

Final Report

Genomic approach in searching for genes involved
in genetic susceptibility to clinical malaria

วันที่.....	23 ต.ค. 2546
เลขประจำบุคคล.....	278
ผู้ลงนาม.....	BRG
ลงนาม.....	44

๔๐/๖

Principle Investigator

Anavaj Sakuntabhai

Department of Medicine, Faculty of Medicine
Ramathibodi Hospital, Mahidol University**Co- investigators**

Pratap Singhasivanon

Department of Tropical Hygiene, Faculty of
Tropical Medicine

Thanyachai Sura

Department of Medicine, Faculty of Medicine
Ramathibodi Hospital

Chayanon Peerapittayamongkol

Department of Biochemistry, Faculty of Medicine
Siriraj Hospital

Somporn Krasaesub

Research Center, Faculty of Medicine
Ramathibodi Hospital

Objoon Trachoo

Department of Medicine, Faculty of Medicine
Ramathibodi Hospital

Waraphon Phimraphi

PhD student, Faculty of Tropical Medicine

Chairat Turbpaiboon

PhD student, Department of Biochemistry, Faculty
of Sciences

Sukunya Thamniam

Department of Medicine, Faculty of Medicine
Ramathibodi Hospital

Wathanee Chaiyaratna

Research Center, Faculty of Medicine
Ramathibodi Hospital**Advisers****Mahidol University**

Sornchai Looareesuwan

Dean, Faculty of Tropical Medicine

Ahnond Bunyaratvej

Department of Pathology, Faculty of Medicine
Ramathibodi Hospital

Suthat Fuchareon

Thalassemia Research Center

Pranee Fuchareon

Thalassemia Research Center

Praphon Wilairat

Department of Biochemistry, Faculty of Sciences

Index

	<i>page</i>
Introduction	1
Material and Method	1
Results	6
Phenotypes and estimation of heritability	6
Whole genome amplification	8
Study of β-globin locus	9
Study of α-globin locus	10
Study of G6PD locus	10
Study of SLC4A1 (AE1) polymorphisms	11
Study of ABO blood group	13
Study of Duffy blood group	13
Study of TNF α polymorphisms	13
Study of ICAM1 polymorphisms	13
Study of IL-10 polymorphisms	14
Discussion	14
Conclusion	15
Future plan	15
Investigation of β-globin locus	15
Recommendation	16
Phenotyping	16
Genome screening	16
Problems	17
References	17
Publication	19

Table Index

	page
Table 1 SNPs and mutation studied, origin and method for genotyping	2
Table 2 Primers, enzyme, size of PCR products and PCR condition of PCR-RFLP reaction used in the project	3
Table 3 Primers and probes used in TaqMan assay	4
Table 4 Prevalence of clinical malaria attacks during year 1998-2002	6
Table 5 Mean, Standard Deviation (SD), Skewness and Kurtosis, Shapiro-Wilk test for normality of the transformed phenotypes	7
Table 6 Estimation of heritability of the phenotypes	7
Table 7 Primers used for direct sequencing β -globin gene.	8
Table 8 Primers used in Gap-PCR	9
Table 9 Allele frequency and Association study for Linkage Disequilibrium of 3 SNPs and 3 mutations studied in β -globin locus.	9
Table 10 Association study and linkage analysis of SNPs	10
Table 11 Primers used for direct sequencing the entire coding regions of G6PD	11
Table 12 Primers used for direct sequencing the entire SLC4A1	11
Table 13 Position, Predicted Consequence, Allele Frequency and p-value from Association study for Linkage Disequilibrium of SNPs identified in SLC4A1 (AE1) gene	12

Introduction

Malaria remains the most important human parasitic disease worldwide, causing over 170 million clinical cases per year, resulting in over a million die. Most of the treatments available have limited efficacy and side effects and the emergence of drug-resistant strains. Vaccines are being developed with varying degree of success. Host genetic factors also play an important role in susceptibility and clinical manifestations of infectious diseases. The mechanisms of natural protective immunity to malaria are not well understood, nor are the pathophysiological mechanisms of the disease.

Most of the studies reported to date were based on case/control study of severe malaria and have tested genes based on biological functions or the distorted allelic distribution in the regions with high endemicity of malaria. Some of the genes, which will be identified through our approaches, may have no or little effect on the protection against severe malaria. Therefore, it is virtually impossible to identify these genes by studies conducted on severe malaria. The familial study that will be performed in this project enable us to test candidate regions, such as those homologous to the regions identified in animal models as well as the whole genome search in a systematic way. This has a potential to identify new genes, which could not be detected through candidate gene approach.

Material and Methods

Populations

This study is based on populations from Suanpung district, Ratchaburi province, located near the Thai-Myanmar border, which is an endemic area for malaria in Thailand. The size of the populations is around 6000 with 2800 individuals have been followed up for a number of malaria attacks, type of malaria (*P. falciparum*, *P. vivax*, *P. ovale*, *P. malariae* or mixed infection), blood parasitemia and clinical response to treatment since 1994. In the first 2 years, all individuals in the study have been checked for blood parasitemia monthly regardless of their symptoms. After this period, patients in the study came to the clinic when they developed fever. They were checked for the presence of the parasites by investigators who had experience in interpreting the slides and were then received appropriated treatment.

Family structures were established by interview. DNA were extracted using standard phenol/chloroform extraction from 1231 individuals from EDTA whole blood and 295 individuals from cells obtained from buccal swab. In addition, DNA samples were obtained from 271 capillary heparinized blood.

Whole genome amplification

In order to save our DNA samples, we performed whole genome amplification by mean of primer extension pre-amplification method (PEP) [1]. Although this method is efficient, the pre-amplified products have short-lived.

We are also testing the other 2 new methods for whole genome amplification, REPLI-g (Molecular Staging Inc., USA) and GenomiPhi (Amersham Biosciences, USA). The REPLI-g method is based on Multiple Displacement Amplification (MDA) technology [2]. It carries out an isothermal genome amplification using a uniquely processive DNA polymerase with exonuclease-resistant primers. The high fidelity is made possible in part because of the novel properties of the DNA polymerase mix which is capable to polymerize at least 70kb

without dissociating from the genomic DNA template, therefore, results in a large fragment amplified product. Amersham Biosciences bought the license of this enzyme mix and provide it as a GenomiPhi DNA Amplification kit.

SNP discovery

In order to screen candidate genes, polymorphisms of each gene were identified first by literature review or public database. Polymorphisms (mostly single nucleotide polymorphism or SNP) which have been shown to be associated with severe form of malaria and/or have the effect on expression of the gene or the protein the gene encoded were selected. These polymorphisms will be tested in a limited number of population. Polymorphisms which have frequency more than 5% in our population were subjected for large scale genotyping in the whole population (method below).

The other way to identify SNP is direct sequencing the entire coding sequences and regulatory region of the gene. Currently, we have another similar project to search for genes involved in clinical malaria in Senegalese population. Genome screening linkage analysis is finished. We are now investigating a few candidate genes which are in the region which showed linkage. Screening for SNPs was performed by direct sequencing using Big Dye Terminator sequencing system in a ABI3700. We then analysed the electropherograms using Genalys software developed by Centre National de Genotypage (ref). We also included 32 selected Suanpong population according to their susceptibility to malaria infection during this large scale sequencing. The gene which we investigated by this way is SLC4A1 (AE1). Table 1 lists all SNPs studied, their origin and methods for genotyping.

Table 1 SNPs and mutation studied, origin and method for genotyping

Gene or locus	SNP name	Origin	Method for Genotyping
β-globin	SNP1	sequencing	PCR-RFLP/TaqMan
β-globin	SNP2	sequencing	TaqMan
β-globin	SNP3	sequencing	TaqMan
β-globin	HbE	literature	TaqMan
β-globin	IVS-1	literature	TaqMan
β-globin	4bpdel	literature	TaqMan
α-globin	HbCS	literature	TaqMan
ABO	ABO-297	database	TaqMan
Duffy blood group	duffAg	literature	TaqMan
ICAM1	ICAM1-kilifi	literature	PCR-RFLP
ICAM1	ICAM1-1405	database	PCR-RFLP
IL-10	IL-10-819	literature	PCR-RFLP
IL-10	IL-10-1082	literature	PCR-RFLP
TNF-α	TNF-308	literature	TaqMan
TNF-α	TNF-238	literature	TaqMan

Mutation screening

Screening for mutation of those individuals whom hematological investigation suggested abnormalities in globin genes or G6PD were performed by direct sequencing using Big Dye Terminator system in a ABI3700 and analyzed by the Genalys program.

SNP validation

Polymorphisms identified from literature review or public database were validated in 96 or more randomly selected individuals from our population by mean of digestion with restriction enzyme after polymerase chain reaction amplification (PCR-RFLP). Primers used, enzymes used, fragment lengths and PCR condition for polymorphism are shown in Table 2. Some of them were used for large-scale genotyping.

Table 2 Primers, enzyme, size of PCR products and PCR condition of PCR-RFLP reaction used in the project

SNP name	Forward Primers (5' to 3')	Reverse Primer (5' to 3')	Enzyme	Size Uncut (Allele)	Size Cut (Allele)	Annealing Temp.	Mg Cl ₂
ICAM1-kili ^f	TGTCCCCCTCAAAAG TCATC	TCATACACCTTCCGG TTGTT	<i>Nla</i> III	99+48 (A)	74+48+25 (T)	53	2.5
ICAM1-1405	CTTGAGGGCACCTAC CTCTG	AGGATACAACAGGCG GTGAG	<i>Bst</i> UI	154 (A)	101+53 (G)	60	1.5
IL-10-819	TCAACTTCTTCCACC CCATC	AGTGAGCAAATGAG GCACAGACA	<i>Nla</i> III	206 (T)	180+26 (C)	60	1.5
IL-10-1082	ACACTACTAAGGCTT CCTTGGGA	GATGGGGTGGAAAGAA GTTGA	<i>Eco</i> NI	126 (G)	106+20 (A)	60	1.5
TNF-308	GAGGCAATAGGTTT GAGGGCCAT	GGGACACACAAGCAT CAAG	<i>Nco</i> I (art)	147 (A)	126 + 21 (G)	63	1.5
TNF-238	AGAAGACCCCCCTCG GAACC	TCTCGGTTCTTCTC CATCG	<i>Hpa</i> II (art)	116 (A)	97 + 19 (G)	60	2

art. =artificial site

Large scale SNP typing

After confirmation of polymorphisms in our population, the SNPs were then studied in the whole population by mean of 3 methods listed below according to their priority.

1. TaqMan™ assay

This technique is developed by Applied Biosystems (Foster City, USA) (www.appliedbiosystems.com). It has been used to detect amplified product in real time PCR. They were then later develop this technique for allelic discrimination or SNP typing. For allelic discrimination using TaqMan™ assay, there were 2 TaqMan probes which are different in dye colours and different in nucleotide at the polymorphic site of the SNP. We performed this assay through Assay-by-Design™ service that designs, synthesizes primers and probes for SNP genotyping.

We have modified some parts of the protocol in order to minimize the cost of genotyping. The protocol is as followed. Genomic DNA (1 ng) was dried in optical 96-well reaction plates. A 5 μ l reaction mix containing 1x TaqMan® Universal PCR Master Mix and 1x primers and probes Mix (Assay-by-Design) was added to each well. Amplification was performed using ABI Prism 7000 Sequence Detection System. The reaction mixture was

heated at 95°C for 10 min to activate the modified DNA polymerase, followed by 40 cycles of denaturation, 15 sec. at 92°C, and annealing/extension 1 min. at 60°C. Endpoint fluorescence measurements were done during a 1 min. incubation at 60°C, and analysis was performed by the ABI Prism 7000 SDS software.

Primers and probes used for genotyping of our SNPs is shown in Table 3. We found that this technique is the most reliable, efficient, fast and economical method for SNP typing at the moment.

Table 3 Primers and probes used in TaqMan assay

SNP name	Forward Primer (5' to 3')	Reverse Primer (5' to 3')	TaqMan probe – FAM (Allele)	TaqMan probe- VIC (Allele)
TNF-308	GAAATGGAGGCAATAG GTTTTGAG	GTAGGACCCCTGGAGGC TGAAC	CCGTCCCTCATGCC	CCGTCCCCATGCC
TNF-238	TCAGTCAGTGGCCAG AAGAC	CCCTCACACTCCCCAT CCT	CCCTGCTCTGATTC	CTGCTCCGATTCC
HbE	GCAAGGTGAACGTGGA TGAAG	GGTCTCCTTAAACCTG TCTTGTAACC	TGGTGGTAAGGCC	TTGGTGGTGAGGCC
IVS-1	GGTGAACGTGGATGAA GTTGGT	GCCCAGTTTCTATTGG TCTCCTTAA	CTGGGCAGTTGG	TGGGCAGGTTGGTAT
4bpdel	GCTGGTGGTCTACCCCT TGGAA	ACAGCATCAGGAGTGG ACAGATC	AGAGGTTGAGTCCTTT	CCAGAGGTTCTTG
HbCS	TGGCTTCTGTGAGCAC CGT	CCATCGGGCAGGAGGA A	AGCTTGACGGTATTT	CAGCTTAACGGTATTT
ABO-297	TGGCTGGCTCCCATTG TC	CCTGAAGTGCTCGTTG AGGAT	CGATGTTGAATGTGC	CGATGTTGAACGTGC
Duffy	CTGATGGCCCTCATTA GTCCTT	GCTGGACGGCTGTCA	CCAAGGTAAGAGCC	CTTCCAAGATAAGAGCC

1. PCR-RFLP

Assay-by-Design™ service is a service that guarantee the success of primers and probes they design. There were some cases that primers and probes cannot be designed or passed the quality control of this service. The 2nd method of choice is PCR-RFLP. This method is not that efficient when we perform large scale genotyping, however, it is more economical (depending on the price of the enzyme) and reliable than other methods available. If the SNP does not change restriction site, artificial site will be created during PCR amplification.

2. SNaPshot™

This technique is developed by Applied Biosystems (Foster City, USA) based on primer extension (PE) assay. The reaction is based on annealing a detection primer to the nucleic acid sequence immediately 3' of the nucleotide position to be analyzed and to extend this primer with a single labeled dideoxynucleotide that is complementary to the nucleotide to be detected using DNA polymerase [3-5]. Each dideoxynucleotide is labeled with 4 different fluorescent dyes to indicate the SNP allele, which can be then scored by electrophoresis on a fluorescence-based DNA sequencer. Each SNP is differentiated by size of the primers used in PE reaction, which results in different size of PE product. This technique is the last choice for us because it is very expensive when performed as simplex and the results can be difficult to interpret. We have not used this method for SNP typing in our study.

Bioinformatics and Statistics

Transformation of phenotypes

Because genetic statistics that we will use for linkage and association study assume normal distribution of the phenotypes. We, therefore, transformed the phenotypes by controlling for other confounding factors using multivariate regression analysis. The residual phenotypes were then estimated for each individual. The transformed phenotypes were tested for normal distribution by estimation of skewness and kurtosis and Shapiro-Wilk test for normality. All the phenotypes analyses were performed with STATA version 7.

Errors detection

Usually, SNP typing has some errors. Errors in genotyping is the major cause of false negative and false positive which makes analysis unreliable. We have 2 steps to detect genotyping errors.

1. Mendelian inheritance We first checked for inconsistency for Mendelian inheritance in the family of each marker using PedCheck program [6].

2. Haplotype analysis and recombination detection In principle, no recombination between SNP within the gene should not be detected in the population. We therefore performed haplotype analysis using modified Simwalk2 program [7]. Recombination between SNPs within the same gene indicate genotyping errors.

The results of genotyping of those individuals which whom the program indicate errors were re-interpreted. If controversy still exists, re-genotyping of those individuals were performed from stock DNA.

Haplotype analysis

Haplotypes were estimated by Simwalk2 [7]. Linkage disequilibrium coefficient and association study of SNPs were estimated by GOLD [8].

Analyses of heritability

Genetic contribution to the phenotypes were performed by estimation of the heritability, using variance-component model in which 2 alternative variance models were compared [9]. The significance of a polygenic component in the heritability of each phenotype was examined by the comparison of the likelihood of a null model that included only environmental variance, V_e , with the likelihood of a full model that included both environmental and polygenic variance, V_g . Twice the difference in log_e likelihood of the two models yields a test statistic that is asymptotically distributed as a ½:½ mixture of a χ^2_1 variable and a point mass of zero. When the null hypothesis was rejected, heritability, h^2 , was then estimated as $V_g/(V_e+V_g)$. Analyses were performed with the SOLAR program (version 1.7.3; for download binaries, see www.sfbr.org/sfbr/public/software/solar/).

Linkage studies

The pedigree-based variance-component linkage analysis was used to estimate the genetic variance attributable to the region around a specific genetic marker. [9]. This approach is based on specify the expected genetic covariance between arbitrary relatives as a function of IBD relationships at a quantitative-trait locus (QTL). IBD status for each locus was estimated for the linkage studies as a multipoint fashion using Markov Chain Monte Carlo methods by use of LOKI (version 2.4.5; for download binaries, see

www.loki.homeunix.net/ [10]. Linkage analyses were run by use of the SOLAR program. For each phenotype, we tested the null hypothesis that the genetic variance due to QTL equals zero (no linkage) by comparing the likelihood of this restricted model with that of a model in which the variance due to the QTL is estimated. Environmental and residual genetic variance were included in both models. The difference between the two \log_{10} likelihood produces a LOD score that is equivalent of the classical LOD score of linkage analysis. Twice the difference in \log_e likelihood of the two models yields a test statistic that is asymptotically distributed as a χ^2_1 mixture of a χ^2_1 variable and a point mass of zero.

Association studies

Transmission disequilibrium test (TDT) was estimated in the presence of linkage by use of variance components with orthogonal model described by Abecasis [11]. The orthogonal model extends the approach proposed by Fulker in 1999 [12]. The Fulker model involves maximum likelihood modeling of the sib ship data. Linkage is modeled in the covariances structure while association parameter are modeled on the mean. The algorithm partitions the gene effect to be between-family (b) and within-family (w) components. A test of within-family association parameter would yield a test for association while controlling for stratification. Abecasis extends this approach to create the orthogonal model that was designed to accommodate any number of offspring and optionally to include parental genotypes if available. Twice the natural log of the likelihood data based on the 2 models under the full model and null hypothesis is asymptotic distributed as a χ^2 statistic, with df equal to the number of parameters being tested. In addition, empirical significance levels were calculated from 1000 Monte Carlo permutations. LOKI was used to calculate IBD for association studies.

Results

Phenotypes and Estimation of Heritability

Phenotypes related to clinical malaria attacks during year 1998-2002 were investigated for genetic effects. The criteria for diagnosis of clinical malaria attacks were fever and fever associated symptoms (headache, vomiting, subjective sensation of fever) with the presence of parasites in blood smear. Species of the causative parasites were specified.

During 1998-2002, there were 2713 clinical malaria attacks from 1443 observed individuals. Of which, 1643 attacks were due to *Plasmodium falciparum*, 849 attacks due to *P. vivax*. Prevalence of clinical attacks for each year are shown in Table 4. Number of clinical attacks per individuals ranged from 1 to 16 for *P. falciparum*, 1 to 14 for *P. vivax* during 5 years of observation. There were significant differences of number of clinical malaria attacks of *P. falciparum* with age group, sex, and hamlet whereas clinical *vivax* malaria attacks was associated with age and year of study.

Table 4 Prevalence of clinical malaria attacks during year 1998-2002

Phenotypes	1998	1999	2000	2001	2002	Total
All clinical attacks	517 (1-12)	850 (1-8)	516 (1-4)	530 (1-7)	300 (1-5)	2713 (1-16)
Clinical falciparum attacks	358 (1-12)	424 (1-8)	336 (1-4)	335 (1-7)	190 (1-5)	1643 (1-14)
Clinical vivax attacks	146 (1-5)	241 (1-5)	164 (1-4)	189 (1-5)	109 (1-5)	849 (1-5)

The prevalence of malaria clinical attacks during 5 years was analysed by Poisson regression models including variables for the effect of i) age, ii) sex, iii) hamlet and iv) year of survey (dummy variable: 1998 to 2002).

The expected number of malaria attacks for each individual was estimated according to these models. For each individual i , an Anscombe residual [13] was calculated as a function of the sum of the recorded malaria attacks y_i and the sum of the expected malaria attacks μ_i , the sums being calculated over all the observed periods of the individual that were eligible for the analysis. The Anscombe residual is $a_i = 1.5 (y_i^{2/3} - \mu_i^{2/3}) / \mu_i^{1/3}$. Among the residuals for Poisson regression models, it is the closest to normality, then standardized to mean zero and variance 1 [13]. The residual number of clinical attacks were then used for further genetic analysis. After transformation, the data was tested for normality (Table 5).

Table 5 Mean, Standard Deviation (SD), Skewness and Kurtosis, Shapiro-Wilk test for normality of the transformed phenotypes

Phenotypes	Mean	SD	Skewness	Kurtosis	Shapiro-Wilk test			
					W	V	Z	P value
All clinical attacks	-0.157	1.237	1.421	6.089	0.905	84.012	11.134	$< 10^{-5}$
Clinical falciparum attacks	-0.419	1.166	1.173	4.835	0.919	70.892	10.707	$< 10^{-5}$
Clinical vivax attacks	-0.392	1.065	1.638	6.276	0.859	124.410	12.120	$< 10^{-5}$

In order to estimate the heritability, we performed a test using variance-component model in which 2 alternative variance models were compared [9]. The results of genetic effect were shown in Table 6. There were strong genetic effects for number of clinical malaria attacks of *P. falciparum* both analysis as quantitative trait ($h^2=0.24$, $p < 10^{-7}$) and as qualitative trait ($h^2=0.34$, $p < 10^{-7}$). However, there was no genetic effects for number of clinical malaria attacks for *P. vivax* when analyzing as quantitative trait but show nearly significance when analyzing as qualitative trait ($h^2=0.07$, $p = 0.06$). These phenotypes will be used for linkage and association study for both candidate genes approach and systematic genome screening.

These evidences supported the previous findings of genetic effects in SriLankan populations [14] that there is a genetic effect for the intensity of clinical *falciparum* attacks whereas genetic effect for clinical *vivax* malaria attacks confer absolute susceptibility or refractoriness to the infection.

Table 6 Estimation of heritability of the phenotypes

Phenotypes	P value	Heritability	Standard Error
P. falciparum-qualitative	$< 10^{-7}$	0.34	0.06
P. vivax-qualitative	0.06	0.07	0.03
All clinical attacks	$< 10^{-7}$	0.36	0.05
Clinical falciparum attacks	$< 10^{-7}$	0.24	0.05
Clinical vivax attacks	NS	NE	NE

NS = not significant, NE = not estimated.

Whole genome amplification

Apart from 1231 individuals whom we obtained their DNA samples from EDTA whole blood, there were 295 individuals, mostly young children from whom we collected cells from buccal swab. In addition, we obtained more DNA samples from 271 individuals using capillary heparinized blood. Therefore, quantity and quality of DNA samples from those individuals will be less than those whom we have EDTA whole blood. In order to screen the whole genome of these individuals, we tested several methods for amplification the whole genome and then used for multiplex microsatellite typing systems that were performed at the Centre National de Genotypage.

There were 3 methods tested, 1) Primer Extension Pre-amplification [1] Method developed by Molecular Staging Inc. (REPLI-g™) and 3) GenomiPhi™ DNA amplification kit (Amersham Biosciences).

We compared the 3 methods with 3 types of DNA samples, 1) extracted from EDTA whole blood by phenol/chloroform, 2) extracted from buccal swab cells using phenol/chloroform method and 3) extracted from capillary heparinized blood using phenol/chloroform method. There were 8 samples from each type of DNA.

We tested the amplified DNA samples using 4 PCR reactions for the 2 methods, REPLI-g and GenomiPhi DNA amplification kit, and multiplex microsatellite typing system used at CNG for all 3. The amplified DNA samples from EDTA whole blood performed well with no difference detected with the 2 methods when tested with 4 PCR reactions. DNA samples extracted from buccal swab performed poorly with all 3 methods whereas GenomiPhi™ DNA amplification kit performed better than REPLI-g™ when using DNA samples extracted from capillary heparinized blood. However, PEP is the best method for multiplex microsatellite typing.

The problem of PEP method is short-lived (3 months) of amplified DNA samples and low-yield. Currently, we are working with Dr Ivo Gut at CNG to improve the yield and storage of amplified DNA samples.

Study of β -globin locus

β -thalassemia trait is the most common type of hemoglobinopathies in the population with prevalence around 10%. By direct sequencing 8 unrelated individuals who showed abnormal hemoglobin typing results, 3 types of known mutations of β -thalassemia have been identified i.e. 1) splice site mutation of intron 1 (nt1, G>T), 2) 4 bp-deletion of codon 41/42 and 3) HbE (Glu26Lys). Primers used for direct sequencing the entire β -globin gene is shown in Table 7.

Table 7 Primers used for direct sequencing β -globin gene.

Region amplified	Forward primer (5' to 3')	Reverse primer (5' to 3')	Annealing temp.	Product size (bp)
Exon1	ACTCCTAAGCCAGTGCCAGA	CAGCATCAGGAGTGGACAGA	60	506
Exon2	GCACTGACTCTCTGCCT	AACGATCCTGAGACTTCCACA	60	411
Exon3	GAGTCCAAGCTAGGCCCTTT	TTTGCAGCCTCACCTCTTT	60	450

Intron2	GACCAAATCAGGGTAATTTGCAT	AGTGATACTTGTGGGCCAGG	60	508
---------	-------------------------	----------------------	----	-----

Apart from β -thalassemia trait, hereditary persistent of fetal hemoglobin (HPFH) were found in 90 individuals in whom hemoglobin typing were done. Percentage of HbF ranged from more than 1 % to 32.9 %. We have identified 3 individuals with 29-30% of HbF carried 27 kb deletion of the South East Asia type of HPFH. This finding has been published in Hemoglobin 2003 [15]. Primers used for gap PCR is shown in Table 8.

Table 8 Primers used in Gap-PCR

Name of Deletion	Forward primer-1 (5' to 3')	Reverse primer (5' to 3')	Forward primer-2 (5' to 3')	Annealing temp	Normal product size (bp)	Deleted product size (bp)
SEA HPFH	TGGTATCTGCAG CAGTTGCC	AGCCTCATGGT AGCAGAAC	ATTGTTGAGTTG CAGGATCG	58	565	376

Table 9 Allele frequency and Association study for Linkage Disequilibrium of 3 SNPs and 3 mutations studied in β -globin locus.

Name of SNP	Allele frequency	SNP1	SNP2	SNP3	HbE	IVS1	4bpdel
SNP1	0.06		0.936	0.301	10^{-4}	$<10^{-5}$	0.37
SNP2	0.49	0.000		$<10^{-5}$	0.74	0.0007	0.76
SNP3	0.49	0.003	0.609		0.65	0.003	0.477
HbE	0.004	0.111	0.000	0.001		0.586	0.786
IVS1	0.03	0.144	0.023	0.017	0.000		0.59
4bpdel	0.01	0.001	0.000	0.001	0.000	0.000	

p value is shown at the right upper half of the table.

delta² for linkage disequilibrium is shown at the left lower half

In addition to the 3 mutations of β -globin gene that have been identified through individuals whom hemoglobin typing suggested β -thalassemia trait, we studied 3 other polymorphisms in this region. These polymorphisms were identified during direct sequencing of the entire β -globin gene with high frequency. Minor allele frequency for the 3 SNPs and 3 mutations and their linkage disequilibrium is shown in Table 9.

In addition to association study, linkage analysis was performed for each SNP and each phenotype by mean of variance component using the QTDT program. The results of association study and linkage analysis are shown in Table 10. The highest association is found between SNP2 with residual number of clinical *falciparum* attacks ($p = 0.005$). SNP3 which is in tightly linkage disequilibrium with SNP2 also showed marginally significant ($p = 0.042$). Frequencies of HbE and 4bp deletion mutation of β -thalassemia are too low for statistical analysis. The most common mutation of β -thalassemia found in this population, IVS1, showed no significant association with all the phenotypes tested. Combined analysis of 4bp deletion and IVS1 did not show significant association either. However, there was a significant association of SNP1 with residual number of clinical *falciparum* malaria attacks (p

= 0.032). This SNP also showed association with IVS1 mutation. Linkage analysis did not reveal significant linkage of all these SNPs with all phenotypes studied.

Table 10 Association study and linkage analysis of SNPs

Name of gene or locus	Name of SNP	Allele Freq.	All clinical attacks		Clinical falciparum attacks		Clinical vivax attacks	
			Asscoiation study	Linkage analysis	Asscoiation study	Linkage analysis	Asscoiation study	Linkage analysis
β-globin	SNP1	0.06	NS	NS	0.032	NS	NS	NS
β-globin	SNP2	0.49	NS	NS	0.005	NS	NS	NS
β-globin	SNP3	0.49	NS	NS	0.042	NS	NS	NS
β-globin	HbE	0.004	NT	NT	NT	NT	NT	NT
β-globin	IVS1	0.03	NS	NS	NS	NS	NS	NS
β-globin	4bpdel	0.01	NT	NT	NT	NT	NT	NT
β-globin	IVS1+4bpde 1	0.04	NS	NS	NS	NS	NS	NS
ABO	ABO297	0.38	NS	NS	0.051	NS	NS	NS
ICAM1	ICAM1-1405	0.30	NS	NS	NS	NS	NS	NS
IL-10	IL10-819	0.36	NS	NS	NS	NS	NS	NS
IL-10	IL10-1082	0.03	NS	NS	NS	NS	NS	NS

NS = not significant, NT = not tested.

Study of α-globin locus

Hemoglobin constant spring was studied in the whole population by mean of TaqMan assay. The prevalence is 0.004 in Suanpung population which is too low for association study.

For genotyping of α-globin genes deletion, we directly sequenced PCR product amplified from homozygote of α-thalassemia in order to identify the break point of the α-globin gene deletion. The breakpoint was identified for α-thal1 SEA type. We are designing a gap PCR reaction for genotyping this deletion in the whole population.

Study of G6PD locus

G6PD deficiency was detected in 15% of the populations. None of the common G6PD mutations in Thailand; G6PD Viangchan (291 Val>Met) [16]; G6PD Mahidol (163 Gly>Ser) [17] and G6PD Canton (459 Arg>Leu) [18] have been detected in the populations. We also directly sequenced the entire coding regions of G6PD in 12 unrelated individuals and their mother but have not found any causative mutation. Primers used for direct sequencing the entire coding regions of G6PD is shown in Table 11. We are waiting for the results of genome screening that are being performed at CNG. Genome screening linkage analysis will be performed to localize the area where the gene responsible G6PD in this popualtion resides. New gene or new mutation of the G6PD gene is expected to be identified.

Table 11 Primers used for direct sequencing the entire coding regions of G6PD

Region amplified	Forward primer (5' to 3')	Reverse primer (5' to 3')	Annealing temp.	Product size (bp)
Exon2	GCCGTTCACAGGAGTGATT	CAGGCACCTCCTGGCTTTA	50	307
Exon3-4	GCTTGTGGCCCAGTAGTGAT	AGGAGAGGAGGAGAGCATCC	60	471
Exon5	TCAAAGAGAGGGCTGACAT	GTTCGTGGAGCAACGCT	60	431
Exon6-7	TGCAGCTGTGATCCTCACTC	CTGCAGGGTGAUTGGCTCT	60	591
Exon8	GGAAGTGAGTCTTGAGCTTG	GGTGAGGACACCTGCTCTG	58	308
Exon9	CCTGAGGGCTGCACATCT	GACCAGTGCCTGAGTGTCTC	55	368
Exon10-11	ACTGGAGCTCCACTGAGAC	ACCCCATAGCCCACAGGTAT	60	544
Exon12	GGCCTCCCAAGCCATACTA	CCACTTGTAGGTGCCCTCAT	60	290
Exon13-1	TTATGGCAGGTGAGGAAAGG	CACAGGCAGATTCTCTCACG	55	600
Exon13-2	CAAGCACTCGAGACCACCT	GGGTCAGAACCAAGAAGTGA	55	549

Study of SLC4A1 (AE1) polymorphisms

SLC4A1 or AE1 or band 3 is the major glycoprotein of the erythrocyte membrane and mediates exchange of chloride and bicarbonate across the phospholipid bilayer. Senescent cell antigen (SCA), an aging antigen, is an epitope that appears on old cells and marks them for removal by the immune system. The aging antigen is generated by the clustering of protein band 3. Besides its role in the removal of senescent and damaged cells, SCA also appears to be involved in the removal of erythrocytes in hemolytic anemia and the removal of malaria-infected erythrocytes. In addition, deletion of amino acid residues 400-408 of SLC4A1 results in Melanesian ovalocytosis [19]. Ovalocytic erythrocytes from Melanesians are resistant to invasion by malaria parasites. In our Senegalese populations, genome screening linkage analysis revealed linkage of number of clinical *falciparum* attacks to chromosome 17q21-22 (unpublished data) which is an area that SLC4A1 resides. Therefore, we performed direct sequencing of the entire coding region and its promoter including intron 3 which is the region that regulate expression of the kidney isoform of the genes. Primers used for direct sequencing are shown in Table 12.

Table 12 Primers used for direct sequencing the entire SLC4A1

Region amplified	Forward primer (5' to 3')	Reverse primer (5' to 3')	Annealing temp.	Product size (bp)
Promotor	GTGAATGGTCTTGCAGTGGC	AAGAGCTGGCTCCTGGACAC	60°C	592
Promotor	GAGCTGACATTGTTTCAGGT	CAGGGTCCCTGGTGAAGT	60°C	692
Exon1	AGCTGTCCAGATGTGGGTAA	CATACCATCTGCTGCCATTG	60°C	474
Exon2 and 3	GGGCAGCAGCTATTCTGAGAG	AACTTTAATCCAATCTCCAGCAC	60°C	1229

Exon4 and 5	GGGAATATAAGGGGCTGACC	CCTCTATCCCCTTGCTCCTC	60°C	615
Exon6	TGGGAGATAAGGGAGTGGTG	CTAGCAGTTGGTTGGCCACT	60°C	488
Exon7	GCCTCCTAGAGCTGCGTAGA	GAGATGGGAGCCATAGTGGA	60°C	407
Exon8	TCTACCCCAGTCCCTTGATG	CTGCTTGTGGTCGGTTTTC	60°C	319
Exon9 and 10	AAAAACCAACCACAAGCAGG	GCCAGGTAGGATAGCAGCAG	60°C	713
Exon11	CTGCTGCTATCCTACCTGGC	ATGTGATGGGAGACAGAGGC	60°C	707
Exon12	CCCATTCCCATCAGACAATC	TCATTTCCAGGAGCCCATAG	60°C	434
Exon13	TCTATGGGCTCCTGGAAATG	CTGGGTATAGCGGGAGATGA	60°C	454
Exon14	TGCTGGTGTGAGGAAGC	AACCTCCCGTGTGCATTAAC	60°C	376
Exon15	GTGGATGGATGGTAGATGG	GGAATTGGGAATGGGAATCT	60°C	519
Exon16	TTAGATGCTGATGGATCCCC	GTAGTCCCAGCTGGCTTCAG	60°C	322
Exon17	CCAAGTGCCTCCAACCTAAC	CTAGTCGGGAGGGCCACAC	60°C	405
Exon18	GCTACAAGGACACCAAGTATGGAG	AGAAGGCCTCGGAGTGGAG	60°C	575
Exon19 and 20	GCAACCTGGGCTGAGAGTG	CATGCTCCCAGCTTTGTG	60°C	508
Exon21	TCCACAGGGTGACTCAGGTC	TGGAGTTGAGGATAATGGCTCTC	60°C	1481

We identified 20 SNPs (Table 13), 6 in the coding region, 2 change amino acid and 4 are synonymous. One SNP is at the 5 UTR, 2 at 3 UTR and 10 are in intron. Ten (50 %) are newly identified SNPs which were not found in the public SNA database. Table 13 showed p value of association study between SNPs identified (linkage disequilibrium) in Suanpung populations. 10 SNPs form haplotype block. At the moment, we are preparing large scale SNP typing for the whole populations.

Table 13 Position, Predicted Consequence, Allele Frequency and p-value from Association study for Linkage Disequilibrium of SNPs identified in SLC4A1 (AE1) gene

SNP* identified	Position or consequence	Allele Freq.	AE1_2	AE1_3	AE1_4	AE1_5	AE1_6	AE1_7	AE1_8	AE1_9	AE1_10	AE1_11	AE1_12	AE1_13	AE1_14	AE1_15	AE1_16	AE1_17	AE1_18	AE1_19	AE1_20		
AE1_1	In 3	0.071	0	1	1	0.001	0.485	0.438	0.68	0.653	0.065	0.644	0.651	0.658	0.166	0.008	0.046	0.658	0.438	0.024	0.007		
AE1_2	In 3	0.071		1	1	0.001	0.485	0.438	0.68	0.653	0.065	0.644	0.651	0.658	0.166	0.008	0.046	0.658	0.438	0.024	0.007		
AE1_3	Ex 4 (5'UTR)	0.375			0	1	0.284	1	0	0.418	1	0.276	1	0.4	0.06	0.247	1	0.106	1	0	0.276		
AE1_4	In 4	0.318				0.444	0.507	0.472	0	0.478	1	0.225	0.459	0.472	0.112	0.048	1	0.059	0.472	0	0.378		
AE1_5	In 5	0.192					0.327	0.007	0.326	1	1	0.524	1	0.524	0.079	0.01	0.103	0.364	0.007	0.784	0.194		
AE1_6	Ex 6																						
AE1_7	(Leu/Leu)	0.042							0.497	0.822	1	1	0.698	1	0.698	0.286	0.417	0.698	0.581	0.497	0.038	0.001	
AE1_8	In 6	0.1								0.364	0.759	0.729	0.729	0.734	0.739	0.298	0.881	0.734	0.636	0	0.109	0.329	
AE1_9	In 10	0.25									0.524	0.524	0.144	1	0.524	0.143	0.847	0.524	0.144	0.364	0	0.269	
AE1_10	Ex 11											0.829	0.829	1	0.829	0.621	0.586	0.829	0.829	0.759	0.358	0.586	
AE1_11	(Ala/Ala)	0.042											0.829	0.829	1	0.829	0.621	0.586	0.829	0.829	0.759	0.358	0.586
AE1_12	Ex 12																						
AE1_13	(Arg/His)	0.036																					
AE1_14	In 12	0.036																					
AE1_15	In 17	0.033																					
AE1_16	Ex 18																						
AE1_17	(Ala/Ala)	0.033																					
AE1_18	In 18	0.133																					
AE1_19	In 18	0.107																					
AE1_20	Ex 20																						
AE1_21	(Val/Ile)	0.038																					
AE1_22	Ex 21																						
AE1_23	(Tyr/Tyr)	0.067																					
AE1_24	Ex 21 (3'UTR)	0.1																					
AE1_25	Ex 21 (3'UTR)	0.367																			0.001		

Study of ABO blood group

One polymorphism of the gene coding for ABO blood group has been shown to be marginally associated with number of clinical malaria attacks in Senegalese population (unpublished data). This SNP located in exon 6 but do not change amino acid. We found nearly significant association ($p=0.051$, Table 10) of this SNP with residual number of clinical *falciparum* malaria attacks without linkage.

Study of Duffy blood group

Duffy blood group is an important receptor of *P. vivax* to enter red blood cells[20]. Mutation at the GATA binding site of promoter of the gene coding for Duffy blood group result in null expression of this receptor on red blood cell membrane. This mutation is identified in 100 % of the African populations in consistent with lack of *P. vivax* infection in this region. Therefore, this polymorphism is a strong candidate for susceptibility to *P. vivax* infection. We have screened this polymorphism in populations in Suanpung villages by mean of TaqMan assay. We could not detect this mutation in 92 individuals studied.

However, Duffy blood group is a strong candidate for *P. vivax* susceptibility. There may be another variant of Duffy blood group which affect adhesion and invasion of *P. vivax*. We plan to direct sequence the entire coding and regulatory region of this gene in our population.

Study of TNF α polymorphisms

Two polymorphisms located at the TNF promoter region [21, 22] were studied in Suanpung population. One is the SNP at the position 308 nucleotide 5' to the A of the start ATG codon. This SNP has been reported to be associated with severe form of malaria infection in Africa. The frequency of this polymorphism in Suanpung population was studied using 330 individuals and found to be 0.01. This polymorphism was identified at frequency of 0.05 in Karen who admitted because of severe form of malaria at the Hospital of Tropical Disease, Faculty of Tropical Medicine, Mahidol University. This polymorphism may be implicated in a severe form of the disease in Karen populations as in African populations. However, Karen admitted in the hospital may be genetically different from Karen at Suanpung villages. In addition, the finding is well-known. We, therefore, do not have plan to publish this result.

The other polymorphism of TNF promoter studied is polymorphism at the position of 238 nucleotide 5' to the A of the start ATG codon. This polymorphism has been reported to have an effect on expression of the cytokine. The frequency of this polymorphism is 0.05 in 360 individuals from Suanpung. The frequency is too low to have statistical power for association analysis. We do not plan to genotype this polymorphism in the whole populations.

Study of ICAM1 polymorphisms

One variant of ICAM-1 (ICAM-1 kilifi; ICAM1-179; Lys29Met) has been reported to result in decrease adhesion with parasitized red blood cell however children who are homozygotes of ICAM-1 kilifi showed higher prevalence of cerebral malaria in Kenya [23]. One SNP of ICAM-1 which result in a non-synonymous change (ICAM1-1405; HGBASE;SNP000002435, Glu422Lys) was selected from the public database. Again ICAM-1 kilifi cannot be identified in Suanpung population whereas 0.06 of Karen admitted because of severe malaria at the hospital carried this mutation. We do not have plan to publish this result for the same reason as TNF-308.

The ICAM1-1405 is highly polymorphic in Suanpung population. From Senegalese study, this polymorphism showed marginal association with maximum parasite density of *P. falciparum* during clinical malaria attacks. We therefore, performed association study and linkage analysis with the phenotypes we have. No significant association or linkage has been detected (Table 10).

Study of IL-10 polymorphisms

Two SNPs in the promoter region of IL-10 (IL10-819; C819T and IL10-1082; G1082A) from the literature [24] has been reported to affect expression of the gene were also tested. We studied these 2 polymorphisms in our populations using PCR-RFLP. We could not detect significant association or linkage of the 2 SNPs with any of the phenotypes studied.

Discussion

We have confirmed previous finding of genetic effect on intensity of clinical *falciparum* malaria attacks and absolute susceptibility to clinical *vivax* malaria attacks. We have screened for association of 5 genes (γ -globin, β -globin, ABO, ICAM-1 and IL-10) using 11 SNPs. There are 2 loci that need further investigation. We obtained significant association with β -globin locus with clinical *falciparum* attacks. We also found nearly significant association with ABO blood group with the same phenotype.

For β -globin locus, our findings are surprising. We have confirmed the role of β -globin locus on susceptibility to malaria infection. However, there were no significant association of mutations causing β -thalassemia with number of clinical malaria attacks for both species either when analyzed them separately or combined. However, there are other 20 individuals whom hematological investigation suggested β -thalassemia trait but do not carry these 2 mutations (IVS1 and 4 bp deletion). We plan to sequence these individuals and include them in our analysis of β -thalassemia.

Our present results suggested that β -thalassemia mutations themselves may not play an important role in susceptibility to clinical malaria but it may be the other polymorphism which is in linkage disequilibrium with them. We identified 3 polymorphisms this region which showed association with number of clinical *falciparum* malaria attacks. Two polymorphisms are in linkage disequilibrium with each other, the other polymorphism is in linkage disequilibrium with the most frequent polymorphism causing β -thalassemia. We hypothesized that β -thalassemia mutations themselves may not be the polymorphism which confer resistance to clinical malaria. It is possible that 2 of the 3 polymorphisms we identified in this region plays an important role. These polymorphisms may modify clinical severity of β -thalassemia which then help those patients survive better. The finding that 1 of these polymorphisms is in linkage disequilibrium with the most common mutation for β -thalassemia in this population supported this hypothesis.

One polymorphism of ABO blood group showed nearly significant association. This polymorphism also showed marginal significant association with clinical *falciparum* attacks in Senegalese population (unpublished data). The findings of association of the same SNPs with the same phenotype in 2 genetically different populations re-enforced the results. Therefore, the ABO locus will be one of the region that will be explored as the SNP we tested is unlikely to have functional effect as it does not change amino acid.

We also investigated polymorphisms of 5 other genes (α -globin, Duffy blood group, SLC4A1, G6PD and TNF- α). We sequenced the whole entire coding sequences of 2 genes

(SLC4A1 and G6PD). We are going to investigate further the role of polymorphisms of SLC4A1. Mutation responsible for G6PD deficiency is still not identified. Results from genome screening linkage analysis will suggest us where the mutation should be in the whole genome. Identification of new mutation of G6PD could be published by its own. Then the role of G6PD could be studied with the phenotypes.

The role of α -globin will be studied after we re-design the gap PCR to detect those common gene deletion. The alternative way to study this locus is to use microsatellites within this region which are already included in the genome screening set. Duffy blood group and TNF- α will also be studied by finding new polymorphisms after we have more evidence for linkage of these loci with genome screening linkage analysis.

Conclusion

By investigating 10 genes, we now identify 2 loci which are worth further investigating their role in genetic susceptibility to clinical malaria. Although there is no evidence for association of other genes with the phenotypes studied, we still cannot exclude the role of those genes unless we fully investigate all the polymorphisms within the gene. However, full study for each gene is very expensive and time consuming. We are waiting for more evidence of the role of those loci from genome screening results before further investigating.

Future plan

Investigation of β -globin locus

The plan to further investigate the role of β -globin locus are

1. Correction of family structure using genome screening linkage analysis results.
2. Correction of genotyping errors for all SNPs in this locus after correction of family structures by
 - a. Check for Mendelian inheritance
 - b. Check for recombination within the locus using all SNPs and microsatellites in the region.
3. Re-analysis for both association study and linkage analysis.
4. If the results are confirmed, direct sequencing of the entire region will be performed to identify all SNPs.
5. Genotyping of selected SNPs which are predicted to affect expression of the gene or function of the protein will be studied in the entire population.
6. Functional study to investigate the role of these polymorphisms in susceptibility to clinical malaria will be performed both *ex vivo* and *in vitro*. For example, the role of these polymorphisms in expression of γ and β globins during malaria infection. Response of malaria parasites in *in vitro* culture using red blood cells from individuals who are heterozygote and homozygote for these polymorphisms.

There are 2 important parts of the project that we are now performing in order to further investigate genetic susceptibility to clinical malaria. There will be more publications coming because the project is still ongoing but with grants from different sources.

Phenotyping (supported by the National Research Council)

At the moment, we have very good data concerning number of clinical malaria attacks of each species during 1998 to 2002. Although the analysis showed highly significant genetic effect on intensity of *P. falciparum* infection and absolute susceptibility to *P. vivax*, however, there are numbers of other interesting phenotypes related to malaria and other infections which are prevalence in this population. Genotyping of the whole genome is due to finish in August 2003 which will give us genotyping data of the whole genome of the population. We can then perform linkage analysis study to localize area of genes responsible for those phenotypes without performing genome screening again which a very expensive and demanding procedure. We, therefore, plan to collect more phenotypes. This part of the project receiving funding from the National Research Council as a part of budget for research of Mahidol University. The phenotypes that we plan to collect are parasitemia during asymptomatic period (both trophozoites and gametocytes), helminthic infestations, transmission ability, inducible high hemoglobin F.

Genome screening (supported by Centre National de Genotypage)

Genome screening using 400 microsatellites is now performing at CNG. It is due to finish in August 2003. Problems of genome screening are the complexity of the family structure, mismatched samples, inconsistency of the transmission of the marker alleles which can also due to wrong information obtained by interview, mislabeling, data entering errors etc.

At the moment we identified less than 5% of samples which showed errors. Family structure will be validated after genome screening finish by IBS_check program developed by Simon Health at CNG. This program will calculate the actual allele sharing (IBS) between each pair of individuals within family and outside family (unrelated individuals). Z statistic was used to test for significant difference between observed IBS and IBS expected from the relationship defined by interview. In this manner, we can detect those whom we have wrong information, even for the one who should be unrelated. For those who are wrong, the data will be checked. If correct information cannot be obtained because of ethical problem, these individuals will be removed from our analysis.

Correct information and genotyping is the most important part of genetic study. The data presented in this reports analyzed from uncorrected data because genome screening is not finished. The results may be different after correction.

Publication

We have published one article entitled in hemoglobin. The article is attached.

Problems

1. Family structures The biggest problem that we have in this project is the complexity of family structures. We have 1 family consisted of 888 individuals. The size of family exceed capacity of most programs used for genetic analysis. There are only 2 programs which have been designed for complex family structure that are available at the moment, Loki and Solar. We have been in close contact of the authors of the 2 programs. There should not be any problem to increase size of family that can be analyzed by the programs. However,

after genome screening and correction of family structure, the size of families studied are expected to be smaller.

2. **SNP database** At the moment, we have to rely on SNP database in the public domain. Information of those SNP mostly came from Caucasian or Japanese. Therefore, it takes time and money to validate those SNP which are in the database in our population. In addition some SNPs in Thai population cannot be found in the public domain. For example half of our SNPs in the SLC4A1 (AE1) gene are newly identified. Using public SNP database we may miss an important SNP in Thai population. The Thailand SNP database project would facilitate the discovery and reduce cost of genotyping.

References

1. Zhang, L., *et al.*, Whole Genome Amplification from a Single Cell: Implications for Genetic Analysis. *Proc. Natl. Acad. Sci. USA*, 1992. **89**: p. 5847-5851.
2. Dean, F., *et al.*, Comprehensive human genome amplification using multiple displacement amplification. *Proc. Natl. Acad. Sci. USA*, 2002. **99**(8): p. 5261-6.
3. Syvanen, A.C., From gels to chips: "minisequencing" primer extension for analysis of point mutations and single nucleotide polymorphisms. *Hum Mutat*, 1999. **13**(1): p. 1-10.
4. Sokolov, B.P., Primer extension technique for the detection of single nucleotide in genomic DNA. *Nucleic Acids Res*, 1990. **18**(12): p. 3671.
5. Kuppuswamy, M.N., *et al.*, Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. *Proc Natl Acad Sci USA*, 1991. **88**(4): p. 1143-7.
6. O'Connell, J. and D. Weeks, PedCheck: a program for identification of genotype incompatibilities in linkage analysis. *Am J Hum Genet*, 1998. **63**(1): p. 259-66.
7. Sobel, E. and K. Lange, Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. *Am J Hum Genet*, 1996. **58**(6): p. 1323-37.
8. Abecasis, G. and W. Cookson, GOLD--graphical overview of linkage disequilibrium. *Bioinformatics*, 2000. **16**: p. 182-3.
9. Almasy, L. and J. Blangero, Multipoint quantitative-trait linkage analysis in general pedigrees. *Am J Hum Genet*, 1998. **62**: p. 1198-1211.
10. Heath, S., Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. *Am J Hum Genet*, 1997. **61**(3): p. 748-60.
11. Abecasis, G., L. Cardon, and W. Cookson, A general test of association for quantitative traits in nuclear families. *Am J Hum Genet*, 2000. **66**(1): p. 279-92.
12. Fulker, D., *et al.*, Combined linkage and association sib-pair analysis for quantitative traits. *Am J Hum Genet*, 1999. **64**(1): p. 259-67.
13. Cameron, A.C. and P.K. Trivedi, *Regression analysis of count data*. Econometric society monographs ; no. 30. 1998, Cambridge, UK ; New York, NY: Cambridge University Press. xvii, 411.

14. Mackinnon, M.J., *et al.*, Quantifying genetic and nongenetic contributions to malarial infection in a Sri Lankan population. *Proc Natl Acad Sci U S A*, 2000. **97**(23): p. 12661-6.
15. Trachoo, O., *et al.*, Molecular characterization of hereditary persistence of fetal hemoglobin in the Karen people of Thailand. *Hemoglobin*, 2003. **27**(2): p. 97-104.
16. Nuchprayoon, I., S. Sanpavat, and S. Nuchprayoon, Glucose-6-phosphate dehydrogenase (G6PD) mutations in Thailand: G6PD Viangchan (871G>A) is the most common deficiency variant in the Thai population. *Hum Mutat*, 2002. **19**(2): p. 185.
17. Vulliamy, T.J., *et al.*, G6PD mahidol, a common deficient variant in South East Asia is caused by a (163)glycine----serine mutation. *Nucleic Acids Res*, 1989. **17**(14): p. 5868.
18. Stevens, D.J., *et al.*, G6PD Canton a common deficient variant in South East Asia caused by a 459 Arg----Leu mutation. *Nucleic Acids Res*, 1990. **18**(23): p. 7190.
19. Jones, G.L., *et al.*, Human erythrocyte Band-3 has an altered N terminus in malaria-resistant Melanesian ovalocytosis. *Biochim Biophys Acta*, 1990. **1096**(1): p. 33-40.
20. Miller, L.H., *et al.*, The resistance factor to *Plasmodium vivax* in blacks. The Duffy-blood-group genotype, FyFy. *N Engl J Med*, 1976. **295**(6): p. 302-4.
21. Knight, J.C., *et al.*, A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. *Nat Genet*, 1999. **22**(2): p. 145-50.
22. Kwiatkowski, D., *et al.*, TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated *Plasmodium falciparum* malaria. *Lancet*, 1990. **336**(8725): p. 1201-4.
23. Fernandez-Reyes, D., *et al.*, A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. *Hum Mol Genet*, 1997. **6**(8): p. 1357-60.
24. Turner, D., *et al.*, An investigation of polymorphism in the interleukin-10 gene promoter. *Eur J Immunogenet*, 1997. **24**(1): p. 1-8.

1
2
3 ORIGINAL ARTICLE
4
5
6
7
8
9
10
11
12
13

Molecular Characterization of Hereditary 14 Persistence of Fetal Hemoglobin in the 15 Karen People of Thailand

14 Objoon Trachoo, M.D.,^{1,*} Thanyachai Sura, M.D.,^{1,*}
15 Anavaj Sakuntabhai,³ Pratap Singhasivanon,⁴
16 Srivicha Krudsood,⁴ Waraphon Phimpraphi,⁵
17 Somporn Krasaesub,² Suporn Chanjarunee,⁶
18 and Sornchai Looareesuwan⁵

19
20 ¹Department of Medicine, Division of Medical Genetics and Molecular Medicine,
21 Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

22 ²Research Center, Faculty of Medicine, Ramathibodi Hospital,
23 Mahidol University, Bangkok, Thailand

24 ³Genetic of Infectious Diseases and Autoimmunes, Institute Pasteur, Paris, France

25 ⁴Department of Tropical Hygiene and ⁵Department of Clinical Tropical Medicine,
26 Faculty of Tropical Medicine, Hospital for Tropical Disease,
27 Mahidol University, Bangkok, Thailand

28 ⁶Department of Medicine, Division of Hematology, Ramathibodi Hospital,
29 Mahidol University, Bangkok, Thailand

30
31
32 ABSTRACT
33

34 Hereditary persistence of fetal hemoglobin (HPFH) is the condition whereby a
35 continuously active γ -globin gene expression leads to elevated fetal hemoglobin
36 (Hb F) levels in adult life [Stamatoyannopoulos G, Grosveld F. Hemoglobin switching.
37 In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H, eds. The
38

39
40 *Correspondence: Objoon Trachoo, M.D. and Thanyachai Sura, M.D., MRCP, Department of
41 Medicine, Division of Medical Genetics and Molecular Medicine, Faculty of Medicine, Ramathibodi
42 Hospital, Mahidol University, Rama 6 Road, Rajtevi, Bangkok 10400, Thailand; Fax: +66-2201-
43 1374; E-mail: objoont@ccme.or.th; E-mail: ratsr@mahidol.ac.th.

Molecular Basis of Blood Diseases. Philadelphia: W.B. Saunders, 2001:135–182; Wood WG. Hereditary persistence of fetal hemoglobin and $\delta\beta$ thalassemia. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, eds. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge: Cambridge University Press, 2001:356–388; and Weatherall DJ, Clegg JB. Hereditary persistence of fetal hemoglobin. In: Weatherall DJ, Clegg JB, eds. The Thalassaemia Syndromes. Oxford: Blackwell Scientific Publishers, 1981:450–507]. The condition is caused either by mutation of the β - and γ -globin genes, or the γ -gene controlled region on other chromosomes. Several families with this condition have been reported from Vietnam, Cambodia and China, and the Southeast Asian mutation (or HPFH-6), a 27 kb deletion, was demonstrated. Here we report on a mother and her daughter of the Karen ethnic group with high levels of Hb F, living in the Suan Pueng District on the border of Thailand and Myanmar. Genotyping showed a heterozygosity for the 27 kb deletion of the β -globin gene. Their conditions have been confirmed by gap polymerase chain reaction (PCR) with three oligonucleotide primers recently developed by Xu et al. [Xu X-M, Li Z-Q, Liu Z-Y, Zhong X-L, Zhao Y-Z, Mo Q-H. Molecular characterization and PCR detection of a deletional HPFH: application to rapid prenatal diagnosis for compound heterozygotes of this defect with β -thalassemia in a Chinese family. Am J Hematol 2000; 65:183–188.], and a DNA sequencing method. Thus far there has been no official report of the HPFH-6 anomaly from Thailand. The compound heterozygosity of β -thalassemia (thal) and hereditary persistence of Hb F causes the phenotype of thalassemia intermedia; in contrast, homozygotes for this anomaly show only mild microcytic anemia. Hence, genetic counseling for hereditary persistence of Hb F carriers is needed for family planning.

Key Words: Hereditary persistence of fetal hemoglobin (HPFH); Deletional thalassemias; β -Globin gene cluster; Karen; Thailand.

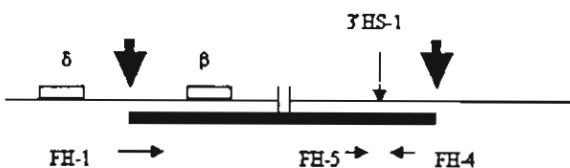
INTRODUCTION

Hereditary persistence of fetal hemoglobin (HPFH) and deletional thalassemias are conditions characterized by the continuation of γ -globin gene expression in adult life, resulting in elevation of fetal hemoglobin (Hb F) levels (1–3). In normal adults, Hb F can be found in the range of 0–1% without other γ -globin gene mutations (1,5,6). The deletional HPFH mutations and deletional thalassemias, i.e., β -, $\delta\beta$ - and $\gamma\delta\beta$ -thalassemias are distinguished by the phenotype of heterozygous individuals and F-cell distribution (1,2,7).

Several types of deletional HPFH mutations have been described. The Southeast Asian (SEA) type of HPFH or HPFH-6 (1,2) has a 27 kb deletion, in which the 5' breakpoint is located between the δ - and β -globin genes, and the 3' breakpoint is located approximately 2.3 kb downstream from the 3'HS-1 locus control region (LCR) of the β -globin gene. There are reports of the mutation in individuals and families from Vietnam, Cambodia, and Southern China (4,8–10).

The compound heterozygotes for β -thalassemia (thal) with HPFH express the phenotype of thalassemia intermedia; thus, an individual with heterozygous HPFH as well as β -thal needs genetic counseling for family planning (11–13).

95 MATERIALS AND METHODS
96


97 Screening for α - and β -thal genes of 1237 Karen people was performed as part of a
98 study of the effect of the thalassemia gene on clinical malaria infection at Suan Pueng
99 District, Ratchaburi Province of Thailand. Informed consent was obtained by the National
100 Ethics Committee. Blood samples were collected and were processed for complete blood
101 count (CBC), hemoglobin (Hb) typing and DNA studies. The CBCs were performed by
102 standard hematological techniques with an automated cell counter. Hemoglobin typing was
103 determined by high performance liquid chromatography (HPLC). DNA was extracted by
104 the standard phenol-chloroform method, and further characterized the mutation by
105 polymerase chain reaction (PCR)-based and DNA sequencing methods. The PCR was
106 performed using three oligonucleotide primers, FH-1, FH-4, and FH-5, as described by
107 Xu et al. (4) (Fig. 1). The total 25 μ L PCR mixture contained 100 ng of genomic DNA;
108 20 μ M of each primer, 2 μ M of each dNTP; 0.5 units of Taq DNA polymerase enzyme
109 (GIBCO-BRL, New York, NY), and 2.5 mM of MgCl₂ in a 10X PCR buffer
110 (GIBCOBRL®). The PCR started with initial denaturation at 95°C for 5 min, 30 cycles
111 of PCR amplification were performed in a thermocycler (Geneamp® model 2700; Applied
112 BioSystems, Foster City, CA) with denaturation at 95°C for 30 seconds, annealing at 58°C
113 for 1 min and extension at 72°C for 70 seconds. The final extension was at 72°C for 8 min.
114 DNA sequencing was performed in both directions, forward and reverse, by a standard
115 automated method in an ABI PRISM™ 377 sequencer (Perkin Elmer Cetus, Foster City,
116 CA). A PCR for α -thal, as published elsewhere (14), was performed to find the common
117 thalassemia mutations in Thailand, to exclude other causes of red blood cell (RBC)
118 anomalies (15,16).

F1

119 RESULTS
120121 122 123 Hematological Data
124

T1

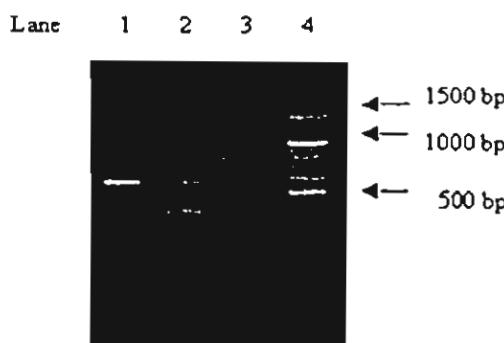
125 High Hb F levels of 29.6 and 32.9%, respectively, were found in a mother (A.K.) and
126 her daughter (B.K.). The MCV value of A.K. was normal and slightly decreased in B.K.
127 Both had normal levels of Hb A₂. Their MCH levels were slightly decreased and the RDW
128 range was higher than in the normal population (Table 1).

136 **Figure 1.** A schematic drawing of the HPFH-6 deletion. Thick arrows indicate the 5' and 3'
137 breakpoints, the black bar indicates the deletion region, the thin arrows indicate the direction of the
138 primers, and the dotted arrow indicates the 3'HS-1 site. The primers were FH-1 (5'-TGGTATCTG-
139 CAGCAGTTGCC-3'), FH-4 (5'-AGCCTCATGGTAGCAGAAC-3') and FH-5 (5'-ATTGTT-
140 GAGTTGCAGGATCG-3'). FH-1 and FH-4 amplify the HPFH-6 deletion region, and FH-5 and
141 FH-4 amplify the normal allele (4).

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Table 1. Hematological data and hemoglobin analysis of the Karen family with HPFH-6 from Suan Pueng district, Ratchaburi province, Thailand.

Subject	A.K. (mother)	B.K. (daughter)
Sex-Age	F-31	F-6
Hb (g/dL)	13.3	12.1
PCV (L/L)	0.425	0.374
RBC ($10^{12}/L$)	5.20	4.85
MCV (fL)	81.7	77.1
MCH (pg)	25.6	24.9
RDW (%)	18.1	17.4
Hb A ₂ (%)	3.2	3.1
Hb F (%)	29.6	32.9
α Genotype	$\alpha\alpha/\alpha\alpha$	$\alpha\alpha/\alpha\alpha$


166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

Note: Normal laboratory values: Hb 13–16 g/dL for males, 12–15 g/dL for females, 11–15 g/dL for children and pregnant women; RDW 12–15%; MCV 88–99 fL; MCH 27–33 pg; Hb A₂ 2.5–3.5%; Hb F in adults 0–1%; the normal α -globin genotype is $\alpha\alpha/\alpha\alpha$.

Polymerase Chain Reaction Analysis

166 DNA without a β -globin cluster deletion might reveal one 565 bp fragment specific for
167 the normal allele; whereas, a deletion allele might reveal a 376 bp fragment. The PCR
168 results showed that the normal control had only a single 565 bp fragment, and our subjects
169 had two fragments of 565 and 376 bp, respectively (Fig. 2). These results indicate that
170 A.K. and B.K. were heterozygous for the HPFH-6 mutation.

F2

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
553540
553541
553542
553543
553544
553545
553546
553547
553548
553549
553550
553551
553552
553553
553554
553555
553556
553557
553558
553559
553560
553561
553562
553563
553564
553565
553566
553567
553568
553569
553570
553571
553572
553573
553574
553575
553576
553577
553578
553579
553580
553581
553582
553583
553584
553585
553586
553587
553588
553589
553590
553591
553592
553593
553594
553595
553596
553597
553598
553599
553600
553601
553602
553603
553604
553605
553606
553607
553608
553609
553610
553611
553612
553613
553614
553615
553616
553617
553618
553619
553620
553621
553622
553623
553624
553625
553626
553627
553628
553629
553630
553631
553632
553633
553634
553635
553636
553637
553638
553639
553640
553641
553642
553643
553644
553645
553646
553647
553648
553649
553650
553651
553652
553653
553654
553655
553656
553657
553658
553659
553660
553661
553662
553663
553664
553665
553666
553667
553668
553669
553670
553671
553672
553673
553674
553675
553676
553677
553678
553679
553680
553681
553682
553683
553684
553685
553686
553687
553688
553689
553690
553691
553692
553693
553694
553695
553696
553697
553698
553699
553700
553701
553702
553703
553704
553705
553706
553707
553708
553709
553710
553711
553712
553713
553714
553715
553716
553717
553718
553719
553720
553721
553722
553723
553724
553725
553726
553727
553728
553729
553730
553731
553732
553733
553734
553735
553736
553737
553738
553739
553740
553741
553742
553743
553744
553745
553746
553747
553748
553749
553750
553751
553752
553753
553754
553755
553756
553757
553758
553759
553760
553761
553762
553763
553764
553765
553766
553767
553768
553769
553770
553771
553772
553773
553774
553775
553776
553777
553778
553779
553780
553781
553782
553783
553784
553785
553786
553787
553788
553789
553790
553791
553792
553793
553794
553795
553796
553797
553798
553799
553800
553801
553802
553803
553804
553805
553806
553807
553808
553809
553810
553811
553812
553813
553814
553815
553816
553817
553818
553819
553820
553821
553822
553823
553824
553825
553826
553827
553828
553829
553830
553831
553832
553833
553834
553835
553836
553837
553838
553839
553840
553841
553842
553843
553844
553845
553846
553847
553848
553849
553850
553851
553852
553853
553854
553855
553856
553857
553858
553859
553860
553861
553862
553863
553864
553865
553866
553867
553868
553869
553870
553871
553872
553873
553874
553875
553876
553877
553878
553879
553880
553881
553882
553883
553884
553885
553886
553887
553888
553889
553890
553891
553892
553893
553894
553895
553896
553897
553898
553899
553900
553901
553902
553903
553904
553905
553906
553907
553908
553909
553910
553911
553912
553913
553914
553915
553916
553917
553918
553919
553920
553921
553922
553923
553924
553925
553926
553927
553928
553929
553930
553931
553932
553933
553934
553935
553936
553937
553938
553939
553940
553941
553942
553943
553944
553945
553946
553947
553948
553949
553950
553951
553952
553953
5

189

DNA Sequencing Analysis

190

191 The deletion mutation and breakpoints were identified as shown in Fig. 3. The 5' F3
 192 breakpoint is localized between nucleotides 68322 and 68323 according to the database of
 193 GenBank, access number NG_000007 (Homo sapiens genomic β -globin region, HBB@),
 194 while the 3' breakpoint might be localized approximately at nucleotide 96,000, which has
 195 been reported between nucleotides 135 and 136 [Fig. 3(A) and 3(B)] of GenBank access
 196 number AF042277 (Homo sapiens 3' breakpoint of a HPFH deletion). The shown DNA
 197 sequence data support the SEA deletion mutation according to the study of Motum et al.
 198 (8) and Xu et al. (4). Furthermore, nucleotide 207 in GenBank AF042277, located
 199 complementary to our reversed primer site, was reviewed and a replacement of C to A was
 200 found, similar to the previous report of Xu et al. (4). The modified sequence was submitted
 201 to GenBank and has received a new access number, AY156920 (Homo sapiens normal
 202 sequence below the 3' breakpoint of SEA-HPFH).

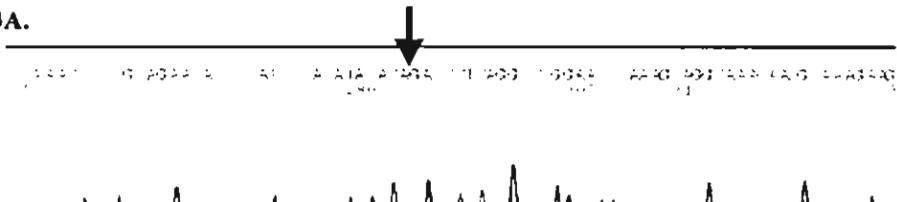
203

204

205

DISCUSSION

206


207

208 We found that the genotype of the Karen people in Suan Pueng with a persistence of
 209 Hb F was similar to that of HPFH-6, previously reported in Vietnam, Cambodia, and

210

211

3A.

212

213

214

215

216

217

218

219

220

221

3B.

68322

Normal sequence upon 5' breakpoint

222

223

224

225

226

227

228

229

230

231

232

233

234

235

Normal sequence below 3' breakpoint

Figure 3. DNA sequencing analysis. (A) DNA sequence of these PCR products: the bold arrow indicates the breakpoint region. (B) Normal sequence around the 5' and 3' breakpoints: the bold letters indicate the intact DNA sequence in the PCR results, a double line arrow indicates the 5' breakpoint at nucleotide 68322 of GenBank access number NG_000007, and the dotted arrow indicates the starting point below the 3' breakpoint according to GenBank access number AY156920.

WEB COLOR

236 China (4,8–10). Both 5' and 3' breakpoints are localized in a region similar to previous
237 publications (4,8,9). After reviewing the reference sequence of the β -globin gene cluster
238 (GenBank NG_000007), we could indicate that the 5' breakpoint of this 27 kb deletion
239 HPFH is located 1987 bp upstream from the starting point of the β -globin gene or
240 3761 bp downstream from the δ -globin gene. Approximately 2.3 kb below the 3'HS-1
241 LCR (17) of the β -globin gene was described as the location of the HPFH-6 3'
242 breakpoint, the sequence data adjacent to the breakpoint has already been identified by
243 Xu et al. (4), and our data support the sequence of the previous studies (4,8,9). However,
244 the development of a rapid PCR technique, low in cost and producing reliable results, for
245 the detection of the HPFH-6 mutation in Thailand, is beneficial for definite molecular
246 diagnosis.

247 The globin chain imbalance in heterozygous HPFH is milder in almost undetectable
248 levels (2) due to the fact that γ -globin chain production in heterozygous deletional HPFH
249 is quantitatively greater than in heterozygous deletional β -, $\delta\beta$ -, or $^A\gamma\delta\beta$ -thals. Our results
250 showed that the affected subjects had normal Hb levels and slightly decreased MCV and
251 MCH levels because of adequate γ -globin chain compensation. The Hb A₂ level in the
252 HPFH-6 deletion has been shown to be normal or slightly elevated in a previous report (9)
253 because of an intact δ -globin gene; our results have shown a normal level of Hb A₂. The
254 increase of RDW value in HPFH-6 is not clear and was reported in the study of Xu et al.
255 (4). It is well known that RBCs containing Hb F (or F-cells), as found in newborns, have a
256 larger size than normal, and RBCs with a globin chain imbalance, as found in anemias,
257 have a smaller size. The pattern of the RDW graphs in these HPFH carriers was shown to
258 be widely distributed (data not shown). Hence, it is possible that RBCs containing varied
259 quantities of Hb F mixing with some RBCs with a globin chain imbalance might lead to
260 varied red cell sizes and increased RDW values. This phenomenon is similar to the
261 presence of RDW in β -thal carriers but the latter have more globin chain imbalance and a
262 lower amount of F cells (1).

263 Although the molecular characterization and clinical phenotype of the HPFH-6
264 mutation are described, to the best of our knowledge, there have been no official reports
265 of this condition in Thailand. We propose that the interpretation of Hb typing without
266 clinical examination and complete blood examination led to the misdiagnosis of HPFH.
267 Percentages of both Hb F and Hb A₂ can be found in varying levels in a number of
268 mutations, both in HPFH and thalassemias, as published elsewhere (1). However, the
269 phenotype should be examined carefully, because each condition leads to a different
270 prognosis (18,19). The compound heterozygotes for β -thal and HPFH might lead to
271 clinical thalassemia intermedia (4,19,20). The other interaction of β - and $(\delta\beta)^0$, $(\delta\beta)^+$ -
272 or $(^A\gamma\delta\beta)^0$ - might be referred to as a dominantly inherited β -thal condition, which has a
273 different phenotype from other forms of β -thal intermedia in several aspects and a severe
274 thalassemia major could occur (20). On the other hand, HPFH homozygotes show only
275 clinically mild hypochromic and microcytic anemia which does not cause severe anemic
276 symptoms throughout their lifetime (1,2,19). Genetic counseling for each particular
277 condition is different because of disease severity, thus playing an important role in
278 family planning for the couple at risk of high Hb F levels. In Thailand, prenatal
279 diagnosis would be performed in the case of couples at risk of developing a severe
280 thalassemia major. The abortion rate from the technique is 1–3%; therefore, there is no
281 need to diagnose the fetus of a couple with thalassemia intermedia or HPFH homo-
282 zygotes (13,21).

283

ACKNOWLEDGMENTS

284

285

This research is part of a project titled "Genomic approach in searching for genes involved in genetic susceptibility to clinical malaria." The research was supported in part by grants from Thailand Research Fund (BR-G-44-80-016) and National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (BT-B-06-MG-14-4507). We are grateful to all Thai-Karen people in Suan Pueng for providing samples used in this study. We thank Dr. N. J. White, Wellcome Trust Foundation, Bangkok, Thailand, for critical review of this paper, Dr. A. Bunyaravet and R. Wisedpanichkij, Department of Pathology, Ramathibodi Hospital, Bangkok, Thailand, for hematological and α -thal analyses, Dr. C. Tocharoentanaphol, Molecular Laboratory, Ramathibodi Hospital, Bangkok, Thailand, M. Boosabaratana and S. Youngcharoen, Medical Genetics Laboratory, Ramathibodi Hospital, Bangkok, Thailand, for technical assistance in PCR and DNA sequencing, Dr. V. Viprakasit and Dr. P. Vathesatogkit, MRC Molecular Haematology, WIMM, Oxford, UK, for assistance in literature and medical information searches. This paper was accepted as a poster presentation at the 4th HUGO Pacific meeting and 5th Asia-Pacific Conference on Human Genetics held at Ambassador City Jomtien, Pattaya, Cholburi, Thailand on October 27–30, 2002.

301

302

303

304

REFERENCES

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

1. Stamatoyannopoulos G, Grosveld F. Hemoglobin switching. In: Stamatoyannopoulos G, Majerus PW, Perlmuter RM, Varmus H, eds. *The Molecular Basis of Blood Diseases*. Philadelphia: W.B. Saunders, 2001:135–182.
2. Wood WG. Hereditary persistence of fetal hemoglobin and $\delta\beta$ thalassemia. In: Steinberg MH, Forget BG, Higgs DR, Nagel RL, eds. *Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management*. Cambridge: Cambridge University Press, 2001:356–388.
3. Weatherall DJ, Clegg JB. Hereditary persistence of fetal hemoglobin. In: Weatherall DJ, Clegg JB, eds. *The Thalassaemia Syndromes*. Oxford: Blackwell Scientific Publishers, 1981:450–507.
4. Xu X-M, Li Z-Q, Liu Z-Y, Zhong X-L, Zhao Y-Z, Mo Q-H. Molecular characterization and PCR detection of a deletional HPFH: application to rapid prenatal diagnosis for compound heterozygotes of this defect with β -thalassemia in a Chinese family. *Am J Hematol* 2000; 65:183–188.
5. Leonova JY, Kazanetz EG, Smetanina NS, Adekile AD, Efremov GD, Huisman THJ. Variability in the fetal hemoglobin level of the normal adult. *Am J Hematol* 1996; 53:59–65.
6. Craig JE, Rochette J, Sampietro M, Wilkie AOM, Barnetson R, Hatton CSR, Demenais F, Thein SL. Genetic heterogeneity in heterocellular hereditary persistence of fetal hemoglobin. *Blood* 1997; 90:428–434.
7. Calzolari R, McMorrow T, Yannoutsos N, Langeveld A, Grosveld F. Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and $\delta\beta$ -thalassemia affects β - but not γ -globin gene expression. *EMBO J* 1999; 15:949–958.

330 8. Motum PI, Hamilton TJ, Lindeman R, Le H, Trent RJ. Molecular characterization of
331 Vietnamese HPFH. *Hum Mutat* 1993; 2:179–184.

332 9. Dimovski AJ, Divoky V, Adekile AD, Baysal E, Wilson JB, Prior JF, Raven JL,
333 Huisman THJ. A novel deletion of approximately 27 kb including the β -globin gene
334 and the locus control region 3' HS-1 regulatory sequence: β^0 -thalassemia or hereditary
335 persistence of fetal hemoglobin? *Blood* 1994; 83:822–827.

336 10. Zeng Y-T, Huang S-Z, Chen B, Liang Y-C, Chang Z-M, Harano T, Huisman THJ.
337 Hereditary persistence of fetal hemoglobin or $(\delta\beta)^0$ -thalassemia: three types observed
338 in South Chinese families. *Blood* 1985; 66:1430–1435.

339 11. Fucharoen S, Winichagoon P. Hemoglobinopathies in Southeast Asia. *Hemoglobin*
340 1978; 11(1):65–88.

341 12. Fucharoen S, Winichagoon P, Siritanaratkul N, Chowthaworn J, Pootrakul P. α - and
342 β -thalassemia in Thailand. *Ann NY Acad Sci* 1998; 850:412–414.

343 13. Jaovisidha A, Ajjimarkorn S, Panburana P, Somboonsup O, Herabutya Y,
344 Rungsiprakarn R. Prevention and control of thalassemia in Ramathibodi Hospital,
345 Thailand. *SEA J Trop Med Pub Hlth* 2000; 31(3):561–565.

346 14. Bowden DK, Vickers MA, Higgs DR. A PCR-based strategy to detect the common
347 severe determinants of α thalassemia. *Br J Haematol* 1992; 81:104–108.

348 15. Fucharoen S, Winichagoon P, Thonglairuam V. β -Thalassemia associated with
349 α -thalassemia in Thailand. *Hemoglobin* 1988; 12(5 & 6):581–592.

350 16. Wang C, Beganyi L, Fernandes BJ. Measurements of red cell parameters in
351 α -thalassemia trait: correlation with the genotype. *Lab Hematol* 2000; 6:163–166.

352 17. Fleenor DE, Kaufman RE. Characterization of the DNase I hypersensitive site 3' of
353 the human β globin gene domain. *Blood* 1993; 81:2781–2790.

354 18. Weatherall DJ. Overview: mechanisms for the heterogeneity of the thalassemias. *Int J
355 Pediatr Hematol Oncol* 1994; 4:3–4.

356 19. Charache S, Clegg JB, Weatherall DJ. The Negro variety of hereditary persistence of
357 fetal hemoglobin is a mild form of thalassaemia. *Br J Haematol* 1976; 34:527–529.

358 20. Weatherall DJ. The thalassemias. In: Stamatoyannopoulos G, Majerus PW,
359 Perlmutter RM, Varmus H, eds. *The Molecular Basis of Blood Diseases*. Philadelphia:
360 W.B. Saunders, 2001:183–226.

361 21. Fucharoen S, Winichagoon P. Thalassemia in Southeast Asia: problems and strategy
362 for prevention and control. *SEA J Trop Med Pub Hlth* 1992; 23:647–655.

363
364 Received November 22, 2002

365 Accepted January 7, 2003

366

367

368

369

370

371

372

373

374

375

376