บทคัดย่อ

ชื่อโครงการวิจัย Clones ทางเดียวกับเอกลักษณ์

ผู้วิจัย รองศาสตราจารย์ ดร. ฉวีวรรณ รัตนประเสริฐ คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร

E-mail address : ratach@su.ac.th

ผู้ร่วมวิจัย ผู้ช่วยศาสตราจารย์ ดร. นิตติยา ปภาพจน์ คณะวิทยาศาสตร์ มหาวิทยาลัยหอการค้าไทย

E-mail address: anipa@mail.utcc.ac.th

แหล่งทุนอุดหนุน สำนักงานกองทุนสนับสนุนการวิจัย

ระยะเวลา 1 ธันวาคม 2544 - 30 พฤศจิกายน 2547

คำหลัก Order-primal algebra, connected order, minimal variety, monotone function,

hyperidentity, essential variables, hypersubstitution

เราเรียก identity s \approx t ว่า hyperidentity ใน finite algebra $\overline{A}=(A;(f^{\overline{A}})$ ถ้าเมื่อใดก็ตามที่สัญลักษณ์ operations ซึ่งเกิดขึ้นใน s และใน t ตามลำดับ ถูกแทนด้วย terms ของ variety V ที่มี arity เหมาะสมกัน แล้วผลที่ ได้จะเป็น identity ใน V ถ้า $T^{(1)}(\overline{A})$ เป็นสัญลักษณ์แทนเซตของ unary term operations ทั้งหมดของ \overline{A} แล้ว \overline{A} จะสอดคล้องกับ unary hyperidentity $\overline{A}|_{=_{hyp}}$ s \approx t ก็ต่อเมื่อ s \approx t เป็น identity ใน monoid $(T^{(1)}(\overline{A}); \circ, ia_{A})$ เราเรียก finite algebra $\overline{A}=(A;(f_{A}^{\overline{A}}))$ ว่า order-primal algebra ถ้ามี partial order \leq บน A ที่ทำให้ clone ของ term operations ทั้งหมดของ \overline{A} คือเซตของ operations ทั้งหมดของ A ซึ่ง preserve \leq

โครงการวิจัยนี้ผู้วิจัยศึกษา algebraic properties ของ order-primal algebras สำหรับ connected ordered sets (A; ≤) และพบว่า order-primal algebras เหล่านี้ไม่มี proper subalgebras ไม่มี non-identical automorphisms และเป็น simple algebra ผู้วิจัยค้นพบสมบัติบางประการของ varieties และของ quasivarieties ซึ่งก่อกำเนิดโดย order-primal algebras เหล่านี้ ยิ่งไปกว่านั้นผู้วิจัยได้ใช้สมบัติของ order-primal algebras ในการสร้าง primality criteria อันใหม่สำหรับ finite algebras และพิสูจน์ว่าเขตของ fundamental operation ของ order-primal algebra ไม่สามารถมีเพียง unary operations หรือมีเพียง 1 operation ที่มี arity อย่างน้อย 2 ได้

ผู้วิจัยได้หา partial order relations ทั้งหมดบนเขตจำกัด A เพื่อให้ order-primal algebras ที่สมนัยกัน สอดคล้อง unary hyperidentities $\phi^{n-2}(x) \approx \phi^{n-2+\kappa(n)}(x)$ ส่งผลให้สามารถพิสูจน์ได้ว่า non-trivial order-primal algebra ซึ่งไม่สอดคล้อง unary hyperidentity $\psi^{n^2-2}(x_1,x_2) \approx \psi^{n^2-2+\kappa(n^2)}(x_1,x_2)$ เป็น primal algebra

เป็นที่ทราบกันแล้วว่า congruence lattice Con \overline{A} ของ algebra \overline{A} กำหนดได้โดย unary polynomial operations ของ \overline{A} และถ้า |A|=n โดยที่ทุก η unary polynomial operation f ของ \overline{A} ซึ่งมี |Imf|=|A| หรือ |Imf|=1 แล้ว \overline{A} จะเป็น permutation algebra ซึ่ง permutation algebra มีบทบาทสำคัญสำหรับการศึกษาใน tame congruence theory และถ้า $f:A\longrightarrow A$ ไม่ใช่ permutation แล้ว |A|>|Imf| และจะมีจำนวนเต็มบวกตัว น้อยสุด $\lambda(f)$ ซึ่ง $Imf^{\lambda_{(f)}}=Imf^{\lambda_{(f)+1}}$ ผู้วิจัยจึงพิจารณา unary operations f ทั้งหลายซึ่ง $\lambda(f)=n-1$ และ $\lambda(f)=n-2$ และได้หา equivalence relations บน A ทั้งหมดซึ่ง invariant ภายใต้ unary operations f เหล่านั้น

ABSTRACT

Research Title Monotone Clones and Identities

Researchers Associate Professor Dr. Chawewan Ratanaprasert

Faculty of Sciences, Silpakorn University (E-mail address: ratach@su.ac.th)

Assistant Professor Dr. Nittiya Pabhapote

University of Thai Chamber (E-mail address: anipa@mail.utcc.ac.th)

Research Grants The Thailand Research Fund

Period December 1, 2001 - November 30, 2004

Key Words Order-primal algebra, connected order, minimal variety, monotone function,

hyperidentity, essential variables, hypersubstitution

An identity $s \approx t$ is called a hyperidentity in a finite algebra $\overline{A} = (A; (f_i^A))$ if whenever the operation symbols occurring in s and in t, respectively, are replaced by any terms of variety V of appropriate arity, the identity which results, holds in V. Let $T^{(1)}(\overline{A})$ be the set of all unary term operations of \overline{A} . Then \overline{A} satisfies a unary hyperidentity, $\overline{A}|_{hyp} s \approx t$ if and only if $s \approx t$ is an identity in the monoid $(T^{(1)}(\overline{A}); \circ, ia_A)$. A finite algebra $\overline{A} = (A; (f_i^{\overline{A}}))$ is said to be order-primal if its clone of all term operations is the set of all operations defined on A which preserve a given partial order \leq on A.

In the project, we study algebraic properties of order-primal algebras for connected ordered sets $(A; \leq)$. Such order-primal algebras have no proper subalgebras, no non-identical automorphisms and are simple. We prove some properties of the varieties and the quasivarieties generated by order-primal algebras for connected orders. Further, we use the properties of order-primal algebras to formulate a new primality criteria for finite algebras and prove that an order-primal algebra cannot have only unary fundamental operations or only one at least binary fundamental operation.

We determine all partial order relations on a finite set A such that an order-primal algebra with the universe A satisfies the unary hyperidentities $\phi^{n-2}(x) \approx \phi^{n-2+\kappa(n)}(x)$. As a consequence we prove that a non-trivial order-primal algebra, which does not satisfy the equation $\psi^{n^2-2}(x_1,x_2) \approx \psi^{n^2-2+\kappa(n^2)}(x_1,x_2)$ as a unary hyperidentity, is primal.

It is well-known that the congruence lattice $Con\overline{A}$ of an algebra \overline{A} is uniquely determined by the unary polynomial operations of \overline{A} . If |A| = n and if for every unary polynomial operation f of \overline{A} with |Im f| = |A| or |Im f| = 1, then \overline{A} is called a permutation algebra. Permutation algebras play an important role in tame congruence theory. If $f: A \longrightarrow A$ is not a permutation, then |A| > |Im f| and there is a least natural number $\lambda(f)$ with $Imf^{\lambda(f)} = Imf^{\lambda(f)+1}$. We consider unary operation with $\lambda(f) = n-1$ and $\lambda(f) = n-2$ and ask for equivalence relations on A which are invariant under such unary operations.