z_5 \neq z_1$, since z_1 is not adjacent to $z_5 \in V(H_2) - \{x_1, b_1, z_1\}$. Let $z_5 = y_1$. Then y_1 dominates $V(H_2) - \{x_1\}$.

Similarly, there is a vertex z_6 such that $[a_1, z_6] \longrightarrow y_1$ and by Lemma 1.2, z_6 is not adjacent to y_1 . So $z_6 = x_1$ and x_1 dominates $V(H_2) - \{y_1\}$. Continuing in this manner,

The can get a sequence of distinct vertices $x_1, y_1, x_2, y_2, \ldots$, such that $x_i y_i \notin E(G)$, for all i, but $x_i b_1 \in E(G)$, $x_i z_1 \in E(G)$, for all i, $x_i x_j \in E(G)$, for all $j \neq i$, $x_i y_j \in E(G)$, for all $j \neq i$, $y_i x_j \in E(G)$, for all $j \neq i$, $y_i y_j \in E(G)$, for all $j \neq i$, $y_j b_1 \in E(G)$ and $y_j z_1 \in E(G)$, for all j, But $|V(H_2)|$ is odd and this contradiction settles Case 2.1.2.3.1.2.

Subcase 2.1.2.3.1.3: So $z_3 \in V(H_1)$. So since $[u_1, z_3] \longrightarrow z_1$, vertex u_1 dominates $f(H_2) - \{z_1\}$. Hence $G[V(H_2)] = K_t + b_1 z_1$, where $t = |V(H_2)|$, because of Claim 1 and secause z_1 dominates $H_2 - \{b_1\}$. If there exists a vertex $y \in V(H_2) - \{b_1, z_1\}$ such that f is adjacent to u_3 , then $\{a_1, y\}$ dominates G, a contradiction. So $B_3 \subseteq \{b_1, z_1\}$. But $B_3 \neq \{b_1, z_1\}$ because of Claim 1. So $B_3 = \{b_1\}$ or $B_3 = \{z_1\}$.

Choose $c_1 \in V(H_2) - \{b_1, z_1\}$ and consider $G + a_1c_1$. There is a vertex $z_4 \in G - \{a_1, c_1\}$ such that either $[a_1, z_4] \longrightarrow c_1$ or $[c_1, z_4] \longrightarrow a_1$. Suppose first that $[a_1, z_4] \longrightarrow c_1$. By Lemma 1.2, z_4 is not adjacent to c_1 . Hence $z_4 \notin V(H_2)$ and therefore $z_4 \in \{u_1, u_2, u_3\}$. But $z_4 \neq u_1$ since u_1 is not adjacent to z_1 , $z_4 \neq u_2$ since u_2 is not adjacent to b_1 and $z_4 \neq u_3$ since either u_3 is not adjacent to z_1 or u_3 is not adjacent to b_1 . So we have a contradiction.

Hence $[c_1, z_4] \longrightarrow a_1$. By Lemma 1.2, z_4 is not adjacent to a_1 . So $z_4 \notin V(H_1) \cup \{u_1, u_2\}$. So $z_4 = u_3$ and so u_3 dominates $V(H_1) - \{a_1\}$. But then $G[V(H_1)]$ is complete because of Claim 1 and because a_1 is adjacent to x, for every $x \in V(H_1)$. Now recall that u_1 dominates $V(H_2) - \{z_1\}$. Thus u_1 is not adjacent to u_3 by claw freedom at u_1 .

We now claim that for all $y \in V(H_2) - \{b_1, z_1\}$, u_2 is not adjacent to y. Suppose not. That is, suppose there is a $y_1 \in V(H_2) - \{b_1, z_1\}$ such that $y_1u_2 \in E(G)$. Then $\{y_1, a_2\}$ dominates G for any $a_2 \in V(H_1) - \{a_4\}$, a contradiction. This proves the claim.

Since $u_2b_1 \notin E(G)$, $B_2 = \{z_1\}$. Now if u_2 is adjacent to a_2 for some $a_2 \in V(H_1) - \{a_1\}$, then $\{a_2, c_2\}$ dominates G for any choice of $c_2 \in V(H_2) - \{b_1, z_1\}$, a contradiction. So u_2 is adjacent to no vertex in $V(H_1) - \{a_1\}$. Therefore, since mindeg $G \geq 4$, u_2 must be adjacent to both u_1 and u_3 . Now if $B_3 = \{b_1\}$, we get a claw $G[u_2; u_1, u_3, z_1]$. Hence $B_3 = \{z_1\}$. But then $\{u_1, u_3\}$ dominates G, a contradiction. This completes the proof of Subcase 2.1.2.3.1.3, and hence also 2.1.2.3.1.

Subcase 2.1.2.3.2: So suppose $[z_1, z_3] \longrightarrow u_1$. Recall that $[a_1, z_1] \longrightarrow b_1$, $[a_1, b_1] \longrightarrow z_1$, $u_1z_1 \notin E(G)$ and $u_2b_1 \notin E(G)$. Since $z_1 \in V(H_2)$ and $z_1b_1 \notin E(G)$, vertex z_3 must dominate $H_1 \cup \{b_1\}$. So $z_3 = u_3$. Therefore, H_1 is complete by Claim 1. Note that u_3 is adjacent to a_1 and b_1 . Then u_3 is not adjacent to z_1 or we would have a claw at u_3 . So the situation is similar to that depicted in Figure 3.8 and an argument analogous to the one given there results in a contradiction.

So Subcase 2.1.2.3.2 is settled and hence also Subcase 2.1.

Subcase 2.2: Suppose $[a_1, z_1] \longrightarrow b_1$ and $z_1 \in \{u_2, u_3\}$. Without loss of generality, we may suppose that $z_1 = u_2$. That is, $[a_1, u_2] \longrightarrow b_1$. By Lemma 1.2, u_2 is not adjacent to b_1 and u_2 dominates $H_2 - \{b_1\}$. Hence $G[V(H_2) - \{b_1\}]$ is complete by Claim 1. Now choose $b_2 \in V(H_2) - \{b_1\}$ such that $b_1b_2 \in E(G)$. Consider $G + a_1b_2$. There must be a vertex $z_2 \in G - \{a_1, b_2\}$ such that either $[a_1, z_2] \longrightarrow b_2$ or $[b_2, z_2] \longrightarrow a_1$.

Subcase 2.2.1: Suppose $[a_1, z_2] \longrightarrow b_2$. By Lemma 1.2, z_2 is not adjacent to b_2 . Then $z_2 \notin V(H_2) \cup \{u_2\}$. So $z_2 \in \{u_1, u_3\}$.

Subcase 2.2.1.1: Suppose $z_2 = u_1$. That is, $[a_1, u_1] \longrightarrow b_2$. So a_1 dominates $'(H_1) - A_1$. Since $a_1 \in A_1$ and A_1 is complete, a_1 dominates $V(H_1)$. Also u_1 dominates $'(H_2) - \{b_2\}$, since $[a_1, u_1] \longrightarrow b_2$. So $G[V(H_2) - \{b_2\}]$ is complete by Claim 1. But since $'[V(H_2) - \{b_1\}]$ is also complete and since b_1 is adjacent to b_2 , it must be the case that A_2 is complete. In fact, $A_1 \cap A_2 = V(H_2) - \{b_1, b_2\}$. Then A_1 is not adjacent to A_2 , for therwise A_1, A_2 dominates A_2 , for any choice of $A_2 \in V(H_2) - \{b_1, b_2\}$, a contradiction. Now because $A_1, A_2 = A_2$, vertex A_2 is adjacent to A_3 .

We now claim that $B_3 = \{b_1\}$. Since $B_3 \neq \emptyset$ by Claim 1, so suppose there is a $i \in V(H_2) - \{b_1\}$ such that y is adjacent to u_3 . Then $\{a_1, y\}$ dominates G, a contradiction, and the claim is proved.

Choose $b_3 \in V(H_2) - \{b_1, b_2\}$. Then b_3 is adjacent to u_1 and u_1 is adjacent to both a_3 and a_1 , so we obtain a claw at u_1 , a contradiction and hence Subcase 2.2.1.1 is settled.

Subcase 2.2.1.2: So $z_2=u_3$. That is, $[a_1,u_3] \longrightarrow b_2$. Therefore, u_3 dominates $V(H_2)-\{b_2\}$; that is, $B_3=V(H_2)-\{b_2\}$. By an argument similar to that used in Subcase 2.2.1.1, $G[V(H_2)]$ is complete. Now if a_1 dominates $V(H_1)$, then $\{a_1,b_3\}$ dominates G, for any choice of $b_3 \in V(H_2)-\{b_1,b_2\}$, a contradiction. Hence a_1 does not dominate $V(H_1)$. But $[a_1,u_2] \longrightarrow b_1$ and $[a_1,u_3] \longrightarrow b_2$, so a_1 dominates $V(H_1)-(A_2 \cap A_3)$. Therefore, there exists a vertex $a_2 \in A_2 \cap A_3$ such that a_2 is not adjacent to a_1 . Now, by Claim 1, $a_1u_2 \notin E(G)$, $a_1u_3 \notin E(G)$ and $a_2u_1 \notin E(G)$. Thus $u_1u_2 \notin E(G)$ because of claw freedom at u_1 .

Consider $G + a_2b_1$. There is a vertex z_3 in $G - \{a_2, b_1\}$ such that either $[a_2, z_3] \longrightarrow b_1$ or $[b_1, z_3] \longrightarrow a_2$. Suppose $[a_2, z_3] \longrightarrow b_1$. By Lemma 1.2, z_3 is not adjacent to b_1 . Then $z_3 \notin V(H_2) \cup \{u_1, u_3\}$. But then $z_3 = u_2$. However, this is impossible since u_2 is not adjacent to a_1 and a_2 is not adjacent to a_1 . Hence $[b_1, z_3] \longrightarrow a_2$. By Lemma 1.2, z_3 is not adjacent to a_2 . But then $z_3 \notin \{u_2, u_3\} \cup A_2 \cup A_3$. But b_1 is not adjacent to u_2 , so a_3 must dominate a_3 . Because $a_4 \in V(H_1) - \{a_2\} \neq \emptyset$, $a_4 \in A_2 \cup \{u_2\}$, a contradiction. This settles Subcase 2.2.1.2 and hence Subcase 2.2.1.

Subcase 2.2.2: So $[b_2, z_2] \longrightarrow a_1$. By Lemma 1.2, $z_2a_1 \notin E(G)$. Then $z_2 \neq u_1$. Since $V(H_1) - \{a_1\} \neq \emptyset$, it follows that $z_2 \in \{u_2, u_3\} \cup (V(H_1) - \{a_1\})$.

Subcase 2.2.2.1: Suppose $z_2 = u_2$. That is, $[b_2, u_2] \longrightarrow a_1$. By Lemma 1.2, u_2 is not adjacent to a_1 . So u_2 dominates $V(H_1) - \{a_1\}$. Therefore, $G[V(H_1) - \{a_1\}]$ is complete by Claim 1. If $u_1u_3 \in E(G)$ or if $u_2u_3 \in E(G)$, then $\{u_1, u_2\}$ dominates G, a contradiction. So u_3 is adjacent to neither u_1 nor u_2 . But $[a_1, u_2] \longrightarrow b_1$ and u_2 is not adjacent to u_3 , so a_1 is adjacent to u_3 . Moreover, $[b_2, u_2] \longrightarrow a_1$ and u_2 is not adjacent to u_3 , so b_2 is adjacent to u_3 . So we have the configuration depicted in Figure 3.9.

Figure 3.9

Now since $V(H_1)$ is connected, there is a vertex $a_2 \in V(H_1) - \{a_1\}$ such that a_2 is djacent to a_1 . If u_1 is adjacent to b_2 , then $\{b_2, a_2\}$ dominates G, a contradiction. Hence a_1 is not adjacent to a_2 . Since $[b_2, u_2] \longrightarrow a_1$, and $b_2u_1 \notin E(G)$, u_2 must be adjacent to a_1 . But then $G[u_1; a_1, u_2, b_1]$ is a claw at u_1 . This completes the proof in Subcase 2.2.2.1.

Subcase 2.2.2.2: Suppose $z_2 = u_3$. That is, $[b_2, u_3] \longrightarrow a_1$. By Lemma 1.2, $u_3a_1 \notin \mathcal{E}(G)$. So u_3 dominates $H_1 = \{a_1\}$. Because of Claim 1, $V(H_1) = \{a_1\}$ is complete. Recall that $[a_1, u_2] \longrightarrow b_1$ and $G[V(H_2) = \{b_1\}]$ is complete. Since $a_1u_3 \notin E(G)$, u_2 must be adjacent to u_3 . Furthermore, vertex a_1 dominates $V(H_1) = A_2$. Also since H_1 is connected, there is a vertex $a_2 \in V(H_1) = \{a_1\}$ such that a_1 is adjacent to a_2 .

First we claim that u_1 is not adjacent to y, for all $y \in V(H_2) - \{b_1\}$. Suppose not. Then there is a $y_1 \in V(H_2) - \{b_1\}$ such that y_1 is adjacent to u_1 . Then y_1 is adjacent to b_1 also, by Claim 1. Hence y_1 dominates $V(H_2) \cup \{u_1, u_2\}$. Thus $\{y_1, a_2\}$ dominates G, a contradiction and the claim is proved. Hence $B_1 = \{b_1\}$.

Next we claim that $u_1x \notin E(G)$, for all $x \in V(H_1) - \{a_1\}$. For suppose not. Then there is a vertex $x_1 \in V(H_1) - \{a_1\}$ such that x_1 is adjacent to u_1 . But then x_1 is adjacent to a_1 also, by Claim 1. Hence x_1 dominates $V(H_1) \cup \{u_1, u_3\}$. But then $\{x_1, b_2\}$ dominates G, a contradiction and this claim is proved also.

Hence $A_1 = \{a_1\}$. But then since mindeg $G \geq 4$, $N(u_1) = \{a_1, b_1, u_2, u_3\}$. Thus $a_1u_2 \in E(G)$, for otherwise $G[u_1; a_1, u_2, b_1]$ is a claw. So $a_1 \in A_2$. Since A_2 is complete and a_1 dominates $V(H_1) - A_2$, a_1 dominates $V(H_1)$.

So by claw freedom at u_2 , $b_2u_3 \in E(G)$. So b_2 dominates $V(H_2) \cup \{u_2, u_3\}$. Hence $\{a_1, b_2\}$ dominates G, a contradiction, and Subcase 2.2.2.2 is settled.

Subcase 2.2.2.3: So suppose finally that $z_2 \in V(H_1) - \{a_1\}$.

Recall that $[a_1, u_2] \longrightarrow b_1$. So a_1 dominates $V(H_1) - A_2$ and u_2 dominates $V(H_2) - \{b_1\}$. Since $[b_2, z_2] \longrightarrow a_1$, z_2 is not adjacent to a_1 by Lemma 1.2 and then z_2 dominates $V(H_1) - \{a_1\}$. Because a_1 dominates $V(H_1) - A_2$ and by Claim 1, it follows that $z_2 \in A_2 - A_1$. Furthermore, a_1 is not adjacent to u_2 . Now if $u_1u_2 \in E(G)$, then $G[u_1; a_1, u_2, b_1]$ is a claw. So $u_1u_2 \notin E(G)$. Moreover, since $[b_2, z_2] \longrightarrow a_1$ and $z_2u_1 \notin E(G)$, it follows that b_2 is adjacent to u_1 . So our current situation is depicted in Figure 3.10.

Figure 3.10

Next we claim that u_2 is not adjacent to u_3 . Suppose, by way of contradiction, that u_2 is adjacent to u_3 . Consider $G + z_2b_2$. There must be a vertex z_3 in $G - \{z_2, b_2\}$ such

that either $[z_2, z_3] \longrightarrow b_2$ or $[b_2, z_3] \longrightarrow z_2$. Suppose that $[z_2, z_3] \longrightarrow b_2$. By Lemma 1.2, $z_3b_2 \notin E(G)$. Then $z_3 \notin \{u_1, u_2\} \cup V(H_2)$. Since $V(H_2) - \{b_2\} \neq \emptyset$, it follows that $z_3 = u_3$. Thus $[z_2, u_3] \longrightarrow b_2$. But then u_3 dominates $H_2 - \{b_2\}$ and u_3 is adjacent to a_1 . But then $G[u_3; u_2, a_1, b_1]$ is a claw.

So $[b_2, z_3] \longrightarrow z_2$. By Lemma 1.2, $z_3 z_2 \notin E(G)$. But then $z_3 \notin \{u_2\} \cup (V(H_1) - \{a_1\})$. Since $V(H_1) - \{z_2\} \neq \emptyset$, $z_3 \in \{u_1, u_3, a_1\}$. If $z_3 = u_1$, then u_1 dominates $H_1 - \{z_2\}$, and then $\{u_1, u_2\}$ dominates G, a contradiction. So $z_3 \neq u_1$. If $z_3 = u_3$, then u_3 dominates $H_1 - \{z_2\}$. So $G[V(H_1) - \{z_2\}]$ is complete because of Claim 1. Since z_2 dominates $V(H_1) - \{a_1\}$, $G[V(H_1)] = K_t - a_1 z_2$ where $t = |V(H_1)|$.

Now choose $a_2 \in V(H_1) - \{a_1, z_2\}$. Then $\{a_2, b_2\}$ dominates G, a contradiction. So $z_3 \neq u_3$. Hence $z_3 = a_1$; that is, $[b_2, a_1] \longrightarrow z_2$. So a_1 dominates $H_1 - \{z_2\}$.

Suppose a_1 is adjacent to u_3 . Then u_3 is not adjacent to b_1 by claw freedom at u_3 . Also by Claim 1, $z_2u_3 \notin E(G)$. Moreover, claw freedom at u_2 together with the fact that $u_2z_2 \in E(G)$ implies that u_3 must dominate $V(H_2) - \{b_1\}$.

Now choose $a_2 \in V(H_1) - \{a_1, z_2\}$ and consider $G + a_2b_2$. There must be a vertex $z_4 \in V(G) - \{a_2, b_2\}$ such that either $[a_2, z_4] \longrightarrow b_2$ or $[b_2, z_4] \longrightarrow a_2$. Suppose $[a_2, z_4] \longrightarrow b_2$. By Lemma 1.2, $z_4b_2 \notin E(G)$. So $z_4 \notin \{u_1, u_2, u_3\} \cup V(H_2)$. But $V(H_2) - \{b_2\} \neq \emptyset$, so $z_4 \in \{u_1, u_2, u_3\} \cup (V(H_2) - \{b_2\})$, a contradiction. So $[b_2, z_4] \longrightarrow a_2$. Since $V(H_1) - \{a_2\} \neq \emptyset$, $z_4 \in \{u_1, u_2, u_3\} \cup (V(H_1) - \{a_2\})$. But $z_4 \neq u_1$ since u_1 is not adjacent to $z_2, z_4 \neq u_2$ since u_2 is not adjacent to $a_1, z_4 \neq u_3$ since u_3 is not adjacent to $z_2, z_4 \neq a_1$ and $z_4 \neq z_2$, since a_1 and a_2 are not adjacent. So $a_4 \in V(H_1) - \{a_2, a_2, a_1\}$ and a_4 dominates $a_4 \in v_4 = v_$

Now choose $a_3 \in V(H_1) - \{a_1, z_2, a_2, c_2\}$ and repeating a previous argument, we produce a sequence of distinct vertices $a_1, z_2, a_2, c_2, a_3, c_3, \ldots$ such that a_1 is not adjacent to z_2 , a_i is not adjacent to c_i , for all $i \geq 2$, but a_i is adjacent to a_j for all $i \neq j$, a_i is adjacent to c_j for all $i \neq j$ and z_2 is adjacent a_i and c_j for all $i \geq 2$ and for all $j \geq 1$. But this is a contradiction to the fact that $|V(H_1)|$ is odd. So a_1 is not adjacent to a_3 . Since $[b_2, a_1] \longrightarrow z_2$, vertex a_2 is adjacent to a_3 .

Now choose $a_2 \in V(H_1) - \{a_1, z_2\}$ and consider $G + a_2b_2$. There must be a vertex $z_6 \in V(G) - \{a_2, b_2\}$ such that either $[a_2, z_6] \longrightarrow b_2$ or $[b_2, z_6] \longrightarrow a_2$. Suppose $[a_2, z_6] \longrightarrow b_2$. Then by Lemma 1.2, $z_6b_2 \notin E(G)$. Then $z_6 \notin \{u_1, u_2, u_3\} \cup V(H_2)$. But this is impossible since z_6 must dominate $V(H_2) - \{b_2\}$.

So $[b_2, z_6] \longrightarrow a_2$. Since $V(H_1) - \{a_2\} \neq \emptyset$, $z_6 \in \{u_1, u_2, u_3\} \cup (V(H_1) - \{a_2\})$. But $z_6 \neq u_1$ since u_1 is not adjacent to z_2 , $z_6 \neq u_2$ or u_3 since u_2 and u_3 are not adjacent to a_1 , $z_6 \neq a_1$ or z_2 since a_1 and z_2 are not adjacent. But then $z_6 \in V(H_1) - \{a_1, a_2, z_2\}$. Let $z_6 = c_2$. Note that c_2 dominates $V(H_1) - \{a_2\}$. So again we argue as above to get a sequence of distinct vertices $a_1, z_2, a_2, c_2, a_3, c_3, \ldots$ contradicting the fact that $|V(H_1)|$ is odd.

So the claim is proved; that is, u_2 is not adjacent to u_3 .

Since $[a_1, u_2] \longrightarrow b_1$ and $u_2u_3 \notin E(G)$, it follows that a_1 is adjacent to u_3 . Because of Claim 1 and since a_1 is not adjacent to z_2 , it follows also that z_2 is not adjacent to u_3 . But $[z_2, b_2] \longrightarrow a_1$, so b_2 is adjacent to u_3 . But then because of claw freedom at b_2 , u_1 is

djacent to u_3 . (Figure 3.11 now represents the present situation.)

Figure 3.11

Now consider $G+b_2z_2$. There must be a vertex z_3 in $G-\{b_2,z_2\}$, such that either $[b_2,z_3] \longrightarrow z_2$ or $[z_2,z_3] \longrightarrow b_2$. Suppose $[z_2,z_3] \longrightarrow b_2$. By Lemma 1.2, z_3 is not adjacent to b_2 . So $z_3 \notin \{u_1,u_2,u_3\} \cup V(H_2)$. But $V(H_2)-\{b_2\} \neq \emptyset$, so $z_3 \in (V(H_2)-\{b_2\}) \cup \{u_1,u_2,u_3\}$ and we have a contradiction.

Hence $[b_2, z_3] \longrightarrow z_2$. By Lemma 1.2, z_3 is not adjacent to z_2 and so $z_3 \notin (V(H_1) - \{a_1\}) \cup \{u_2\}$. Furthermore, $z_3 \notin V(H_2)$ because $V(H_1) - \{a_1\} \neq \emptyset$. Thus $z_3 \in \{u_1, u_3, a_1\}$.

Suppose first that $z_3 = u_1$. So $[b_2, u_1] \to z_2$. Then u_1 dominates $V(H_1) - \{z_2\}$. But then $\{u_1, u_2\}$ dominates G, a contradiction. So $z_3 \neq u_1$.

Suppose next that $z_3 = u_3$. So $[b_2, u_3] \longrightarrow z_2$ and so u_3 dominates $V(H_1) - \{z_2\}$. So $G[V(H_1) - \{z_2\}]$ is complete because of Claim 1. But z_2 is adjacent to every vertex of $V(H_1) - \{a_1\}$, so $G[V(H_1)] = K_t - a_1z_2$, where $t = [V(H_1)]$. Now choose $x \in V(H_1) - \{a_1, z_2\}$. We then have $\{x, b_2\}$ dominates G, a contradiction. So $z_3 \neq u_3$.

So $z_3=a_1$. That is, $[b_2,a_1] \longrightarrow z_2$. But then a_1 dominates $V(H_1)=\{z_2\}$. Now choose $a_2 \in V(H_1)=\{a_1,z_2\}$ and consider $G+a_2b_2$. There must be a vertex z_4 in $G-\{a_2,b_2\}$ such that either $[a_2,z_1] \longrightarrow b_2$ or $[b_2,z_4] \longrightarrow a_2$. Suppose $[a_2,z_4] \longrightarrow b_2$. Then $z_4 \notin V(H_2) \cup \{u_1,u_2,u_3\}$ by Lemma 1.2 and so $z_4 \in V(H_1)$. But $V(H_2)-\{b_2\} \neq \emptyset$, so we have a contradiction.

So $[b_2, z_4] \longrightarrow a_2$. But then $z_4 \neq u_1$ since u_1 is not adjacent to z_2 , $z_4 \neq u_2$ since u_2 is not adjacent to a_1 , $z_4 \neq u_3$ since u_3 is not adjacent to z_2 , $z_4 \neq a_1$ since a_1 is not adjacent to z_1 , and $z_4 \neq z_2$ since z_2 is not adjacent to a_1 . Furthermore, $z_4 \notin V(H_2)$. So it follows that $z_4 \in V(H_1) - \{a_1, z_2, a_2\}$. Let $z_4 = c_2$ and if we argue as before, we obtain a sequence of distinct vertices $a_1, z_1, a_2, c_2, a_3, c_3, \ldots$, such that a_1 is not adjacent to z_2 , a_i is not adjacent to c_i for all $i \geq 2$, $a_i a_j \in E(G)$, for all $i \neq j$, $c_i a_j \in E(G)$, for all $i \neq j$ and z_2 is adjacent to a_i and a_i for all $a_i \geq 2$ and for all $a_i \geq 3$. That each time we obtain the vertex a_i , we can always get the next vertex a_i in the sequence. But once again this contradicts the fact that $|V(H_1)|$ is odd and the proof of the theorem is complete.

It should be noted that both the connectivity bound and the minimum degree bound stated as hypotheses in the preceding theorem are sharp. Indeed, Favaron has proved [F: Theorems 2.5 and 2.6] that for all $k \geq 0$, every k-factor-critical graph of order n > k is k-(vertex)-connected and for all $k \geq 1$, every k-factor-critical graph of order n > k is (k+1)-edge-connected (and hence has minimum degree at least k+1).

References

- [AP1]' N. Ananchuen and M.D. Plummer, Some results related to the toughness of 3-domination-critical graphs, *Discrete Math.*, 2002, (to appear).
- [AP2] N. Ananchuen and M.D. Plummer, Matching properties in domination critical graphs, (submitted).
- [B] P. Blitch, Domination in Graphs, Ph.D. dissertation, Univ. of South Carolina, 1983.
- [CTW] Y. Chen, F. Tian and B. Wei, The 3-domination-critical graphs with toughness one, *Utilitas Math.*, 2002, (to appear).
- [F] O. Favaron, On k-factor-critical graphs, Discuss. Math., 16, 1996, 41-51.
- [LP] L. Lovász and M.D. Plummer, *Matching Theory*. Ann. Discrete Math. 29, North-Holland, Amsterdam, 1986.
- [P] M.D. Plummer, Extending matchings in claw-free graphs. Discrete Math., 125, 1994, 301-307.
- [SB] D.P. Sumner and P. Blitch. Domination critical graphs, J. Combin. Theory Series B, 34, 1983, 65-76.

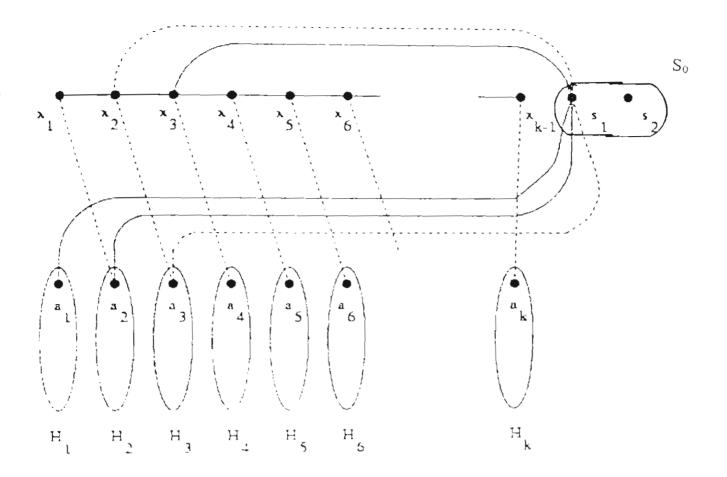


Figure 2.1

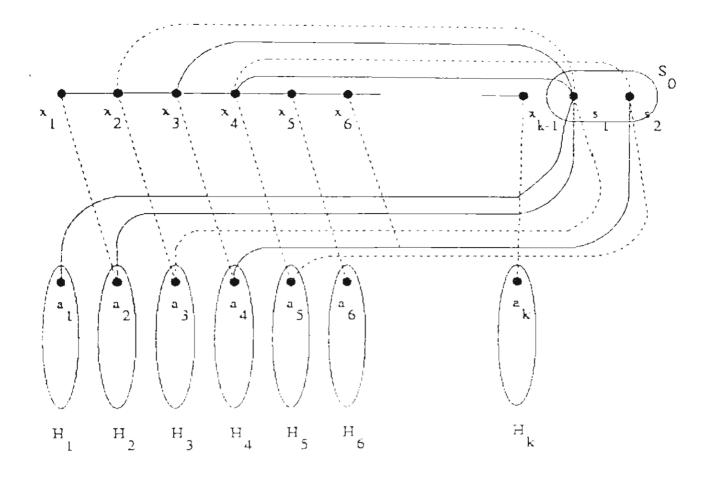


Figure 2.2

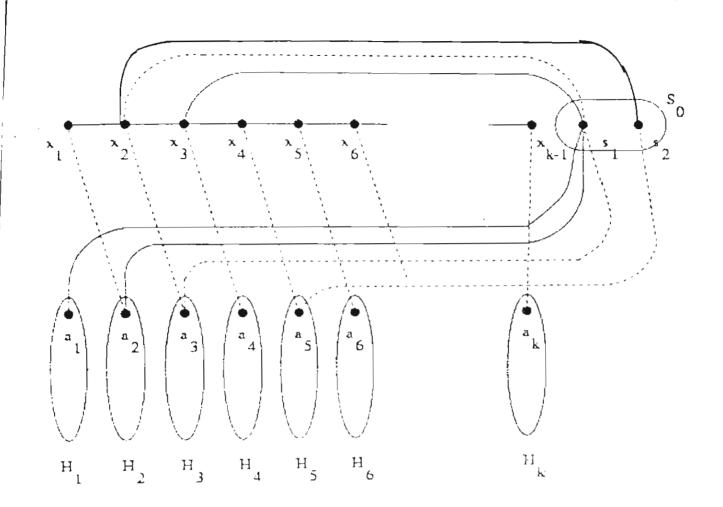


Figure 2.3

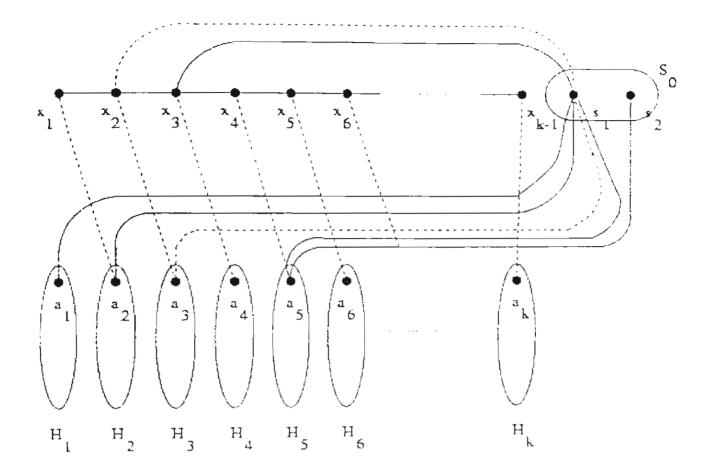


Figure 2.4

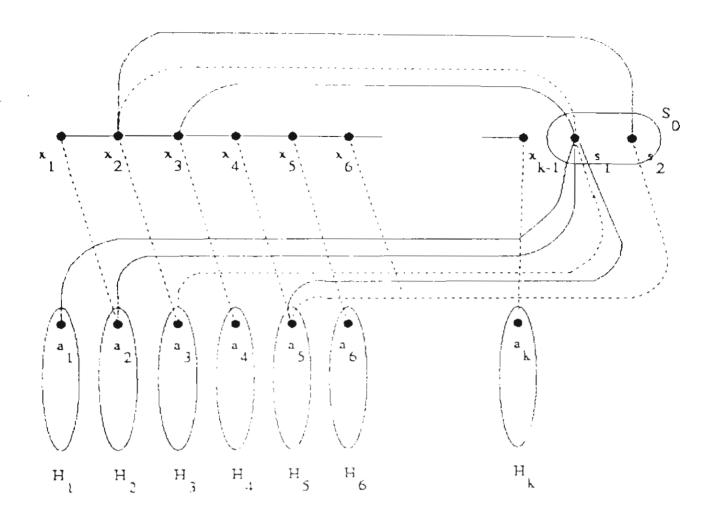


Figure 2.5

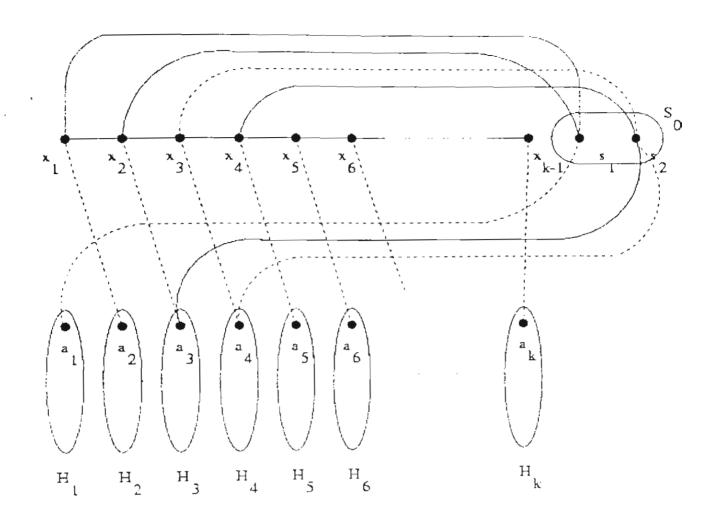


Figure 2.6

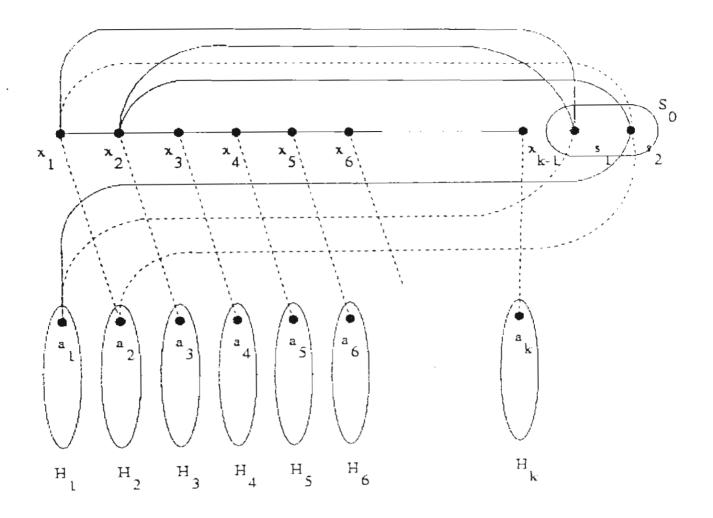
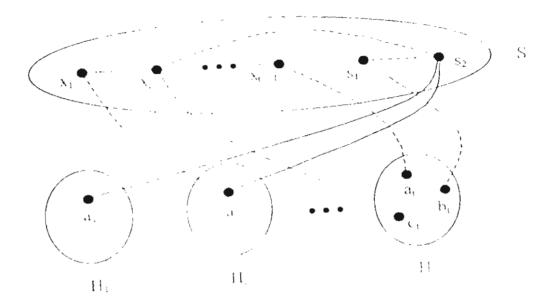


Figure 2.7



Ligure 2.8

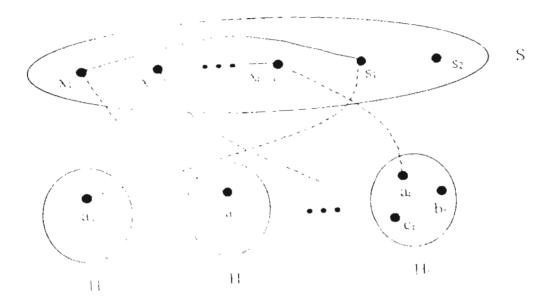


Figure 20

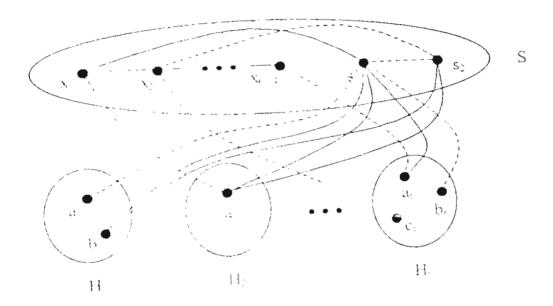


Figure 2 10

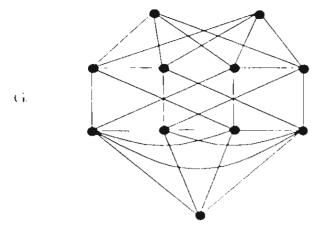


Figure 2.11

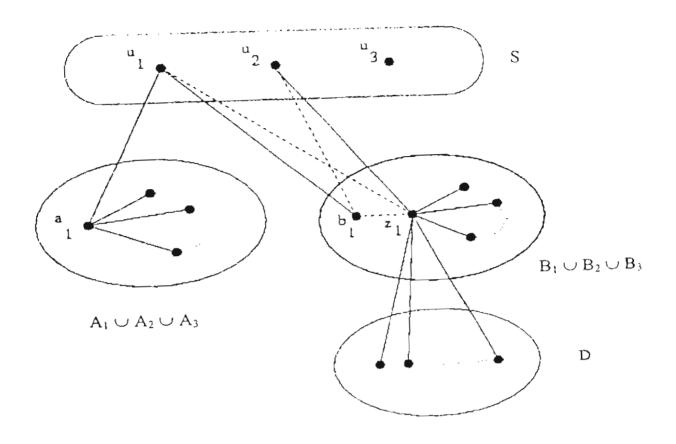


Figure 3.1

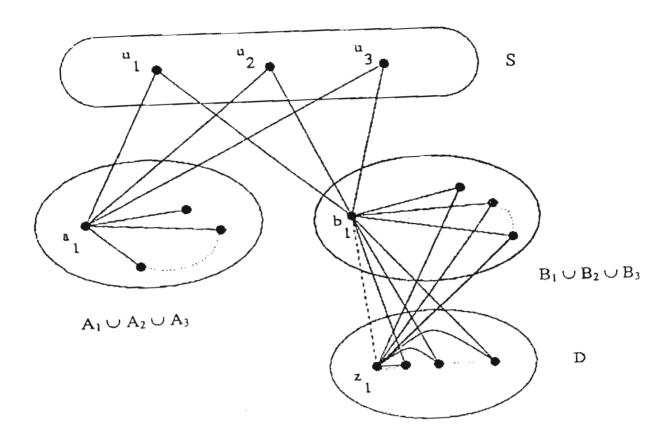


Figure 32

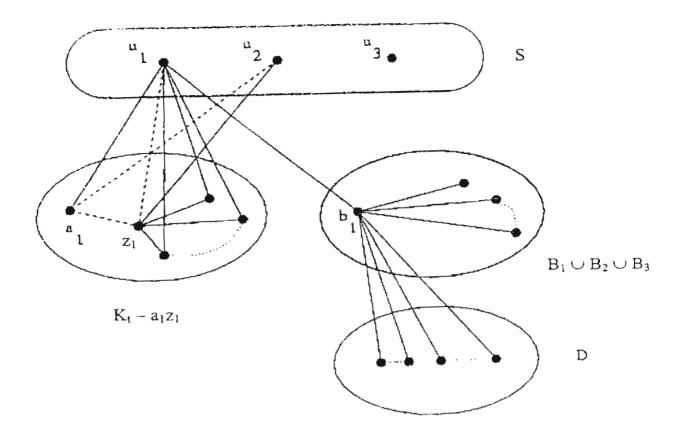


Figure 3.3

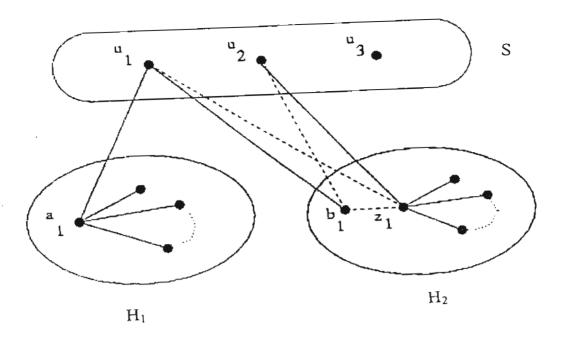


Figure 3.4

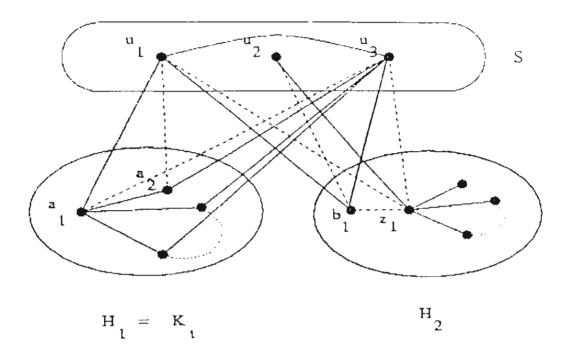


Figure 3.5

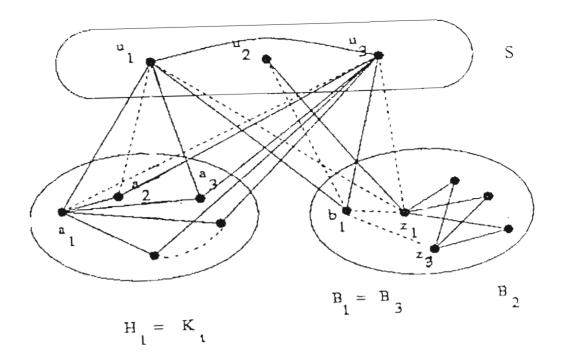


Figure 3.6

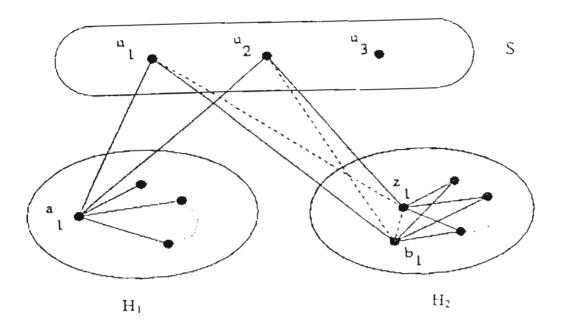


Figure 3.7

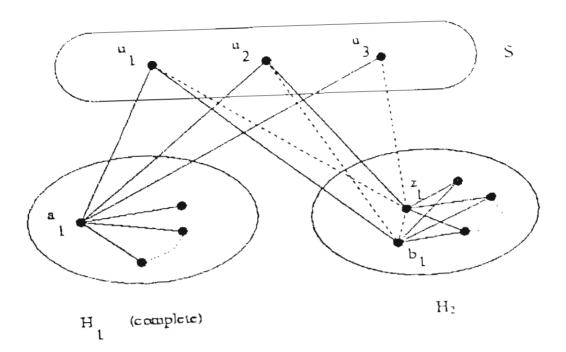


Figure 3.8

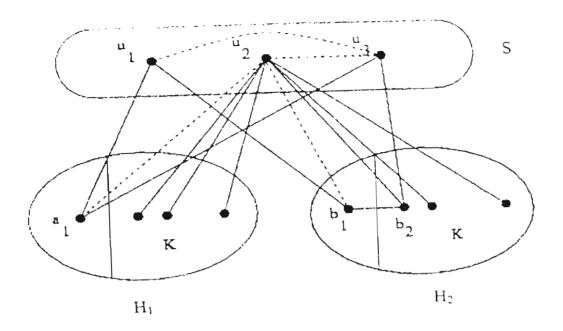


Figure 3.9

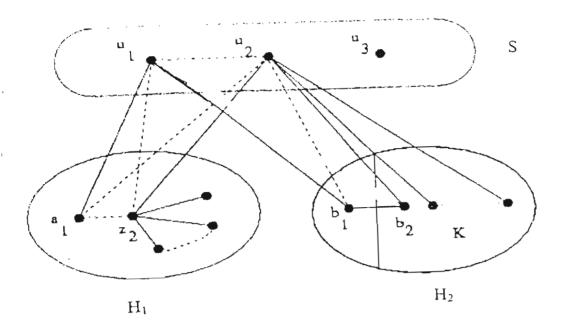


Figure 3.10

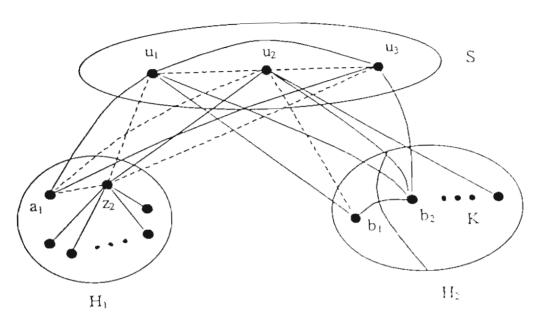


Figure 3.11

Research paper 4:

N.Ananchuen and M.D.Plummer, Two conjectures on matching in 3-domination-critical graphs, (submitted).

TWO CONJECTURES ON MATCHING

IN

3-DOMINATION-CRITICAL GRAPHS

by

Nawarat Ananchuen *
Department of Mathematics
Silpakorn University
Nakorn Pathom, Thailand
email: nawarat@kanate.su.ac.th

and

Michael D. Plummer †
Department of Mathematics
Vanderbilt University
Nashville, Tennessee 37240, USA
email: michael.d.plummer@vanderbilt.edu

A set of vertices S dominates a graph G if every vertex of G either belongs to S or is adjacent to a vertex of S. The size of any smallest dominating set is called the *domination* number of the graph G and is denoted by $\gamma(G)$. Graph G is said to be k-domination-critical if $\gamma(G) = k$, but $\gamma(G+e) = k-1$, for any edge e not an edge of G. For $k \geq 3$, the structure of k-domination-critical graphs is far from understood.

This note sets forth two conjectures involving matching in 3-domination-critical graphs. Suppose G is a graph and $k \ge 1$. G is said to be k-factor-critical if for every set of vertices S with |S| = k, G - S contains a perfect matching. (See [F].)

Conjecture 1: Suppose G is a graph with $k \geq 2$ and suppose k-1 and |V(G)| have the same parity. Then if G is k-connected and 3- γ -critical with mindeg $G \geq k+1$, then G is (k-1)-factor-critical.

Conjecture 2: Suppose G is a graph with $k \geq 2$ and suppose k and |V(G)| have the same parity. Then if G is k-connected and 3- γ -critical with mindeg $G \geq k+1$ and G is claw-free, then G is k-factor-critical.

Conjecture 1 is known to be true when k=2 ([AP1; Theorem 2.4]), when k=3 ([AP1; Theorem 2.1]) and when k=4 ([AP2; Theorem 2.5]). Conjecture 2 is known to be true when k=2 ([AP1; Theorem 3.3]) and when k=3 ([AP2; Theorem 3.4]). However, the proofs of Conjecture 1 when k=4 and Conjecture 2 when k=3 are quite long and difficult. This leads us to think that settling either of these conjectures for any further values of k will very difficult, if not impossible, using the methods we employ for the small

^{*} work supported by the Thailand Research Fund Grant #BRG4380016

[†] work supported by NSF Grant # INT-9816113

values of k mentioned above. In our opinion, some new methods must be discovered and utilized.

References

- [F] O. Favaron, On k-factor-critical graphs, Discuss. Math., 16, 1996, 41-51.
- [AP1] N. Ananchuen and M.D. Plummer, Matching properties in domination critical graphs, (submitted).
- [AP2] N. Ananchuen and M.D. Plummer, 3-factor-criticality in domination critical graphs. (submitted).