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Abstract:

Higher-dimensional solitons are nonlinear waves localized in either 2 or 3 dimensions.
This study examined the existence, formation, and interaction of higher-dimensional
solitons in a number of systems applying to plasma physics. We mostly looked
at modified Zakharov-Kuznetsov (ZK) equations which model weakly nonlinear
ion-acoustic waves in strong magnetic fields, and in particular those modelling systems
with non-isothermal electrons. We demonstrated that, as in the isothermal case,
systems with non-isothermal electrons exhibit higher-dimensional soliton solutions
with high symmetry and these evolve from perturbed plane (1-d) solitons. We also
looked at modified Kadomtsev-Petviashvili (KP) equations. We showed that these
have a similar behaviour to the original KP equations, with the modified version with
positive dispersion also possessing lump solitons which form after perturbing a plane
soliton. This demonstrated that the existence of lump solitons is not a consequence of
integrability, a property the KP equations possess but the modified forms do not.

A number of the equations we examined have two nonlinear terms. We discovered
new families of algebraic solitons to these in one, two, and three dimensions. In one
dimension these appear to collide elastically with ordinary solitons but the collisions
are inelastic in the higher-dimensional cases with the algebraic solitons decaying to
ordinary ones. Higher-dimensional solitons can be formed as a result of instabilities of
plane solitons. We developed techniques to obtain approximate analytical expressions
for the growth rate of such instabilities when there are two nonlinear terms. As part of
this, we also stumbled across a technique for performing certain types of improper
integrals involving hyperbolic functions.

In addition to the interactions of algebraic solitons, we also studied the collisions
of spherical solitons with each other and collisions of cylindrical solitons with
plane solitons.  Collisions between spherical solitons are inelastic. In the case
of off-axis collisions, the energy loss was found to show little dependence on
the distance between trajectories if the distance was small enough for identity
exchange of the solitons to take place. Properties of the emerging solitons were
accounted for by using conservation laws. Collisions of cylindrical solitons with plane
solitons always resulted in the destruction of the plane soliton. For large am-
plitude plane solitons, additional cylindrical solitons are formed as a result of the collision.

Keywords: soliton, stability, nonlinear, Zakharov-Kuznetsov equation, non-isothermal
electrons
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Introduction

Many of the ordered structures we see in the world around us, ranging from vortices in
turbulent flow to life itself, are either a product of self-organization or are themselves
self-organizing systems. By self-organization we mean the spontaneous appearance of
a spatial pattern which has some degree of global cooperation. In other words, the
parts which make up the spatial pattern or ‘coherent structure’ interact with each
other to preserve the structure as a whole.

In spite of its ubiquity, self-organization is not well understood theoretically. This
is a result of it necessarily being a nonlinear phenomenon. Although we inhabit a
decidedly nomnlinear universe, at least at the macroscopic level, most of physics has
been concerned with the study of linear systems. There are two reasons for this. First,
many of the simplest systems, particularly at the microscopic level, are governed by
linear equations. The other reason is that linear systems are much more easy to
understand and analyse than nonlinear systems. By definition, the behaviour of a
linear system is simply the sum of the behaviours of its constituent parts. If we
understand how the individual parts work, then we understand the whole. In contrast,
for nonlinear systems, the whole is in a sense greater than the sum of the parts - we
obtain unexpected or ‘emergent’ phenomena that cannot be understood by merely
summing the actions of the parts. This is simply because the behaviour of one part
affects the behaviour of one or more of the other parts of the system. In a linear
system the parts act completely independently and it is for this reason that only a
nonlinear system can show the self-organization defined above.

Due to the mutual interaction of the component parts, nonlinear systems are in
general very difficult to analyse. Most can only be solved numerically and hence it
is only with the advent of fast computers that many nonlinear systems could be
studied in detail. The reward of studying these systems is the rich and unexpected
behaviour they can yield. These emergent phenomena fall into two categories - chaotic
and self-organizing. Chaotic behaviour is characterized by similar starting conditions
leading to very different states after a relatively short time. This means that the long
term behaviour of a chaotic system cannot be predicted. Previously people assumed
that the world around us only appears unpredictable because it is complicated. It
is now known that even the simplest nonlinear systems can show chaotic behaviour
and that as a result of such chaotic processes, the universe is unpredictable in a
fundamental sense.

In many aspects of our universe, the unpredictability decreed by chaos theory is far
from apparent. This is because nonlinearity can also result in self-organization, and if
present, chaos is generally found in the fine details of the coherent structures, or in
their motion as a whole. One the simplest examples of self-organizing phenomena
is the soliton. Solitons are long-lived localized distortions of a medium governed by
a nonlinear partial differential equation and often take the form of solitary moving
pulses. In dispersive media, ordinary linear pulses spread out, losing their shape.
Nonlinearity, on the other hand, tends to steepen a waveform. When these two
opposing effects balance, a soliton results.

Solitons have successfully been used to model a wide variety of phenomena ranging
from fluxons in superconducting Josephson junctions (Lonngren & Scott, 1978) to tidal
waves (Yeh et al., 1994). As well as being of theoretical interest, solitons have been to
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shown to have very important practical applications. Optical solitons have been sent
down fibres for over 4000 km without any of the electronic regeneration required by
conventional pulses (Mollenauer & Smith, 1988). In addition, again because of the lack
of problems with dispersion, very narrow soliton pulses can be used which means that
data transmission rates a hundred times larger than is possible using ordinary pulses
have been achieved.

A key attraction of solitons is their amenability to analysis. Many of the
soliton-bearing equations in one spatial dimension (1-d) are integrable - that is, the
time evolution of a large family of solutions can be obtained in closed form via an
inverse scattering transform (Infeld & Rowlands, 2000). As a result, the interaction
of these solitons has been studied in detail. However, with the notable exception
of the Kadomtsev-Petviashvili (KP) equations in two dimensions (Kadomtsev &
Petviashvili, 1970; Pelinovsky & Stepanyants, 1993), the higher-dimensional analogues
of these integrable 1-d equations are nonintegrable, and so less analysis can be
performed. Numerical studies have shown that 1-d solitons are in general unstable to
higher-dimensional perturbations and will decay into higher-dimensional solitons or
other coherent structures.

This decay process seems worthy of study because similar transitions between
coherent structures take place within the realm of more complicated self-organizing
systems that are also nonintegrable. For such systems, any study, whether numerical
or analytical, would be far more involved. It is hoped that the results from a study of
the simpler transitions between solitons and the interactions of the higher-dimensional
solitons will provide a foundation on which to base a future investigation of more
complex phenomena.

For convenience, we now list the equations that we studied. In all cases the
dependent variable u is proportional to the electrostatic potential which is itself
proportional to the deviation from the mean ion density. They are all given in reduced
(dimensionless) variables. The Korteweg-de Vries (KdV) equation, of which all the
equations we mention are generalizations, takes the form

Up + ULy + Uggy = 0

in which the subscripts denote partial differentiation. The generalizations of it that we
looked at are the modified KAV (mKdV) equation,

Up + Uty + Uggy = 0,
the extended KdV (eKdV) equation,
g + (U + bu?)uy + Ugpe = 0,
where b is a (real) parameter, the Schamel equation,
w + u g+ Uy = 0,
and the Schamel-KdV (SKdV) equation,
ug + (u+ bul/Z)ux + Upgy = 0,
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where b depends on the temperatures of the free and trapped electrons. The
Zakharov-Kuznetsov (ZK) equation is

uy + utiy + Viug =0
and the generalizations of it that we looked at are the modified ZK (mZK) equation
w + uug, + Vi, =0,
the extended ZK (eZK) equation,
up + (u+ bu?)uy + Vuy = 0,
the Schamel-ZK (SZK) equation,
up + u'?uy + VZu, =0,
and the Schamel-KdV-ZK (SKAVZK) equation,
w4 (u? + bu)ug + Vuy = 0.
Finally, we also mention the Kadomtsev-Petviashvili equations
(g + Uy + Ugga)zs = OUyy

where 0 = 1. They are referred to as the KP* and KP~ depending on the sign of o
which in turn signifies the sign of the dispersion. We looked the generalization,

(ug + ', + Uggy)z = Olyy
which we referred to as the Schamel-KP (SKP) equation and also at
(us + (U4 DU )ty + Upgs)s = TUyy

which we called the (1,1/2)-mKP equation.

Rather than repeat what we have already written in the published works attached
at the end of this report, the following sections are intended as a guide to that
literature, to which the reader may refer for further details.

Ion-acoustic nonlinear waves in magnetized plasma
with non-isothermal electrons

For an introduction to non-isothermal electrons in weakly nonlinear ion-acoustic waves,
see the introductory section of Allen et al. (2007). The derivation of the SKdV equation
is given in Phibanchon & Allen (2003). This paper also gives an expression for the
first order growth rate of transverse instabilities of the plane solitons of the SKdVZK
equation. This result is improved upon in Allen et al. (2007) where an approximate
analytical expression is obtained for the growth rate over all wavenumbers for which
the plane soliton is unstable. Also in this paper we give two hitherto undiscovered
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solutions to the SKAVZK equation. One of these is a family of algebraically decaying
solitons (known as algebraic solitons) and will be dealt with in a later section.

In obtaining the growth rate of instabilities for the SKAVZK equation, it was
necessary to evaluate some improper integrals involving hyperbolic functions. We
found a simple new method for doing this — the results are presented in Allen (2007).

We showed that as in the case of the ZK equation, the SZK equation also has
cylindrical soliton solutions which evolve from perturbed plane solitons (Phibanchon
& Allen, 2002b). The number of cylindrical solitons produced depends on the
perturbation wavelength (Phibanchon & Allen, 2002a).

Ion-acoustic nonlinear waves in magnetized plasma
with mixtures of ions at or near critical density

[on-acoustic nonlinear waves in magnetized plasma with mixtures of ions at or near
critical density are governed by the mZK and eZK equations, respectively. The
cylindrical solitons of the mZK equation are unstable — they grow in size without
limit, eventually rendering the equation invalid — all these equations are only valid for
moderate sized u. These solitons are produced by perturbing plane solitons. If a
periodic train of plane solitons is perturbed, this blowing up can be prevented if the
wavelength is short enough (Buppha & Allen, 2002; Buppha, 2004).

The techniques used for obtaining growth rate curves for equations with two
nonlinear terms were applied to the eZK equation (Uppaman, 2007). Further work
is being done to test whether variational methods can be used instead. These are
impractical in the case of the SKAVZK equation due to difficulties with evaluation of
the necessary integrals resulting from the square root term. Again, the method of
Allen (2007) is necessary for evaluating the variational integrals in the case of the eZK
equation. A paper dealing with this (in which this grant will be acknowledged) is in
preparation.

Algebraic solitons

The following, although presented as a poster, has not yet been published so we give
more details. It will form part of a forthcoming paper (in which this grant will be
acknowledged).

We consider a modified ZK equation,

up + (u? — bu)u, + Vu, =0, p>qg>0, (1)

in which the subscripts denote partial differentiation. We refer to (1) as the (p, ¢)-mZK
equation, or, if V? is replaced by 9%, the (p,q)-mKdV equation. It reduces to the
original ZK and KdV equations which have a single quadratic nonlinearity when p =1
and b = 0. A number of instances of the equation have been derived and studied.
The (2,1)-mKdV equation, also known as the extended KdV (eKdV) equation,
describes such systems as ion-acoustic waves for which the effect of three wave mode
coupling has been included (Konno & Ichikawa, 1974), and wave propagation in
a nonlinear lattice (Wadati, 1975). The higher-dimensional version, the extended
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ZK (eZK) equation, applies to ion-acoustic waves in magnetized plasmas at critical
density (Verheest et al., 2002) and to the continuum limit of waves propagating in an
array of nonlinear transmission lines (Duan, 2004). The (1, 3)-mKdV and (1, 1)-mZK
equations have been obtained as descriptions of ion-acoustic modes in plasmas with a
slightly non-isothermal electron distribution (Schamel, 1972; Shukla & Bharuthram,
1986).

The (p, ¢)-mZK equations have solitary pulse solutions that decay exponentially to
zero for large z and travel faster than linear waves. As well as planar waves (which
are also solutions to the (p,¢)-mKdV equations and can be obtained in closed form
when b = 0 or p = 2q), there are solitary pulse solutions with cylindrical and spherical
symmetry (Zakharov & Kuznetsov, 1974; Shukla & Bharuthram, 1986). It has been
shown that in addition to these conventional pulses, the eKdV and (1,%)—mKdV
equations also admit solitary pulses that decay to zero algebraically at large x and
travel at the same speed as linear waves (Konno & Ichikawa, 1974; Allen et al., 2007).
Unlike conventional solitary pulses which are stable if p < 4 in the case of systems with
one spatial dimension and p < 2 for cylindrical or spherical pulses (Laedke & Spatschek,
1984; Pelinovsky & Grimshaw, 1996), algebraic solitons of the eKdV equation are
unstable with respect to multiplicative perturbations (Pelinovsky & Grimshaw, 1997).

Because the speed of a conventional solitary pulse depends on its amplitude,
collisions are possible. For an integrable system, these collisions are elastic and can
be described analytically via an inverse scattering transform. Of the equations we
consider here, only the KdV, eKdV and modified KdV (mKdV) equations (for which
b= 0, p = 2) are integrable. For the remaining non-integrable equations, numerical
studies have shown that collisions are very nearly elastic in 1-d cases (Schamel, 1973),
but are rather less so when cylindrical or spherical pulses collide (Iwasaki et al., 1990;
Infeld et al., 2000).

We show that when b > 0, the (p,q)-mKdV equation admits bounded algebraic
solitary wave solutions that decay to zero and have a velocity equal to that of linear
waves. For the (p,q)-mZK we demonstrate for the first time that cylindrical and
spherical algebraic solitary pulse solutions exist and, like their planar counterparts,
can be expressed in closed form in some instances. We also investigate the collisions of
conventional solitary pulses with algebraic solitary pulses.

Algebraic solitary wave solutions

To demonstrate the existence of planar, cylindrical and spherical solitary waves, we
first transform (1) to a frame 2’ = x — V¢ moving at speed V" above the speed of linear
waves and assume time independence. After dropping the primes, integrating once
with respect to z, setting the constant of integration to zero (since the solitary wave
derivatives vanish at infinity) one obtains

1 d{ ,,du buttt Pt
e e - 2
rd=ldr (T dr) u+q+1 p+1’ 2)

where d = 1,2, 3 is the dimension of the solitary wave, and r is the radial coordinate
which is the same as x when d = 1. Algebraic solitary waves that vanish at infinity will
behave as u ~ r=#, ;> 0 for large r. It can be seen that this can only be compatible
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with (2) if V' = 0 in which case one then obtains

w=2/q. (3)

When d = 1, we can obtain at least implicit expressions for the algebraic solitary
waves. After reinstating x = r, multiplying (2) by 2u, and integrating once more we

have b +2 +2
2bu 2uP
w=——" S (4)

(¢+1)(@g+2) @E+1pE+2)

From considering the phase plane corresponding to (4) it is clear that solitary wave
solutions will only occur if bu?*? and uP*? are both real and positive. The solutions
can be found explicitly when p = 2¢ in which case one obtains

- (L)”" 5)

1+ a?2?

where
bp+1)(p+2) ¢B

T W) T hprpr2)

Note that the form of (5) for large |z| agrees with (3). This solution can also be
obtained by considering the appropriate limit of the conventional soliton solution of
the (2¢, ¢)-mKdV equation.

For d = 2,3, (2) cannot be integrated further. Instead, based on our knowledge of
the asymptotic dependence on r of the algebraic solitary wave solution we find by trial

substitution that when p = 2¢
/q
B '
6
u(r) (1 2 (6)

is a solution. When d = 2,

bg [2q+1 4(q+ 1)a?
o= — ) 6 = T 57
2V qg+1 q*b
and when d = 3,
b’¢*(2q + 1) 202
2 _ _ Y _ 2.
T e—pary P @t
Collisions

To investigate collisions between conventional and algebraic solitary waves we solve
(1) numerically using a semi-implicit leap-frog spectral method (Feng et al., 1999).
Initial conditions take the form of the sum of sufficiently separated conventional and
algebraic soliton solutions. This is permissible in spite of the nonlinear nature of the
equations as for well separated solitons, the values of u where one solution is non-zero
are very close to zero for the other solution.

The results for the eKdV and (1, $)-mKdV equations are shown in Figs. 1 and 2.
In both cases the collision leaves both solitons unscathed except that the algebraic
soliton moves to the left of its original position.

In collisions of higher-dimensional conventional and algebraic solitary waves, the
algebraic solitary wave is destroyed and replaced by conventional solitary wave.
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Figure 1: Collision of conventional soliton (initially on the left) with a rarefactive
algebraic soliton governed by the eKdV equation. The numbers inside the plot indicate
the value of ¢.
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Figure 2: Collision of conventional soliton with a compressive algebraic soliton

governed by the (1, 3)-mKdV equation.

Lump solitons

The KP*' equation has lump soliton solutions — these are 2-d solitons without
cylindrical symmetry. We showed that both the SKP* and (1,1/2)-mKP* equations
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also exhibit this type of soliton and in both cases they evolve from perturbed plane
solitons (Phibanchon & Allen, 2004b, 2007).

Collisions of solitons

The solitons we looked only travel in the positive z-direction. Collisions can therefore
only occur if the solitons are travelling at different speeds. The collisions are described
as direct if the paths of the solitons before collision are on the same straight line.
Otherwise they are called off-axis collisions. Aside from the cases mentioned previously,
we looked at three further types of collisions. Collisions between spherical solitons in
the ZK equation are discussed in Allen (2002b). Collisions between cylindrical and
plane ZK solitons are described in Allen (2002a). Finally, results on the collisions
between lump solitons are given in Phibanchon & Allen (2004a).
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