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Abstract

We introduce a gencralized James constant J(a. X} for a Banach space X, and prove that, if
J(a. X) < (3 +a)/2 for some a € |0. 1], then X has uniform normal structure. The class of spaces X
with J(1. X) < 2 is proved to contain all u-spaces and their generalizations. For the James constant
J(X) iself, we show that X has uniform normal structure provided that J{X) < (I + Jg)/Z, im-
proving the previous known upper bound at 3/2. Finally, we establish the stability of uniform normal
structure of Banach spaces.
® 2003 Elsevier [nc. All rights reserved.

Kevwords: James constant; Uniformly nonsquare space; Uniform normal structure

1. Introduction

It is well known that the notions of normal structure and uniform normal structure play
important role in metric fixed point theory (see [13]). Various properties of Banach spaces
have been known to imply uniform normal structure: J(X) < 3/2 [8], R(X) > 0 [6], and
Cry(X) < (3 + /3 /4 or Cry(l, X) < 23]

In this paper, we first show that the upper bound 3/2 of J(X) above can be replaced by
(1 + +/5)/2. Next we introduce a new coefficient J (-, X} generalizing the James constant
or nonsquare constant. The number J(a. X) is computed for all a 2 0 when X is a Hilbert
space. For a general Banach space X, we show that if J{a, X) < (3 + a)/2 for some
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a € (0, 1], then X passesses uniform normal structure. [n particular, whenu = 1, we give a
class of spaces X" having J(1. X) < 2. Following Gao and Lau [8], we extend the concept
of the stability of the fised point property of Banach spaces (see [1.15.17.20.21]) to the
stability of uniform normal structure. and finatiy show. for example. that it the Banach—
Mazur distance d(X. 1) < (1 + /51/(2/2) for any Hilbert space H, then X has uniform
normal structurc.

Throughout the paper we let X and X* stand for a Banach space and its dual space,
respectively. By By and Sy we denote the closed unit ball and the unit sphere of X, respec-
tively. x, 2 v stands for weak com ergence of a sequence {x,}) in X toapoint x in X. For
x € X, let V, denole the set of norm | supporting functions at x. This is the subdifferential
of the norm of point x. It is nonempty by the Hanh-Banach theorem. We will say that a
nonempty weakly compact convex subset € of X has the fived point property (fpp for short)
if every nonexpansive mapping 77 :C — C(ie ITx — Ty € llx — v|| forevery x. v € C)
has a fixed point i.e.. there exists v € ¢ such that T(x) = x. We will say that X has the
{(weak) fixed point property (pp) il every weakly compact convex subset of X has the fpp.
Let A be a nonempty bounded set in X. The number r(A) = inf{sup,c4 l[x — v[[: x € A}
is called the Chebyshev radius of A. The number diam A = sup, 4 llx — vl is called the
diameter of A. A Banach space X has normal serucrure if

r(Ad) < diam A (1.1

for every bounded convex closed subset 4 of X with diam A > 0. When (1.1) holds for
every weakly compact convex subset A of X, X is said to have weak normal structure. The
normal structure and weak normal structure coincide if X is reflexive. X is said to have
uniform normal structure i infidiam A/r(A)} > |, where the infimum is taken over all
bounded convex closed subsets 4 of X with diam A > 0. Weak normal structure, as well
as many other properties imply the fixed point property. The relevant papers are [9.11.18,

25.27].
The modulus of comexity of X (cf. [2,4.22-24]) is a function Sy : [0,2]— [0.1] de-
fined by
[x + v
Sxie) = infl 1 — ‘ ! 3 Sl IS ve Sy, lx =yl =z €}~

When X is nontrivial. i.e.. dim X 2 2, we can deduce that

Sxie) = infl T ._t T r.ove By, llx—xli2 5}
=inf[1 — Iz +-"}: x.ve Sy, e — i :e}
= inf{l - ”;-" H k. veEBy. llv f_vll=e}-

1€8x (1) = O, then X has uniform normal structure (see [12]). For the rest of the paper, we

assume that all Banach spaces are nontrivial. _ ‘
The modulus of smoothness of X (cf. [2.4.22.23]) is a function px : [0. c0} — [0, c0)

defined by
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fx +rvll + (lx — 1yl
px(r}=sup 5 —1l:x, ve Sy

T€
:sup{T —Syl€): €€ [0,2]}.

A space X is called uniformiy comvex if §x(e) > 0 for all 0 < ¢ < 2. It is called wuni-
Sormly smooth if po(X) = p' (0) = lim; _g(px(r}/1) = 0. Examptes of uniformly convex
spaces are the spaces L7(£2), where £2 is a measure space such that L7 (§2) is at least
2-dimensional. We know that X is uniformly convex if and only if £9(X) = 0, where the
characteristic of comvexity o(X) ;= suple: dx(¢) = 0}. Also, X is uniformly convex it
and only if it is €-InQ for all 0 < € £ 2. Here X 15 said to be ¢-InQ, for 0 < ¢ < 2, if
£0{X) < #. Clearly, X is ¢-InQ if and only if §x(¢) > 0. Uniformly convex spaces and
uniformly smooth spaces are examples of u-spaces. where a space X is called a u-spuce if
for any € > 0, there exists § = 0 such that for each x, v € Sy,

X+ y

>1=-48 = fiy>1—¢ forall feV,.

The modulus of u-convexin is defined. for 0 € e < 2, as

T4y
u(e)::inf{lf il '\[
i

)

cx,ve Syand f(x —y) 2 ¢ forsome f € V_r}

X+ y

:inf{lf cxeSx. ve By \ {0},

andf(x—y);cforsomefeV,}. {1.2)

To verify Eq. (1.2), we let x € Sx, ¥ € By \ Sy U {0}, and f € V, be such that f(x —
y) 2 e. Thus | f(y)| # L, 1.e, € <2 We prove that |lx + vil < [lx + zll for some z € Sy
with fx —z)= f(x — y}. Put fix —¥) = € 2 ¢eand find v € Bx \ Sy, » and »" are
independent, and f(y'y = f(v). Wnte Sx N fev' + (1l —a)v: aeR)=1{:,2"). So v =
Az 4+ (1 — A)z" for some A € (0. 1). Hence flx + vl < [le + 27 or flx + vl < [lx + "I
Clearly, f(z') = f(z") = | — €' and we find z € Sx as desired. Clearly, X is a u-space if
and only if u(¢) = 0 for all ¢ > 0. The notion of u-spaces was introduced by Lau [19].

A Banach space X is called uniformly nonsquare provided that there exists § = 0 such
thatifx. v € Sy.then jx+v[[/2< 1 =5 or lx —¥|[/2 < 1 —&. Uniformly nonsquare spaces
are supcr;reﬁexive (see [14]). Every u-space is uniformly nonsquare (see [19]). hence, it is
superreflexive. _

In [3], Dhompongsa et al. introduced a generalized Jordan—von Neumann constant
Cryla, X) fora 2 0Qas

e 4+ vl12 + e = =112

5 - 51 x. v,z € Bx of which at least one
20leli® 4+ Uyl +zl=

Cnita, X) = sup
belongsto Sy and Iy — zIl € ﬂIIA’lI].

Some of its properties are:
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(M T+4a/E3 +a?) < Caytu, X) € 2 forallu > 0 and Cnijla. X)=2forallu = 2.

(2) Cnola. Xy =1 + 4a/(4 + a?) whenever X is a Hilbert space.

(3) Cnyla. X) is continuous as a function of g,

(4) IfCrny(l. X) < 20t Cng(X) < (34 +/5)/4, then X has uniform normal structure, Here
Crnyt X} = Cngt0, X)) is the Jordan—von Neumann constant of X

(5) Everyuc-space X has Cnjta, XY < 2 forall 0 < 2 < 2.

2. James constant

Let X be a Banach space. The James constant, ot the nonsquare constant is defined by
Gao and Lau [7] as

J(X) =supfllx + vl Allx = v|: x, y€ Sy}
= sup[ll_r + vliAllx — vl x,ve By l

Clearly, X is uniformly nonsquare if and only if J{X) < 2. In[8], Gao and Lau proved that,
in general, /2 € J(X) < 2 and X has uniform normal structure provided that J(X) < 3/2.
We show that 372 can be replaced by (1 + /3)/2.

Theorem 2.1, /f J(X) < (| + /5)/2. then X has uniform normal structure.

Proof. Since J(X) < 2. X is uniformly nonsquare, and consequently, X is reflexive. Thus,
normal structure and weak normal structure coincide. By [8, Theorem 5.2], it suffices to
prove that X has weak normal structure.

Suppose on the contrary that X does not have weak normal structure. Thus, there exists

a weak null sequence {x,} in Sy such that for C :=&0{x,: n 2 1},

lim fxp —x|| =diamC =1 forallxeC 2.1
0

(cf. [27]). .
Let r = (/5 — 1)/2. Thus r(l + ry = 1. Let 0 < ¢ < |. We choose first xg € C with

xoll > | — €/2. We shall consider, without loss of generality, the following possibilities:
Case | (||xa + xg)| € | + r for all large n) and Case 2 ([lxa + xoll = 1 4 r for all large n).
We subdivide Case 2 into Case 2.1 (for all large n, ||xa +xm — xoll > | +r for all large m)
and Case 2.2 (for all large n, x4 + xm — xoll € 1 + r for all large m).

The numbers m and n can be chosen properly under any one of these situations and
satisfy conditions (2.2)(2.7) below. Since 0 belongs to the weak closed convex hull of
{xa}, which equals to the norm closed convex hull C, we can choose m by (2.1) so that

r €
ﬁxm- |+rxo|‘21—§- 2.2
Choose n such that the following estimations are satisfied:
1—-r
Hx,.— I+rxol]2 1 —e, (2.3)
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. 13
el — 7, — 1l +ranl = (4 r)laall — 52+ —e) (2.4)
(by lower senicontunuity of the space norm || - 1),
/' _ [ €
| Ya m ) 2 v, +oan]) — _:, {(2.5)
‘Il” l—+r{‘|*f‘lm*‘r.ln)‘l>l—‘. (26)
and
; €
[ll L A P R EPEN o S ,,_m)ﬂ e [lll + ity ‘f-i'OH s (2.7)
Ouram s tofind vy € By such that
B+ v =l ~rnl —er and o — vl 2ol 4r)) —e). (2.8)

Takmg (2 8) for grunted, we sec that JoXy 2 (1 + r)(1 — ¢) for all € > 0. Therefore,
JUX 0l + U802 a contradiction,

ForCase 1 ifla, + wll <0 1 <+ forall large m), we letx = x; — xp, v = 711, +xg). Thus
v.oy < By oand

; b —r
H,l+\H:“(I--r),l',,—ll*r}jo“:(l-i-r) ‘r,‘;'—*— 10 2(1+r)(|—6)
,
by (2.3,
Similacls,
€
|Ir+\‘[|:|!(l—r)_r,»,All+r)_ro”l;(l+r)|f,m||~;2(l+r)(l%e)

by (2 4). Therefore (2.8} follows.
For Case 2.1 (forall large nn, [lx, + xoll = | +r. llxn + X — xpil > 1+ for all large m),
we put x = x, — xg and v = x1,,. Clearly x and v belong to Byx. Moreover, we obtain

lx + vf] = lltp + ¥m — xgl] 2 (1 +r}).

and by (2.5),

€

€
e — vl = [|xn = (xm + x| 2 llem +x0ll = 5 2 L +7 — 3> (1 +r)y(l —el

ta |

Thus, {2.8) is valid in Case 2.1 as well.
Finally, we let, in Case 2.2 (for all large nn, |[x. +xolf = 1 +r, |l + xm —xpll £ 1+ 1
for all large m), x = 1, — &m and v = r(x, + Xm — xg). By (2.6) we have

Ix + vl = [[(1 4+ rxn = (1 = F)xm +rxo} |

=(l+n

1
Xy — m((l — )i, + r.ro)

21+l —e€),

and by (2.7) and {2.2) we have
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€
lx — vl = ”(l —r)xg — (1 + rhen — rxg) || = ||(1 +r)xm — rxo" -3
(1 +r) S 4n0-e
= ey — x|l —=>= r —€).
T U0 T2

Now as (2.8) is established in all cases, the proof is complete. D

From the relation
J(Xx)?

2
(scc [16]), we obtain

£ Ong(X) 2.9

Corollary 2.2 [5, Theorem 4.6). For a Banach space X, if Cny(X) < 5/4, then X has
uniform normal strucrure.

We consider now the Bynum space [, oo. Recall that [, o is the space of all sequences
{x,} whose norm defined by [{{x)ll = max{l[x,] 5. llx; llp}. It is shown in [13] that this
space fails 10 have uniform normal structure for p = |. Thus J(/,.00) 2 (1 4+ +/5)/2. In-
deed, we shall show that

1+ /5
JUpr) =27 2 2\/_ for p < po.
YY" 1+J5
JUp )21+ (5) = > for p 2 po, (2.10)

where pg satisfies the equation 2177 =1 + (/)7 Note that 2'/#e = (1 + /5)/2.
For p< po. let x =(1,0,—1,0.0,..)and y =(0,1.0,-1,0,0,...). Clearly |x 4
5][—|]x—_)[|—2'”’ Forp>p0,lctx—(l —1.0,0. .. Jand y = ((1/2)!/7, (1/2)'/P, 0,
.). Hence ||x + yll = lx — ¥l = 1 + (1/2)!/7. Thus (2.10) follows. Note that

3+435 I+ /Y72 345
CN;(!p.oo)Bzzlp—l?- —a or Cnjllpoo) 2 é = a

accordingto p < po Of p 2 Po.
Conjecture. J (/g ~) = (1 + V5)/2 and Crpld py.00) = (3 + V5)/4.

We end this section by investigating the James constant of some well-known spaces.
Define, fora > 0,
J(KY= sup[llx +vlAaallx—yll: x,y€ le.

Clearly, Ji{X) = J(X), Jo(X) is a nondecreasing function with respect to «, and
JeA(X) <2
Wec first obtain

Proposition 2.3, Jo(X) =sup{e: 8(e/a) < 1 —e/2}.
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Proof. Let n > €9 = supfe: S(e/a) < 1 — €/2} and let x, v be any elements of Sy. If
allx—yll Zn,then ] —|ix+v(1/22 8(5/a) = | —n/2,ie {lx+yll < . Thus, Jo(X) < n.
and since 5 = &g is arbitrary, J,(X) < 5. To show that Ja (X} 2 €n, we let n > 0 and
€ > €0 — 7 satisfying §(e/a) € | — €/2. Choose x, v € Sy such that aflx — vl = € and
L= x+vll/2 <d(e/a) +n,ie., (lx + vl > 2 —25(e/a) — 2n. Thus, J,(X) 2 llx + vl A
alix — yll 2 (2 —28(e/a) — 25} A€ 2 (€ —2n) A€ 2 €9 — 31, and hence JalX) = €g as
desired. O

Example 2.4. (1) For the {,, space (2 < p < oc), it is known (cf. [26]) that S e)=1~—
(1 — (e/2)P)!'/P_Hence, by Proposition 2.3 we have J, (Upy=2(a?/(a® + 1)'/r,

(2) JUew —1p) =1+ (1/2)/P for | € p € 0o. Here lo, — 1, is the 2-dimensional Day—
James space whose norm is defined by [[(xt, x2)1l = (Ix117 + 1x217)'? or max{|x1]. |x2]}
according to xjx3 2 0 or x;x3 < 0.

Proof. The case when p = o0 is clear. Let «r, ¥ € Sx. If both x and y are in the first
quadrant, then we have Jix + vl A flx — vl € 1 € 1 + (1/2)'/7. Suppose x = (—1.a),
y=(-b ), where0<a<land 0 b Ifa> (1/2)!7, then [x — v] = ({1 —
LY + (1 —a))P (U + (12?1 + (/2 < T+ (1 /DYP Ifa £ (1/2)'/7 and
b < (/)7 then Jix + ¥l < 1+ (1/2)Y7. Thus [lx + yf Alle — vl < 1+ (17247

If x =(a,b) and y = (—c, 1), where a, b, ¢ are all nonnegative, then x + v = (a — ¢,
b+ andx —y=(a+c b—1) Firstletc > a. Since fla)=a + (1 —a”)"/? has the
maximum value 2(1/2)'/? on [0, 1], we have

+b+2 a+b 1NV
be+ YA = YIS A +8) A +ar € 252 2 4 22 sn+(§) :

Ifc<aanda < (1+ (/DY 2 then (lx —yll=a+ec< 1+ (1/2V7 1f ¢ < a and
a = (1 4+ (1/2)1/P) /2, then putting ag = (1 + (1/2)'/°) /2,

l+(]/2)l/p Py 1/p 1 i/p
|iX+)’II<|IIo+yoll=(|+(—2— <+ 5 ,

where xg = (ag. bo) and vg = (0, 1}. Thus

1/r
lx+yllAllx—¥)I<T+ (5)

forthe case ¢ < a.
The other case when x and y belong to opposite quadrants are easy to handle. 0O

Example 2.4 (Continued). (3) J(p — Iy) < 2(2P79/(2P/4 + 2)//P for 1 < g < p < o0
and p = 2. Here we define the norm {|(x}, x2) It = (In}” + 1x212¥P or (Jx1]9 + {x2]9) /49
accordingto x1xz = 0orxjx2 £ 0.

Proof. By the convexity of the function f(u) = uP/?, we have {Ixll, < Hxll <
201/=1/P)|Ix| . Let x, y € Sx. If x, v are in the same quadrant, then

2P/q I/p
lx + ¥l Allx = ¥l < Jpor-umUp) < 2(m)
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For the rest, it is enough to consider when x = (u, &) and y={(—c.d),whereua, b, c,d are
nonnegative,

Case |l (c <aandd < b).

e + 3l Afe =yl =lx+vipalle =y, < JUy < 2(—2!?/“—) v
) 20/d 42
Case2 (c <uandd 2 b).
e + ¥l Ale =yl =llx + xllp A e = ¥l € e+ yll, A2 e _ g,
20/q e
Slzxu.,-u,«-(lp)=2(m) . a

In [16]. itis shown that J (/, — ;) < min{2, 2'Y/4=4P j({,)) which is not smaller than
our bound. They are equal only when p =g 2 2.

3. A peneralized James constant

Let us begin with a generalization of the James constant. Define. fora 2= 0,

Ja. Xy=sup|{lix + ¥l Allx —z|: x.y.z€ Bx and iy — zll < allx(|}
=sup{llx + ¥l A fix — z|I: x. v, z € Bx of which at least one belongs to Sy

and ||y — zll € allxli}.

Note that

(1) J(0.Xy=J(X);

{2) J{a.X) is a nondecreasing function with respect to a;

(3) If J{u.X) < 2, for some a = 0, then J{X) < 2 and consequently X is uniformly
nonsquare.

Let us constder the case when X is a Hilbert space.
Proposition 3.1. For a Hilbert space H, J(a. H) = +/2+a foralla € {0.2].

Proof. Letx, v,z € By with lv — z|| < allx[. On one hand we have

2 2
lx + ¥lI2 + llx —z|l
2% <

Ix + vl Allx — 5
20512 Uy A+ N2l 4 2(x, v — 2)
- 2
— 4+ 2a
<4+2uxguy 2l +2 —2ta
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On the other hand, let ¢) and ¢7 be orthonormal elements of Sg. Put

a | (]'2 —-da I az
X =e], v = —~F) + — — 3, = — - — .
1 A 7 ] 4 2 4 3 el + 2 e

Thus we have ||y — z|| = aflx|l and llx + v|| Allx — z|l = §x + vl = +/2 + a and the proof
is complete. O

Later we will make use of the following

Lemma 3.2, Let X be a Banach space. For 0 € a < 2, if Cnj(a, X) = 2, then there exist
sequences {x,), {va). {za} in Bx satisfving

) llxall Dyall lzadl — L
(i) llxn + ¥all, lxn — 2ol = 2; and
(1) |[va — 2l € allxqll for all n.

Furthermore, the sequences {x,). {va}. (2n} can be chosen from Sx.

Proof. Suppose Cnjla. X) = 2 for some 0 < a < 2. Choose x,,, ¥n.2Zn € Bx which at least
one of them belongs to Sx such that ||y, — zall € allxa| for all n and g(xa. ya.2a) 7 2,
where

_ lx v At —2h?

202+ Ny + Dzl

Hence (i) follows. Consider

glx, ¥.2)

x4+ v12 + lx — z)|?
202 + Uyl? + Kizll?
20xlZ 4+ Uy l? + Nz + 2Ryl + lxlilzl)
S 2 2 2
20x |2+ Hyl2 + Nzl
201y 1l + e izl
20x (12 + Nyhiz + lzll?

glx.y, 2)=

Thus we have

201 xallll ¥all + lxalllizall)

2|1 xall2 + llyalt? + lzall?
which implies

(lxnll = UyalD? + (lxa b = Hzal)?

20lxa 12 + [1¥alI2 + izall?

Since, for each n, at least one of xa, Yn. Zn belongs to Sx, we can find a subsequence {n')
of {n} such that [lxa ]I, l¥a . {lza | = 1. It follows then that [lx,r + yarlls lixnr — 2o l] = 2.

Thus (i) and (ii) hold. Next, put x" = x/||x|| for nonzere x. From the choice of x,, ya, and
zp we also have |[x. — x|l Ny — yarll. Mz =zl = 0. As 22 Ix" + ¥'|l 2 llx + || —
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llx" = x|l = I»" — ¥ll. we can see that || x], + v/, |, x,. —z,. Il — 2 as well. Finally, a |lx. || =
- , S Lt — 11+ ) By 1

I¥a = zarll 2 llyp — 2l = lizge = 20 ll = [y — ¥l Thus, limsup, o0 1y, — 220l < a,

completing the proof. O
With the same proof, relation (2.9) continues to hold in general case.
Proposition 3.3. For a Banach space X. J(a, X)?/2 < Cny(a, X) for all a € [0, co).

Corollary 3.4. For a Banach space X. J(a. X} =2 if and only if Cnyla, X) =2 for all
ae€|0,2]

Proof. 1f Cnj(a, X) = 2, then by Lemma 3.2, there exist sequences {x,}, {vz}, and {z;) in
Sx sausfying ||xp + vall. [lxa — zoll = 2 and |l¥, — za|| € a forall n. Thus, J(a, X) = 2.
The other direction is an easy consequence of Proposition 3.3. O

Corollary 3.5. Let X be a Banach space. If J(1,X) < 2, then X has uniform normal
Structure.

Proof. This is an immediate consequence of [3, Corollary 3.7] and Corollary 3.4. O
We now obtain the continuity of the function J (-, X).

Proposition 3.6. For 0 < a < b, J(b. Xy +a/2 < Jia, X) + b/2. Inparticular, J(-, X) is
continuous on |0, oo},

Proof. Let € > 0. There exist x, v, z € Bx such that |y — z|| = b [x] and J(b. X) — € <

llx + v|l A llx — zll. &1 can be chosen so that a < by. Otherwise, the assertion is obviously

true. We can choose z;. y1 € Bx suchthat |y — yill. lz—ail € (b—a)/2and [[vi —zI|

allx|l. (Justput yy =ay+(l —a)zand zy =az+ (1 —o)y, where | —~a=(b; —a)/2b1.)
Combining all these, we have

Jib.X)—e< lx+yllAllx—czl

< (x+ w1l +1y =310y A(lx =zl + Yz = ztll)

b—a b—u
s(||x+,-.||f\||x—z:||)+T < J(a. Xy + ——.

To finish the proof, we lete — 0. O

From the continuity of J(-, X}, it is easy to see that the James constant J(:, X) of the
space X is invariant when computed on any of its ultraproduct X: J{-, X) = J(-, X). As
a consequence, if J{a, X) < (3 + a)/2 for some a € [0, 1], then X has uniform normal
structure. It is worth noting that this upper bound does not give as strong as the result in
Theorem 2.1 for small a. It only gives new information fora in (0, 1].

In [3], it is shown that all u-spaces X satisfy Cny(1. X) < 2, equivalently J(1, X} < 2,
which in turn implies that all of these spaces have uniform normal structure, the implica-
tion that was previously known [{8]. We shall give more examples of spaces satisfying
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lhis. condition. Before that we give first an example showing that J(X) can be arbi-
tranily close to 2, whereas J(1,X) < 2. Let I < p < 2 and let X = R? be equipped
with the norm defined by ||xf| = || (x1,x)l = lix]); or lx|l, according to xjx2 = 0 or
xi1xz £ 0. In [3], itis seen that Cny(X) = 1 +2¥/7-2 j(X) > 2'/7 and Cpy(1, X) < 2.
Let X» = I7(X), the space of sequences {x¢} in X with {lixell} € 8. We define a norm for
each x = {x;} in X7 as the /-norm of the sequence {|l.x; |[}, that is, [|x|| = Qo2 e 1)'2,
Clearly, J(X2) > 2"/7. To show J(1. Xz) < 2 we assume on the contrary and obtain, by
Lemma 3.2, sequences {x"), {y"}, and {z"} in Sx; with |lx” + v7f], |[x® — 27| = 2 and
lly" — 2" € 1 for all . Put, by the continuity of Cnj(-, X), E = Cny(r, X) < 2 for some
1> 1, A= {ke N |Iv) —zfll > tllx{ll}, and B = {k € N: llyf — 27l < rllx]]l}. Ob-
serve that, if Zke}?_ fixy I? = 0 as n — oo, then from the estimation | 2 v - 2" =
(Crea, + 2resM¥E — 2217 = 12 Tpca, Ixf1%, we can deduce that 1 3 12 which is im-
possible. So we assume without loss of generality that, for some €g > 0, 2 sen, llxf 1?2 e
forall n. Putan =3 ;o o, Ucgll® + IZI2 + 1122 12) and by = ¥ p e U1 + 202 +
Nz} I12). Thus, an + ba = 4 and b, = 20 for each n. Consider the estimation

1" + ¥ 12 + 127 — 272 = ( >+ Z)(lei‘ #3712+ lxp - 22])%)

k€An keB.

2
<2 37 @17+ I + 1=21)

keA,
2 2
+E YIS+ el + 12217
Le By
L2an+ Eb,=8—-(2— EYo, < 8—2(2 — E)ey.

Therefore,
n 2 n__ .ny2 2 — Ele
Ix® + ¥7 +$I: z II2 < ¢ Yéo for all n,
20202 + (12 + Nzm 2

a contradiction since the lefi-hand side of the last inequality tends to 2 as n — oo.
This example shows that the notion of the generalized James constant J (a, X) is a step

forward.
Before we turn to some new classes of spaces, we consider one more sufficient condition

for a Banach space to have uniform normal structure.

Theorem 3.7. Let X be a Banach space. Then Cny(a. X) = (} +a)? /(1 +a?) foraill a €
(0, 1} ifandonly if J(1, X)) = 2.

Proof. (=) Since Cnjla, X) is continuous,

) {1 +a)?
CN;(I.X);-llmlCNJ(a.X)B lim =2,
a— a

-1 1+a?
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(;) Suppo.se lhal J(1. X) =2 By Lemma 3.2, there exist sequences {x,}, {v,}, and
{za] 0 Sy satsfying |lxa + yall, Xz — zall = 2 and [|vs — 24l < 1 for all n. Therefore
llava —azall < a forall n. Consider tncqualities

len + vall = lva —avall € llxp +avall €1+ a
and
”-(n = Iu “ - ”:rz —dln “ < ”-rn - u:n” < | +a.
Hence
lim [[x, +av,ll =1 +a. lim {x, —az,l =1 +a.
n~— o n—og

Combining together we get

2 2
- : ot avallm + l|lxg —azsll~ 1 2
Cryta. X)) 2 lim Il-xn 7,ﬂ“ ”2:1 all =( + a) ‘
Ao Aoy lF + flavall* + “(;{:“”2 1 + g2

and the proofis complete. 0O
Sometimes 1t i1s more convenient to recognize Theorem 3.7 in the following form.

Corollary 3.8. Let X he a Banach space. If Cnyla, XY < (1 +a¥2 /(1 + a?) for some a
(0, 1), then X has uniform normal structure.

In [3] 1t 1s shown that Crapta, Xy =1 +4a/(4 + a?) whenever X is a Hilbert space. We
do not know if the converse is true, however, as a consequence of Corollary 3.8, we clearly

have the following.
If, for a Banach space X, Cnyla. X) =1 +4a /(4 + a?) for some a & (0, 1], then X has

uniform normal structure.

Note that
2 2 2
- — 1 1+ 2a
(U+a)y +3a ) s( a; =1+ 3 €2 forallael0 1]
2(1 +a?) l+a 1 +a
Observe that
2 2 -1 2
(l+a_), >(l+a) +(3f ) forall a € (0. 1),
I +a- 21 +a*)

The bigger function is strictly concave and the smaller one is strictly convex. Thus, Corol-
lary 3.8 gives a strong improvement of {3, Theorem 3.6].
We introduce now new classes of spaces.

Definition 3.9. A Banach space X is said to be g-uniformly smooth for 0 < ¢ < 1, if
po(X) < . X is said to be an £-u-space, for 0 < £ < 2, if there exists a 5 > 0 such that for

x.ve Sx.
x+y

“:vl—é = fi(yy>1—¢ forall feV,.
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Clearly, if 0 < &, < &2 and X is gj-uniformly smooth (g1-u-space), then X is &32-
uniformly smooth (£3-u-space, respectively). Also, if X is g-uniformly smooth (or an
g-u-space) for every £ > 0, then X is uniformly smooth {or a «-space, respectively). [t
is also well known and easy to see from the equation connecting the moduli of smoothness
and convexity that (i) X (X*) is e-uniformly smooth if and only if X* (X, respectively) is
2¢-InQ and (i) X is g-uniformly smooth for some 0 < £ < | ifand only if J(X) < 2.

Lemma 3.10. u() is a continuous function on [0, 2).

Proof. Suppose u(:) is not continuous at £ 2 0. If ¢ > O, then there exist a, 8, and y such
that sup,,_, u(b) = a < f < y = infy., u(b). Choose yn 1 & and x5, yn € Sx. fa € Vi,
such that fa(xa — yn) = ya. and | ~ [[{xn + ¥a) /2|l < B. Therefore, falya) =1 —va d
1 — e. Choose 1, | 1 such that fy(ya/na) = (1 — ¥al/nn <1 — & forall n {(eg., n, =
(1 — ya_1)/(1 — €) forall m > 1). This implies, by (1.2), that

1 — M 2 y for all n.
2
Finally,
1 y L 1
t—y 2 limsup(i) Xy i =limin E)]Ix,, +yll =1 =8
n—.o0

Nn n— OC

a contradiction.
For f = 0, choose o, | 0 and take x,. va € Sx and fr € Vp, such that fo{x, — ¥a) =@
for all n. Since l[xn + ¥nll 2 falta + ¥a) =1+ falya) foralln,
“nnls:ap(l _ lxn ';‘_)n”) < ﬂl_i’";:'(l _ 1+ .’;n()n)) =n]_i.ngo fn(xnz ¥n) —0
This shows that liMa—oo#(as) = 0 = u(0). Since u is monotone, the proof is com-
plete. O

Lemma 3.11. X is an g-u-space if and only if for any r > 0, and any sequences {x,} and
{va) in X such that llxall. I ¥all. lixn + ¥a)}/ 2|l — r and fa € Sx- satisfying Falxn) = llxall
Jfor all n, imply that

liminf fa(ya) > r(1 —£).
n— oo

Proof. (=) Let X be an s-u-space. Thus by Lemma 3.10, X is an g’-u-space for some
¢ <e.Letr > 0, {x,} and {va) be sequencesin X such that Lxall,  yall. l(xa +ya)/2ll —
and f, € Sy« satisfying fa(xa) = llxall for alt a.

Lg: x! = xn/llxnll, ¥4 = ya/ll¥all. We then have x;, ¥, € Sx, fﬂ(x:,)_= 1 for all n, and
1l 4 v /20 = 1. This implies that lim infuco fa(ya) 2 1 —¢". Thus liminfy—co fa(¥n)
2r(l—gY)>r(l —£)

(<) This is trivial by letting r = 1. O

Combining Lemmas 3.2, 3.10,and 3.11, we can casily see that (i) all £-u-spaces X have
12 —2e,X) < 2,and (i) [3, Corollary 3.8], all u-spaces X have J(2 — &, X) < 2 for all
& > 0. In general, we have
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Proposition 3.12. J (2 — 6, X} < 2 forall § > J(X).

Proof. Supposc the assertion is not true for some & > J(X), Let 8§ = ¢ > J(X). By
Lemma 3.2, there exist sequences {x,}. {v,}, and {z,} in Sx satisfying

Ixa + ¥all.llta — 22l =2 and |lva —z.)| <2 -5 foralln. 3.1)

Since J(X) = suple € (0,2): 5x(g) € 1 ~ £/2}, by Proposition 2.3, |lx, — vall < £ for all
large n. It follows that for these n, fix, — 2l < Uxa — vall + llve — zall < £+ 2 — 5. Hence
5 £ £, acontradiction. 0O

Proposition 3.13. For a Banach space X, J(2 -8, X) < 2 forall § > eo(X). In particular,
all e-InQ spaces X have J(2 — ¢, X) < 2.

Proof. Suppose the conclusion is not true. By Lemma 3.2, there exist sequences {x,], {va],
and {z,} in Sx satisfying (3.1) for some 8 > £o(X). Thus, limsup,_, ., |lxs — ya| < & and
since ||x, — zall € fixqa — vall + llva — zall. leting n — oo, we have 2 < 8 + (2 — §), a
contradiction. 0O

For e-uniformiy smooth spaces, we have
Proposition 3.14. All e-uniformly smooth spaces X have J(2 — 2e, X) < 2.

Proef. Suppose that J(2 — 2¢, X} = 2. By Lemma 3.2, there exist sequences {x,}, {va),
and {z,} in Sx such that lxs + yall. kxa — 2all = 2, and limsup,_, o lya —2nll =2 -6 <
2—2cforsomed =22 LetO<s < T, wehavelx, +13,ll > 144, |lxg —tzall — 1 41,
and liminfa_ oo lxn — fyall 2 1 + 1 — £{2 — 8). Thus,

1 (III» +1vall + lxn —tyall — 2)

|lmlnf§ ;

aA—=00
5 I((I+!)+(l+r)~r(2—5)—2)
/5 !

8
= 5 = €.
Hence po(X) 2 €, a contradiction. O

We close the paper by considering the stability of uniform normal structure of Banach
spaces. This concept follows from the concept of the stability of the fixed point property
of Banach spaces. In 1980, Bynum [1], showed that if for any p > | the Banach—-Mazur
distance d(X.1,) < 2'/P or =277, then X has normal structure, or X has the fpp, respec-
tively. Using a result of Lin [20] it is known that X has the fpp if (X, 1p) < (+/33 —3)/2.
Khamsi [17] improved this number to ¢, satisfying

o 3+J§>J§3—3
FI=YT z

Finally, Lin [21] showed in 1999 that if

5413
2

d(X. I <
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for a Hilbent space H, then X has the {fpp. In getting this result, Lin first gave a simple
proof of Jiménez-Melado and Llorens-Fuster’s result in [15], the paper that came out later.
Then used it to prove the above result. We imitate this concept and work on uniform nor-

mal structure property. For more on this topic, we refer to [10, Chapter 7] and references
therein,

Theorem 3.15. Let X, Y be isomorphic spaces and d( X, Y) their Banach—Mazur distance.
If. for some a € [0, 1],

I4a or 1 +\/§
27ad(X. V). Y) 2JY)

then Jia. X) <« 3 4+ ay/2or J( XD < (1 + V512, respectively. In particular, if Y is a
Hitbert space and

1+ /5
242

then X has uniform normal structure.

diX.Y) <

d(X.Y)<

Proof. Leta € [0. 1] satisfy the given condition in the theorem. For each € > 0, there exists
an isomorphism ¢: (X. |f - 1) — (Y.l - |I) such that A := Nellilg~ "l < (1 + €)d(X.Y).
We define a norm on Y by |y = li¢lll¢~"O)il. Thus, Il < Iyl < M]ly|[ forall y e ¥
and J(a.Y)) = J{a, X). Let x, », and z be elements in By . with |y — z] € a|x|. Hence
x.y.2€ Biy gp and v — zIl S aMlix||. Since [x+ y| Alx —zl € M|l + ¥l Alix —2i) <
MI@M. Yy, Ja Xy=J@a )< M J(aM, Yyy). Consequently, by the definition of
the Banach—Mazur distance, we have J(a. X) < d(X, YYJ(ad(X, ¥Y). Y). The rest of the
proofis ciear. D

Corollary 3.16. If. for some a € [0. 11,

a—2J@Y)+/2Ja.¥Y)—a)? +4a3 +a)
> .

d(X.Y) <
then J(a. X) < (3+a)/2

Proof. From the proof of Theorem 3.15 we have J(a, X) < d(X,¥Y)J(ad(X,Y), Y). Us-
ing Proposition 3.6 and the fact that
a(d(X.Y)— l)) - 3+a
2 2

di(X. Y)(J(a. X))+

if and only if

a—2Ja, Y)+/(2J(a. Y)—a)Y +4a3 +a)
d(X.Y) < > .
we then have

3+a
2J(ad(X.Y).Y)

and Theorem 3.15 can then be applied. 0O

d(X. 7)<
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Remark. (1) In [8], it is proved that if J(¥) < 3/2,and if
7

<,

2(J(Y)+ 2)
then X has uniform normal structure. This result is contained in Theorem 3.15, since it is
seen that, whena =0,

7 3
<
2(J(Y)+2) 21(Y)

if and only if J(Y) < 3/2.

(2) Since
a—2J@.Y)+/ 2/ @ ¥Y)—a)l +4a(3 +a)

2a

ifand only if J(a, ¥) < (3 + a)/2, we note that, when X = ¥, J(a, X) < 3+a)/2.

d(X.Y)

1 <
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1

Geometric properties are important tools for studying the nonlinear func-
tional analysis. In [3], Dhompongsa investigated many geometric properties
of the Nakano space {7} under the assumption that the sequence {p;} is
bounded. We prove that this condition turns out to be a necessary condition
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of some of these geometric properties.
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Remarks on Convexity Properties of Nakano Spaces

for some A > 0. Here and elsewhere, the modular o(x) of x is defined by

o(r) = D [

=1

We equip this space with the norm defined by
{|.r]] = inf {/\ >0:p (X) <1;.

. > ]
In fact, Nakano delined the norm, for each © = (z(i)) such that > ll%ﬂﬁ" <
£ p,

P
<15.

However. both spaces are isometrically equal (see [4]).
Throughout this paper, we let e; stand for the standard basis for R™,
That is, e; = (4,,); for all i.

i=1

o for some A > 0, by

=1
Il.ell” = inf {,\ > 0: Z —

}
=1 Pr

A

2 Preliminary
Lemma 1 The following statements are equivalent:
(1) the sequence {p,} 15 wnbounded;
(i1) there erists u norm-one element T such that
e(Ax) = oo
Jor all A > 1.

Proof (i)=(ii) We may assume that p; > i for all ¢ € N, Define = = (z(7))
by (i) = (%)1/'. It is easy to see that ||z]| = 1 and p(Az) = co for all A > 1.
(ii)=> (i) Let p = sup; p;. Then, for each € S({{rd),

o(Ax) < XPp(x) < A < oo

for all A > 1. J
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We consider the closed subspace

Pt = {z e 1P} p(Ar) < oo for all A > 0}

and we define
f(x) :iu[{/\ >0: g(j—\) < oo}

Thus r € 217} if and only if #(x) = 0. Moreover, we have
Lemma 2 8(z) = inf{||z ~ yl| : y € Airt}.
Proof See [1]. O

Note that i{P} = [P} if and only if limsupp, < co. Thus, in [3]. only

§—r00

geometric propertics of A{"! are characterized.

3 Results

A careful reading allows us to prove only four following geometric proper-
ties, namcly, A-rotundity, reflexivity, property (H) and uniform A-property.
For each of the first three properties, we prove that the boundedness of the
sequence {p,} is its necessary condition. While the last property, the charac-
terization in [3] still holds even if we drop the assumption on the boundedness

of {p:}.

3.1 A-Rotundity

A Banach space X is said to be k-rotund if for any z,,...,Try; € S(X) with
|z + -« + 7441l = & + 1 implies z1,...,Tk41 are linearly dependent. Here

S(X)={r€e X :|z|]| =1}

Theorem 3 If the Nakano space Pt gs k-rotund. then lim supp; < oo.

i —oxa

Proof Suppose the assertion does not hold. Thus, by Lemma 1, there exists
a norm-one element r = (x (7)) such that

o(AT) = oc
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4 Remarks on Convexity Properties of Nakano Spaces

for all A > 1. Without loss of gencrality, we may assume that (1), ..., x(k+
o0
1) # 0. For cach j € N. we put x; = 5 7(i)e;. Then {or,.. . Tk} Is A

i=;
lincarly independent subset of S, Furthermore,

Ty4 A T
1 = ||.ry <H
lriiy]l < R

This 1s a contradiction. Ol

<1

3.2 Reflexivity

A Banach space X is said to be reflexive if the natural map from X into its

second dual X'** is surjective. liquivalently, every bounded sequence in X

has a weakly convergent subsequence.

Theorem 4 If the Nakano space 137} is reflerive, then limsup p; < co.
1--20

Proof Suppose not, by Lemma 1, there exists a norm-one clement = = (x(7))

such that

o(AT) = o0
for all A > 1. For each j € N, we put z; = > z(i)e;. If the sequence {z,}
i=

has a weaklv convergent subsequence, then z, 2 0. By the Hahn-Banach
Theorem, there exists a norm-one functional f such that

Sy = nf =yl = 0() =1

and f(y) = 0 for all y € A"} On the other hand, we have
flrn) = flz) + flan —x) =1

for all n € N which is a contradiction since z, =0, O

3.3 Property (H)

A Banach space X is said to have property (H) if weak convergence and norm
convergence coincide on 5(X), i.e. forany zn,z € S(X) with z, = z implies
Ty, — I

Theorem 5 [f the Nakano space 17} has property (H). then limsupp; < oo.

I—00

Proof See [2]. O
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3.4 Uniform A-property

A point z € S(X) is said Lo be an extreme point if it cannot be a midpoint of
any two distinct points in S(.\'). This means that if z = ¥ and y, z € S(X).
then y = z. We define

Ax) =sup{A € [0,1] : . = Ae + (1 — A)y, ¢ is an extreme point, ||yl < 1}.
A Banach space X is said to have uniform A-property if
MX) :=inf{A(z): € S(X)}} > 0.

It is easy to see that if x is an extreme point, then A(z) = 1. But the
converse does not hold. However, it is not difficult to prove that if A(x) = 1,
then z is a limit point of the set of extreme points.

Theorem 6 For the Nakano space 117},
MY = inf{\x) : p(r) = 1}.
Proof It suflices to prove that
AP > inf{A(x) : o(x) = 1} := A

Let z = (z(2)) € S(i{P}) be such that o(x) < 1. Then, for any a € (0, 1),

Q(Iio) - o

For every n € N, there exists &, € N such that

- 1 P
‘ ”E(")l > 1
=1 1 T n
We can choose a, € (0, 1) so that
k o0
A I(l,) "
| + 3 P =1
; 1—on i=kn b 1
Define _
S0 e + i T(1)e;
y_;l—-an" :=k+l- l
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6 Rermarks on Convexity Properties of Nakano Spaces

and
o

= x(i)e,.
1=knq 1

Then p(y) = 1 and ||z|l < 1. Noreover,
Ir=(1—-a,)y+ a,z.
Hence. by Proposition 2.12 of [1],
Alr) 2 (1 = an)A(y) 2 (1 — aa)do.

Letting n — oo vields A{(r) > Ag and then A({{"}) > Xy, This completes the
proof. (]

The following is also proved in [5] without assuming the boundedness of
the sequence {p,}.

Proposition 7 For the Nakano sequence space P} and v = (x(i)) € S(1{r}).
T is an criveme point of and only if

(i) p(x} =1 and
(ii) #{i e N:x(i) #0 and p, = 1} < 1.
Here # A denotes the cardinality of a set A.

Supplement to the original proof of Theorem 5 in [3]. we have

Theorem 8 The Nakano space 11"} has uniform A-property if and only if
w:=#{ieN:p; =1} <oo.

Furthermore.
I .
- Jw if w>1,
AT) { 1 if w=20. ()

Proof We need only prove (#) when w = 0 and 1. In these cases, by Propo-
sition 7, {r € S{I"}) : o(x) = 1} is just the set of all extreme points.
Therefore, by the observation before Theorem 4, A(z) =1 for all z € S(itm})

with o(r) = 1. |
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Preservation of uniform smoothness and
U-convexity by -direct sums*
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Abstract

We study the 3-direct sum, introduced by K.-5. Saito and M. Kato,
of U/-spaces, introduced by K. 5. Lau. For Banach spaces X and Y and a
continuous convex function t on the unit interval [0, 1] satisfying certain
conditions, let X &, Y be the iy-direct sum of X and ¥ equipped with
the norm associated with ¥. We first show that the dual space (X @y Y)"
of X @ Y isisometric to the space X" @, Y" for some continuous convex
function ¢ satisfying the same conditions as of . We introduce the so-
called u-spaces and show that: (1) X @y Y is a smooth space if and only
if X,Y are smooth spaces and ¢ is a smooth function. We also show
that (2) X @y Y is a u-space if and only if X, Y are u-spaces and ¢ is a
u-function. As consequences, using the notion of ultrapower, we obtain :
{3) X @y Y is uniformly smooth if and only if X, Y are uniformly smooth
and v is a smooth function, and (4) X @&y Y is a U-space if and only if
X.Y are U-spaces and v is a u-function.

MSC: primary 46B20; secondary 46B08

Keywords: -direct sums; Smooth spaces; u-spaces; Uniformly smooth
spaces; U-spaces

1 Introduction

For every continuous convex function i on (0, 1] satisfying #(0) = (1) = 1
and max{l — t,¢} < () <1 (0 <t < 1}, there corresponds a unique absolute
normalized norm || - || on C? (see Bonsall and Duncan [4], also [18]). Recently,
in [15] the authors introduced the 1-direct sums X @y Y of Banach spaces X
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and Y equipped with the norm associated with 3, and proved that X @&, Y
is uniformly convex if and only if A, Y are uniformly convex and 1 is strictly
convex. We write X =~ }" to indicate that A and Y are isometric (or Banach
isomorphism, see [11]).

The purposes of this paper are to characterize uniform smoothness and U-
convexity of X &, 1. In Section 2 we shall recall some fundamental facts on
the y-direct sums of Banach spaces and introduce the dual function ¢ of ¥ so
that the dual space (N %, V)  of X @, Y is X* &, Y*. In Section 3 we shall
show that the ultrapower of X @y Y is the i-direct sum of the ultrapowers of
X and of Y. In Section 4 we shall prove that X &, Y is a smooth space if
and only if X,Y are smooth spaces and % is a smooth function, and by using
the ultrapower technique we obtain that X &y Y is uniformly smooth if and
only if X,Y are uniformly smooth and ¢ is a smooth function. In Section 5
we introduce new spaces, namely u-spaces, and prove that X @y Y is a u-space
if and onlyv if X, Y arc u-spaces and ¥ is a u-function, and again by using the
ultrapower we have X &, Y is a U-space if and only if X, Y are U-space and
1s a u-function.

2 The ¥-direct sums

Let X be a Banach space. Throughout this paper, let X* be the dual space
of X, S5x ={z € X : |zl =1}, Bx = {z € X :|Izl| €1}, and for z # 0,
V., = {f € Sx- : f(z) = |izll}. In this section we shall recall the definition
of the y-direct sum X @y Y of Banach spaces X and Y. A norm on _Cz i.s
called absolute if ||(z.w)l] = ||(|z], JwDI| for all (z,w) € C? and normalized .1f
(1,0 = |l(0,1)]] = 1. The set of all absolute normalized norms on C? is
denoted by N,. The l,-norms || - |l (1 £ p < oo) on C? are examples of such
norms, and for any norm || - || € Na,

Moo < -1 T

Let T be the set of all continucus convex functions 3 on [0,1] satisfying ¥(0) =
¥(1) = 1 and max{l —¢,t} < Y(t) <1(0<¢t<1). N and ¥ are in one-to-one
correspondence under the following equations. For each || -}| € N, the function
y defined by ¢(t) = [[(1 — ¢, t)|| {0 <t < 1) belongs to ¥. Conversely, for each

v e w, let [1(0,0)]ly = 0, and [l(z,w)lle = (|z] +lw) ¥ (k) for (z,w) # (0,0)
and this norm belongs to N, (see [4] and [18]). ‘For Ba.t}ach spaces X and Y,
we denote by X @, Y the direct sum X @ Y equipped with the norm

Iz wll = Izl lyIDlly for (z,v) € X @Y.

Thus, under this norm, X @, Y, which will be called the y-direct sum of X and
Y. is ’a Banach space and for all (z,y) € X &Y we also have (see [15])

“(I)y)llw S H(.‘L’, y)”w S ”(I,y)lll
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Now we show that the dual space of this w-direct sum is a direct sum X &, Y
of the same kind for some ¢ € ¥. We first define

(IDL"(S) = ‘,O(S) = sup st + (1 -,.- S)(l - t)
te(0.1] P(t)

for s € [0,1]. We show that ¢ € ¥ and call it the dual function of ¥.

Proposition 1 The above function ¢ is continuous, convez on [0,1] and satis-
fies p(8) > max{s, 1 — s} for all s € [0,1].

Proof. It is easy to see that (-) is continuous. To show that ¢ is convex, we
let sy, 52 € [0, 1] and consider

(51+32) —  sup Sibs2g 4 (1 - 2382)(1 —¢)
2 te[0,1] w(t)
- sup Eslt+szt+(1—31)(1-—-t)+(1—32)(1—t)
te(o.1) 2 ¥(t)

< glelsr) +plsa),

which verifies the convexity of ¢(-). Next we prove the last assertion. Since
P(t) < 1forallte0,1],

p(s) > sup {st+ (1 —s)(1—1t)} > max{s,1— s}
te{o,1]

for all s € [0,1], and the proof is complete. a

Theorem 2 The dual space (X @y Y)" is isometric to X*@®,Y ", where ¢ is the
dual function of ¥. Moreover, each bounded linear functional F in (X Dy Y)"
can be {(uniquely) represented by (f,g) where f € X* and g € Y* and

F(z,y) = f(z) + 9(y)
for all (z,y) € X @y Y. In this case, [|F|| < \(f, 9lloll(z, ¥)lle-
Proof. Define T: X" ®,Y" = (X @&y Y)" by
T(f,9)(z,y) = f(z) +9(¥)

where f € X*, g € Y*, z € X,and y € Y. It is easy to see that T is
linear. Moreover, by the definition of ¢, we have, recalling that the norm of
each nonzero element (f, g) of the yw-direct sum X* @, Y* is defined by

ligll

IKE e = AN+ e (s o)
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(DU ogite gt < AN+ g livl]

— . A=+ lgilllyll
A+ gl =l + iyl QI ezl + 1o

N (- ligll
)(H |+ Hyil)w\HI” T Hy“)

|o}]
11+ llgll

= Wroanl Ao,

s WSl Hgih

for all nonzero (f.g). Thus, T(f, ¢) is actually an element of (X &, Y)*. For
each F € (X = Y)". Fi-.0) and F{0.:) are bounded linear functionals on X
and Y. respectivelys Put fir) = F(xr,0) and gly) = F(0,y), then T(f,g9) = F
and the surjectivity of 77 is proved.

Finally we prove that T 1s an isomeiry, e, [[T{f,. gl = |I{f,9)|l,- From
the above calculation, we alwavs have ||[T(f, g)ll < |{(f, 9)ll.- Now we prove
the reverse inequality. We choose sequences {t,} C [0,1], {z.} C Sx, and
{yn} C 5y sothat

1 — )l Al tnllgll ligll
vt ( A+ el N7+ HQH) - trg(llfli + Ilgll)’

fizay = Ifll. and  glya) — |lgll asn — oo.

Therefore, since ﬁﬂl — ) Tn tayn) € Sxa vy,

1
tlitn)

(f((l . fn)rn) + g(tnyﬂ))

B | (1= t)f(zn) . tuglyn)
= A+ W9 s el * T+ T

Tifogiil =

The last expression tends to [[(f.g}ll. as n — oo, proving that T(f,g)|| =
[[{f.g}ll - and this completes the proof. G

Our first application of Theorem 2 is to show that reflexivity is preserved
under the v-direct sums.

Corollary 3 For each v € ¥, X @& Y is reflezive if and only if X and ¥ are
reflezive.

Proof. We only proof the sufficiency. We first show, without using reflexivity,
that (X &, Y)** = X*" &, 17" ie., they are isometric. For this, we let ¢ and
then § be the dual functions of ¢ and of ¢, respectively. Thus (X by V) ~
X-@.Y* by the isometry T where T'I" = (F\,F), i = F(-,0) and F» = F(0,-);
and (x+ &, Yy = X" @ Y by the isometry U where UG = (G1,G2),
G. = G(-.0) and G2 = G(0, ). Hence (X @y Y )™ = X *"@,Y"* via the isometry
which maps L € (Y &,.1)"" to ULT ' = (LT7Y(-,0),LTY0,)) € X** @Y "
50 that LT Yir  y = (LTil(IﬂOJ,LT—l(O,y')) = {(L{z~,0), L(0,y*)) =
(Li{z"). La(y"}) lu particular. when L = L., the evaluation map at (z,y),
ie, Ly (F)=Flr.y)= Fi(e)+Fay)for F e (NbyY)", UL(I‘y)T‘l(I‘,y‘) -
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ZHT)+Y" () = Le(2")+Ly(y+) = (L2, L,)(z*,y"). This shows that ||(z,y)|ly =
1Lzl = I(Ls, Ly)llo for (z,y) € X @Y. Therefore, () = 6(rlanl—) =

Q(II_:I!IJ%'ITIT) for [Iri] + [l]] # 0. From this we can easily see that 1 = 8.

Now suppose that X and ¥V are reflexive. Thus elements in X** and Y**
are of the form L; and L, for some z € X and y € Y. To show that (X Gy V)
is reflexive, let L € (.\' ®y Y')** and consider, for each F € (X @ YY), L(F) =
LIF, 0+ L(0.Fy) = L(F) + Ly (F) = Fy(z) + Fa(y) = Lz {F), for some
r€ Xandye€ ) Thatis L = Ly, ,y showing that X @, Y is reflexive and the
proof is complete. O

We observe that .\ &y 1™ is super-reflexive when (and only when) X and Y
are super-reflexive. By Henson and Moore (7], this is equivalent to showing that

the ultrapower V501 is reflexive. But this follows from Proposition 4 below
and Corollary 3.

3 Ultrapowers of the y-direct sums

The ultrapower of a Banach space is proved to be useful in many branches of
mathematics. Many results can be seen more easily when treated in this setting.
In this section we prove that every ultrapower of a i-direct sum is isometric to
the y-direct sum of their ultrapowers. First we recall some basic facts about
the ultrapowers. Let F be a filter on an index set I and let {z;}ics be a family
of points in a Hausdorfl topological space X. {z,}ics is said to converge to =
with respect to F, denoted by limr z; = z, if for each neighborhood U of =z,
{iel:z, e U} e F. Afilter U on I is called an ultrafilter if it is maximal with
respect to the set inclusion. An ultrafilter is called trivial if it is of the form
{A: AC i€ A} for some fixed i € I, otherwise, it is called nontrivial. We
will use the fact that

(i) & is an ultrafilter if and only if for any subset A C I, either A € U or

I'\A €l and

(ii) if X is compact, then the limy z; of a family {z;} in X always exists and

is unique.
Let {X,}.es be a famnily of Banach spaces and let Io(/, X;) denote the sub-
space of the product space [1;e X; equipped with the norm [|{z;)]| := sup,¢; [|zi| <

0.
Let ¢ be an ultrafilter on I and let

Ny = {(x;) € loo{d, X} : I:En ||z:|| = O}
The ultraproduct of {X;} is the quotient space loo(I, X;)/Ny equipped with
the quotient norm. Write ()i to denote the elements of the ultraproduct. It
follows from remark (ii) above and the definition of the quotient norm that

; =li |-
Iz ull = il
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In the following, we will restrict our index set I to be N, the set of natural
numbers. and let X', = X, 7 € N, for some Banach space X. For an ultrafilter I
on N, we write X to denote the ultraproduct which will be called an ultrapower
of .X. Note that if &/ 15 nontrivial, then X can be embedded into X isometrically
(for more details see [16] )

Proposition 4

e ——

N&p Y =~ 4(’ Dy )~

Proof. Define T: X @, &y Y —>A @y Y by Tz, y)—(:r y) for (J: y)GXEBwY
Let (I y) - (Irlayrl)u and (I y) - ("E Uyn)u If (I y) - (I 1y) then

0 = li;u I[{xn — 27, yn — ¥l
, llvn = wnll
= lim(||r, — 20| + - ?JJ( )
im (| wll - 1lyn = vl e T lym — vl
This implics

lun(Jlzs — o)l + llyn —wnll) = 0,

and hence ,
lin |2 = 201 = m [y — v4l| = 0.

This means (T,¥y) = (;',1;’) and T is well-defined. It is easy to see that T
is linear and onto. Now we prove that T is an isometry. To this end, let

(I,‘y) = (In,yn)U; S0

Py

1Tzl = I(Z- e

=+ 1909 ()

limu ”yn” )
limy ||z + lime |Jynll

llynl )

= (lim llzall + liLl;ﬂ ||yn||)1/)(

= hm(llInH + llynll) d)(llzﬂ

(| + llynll
= Lm|/(zn,yn)lle
u
= |zl
completing the proof. |

It is known that X is uniformly convex if and only if X is strictly convex
{see [16]). Also, X @y Y is strictly convex if and only if X and Y are strictly
convex and ¥ is strictly convex (see [18, Theorem 6]). Combining these results

and Proposition 4 gives
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Corollary 5 [15, Theorem 1j Let X and Y be Banach spaces and ' € . Then
X By Y is uniformly conver if and only if X and Y} are uniforinly conver and
Y s strictly conver.

Following T. Landes [10]. a normed space Z is a substitution space {with
index 7 # @& with anv cardinality) whenever Z has a {Shauder} basis {e,),ey
(unconditional if [ 15 uncountable) and the norm of Z is monotone. i.e.. 1z]] <
[[z|| whenever 0 < =, < z/foralli €I (z ' € Z}, where we write = = Doer 516
for z € Z. Given a family (X,),z; of normed spaces, then the Z direct sum
@D,c> A of the family (V) is defined to be the space {z =(zi)ier € [Tie; X -
> ier lzdles € Z} endowed with the norm || 2 e lzilleddlz.

A property P defined for normed spaces is said to be preserved under the Z-
direct-sum-operation, if the Z-direct sums of a family (.Y,),c; of normed spaces
satisfies P whenever all X; do so.

The following proposition shows that, under some conditions, “normal struc-
ture” is preserved under the Z-direct-sum-operation. This result improves the
first permanence result for normal structure obtained by Belluce, Kirk, and
Steiner [3].

Proposition 6 (10, Theorem 2, Corollary 3 and Corollary 4] Let Z be a sub-
stitution space with index set I = {1,... N} such that

[l + 2'|| < 2 whenever ||z]| =)z =1,z 20,2z, >0 foralli € I,

and z; = =, only for these i € [ for which z; = z; = 0.

Thus, normal structure is preserved under the Z-direct-sum-operation. In par-
ticular, tf Z is strictly conver or Z = I;,V for any p with 1 < p < co.

In case I = {1,2} and ¥ is strictly convex, it follows from [4, Lemma 2]
and [18, Theorem 3] that the norm {| - ||y is monotone and strictly convex on
2. Thus, in the light of super-reflexivity, we can extend “normal structure” to
“uniform normal structure” for ¢¥-direct sums whenever 1 is strictly convex.

Corollary 7 Let X and Y be super-reflerive Banach spaces and v € ¥. Sup-
pose Y is strictly convexr. Then, the ¥-direct sum X @y Y has uniform normal
structure if and only if X and Y have uniform normal structure.

Proof. Note that. by Khamsi [9], it suffices to show that the ultrapower

(A’/&(Y) has normal structure. But this is an immediate consequence of Propo-
sition 4 together with Proposition 6. )

It is well-known that every uniformly nonsquare space is super-reflexive (see
(8]). Thus, Corollary 7 and [5, Corollary 3.7] give
Corollary 8 Let X and Y be Banach spaces and ¥ € ¥ be strictly conver.
Then, if Cny(1,X) < 2 and Cny(1,Y) < 2, the ¢-direct sum X @y Y has
uniform normal structure.

It is interesting to see if we can conclude that Cnj(1, X &, 1") < 1 in Corol-

lary 8.
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4 Smoothness of the w-direct sums

A Banach space X is said to be smooth if for any r € Sy, V; is a singleton. We

recall that a continnous convex function ¢ has left and right derivatives ¢} ¥
Let 7 Lo defined on [U 1] by

Gy = =10 0R0)], G = (Wi (1), 1]
Gurro= (el ie uR(D)] (0<t < 1)

Given i € W. ¢t € [0 1] 1t

1
T{t) = O

so that [|x(¢){l,. = 1. In [4], the authors identified the dual of {(C2,||.{|y) with
C? and used this fact to provide a proof of the following lemma.

Lemma 9 [{ Lewong §) For o G and r defined above,

(1) Vo, = {00 =t v(#)+ (1 =t)y) v € G(t)} for 0 < ¢t < 1,

(2) Vi) =4{1, 21 +7)):5 € G0}, |z| =1}, and
(3} Voo, =421 — ). 1)y € G(L),|2| = 1}

In general, using Theoremin 2 and Lemma 9, we have the following:

Lemma 10 Let (z,y) € Sxvgp,vy and t = J:I-Lll-llyll' Thus

(1) Vs, = { ity = 0L ) + (1 = 0)v)g) v € G(t), f € Vayyey and
ge N, b forO<t <1,

(2) Vieyy = {Uf (1+ﬁ)g) e G(0),f €V, and g € Sy.)} fort =0, and

(3) Ve, = {((0=%f9):ve€G(),ge€V, and f € Sx-} fort=1.

Proof. We prove (1). Let F = {(f,g9) € V(z ), then

F((z,y)) = J(z)+4y)
< £l + gty
U7l + lghiy
=T+ gl Clall + g 1+ oD+ livib
lol Ly
< o () v () A0+ el + i)
I Wl = 1
Thus, we have [I/llsll + lglilyll = 1 and 7(z) = fllell 96 = ol

hence (|[£l,{lgll} € Vziiyn and mf—“ € Vi T € V- We observe that
(=i, livlly = -T(ﬁ(l - t, 1), thus it follows from Lemma 9 that

l1f1l = w(t) =t and [|g]] = ¥(t) + (1 — t}y, for some v € G(t).
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Consequently. we have (£.9) = (If iy, gl ) = (£(0) ~ ) g, ((2) +
{1 - t})jm), Thus, we have proved that Vizay € {{((¥(@) — tv) f, (¥(t) +
(1 - t)’)’)g) Y € C{(,’)'f S v:/][r“ and g € Vy/“yﬂ}. On the other hand, let
F= {0 =t/ (1) +(1-t)y}g) where v € G(1), f € V.7 and g € V-
Consider. by using, Lemnia 9, '

Fllr.m)) = (o) =t fle)+ () + (1= t)y)gly)
= o) =t (@l + (1= D)yl
= Uil I = (1 =€) + (9(8) + (1 — t)y)e)
1
— le((u:(z)—tq)(l—t)+(1,b(t)+(1—t)'y)t)
— 1.

Hence, (1) has been proved. The proof of (2} and (3) can be proceeded similarly.
O

We sayv that a function ¢ is smooth if the following conditions hold:
(1) v is smeoth at every t € (0, 1), i.e., the derivative of i) exists at ¢,
(2) the right derivative of ¢¥» at 0 is —1, and
(3) the left derivative of v at 1is 1.

Theorem 11 Let N and Y be Banach spaces and ¥ € ¥. Then X @4 Y is
smooth if and only if X and Y are smooth and ¢ 15 smooth.

Proof. Necessity Assume that X @, 1 is smooth. Because X is isometric
to X @ {0} which is a subspace of .\ &y Y, then X and similarly ¥ must be
smooth. It remains to prove that i is smooth, but by Lemma 10, if ¢ is not
smooth, there exists (r.y) € Sxg,y such that V(. ,) contains more than one
point which can not happen, and the smoothness of ¢ is proved

Sufficiency. This follows from Lemma 10. O

Again, since. for every Banach space X, X is uniformly smooth if and only
of X is smooth. we abtain

Corollary 12 Let N and Y be Banach spaces and ) € ¥. Then X &, Y is
uniformly smooth if and only if X and Y are uniformly smooth and 4 is smooth.

5 U-spaces and u-spaces

A Banach space X is called a U-space if for any € > 0, there exists é > 0 such
that for any z,y € Sx, we have ||z + y|| < 2(1 — 4) whenever f(y) < 1—¢
for some f € V, (see [12]). A Banach space X is called a u-space if for any
r.y € Sy with [[r + »ll = 2. we have V; = V. Obviously, every U-space is a

u-space.
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Remark 13 Let us collect together some properties of u-spaces and U-spaces:

(1} If X* is a u-spuce, then X 1s a u-space. The converse holds whenever X
15 reflerive.

(2) If X dis a U-space. then X 15 a u-space. The converse holds whenever
dimX < oo

(3} N sa u-space if and only of X is a U-space.

Proof. (1) Let r.y € Sy be such that ||z + y|| = 2. We prove that V, = V,.
Let f€ V., and vt € Y4, It follows that h(z) = h(y) =1 and ||f + A} = 2.
By the assumption that X" is a u-space and h(y) = 1, we have f(y) = 1. This
implies that V; ¢ V. and then ¥V, = ¥V, as required.

(2) The first assertion is obvious and the latter one follows from the com-
pactness of the unit ball.

(3) It is known that X is a U-space if and only if X is a U-space (see [6]
or {14]). In virtue of (2), it suffices to prove that X is a U-space whenever X
is a u-space. Suppose that .\ is not a U-space. Then there exist an g > 0
and sequences {r,}. {y.} C Sy, and {fn} C Sx- such that f.(zn) = 1 and
foulfn — yn) = €o for all n € N, and ||z, + ynll = 2 as n — oo, We put

Fo= (w7 = (yade and [ = (fa)u. Thus |lz + 9|l = 2, f(Z) =1 and
fli) < 1 —en < 1. This means that Vz # Vg which implies that X" is not a
u-space. ad

U-spaces can be considered as the “uniform” version of u-spaces. The fol-
lowing diagram explains this claim as well as it shows how the u-spaces are
well-placed (sce [1], [5], (6], [13], and [14]):

VisUC < XisUC & X isSC
VYisUS < XisUS < X is$S
Y is UNC < X is UNC <« X is NC

X is a U-space < X isa U-space < X is a u-space

CNJ(I,.\’) < 2 = UNS

fr
uc = U = UNSQ us = U = UNSQ
4 4 U 4 4 4
SC = ou = NSQ S == u = NSQ

10
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UC = Uniformly Convex. SC = Strictly Convex, US = Uniformly Smooth, 8
= Smooth, UNC = Uniformly Noncreasy , NC = Noncreasy, Cny () = a general-
ized Jordan-von Nenmann constant, UNS = Uniform Normal Structure, UNSQ
= Uniformly Nonsquare, NSQ = Nonsquare, U = a U-space, u = a u-space

Exarmnples of n-spaces which are not {-spaces can be obtained from the direct
product spaces (7 - E7 = BI & - )2 where (pa) is a sequence of positive
numbers strictly Jdecreasing to 1, and (o &3 & 14 @ - -)2 where each [,, is the
L, -space. Actuallv, boirh spaces are strictly convex. but with the James constant
and the Jordan-von Neumann constant are both equal to 2, i.e., the spaces are
not uniformly nonsquare. and hence can not be U-spaces. Sims and Smith [17]
have shown that the space {{, D3 &4 D -- )2 has asymptotic property (P) but
not property (P).

Examples of infinite dimensional u-spaces that are not strictly convex or
smooth are easilv established.

Let v € . We sayv that v is a u-function, if for any interval {a,b] C (0, 1),
we have v is smooth at @ and b whenever v is affine on [a, b].

Theorem 14 Let N and Y ke Banach spaces and 1 € V. Then the Banach
space N T .Y s a w-space of and only if X and Y are u-spaces and ¥ is a
u-function.

Proof. Necessity . Suppose there exist a and b € [0, 1] such that % is affine
on [a,b] but v’ {a) < v (a}) = ¥_(b). Fix xo € Sx, fo € Vz,, yo € Sy, and

go € V,,. Consider v = ﬁ({l — a)Tg,aye) and z = U,—(lg)—((l — bz, byg). We
have w.z € Svo v and [Ju + z{le = 2. Indeed,
. (1 —a 1-— bI a vo + b y )
, ol = ! — T —_— s T o~ - 40
e + =i, et T e T @ T e 7 |,
a b
_ ( . )v vl © mb))
via) - ¥(b) ot um
1 1
1 1 ) ¥(a) O]
= + = vla T +o 3 1 )
(v{a) »(b) ( "o TEw ot e
1 1
1 1 ) ( ) o)
= + 1 d"(a) + 1 1 w(b))
(ww} v/ \ way T we o T wm
2

To obtain a contradiction, it remains to show that V. # V. Now, for v €
[w(b), & (b)), we have

(b)Y — by < wib) — bl (b) = ¥(a) — eyl (a) < ¥(a) — ap’ (a).

Thus, (((a) — ai’_(a)) fo. (¥{a)+(1—a)¥l (a})go) € Vu\V;, thatis V, # V.

11
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Sufficiency. Let us prove that X &, Y is a u-space. Let w and z be elements
in the unit spherc of X" .. Y such that ||Jw + zlly = 2. Put w = (z;,y;) and
2 = (z2,y2). We have [[([lz1 [ + llz20l, [l ]| + lly2lDlly = 2 since 2 = ||w + 2||y =
{zy + 2,90 + wa)lle. < (12l + llz2ll sl + HlvlDlle < 1zall lz2lDlle +
HOyills ly=ID1l: = 2. By the convexity of 1, it follows that

2 = Izl + flyall + sl + llyzu)w( llyalt + Izl
T+ fwall + lizall + Tlval
™ ly2|
< Ul + oD (— + (i)l + (—2)
el + g} 2l llv2IDw e
= 2.
Thus, ¢ is athine on {u Ab.a v b}, wherea = |II”5_’; oy and b = 1 !‘_”f 7o+ Since

llw + z|] = 2, there exists FF = (f1,g1} € X* &, Y* such that F € V, N V,.
Hence,

Flw}) = filx1) +o{y)
ANl + gzl

Aol Il + Ngllllzall
A ”yl”)(llhll + gD (ol + llyadh

_ Maall {FAl
¥ (||f1 I+ ||91H) v ([|11III-+ Il_ylll) (LSl + Haa Dl ] + Haa 1)

= |IFllellwlle = 1.

1A

IA

Thus, we have

(a) fi(z1) = (lllllzall and g1 (¥1) = ligallllzall-
In the same way, we also have

() Jie2) = lAllliz2]] and gi(y2) = Hg:lllly=]l-

Now we show that V,, = V.. We consider first the case when all ||z, ||, [ly1]l, l|z2]l, llz2||
are positive. In this case. we can assume that 0 < a < b < 1. (@) and (8) give

T[%Tl € Vﬁ.{rﬂvﬁ;ﬁ and gy € V " nv 2 - It follows that ||"—1-"§1 +H_l";z | =2
. 2 = = = z ¥ = v i
and || Tl + ||y21|” = 2. Thus, v"?h vﬂ:h and Vm V]Wh_ since both X

and Y are u-spaces.
If @ < b, then, since ¢ is affine on [a, d], a and b must be smooth points of

1p. Consequently,
(v)  ¥(a) — ay = w(b) — by and ¥(a) + (1 — a)y = $(b) + (1 — b,
where v = ¥'(a) = ¢'(b). _ .
By using () together with Lemma 10 and the equations vﬂ%‘h’ = v“%'r
and v]]an = Vn_vzﬂ, we have V, = V,,.

12
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If @ =4 then, by Lemima 10, we have

T(II-yl] = {((L'(“) - (i“‘p)f,(u_.’( )+ (1~ )’7)9) 1Y E G(a),f = v11/||:r:,i| and g € Vyl/“y:”}
= {{{v(d) —b‘;)f‘(t,"(b 1_b)7) )”YGG( ),fEVzI/”xl” andgevyl/“yl"}
= AUe) = 0SB + (L= 0)7)g) : v € G(b), f € Vo ey 20d 9 € Vo, iyat )

= N

Thus U, = ¥, as well.

Now we consider the case when exactly one of the numbers ||z ], {|z2]], |lv1 ], [|y2|]
15 equal to 0. We assume that ||y ]] = 0, thus a = 0 < b and 0 and & are smooth
points. By (a). (J), and by the assumption that X is a u-space, we have

Vo, = Vu:;; _ Since U is a smooth point, we have F = (f,,0). This in turn

implies that b} — bu'(8) = 1 and w(b) + (1 — b)'(b) = O since F € V,NV,.
Thus. by Lenuna 10

Nizzgn = AUutd)y = b £ () + (1 = 0} (B))g) : f € Vi, z. and g € Vi, jjya1}

= S e N )
= {(fm:fev, |

= N u
Finally, suppose two of the numbers ||z, [|z2]l, ¥, |lyz|| are equal to 0. We
can assume that [Jy1ll = liyzil = 0, thus a = b = 0. The proof of the equality
V.= Vo is similar to the one of the case when a = b. 1

Corollary 15 Lot N and Y be Bunach spaces and ¢ € ¥. Then the following

statemnents are cyuivalent:
(1} X &0 s ol -sparce,;
(2) X & Y* 15 al’-space;
(8) X and} are U-spaces and ' 15 a u-function;

(4) X and Y are U'-spaces and ¢ is a u-function, where ¢ is the dual function
of .
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Appendix 7;: Some convexity properties in Musielak—Orlicz sequence

spaces endowed with the Luxemburg norm, (submitted)
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SOME CONVEXITY PROPERTIES IN MUSIELAK-ORLICZ
SEQUENCE SPACES ENDOWED WITH
THE LUXEMBURG NORNM

SATIT SAEJUNG

ABSTIACT. Criteria for &-strict convexity, uniform convexity in everny direc-
tion, property (K), property (H), and property (G in Musiclak-Orlicz sequenoen
spaces and their subspaces endowed with the Luxemburg norm arc presented
In particular, we obtain a characterization of such propertics of Nakano s~
QUCTICC SPACCS.

2000 MATHEMATICS SUBIECT CLASSINICATION: 46820, 46E30

1. INTRODUCTION

Convexity properties of Banach spaces play essential role in the theory of pprox-
imation and optimization. The property of k-strict convexity ensures, for exarmple.
that the dimension of the set Pyr{r}. the Chebyshev map or the bhest approximation
operator, is not greater than k and vice versa (see [13]).

Now we introduce the basic notions and definitions. A convex function : &k —
R, = [0,2¢) is called an Orhez function if it vanishes at zero and is even on the
whole line R and is not identically equal to zero. Denote by { the space of all real
sequences r = (z(7)). For a given Musiclak-Orlicz function 4. i.e. a sequence (.2,)
of Orlicz functions, we define a conver modular I4 -1 — [0, o<} by the formula

To{r) = Z;.(r(f))-
=1

The AMusielak-Orlics sequence spuce lp 15 the space

leg == {rel:lylcr) < x for some ¢ > 0}

We cousider {4 equipped with the Luremburg norm
Ir|| = inf{k > 0: Is(z/k) < 1}.

To simplify notation, we put ls := (le. || - |I). It is known that lp is a Banach space
(see [10]).

The subspace he. called the space of finite (or onrder continuows} elements, is
defined by

he = {0 S le - TplAr) < oo fur all A > 0}

We say a Musielak-Orlicz function & = (5.} satisfies the ba-condition (b £ 9y ) f
there exist constants A = 2. uy > 0 and a sequence (¢} of positive numbers such
that 370, ¢ < o and the inequality

Sl2u)y < R e 4

Supported by Thailand Rasearch Fund under grant BRG /0172543
!



2 SATIT SAEJUNG

holds for every i € N and u € R satisfying v, (u) < ug.

It is well known that he = lg if and only if © € 6, (see |5]).

We also say a Musielak-Orlicz function ® = (p;) safisfies the (x)-condition if for
any € € (0,1) there existsad > O such that, foralli € Nand v € R, ¢;{((1+8)u) < 1
whenever @, {u) <1 — ¢ (see [9]).

2. k-STRICT CONVEXITY

Let X be a Banach space. Denoted by S{X) and B({X) the unit sphere and the
unit ball of X respectively. A point x € S(X) is called an extreme point if for any
two elements =y and rz in B(X) satisfying x = 2322 implies that r; = x5.

A point r € S{X) is called a k-ertreme point, for k € N, if for any & + 1
elements xy., I, ..., Tk in B(X) satisfying x = %‘3*—*—‘ irnplies that the
set {r1, 72, ... Tk+1} i linearly dependent. It is clear from the definition that if
the dimension of a Banach space ¥ is less than or equal to k, then every point in

S(X) is alwavs a k-extreme point.
Remark 2.1.
(1) A point £ € S(X') is a l-extreme point if and only if it is an extreme point.
(2) If a point r in S{X7) is a k-extreme point, then it is also a (k + 1)-extreme
point.

An interval [a, b] is called a structural affine interval (SAI) of an Orlicz function

o if @ is affine on [a, b], i.e..
w(Aa + (1 — A)b) = Ap(a) + (1 — A)p(b)
for all A € [0,1], but not affine either on [a —¢,b] or [a,b + €] for any £ > 0. Let
{lan.bn)}n be the set of all SALs of . Put
SC, =R\ Un(an,bn).
Let a, = sup{u € R : o(u) = 0}.
Theorem 2.2. A point £ = (x(i)) € S(le) 15 a k-extreme point if and only if the
follounng conditions are satisfied:
(i) fq;(l‘) =1,

(i) #{i e N:|z(:)| € [0,a,)} £k —1 and

(iii) #{ie N:x(i) € SCp} < k.
In particular, a point T = (x(t)) € S(ls) is an extreme pownt if and only if I¢(x) = 1,
#{i € N:|z(i)| € [0.a,,)} = 0, and #{i € N: z(7) & SC,, } < 1. Here #A denotes
the cardinality of the set A.
Proof. Necessity. We note that if x = (z(i}) € S(la) is a k-extreme point, then
(|z(2)]) 1s also a k-extreme point. So we may assume that z(i) > 0 for all ¢ € N.
Suppose that (i) does not hold, i.e., Is(z) < 1. By the continuity of each ¢;, there

exists £ > 0 such that
. : 1 — Is(x)
wilx() £ €) < wulz(i)) + —

for all i = 1,...,.k + 1. Without loss of generality, we assume in addition that
(1) > 0. We define

o = (z(1) + e)er + (z(h+ 1) = e+ D z(ie,
i#1,k+1
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SOME CONVEXITY PROPERTIES IN MUSIELAK-ORLICZ SEQUENCE SPACES 3
and, for each j € {2,... &k + 1}, we also define

o=@l - —adga () Fe)e + D x(i)en.
17 1—1.3

Here ¢, is the sequence which has the i-th term 1 and all other termns 0. It is easy to

see that r = M—MW and {r)...., 741} C B(lg). Toprove that o, . .. s Tkl
are linearly independent, let a,, ... sk+1 € R besuch that ayzy+ - - Vv age1Te41 =

0. In particular, we have

k+1
(Za,) (1) + (a; —az)se = 0,

1=1

ka1
(Z (1,') I(2) -+ (a2 — (13)5 = 0,

1=1

k41 -
(Z(L,) I(k+1)+(ak+1—a1):’ = 0.

1=1
Clearly, (Zf:]l a.l)(zfillr(i)) = 0. Knowing that Zf:ll z(i} > x(1) > 0, thus
Zf:ll a, = 0 and this gives (a1 —az2)c = (ag —aa)e = - - = (ary1 —a1)e = 0. Henc'e
a, =+ =ag4y = 0and x,....,Tx41 are proved to be linearly independent. This
implies that z is not a k-extreme point, a contradiction.

Suppose (iii) does not hold. Without loss of generality, we assume z(i) € SC,,
for all 7 € N where N = {1,...,k + 1}. Hence (i) € (b;,¢;) where [b;,c] is a
structural affine interval of ¢,. Let @, (u}) = a,u + F; for v € (b;,¢;) for some
constants a; = 0 and 3; € R for each i € N. We note that §; = 0 whenever a; = 0.
Let A= {i € N :a; > 0}. Consider the following cases:

Case 1: #(A) > 2. For simplicity, we assume that A = {1,...,m} where

2<m<k+ 1. Choose £1,...,8k+1 > 0 such that
£l = - = @mém and z(f) & € (a,,b,) forallie N
We define
Iy = ($(1)+61)€1 +(I(m)_5m)em+ Z I(i)ei,
i#l,m
7, = (2 =1)—e-)en+ (@(d) +e)es + » o w(iles forj=2,....m—1,
i#) 1,3
T = (T(Tn—l)—Ern—l)f)mvl +(I(m)+5m)€m+(l'(m+1)+€m+1)6m+1,
+ Z I('II)(?,'
iZm-1,m,m+l
r; = (z(j+ )4 e;01)0541 + Z r{i)e; forj=m+1,... &k, and finally,
i¥;41
kt1 3
Tryp1 = Z {x(i) —e.)e + Z r(i)e;.
i=m+1 1FmAL, k+1
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It is easy to see that r = ﬂ%’—‘ Moreover, Io(r)) = -+ = Tp(reyq) = 1.
Indeed. by the fact that a151 = amem, wWe have
Io(r) = @i(a(l) +e1) +omlxim) = 60) + 3 wleli)
i1#1l.m
= Q’ll‘(l) -+ [a S F=N1 + ﬁ] + am-r(m) — OmEm + »dru + Z (,;‘E(I(I.))
1#Z1.m
= (@) +emle(m) + D0 wilz() = la(r) = L.
i#l,m

Similarly, we also have Ie(z;) = 1 for all j = 2,...,k + 1. Now we prove that
Ty, ...,Tky1 are linearly independent and as a consequence we obtain a contradic-

tion. Let ay,...,ax41 € R be such that ayz; + -+ + agp17641 = 0. Hence
a]Il(i) + -+ Gk+1Ik+1(i) =0
for all ¢ € M. In particular, we have

k41
(Zai) r(1) + (a1 —az)s; = 0,

t=1

k+1
(Z a,) z(2) + (az —az)ez = 0,

i=1

=1

k+1 :
(Z a,) z(m) + (@m — a1)em = 0.

Combining all these we have

k+1
(1) z(m)
(Z) (Z2++70) =0

i=1

Since E4CH I + %%)- = 0, Zf:ll a; = 0. Therefore ay; = --- = a,,. Furthermore,

[
for all = m, ...,k + 1, we have

k41
0= (Z ai) z(7) + (aj — ar+1)e; = (a5 — ak+1)e;.

i=1
Again we obtain @, = --- = ag4y1 and so gy = --- = ag41 = 0.
Case 2: #(A) = 1. We assume that A = {1}. Choose £2,...,€x41 > 0 such that

I(’i):‘:E,‘ [ (a{,b,‘) fori:2,...,k+1.
We define, for j=1,... .k,

z; = (z(7+1) +ej+1)e541 + Z z(i)e; and
i#j+1
k+1
Tyl = Z(I(]) —&5)e; + Z z(i)e;.
=2 i#2,.. k+1
Clearly, € = Ilﬂ;:&“ L and le(r1) = -~ = le{zk+1) = 1. To prove the lin-
ear independence of xy,...,Tk+1, et a1....,ax4+1 € R be such that ayz; + -+ +
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dg41Th 1 = 0. Henee apor(1) + -+ 4+ agy12{1) = 0. Note that z(1) > 0. Otherwise,

r(1) € SC,, which contradicts to our assumption. Thus, z:‘:ll a; = 0 and so

kil
0= (Zu,) r(J+ 1)+ (a; —any1)e0 = (a; — apgr e,y
t=1
forall j = 1.... k. Thereforc «y = -+ = az,y = 0.
Case 3: #(A) = 0. Since I4.(r) = 1, there exists 1o € N such that ¢, (r(in)) > 0.

Let us consider the following subcases.

Subcase 3.1 r(i0) € SCp, - If we put A" = (A\ {1}) U {ip} and repeat the
proof of Case 2, then we obtain a contradiction.

Subcase 3.2: r(ig) € SC,, . Choose €),...,6x41 > 0 such that

r(xs, elba)fori=1,... k+1.

Define
Ty =) +ey)ey + (rlh+ 1) —epqadeni + Z z(1)e,
1l k1
and. for each j = {2,.. .,k + 1}, we also define
=G =) — e+ (2(i) Hee, + Y x(ides
t¥)-1,
Again, we have r),... . rey € S{le) and x = mk—:l““ Since x(7g) € S5C,,, . we
have Z:‘:,] a, = 0 and repeat the proof of the necessity of (i), we get a; = -+ =
arp4y = 0.

In all cases we encounter with contradictions since £ is a k-extreme point and
thus the necessity of (iii) is established.
To prove (ii). Suppose that z(i) € [0,a,,) forall i =1,... k. Choose £ > 0 so

that o{(i) e € (—a,, a, ) foralli=1,..., k. For j=1,...,k, we define
1, = (z(3) — €)e, + Y xld)es
L1

and

&k oo

Tiy1 = 2 _(x()) +e)ei+ D 2(i)er.

1=1 i=k+1
Obviously £ = I‘—m% and {z;,...,Zes1} C S(ls). Now we prove t.he linear
independence of these elements. If ajry + -+ + @k 141 = 0, then ayzy () +--- +
ar41Tk+1(2) = 0 for all ¢ € N. Since Ig(x) = 1, there exists an index i{p > &

such that ¢y, {x(ip)) > 0. This implies that x(ig) # 0. It follows from (iii) that
x(ip) € SC,,, - Then a; + -+ + ar41 = 0. Moreover, we have

0 = az(l)—are+ar(l} + - +az(l) + ap1z(l) — @€
= ayr(l)+axr(l)+ - +arx(l) + arr1x(l) + ap e — age
= 1€ — d1£.

This gives a; = ax41. Similarly, we have a, = aryy for j = 2,... k. Hence
a, = --- = ag4r = 0. Therefore x cannot be a k-extreme point.

101



6 SATIT SAEJUNG

Sufficiency. Let © € S(lg) be such that the conditions (i)-(iii} hold. Given
elements zj,...,Xg41 in the unit sphere of ly with

Ty + Tz + -+ Ty
k+1

By the condition (i) and the convexity of the modular, we obtain Is(r,) = - - =
Io(zr4r) = 1. Furthermore, for each ¢ € N, {z;(i) - j = 1,.... &k + 1} is either a
singleton or a set contained in the same SAT of ;. To prove that {z|.... 7441} is
linearly dependent, we shall find a;....,ary1 € Rsuch that gy +- - Fap1 0641 =
0 where a;’s are not all zero. It follows by the condition (iii) that, for all but %
coordinates, {z,{i) : 7 = 1,..., & + 1} is a singleton. For the sake of convenience
we assume that {z;(¢): j=1,...,k+ 1} is a singleton for all i > k 4+ 1. Then

k k
(*) Iq;. (ZII(Z)‘?!) —= e = Iq; (ZI,&.{.](?J)E{) .

i=1 =1
We also assume in the worst case that {i € W : z(1) & SC,,} = {1,..., %} Let
{i e N:|r(i)l € [0,a,)} = {1l.....,m} where m <k —1and let K = {1.... .k} \
{1,....m}. If (i) = O for all 2 > k + 1, the following systemn of equations
alxl(l)+a1$2(1)+---+ak+11k+1(1) = 0,
0111(2)+O.12?2(2)+"'+G.k+]1'k+1(2) = 0,
arzi(k) + arza(k) + - + aprrzei(k) = 0.

always has a nontrivial solution. On the other hand, if there exists a coordinate
i = k + 1 such that z(i) # 0, then

e +az +---+ags1 =0

Consider the matrix

(1) za(l) o zaia(D)
1'1(2) I2(2) Ik+l(2)
(k) za(k) o Taea(R)
1 1 1

For k € K, let pr(u) = axu + B when u € [bx,ck], where [bg.ck| is a structural
affine interval of wx containing r(k). ax > 0 and B € R. By (+). we have

S (ari (k) + k) = > (axz2(k) + 3c) = = > _{owzxea (k) + B).

ke K ke K ke A
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This implies that the above matrix is equivalent to this following matrix

z1(1) z2(1) Tr+1(1) |
{2} z2(2) .- Tr41(2)
xi(m) zz2(m) Tiy1(m)
emrr{Ti(m+ 1)) pmpr(ze(m+1)) - Prma1(Tksr(m + 1))
wr(z1(k}) wr(za(k)) wi{Tes1(k))
| 0 0 0 i
Then there exists a nontrivial solution {a;:i=1,...,k+ 1} for the above system.
This implies the linear dependence of {x,...,zx41}- O

A Banach space X is said to be k-strictly convex if each point in its unit sphere
is a k-extreme point (see [13|). Also, a Banach space X is said to be sirictly convex
if each point in its unit sphere is an extreme point.

Let o, = sup{u > 0 : y, is strictly convex on [0, %] and ¢,(u) < 1}. By the
previous theorem, we obtain the following characterizations.

Corollary 2.3. The Musiclak-Orlicz sequence space lp 1s k-strictly conver if and
only f the following condilions are salisfied

(1) © = (w:) satisfics the d2-condition,

(2) each p; vanishes only at zero for all but k — 1 indices i’s and

(3) i (o) twi (o, )+ - +wi (i) = 1 for all k distinct indices 11,12, ..., ik.
In particular, hg is k-sirictly convez if and only if lhe condilions (2) and (3} are
sattsfied.

3. UNIFORM CONVEXITY IN EVERY DIRECTION

A Banach space X is said to be uniformly convex in every direction (UCED)
if for any nonzero z € X there exists é > 0 such that if x € X, |lz|| = 1 and
lz + zll <1 then |lx+ Z|| <1 — 4. Equivalently, if z,,,z € X, l|zal|, lzn + 2|l — 1
and {[2r, + z|| — 2 imply z = 0. It is easy to see that every UCED space is strictly
convex.

Lemma 3.1. [6] Letv; € R, i=1,...,4 and vy < vz < v3 < vg4. If ¢ is sirictly
conver on [vz,val, then there exists p € (0, 1) such that

o (" : ") < 122 (p(u) + 0(v))

for all u € [vy,v2] and v € [v3, v4).

Lemma 3.2. (7] let @ be strictly conver on [—a,a]. Then for each € > 0, dy,d3 €
(0,a], di < da, there erists p € (0, 1) such that

o (45 = TR + o)

if all [u — v| > e max(|ul, |[v]) and max(|u|, |v]) € [d1,d2].

Lemma 3.3. [9] If the Musielak-Orlicz function ¢ satisfies the §z-condition and
the (x)-condition, then for each € > 0, lhere exists § > 0 such thal |lz]l <1 -4

whenever Ia(z) <1 —¢.
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Theorem 3.4. The follounng statements are eguivalent:
(1) Iy s UCED:
(2) he is UCED:
(3) the follounny conditions are salisfied:
(a) & satisfies the d3-condition and the (=)-condition.
(b) each o, vanishes only at zero.
(c) vuloy) +w,(a,) = 1 for all e # .

Proof. (1)=(2) is trivial. To prove (2)=-(3]. it suffices 1o prove only the necessity
of (a). Suppose first that ¢ & é;, then there exists 7 = (x({)) € S(l4) such that
Ip{z) < g5 < 1 and Ip{Ar) = o for all A > 1. We can find a strictly increasing
sequence {i,} of natural numbers so that

Tn+l ‘
3 ?
§ Ll)el =
n+1
1=t, +1

for all n € N. Define z,, = 3,27 | x(i)e,. Then [lr,|| — 1. We may assume that

(1) # 0. Put z = x(l}e; # 0. Then we have |lr, + 2| — 1 and |[2r, + zj — 2.
This is a contradiction.

We next prove that @ satisfies the (*)-condition. For an arbitrary ¢ € (00, 1) and
i # 1, let u € B be such that ¢, {u) €< 1 —z. Put : = 2ae; where () <.
Since hg is UCED, there exists §° > 0 such that |[r + || < 1 =4 for any « = hq
with lz|l, ||z + =] £ 1. If we put 1,, = ue, — aey, then [[r.f, |lr, + 2l = 1. Henee
luen|| = llz + 3|l £ 1 —¢&. This implies that W (7%) < lforalls # 1. By the
continuity of ¢y, if @1 {u) < 1 — ¢, there exists " > 0 such that o ((1 +38"}u) < 1.
Put § = min {1—5%57, §"}. Then the necessity of the (*)-condition is proved.

(3)=>(1) Let z = (z(7)) € ls be a nonzero element. Consider the set

A={z=(z(@)): fo(r) =1 and [a(r + z) = 1}.

We first consider these two following cases:

I - There exists an index k such that gp > 0, =(k; # 0. |2(k)| < ok and |xr(k) +
2(k) < ox

11 : There exist an index & and numbers ¢,.{2 € (—@A_"(l},«‘;;'(ny by < ta.
i > 0 such that

(i} @k is strictly convex on (£, f2].

(ii) x(k) < ¢, and z(k) + =(k) =tz or (k) + z2(k) < ¢, and x(k) > {2, and

(i) wr(r(k)) = oelok) of we(x(k) + 2(8) 2 gilok).

We will estimate the value of I {r + 3).

I: Let n € N be such that & (z{k)) < n. Then

[=(k) = ;—k(;(ﬁ max(|z (k)] [r(k) + (k)
Otherwise, since o vanishes only at zero.
wie(z(k)) < fk(;—(k)) max (e { (k) wrlo{hk)+2(k))) < w;k(m) < %}“J
which is iinpossible. Morteover we also have
‘:‘_f"” < max(|r(k) riky = 2k < g
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Now we apply Lemma 3.2 with =Etkl} 28]

Then there exists iy £ (0.1) such that

. 0y in place of £, d;. da. respectively.

stk 1 - pp
vk (I(k) + (.) )) = .)“\ (wa(x(F)) + (o (hy + 2(AN).

This implies

(o4 5) € 1= B {anlat) + culath) + 2(0)
< 01— '%k max{ @ {r (k). e (0 (K) + 2(A))
(),

Il : Applving Lemma 3.1 with —‘;El(l). th.t0. ,:;1(1) in place of v,. respectively,
we obtain pge € (0. 1) such that

=S — Dk
ou (200 + S ) £ S + aela(h) + 209))

This implies
Vi(T(R)) + lr(k) + 2(R)))

) < 1oz

[¢(I+ 2(

bty

< 1= Tk'a:k(ok)-
Without loss of generality. we as::lfme that
S1(2(1)) = max{(=(i}} : i € N},
22(:(2)) = max{@, (=) 11 € Nt # 1),

and define the following sets

Ay = {re A ()] £ o and lx(1) + (1} < o).
A = {re A z(1)] > oy and [r{1) + 2(1)] > o1},
As = {re A Ir D} € oy and [2(1) + 2(1){ > o1}, and
Ay = {re€ A lr(l)] > o and [z(1) + (D] < o1}

It is evident that 4 = Uf:i.—l,.
We note that if z{z) = 0 for all i = 2. then

e(e+3) = o (s ) ey
= (:(1) (1)

< 1—\—“1(

From now on, we may assume that z(2) # 0.
First. if oy = 0. then by (¢) we have 3, (o,) = 1 for all { = 2. We apply I with

k=2
Secondly, if w1(o1) = 1, then we shall apply the case I with & = 1.
We now assume that o; > 0 for all i € N. In the virtue of T it is enough to

consider only the sets Az, A3 and 44

l.'

) 1 o (2(1)

(J
-
\..__/ N’
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Suppose that the numbers x{1) and z(1) + z(1) are of the different sign. Then,
for such z from A U A3z U Ay, it falls in the case IT when k = 1 by putting ¢,.1; €
{:tO'l,O}.

Now assume that z(l) and z(1) + 2(1) are of the same sign. If £ € A, then
w2(z(2)) < pa(o2) and w2(z(2) + 2(2)) < wa(0o2) since p;(o1) +w2(02) = 1. There-
fore, case 1 is applicable for £ = 2. Now let £ € A;. Note that the signs of z({!)
and z(1) must be the same. Let m € N such that o) —~ J%)-l > 0 and let

B; = {z € Ayt |z(1)] < o1 — '22)'}.

Putting ¢,z as %(o; — Jir:)-l), +o,, 50 elements in Bj satisfy the assumption of I1.
Denoted by Bj the complement of B3 in Aj i.e.

Ex={1‘€A3:|I(I)|>O’1-—IZ—£:ﬂ}.

Then |2(1) + 2(1)] = |=(1)] + |2(1)] > o1 — EEL 4 2(1)] = oy + (2=WEAL There
fore, o {xz(1} + z(1)) > ¢ (0, + M%LLZ_QL[), which implies p2(z(2) + z(2)) <
1—¢ (al + gm—_l");li(—l)-[) < @a(oa). If |2(2)] € o, then we are in case [ with k = 2.
If [2(2)| > o2 then we are in case II for & = 2 with

ot (1= 1 (o - mm DY)

For £ € A4 we also make analogous considerations. Note that z(1) and z(1)
must have the different signs. However z(1) and x(1) + z(1) have the same sign.
Thus {z(1)| > |2(1)| and |z(1) + z(1)| = |z(1)| — |2(1)|. Let

t1,t2 are chosen respectively from =+ , tog

b= {I € Av:lz() + 2Dl S o1 - —'z,(,:)i}.

If £ € B4 then the conditions of Case II are satisfied. Put

b= {x € Ayt z() + 2(1)] > oy — Z) }

Therefore |z(1)| — |z(1)] = |=(1) + z()} > o1 — lig)_l which implies [x(1)] > a1 +
i—ll—(—ll"“lm" Ll Hence ¢2(z(2)) £ 1—¢1 (01 + 1'“_-1’}111(1).1) < pa(o2). IF|z(2) +2(2)] <

o2 then we are in case I with k = 2. If |z(2) + z(2)| > o2, then we are in case II for

k =2 with
o7 (1= 1 (o + m = DY)

Thus, for all z € A, we have that Iy (z + §) < 12E for some p > 0. The number
p depends only on z. Indeed, p depends on the numbers

{:to;,:taz.o, +p; ! (1 — @1 (01 + (ﬁ%ﬂl)l)) e s (01 - %)}

Hence by the (#)-condition and the dz-condition there exists § > 0 such that
|z + Z|| < 1—6 for all z € S(le) with [} + z|| < 1. The proof is now complete. O

t;,t2 are chosen respectively from =+ , tos.
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4. Prorerty (K). ProrPeRTY (I} AnD PROPERTY ()

A pomnt r € 5(X) is called an H-pomnt if x,, — x whenever (x,,) C X such that
lzwil — 1 and r,, = r. A point £ € S(X) is called a PC-point if the identity map
id « B{X) — B(X) is weak-to-norm continuous at z. Equivalently. for any ¢ > 0
there exist & > 0 and linitely many linear functionals x7, x3,..., 2} € X~ such that

ly —=xfl <«

whenever jjyll € 1and {ri{y —r)|<dforalli=12,... n

It is casv (o see that every PC-point is an H-point. Moreover, if X is reflexive,
both notions are the same (|1]).
Lemma 4.1. (9] [f the Musielak-Orlicz function & = (y,) salisfies the dz-condilion
and the {*)-condilion and each ¢, vanwshes only at zero, then for each € > 0. there
rrist & > 0 such that |Ie(r) — Ie(y)| < & whenever Ig(x) < 1, Io(y) < 1 and
Ip(r —y) <& .
Lemma 4.2. [12] If & does not satisfy the da-condition. then S(lg) contains no
H-points

Theorem 4.3. Suppose that a Musielak-Orlicz function @ satisfies the (*)-condition
and each =, vanishes only al zero. Then the following statements are equiraleni:
(1) r € S{lg) w5 a PC-pomnt:
(2) x is un Il-pont:
(3) & € 8o,
Proof. (1)={2) is obvious. See [12] for a proof of the implication (2)=(3).
(3)=(1) Suppose ¢ € d;. Given £ > 0. There exists § € (0,¢) such that
Iyl < & whenever Ig(y) < 26
and there exists 8’ € (0.4) such that
\fo(y) — Ia(2)] < & whenever ey — 2) < § . Te() < 1, Ip(2) < 1.
Choose ip € N so that ZZ:OH pi(x(i)}) < 6. Note that a = min,—1, i @;l(f—o) >
0. Put As = {y € B{ls) : [{ly —7,ei)l = y(1) — z(i) <aforalli=1,...,ip}. For
any £ € Ay, we have

S iyl — 2(0) < D wla) <6

=1 i=1

Moreover, we also have

i ei(y(i)) < 1—Zsoi(y(i))
1=1p+1 i=1
= S el = Y wly@) + S efz(d) < 26
=1 i=1 t—=1ip+1

These yield

(255 e (i(_);;”) +3 ( 3 wily(d) +wi(x(c')))

=1 i=tg+1

A

24.

IA
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Hence |y — z|| <€, i.e. As C x +eDB(lg). Therefore z is a PC-point. O

A Banach space X is said to have properiy (H) (properiy (K), resp.} if each
point in its unit sphere is an H-point (PC-point, resp.).

Corollary 4.4. Suppose that a Musielak-Orlicz function ® salisfies the (x)-condition
and each p, vanishes only at zero. Then the following statements are equivalent:
(1) lp has property (K):
(2) he has property (K);
(3) lp has property (H);
{4) hg has property (H);
(5) $ c by

A point z € §(X) is called a denting point if for any € > 0, z & T{B(X)\(z +
eB(X))}. Recall that to(A) denoctes the closed convex hull of A. If each point in
S(X) is a denting point, we say that X has property (G).

Recently, B.-L. Lin, et al. ([11]) proved that z € S(X) is a denting point if and
only if it is a PC-point and an extreme point (see [11]). This gives the following
characterizations:

Theorem 4.5. Suppose that u Musielak-Orlicz function ® satisfies the (x)-condition
and each y; vanishes only at zero. Then x = (z(i)) € S(le) is o denting point if
and only if ® € 6, and #{i e N:z(i) € SC,,} < 1.
In particular, the following statements are equivalent:
(1) le has property (G);
(2) he has property (G);
(3) le is strictly conver.

5. CONVEXITY PROPERTIES IN NAKANO SEQUENCE SPACES AND
ORLICZ SEQUENCE SPACES

In this section, we give the characterizations of properties in the previous sec-
tions for Nakano sequence spaces. Recall that a Nekeno sequence spece e} s a
Mausielak-Orlicz sequence space with

pi(u) = |u|™

where 1 < p; < oco. An Orlicz sequence spaces lpy is just the Musielak-Orliczs
sequence space lg such that ¢; = M for alli € N,

Theorem 5.1. For the Nakano sequence space {{Pi}, we have

(1) ([4, Theorem 3]) 1{P:} is k-strictly convex if and only if limsup;_, ., pi < o0
and #{ieN:p; =1} <k,

(2} (|4, Theorem 22 and Final remark]) t{r:} i3 UCED if and only if 117} has
property (G): if and only if limsup, . pi <oo and #{ie N:p; =1} <1,
and

(3) ([4, Theorem 6 and Final remark]}) 117} has property (K) if and only if 117}
has property (H); if and only if limsup;_, ., pi < 0o.

Theorem 5.2. For the Orlicz sequence space lar, we have
(1) {([3, Theorem 2.11]) lps is k-sirictly convez if and only if M € 82 and M 1is
strictly convex on [0, M~1(})].
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(2) ([14, Theorem 2] and (8]) {ar is UCED #f and only if Ly has property (G):
of and only of M € 6y and M s strictly convez on [0, M ~'(3)]. and

(3) of. in addifron, M vanishes only at zero, ([14, Theorem 1.1]) Ins has property
(K) of and only if Lar has property (H); if and only of M € &5.
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ON THE MODULUS OF U-CONVEXITY

SATIT SAEJUNG

ABSTRACT. In this paper, we prove that the moduli of U-convexity, introduced
by Gao (1995), of thc ultrapower X of a Banach spacc X and of X itsclf
coincide whenever X is super-reflexive. As conscquences, some known results
have been proved and improved. More preciscly, we prove that ux (1) > 0
implics that both X and the dual space X* of X have normal structure and
hence the property WORTH in Corollary 7 of Maria Mazcufidn-Navarro (2003)
can be discarded.

1. INTRODUCTION

Let C be a nonemptly bounded closed convex subset of a Banach space X. A
mapping T : C — C is said to be nonezpansive provided the inequality

ITz — Tyl < llz — yl
for every z,y € C. If there exists &k < 1 such that for all z,y € C,
ITz — Tyl < kllz — yll,

then by the Banach Contraction Principle, T has a unique fixed point in C, that is,
there exists one and only one £ € C such that Tx = z. Perhaps the most obvious
question raised by the study of the Banach Contraction Principle is: What happens
when & = 17 The simple example Tx = r+ 1 for x € R shows that the counterpart
of Banach’s Theorem fails to hold. Furthermore, the mapping T : R — R defined
by Tz = 1 + In(1 + %) provides an example of a fixed point free mapping which
satisfies the inequality
1Tz — Tyll < Iz — I

for every z,y € R.

Now, a Banach space X is said to have the fired point property if every nonex-
pansive mapping T : C — C, where C is a nonempty bounded closed convex subset
of a Banach space X, has a fixed point.

Many mathematicians have established that, under various geometric properties
of the Banach space X often measured by different moduli of convexity, the fixed
point property of X is guaranteed.

How the classical modulus of convexity dx(-) of a Banach space X, introduced
by J. A. Clarkson in 1936, relates to the fixed point property has been widely
studied. It is well-known ([9, Theorem 5.12, page 122]) that if 6x(1) > 0 then X
and X* have the fixed point property. Recently, J. Garcia Falset proved that every
weakly nearly uniformly smooth space has the fixed point property. To prove this,
he introduced the following coefficient

R(X) = sup { limnf ||z + Il }
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2 SATIT SAEJUNG

where the supremum is taken over all weakly null sequences {rn} in Bx(:={z €
X :|lzll £ 1}) and all £ € Sx(:= {z € X : ||z|]| = 1}). Indeed, he proved that a
reflexive Banach space X with R(X) < 2 enjoys the fixed point property ([8]).

On the other hand, in 1995, Ji Gao defined the following modutlus, for € € |0, 2],

] 1
uy(e) =1nf{l - §||1:+y|izz,y€ Sx and f(z — y) = ¢ for some f € VI}.

Here V. denotes the set of all norm 1 supporting functionals f of z € Sy, i.e,
f(z} = |lz{l = 1. It is easy to see that ux(e) = éx () for all e € [0,2]. The inequality
may be strict even when X is a Hilbert space. In fact, uy(e) =1 — /T— £ for
€ € |0, 2] where H is a Hilbert space. Ji Gao proved that if there exists § > 0 such
that ux(4 — 4) > 0, then X has uniform normal structure ([4]).

Mazcundn-Navarro (2003) proved a relationship between two of the above no-
tions. Namely, if there exists § > 0 such that ux (1 — §) > 0, then R(X) < 2 ([11,
Theorem 5]).

This paper is organized as follows: In section 2 we prove some inequalities con-
cerning the modulus of U-convexity, introduced by Gao, and other constants. By
these inequalities, we immediately obtain some results proved by Gao (1995) and
Mazcunan-Navarro (2003). Finally, in section 3, we prove that if a Banach space
X is superreflexive, then the moduli of U-convexity of the ultrapower X of X and
of X itself coincide. Using ultrapower method we show, a Banach space X and its
dual X* have uniform normal structure whenever ux (1) > 0. The paper concludes
with an example showing that such a condition is sharp.

2. THE MopuULUS OF J-CONVEXITY

It was proved in [3] that ux(-) is continuous on [0,2). Hence we restate |11,
Theorem 5] that

Theorem 1. Let X be a Banach space with ux(1) > 0. Then R(X) < 2.

Furthermore, the above result follows directly from the following inequality and
the continuity of ux(-).

Proposition 2. Let X be a Banach space. Then
R(X) < inf{max{e + 1,2(1 — ux(e))} : £ € [0, 1]}.

Proof. Suppose the inequality does not hold. Then there exist € € [0, 1), a weakly
null sequence {x,} in Bx and z € Sx such that

ILn_l.géf |z + Za|l > max{e + 1,2(1 — ux(e))}.

Take f € V.. So f(zn) — 0 as n — co. Hence f(z — z,) 2 ¢ for all sufficiently
large n and we then have ||z + zn|| < 2(1 — ux(¢)). a contradiction. O

The following example shows us that £ = 1 is the largest number such that
“ux(e) >0= R(X) <27

Example 3. For p € (1, 00), let us consider the I, space equipped with the norm

izl =izt + =" Ilp
where £+ and z— are positive and negative partsof z € I, i.e, (z*), = max{z,,0)}
and (z~)n = max{—z,,0}. We write l,, to denote the space (I, [ - ||'). This
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ON THE MODULUS OF U-CONVEXITY 3

space was introduced and studied by Bynum (see [2]). It is not difficult to sce that
R(l,:) = 2 and hence u,;, ,(1) = 0. Moreover, it is well-known that u, ,(€) =
&, ,(€) >0 foralle > 275 (see {2]).

Now welet X = (®1,,,1)i1, where {pn} C (1,00) is a sequence tending to infinity.
It is easy to see that R(X) =2 and ux(e) >0 foralle > 1.

In an attempt to simplify Schaffer’s notion of girth and perimeter [13), the James
constant

J(X) = sup{min{llz + y|.llz —yll} : z.y € Bx}
are studied. It is easy to see that a Banach space X is uniformly nonsquare il and
only if J(X)} < 2.
As we prove Proposition 2, a relationship between the modulus of U/-convexity
and the James constant is obtained.

Proposition 4. Let X be a Banach space. Then
J(X) € inf{max{e + 1,2(1 — u(e))} : € € [0, 1]}.
In particudar, if ux (1) > 0, then X is uniformly nonsquare ([4, Theorem 2)).

In order to extend this result (see Theorem 8), we need the following two Lem-
mas.

Lemma 5 (Bishop-Phelps-Bollobas [1}). Let X be a Banach space, and let 0 < € <
1. Given z € Bx and h € Sx- with 1 — h(z) < ‘-41. then there exist y € Sx and
g €V, such that |ly — z|| <€ and |lg — k| <e.

Lemma 6. Let
1
4 — 1 1 - M —
uy(e) = ;x;t(')mf{l 2||:z:+;f,;||..1:,3,4'6Sx,';"(:lr))-l 7
and f(x — y) = € for some f € Sx-}.

Then for each € € |0,2) and for each £ > 0, there exists n > 0 such that

W(e) +€ > ule —m) - 5.
Proof. Let £ > 0. Then there exist > 0, T,y € Sx and f € Sx- such that
2
L= 2lz +yll <w(©) +& S@-v) > e and f(2)>1- T

By Bishop-Phelps-Bollobas’ Theorem, there exist z € Sx and g € V; such that
lg— fll <n and |lz—=z|l <=
Hence 1 — iz +yll =1 - 3z + yl| — 3. Furthermore,
glz—y) = 1-9(y)

= 1-(9-N)-fy)

z2 l—llg—fll-1+¢

> E—-T.
Therefore, by the definition of u(-},

u'(e) +€>ule —n) — g
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4 SATIT SAEJUNG

Now by the continuity of u(-) and the fact that u(-) > u’(-} on [0,2). we have
Corollary 7. u(-) = v/(:) on [0,2).

Theorem 8. A Banach space X is uniformly nonsquare if and only if there erists
6 > 0 such that ux (2 —68) > 0.

Proof. The necessity is trivially true since ux{€) = x(¢) for all € € (0,2]. We now
prove the sufficiency. Since there exists § > 0 such that ux(2 — 8) > 0, we choose
n > 0 so that ux(2 — ) > 7. Suppose that X is not uniformly nonsquare. Then
there exist sequence {z,},{y,} C Sx such that

1

n

for all n € N. Let f, € Vo . Then fn(yn) — 0. Indeed, |fo(yn)| < L foralln € N.
For each n € N, we put

1
Nz +yall = 1| < - and||lzn —yal - 1] <

Tn + Yn , —Zn +
= 2 L and yn=———yn.
lzn + yall [ — <0 + yall
Hence fo(zl) > ’:‘—;_: and fn(z;, —vh) > %:4_;111 for all n € N, and ||z, + y.|| — 2

as n — oo. For all sufficiently large n, we have ux (2 — n) < n, a contradiction. O

Recall that a bounded convex subset K of a Banach space X is said to have
nortnal structure if for every convex subset A of A that contains more than one
point, there exists a point xg € H such that

sup{llzo —yll 1y € H} <sup{llz —yl:z,y € H}.
A Banach space X is said to have weak normal structure if every weakly compact
convex subset of X that contains more than one point has normal structure. A
Banach space X is said to have uniforrn normal structure if there exists 0 < ¢ < 1

such that for any closed bounded convex subset K of X that contains more than
one point, there exists zg € K such that

sup{llzo ~ yll : y € K} < csup{llz —yll : z,y € K'}.

Combining Theorem 8 with the WORTH property, introduced by B. Sims |15|,
we have

Corollary 9. If there ezists § > O such that ux(2—94) > 0 and X has the WORTH
property, then X has normal structure.

In particular, if ux (1) > 0 and X has the WORTH property, then X” has normal
structure ([11, Corollary 8]). In the next section, we will see that this conclusion
still holds regardless of whether or not X has the WORTH property.

3. NORMAL STRUCTURES AND THE MODULUS OF U-CONVEXITY

The ultrapower of a Banach space is proved to be useful in many branches of
mathematics. Many results can be seen more easily when treated in this setting.
First we recall some basic facts about the ultrapowers. Let F be a filter on an
index set I and let {z;}ic; be a family of points in a Hausdorf{I topological space
X. {zi}lies is said to converge to x with respect to F, denoted by limr z, = z, if
for each neighborhood U of z, {i € I : x; € U} € F. A filter / on [ is called an
ultrafilter if it is maximal with respect to the set inclusion. An ultrafilter is called
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ON THE MODULUS OF {/-CONVEXITY 5

trivial if it is of the form {A: A < I,ip € A} for some fixed ig € I, otherwise, it is
called nontrivial. We will use the fact that
(i) U is an ultrafilter if and only if for any subset A C I, either A € i or
I\Ae€l, and
(ii) if X is compact, then the limy, z; of a family {z:} in X always exists and
is unique.

Let {X,}ics be a family of Banach spaces and let I (I, X;)} denote the subspace
of the product space Il;e; X; equipped with the norm ||(z;)| := sup;e; ||l&: ] < oo.
Let U be an ultrafilter on I and let

Ny = {{z:) € lo(I, X)) : litt;n |z4j| = 0}.

The ultraproduct of {X;} is the quotient space !, (I, X;)/Ny equipped with the
quotient norm. Write (z;)ys to denote the elements of the ultraproduct. It follows
easily from (ii} above and the definition of the quotient norm that

[[(zi)uell = lim [l ]|

In the following, we will restrict our index set 7 to be N, and let X; = X, i € N,
for some Banach space X. For an ultrafilter If on N, we write X to denote the
ultraproduct which will be called an witrapower of X. Note that if &/ is nontrivial,
then X can be embedded into X isometrically. For more details see [14].

The main result in this paper is the following

Theorem 10. Suppose that X is super-reflevive. Then ug(-) = ux(:) for all
€ € [0,2). In particular, if ux(g) > 0 for some g € (0,2), then ug(e) = ux(e).
Proof. Tt is easy to see that ug(e) < ux{e) for alle € [0,2). It suffices to prove that
ug(e) 2 u'y () for all £ € [0,2) where u/x(-) is defined in Lemma 6. Let T,y € S
and J‘: € Vi be such that f(ﬁ:" —) 2z e Wewrite T = () and § = (y'L)“ where
Tn,Yn € X for all n € N. By the super-reflexivity of X, we also write f = (fa)u
where f, € X* for all n € N (see [14]). Then, we have

llg}l lznll = li“’r‘n lynll = lgnfn(xn) =1 and liénfn(yn) sl—e

Discarding some terms of the above sequences, we may assume that no z,, y, or
fn is 0. Then put zj, = 22y, v, = 2y and fn = f2p. Given 7 > 0, we have
(neN: fi(gh)>1-n} el and {ne N:1— Iz, +y,ll > vix(s) = n} € U. Tt
follows that 1 1

I-5lF+yll=1—5lim | 2n + yall = ux(€) —n.

This implies that u 3 (¢) > u’y(¢) and the proof is complete. (]

Recall that a Banach space X is said to be a U-space if ux(e) > 0 for all
€ € (0,2). In order to prove that being U-space is a super-property, i.e. every
Banach space finitely representable in a U-space is a U-space, Gao and Lau used
some equivalent forms of I/-spaces proved through the properties of Asplund spaces
(see [6, Theorem 3.7]). Here we also obtain this through a new approach, as a

consequence of Theorem 10.

Corollary 11. [6, Theorem 4.3] A Banach space X 1s a U-space if and only if X
ts a U-space.
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Proposition 12. Ifux (1) > 0, then X and X* have uniform normal structure.

Proof. It suffices Lo prove that X has weak normal structure whenever u3 (1} > 0
or ui (1) > 0. Since ux(¢) > 0 implies that X is super-reflexive. Then ux(1) =
ug (l) > 0. Now suppose that X f[ails to have weak normal structure. Then, by the

classical argument, there exists a weakly null sequence {z,}2%, such that
lim ||z — zal| = 1 for all z € co{z,}32,
n

We choose a subsequence of {z,}5%,, denoted again by {z,}3L,, such that
. 1 1
h}." lzn — Znaafl = L fanr(za)l < ;» and |fa(Zni)| < oy
for all n e N_where Iﬂ € Vz.- Put T = (£n — zn41), ¥ = (zn41) and f= (fn)
Then ||f|| = f(z) = f(z — y) = lIZ]l = llyll = 1. Furthermore,
”"C + y” = hrn H21n+l - In” llm fn+l(2‘rn+l = zn) =2

Hence uA(l) 0.
Next, let § = (— f,.+1). Hence

2<IT+3l<(F+@ <2
Moreover, g{—y) = 1 and f(—%) = 0. This implies that
ux-(1) =uzp (1) = u(;()-(l) =0
The proof is finished. O

-1

Theorem 13. If ux(e =1} for some € € (0,2), then X has uniform
normal structure. Furthermore, if ux(e) > max{0,e — 1} for some € € (0,2), then
both X and X" have uniform normal structure.

Proof. Let us repeat the proof of Proposition 12. Let ¢ € [0,1]. Now we put
T = (In - In+l) y = ( lzn — (1 - t)In+l) and f - (fn) Then ”f" - f(‘T')

IZl = l[§]| = 1. Furthermore, we have f(Z — %) = 1+t and
Iz +yl = 135“ {1 —t)zn — (z_t)mn+l”
2 li’g](_fn+l)((l_t)xn —(2—t)znt1)
= 2-t.

Hence uz(1 + 1) < £ and this implies that ux () <

z
a contradiction. _

Next, we put § = (—tfn — (1 — t)fas1)- It is easy to see that f(2) = 1 and
(f — )% =1+t where Z = (x,). Moreover, we have

I +3ll= Hm(l = )|l fn = farall 2 lim(1 = )(fn — Fae1)(Zn — Tny1) = 2(1 = 2).

Therefore ux-{1 +t) € t or ux-(¢) < max{0,6 — 1} for all £ € (0,2). Hence if
ux-{€) > max{0,e — 1} for some £ € (0,2), then X has normal structure. a

€1} for all € € (0,2),

Corollary 14. ([5, Theorem 8] and [12, Corollary 3]} If éx () > max{<51,0} for
some € € (0,2). then X has uniform normal structure.
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ON THE MODULUS OF U-CONVEXITY 7

Example 15. For p € (1, 00), we denoted by I, o the I, space with the norm

=l = max{[lz*llp. l=™H5}-

It is known that I,  is a super-reflexive space that fails normal structure ([2]).
Hence uy, (1) = 0 while u;, (€) = &, () > O for all ¢ > 1. This example shows
that the condition in Proposition 12 is best possible.
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