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Proje
t Code: BRG/18/2543Proje
t Title: Higher-dimensional Soliton Dynami
sInvestigator: Mi
hael A. Allen, Physi
s Department, Mahidol UniversityCo-investigator: Sarun Phiban
hon, Burapha Universitye-mail address: frmaa�mahidol.a
.thProje
t Period: 2000{2002Abstra
t:Higher-dimensional solitons are nonlinear waves lo
alized in either 2 or 3 dimensions.This study examined the existen
e, formation, and intera
tion of higher-dimensionalsolitons in a number of systems applying to plasma physi
s. We mostly lookedat modi�ed Zakharov-Kuznetsov (ZK) equations whi
h model weakly nonlinearion-a
ousti
 waves in strong magneti
 �elds, and in parti
ular those modelling systemswith non-isothermal ele
trons. We demonstrated that, as in the isothermal 
ase,systems with non-isothermal ele
trons exhibit higher-dimensional soliton solutionswith high symmetry and these evolve from perturbed plane (1-d) solitons. We alsolooked at modi�ed Kadomtsev-Petviashvili (KP) equations. We showed that thesehave a similar behaviour to the original KP equations, with the modi�ed version withpositive dispersion also possessing lump solitons whi
h form after perturbing a planesoliton. This demonstrated that the existen
e of lump solitons is not a 
onsequen
e ofintegrability, a property the KP equations possess but the modi�ed forms do not.A number of the equations we examined have two nonlinear terms. We dis
overednew families of algebrai
 solitons to these in one, two, and three dimensions. In onedimension these appear to 
ollide elasti
ally with ordinary solitons but the 
ollisionsare inelasti
 in the higher-dimensional 
ases with the algebrai
 solitons de
aying toordinary ones. Higher-dimensional solitons 
an be formed as a result of instabilities ofplane solitons. We developed te
hniques to obtain approximate analyti
al expressionsfor the growth rate of su
h instabilities when there are two nonlinear terms. As part ofthis, we also stumbled a
ross a te
hnique for performing 
ertain types of improperintegrals involving hyperboli
 fun
tions.In addition to the intera
tions of algebrai
 solitons, we also studied the 
ollisionsof spheri
al solitons with ea
h other and 
ollisions of 
ylindri
al solitons withplane solitons. Collisions between spheri
al solitons are inelasti
. In the 
aseof o�-axis 
ollisions, the energy loss was found to show little dependen
e onthe distan
e between traje
tories if the distan
e was small enough for identityex
hange of the solitons to take pla
e. Properties of the emerging solitons werea

ounted for by using 
onservation laws. Collisions of 
ylindri
al solitons with planesolitons always resulted in the destru
tion of the plane soliton. For large am-plitude plane solitons, additional 
ylindri
al solitons are formed as a result of the 
ollision.Keywords: soliton, stability, nonlinear, Zakharov-Kuznetsov equation, non-isothermalele
trons 1
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Introdu
tionMany of the ordered stru
tures we see in the world around us, ranging from vorti
es inturbulent 
ow to life itself, are either a produ
t of self-organization or are themselvesself-organizing systems. By self-organization we mean the spontaneous appearan
e ofa spatial pattern whi
h has some degree of global 
ooperation. In other words, theparts whi
h make up the spatial pattern or `
oherent stru
ture' intera
t with ea
hother to preserve the stru
ture as a whole.In spite of its ubiquity, self-organization is not well understood theoreti
ally. Thisis a result of it ne
essarily being a nonlinear phenomenon. Although we inhabit ade
idedly nonlinear universe, at least at the ma
ros
opi
 level, most of physi
s hasbeen 
on
erned with the study of linear systems. There are two reasons for this. First,many of the simplest systems, parti
ularly at the mi
ros
opi
 level, are governed bylinear equations. The other reason is that linear systems are mu
h more easy tounderstand and analyse than nonlinear systems. By de�nition, the behaviour of alinear system is simply the sum of the behaviours of its 
onstituent parts. If weunderstand how the individual parts work, then we understand the whole. In 
ontrast,for nonlinear systems, the whole is in a sense greater than the sum of the parts - weobtain unexpe
ted or `emergent' phenomena that 
annot be understood by merelysumming the a
tions of the parts. This is simply be
ause the behaviour of one parta�e
ts the behaviour of one or more of the other parts of the system. In a linearsystem the parts a
t 
ompletely independently and it is for this reason that only anonlinear system 
an show the self-organization de�ned above.Due to the mutual intera
tion of the 
omponent parts, nonlinear systems are ingeneral very diÆ
ult to analyse. Most 
an only be solved numeri
ally and hen
e itis only with the advent of fast 
omputers that many nonlinear systems 
ould bestudied in detail. The reward of studying these systems is the ri
h and unexpe
tedbehaviour they 
an yield. These emergent phenomena fall into two 
ategories - 
haoti
and self-organizing. Chaoti
 behaviour is 
hara
terized by similar starting 
onditionsleading to very di�erent states after a relatively short time. This means that the longterm behaviour of a 
haoti
 system 
annot be predi
ted. Previously people assumedthat the world around us only appears unpredi
table be
ause it is 
ompli
ated. Itis now known that even the simplest nonlinear systems 
an show 
haoti
 behaviourand that as a result of su
h 
haoti
 pro
esses, the universe is unpredi
table in afundamental sense.In many aspe
ts of our universe, the unpredi
tability de
reed by 
haos theory is farfrom apparent. This is be
ause nonlinearity 
an also result in self-organization, and ifpresent, 
haos is generally found in the �ne details of the 
oherent stru
tures, or intheir motion as a whole. One the simplest examples of self-organizing phenomenais the soliton. Solitons are long-lived lo
alized distortions of a medium governed bya nonlinear partial di�erential equation and often take the form of solitary movingpulses. In dispersive media, ordinary linear pulses spread out, losing their shape.Nonlinearity, on the other hand, tends to steepen a waveform. When these twoopposing e�e
ts balan
e, a soliton results.Solitons have su

essfully been used to model a wide variety of phenomena rangingfrom 
uxons in super
ondu
ting Josephson jun
tions (Lonngren & S
ott, 1978) to tidalwaves (Yeh et al., 1994). As well as being of theoreti
al interest, solitons have been to3



shown to have very important pra
ti
al appli
ations. Opti
al solitons have been sentdown �bres for over 4000 km without any of the ele
troni
 regeneration required by
onventional pulses (Mollenauer & Smith, 1988). In addition, again be
ause of the la
kof problems with dispersion, very narrow soliton pulses 
an be used whi
h means thatdata transmission rates a hundred times larger than is possible using ordinary pulseshave been a
hieved.A key attra
tion of solitons is their amenability to analysis. Many of thesoliton-bearing equations in one spatial dimension (1-d) are integrable - that is, thetime evolution of a large family of solutions 
an be obtained in 
losed form via aninverse s
attering transform (Infeld & Rowlands, 2000). As a result, the intera
tionof these solitons has been studied in detail. However, with the notable ex
eptionof the Kadomtsev-Petviashvili (KP) equations in two dimensions (Kadomtsev &Petviashvili, 1970; Pelinovsky & Stepanyants, 1993), the higher-dimensional analoguesof these integrable 1-d equations are nonintegrable, and so less analysis 
an beperformed. Numeri
al studies have shown that 1-d solitons are in general unstable tohigher-dimensional perturbations and will de
ay into higher-dimensional solitons orother 
oherent stru
tures.This de
ay pro
ess seems worthy of study be
ause similar transitions between
oherent stru
tures take pla
e within the realm of more 
ompli
ated self-organizingsystems that are also nonintegrable. For su
h systems, any study, whether numeri
alor analyti
al, would be far more involved. It is hoped that the results from a study ofthe simpler transitions between solitons and the intera
tions of the higher-dimensionalsolitons will provide a foundation on whi
h to base a future investigation of more
omplex phenomena.For 
onvenien
e, we now list the equations that we studied. In all 
ases thedependent variable u is proportional to the ele
trostati
 potential whi
h is itselfproportional to the deviation from the mean ion density. They are all given in redu
ed(dimensionless) variables. The Korteweg-de Vries (KdV) equation, of whi
h all theequations we mention are generalizations, takes the formut + uux + uxxx = 0in whi
h the subs
ripts denote partial di�erentiation. The generalizations of it that welooked at are the modi�ed KdV (mKdV) equation,ut + u2ux + uxxx = 0;the extended KdV (eKdV) equation,ut + (u+ bu2)ux + uxxx = 0;where b is a (real) parameter, the S
hamel equation,ut + u1=2ux + uxxx = 0;and the S
hamel-KdV (SKdV) equation,ut + (u+ bu1=2)ux + uxxx = 0;4



where b depends on the temperatures of the free and trapped ele
trons. TheZakharov-Kuznetsov (ZK) equation isut + uux +r2ux = 0and the generalizations of it that we looked at are the modi�ed ZK (mZK) equationut + u2ux +r2ux = 0;the extended ZK (eZK) equation,ut + (u+ bu2)ux +r2ux = 0;the S
hamel-ZK (SZK) equation,ut + u1=2ux +r2ux = 0;and the S
hamel-KdV-ZK (SKdVZK) equation,ut + (u1=2 + bu)ux +r2ux = 0:Finally, we also mention the Kadomtsev-Petviashvili equations(ut + uux + uxxx)x = �uyywhere � = �1. They are referred to as the KP+ and KP� depending on the sign of �whi
h in turn signi�es the sign of the dispersion. We looked the generalization,(ut + u1=2ux + uxxx)x = �uyywhi
h we referred to as the S
hamel-KP (SKP) equation and also at(ut + (u+ bu1=2)ux + uxxx)x = �uyywhi
h we 
alled the (1,1/2)-mKP equation.Rather than repeat what we have already written in the published works atta
hedat the end of this report, the following se
tions are intended as a guide to thatliterature, to whi
h the reader may refer for further details.Ion-a
ousti
 nonlinear waves in magnetized plasmawith non-isothermal ele
tronsFor an introdu
tion to non-isothermal ele
trons in weakly nonlinear ion-a
ousti
 waves,see the introdu
tory se
tion of Allen et al. (2007). The derivation of the SKdV equationis given in Phiban
hon & Allen (2003). This paper also gives an expression for the�rst order growth rate of transverse instabilities of the plane solitons of the SKdVZKequation. This result is improved upon in Allen et al. (2007) where an approximateanalyti
al expression is obtained for the growth rate over all wavenumbers for whi
hthe plane soliton is unstable. Also in this paper we give two hitherto undis
overed5



solutions to the SKdVZK equation. One of these is a family of algebrai
ally de
ayingsolitons (known as algebrai
 solitons) and will be dealt with in a later se
tion.In obtaining the growth rate of instabilities for the SKdVZK equation, it wasne
essary to evaluate some improper integrals involving hyperboli
 fun
tions. Wefound a simple new method for doing this { the results are presented in Allen (2007).We showed that as in the 
ase of the ZK equation, the SZK equation also has
ylindri
al soliton solutions whi
h evolve from perturbed plane solitons (Phiban
hon& Allen, 2002b). The number of 
ylindri
al solitons produ
ed depends on theperturbation wavelength (Phiban
hon & Allen, 2002a).Ion-a
ousti
 nonlinear waves in magnetized plasmawith mixtures of ions at or near 
riti
al densityIon-a
ousti
 nonlinear waves in magnetized plasma with mixtures of ions at or near
riti
al density are governed by the mZK and eZK equations, respe
tively. The
ylindri
al solitons of the mZK equation are unstable { they grow in size withoutlimit, eventually rendering the equation invalid { all these equations are only valid formoderate sized u. These solitons are produ
ed by perturbing plane solitons. If aperiodi
 train of plane solitons is perturbed, this blowing up 
an be prevented if thewavelength is short enough (Buppha & Allen, 2002; Buppha, 2004).The te
hniques used for obtaining growth rate 
urves for equations with twononlinear terms were applied to the eZK equation (Uppaman, 2007). Further workis being done to test whether variational methods 
an be used instead. These areimpra
ti
al in the 
ase of the SKdVZK equation due to diÆ
ulties with evaluation ofthe ne
essary integrals resulting from the square root term. Again, the method ofAllen (2007) is ne
essary for evaluating the variational integrals in the 
ase of the eZKequation. A paper dealing with this (in whi
h this grant will be a
knowledged) is inpreparation.Algebrai
 solitonsThe following, although presented as a poster, has not yet been published so we givemore details. It will form part of a forth
oming paper (in whi
h this grant will bea
knowledged).We 
onsider a modi�ed ZK equation,ut + (up � buq)ux +r2ux = 0; p > q > 0; (1)in whi
h the subs
ripts denote partial di�erentiation. We refer to (1) as the (p; q)-mZKequation, or, if r2 is repla
ed by �2x, the (p; q)-mKdV equation. It redu
es to theoriginal ZK and KdV equations whi
h have a single quadrati
 nonlinearity when p = 1and b = 0. A number of instan
es of the equation have been derived and studied.The (2; 1)-mKdV equation, also known as the extended KdV (eKdV) equation,des
ribes su
h systems as ion-a
ousti
 waves for whi
h the e�e
t of three wave mode
oupling has been in
luded (Konno & I
hikawa, 1974), and wave propagation ina nonlinear latti
e (Wadati, 1975). The higher-dimensional version, the extended6



ZK (eZK) equation, applies to ion-a
ousti
 waves in magnetized plasmas at 
riti
aldensity (Verheest et al., 2002) and to the 
ontinuum limit of waves propagating in anarray of nonlinear transmission lines (Duan, 2004). The (1; 12)-mKdV and (1; 12)-mZKequations have been obtained as des
riptions of ion-a
ousti
 modes in plasmas with aslightly non-isothermal ele
tron distribution (S
hamel, 1972; Shukla & Bharuthram,1986).The (p; q)-mZK equations have solitary pulse solutions that de
ay exponentially tozero for large x and travel faster than linear waves. As well as planar waves (whi
hare also solutions to the (p; q)-mKdV equations and 
an be obtained in 
losed formwhen b = 0 or p = 2q), there are solitary pulse solutions with 
ylindri
al and spheri
alsymmetry (Zakharov & Kuznetsov, 1974; Shukla & Bharuthram, 1986). It has beenshown that in addition to these 
onventional pulses, the eKdV and (1; 12)-mKdVequations also admit solitary pulses that de
ay to zero algebrai
ally at large x andtravel at the same speed as linear waves (Konno & I
hikawa, 1974; Allen et al., 2007).Unlike 
onventional solitary pulses whi
h are stable if p < 4 in the 
ase of systems withone spatial dimension and p < 2 for 
ylindri
al or spheri
al pulses (Laedke & Spats
hek,1984; Pelinovsky & Grimshaw, 1996), algebrai
 solitons of the eKdV equation areunstable with respe
t to multipli
ative perturbations (Pelinovsky & Grimshaw, 1997).Be
ause the speed of a 
onventional solitary pulse depends on its amplitude,
ollisions are possible. For an integrable system, these 
ollisions are elasti
 and 
anbe des
ribed analyti
ally via an inverse s
attering transform. Of the equations we
onsider here, only the KdV, eKdV and modi�ed KdV (mKdV) equations (for whi
hb = 0, p = 2) are integrable. For the remaining non-integrable equations, numeri
alstudies have shown that 
ollisions are very nearly elasti
 in 1-d 
ases (S
hamel, 1973),but are rather less so when 
ylindri
al or spheri
al pulses 
ollide (Iwasaki et al., 1990;Infeld et al., 2000).We show that when b > 0, the (p; q)-mKdV equation admits bounded algebrai
solitary wave solutions that de
ay to zero and have a velo
ity equal to that of linearwaves. For the (p; q)-mZK we demonstrate for the �rst time that 
ylindri
al andspheri
al algebrai
 solitary pulse solutions exist and, like their planar 
ounterparts,
an be expressed in 
losed form in some instan
es. We also investigate the 
ollisions of
onventional solitary pulses with algebrai
 solitary pulses.Algebrai
 solitary wave solutionsTo demonstrate the existen
e of planar, 
ylindri
al and spheri
al solitary waves, we�rst transform (1) to a frame x0 � x� V t moving at speed V above the speed of linearwaves and assume time independen
e. After dropping the primes, integrating on
ewith respe
t to x, setting the 
onstant of integration to zero (sin
e the solitary wavederivatives vanish at in�nity) one obtains1rd�1 ddr  rd�1dudr! = V u+ buq+1q + 1 � up+1p+ 1 ; (2)where d = 1; 2; 3 is the dimension of the solitary wave, and r is the radial 
oordinatewhi
h is the same as x when d = 1. Algebrai
 solitary waves that vanish at in�nity willbehave as u � r��, � > 0 for large r. It 
an be seen that this 
an only be 
ompatible7



with (2) if V = 0 in whi
h 
ase one then obtains� = 2=q: (3)When d = 1, we 
an obtain at least impli
it expressions for the algebrai
 solitarywaves. After reinstating x � r, multiplying (2) by 2ux and integrating on
e more wehave u2x = 2buq+2(q + 1)(q + 2) � 2up+2(p+ 1)(p+ 2) : (4)From 
onsidering the phase plane 
orresponding to (4) it is 
lear that solitary wavesolutions will only o

ur if buq+2 and up+2 are both real and positive. The solutions
an be found expli
itly when p = 2q in whi
h 
ase one obtainsu = � B1 + a2x2�1=q (5)where B = b(p + 1)(p+ 2)(q + 1)(q + 2) ; a = qBq2(p+ 1)(p+ 2) :Note that the form of (5) for large jxj agrees with (3). This solution 
an also beobtained by 
onsidering the appropriate limit of the 
onventional soliton solution ofthe (2q; q)-mKdV equation.For d = 2; 3, (2) 
annot be integrated further. Instead, based on our knowledge ofthe asymptoti
 dependen
e on r of the algebrai
 solitary wave solution we �nd by trialsubstitution that when p = 2q u(r) =  �1 + �2r2!1=q (6)is a solution. When d = 2,� = bq2 s2q + 1q + 1 ; � = 4(q + 1)�2q2b ;and when d = 3, �2 = b2q2(2q + 1)(2� q)2(q + 1) ; � = 2�2q2b (2 + q � q2):CollisionsTo investigate 
ollisions between 
onventional and algebrai
 solitary waves we solve(1) numeri
ally using a semi-impli
it leap-frog spe
tral method (Feng et al., 1999).Initial 
onditions take the form of the sum of suÆ
iently separated 
onventional andalgebrai
 soliton solutions. This is permissible in spite of the nonlinear nature of theequations as for well separated solitons, the values of u where one solution is non-zeroare very 
lose to zero for the other solution.The results for the eKdV and (1; 12)-mKdV equations are shown in Figs. 1 and 2.In both 
ases the 
ollision leaves both solitons uns
athed ex
ept that the algebrai
soliton moves to the left of its original position.In 
ollisions of higher-dimensional 
onventional and algebrai
 solitary waves, thealgebrai
 solitary wave is destroyed and repla
ed by 
onventional solitary wave.8
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Figure 1: Collision of 
onventional soliton (initially on the left) with a rarefa
tivealgebrai
 soliton governed by the eKdV equation. The numbers inside the plot indi
atethe value of t.
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Figure 2: Collision of 
onventional soliton with a 
ompressive algebrai
 solitongoverned by the (1; 12)-mKdV equation.Lump solitonsThe KP+ equation has lump soliton solutions { these are 2-d solitons without
ylindri
al symmetry. We showed that both the SKP+ and (1,1/2)-mKP+ equations9



also exhibit this type of soliton and in both 
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an thereforeonly o
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ollisions are des
ribedas dire
t if the paths of the solitons before 
ollision are on the same straight line.Otherwise they are 
alled o�-axis 
ollisions. Aside from the 
ases mentioned previously,we looked at three further types of 
ollisions. Collisions between spheri
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