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ABSTRACT

We characterize some geometric properties of the Musielak-Orlicz sequence

spaces equipped with the Luxemburg norm:

®  Rotundity, Locally uniform rotundity, Weakly locally uniform rotundity
® k- Rotundity
®  Property (H), Property (K)

Moreover, we obtained 2 more results, which may be considered as the best results of

this research project:

®  Generalized Jordan-von Neuman constants

B  Generalized James constants

Keywords geometric property, Banach space, Musielak-Orlicz sequence space, fixed

peint property, Jordan-von Neuman constant James constant
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EXTREME POINTS IN MUSIELAK-ORLICZ
SEQUENCE SPACES

5. SAEJUNG AND 5. DHOMPONGSA

ABSTRACT. This paper establishes some characterizations of extreme points
and strongly extreme points of the closed urit ball in a Musielak-Orlicz se-
quence space equipped with the Luxemburg norm. As a consequence of these
results, we obtain some geometric properties such as rotundity and strong
rotundity in Nakano sequence spaces and Orlicz sequence spaces.

1. INTRODUCTICN

For a Banach space X, we denote by §(X) and B(X) the unit sphere and the
closed unit ball of X, respectively. Recall that a point £ € S5(X) is an extreme
pointif 2r = y+ 2z for y,z € B(X) implies y = z, and is a strongly eztreme point
if 2r = yn + 24 for all n € N and ||yn|| — 1. ||zn]| — 1 imply |jyn — zr|| — 0. A
Banach space X is said to be rotund if every point in its unit sphere is an extreme
point. If every point in its unit sphere is a strongly extreme point, then X is said
to be strongly rotund.

Clearly, every strongly extreme point is an extreme point. Thus every strongly
rotund space is a rotund space. An example in [8] shows that there is a rotund
Banach space which is not strongly rotund.

In this paper, we study extreme points and related properties in Musielak-
Orlicz sequence spaces. Before stating our main result we first recall the following
definitions:

Let N and R stand for the set of natural numbers and the set of real numbers,
respectively. A function ® : R — [0, 00) is said to be an Orlicz function if § is
even, convex, and vanishes at zero. A sequence ¢ = (®x) of Orlicz functions &,
is called a Musielak-Orlicz function. If & = (®,) is a Musielak-Orlicz function,
then the sequence ¥ = (V) defined by

(1.1) Ur(v) := sup{|vju — ®p(u) : u >0}, k=1,2,..

is called the complementary function of ® in the sense of Young (see {7]).

Received August 13, 2001; in revised form March 18, 2002.

1991 Mathematics Subject Classification. 46B20, 46E30.
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220 S. SAEJUNG AND §. DHOMPONGSA

Let RN denote the space of all real sequences = = (z(k)). For a given Musielak-
Orlicz function & we define a convez modular Iy : RN — [0, 0o] by the formula

oo
(1.2) Ig(z) = Y Bi(a(k)) for z e RN

k=1
The Musielak-Orlicz sequence space lg generated by ¢ = (&®;) is defined by
(1.3) lg := {z € RN : I4(A\z) < oo for some X > 0}.

In particular, if &; = M for every k € K. then ljs is called the Orlicz sequence
space generated by M. We consider two norms on lg: The Luzemburg norm:

(1.4) lz|l = inf{X > 0: Ie(z/N) < 1}
and the Orlicz norm:
(1.5) Iz||° = inf {§(1 4 Io(AZ)) : A > o} ,

where Ig(-) is defined by (1.2).

Let Iy := (lg, | - ||) and 1§ = (I{s,]|| - |I°} denote the space I equipped with the
Luxemburg norm and the Orlicz norm. respectively. It is known (see [7]) that
both are Banach spaces. The subspace hs of lg defined by

(1.6) he ;= {z €lp : Is{(Az < oo for all A > 0}.
is called the space of finite elements. Let
(1.7) f(z) = inf{X > 0: Is(z/A) < oo}.

It is clear that x € hg if and only if ¢ r) = 0. If ¥ is the complementary
function (see (1.1)) of the Musielak-Orlicz function @, then by (7} the space
hy := (hy, || - ||°) equipped with the Orlicz norm (1.5) is separable, and its dual
is isometrically isomorphic to ls.

We say that a Musielak-Orlicz functioz ¢ = (®i) satisfies:

(1.8) the 62-condition, denoted ¢ € &9, if there exist constants K > 2, ug > 0
and a sequence (cx) of positive numbers, with § cx < oo, such that for
Pi(u) < ug we have =

Dp(2u) < K®p(u)+c, forevery k€N and ueR.

(1.9) the (*)-condition (see [6]) if for any ¢ € (0, 1) there exists a § > 0 such that
Pr((1+6)u) <1 whenever Pp(u) <1l—cforallk € Nand v € R.

The following theorem is known (see [3).

Theorem 1.1. hg =l if and only if = 6.

By (5] and [6] if a Musielak-Orlicz function ® = (®y) satisfies (1.8), (1.9) and
®;(u) = 0 if and only if u = 0 for every k. then

10
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\
(1.10) For each € > 0 and each ¢ > 0 there exists a § > 0 such that
[e(x + y) — Is(z)] < € whenever Ip(z) < ¢ and Is(y) < 6.

(1.11) For any sequence (z,) C lg, ||zn|| — 1 implies Je(z,) — 1, and
(1.12) ||z|| = 1 if and only if Is(z) = 1.

QOur paper is organized as follows: In Section 2, we characterize extreme points
in Musielak-Orlicz sequence spaces. Strongly extreme points in some subspaces
of a Musielak-Orlicz sequence space are investigated in Section 3. Finally, in
Section 4 we study geometric properties related to rotundity, strong rotundity
and H-points. '

2. EXTREME POINTS IN MUSIELAK-QORLICZ
SEQUENCE SPACES

Let M be an Orlicz function. An interval [a,b], a < b, is called an affine
interval of M if

(2.1) M(Aa + (1 — A)b) = AM(a) + (1 — AYM(b) for all A € [0,1].

In addition, if M is neither affine on [a — ¢,b] nor on [a,b + €] for any € > 0 we
call [a,b] a structural affine interval of M. Let {[a;, b;] : i € I} be the family of
all the structural affine intervals of M. The set

(2:2) Sn =R\ (s, b:)
i€l
is called the set of strictly convex points of M. Let
(2.3) apr = sup{u > 0: M(u) = 0}.
Theorem 2.1. A point z = (z(k)) € S(ls) is an extreme point if and only if
(i) I(z) =1 and
(ii) #{k:|z(k}) € [0,ae,)} =0 and #{k: z(k) &€ S¢,} £ 1, where ag, and Sg,

are defined by (2.3) and (2.2) respectively, and # A denotes the cardinality
of a set A.

Proof. Necessity. Let z = (z(k)} be an extreme point of S(lg}). We will show
that (i) and (ii) must hold. Suppose (i} does not hold, i.e. Is(z) =r < 1. Since
$, is continuous we can choose € > 0 so small that
1—r

2
Define sequences y = (y(k))},z = (z(k)) € ls by y(1) = z(1) +¢,2(1) = z(1) — ¢
and y(k) = z(k) = z(k) for all kK > 2. Obviously, ¥y # z and 2z = y+ 2. Moreover,

1—r 1+

Ie(y) < Te(2) + —— = —5— < L.

Thus [ly|| < 1. Similarly, we also have ||z|| < 1. This contradiction shows that (i)
must hold.

‘I’l(I(l) + 6) < ‘1)1(1(1)) -+

11



222 S. SAEJUNG AND S. DHOMPONGSA

Sup\pose the first condition in (ii) does not hold, i.e. j € {k: |z(k)| € [0,as,)}.
Choose € # 0 such that z(j) + ¢ € (—as,,as,). Define y = (y(k)) € ls by
v(j)Y = x(7) +¢€, y(k) = z(k) for all k # j and z = 2z — y. It is easy to verify that
Is(y) = Jo(2) = Is(x) = 1. Since y # z, = can not be an extreme point.

Suppose the second condition in (ii) does not hold, i.e. #{k : z(k} & Ss,} > 2.
Without loss of generality we assume that z(1) € S¢, and x(2) ¢ Sg,. Then
z(1) € (a1,b1) and z(2) € (aa,bs) for some structural affine intervals [ap, b1]
and [ag, b2] of ®; and &,, respectively. Let ®,(u) = kyu + £ (u € (a1,b1)) and
Po(u) = kou + B2 (u € (ag,b2)) where k; # 0 and k2 # 0. Choose €1 # 0,62 # 0
such that

kiey = koes and  z(k) L ex € (ak,bx) for k =1,2.

Define y = (y(k)) € lo by y(1) = z(1) + €1,4(2) = 2(2) — e2,y(k) = z(k) for
all k > 3, and z = 2z — y. Then we have ®,(y(1)) + P2(y(2)) = kiz(1}) + 51 +
kox(2) + 3o = ®1{z(1)) + P2(x(2)). This implies Is(y) < 1, so [ly|| < 1. Similarly
we have ||z|] < 1. This is a contradiction.

Suffictency. If 2x = y + z for some y, z € B(ls) then, by (i) and the convexity
of the modular I4(-),

1= lo(2) < gla(y) ~ 5la(2) < 1.

This implies ®,x(z(k)) = %cbk(y(k)) + %fbk(z(k)) for all kK € N. By the first
condition of (ii), there exists at most one k € N such that (k) € Se,. If z(k) €
Se, then z(k) = y(k) = z(k}). Now suppose that there exists j € N such that
z(j) € S¢,- Then we have z(k) = y(k) = (k) for all k 5 7 and z(j),y(7), 2(7)

o
belong to the same structural affine intervais of ®;. Since )  $x(y(k)) =1 =
k=1

kzl Pi(z(k)), we have ®;(y(5)) = ®;(2(j)} = P,(z(5)). If y(7) # z(5), then
z:fj) € [—ae;,as,]. Since ag, € Se;, z(J) € (—ae,,aq,). This contradicts the

second condition of (ii). Hence y{(j) = z(j}. Therefore = is an extreme point. O

Recall that a Nakano sequence space 1{P«} is a Musielak-Orlicz sequence space
with ®x(u) = |u|P* for some sequence {pi} in [1,00).

Corollary 2.1. ([4, Theorem 1]) A point z = S(I{P*}) is an extreme point if and
ondy if Io(z) =1 and #{k:2(k) #0 and pr = 1} < 1.

Corollary 2.2. ([1, Theorem 2.6]) A point r € S(Ipr) ts an eztreme point if and
only if Ing(z) = 1, #{k: z(k) &€ Sapr} < 1 and #{k : |z(k)| € [0,ap)} = 0.

Observe that Corollary 2.1 was proved in 4] under the assumption that {px}
is bounded and Corollary 2.2 was proved in [4] under the assumption that the
Orlicz function is an N-function. Qur Corollaries 2.1 and 2.2 say that these
assumptions can be removed.

12
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3. STRONGLY EXTREME POINTS IN MUSIELAK-ORLICZ
SEQUENCE SPACES

In this section, we investigate strongly extreme points in the Musielak-Orlicz
sequence space hg.

Theorem 3.1. Ifz € S(lg) is a strongly extreme point and 6(x) < 1 (see (1.7)),
then ® € 6.

Suppose, in addition, that O satisfies the (x)-condition (see (1.9)) and each ®;
vanishes only at zero. Then a point x € S(he) is a strongly extreme point of
B(hg) if and only if it is an extreme point and ® € 6. In particular, if he = 3,
then a point x € S(lg) is a strongly extreme point if and only if it is an ezlreme
point.

Proof. Suppose that ¢ & 62, then by (5] there exists zg = (zo(k)) such that
Lp(l‘o) <1 and Is{Axg) =00 forany A > 1.

Since 6(z) < 1, we have I¢(Aoz) < oo for some Ay > 1. We define (yn) and (za)
by

Yn = (z(1),... ,z{n),z(n + 1) + egxo(n + 1), z{n + 2} + egzo{n + 2),...),
zn = {z(1),...,x2(n),z(n + 1) — egxo{n + 1), z(n + 2) — egzo{n + 2),...),
where eg = 1 — 1/Xg. Clearly, 2z = y, + 2z, forall n = 1,2,.... Moreover,
Is (u) = 3 @k(2z0(k)) = o0
€o k=n+1

It follows that ||yn — zn|| > €0 for all n € N. We will prove that ||yn|| — 1 and
||zrn]] — 1. For € € (0,1) let A = 1 + . Observe that for each n € N we have

Is (L) = kﬁj«pk (ZE2) + > o (o th) + otk )
=1

k=n+1
= k
<S o, (I‘A )) o S Goxt) + L 3 Bulzo(h)).
k=1 k=n+1 k—n-l-l
Note that Jg(x/)\) < 1. Choose N > 0 so that foreachn > N
— Is(z/A)
AAO ;1 ¢k()\{)I(k) T'

E_o Z D x(zo(k)) < M_

k—n+1
So I.p(y,,/.\) < 1lfor all m > N. Then |jyn]]| £ A = 1 +¢€ for all n > N.
Therefore limsup ||y,]| < 1. Similarly, llmsup |zall < 1. Hence liminf lynll =

— 00

2 - llmsup llz=|] = 1 which yields ||ya|| — 1 Sumlarly, |zn]] — 1. Hence T can

13
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A}

not be a strongly extreme point. This contradiction proves the first part of the
theorem.

To prove the second part of the theorem observe that, since (z) = 0 for every
x € S(hs), the necessity of the theorem is trivial. To demonstrate the sufficiency
of the theorem, assume that x is an extreme point and ¢ € §;. Let (zn) and
(yn) be sequences in hg such that |[zn|| — 1, [lynll — 1 and 2z = x, + yn for
all n € N. By the Banach-Alaoglu Theorem, the unit ball of lp is weakly star
compact. Therefore, by passing to subsequences if necessary, we may assume that
Z, 5 20, and y, — g, for some ||zo|| < 1 and ||yol| < 1. But since x, + y, = 2z
we have g + yg = 2z, which implies zg = yg = . Therefore

(3.1) zn(k) — z(k) and ya(k) — z(k) for each k=1,2,....

Given £ € (0,1), by (1.10) we can find é§ € (0,¢) such that

(3.2) [ Ig{x +y) — Ie(x)] <€ whenever Igp(z) <1 and Is(y) <é.

We choose mp so that ) $p(z(k)) < 6/3.
k=mo+1

By (1.11) and (1.12), we have I4(x,) — 1 = Is(z). Then Ip(z,) < Ie(x)+6/3
for sufficiently large n. From (3.1) we have

mo

(3.3) D (Pr(zalk)) — Pe(z(K)))

k=1

< §/3 for sufficiently large n.

Consequently, for n large enough, we have

oo myo

D Ok(zalk)) = To(zn) — D Ba(za(k))
k=1

k=mgo+1

< Ip(z) + 6/3 — (Z@k(z(k)) - 5/3)

k=1
- i $i(r(k)) + 26/3 < 6.
k=mo+1
Let
' = (0,...,0,z(mg + 1). z(mg + 2),...),

z, = (0,...,0,za(mo + 1), zn{mo + 2),...).

Then we have Is(z') < 6 and Is(z]) < 6 for all large n. Again, from (3.1) it
mo

follows that }° ®x(zn(k) — z(k)) < € for sufficiently large n.
k=1

14
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By (3.2) and (3.3), for all large n we have

Ig(zn — ) = Y Br(zalk) — (k) + Lo (), — z')
k=1
<e+Ig(z)) +€ < 3e.

This implies Jg(zy, — ) — 0, i.e. z, — z. Therefore ||zn —yn]] - 0,50 T is a
strongly extreme point. The proof is complete. O

Remark 3.1. (1) By [3], if x € lps is a strongly extreme point then 8(x) = 0.

(2) The assumption é(z) < 1 in Theorem 3.1 is essential as we can see in the
following example.

Example 3.1. We consider a Nakano sequence space (-} Observe that Dp(u) =
lul**. Let z = (x(k)), where z(k) = (1/2)/*. Clearly, ® = ($) € 6. We also
oo ,\kz o)
have Is(z) = 1 and Ig(Az) = k¥12_k = El
6(zx) = 1. By Corollary 2.1, x is an extreme point. Next, we prove that = is a
strongly extreme point. Suppose (zn),(yn) C l¢, Tn + yn = 2x for all n € N,
|znl] — 1 and |lyn]| — 1. As in the proof of Theorem 3.1 we may assume that

Tn(k) — z(k) and yn(k) —» z(k) foreach k=1,2,....

k
()‘?)“c = oo for any A > 1, so

It suffices to prove that ||z, — z|| — 0. Given £ > 0, we choose integers K and
N, so that

(3.4) 1/K <eand ||zn|| < 1 +€ forall n> Nj.
This implies ki; |-JI:2_+(_—k£|k2 < 1 for all n > N,. In particular,

(3.5) |zn(k} < 14+e foralln> Ny and k=1,2,....
Again, choose Ny > N so that

(3.6) |zn(k) — z(k)| < € and |ya(k) — z(k)| < €

foraln > Ny, and k= 1,...,K. Let I'y = {k € N: z,(k) > 1 or ya(k) > 1}.
We consider two cases.
Case 1. k€ T',. If z,(k) > 1, then z,(k) — 1 < ¢ for all n > N,. Note that

1-(%)”’“5% for all ke N.

This means for all n > Nj and k € ', we have
(3.7) [xn(k) — z(K}| < |zn(k) — 1|+ |l —x(k)| < e+ 1/k.
Similarly, if y,(k) > 1 then

lyn(k) — z(k)| < e+ 1/k forall n> Nj.

15
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Case 2. k&€ I'y;. In this case we have
(3.8) |zn(k) — (k)| < 1/k and |ya(k) —z(k)| <1/k forall neN.

If n > N; and A > 8¢, then from (3.4)-(3.8) we obtain
Tn—zx o (1zn(K) — z(K)[\ ¥
r(57) = 55 ()220

=(i+ > o+ 3 )(Irn(k);x(kn)kz

k=1 keln\{1,-., K} k&(TaU{l,..K})

K 2 oo
SO 5 (5

This means ||z, — z|| < A for all n > N;. Letting A | 8¢ we get ||z, — z|| < 8¢
for all n > Ny, i.e. ||z, — z| — 0.
Let

Ripe} — {3: = (x(k)) € 1P} : 37 (k)P < oo for all A >0},
k=1

From Theorem 3.1 we get

Corollary 3.1. A point = € S(h{Px}) is a strongly extreme point if and only if
it is an erlreme point and the sequence {px} is bounded.

Proof. 1t is easy to verify that the §;-condition is equivalent to the boundedness
of the sequence {px} (see [5]). O

The following corollary follows immediately from Remark 3.1(1) and Theorem
3.1.

Corollary 3.2. ([1, Theorem 2.10] and [3, Corollary 1]) Suppose that M vanishes
only at zero. Then = € S(lp) is a strongly extreme point if and only if £ is an
extreme point and M € &,.

4. THE ROTUNDITY AND STRONG ROTUNDITY IN
MUSIELAK-ORLICZ SEQUENCE SPACES

Theorem 4.1. The Musielak-Orlicz sequence space lg ts rotund if and only if

(i) ® e 62;
(ii) each ¥y vanishes only at zero, and
(iii) there ezists at most one k such that [0,®7'(3)] contains an affine inter-
val and if [0, (I);c_ol(%)] contains an affine interval [a,b] for some kg, then

16
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[0, 2. (1 — ®iy(a))] does not contain any affine interval for any k # ko,
ie, [0,25 (1 — @uo(@))] C Sa, for every k # ko.

Proof. Necessity. If (i) does not hold, then we can construct an element = = (zg)
such that ||z|| = 1 but fg(z) < 1. By Theorem 2.1 z is not an extreme point.

If (ii}) does not hold, then we can construct an element x € S(lg) which is
not an extreme point. If (iii) does not hold, then we can construct an element
z € S(lg) such that #{k: z(k) & Ss, } > 2.

Sufficiency. It suffices to prove that #{k: z(k) &€ S¢,} <1 for any z € S(ls).
From (i) we have Is(z) = 1. Then ®x(z(k)) > 7 for at most one k. By (iii) we
conclude that z is an extreme point. . a

Remark 4.1. (1) In 5], condition (iii) in Theorem 4.1 is replaced by

(iii’) there exists a sequence {ax} C [0, c0) such that ®,(a,) + Pn(anm) > 1 for
all n # m and &, is strictly convex on [0,ax] for all kK € N.
(2) By Theorem 1.1, lg is rotund if and only if l§ = hgy and hs is rotund.

(3) Observe that for every z € S(hg) we have Ig(z) = 1. Therefore hg is
rotund if and only if (ii) and (iii) are satisfied.

Corollary 4.1. The Nakano sequence space liPx} is rotund if and only if {px} is
bounded and #{k :px =1} < 1.

Corollary 4.2. ([1, Theorem 2.7]) The Orlicz sequence space lps is rotund if
and only if M € 62, M vanishes only at zero and M ts strictly conver on
[0, M—1(1/2)].

Corollary 4.3. Suppose that ¢ satisfies the (*)-condition (see (1.9)). Then the
Musielak-Orlicz sequence space lg is strongly rotund if and only if it is rotund.

Proof. The necessity of the condition is obvious. We prove the sufficiency. Let
z € S(ls). By Theorem 4.1 and the definition of rotundity, we have & € §, and
z is an extreme point. By Theorem 3.1, z is a strongly extreme point. O

Corollary 4.4. ([1, Theorem 2.30] and [4. Theorem 21]} The rotundity and
strong rotundity are equivalent in Orlicz sequence spaces and in Nakano sequence
spaces.

A point z € S(X) is called an H-point if for any sequence {z,) C X, ||zn| — 1
and z, — = we have z,, — =z. .
Theorem 4.2. Suppose that a Musielak-Orlicz function © satisfies the (*)-condition

(see (1.9)) and each ¥, vanishes only at zero, then € S(lg) is an H-point if
and only if ® € 6.

Proof. Sufficiency. Suppose ® € 62. Let (zn) C lg such that (|z,]| — 1 and
I, — z. Then z,, — z coordinatewise. From the proof of Theorem 3.1 we have
Is(zn — ) — 0, which implies ||z, — z|]| — 0.

17
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Necessity. Suppose = = (x(k)) is an H-point, but & ¢ 2. Then there exists
an xzg = (zo(k)) € S(ls) such that Igs(z) < 1 and Is(Azp) = oo for all A > 1.

Consequently, there is a sequence i; < i3 < --- such that
. ) 1
i€0,0,...,zo(in +1), ..., Zo(in41),0,-. ) = 5,
foralln=1,2,.... Let

un = (2(1),...,2(En), z(in + 1) — |z0(in + 1)|{sgnz(i, + 1),...,
z(in+1) — |To(int1)|(sgnz(in + 1), 2(ine1 +1),-..).

1
It was proved in (2] that u, — z¢ and ||un, — zo|| > 5 Moreover,

Izoll < liminf Jlun|| < limsup [lus|| < fl=oll-
R—oo n—o00
So ||lun]| — 1. This contradicts to the definition of an H-point. (]

Recall that a Banach space X is said to possess property (H) if every point in
S(X) is an H-point.

Corollary 4.5. ([2, Theorem 2]) Suppose that a Musielak-Orlicz function ¢ sat-
tsfies the (x)-condition (see (1.9)) and each ®, vanishes only at zero. Then the
Musielak-Orlicz sequence space ly possesses property (H) if and only if & € 6;.

Corollary 4.6. ([4, Theorem 6]) The Nakano sequence space I1Px} possesses
property (H) if and only if the sequence {pi} is bounded. In fact, x € S(I{Px}) is
an H-point if and only if the sequence {pi} is bounded.

Corollary 4.7. ([1, Theorem 3.17, 3.18)) Suppose that M vanishes only at zero.
Then the Orlicz sequence space lpy possesses property (H) if and only if M € &6,.
Furthermnore, if M & 63 then S(lps) contains no H-points.
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GENERALISED JORDAN-VON NEUMANN CONSTANTS
AND UNIFORM NORMAL STRUCTURE

S. DHoOMPONGSA, P. PIRAISANGJUN AND S. SAEJUNG

We introduce a new geometric coefficient related to the Jordan-von Neumann con-
stant. This leads to improved versions of known results and yields new ones on
super-normal structure for Banach spaces.

1. INTRODUCTION

The notions of normal structure and uniform normal structure play an important
role in metric fixed point theory (see Goebel and Kirk [10]). A oumber of Banach
space properties have been shown to imply uniform normal structure. Some sufficient
properties for a Banach space X to have uniform normal structure are:

(i) J(X) < 3/2 (see Gao and Lau [6]),
(ii) R(X) > 0 (see Gao [5]),
(ili) Cni(X) < 5/4 (see Kato, Maligranda and Takahashi [13}), and
(iv) X is a u-space, a class of spaces that includes uniformly convex spaces
and uniformly smooth spaces (see Gao and Lau [6]).

Recently, Kirk and Sims [17] introduced a new variant, ¢-uniform normal structure,
which lies strictly between normal structure and uniform normal structure.

In this paper we introduce a parameterised coefficient Cnj;(-, X) generalising the
Jordan-von Neumann constant Cpn;(X). Utilising ultraproduct techniques, the coef-
ficient Cnjy(-, X) enables us to establish new sufficient conditions for a Banach space
to have uniform normal structure. To achieve this, we first show that the coefficients
Cpia(-, X) of the space X and Cnj (,)?) of its ultrapower X coincide. From this and
some other new results. which also improve the number appearing in property (iii} from
5/4 to (3 + \/5)/4, we can apply the powerful ultraproduct technique to show that
X has uniform normal structure whenever Cxj(1,X)} < 2. An example of a Banach
space X is given which has Cnjy(1, X) < 2 and hence uniform normal structure, but
for which neither (i) or (iii) apply. An exact determipation of the coefficient Cny(-, X)
is obtained when X is a Hilbert space. More generally, a connection between Cnj(-, X)
and the modulus of convexity dx is established. Finally, we investigate the constants
Cni{-, X) when X is a u-space. This leads to an alternative proof of (iv).
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\ 2. PRELIMINARIES

Throughout the paper we let X and X* stand for a Banach space and its dual
space, respectively. By a non-trivial Banach space X we shall mean that either X is a
real space with dim X > 2, or a complex space with dim X 2 1. We shall denote by
Bx and Sx the closed unit ball and the unit sphere of X, respectively. For a sequence
(zn) in X, z, = z stands for weak convergence to z. For z € X\{0}, let V. denote
the set of norm 1 supporting functionals at z. This is the subdifferential of the norm
at the point =, which is nonempty by the Hanh-Banach Theorem.

We shall say that a nonempty weakly compact convex subset C of X has the fized
point property (fpp for short) if every nonexpansive mapping T : C — C has a fixed
point (that is, there exists z € C such that T(z) = z). Recall that T is nonexpansive
if ||[Tz —Ty|| € ||z ~ y|| for every z,y € C. We shall say that X has the fized point
property (fpp) if every weakly compact convex subset of X has the fpp. Let A be a
nonempty bounded set in X . The number r{A) = inf{sug lx—yll: z € A} is called

vE

the Chebyshev radius of A. The number diam A = sup ||z — y|| is called the diameter
,yEA

of A. A Banach space X has normal structure if
(2.1) r(A} < diam A

for every bounded convex closed subset A of X with diam A > 0. When (2.1) holds for
every weakly compact convex subset A of X with diam A > 0, we say X has weak nor-
mal structure. Normal structure and weak normal structure coincide if X is reflexive. A
space X is said to have uniform normal structure if inf {(dia.m A)/(r(A))} > 1, where
the infimum is taken over all bounded convex closed subsets A of X with diam A4 > 0.
Weak normal structure, as well as many other properties imply the fixed point prop-
erty. Some relevant papers are Opial [22], Kirk [16], Sims [24], Garcia-Falset [7], and
Gacia-Falset and Sims [8].

The modulus of converity of X (see {3, 4,19, 20, 21]) is the function x : [0, 2]
— [0, 1] defined by

1:+y”_

5 z,y € Sx,|lz — yl| >£}-

(2.2) 5x(e) = inf {1 - ”
When X is non-trivial, we can deduce that

z,y € Bx,llz -yl > ¢}

ax(e)=inf{1—||”;y“:

=inf{1—”$;y” tz,y € Sx,l|x—yli=6}

z+y|| .
> :

=inf{1—~” z,yEBx,Ha:-—yH:s}.
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If 6x(1) > 0, then X has uniform normal structure (see [9]).
The modulus of smoothness of X (see [3, 4, 19, 20]) is the function px : [0, 0)
— [0, c0) defined by

r+TY||F|T—T
(2.3) px(r) = sup { [ vll : I vl

=sup{%€ —éx-(e): e € [0,2]}.

—1:.1:,y€Sx}

A space X is called uniformly conver if dx(¢) > 0 for all 0 < e < 2. It is
called uniformly smooth if p'\(0) = }i_g})(p x(7))/7 = 0. Uniformly convex spaces and
uniformly smocth spaces are examples of u-spaces, where a space X is called a u-space
if for any € > 0, there exists & > 0 such that for each z,y € Sx,

(2.4)

“:r:—}—y

- “>1—6=>f(y)>1—§forallf€V=.

The notion of u-spaces was introduced by Lau [18]. Examples of uniformly convex
spaces are the spaces LP(Q) where €2 is a measure space such that LP({2) is at least
two dimensional and 1 < p < co.

A Banach space X is called uniformly nonsquare provided that there exists 4 > 0
such that if z,y € Sx, then ||lz+y||/2 € 1-§ or |jz—y|l/2 € 1—4. Uniformly nonsquare
spaces are superreflexive (see James [11]). Every u-space is uniformly nonsquare (see
Lau [18]), hence, it is superrefiexive.

The Jordan-von Neumann constant Cny(X) of a Banach space X is defined by

+yl® + llz — vli®

2(ll=l? + llyll?)

— sup { Hz + yli® + llz — yll?
2(il=H? + flvl1?)

(2.5) Cni{(X) = sup { liz :z,y € X not both zero }

::ceSx,yeBx}.

REMARK 2.1. We collect together some properties of the Jordan-von Neumann constant
Cni(X) (see [2, 12, 18, 14, 15, 25)):
(1) 1<Ca(X) <2,
(2) X is a Hilbert space if and only if Cny(X) =1.
(3) Cni(X) = Cri(X").
(4) X is uniformly nonsquare if and only if Cnj(X) < 2 and this happens if
and only if dx(€) > 0 for some £ € (0,2).
(5) If Cni(X) < 5/4 then X, as well as its dual X*, have uniform normal
structure, and hence both X and X* have the fixed point property.
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One technique used in this paper is the “ultraproduct” technique. We refer to
Askoy and Khamsi [1] and Sims (23] for a complete discussion on the topic. However,
let us briefly recall the construction of an ultrapower of a Banach space X. As a
first step we consider the space lo(X) consisting of all bounded sequences (z,) of
elements of X. The norm in l.(X) is given by the formula |[(z,)|| = sgg lzall,

where N is the set of positive integers. Now, let &/ be an ultrafilter on N. The set
N = {(zn) € loo(X) : limy ||za|l = 0} is a closed linear subspace of l(X). Here,
limy, stands for the limit over the ultrafilter Z{. The ultrapower X of X with respect
to U is defined to be the quotient space l(X)/N. By  we denote the equivalent
class of z = (z,). From the definition of the quotient norm, we can derive the following
canonical formula ||Z]| = limy ||z,||. Identifying an element £ € X with the equivalence
class of the constant sequence (z,z,...), we can treat X as a subspace of X . In what
follow, we shall consider only non-trivial ultrafilters on the set of positive integers.
Under this setting, the ultrapower X is finitely representable in X . Consequently, X
inherits all finite-dimensional geometrical properties of X .

DEFINITION 2.2: Let P be a Banach space property. We say that a Banach space
X has the property super-P if every Banach space finitely representable in X has
property P.

THEOREM 2.3. (See [1, Theorem 3.5].) Let X and Y be Banach spaces and
suppose that Y is finitely representable in X . Then there is an ultrafilter U on the set
N such that Y is isometrically isomorphic to a subspace of X.

We remark that when the property P is hereditary: that is, any subspace of a
space with P also has P, one has the following stronger conclusion.

COROLLARY 2.4. (See[l].) Let P be a Banach space property which is inher-
ited by subspaces. Then a Banach space X has super-P if and only if every ultrapower
X of X has P.

THEOREM 2.5. (See [1].) Let X be a Banach space. If X has super-normal
structure, then X has uniform normal structure.

3. RESULTS

Let us begin with our generalisation of the Jordan-von Neumann constant. For
a = 0 define,

lz +yll* + |l= — ||
2ll=1* + llyll* + N1=]1

and ||y — zI| < all<]l }

Cni{a, X) = sup :T,y,2 € X not all zero
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Iz + yli® + llz — 2|f?
2||;1:“2 + ||y“2 + “2”2 tx,y,z € Bx not all zero

and |ly — || < all=l| }

llz + yli® + llz — 2|1
2ll=l|® + llwll* + W=l

belongs to Sx and {ly — z|| € allz[]}.

' =sup{

= sup { :x,¥,z € By of which at least one

REMARK 3.1.

(1) Obviously, Cnjy(0, X) = Cni(X) (see (2.5)).

{(2) Cni(a,X) is a nondecreasing function with respect to a.

(3) If Cnj(a,X) < 2, for some a > 0, then Cnj(X) < 2 and consequently
X is uniformly nonsquare (see Remark 2.1(4)).

(4) 1+ (4a/4+ a?) < Cnifa,X) <2 forall a2 0 and Cny(a, X) = 2 for all
az=2.

To see that (4) is true, we begin by proving the left inequality. For this, we take
any z € Sx and put ¥y = (a/2)z = —z. We then have ¥y — z = ax and so,

liz +yll2 + N1z = 212 _ (1+(a/2))*[l=lI* + (1 + (a/2))*||=]?

CN_}(G,X = =
) 2[|z]I2 + llyli? + (| =II? 2||z(I? + 2(a?/4)ll]|?
21+ (a/2))?  4+4a+a® 1+ 4a
T 2(1+(a%/4) © 4+a? 4+ a?’

Next, we show that Cnj(a, X) < 2. By the triangle inequality, we have

(N=l1® + 2l=(Hyll + 1w l1*) + (=17 + 2li=lll 2l + 1217)
(2lizll* + 21yll®) + (2ll=l® + 2[12]1%)
4f|z)|? + 20l y® + 2ll2]1,

llz +ylI* + Iz — 2]I* <
<

l

from which it is clear that Cyj{a,X) < 2. Finally, we observe that the function
a — 1+ (4a/4+ a?) is strictly increasing on [0,2] and attains its maximum of 2 at
a = 2. It follows that Cnjy{e, X) =2 forall a > 2.

ExAMPLES 3.2. (1) (leo — {1 norm) Let X = R? be equipped with the norm defined

by
|||l if 2122
=l =

2 0,
lzll, if z1z2 < 0.

Take z = (1,1),y = (0,1) and z = (—1,0). Then we have y — z = (1,1) = = and
lz+ vl = [|(1,2)]], = 2, llz—zll = [[2)], = 20zl = 1. So 2 = (4+4)/4
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= (= + I + iz — 212 /(2lill? + lIyll* + [12I1?) < Crna(1,X) < 2. Hence Cri(1,X)
= 2. It is not difficult to see that dx(e) = max{0, (¢ — 1)/2} and so dx(1) = 0. We
shall shortly see (Remark 3.12(1)) that this implies Cn3(0, X) > 5/4, however, we do
not know its exact value. This example shows that sometimes it is easy to compute
Cni(a, X') at some point a € (0,2), but not at a = 0.

(2) Let 1 <p <2 and let the norm on X = R? now be defined by

”.‘L‘”l if T2
llzll =

2
||$”p if zyz2 €

Under this norm, it can be shown that dx(1) = 0, Cny(X) = 1 + 2%/7-2 J(X)
> 2P and Cnjy(1, X) < 2, where James’ nonsquare constant J(X) is defined by J(X)
= sup{min{l]:c +yllllz — v} : =,y € Sx}. The verification that Cnjy(1,X) < 2
follows by an argument similar to that given later in the proof of Theorem 3.15. We
shall shortly see that all spaces X with Cnj(1, X} < 2 have uniform normal structure
{Corollary 3.7). This example also reveals that we may have Cnjy(X) close to 2 but still
have uniform normal structure (also see the observation given later at the beginning of
Remark 3.16).

These examples show that information on Cnj(a, X) for general a proves to be
useful. We note in passing that Cnj(1,{2(X)) < 2 whenever Cny(1,X) < 2, where
1;(X) is the space of sequences (z,) of elements of X for which the sequence of norms
(l|zall) is in 2, with the norm of (z,) defined to be the {2-norm of (||z,||).

We aim to show that the generalised Jordan-von Neumann constants Cnjy(a, X) of
the space X and Cuj (a, X ) of its ultrapower coincide. Before that we need to establish
the continuity of the function Cni(-, X).

PrRoPOsITION 3.3. Cni(-, X) is a continuous function on [0,0c).

PROOF: We have already noted that Cn3(-, X') is nondecreasing, thus suppose that

for some a > 0,

sup Cni(b, X) = aa < 8 < v = inf Cni(b, X).
b<a b>a

Choose v, | a and z,,¥yn, 2n € Bx of which at least one belongs to Sx and such
that |[yn — znll = Ynllznil and 9(Zn Yn, za) 2 B for all n € N. Here g(z,y,z)
= (lz + yli> + llz — (1%} / (2ll=/1* + |lyl* + ||2}|*) . Choose 5, I 1 such that v,/7. < a
for all n. Thus, ¢(aTn,¥n 2n) = 9(Tn, (¥n/Mn). (za/7n)) < a for all n € N. Take a
subsequence (n’) of (n) such that all the sequences

"In’ -+ yn’”! ”Iﬂ' - zn’"~ ”In’"l ”yn'” and ”zn""

converge. As ||Tn+w| — (7n — Dlzall € I9nza+wll € l|Zn+wll+ (7, — 1)]lzal| for any
w € X and 1, — 1, we have lim,s ||7,/Tps + yor|| = limyr [|2r + Yo || and lim,/ 7,2,
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— zpv|l = limy, |znr — zpe||. Consequently, 8 — a < g(Tns,¥nr, Zpt) — G(Mnt Tty Ynts 2nr)
-+ 0, a contradiction. This finishes the proof when a > 0.

For a = 0, given € > 0 we take a triple (zn,¥n,2n) in B} with at least one of
Tn,Yn,2n belonging to Sx, |lyn — za|| = anl|zall, @n 1 0, and

Cny(0+, X) — € := infCny(a, X) —€ < Um g(Zn,¥n, zn)-
a>0 n—oo

Put ¢, = 4an + a2 and v, = anl|zn||(llynll — anllzall) . Thus e,, ¥ — 0. Passing
through subsequences if necessary, we may assume that lim ((|za[|*+[|lyn{|?) = b exists.
00

By the choice of (zn,Yn, zn) we see that b # 0. Next we observe that, for all large n,

|zn + yn”2 + [[Zn — yn“2 + En
2|[zall? + 2l|yall* = 7
En + YIng{(Tn, Yn, yﬂ)
2{zali? + 2llyall> — 7n
£n + 1 Cna(X)
2|l zall® + 2llynll2 — ¥

9(Trn,¥Yn,2n) £

£ Q(Inn Yn, yn) +

< Cnp(X) +

Thus Cny(04,X) — € < Cni{(X) € Cn3(0+, X) for all € > 0. Therefore Cpn3(0+, X)
= Cn3{(X) which implies that Cnj(-, X) is continuous at 0. Hence the continuity of
Cni(+, X) is established. 0

We are now ready to obtain an important tool.
COROLLARY 3.4. Cni(a, X)=Cny (a.f).

PROOF: Clearly, Cny(a, X) € Cns(a, X). To show Cnila, X) = Cnifa, X), let
6 > 0, € [0,a] and suppose Z,¥,Z € X not all of which are zero and for which
¥ — Z]| = «||Z||- If £ =0, then ¢(Z.7.2) = 1 < Cns(a,X). If T # 0, choose € > 0
such that £ < §||Z]|. Since

-, —~2 - _ 2 2 _ 2
Z+a"+NZ =2 e+l iz —

TRAEE + I EE 2l + TyallF + Tzall®

the set {n € N:|cp —c| < § and ||lyn — za|| < allza|l + & < (& + 8)||zal|} belongs to .
In particular,

c< Q(Invyrnzn) +4
< Cny(la+6,X)+ 6 for some n.

The inequality Cny (a.)?) £ Cnifa, X) follows from the arbitrariness of § and the
continuity of Cnj(-, X). ]
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This result also follows from the fact that the parameterised Jordan-von Neumann
constant is finitely determined.

The following Lemma is a modification of [6, Lemma 2.3].
LEMMA 3.5. Let X be a Banach space without weak normal structure, then for
any 0 < e <1 and each 1/2 < r €1, there exist ) € Sx and za,73 € rSx satisfying
(i) T2—zx3a=az, withla—r|<e¢,
(i) ||lx1 —z2l| > 1—¢€, and
(iii) Jlzy +z2ll > (1 + 1) — ¢, ”173 + (—Il)” >(3r—1)—e.

ProoF: Put n = min{(e/12r),2 — (1/r)}, and let 2, be a sequence in Sx with
Zn — 0 and
l-n<|lzapr—zll<1+7m

for sufficiently large n and for any z € co{z}J_,. Take ng € N, y € co{2,},2, and a
norm 1 supporting functional f of z; such that

1
”y” <”?. I(f!z'no)| <77: 1—’?< “zﬂo_zlllv z“O -5 < 1+n’
2

and

-

> 2 — 3n.

2z - zﬂa -z
n
|E3Y 0

- Zﬂo“

Put z; = (21 — zng)/{|lz1 — Znell), 2 = rz; and 73 = rzn,. We show that (i), (ii)
and (iii) hold. We first note that z2 — 23 = r(2; — Zny) = rllz1 — 2Znyl|z1. Observe that
1 -1 < |lz1 — zaoll € 1+ 1, 50 |r]lzs — znll — r| < rn < &, hence (i) holds. Next, since
1/2<r<1,

|r(1 + 121 — zngll) — 1| =r(1+lz1 —znpll}) —1<r(249) —1=(2r — 1)+ rn.
This implies

z1 — z2|l = ||rz1 + (1 = r)zy — 7|21 = 2, llT1 = 25,
> rllzy — zaoll — |1 — 7 = 7llz1 — zn, i
>r(2—-3n)—-(2r—-1)—17
=2r—3rn—-2r+1—ry
>1—-e.

Thus (ii) follows.
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To verify (iii) we first note the estimate |rz; — TZng, — Tnll = “(1 —r)z) + r(z,

- (zy — z,,o))” €{1~-r}+rn < (1 —r)+ry. Using this we have,

||171 — 3| = [|lz1 — rz,.,o||
2 [[rzng — (rzi = rzap)l = lIrz1 — rzag — 21l
2 2|z = 2| - (1= r) =y

>2r—2rp—(l—r}—ry
> (3r—1) —e¢.

We now estimate ||z, + z2||. From the definition of f, we have

lzy + z2|| 2 {fiz1 +rz1) =1+ {f, 1)
(fnzl) - (f’zT10)
Ilzl_zno”
S Rl |
147
27
= (T+l) — m

>(r+1) -«

=71 +

The proof of the Lemma is now complete. a

We now obtain sufficient conditions for X to have uniform normal structure, the
second of which improves [13, Corollary 4] which states that “A Banach space X with
Cni1(X) < 5/4 has uniform pormal structure.”

THEOREM 3.6. Let X be a Banach space. If

(1+r)?+@r-1)°

CNJ(T,X) < 2(1 + TZ)

1
, forsome r e (5,1] .

or
3+
4 ]

)

Cni3(0, X) <

then X bhas uniform normal structure.

ProoOF: It suffices to show that these conditions imply X has normal structure,
As then, by Corollary 3.4, it follows that X also has normal structure, so X has
super-normal structure, by Corollary 2.4, and hence X has uniform normal structure
by Theorem 2.5.
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For the case Cny(r, X) < ((1+r)® + (3r = 1)®)/(2(1 + r?)) we first observe that
from Remark 3.1(3), X is uniformly nonsquare and so in turn is reflexive. Thus, normal
structure and weak normal structure coincide. It then suffices to prove that X has weak
normal structure.

By the continuity of Cni(-, X), Crna(r, X) < (1 + 1)+ (3r — 1)) /(2(1 + r2))
for some r’ > r. Choose m € N such that r + (1/m) € r’. Suppose X does not have
weak normal structure. By Lemma 3.5 there exist z,, € Sx and y,,z, € rSx such
that, for each n € N,

Yn — Zn = ApTn with |cr...—r[<n+m,

1
n+m

2 2
2
, + > (1 +r — ) \
) ”In yn” n4

Iz = yall? > (1 -

and

2o — 2all? > (Br - 1) = ——)"

Observe that ”yn — z"” =, <r+ (1/7’1 + m) < r+ (I/m) < ' and

liminf ||zn + yall? = (1 + 7)? and liminf |z, — za|? 2 (3r — 1)°.
i =—b OO n—+o0

Thus
2 2 2
1+n?+@r—1) o llzn F ynll? 4 e = zall
. < Iiminf
(3.1) 2(1 + ) o 2zl + Twmll? + N2l
€ Crna(r', X)
(1+ r‘)2 + (3r - 1)2
2(1 +r?) ’

This contradiction shows that X must have weak normal structure as desired.

For the case Cnj(0,X) < (3+ \/5/4, we first show that Cnj3(0,X)
< ((1 +7r)> +1)/(2(1 +r?)) for any r € (1/2,1]. The proof of this is the same as
above except that here we consider the lower bound (1 — (1/m + n))2 for ||zn — yal)®
instead of the one for ||zn — 2a||?. Thus (3.1) becomes

2 — yall® 14+r)>+1
2 + ¥nll® + 120 —¥all® o o0 g xy < LT+

Q+r+1 _ .
> g liminf 2(1 + 12)

2(1 + r2) n—t oo 2("1:.1"2 + “yﬂ”2)

which is impossible. The conclusion now follows by noting that ({1 + ?+1)/(2(1 + r?))
achieves a maximum of (3 + v5)/4 at r = (V5 ~1)/2 € (1/2,1].
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NoTE. The restriction r € (1/2,1] in the first inequality of Theorem 3.6 reflects the
fact that for r < 1/2 the right hand side is less than or equal to one. Indeed, from
Remark 3.1(4) the first inequality in Theorem 3.6 is only possible if

2 2
(1+r)"+(3r-1) S14 4r ‘
2(1 + r2) 4+r2

thatis, if r € (ry, 1] where r, = 0.87 is the real root of the polynomial 2z*—3z2+8z—6.
Thus, Theorem 3.6 only gives us information near r = 1.

COoROLLARY 3.7. Let X be a Banach space. If Cn3(1,X) < 2, then X has
uniform normal structure.

ProoF: This follows immediately from Theorem 3.6 with r = 1. 0

Utilising Corollary 3.7, Tasena [26)] has shown “Cnifa, X) < (1 +a)2/(1 + a?)
for some a € (0,1] implies X has uniformm normal structure”. This improvement of
Theorem 3.6 is quite strong since

4a (1+a)’+ (3a- 1)?

(1+ 0)2
4+a? 2(1 ¥ a?)

1+ a2

>max(1+ )foraG(O,l).

We now consider the case when X is a Hilbert space, thereby extending Remark
2.1(2).
THEOREM 3.8. Let H be a Hilbert space. Then

4a

Cni(a, H) = 1-%-“_—02

for alf a € (0,2].

PROOF: Let a € [0,2] and z,y,z € H with  # 0 and |ly — z|| = «f|z]] for some
a € [0.a]. Then

Iz + yli® + 1z — =f> _ 2{l=12 + 'wl® + [l2]® + 2ll=illly — =]

2/|z)|2 + llyh2 + Hz)|2 ~ 2'z)12 + (vl + ||=]|?
e 2a]|”
S 20+ (ly - 212+ Ny + 2]12) /2
B ¥ 1
= 2|z -+ lly — z[I?/2
4a

=l i

. 4a
<1+ m

Thus, by Remark 3.1(4), Cni(a, H) = 1 + (4c}/(4 + a?). O
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QUESTION. Is X a Hilbert space if Cnj(a, X) =1+ (4a)/(4 + a?) for some a € (0,2)7
Theorem 3.8 and Corollary 3.7 give us the following

COROLLARY 3.9. Every Hilbert space has uniform normal structure.

We now give a connection between the constant Cny(-, X) and the modulus of
convexity dx(-) (sce (2.2)).

THEOREM 3.10. Let X be a Bapach space, € € [0,2}, and B > 0. If
Cn3(B.X) < (44 (e = BY)/(3+ (B+1)?), then dx(€) > 0.

PROOF: Suppose éx{¢) = 0, then there exist z,,yn € Sx such that l|lzn —ynl|| = €
for all n € N and lim ||z, 4+ ya|| = 2. Put z, = y. — Bz.. Then, for each n € N, we

have Yn — Zn = frn, |I2n” = ”yn - ﬁIn” £ 1+ 7 and “-rn - -zn“ 2 len - yn” - ”.BrﬂHl
= le — B|. Thus
2 2
4 + - n n 2 n " <n 2 4 -
(€= g LTl oz = 2all? o Ak =)
3+ (8+1) n=oo 2firal]? + [lynll? + [zl 3+(B+1)
a contradiction. g

Note that Theorem 3.10 is applicable for all g € [0, §1] where 3, is the root of the
equation

4 4 (- 8)°
+ _ = 5

1+5° 3-(1+5)

The above theorem immediately yields the following.

COROLLARY 3.11. If for £ € (0,2]), Cx;{0,X) < (4+¢€?)/4, then §x(e) > 0.
In particular, every Hilbert space is uniformiyv convex, that is, éx(e) > 0 for every
e (0,2).

1

REMARK 3.12.
(1) Corollary 3.11 shows that if Cn3,.Y') < 5/4, then éx(1) > 0.
(2) Cni(0,X) < 2 ifand only if Cx: 0,X) < {4+ €2)/4 for some € € (0, 2).
Thus, this gives us a simpler proof of {13, Theorem 1] which states that
“Cni{0,X) < 2 if and only if X is uniformly nonsquare.”
(3) Since Cni(0, X) = Cny(0, A7), tue corresponding results in Theorem 3.6
and Corollary 3.11 hold for X~ as well.

QUuEsTION. Does the equality Cni{a, X) = Cx;{a, X*) hold for a € (0,2]7?

CoROLLARY 3.13. If Cniy(-,X) is concave and Cni(e,X) < (3 + /5
+(5—V/5)a)/4 for some a € [0,1], then X has uniform normal structure.

Proor: If Cns(1,X) < 2, we are done by Corollary 3.7. Let Cnjy(1,X) = 2
and suppose that X does not have uniform normal structure. Therefore Cn;(0, X)

32



[13] Jordan-von Neumann constants 237

> (3+ \/5)/4 by Theorem 3.6. By the concavity of Cnj(-, X), we have for all a
€[0,1],

Cni(a, X) 2 (1 —a)Cns (0, X) +aCni(l, X) =

3+\/5+(5—\@a
4 ]

a contradiction. 1]
QuesTION. Is Corollary 3.13 still valid if we drop the assuption of concavity?

REMARK 3.14. In the definition of a u-space (see (2.4)), we can replace z,y in Sx by
T,y € Bx. To see this, we first observe that, ||z|| = ||z + || — [l¥|]. Thus,

(3.2) if z,y € Bx and “IzﬂH > 1 — & for some § > 0,

then ||z]|| = 1 ~ 26 and |ly|| 2 1 — 24.

From (3.2) if we put =’ = z/||z|| and 3" = y/|ly|| we obtain

||Il+yl

+
(3.3) > 1 — 36, whenever ||¥H > 1—4

Indeed, (3.3) follows from the fact that ||z' — zf| < 26 and ||y’ — y|| < 26, together with
the inequality
Iz’ + 'l = [z + vl = |l =zl = Iy’ — vl

Now, given any ¢ > (, choose & € (0. (3¢)/4) so that for 'y € Sx,

B TV |l> 16 f(y) > 15 forall f € Vi

Then, if 7,y € Bx, and ||(z + v)/2|| > 1—(6/3), (3.3) implies that [|(z' + y")/2|| > 1-6
where ' = z/||z|| and ¥ = y/|ly|]|. Note. by (3.2), that (|’ — y|| < (28)}/3. Fix
f € V. = V. and consider the inequalities

F+ 5> W+ 25 f+ I — vl 2 S+ F - = f6) > 1=

Consequently, f(y) > 1 ~ € as required.

THEOREM 3.15. For 1 < p < oo, all LP(f2) spaces satisfy Cni(1,LP(f2)) < 2.
Indeed, all u-spaces X have Cniyfa, X) <2 forall 0 <a < 2.

PROOF: Suppose Cny(2—6,X) = 2 for all sufficiently small § > 0. For one
such & choose Tn,¥Yn,zn € Bx of which at least one belongs to Sx and such that
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l¥n = zall € (2 — 8)||zn]|| for each n and G(ZTn, Yn, zn) 7 2. Consider

B P i L
(3:4) 9@ 2) = SR+ Tl + eI

< 2=l + 1yl + [I=1 + 2(i=livll + lzfl=]})
2fl=)l® + llyli® + =11
2(ll=llyll + =21

2012l + Tyll® + M=l =
This implies
2l znlllgall + 2zalllzall ,
2[znll? + llynll® + llzall®
and then )
(znll = ynl)® + (Qlzall = Izl _, o

2lzall® + llyall? + lznll?

Since, for each n, one of z,, yn, 2, belongs to Sx, we must have ||z,¢||, [|ytas |, | zne |l = 1
for some subsequence (n') of (n). From this, together with (3.4), one can conclude
that

(35) ”In' + yn’nv “In' - zn'l[ — 2.

Take fnr € V; , for each n. Since X is a u-space, we have, by (3.5) and (2.4),
far(zpnr — yar) = 0 and fu(zpr + 2z, ) = 0. Therefore,

2“2n’” = 2fn’ (In') = fn'(xn’ - yn') + fn‘(:’:n’ + an) + fn’(yn’ - zn')
< fn’('rn’ - yn‘) + fn’(In’ + zn') + ”yn’ - zn’"
< fn’(:rn‘ - yn’) + fn'(In’ + Zn‘) +2— 4.

Thus, 2 £ 2 - § a contradiction. g

REMARK 3.16.
(1) In [2], it is shown that Cnj{(LP) = 23/9~1 for 1 € p < oo, where
t = min{p,q} and (1/p) + (1/q¢) = 1. Thus, while Cnjy(LP} is close
to 2 for p large, or near 1, Theorem 3.15 still applies and says that for
1 < p < 00, all L? spaces have uniform normal structure.
(2) As a measure of uniform nonsquareness, we say X is €-ingquadrate (e-
InQ), for 0 < € < 2, if for any sequences (Zn),(yn) in Bx,

|z + ¥nll — 2 implies limsup ||Zn — ynl| < &
n—X
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In [26], Tasena introduces e-u-spaces and e-u-smooth spaces and proves
that “all £-u-spaces have Cnj(2~6,X) < 2 for all § > 2. He also
observes that € — In@Q spaces are £-u-spaces.

(3) A long standing open problem is whether Cny(0,X) < 2 implies the
fixed point property. It now appears that Cnj(1, X) < 2 implies uniform
normal structure which in turn implies the fpp. Concerning this open
problem, it is interesting to ask what is the smallest a € (0,1) for which
the fpp follows whenever Cyj(a, X) < 2.
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ON SOME LOCAL GEOMETRY OF
MUSIELAK-ORLICZ SEQUENCE
SPACES”

S. DHOMPONGSA and S. SAEJUNG

Abstract

Criterions for strong U-points. LUR-points, WLUR-points, CLUIR-points
and WCLUR-points in Musiclak-Orhicz sequence spaces endowed with the
Luxemburg norm are given.

Key words and phrases: strong U-point, LUR-point, WLUR-point, CLUR-
point, WCLUR-point and Musiclak-Orlicz sequence space

2000 Mathematics Subject Classification: 46820, 46E30

1 Introduction

Let M and R stand for the set of natural numbers, and the set of real numbers,
respectively. For a Banach space X, we denote by S{X} and B(X) the unit sphere
and the closed unit ball of X, respectively. A point x € §(X) is called an exfreme
point if 20 = y+ z and y.z € B(X) imply y = z. A DBanach space X is said to
be rotund if every point in its unit sphere is an extreme point. A point z € S(X)
is called a strong U-pornt if ||%¥|| = |ly/| = 1 implies £ = 4. It is easy to see
that every strong U-point is an extreme point. But the converse is not true (see
Theorem 2.1 and Example 2.3 to follow). This also follows from Cui, Hudzik and
Meng [2] and Grzaslewicz, Hudzik and Kurc |5]. However, if X is rotund, both
notion coincide.

A point = € S(X) is called an H-point if for any sequence {z,} in S(X) with
T — rimplies T, — . A point x € S5(X) is called a locally uniformly rotund point
(LUR-point, for short) if for any sequence {z,} in S(X) such that ||z + z,| — 2
implies

(1.1) T, — .

*Supported by Thailand Rescarch Fund under grant BRG/01/2544 and the sccond author
was also supported by the Royal Golden Jubilee program under grant PHD/0145/2542.
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2 ON SOME LOCAL GEOMETRY OF MUSIELAK-ORLICZ SPACES

(L) s replaced by oy 55 50 we eall r a weakly locally uniformily rotund point
(WLUR-powt). Apain. if {1 1) is veplaced by {r,, - n € N} is relatively compact
with respect to the norm topology (weak topology, resp.) in S(Y), we call z a
compactly tocally uniferindy rotund pont (ecakly compactly locally uniforimly rotund
pornt. tesp.}) (CLUR-paint, WCLUR-point, resp.). Tt is easy Lo see that £ € S{(X)
is an LUR-pomt il el ondy af 1t is a strong U-peint and a CLUR-point, il and
only if it s an H-pomt and a WLEUR-point (see |2]). We say that a Banach space
A has one of the above properties if every point of S{X'} has the same property.
For instance. X s loeally aniformly rotund (LUR) 3T and only if every point of
SIEN) ~ an LUR-point From the above observation, we can conclude that, X is
LURf and only if it s rotund and CLUR, if and only if it is WCLUR and has
property (Hy

In this paper we follow the “local™ approach to the geometry of Musielak-Orlicz
sequence spaces We are maindy interested in properties of the unit sphere instead
of properties of the whole unut ball. More precisely, we shall investigate those
points that appear to be strong U-points. LUR-points, WLUR-points, CLUR-
points and WOLUTR-pounts

Since every Orlics space s an example of a Musielak-Orlic s space, this paper
contams all results o [2] even withont assuming that the corresponding Orlicz
function s an N-function,

A funcuion ¥ R — [0, x) s said to be an Orlies funefion if ¢ vanishes at zero
and @ is even. convex and not identically equal to zero. A sequence ® = ($,) of
Orlice functions @, is called a AMuseelak-Orlicz function. In addition, a function
¥ = (¥,) 15 called a ramplementary funchion of a Musielak-Orlicz function @ in

the sense of Young if
P o) o= supd|e|u — @, (1) - uw > 0},

i € M. Denote by { the space of all real sequences © = (z{i)). For a given
Musielak-Orlicz function €, we deline a conver modular I4 - 1 — [0,00] by the

formula

Ja(r) = Z¢.(r(i))-

=1

The Austelak-Orlicz sequence space lg is the space
l4 = {x € 1: [p(Ax) < oc for some A > 0}.
We consider (4 equipped with the Luremburg norm
[lrll = inf{A > 0 : Io(x/A) < 1}

To simplify notation, we put lp = (I, || - ||). Moreover, lg is a Banach space (see

181).
The subspace hg, called the space of finite (or order conlinuous) elements, is

defined by
he = {x € lp : [o(Ar) < oo for all A > 0}.
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5. DHOMPONGSA and S, SAFJUNG 3

Detine
) = anl{x ~ 0 g /N < x )

It is clear that £ € fip if and only il 8(r) = 0,

We say a Mitelak-Orlics Tunction € satesfics the 8y-condidion (4 & §2) if there
exist constants A 7 20w > 1 and a sequence () of positive numbers such that
ST o < x and the inequality

dro2u) < A {u) + o

holds for every + ¢ N and v ¢ R satisfving & (u) < uy.

Tt is well known that hy = lp if and only il & € &, (see [6]).

Moreover., we sav a Musielak-Orlice function @ satesfies the (=)-condition if
for anv & < (L 1) there exists a 4 > 0 such that, for all 1 € N and v € R,
@ (1 + &y~ 1 whenever Dind < 1 — ¢ (see [7]).

In order to obhtain some resulis. we will use the following well-known facts.

Lemma 1.1 (See (7)) {f a Musielak-Orhez funciton & = () salisfies the (x)-
conditiorn. ¢ < Ay and each b, vanishes only at zero. then

() for rach 2 = 0, ther eoists 6 = 0 such that
Hair) — le(y)i < ¢
whenever fo{x) < 1. Ia(y) <1 and fe{r — y) < 4,
and

(i1) for cach £ > O, there ensts 8 > 0 such that Te(x) 2 1 — ¢ whencver x|l =
1 -4

Lemma 1.2 (See |3, Lemma 3]) If ¥ € 3. then there exst § € (0,1) and a
sequence (h,) € R, such that 3,2, ¢, (k) < o0 and

for every i € N and u safisfiing ®,(h,) < ¢, (u) < 1.

Lemma 1.3 (See (10, Lemma 10]) If ¥ € 62 then there exist an increasing se-

quence of natural numbers 0 = Ip < I < --- and a set {u*} of positive numbers
: that
such tha Ky o L & uk > {1 1\ & {u})
¢l(u!) = E! T ? k 2

foralli=I._,+1..... Iy, and

It

ST aul) > 1

i=f_1+1

Jor alt k € N.
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4 ON SOME LOCAL GEOMETRY OF MUSIELAK-ORLICZ SPACES

Lemma 1.4 (Scc |9]) Supposc that a Musiclak-Orlicz Junction & = (P;) salisfies
the (»)-condition, ® € 8, und each ®, vanishes only al zero. I {x.} is a sequence
in B(lg) such that ||z,)| — | and x,, — z coordinatewise where = € S{lg), then
Ly, — T 0 NG,

2 IResults

An interval |a,b] is called a structural affine interval (SAI) of an Orlicz function
A if Af s affine on la, b, ie.

M(Aa+ (1 — A)b) = AAM(a) + (1 — AYM(b)

for all A € |0, 1], but not affine either on [a — €,b] or [a,b+ €] for any € > 0. Let
{lan.bnl}n be the set of all SAls of Af. Define

SCJ\I =R \ Un(arllbn)-

We also define

SCy; = {u € SCha: there exists € > 0 such that M is affine on||u| — ¢, |u|]},
SC{, = {ue€ SCyps: there exists € > 0 such that M is affine on||ul, [u| + £]},
and

SC% = SCum\(SC; USCH).

Let apr = sup{u € R : M (u) = 0} for any Orlicz function A.
Our first result is a generalization of Theorem 5 from [2] from Orlicz spaces
into Musielak-Orlicz spaces. However, we do not assume about ¥ that they are

N-functions as it was done in {2].
Theorem 2.1 et x = (2(i)) € 5{le). Then x i3 a strong U-point if and only if
(i) Ie(z) =1,
(ii} there do not exist indez i such that agp, > 0 and |x(i)| € [0,a4,],
(iii) 6(z) < 1,
(iv) if (i) € SCaq, for all i, then there do not exist two distinct indices j, k such

that z(j) € SC{ and 0 # z(k) € SCy,
and J

(v) if z(io) € SCo,, for some io, then z(i) € S5C3, for alli # ip.

Proof. Necessity. Since every strong U-point is an extreme point, (i) is satisfied
(see [9]). It is easy to see that (ii) is also satisfied.
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S. DHOMPONGSA and 8. SAEJUNG 5

Let us prove (iii). Suppose that condition (iii) is not satisfied, i.e. 8(z} = 1.
Thus Ie(Az) = oo for any A > 1. Without loss of generality, we may assume that
x(1) # 0. Deline

y=(0,r(2),z(3)....).
Obviously x # y. By the monotonicity of the norm and the equalities 8(y) =
8(*%¥) = 1. we have |y|| = ||Z+¥| = 1. Hence z can not be a strong U-point.
Next, we suppose that (iv) docs not hold. Then z(7) € SCy, for all i € N but
there exist two distinct indices j, k such that z(j) € SC»’;,”J and 0 # z(k) € SCg, .
For convenience, we may assume that j = 1,k = 2. Choose £ > 0 such that

Ti(n) = Aywu+ DB foruel|lz(l)],|z(1)f+¢] and
da(u) = A;u+ B, forue|[[x(2)] - ¢, |x(2)]).

Choose €1,£2 > 0 such that max{e;.€2} < € and A&y = Azes. Define

y = ((lx(D] + 1 )sgnz(1). (2(2)] — e2)sgn x(2), z(3), z(4),. . ).

Then
Ia(y) = ¢ (lr(D) +e)) + 02([2(2)] —2) + D Pul(x(k))
k=3
= Az + &) + By + Ao(|£(2)| —2) + B2 + D _ Px(x(k))
=3
= @ (x(1)) + L2(x(2)) + Y Palz(K))
k=3

= Iu(z) = 1.

Similarly, we have [y (ZX%) = 1. Hence |yl = 152l =1and z #y. Thisis a

contradiction.
Condition (v) can be proved as condition (iv).
Sufficiency. Let z € S(le) and conditions (i)-(v) hold. Take any y € S(ls)

with ||z + vl = 2. We put (o, 9(—'?5) = (0,00) if 8(x) = 0. Observe that A r—
I+ (Ax) is continuous on (0. ﬁl;;) Let € € (0. %3—). Then 5 > 8(x) and so

Is (:—j—gz) < oo. Moreover,

+
1 < I¢((1+s)¥)
l—el+e l4e
= I"'( 2 T_e 7 2 y)
1—¢ 1+¢ l1+¢
I .
< 5 1¢(1_E$)+ 5 1+(v)
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6 ON SOME LOCAL GEOMETEY (3 MUSIFLARK-ORTICY SPrach

Letting ¢ ™, 0 vields fa{y) = 1. Sinee 5o gy = 212 sl e Tt e
CONVEX, i

1 Jo oy Vo

3 ( e J') .‘ 1

Le ~ S
Thus, the procedure can e repeatesd by replaoing y by 2222 aned ahaagrae 740 772

1 as well. Conscquentlv, for cach 12 T enthier w00 and g £l i e wene SAT
or r{i) = ().

We have two cises to consider, noanely, the ocourtence of conditions an s
and (v). First, et us assme thae riey @ SCq 0 for all o= T We s s thae

T

(i) 2 0 for all 1 & I, There are two subeases to consider
Subcase 10 0 F i) o SC, or () = SO for all =

Let A = {1 eli U= orys SC L Then for each o A there are constant s
., > 0.A4,. 8, = = suchi tha

b (u) = Au+ 13, for e i) = SR R TN IT) B VT N R N U B A

Observe that 7(r) = aq, il 02 40 Henee 4 = 0 for all @ = 1 Siwee i) et

all i € B\ A and 1.1.(%3} = fyptry — 1.
Liel = i
l]»l ( 3 )

Z(AI-T(«'].‘-"_U(H+“I\) _
sl

L]

1.0

-

- NT A ) - I3y

-

and thus

Since A, > 0 and r{e} = wi).
riry = yir)

for all 1 € A. This immphes that rii) = (i) furallt & N and so 57 =y

Subcase 2: r{1) € SC';,' or r(1) = or 7{1) € 5C, forall 1 & I If r(1) £ 0.
then r(i) € 5C; WSCy, . On the other hand. il £(1) = U, we see by condition
(ii) that ae, = 0. from winch we can conclude that r(1) € §C{ U SCy as well
Hence, in any case, either r(1) € SCy, or ra) € SC‘Q,_ holds. Let 2 = {v € M :
z(i) € SC4 }. Similarly, we conclude that (1) < y(1}Y for all i € B and r(1) = y(1)
for all i € N \ 3. Then, for cach 1 € I3, there are constants Age, > 0.0, € Rsuch
that

&, (u) = Au+ 3, for e {r(t)l ) +6,) and y(1) € |r(1). r(1) + £,).
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S. DHOMPONGSA and 8. SAEJUNG 7

We apgain hive

e £ [

l_( A, L({_)+ (1) +h’,) — Z(A,f(a)+f3,).

This omplies that e - gie) for all € 12 Hence o = = y.
Fually, suppose that rg) o S¢° 4, and r(i) € .5("1’, for all 1 # 75, We can

conclade thiat wier = y() for all ¢ % 5, and hence P, (I“” *”('”}) P, (rlig)).
From rind ¢ 50 e, and the condition (i), we must have Llig) =0 = ag,, and
hetice gl o The proof is now complete, 3J

Reeall thar o Nakuno soquence space U s a Musielak-Orlies sequence space
with

Doty o T
where b -0~
Corollary 2.2 11w (i) = SUY 0 Then v s a strong U-point of and only
rf )
O NI b

(ny My - 1 agand

(i) of there ermsts 1y such that r(g) £ 0 and D, = 1. then p, > 1 for all i # 4.

Example 2.3 We conxidder o Nakano sequence space 107} Recall that, in this

cane. d () = 1ui'J. et 0= (r(r}}. where .r(z' =(1/2)"* It is easy to see that x
is an extrenw point But Luiar) = 57 3' = Z;I(\?)‘ = oc for any A > 1, so
#{r) =1 Henee oo not aostrong U -pmm.

Theorem 2.4 Suppose tha! § sehisfies the (x}-candifion and each P, wamishes
only al zero. Then the follpuang statements are equivalent for r = {r(i)) € S(lg):

(1) ras n CLIUR - pomt:
(2) o orsa WOLE R -poant:

(3) @ & 8 und crther W € 3y or x(7) € {0} USCy, \ SCy for cveryi € N.

Proof. Cleariy, (1)=+(2). To prove (2)=(1}. it suflices to prove that (2) implies
that lg has property (H), ie. @ € &2 (see [9]). First, we prove that 6(r) < 1
whenever 1 ix a WCLUR-point. Otherwise, we have I¢(r) < 1 and [¢{Az) = oo
for anv A > 1. Let {£,} be a sequence in 5(ls) defined by

R

I, = Zr(i)c,.

=T
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8 ON SOME LOCAL GEOMETRY OF MUSIELAK-ORLICZ SPACES

It is easy to see that ||r, + z|| = 2 for all n € N. Since r is a WCLUR-point,
we may assume that there exists an x’ € S(ls) such that z,, 2 z’. This implies
z' = 0, because weak convergence implies coordinatewise convergence and {z,}
tends to zero coordinatewise, which is impossible. So, the necessity of 8(x) < 1 is
proved. We now prove that ¢ € §, is necessary. Suppose that ® ¢ 4, then there
exists u = (u/({)sgnz(i}) such that u'(i) > 0. Is(u) < 1 and Ie(Au) = oo for any
A > 1 (see[6]). Since §(r) < 1

[s{ar) < x
for some a > 1. For each n € N, we define the sequence {z,} by
e
I, =r+ Z zou(ile
t=n+1

where g = 1 — L.
Next, we prove that ||zl — 1. For this let € € (0,1). Setting A =1+ ¢, we
havey;+—f:/\ < 1 and

() - Soe (2

i

s o (%

1=

for all n & N. Note that Te(z/A) < Ig(x) < ¢ < 1. Choose N > 0 so that

1 — . 1 — Igp(xz/A)
I
and
E'O Z ‘b (u(l)) < _I‘Z(I/)‘)
i=n+1

for all n > N. Then |jzpf| £ A = 1 +¢ for all n > N. This shows that
lim sup,, e |Znl| € 1. By the monotonicity of the norm, we+ha\|re lznll = 1
for all n € N. Hence ||zn|| — 1. Obviously, 1 < | a2 < lzall+lizl _, 7. Thus
|lzn + z|| — 2. Since z is a WCLUR-point, we conclude that there is z’ € S{ls)
such that T, — x' for some subsequence {zn} of {zn}. Consequently znp — z’
coordinatewise. However, by the definition of z,, it is easy to see that =, — x
coord1na.tew1se Consequently ' = x. Now we may assume without loss of gener-

ality, that zn = ] ]
Finally, since it can be shown in an analogous way for Orlicz spaces in [1] that

inf |lu—yll=6() =1,
yEhae
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there exists u® € S(l3) such that u*(y) = 0 for all y € he and u*(u) = 1. This
implics

wzrn, —r)=u" ( Z Eou(i)f") =u’ (Z Eou(i)e,-) = gou’ (u) = €o,

f=r+1 i=1

contradicting to the fact that r,, < x. Hence the necessity of & € 8 for (2) and
s0 the implication (2)=(1) are proved.

(1)=>(3): Assume that x € S(lg) is a CLUR-point. Thus, as it has been shown
above, ¢ € &2 holds. If the second statement is not satisfied, without loss of
generality, we may assume that ¥ & é; and 0 < z(1) € 5Cq, \ SCg,. So there
exist constants €, 4 > 0 and I3 such that

O (u)=Au+ DB for ue[xr(l)—e, x(1)]

and As < 1. Since ¥ ¢ 62, by Lemima 1.3, there exist an increasing sequence of
natural numbers 0 = Iy < I, < --- and a set {uf > 0} such that

N 1 uf LY @u(wf)
(P,(u, ) E E. (I), 5 > 1 x —2

foralli=1i_;+1,...,[; and

I
Z $i(uf) > 1

=l 1 41

for all & € N. For large k& € N, choose Jx € N so that

Ji
1 K
- = O (uy) < Ae.
Ae o < , Z (uf) € Ae
i=fe_1+1
Define a sequence (z,) by
n-—1 Jn
T, = (2(1) — g)es + Z‘T(k)e“ + Z upersgnr{k).
k=2 k=In.1+1

QObserve that

n—1 Fn
Io(za) = D> Bulz(i)) — Ae+ > {ul) <1

t=ln_1+1

Hence

In+ T
R (T)
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10 ON SOME LOCAL GEOMETRY OF MUSIELAK-ORLICZ SPACES

[E | J
» Ae = ul
B B A e D DI 2 (7)
r=1 =4, o141
LN | J
As 1 1 =
> Y i) - S+ > (1 - ‘) 2 h)
=t - - " =1, 141
no 1
As 1 1
D B A e (1 - ;) (Af— %)

— 1

as 1 — oo, This implies that |, + o] — 2. However, if m > n,

o, .

].1»(.1",” - _{'”) > Z ‘IH(U:”) > Ae — —,

T
[EN P

50 ||lry — x|l & A — ,—L This means {x, : n € N} is not relatively compact in
S{lg) which finishes the proof of the implication (1)=-(3).

(3y=(1) Let £ € S({p). We first prove that it ¢, ¥ € J,, then « is a CLUR-
point. Let (r,) € Silg) be such that sep{x,} = ¢ > 0. Since ¢ € §;, there exists

& > 0 such that c
ok 2 § = Ta(y) 2 8"

By Lemma 1.2, there exist a constant 8 € (0.1) and a sequence (h;) C R, such
that >0, @, (h,) < o and

D, (3) <! ;94),(1;)

for every i € N and u satisfving ®,(/h;) < ®,(u) £ 1. And, by Lemma 1.1(1}), there
exists 4 > 0 such that o5’
[Te(x) — To(y)| < 6
whenever fg(x) < 1 and Ip(z — y) < 4. Choose 7g such that
O o0 85’
Z ®,(z(7)) < 4 and Z ®$,(h;) < —6-

i=ig+1 =g+l

Since the set {3..2, z,(i)e, : n € N} is compact,

sep{ i To(i)e;:n € N} > sep{zn} > €.

=10+ 1

Then we can find & such that

oo

Z Ik(i)(‘{i

i=ig+1

> <
=2
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Hence

Then

< %(Zcb,(rk(f)ch.(r(i))) + D 4’(%(1—)) +%§’
1=1 =+l
1 ta . ) 1 —8 i . 22 as’
< 3 (Z@,(rk(:))+¢,(r(r))) + — Z ¢ (zi (i) + Z P, (he) + 6
=1 T =gt 1 i=wa+l
1 ~o o !
< 3 (Z¢, (e (1)) + O, (s r))) g Z P, (xx (2 ))'*‘%
1=+ 1

This implies that || 25| < 1 — §” for some §” > 0, which does not depend on &,

so ||z, + z|] &~ 2.
Finally, we assume that ® € §; and z(7) € {0} USCq, \ SCy for every i € N.
Let (z,.) C S(ls) be such that |1, + z|| — 2. We prove that

(2.1)  theset {ne N:|z(i)] 2 |t.{1)| and |rn{i) — x(i)| = €} is a finite set

for all 1 € N and € > 0. Otherwise, there are eg > 0, ip € N and a subsequence
{zn,} such that

|2(#)] = |zn, (1)] and [£a, (i0) — z(i0)| = €0

for all k € N. Since x(ip) € SCo,, \ SC‘;.O. there exists § > 0 such that

by, (2l ) < 220 @0 (o o)) + B (i)

for all k € N. By the (*}-condition and ® € 82, we get Io(z) = lo(x,,}) =1 and
Te(EatE) — 1. We have

o (212) - S 0, (220 g (Enlo) ali))

i=1,i#ig

< % ; Di(zn, (1)) + Pi(z(2)) - g(%(x..k(io)) + &, (z(i0)))
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< 1-db, (r-u(io); r(fn))

S 1= (),
for all & € N. This implies || r—*zi-f || < 1-4& for some 6" > 0 which is a contradiction
proving that condition (2.1) holds true.
Now we reach the position to prove that xis a CLUR-point. It suffices to prove
that
Tnli) — x(i)

for all 1 € N (see Lemuma 1.4). Otherwise, we may assume, by (2.1), that
&), (zn(0)) — ®5,(x(jo)) 2 €

for some jo € N, ¢ > 0 and for all n € N. Choose j; > jo such that

> €
D, Pl < 5
=5 +1
By (2.1) again, there exists N € N such that
£
(I)I L : 2 ¢'i U g
(£a(0)) 2 @ (D) = 5=
foralli=1,...,j1 and n > N. Then, ifn > N,
1 = [af{x,)
> O (zalio)) + D Pulxa(i))
1<ji.8#J0
. €
> @z +e+ D Pilz(d) - 35
i< 1 i 21
“naFlo
. 2
> D=+
ish
> 1-54%
= 273
£
= 1+ =.
*%

This contradiction completes our proof. O

Corollary 2.5 Let z = (z(i)) € S(P)). Then the following statements are
equivalent:

(1) risa CLUR-point;
(2) z is a WCLUR-point;
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(3) the followeng conddeons hold trae:
) limesup, Loy~ L and
(B8 erther limint, Cope > or ({€ NG o) =0 and p, = 1} =o.

Theoremt 2.6 Suppose that & = (§,) satisfies the (x)-candition and each P, ran-

whes only at 2ovol Lot o= () € S(le). Then the Jollowing statements are
vyricalent:

(1Y oo an LU -pornd:

(2) rosa WLIR-pont:

(3) the folloaeing condilions hold truc:
(1 4 Ss

() o) e SCy forall i e Noand of there exists ig such that 00 3 r(ip) €
SC, o then ¥ € By and there crsts no ander @ 7 iy such that x{z) €

SCQ L and

() of ) @ SCaq o thon g 0y and 1) € SC‘};,‘ for all 1 # 1.

Proof. Obvicusly. (1)=2(2). To prove (2)=(1). let r € S{ls) be a WLUR-point.
Thus £ is a WCLUR-point and then & & &2, It follows that r is an LUR-point.
For the equivalence of (1) and (3%, we observe from [2] that a point & in the unit
sphere of a Banach space is an LUR-point if and only if it is a strong U-point and

a CLUR-point. Then apply Theorem 2.1 and 2.4 O
Corollary 2.7 lLet r = (r(i)) € SUW). Then the following statements are

cquiralent:

(1) or ts an LUR-poni:

(2) r 15 a WLUR-pownl:

(3) the follounng conditions hold true:
P < oo, and

(i} limsup

(il) #f there erwsts an indexr 19 such that x(ig) # 0 and pi, = 1. then
liminf, .acp > 1 and p, > 1 for cvery i # 1o,

3 Global Geometry

The following results are consequences of results in Section 2.

Theorem 3.1 Suppose that ¢ satisfies the (x)-condition and each ®; vanishes
only at zero. The following statements are equtvalent:
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(1) fy s CLUR;

(2) lg s WOLUR:

(3) © € & and cuther ¥ € & or @, 15 strictly conver on (0,97 1(1)] for every
ie N ‘ '

Proof. It suflices to prove (1)«(3). To prove (1)=>(3) we assume that {4 is
CLUR. It is easy to sce that @ € &, holds triue. Suppose that ¥ & da2 and there is
70 € N such that @, is strictly convex ou |0, ‘I)z;'(l)]. We can construct a point
r = (r(r)) € S(la) such that r{ipg) & {0} U S5Cq, \ SCy . Hence « is not a
CLUR-point. ’

{(3)=(1) ix obvious. O

Corollary 3.2 Yhe following statements are equivalent for the Nakano sequence
space (et

(1) im} s CLUR:
(2) 1 s WCOLUR:
(3) the following canditions hold true:
(i) limsup,_, . p, < 00, and
(ii) eddher iminf; oo p, > L orp, > 1 for allie N,

Define o; = sup{u = 0 : @, is strictly convex on [0,u] and ®,(u) < 1}. 1t is
known from |6] that {4 is rotund if and only if ® € 42, each ®; vanishes only at
zero, and ®,(a,) + ®,(o;) = 1 for all ¢ # j. Combining this result and Theorem
3.1, we obtain

Theorem 3.3 Suppose that ¥ satisfies the (*)-condition. Then the following
staternents are equivalent:

(1) lp s LUR;
(2) lo is WLUR:
(3) the following conditions lold true:

(i} & € 8,,
(ii) each ®; vanishes only at zero, and
(iii) either ¥ € 8z and ®i(o:) + ®;(0;) =2 1 for alli # F or @;(0;) =1 for
alli e N.

Corollary 3.4 The following statetnents are equivalent for the Nakano sequence

space 1171}

(1) {7} 45 LUR:
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() Bl s WL
(3) th follownang conditions hold true:

(i) litnsnp, o Mo L and

(Y of there casts an nder foosach that P, = 1 then iminf, . p, > 1 and
ol for ceery oy

Lo s worthwhinle to mention that the last corollary improves Theorem 16 and
Corollary 19 of 4} without assuming the boundedness of the sequence {m}.
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