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Algebras:!

C. Ratanaprasert and K. Denecke

Abstract. In this paper we determine all partial order relations on
the finite set A such that an order-primal algebra with the universe
A satisfies the unary hyperidentity "~ 2(z) = ¢"~2*~{(")(z). As a
consequence we prove that a non-trivial order-primal algebra, which
does not satisfy the equation 1,/)"2"2(::1,1-2) R 1/)“2"2*"‘(“2)(9:1 ,Z2) as
a hyperidentity, is primal.
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1. Introduction

A clone C on a set A is a set of operations defined on A which is
closed under composition and contains all projections. For an algebra A =
(A; (ffl)‘-e;), the clone T(A) of all term operations of A is the clone which
is generated by the set {f‘-ﬁ‘|i € I} of all fundamental operations of A.
Let < be a partial order relation defined on A. Then the finite algebra
A = (A;(fB)ier) is called order-primal if T(A) is the set Pol(<) of all
operations defined on A which preserve the partial order <. Order-primal
algebras have received quite a bit of attention recently, see (1], [4], [5]. An
order relation < on A is called bounded if it has the least and the greatest
element and connected if for any pair (a, b) there exist a natural number n
and elements a = ag,a,,...,a, = bsuch that ag £ a; 2 a; < ... 2 a,(<
an) (or ag > a; < az > ... < a,{> a,)). In this case we say that a and
b are connected to each other. Clearly, if the partially ordered set (A; <)
has the least element or the greatest element, then (A; <) is connected.
The connectedness of elements of an ordered set (A; <} is an equivalence

'Research supported by The Thailand Research Fund.
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relation on A. We denote by P the corresponding partition of A. If the
partition P consists of exactly one block A, with more than one element
and all other blocks are one-element, the corresponding equivalence relation

is denoted by f4,.

Throughout this paper <" denotes the usual order on the set IN of nat-
ural numbers. For a partial order relation < by < we denote the irreflexive
order relation defined by <. If for all z,y € A from z < y follows =z = y,
then the partially ordered set (A; <) is called an antichain. If the element
y covers the element r, i.e. if £ < y, but there is no z with 2 < z < y, then

we will write z < y.

Let A = (A; (fii)l-el) be a finite algebra. An identity s = t is called
a hyperidentity in A if whenever the operation symbols occurring in s and
in ¢, respectively, are replaced by any terms of V of the appropriate arity,
the identity which results, holds in V. In this case we say also that the
clone T(A) satisfies this hyperidentity. If the type contains unary operation
symbols, then we are also interested in unary hyperidentities; i.e., where
s and t are terms built up by unary operation symbols and one variable.
Let T(1(A) be the set of all unary term operations of A = (A4; (fl-é),-ej).
Then A satisfies a unary hyperidentity, A l=nyp s = ¢, if and only if s = ¢
is an identity in the monoid T (A) = (T1)(A);o0,ids) where o is the
composition of unary functions and where id4 is the identity mapping. For
a fixed finite set A, let n := |A| > 2 denote the cardinality of A and let
rk(n) := l.c.m. {1,2,...,n} denote the least common multiple of 1,2,...,n.
We denote by H,4 the set of all unary operations defined on A and by S4
the set of all permutations defined on A. The order ord(g) of a permutation
g € S4 is the least natural number m € N with g™ = id4, where id4 is
the identity operation. Here g™ is the m-fold power of g. For f € H,4,
let Imf := {f(a)la € A} be the image of f and let A(f) be the least
non-negative integer m such that Imf™ = Imf™+1. The number A(f)
is called the pre-period of f. For f € H4,the order ord(f) is defined as
ord(f) := ord(f|Imf*/)). Then the following properties are satisfied(see
[2] or [3]):

(i) ord(f) divides x(n). The restricted function g := f|Imf ) is a
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permutation on Imf*f) with f™(z) = gm=* (2 (1)) for
m 2" A(f), |

(ii) 0 <* A(f) <* [Imf| and A(f) <* n -1,
(iii) AM(f) =0« fe€ Sa,
(iv) A(f) =n — 1 if and only if there exists an element d € A such that

A= {d: f(d), f2(d): SR ’fn_l(d)}l fn(d) = fn_l(d)=

(v) If m’ >* m and p divides p/, then f™ = f™*P implies f™' = fm'+7',
(vi) f™ = f™ o m,m’ >* A(f) and m = m’' mod ord(f)

(vii) fAU) = fANrerd(f) — fMA)+r(n) (this follows from (iv), (v) and (i)).

A mono-unary hyperidentity in an algebra A is a hyperidentity with
a single unary operation symbol, say . It has the form ¢™(z) =™ (z) for
somem,m’ € {0,1,2,...}. Let O4 :=J,, >, O‘(An) be the set of all operations
defined on A, i.e., the union of all sets Ogn) of n-ary operations defined on
A. To test whether A satisfies the mono-unary hyperidentity o™ (z) =

(p’“'(x), we have to check whether the monoid T} (A) satifies the identity
w™{z) = @™ (z). The following results are well-known:

Proposition 1.1.([2])
(i) S, satisfies the identity ¢™(z) =~ ™ (z) if and only if m = m’ mod k(n).

(ii) H, satisfies the identity o™ (z) ~ varphi™ (z) if and only if m, m’ >
n— 1 and m = m’ mod x(n); in particular, H4 satisfies the iden-
tity o™ 1(z) = " t=") (), but H4 does not satisfy " 2(r) =~
e~ 2+x(n)(z) and H,4 does not satisfy the identity "~ '(z) =~

@R =1) (1) if k(n — 1)# x(n).

(ili) Ha \ Sa satisfies the identity "~ (z) =
lpﬂ—»l~1--:-c(n—1)(-,c).
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In [2] for maximal subclones C C O4, mono-unary hyperidentities
were determined which are satisfied in C but not in Q4. This answers the
question of whether the variety of monoids generated by C(1} is a proper
subvariety of the variety generated by Of,,}) = H4. In this paper, we are
interested in mono-unary hyperidentities in order-primal algebras; i.e., iden-
tities of the monoid Pol{!}(<) for arbitrary order relations < . The main
result is the characterization of all order relations < such that Pol()(<)
satisfies the identity "~ 2?(z) =~ " ~2*+~(")(z). This identity is important
to separate maximal clones from the clone Q4. Using this result, we are
able to prove that every order-primal algebra satisfies the binary hyperi-
dentity cp“z‘g(zl,:zg) = Lp"2_1+'“("2)(:r1,:r2). This result can be applied to

the functional completeness problem of multiple-valued logic.

2. Long-tailed Functions

Clearly, the monoid (Pol{}}(<); 0, 1d) satisfies the identity "~ ?(z) =~
@™~ 2+%(") if and only if a function f with f*~1(z) = fm~1*+=(") does not
belong to Pol{}(<). In this case, we have A(f) = n — 1. We will describe
some properties of a partial order which is invariant under a unary function
f with A(f) = n— 1. We call a function f : A = A, |A] = n with
M f) = n — 1 a long-tailed function. By (iv) in the introduction, a long-
tailed function is characterized by the existence of an element d € A such
that A = {d, f(d), f%(d),..., "~ (d)}. If A = {0,1,...,n — 1} then the
function defined by f(z) =z —1if z # 0 and f(0) =0 is a long-tailed
function. In this case, we have d = n — 1. We will denote a long-tailed

function for short by frr.

Lemma 2.1. Let < be an order relation on A with |A| = n >* 2 which is
not an antichain and suppose that frr € Pol(<) . Letd € A be the element
such that A = {d, frr(d), ..., fr72(d), f17'(d)}. Then

(i) f77(d) and fE{ﬁ(d) are comparable with respect to <.
(11) f}:;l(d) is either minimal or mazimal.
(iii) d is either minimal or mazimal

(iv) d is mazimal if and only if f}7'(d) is minimal.
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(v) The partition Pc contains eractly one set A, with more than one el-
ement and all other sets of Po are one-element. Moreover,
{fE,;z(d),fE;l(d)} C A, and f}7'(d) is the least or the greatest ele-
ment of A, with respect to the restricted order < |A,.

(vi) If there is a natural number kK with 0 <* k <" n — 1 such that
d > fkr(d), then frr(d) is the least element with respect to < and
therefore < is connected. The dual proposition is also true.

(vii) If fPr(d) and fP7*7'(d) are comparable then either frr*(d) —
FEFRTHd) or fR7FRTMd) < f17N(d) forall1 €* k<" n — 1.

Proof. (i) Suppose that f7r'(d) and f}72(d) are incomparable. If n =
2 , then < is an antichain which contradicts the presumption. There-
fore, we may assume that n > 2 and then f]'7%(d) € 4. If f“_a(d)
is comparable with f77%(d) or with f}7'(d), then f}7'(d) and f77°(d)
are comparable since frr preserves the order; a contradiction. Therefore,
{fer (), 1 2(d) fr 72(d)} is an antichain. So, there is an element & with
3 <* k € n—1 such that {fI7(d),..., frr"(d)} is an antichain with
respect to <. Suppose that k£ <® n is maximal with this property. Then
there is a number j with 1 <* j <* k such that fLT(k“)(d) is comparable
with f777(d). Since frr is order-preserving, we obtain that fJ7%(d)) is
comparable with f7r —7+1(d) which contradicts our choice of k.

(ii) Suppose that f;7!(d) is neither maximal nor minimal. Then there are
numbers m and k& with 0 <* m,k <* n and m # k such that f%(d) <

"“(d) < fEr(d) and if m >* k then we get f77'(d) = f5 " (f271(d) <
i B (fEr(d)) = fm(d); a contradiction. If m <* k, we conclude in a

similar way.

(iii) This part can be proved by using similar argument as in (ii), we hence

omit the details.

(iv) Suppose that d is not maximal. Then there exists a number & with
n >* k >*0 such that d < ff(d). Since frT preserves the order, we have
FERVTR) < fRrt R (fEp(d) = f171(d); hence, fF7'(d) is not minimal.
The opposite direction can be proved in a similar way.
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S

(v) Clearly, there is a block A, of P with {f]5(d), fF72(d)} € A, since
by (i) fi7'(d) and f77%(d) are comparable. If fir(d) is comparable with
f}'};l(d) or with f}}}'z(d) for all ¢ = 0,...,n — 3, then < is connected;
e, A = A,;. Otherwise there is a number j such that fI{T(d) is incompa-
rable with f]'7!(d) and with frr2(d). Let j >* 2 be the greatest integer
such that fLT"(d) is comparable with f}7'(d) or with f77%(d). Then
Ae = {fL72(@), Ff277 1A, ..., FR72(d), f771(d)}. Since all other elements
have the form f77%(d) with k >* j, the elements L7 5(d) cannot belong
to A,. If f}:‘;k(d) is comparable with f77%'(d) where k; >* j and k; <"
k, then ff-.(fz';k(d)) = fir 7(d) is comparable with fL (fLTk‘(d))
frak=tasi gy — gotk—k1=3(0y and n+ k — k; — j >* n — k1. This con-
tradicts the choice of j; i.e., all other elements are pairwise incomparable.
If fi77(d) < fi71(d), then for every 1 <* k <* j we have fEr(f[r7(d)) =

t @) < fEr(UFERN@) = f27MTR(d) = fEr'(d) and f77'(d) is the
greatest element of A, with respect to < and if fE;j(d) > f}j;l(d), then
f771(d) is the least element.

(vi) can be proved in a similar way as the last proposition of (v).

(vii) Assume that there is an element j with 1 <* 7 <* n — 1 such that
fLTl(d) < fiptd) < f27%(d). Then f27'(d) = frr(f271(d) < fitl(d) <

LT 1(d) and then 7 + 1 >* n — 1 because of A(frr) = n — 1. But then
n—2<*j<*n—1and thus fI.(d) = fir'(d) or fip(d) = fr73(d). O

3. Connected Orders

Lemma 2.1 shows that if A, = A; i.e., if < is connected, then f7'7:1(d) is
the least or the greatest element of A with respect to <. Without restriction
of the generality we may assume that f;7'(d) is the least element. Then

we have: (see also [2})

Lemma 3.1. Let < be a bounded order relation on A and suppose that
fLr € Pol(<). Then < is a linear order.

Proof. We repeat the proof given in [Den-P; 88]. Let fE;l(d) be the least
element. Suppose that 1 is the greatest element. If 1 # frr(1), then
1> frr(l) > frr(d) since 1 > d and then we get 1 > fr7(1) > fir(d) for
alli = 1,2,...,n—1. Therefore 1 is different from all fj(d),i =1,...,n—1
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and consequently, 1 =d. From1 > fy (1), we obtain f} (1) > f'+1(1),i =

1,2,. — 2; i.e., we have a linear order d > fy7(d) > ... > fLT () on
A. Otherwxse if 1 = for(1) then frr(f]7'(d) # f"“l(d) because of
(fLT) = n — 1 and analogously we obtain the lmear order f"“’l(d) >
72d) > ... >d. 0

Now we consider the case that < is unbounded and connected. Then,
by Lemma 2.1, there exists the least element and suppose that fE;l(d) is

the least element.

Lemma 3.2. Let < be a connected unbounded order relation on A with
the least or the greatest element and suppose that < admits a long-tailed
function frr  Further, we suppose that fff;l(d) s the least (or greatest)
element with respect to <. Then the order relation < satisfies the following

properlies.

(C1) There is a longest chain of consecutive powers

M) < 72 < o= forT ) < r ().

(C2) IFO<*1<*j, then frr9%(d) ¢ 1701 (a).

(C3) For each x € {k + 2,...,1m — 1} there is a mazimum integer .
such that 0 <* I, <* =z — 1 and f;r (xﬂ)(d) is tncomparable with
2D () for alll, <* m < and if fir T < FRR0TV (),

then fr77(d) < frr*(d) for allm <7 I

Proof. (i) Without restriction of the generality we may assume that f75.'(d)
is the least element with respect to <. Then, by Lemma 2.1 (i) and (vii),
we have fPrn'(d) < fp72(d). Since A = {d, frr(d),. Trl(d)}, there
exists a maximum number k with f}'7'(d) < ffq—-?(d). f" D gy <
fz;(k+2)(d) and we obtain a longest chain of consecutive powers of frr(d).

(i) If  <* k — 1, then [ <* j implies f77 (@) < 77297V (d) by (i) and
thus f/r- (J+l)(d) £ frr 1 (q).

Now we prove the following claim:

Claim. Suppose that n — 1 >* 5 >* k+ 1. Weset!:=j ~ (k-+ 1) and
prove by induction on { that j >* &+ 1 implies f] —(JH)(d) & f""(Hz)(d).
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For ! = 1, we have j = k+2; and from f"_(k""s)( d) < _fL‘("+2)(d)
would obtain fLT(k+2)(d) < 77" (d) and by Lemma 2.1 (vii), fz_(k+2)(d)
~ fL_(k“)(d) a contradiction to (i}. Inductively, suppose that fL—(k"'?“)(d) '
fr (% ) = fET““”“)(d) < fLT(fET“‘”’(d)) = frr (@) <
fLT(H'z)(d) which contradicts our hypothesis. Therefore, fL'_(k+2+l+1)(d) £

(E+2)
fir (d).

Now, we use the claim to finish the proof of (ii). Assume that j >*
Il >"k—1. Putt:=I1—-(k—1).1ft =1, then! = k and thus j >* k+1 and by
the claim we have fn"(j+1)(d) 2 R T (d). Inductively, we suppose that
Jj >* k+timplies f/ o (’H)(d) % f"_'(k+t+1)(d) fort > 1. Assume that j >*
[=k+(t+1) and fET(J+1)(d) < fLT(k+t+2)(d) Then j—1 >* k4t and by
hypothesis f}77(d) ¢ f*~(5+¢+1)(d) and this contradicts our assumption.
Hence, if j >* I = k + (t + 1), then fpr0%(q) ¢ fr-le+t+1)(g).

(iii) Let f7=(d) € {f" "d) = for(d) = d, frr(d), ..., Fer TP (@) Le,,
re{k+3k+4,...,n—-1 n} Suppose that ff+7(d) and fn—(z'H)(d)
are comparable. Then, by (ii), we have f/7%(d) < fE;(I""l)(d) Ap-
plying fir ~*=2 on both sides, we get fir T fERE() = fz;(k"'z)(d) <
fz_(k+3)(d) fErk™ 2(,f'['jT("c'+‘1)(ci)) and by Lemma 2.1, we have f/ 1 (k+2)
(d) =< fE_(k+3)(d) This is a contradiction to the choice of k in (i).
Therefore f(rl =r:)(d) and fE;(IJrI)(d) are incomparable. Since f7r'(d) is
the least element, there is a number j with 0 <* 7 <* z — 1 such that
fi7(d) < fE_(Hl)(d) Let I, be the greatest natural number with this
property. Then fLT(m+1)(d) and fz;(x"'l)(d) are incomparable for all
. <*m <" z—1. Ifm < L, then /p2™*(d) < 72V (4) im-
plies fE7™(d) < f777(d).

If f771(d) is the greatest element with respect to <, then we conclude

in a similar way. -

Now we prove that an unbounded connected order relation having the
least (or the greatest) element and satisfying conditions corresponding to
(C1), (C2), (C3) admit a long-tailed function.

Lemma 3.3. Let A= {0,1,...,n—1},n >* 2 and let < be an unbounded
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connected order defined on A . If 0 is the least (or the greatest ) element
with respect to < and if < satisfies the following three conditions (or the

dual conditions):

(C1) There is a longest chain of consecutive integers

0<1<2<3...<k=<k+1, k>1.

(C2) If0<* 1l <> 7, thenj £ L.

(C3) For each z € {k+ 2,k + 3,...,n— 1}, there is a mazimum integer
0 <%l < £ — 1 such that t is incomparable with m for all [, <*

m <"z and fromt <z followst—-1<z—1 forallt <* 1. .

Then the unary function g : A — A, which'is defined by g(z) = =z — 1 if
0 # z € Aand ¢(0) = 0, preserves the order <.

Proof. It is easy to see that g is a long-tailed function with 4 = {g%(n—1) =
n—1, g'(n-1), g°(n—1), ...,g" ' (n—1)=0}. Letz,y € A withz < y.
By (C2) , if y <* z, then = £ y and thus £ <* y. We consider the following

two cases:

Case 1. If y € {0,1,...,k+ 1} thenz € {0,1,...,k + 1} because of z < y
and then g(z) =r—-1<*y-1=g(y) forallz #0and theng(z) =z -1 <
y—1=g(y) by (C1). If z = 0, then g(z) = 0 < g(y) since 0 is the least
element with respect to <. Therefore g preserves <.
Case 2. If y € {k+2,...,n — 1} then by (C3) there is 2 maximum integer
ly,0 <* 1, <*y— 1such that y is incomparable with t for all {, <" ¢ <* y;
hence, x <* [, since x is comparable with y . Because of the last sentence
of-(iii), we have g{z) =z — 1 <y — 1 = g(y) and g preserves <. m]
Lemma 3.2 and Lemma 3.3 characterize all connected unbounded or-
der relations with a least (or greatest) element which admit a long-tailed

function frr.

Theorem 3.4. Let < be a connected unbounded order relation with the

least (or the greatest) element. Then a long-tailed function frr preserves
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< if and only if the order < satisfies the conditions (C1),(C2),(C3) from

Lemma 3.2.

This characterization can be applied to the restriction of a disconnected

order to the nontrivial order-component from Lemma 2.1(v).

Corollary 3.5. Let < be a disconnected order relation on A which is not

an antichain. Suppose that a long-tailed function frr preserves <. Then
the relation < |4, is a linear order or is an unbounded order with the least

or the greatest elernent satisfying conditions (C1), (C2), (C3) from Lemma
3.2

Proof. Since the order < is disconnected, we may assume that there is an

integer 7 > 2 with
A= {I772(@@), frP2THd), . P, M)}

We set d’ = fzr}‘](d) and consider the unary function g := frrla,. Then
A, = {d', g(d"),9%(d"),...,g° " '(d’)} and therefore g is a long-tailed function
on A; and then by Lemma 2.1(v), Lemma 3.1 and Lemma 3.2, < is a
linear order or an unbounded order with the least (or the greatest) element

satisfying the conditions (C1),(C2),(C3) from Lemma 3.2 a.

4. Characterization of Order Relations
Admitting a Long-tailed Function

Theorem 4.1. Let < be an order relation on the finite set A = {0,...,n—1}
with n >* 2. Then < admits a long-tailed function frr if and only if <

satisfies one of the following conditions:
(i) (A; <) is an antichain,
(ii) (A; <) is a chain,

(iii) < is unbounded and connected with the least (the greatest) element
and satisfies conditions (C1),(C2),(C3) from Lemma 3.2,

(iv) < is disconnected and only one connected component A: with respect
to < contains more than one element and the restricted order < |4, is
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connected with the least (the greatest) element and satisfies conditions

(C1),(C2),(C3) from Lemma 3.2.

Proof. We prove at first that in all four cases Pol(<) contains a long-
tailed function frr. In the first case, this is trivial since Pol(<) = Og4.
Let 0 <1<... <n—1 be achain. Then frr defined by frr(z) =z -1
if x # 0 and fL7(0) = 0 is a long-tailed function since {0,1,...,n — 1} =
{f}};l(n —1),..., frp(n = 1),n — 1} and frr preserves the order. In the
third case, Lemma 3.3 shows that Pol(<) contains a long-tailed function.
In the fourth case, if the restricted order < /A, is unbounded, then by
Lemma 3.3, there is a long-tailed function ¢ : A, — A; which preserves the
restricted order < |4, . This means that there is an element d € A, such
that A; = {d,g9(d),...,¢""™(d)}. Now we define a function f: A — A by

glz) ifzxe A
flz) =< d ifz =a,1
Ait1 ifr=aq,and 1 <i<t—1

Clearly,
A={a1, f(a1),..., fFHa) =d, fia1) = f(d) = g(d),.... "7 (a1)}

and this shows that f is a long-tailed function. Then f preserves the order
since for z < y, z,¥y € A: and f/a, = g is order-preserving. If < /A,
is bounded, then it is a linear order and we can find an order-preserving

LT-function in a similar way.

If conversely frg is order preserving; i.e., frr € Pol(<) and (4; <)
is not an antichain, then < can be connected or disconnected. If it is con-
nected and bounded, it is a chain by Lemma 3.1. If < is connected and
unbounded, then by Lemma 2.1 it has the-least (or the greatest) element
4nd by Lemma 3.3, conditions (C1), (C2), (C3) from Lemma 3.2 are sat-

isfied. If < is disconnected, then by Lemma 2.1 (v) and Corollary 3.5, the

order has the properties given in (iv). O
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5. Mono-unary Hyperidentities in Order-primal
Algebras

Now we apply Theorem 4.1 to determine mono-unary hyperidentities
which are valid in order-primal algebras.

Corollary 5.1 Let A = (A4; (fﬁ‘),-el) be an order-primal algebra with re-

spect to an order relation < on A . Then A gy, " 2 () = 250 (1)
for a unary operation symbol ¢ if and only if < is different from one of the

orders described in Theorem 4.1 (i)-(iv). a

A finite algebra A = (A;(fii)ief) is called primal if T(A) = O4 .
Primal algebras can be characterized by maximal subclones of O4 in the
following way : A is primal if and only if T(A) is not contained in one of
the maximal subclones of O4 which are described by I. Rosenberg [6]. For
his description Rosenberg used the following six classes of relations:

Class (1): is the class of all bounded order relations on A.
Class (2): is the class of all binary relations {(a, s{a))la € A} where s is a

permutation on A without invariant elements with all cycles of the same

prime length.

Class (3): is the class of all quaternary relations a defined by (a,b,c,d) €
if and only if a+ b = ¢+ d where + is the addition of an elementary abelian

p-group (p prime) on A.

Class (4): is the class of all non-trivial equivalence relations on A.

Class(5): is the class of all central; i.e., totally reflexive and totally sym-
metric h-ary relations » with 1 < h < |A|, having a nontrivial center. A
relation is called totally reflexive if it contains all A-tuples with a repe-
tition of elements. An h-ary relation is said to be totally symmetric if

(xq,...,zn_1) € r implies (Z50),-- ., Ts(n—1)) € r for any permutation s
of {0,...,n — 1}. The center of a totally symmetric and reflexive h-ary
relation r is the set of all elements ¢ € A such that (¢, z;,...,zr_1) € r for
all £,,...,zn_1 € A. For h = 1, the relation r is simply a subset of A.

Class(6): is the class of all h-regularly generated relations which are defined
for 3 < h < |A| by the following steps: form > 1,m € N aset 8g,...,0mn-1
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of equivalence relations on A is called h-regular if each §;,0 < i < m — 1
defines exactly hA-equivalence classes and if the intersection ﬂ:‘__glsi of arbi-
trary m equivalence calsses €; of §; is nonempty. An h-ary relation p is said
to be h-regularly generated associated with 6g,...,0,_1 if (a1,...,ax) € p
if and only if for each 0 < 7 < m — 1 at least two of the elements ay,...,ax
are equivalent modulo 6; .

We discuss briefly in which maximal clones the clones Pol(<) for the
order relations from Theorem 4.1 are contained:
If (A4; <) is an antichain, then Pol(<) = O4, so the order-primal algebra 4
is primal. Since every chain on a finite set is bounded, in the second case
Pol(<) is a maximal clone of Class (1). In the third case, the connectedness
of two elements defines a binary central relation with a one-element center,
consisting of the least (greatest) element and thus Pol{<) contained in one
of the maximal classes of types(5).

In the fourth case, Pol(<) is not a subclone of a maximal clone of
operations preserving a relation on A of one of the classes (1}, (2), (3). In
this case the connectedness of two elements defines a congruence relation

with exactly one non-singleton block A, and Pol(<) C Pol(64,).

6. Binary Hyperindentities in Order-primal
Algebras

In [2], special hyperidentities with binary operation symbols are con-
sidered. The basic idea is that unary operations h : A2 — A? can be

expressed in the form
h{ay,az) = (f ® f)a1,a2) = (f(a1,a2), f'(a1,a2))

with binary operations f, f’ € Off). The correspondence h — (f ® f’) de-
fines a bijection from O‘(Alz) onto Of) X Of). For binary operation symbols

wi,0h,i € I, we define ¥i(z1,z2) := (wi(T1,T2), wi(z1,z2)). The composi-
tion of ¥y and %, is defined by

Untba(zy, T2) = (w1 (p2(z1, 2), 02 (21, 22)), P (w2(z1, T2), Yo (x1, T2))).

We define binary terms Pri;, Pr'iy; inductively by
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(i) Pryi = ¢y, Privpy := ! forall i € I,
(ii) For & = oy, ... ¥, ¥y, put ¥ =1y, ... ¥Yi,.,, and define

Pr§ .= ¢, (Pry, Pr'y), Pr'é€ := | (Pry, Pr'y).

For n := v, ... v, and 7 := ¢, ...4;, we say that the algebra
A = (A; (f)ier) satisfies the hyperidentity Nz, 22) = 7(z1,22) if A F=pyp
(Prn)(z1,72) = (Pr7)(x,,z;). If p € A" is an h-ary relation on A, then
p@p is an h-ary relation on A? defined by p®p := {({(a;,b1),..., (an,br)) €
(A%H)™ | (a1,...,an) € pand (by,...,by) € p}. Further we say that f ® f’
defined by (f ® f')(z1,22) := (f(z1,22), f'(z1,32)), f, f* € O preserves
p® pif {f, f'} C Polp.

For a primal algebra A, we have 4 = ¢¥™(z1,22) =~ w""(a:l,.rg) if and
only if m,m’ > n? — 1 and m = m/ mod x(n?)(n = |A|); i.e., A satisfies
in particular 1,!}“2"1(:::1,:1:2) e (,0"2_1+'°("2)($1;.’L‘2) but notcp“n‘z(xl,rg) =
¢“,_2+"(“2)(1:1,:1:2). Qur aim is to prove the following theorem:

Theorem 6.1. Every order-primal algebra A = (A; (fid),-e;), |A| > 2, for
an order relation different from an antichain salisfies the hyperidentity

Y™ =2z, @) = Y 24 (), 3).

Proof. For an order relation £ on A, we define A< := maz{A(f)|f €
Polf;)(g)}. Then we have: if A< <* n — 2, then Acg< = maz{A(h)|h €
Polf:-,.)(g ® <)} <°* n? — 2. Therefore, for every order-primal algebra
for an order < different from the orders in Theorem 4.1, we have A
Y2 (3, z2) Y™ ) (24, 7).

We consider the order relations listed in Theorem 4.1. If (A4;<) is a
chain, then < ® < is a bounded order on A? which is not a chain since
there are incomparable elements (for instance (0, 1) and (1, 0) for the
least element 0 and the greatest element 1). Therefore, w":_z(ml,xg) A
Y —2H(n?) (g1 2,) is satisfied. ]

In [2], it was proved that for an equivalence relation # on A which
has at least two blocks with more than one element the semigroup Pol(})4
satisfies the identity ¥~ 2(x1, z2) = w“_2+"(”)(a:1 ,Z2). If < is disconnected
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and only one connected component A, with respect to < contains more than
one element, then Pol(<) C Pol(8,4,) , but 4, ® 0,4, is an equivalence
relation on A? with more than one block of cardinality greater than 1.
Therefore, in this case, A satisfies also 1,/)"2"2(21 , Tg) ~Y 1,[;":‘2“‘(“2)(3:1 , I2).
That means, only the case where < is unbounded and connected with the
least(the greatest) element satisfying Conditions (i), (i), (iii) from Lemma
3.2 is open. As we have already mentioned, in this case Pol(<) is contained
in a maximal clone Pol(p) for a binary central relation g. But in [Den-P;
88] was proved that Pol(})(p) satisfies "~ !(z) =~ @™~ 1*~(")(z) for every
central relation. The following lemma fills in the gap and finishes the proof
of Theorem 6.1.

Lemma 6.2. Let (A; <) be an unbounded connected ordered set with the
least (or dually, with the greatest) element. Then Pola2(< @ <) cannot

admit a long-tailed function.

Proof. Since (A; <) is unbounded, there are elements a and c in A which are
incomparable. Let O be the least element of A with respect to < and denote
by 1 an element of A which covers 0; i.e., 0 < 1. If there are elements of A
which are incomparable with 1, then we will denote one of such elements
by a. If 1 is comparable with all elements of 4, we will denote an clement

which covers 1 by 2. Since A is finite, there are a least integer £ and an

element a € A with

0<1=<2..<k<k+landk <a

such that {a,k + 1} is an anti-chain. Let {a),az,...,a:} be the set of all
elements in A such that a; = k for all 1 < 7 € t and such that {k +
1,a1,...,a;} is an anti-chain. Then (A%, < ® <) is connected since (0,0)

is the least element, but also unbounded. Suppose that (A%; < ® <) is
invariant under an order-preserving LT-function g such that

A2 — {d,g(d),...,g"g_](d) = (0,0)} for some d € A%?. We set 0 :=
(0,0) and 7 — 1 := g™ —i(d) for 1 <* j <* n®. We enumerate the pairs of
A2 in the following way :(0,0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),(3, 0), (2,
1), (1, 2), (0, 3), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4), (5, 0),(4, 1), (3, 2), (2,
3), (1, 4), (0, 5).



116 C. Ratanaprasert and K. Denecke

This can be demonstrated by the following picture:

@.1) T )
(4.0) / (3.3) - /
c @.1) > / (2.4) /‘/

(2,0) c / (1,2) / 06

(1,1) 0.5)

(1.0)

c/
e/(m)ﬂ

That means with d = mg :=0,m; = m;—1 +1+ 1 for 1 <* i <" k we set
m;+1l:=(i—-1+2,1-1) for 1 <[ <" my;1 —m;. For the proof we need

(0,0)

the following claim.
claim: my + 1 € {{(k+1,0),{(a1,0),...,(a:,0),(k, 1)} and me + 2 = (k, 1).

Clearly, mx +2 = (k,1) > (k,0) = mg_1+ 1 and this implies m, + 1 >
mr—1 = (0, k) which is impossible since {(0, k), (k+1,0), (a;,0), ..., (a: 0),

(k,1)} is an anti-chain. =

In [2], it was shown that a finite algebra A = (A; (fié)l-e.;) with
{fif‘-) | i € I} = Pol(r) for a central relation r does not satisfy the bi-

nary hyperidentity wﬂz“z(a:l,xg) ~ wnz'”z)(ml,xg). On the other hand
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side, if < is a connected unbounded order with the least (the greatest) ele-
ment, then Pol(<) is contained in Pol(r) for a central relation . Therefore
one can separate the corresponding clones by a hyperidentity. Further we

have

Corollary 6.4. Let A = (A;(fié)iej) be a finite nontrivial order-primal
algebra and assume that 1{)":_2(:::1,1'2) = w"2‘2+"(”2)($1,$2) is not a hy-

peridentity in A. Then A is primal (and the order is an anti-chain).
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Unary Operations with Long
Pre-periods”
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Abstract

It is well-known that the congrucnce lattice Congl of an al-
gebra A is uniquely determined by the unary polynomial oper-
ations of A. Il |A] = n and if [Imf]| = |A| or |[Imf| = 1 for
every unary polynomial operation f of A, then A is called a per-
mutation algebra. Permutation algebras play an important role
in tame congruence theory. If f : .1 — A is not a permuta-
tion then |A| > |7 f]| and there ts a least natural number A(f)
with Im fA) = [ AU We consider unary operations with
AMf) =n—1and M [f) = — 2 and ask for equivalence relations
on A which are invariant under such unary operations
AMS Mathematics Subject Clussification:

Key words: permutation algebra, unary operation, pre-period

1 Some Facts on Unary operations

Let f: A - A be a unary operation defined on a finite set A with
n:= A, n > 2 Let Hqy = {f|f : A — A} be the set of all unary
operations (transformation) defined on A and let S, be the set of all
permutations on A. If id, is the identity operation on A and g € 5,4,
then the order Ord(g) of g is the least natural number m with ¢™ = id 4.

Let f € Ha. Then we set Itnf := {f(a}la € A} and let A(f) be the
least natural number m such that Imf™ = Imf™+!' The number A(f)

*Research supported by The Thailand Research Fund.



is called the pre-period of f. For f € Hy we put o(f) := Ord(f|Imf*)
where f™ is defined as m-fold composition of f (with f° := id4). Then

Remark 1.1:

(1) 0< A(f) < |Imf|land M\ f) <n—1,
(ii) AMf) =0« fe€ 54,
(iii) A(f) = n — 1 if and only if there exists an element d € A such that

A = {d, f(d), f2(d),..., /""(d)} = f"(d). (see e.g. [Den-P, 88])

A unary operation f : 4 — A with A(f) = n — 1,|4| = n was
called a LT-function (long-tailed function) in [Den-R; 04]. Remark 1.1
(iii) characterizes LT-functions. In the next section we consider unary
operations f with A(f) =n—2,n > 3.

2 LTy — functions

Now we want to characterize unary operations f : A — A with [4| > 3
and A(f) =n — 2.

Defintion 2.1: Let A be a finite set with |A| > 3. Then a unary
operation f: A — A with A\(f) = n — 2 is said to be a LT — function.

We will prove some simple properties of LT, — functions:

Lemma 2.2 : Let f : 4 — A be a unary operation and assume that
|Al = n > 3 and A(f) = n — 2. Then the following propositions are

satisfied:

(i) ADImf D>Imf2>...DImf*?
(i) [Imf*?|=1or [Imf""?* =2,
(iii) If [Imfr=2| =2 then |A| = [Imf| + 1,
(iv) If [Imf"~2%| =1 then |A| = [Imf| + 2,

(v) [ Imf¥| = |Imfs*+1fork=1,...,n—3.



Proof: (i) In any cases we have 4 2 Imf 2D Imf? O ... D Imfr2
Proper inclusions follow from the definition of A(f) and from A(f) = n—2.

¥l < 2 and thus [Imf* 2 = 1 or

(i) Because of (i) we have
|[Im f=2| = 2.

(iii) This is also a consequence of (i).

(iv) By (i) and [Imf™"?| = 1 there is a k with 1 < & < n — 1 such
that |Imf*| = [Imf*+'| + 2. Assume that & < n — 2. Then there are
elements a # b and ¢ # d in Imf* such that f(a) = f(b) and f(c) = f(d)
in Imff*! Therefore, there are elements a,b, ¢, d € A with a # b,¢c # d
such that f(a) = f(b) and f(c) = f(d) and this mcans, |4| = |Imf| + 2.

(v) If [Imnf"=2| = 2, then from (i) we obtain |[lmf¥| = [Imf**'| + 1
for k=0,...,n— 3 and if |Imf?* %] = 1, then by (iv), |4| = |Imf|+ 2
and then by (i), [ Imf*| = Imf***+1fork=1,...,n—-3. O

Our aim is to characterize unary operations on A with A(f) =n — 2.
At first we will prove some technical lemmas which we need for our
characterization theorem. If |Imf"~2%| = 1, then by Lemma 2.2 (iv},
|A| = |Imf| + 2. Therefore, there are elements a,b,c,d,s,t € A,a #
b,c # d such that f(a) = f(b) = s, f(c) = f(d) = t. Clearly, if |A| = 3,
then f is constant.

Remark 2.3: If |A| > 3 and |4| = |/mf| + 2, then there are different
elements u,v € A with u # v such that for all ¢’ € A we have f(¢'} &
{u,v}. Moreover, the function f|a\(asca) : A\{a,b,¢c,d} — A\{s,t,u. v}
1s a bijection.

Lemma 2.4: Assume that f: A — A is a unary operation with f(a) =
Fb) = s,f(c) = f(d) =t and |A| = [Imf|+ 2 If s, t & {a,b,¢c,d} and
f(s) ¢ {a,b,c,d} or f(t) ¢ {a,b,¢,d}, then [Imf*] > 2 for all & > 1.
Proof: s,t ¢ {a,b,c,d} implies f(s) ¢ {s,t,u,v} since fla\{apeca) :
A\{a,b,c,d} — A\{s,t,u,v} is bijective. Therefore f(s) # s and the set
{s = f%s), f(s)} is a two-element subset of /mf. Inductively, assume
that {f*¥=1(s), f¥(s)} is a two-element subset of Immf*. We consider the

following cases:
(a) f*(s) ¢ {a,b,c,d} and f*7!(s) & {a,b, c,d}. Then the injectivity
of fla\{apeca; implies that f5(s) # f5'(s).
(b) f*(s) ¢ {a,b,c,d} and f*"'(s) € {a,b,c,d}. Then f*(s) =
FUfE1(s)) € {s,t} and fEH1(s) = f(f*(s)) ¢ {s.t}, so f5Hi(s) #
f*(s).



(c) f5(s) & {a,b,c,d}. Then f**'(s) ¢ {s,t} where s,t € {a,b,c, d}
and then f*(s) # f¥+1(s).

Then there follows that {f*(s), f¥*1(s)} C Imf* for all k£ > 1. This
means |Imf*| > 2forall k> 1. O

Lemma 2.5: Assume that AN(f) =n -2, [Imf" 2| =1, f(a) = f(b) = s
and f(c) = f(d) =t. Then

(i) if s,t ¢ {a,b,c,d}, then f(s) & {a,b,¢,d} or f(t) & {a,b,c,d},
(ii) s € {a,b,c,d} or t € {a,b,c,d},

(iii) if s € {a,b} and s # ¢, there exists an m such that f™(c) €
{a,b}\{s} and {c,d} N {u.v} # ¢ where u,v € 4 are the elements
which do not occur in Imf (by Remark 2.3),

(iv) if |[A] 2 4 and s = ¢, then {u,v} # {b,¢} and {u.v} N {b,c} # ¢.

Proof: (i) If f(s) = s and f(t) = t or f(s) = t and f(t) = s, then
s,t € Imf* for all k. This contradicts [Imnf?"!| = 1 since s # t because
of s,t ¢ {a,b,c,d}. Therefore f(s), f(t) ¢ {s,t}. If f(s) € {a,b} or
f(t) € {¢,d}, then f?(s) = s or f2(t) = t. This means s € Imf"?
ort e Imf*2and s € Imf* 3 ort € Imf* 3 and then f(s) # = €
Imfr=2or f(t) #t € Imf""% and |Imf* % > 2, a contradiction. Thus
f(s) & {a,b} and f(t) € {c,d}. If f(s) € {c,d} and f(t) € {a,b}, then
f2(s) = t and f2(t) = s and then f(f%(a)) = f?(c) and f(f*(c)) = f*(a).
Therefore f2(a) and f?(c) arc two elements of A which are mapped to
each other and thus they belong to I'm f* for all k > 1. Since f(s) # f(t),
we have [Imf"~2| > 2, a contradiction. This means f(s) ¢ {c,d,} or

f(t) ¢ {a,b}. Therefore, f(s) ¢ {a,b,c,d} or f(t} ¢ {a,b, ¢, d}.

(ii) If s,t ¢ {a,b,c,d}, then by (i) and Lemma 2.4 we get [Im[f*| > 2
for all £ > 1 and then |Imf™ % > 2, a contradiction.

(iii) Clearly, f*~2(c) € Imf™2 and f*"?(c) = s. Let r be the least
positive integer such that f7(¢) = s. Then 1 < r < n—2and 1 <
r—1<n—2and fr~{c) € {a,b}. Indeed, from f"~'(c) ¢ {a,b} would
follow |Imf| < |A| — 3, a contradiction. By the choice of r we have
fr71(e) € {a,b}\{s} with r —1 > 1. We choose m =7 ~ 1.

Next, suppose that {c,d}Nn{wu,v} = ¢. Then {c,d} C Imf. Therefore,
there are p,g € A with f(p) = ¢ and f(¢q) = d. Now a,b,¢,d € Imf

4



with f(a) = f(b) and f(c) = f(d) implies that [Imf?| < |Imf] -
contradiction.

(iv) Suppose that {u,v} = {b,c} or {u.v} N {b,c} =&

a) {u,v} = {bc}. Then A\{s,u.v} = A\{a,b,c} and f|i\(use is a
permutation on A\{a, b, c}. Since |4] = n > 4, we have [.A\{a, b, c}| > 1
and ¢ # A\{a,b,c} C Imf* for all k > 1. Since a € Fm f" 2, we have
|[Imf"=2| > 2, a contradiction.

b) {u,v} N {b,c} = ¢. Then {b,c} € Imf. Then there are cle-
ments p,q € A such that f(p) = b # ¢ = f(qg) which implies that
{fla) = a, f(p) = b, f(q) = c} is a subset of Imf. But f3(q) = f2(p) =
fi(a) = a € Imf?, whlch shows that [Imf?| < [Imf| -2 < [Imf] - 1.
a contradiction. O

From Lemma 2.2(ii} it follows that we have to consider the two cascs
|[Imf"=2| =1 and |[{mf" 2| = 2. Now, we will give a characterization of
LT, — functions with |[Imf"~2| = 1 which corresponds to the character-
ization of LT — functions given in Remark 1.1.

Theorem2.6: Let A be a finite set with [4] =n >3 and let f: .4 — 4
be an operation. Then A(f) = n—2 and |[{mnf"*"?| = 1 if and only if there

are distinct elements u, v € A such that A = {w, v, f(v),..., f*~*(v)} and
such that there is an exponent k with 0 < &k < n—2 with f(u) = f'(0)
and a number m with m + k = n — 2 such that f™*! = f™(u).

Proof: Assume that A(f) = n — 2 and |[/mf* %] = 1. Then by Lemma
2.2(iv) we get |A| = |Imf|+ 2 and there are two elements u, v with u # v
which do not occur in I f. Because of Lemma 2.2(v) the restriction g of
fon the (n-2)-element set /mf is a LT-function. Then by Remark 1.1(1i)
there is an element d € Imf such that Immf = {d, g(d),...,g" 3(d)} =
{d, flims(d)s ..., f*" 3 |1ms(d)} and ¢g"3(d) = ¢g""*(d). Since d € Imf,
there is an element v € A4 such that d = f(v)} and the clement v cannot
belong to Imf = {d, g(d),...,g" 3(d)}. Further, the second element u
which does not belong to Iinf cannot be mapped to u or to v. Therefore, it

is mapped to one of the elements d, g(d), . .. ,g"‘3(d) |et’s sa\ to g*(d) =
5 (v) = f(u). Then A = {v, f(¥),..., ffe)} U {u cooy S ()}
with m + & = n — 2 and because of |Imf” =1, we ha\e [ (u) =
fm+l(u)'

Conversely, we assume that there are different clements u, v € A such that
A =A{u,v, f(v),..., f*"%(v)} and such that there is an exponent k with

0 <k <n-2with f( ) = f*“(v) and a number m with m+4A = n—2 and



such that f"‘f'(u) = f"(u). Clearly, all elements are pairwise distinct
and we have a := f"™(u) # fm™*Yu) =: b and ¢ := f¥(v) # uw. Then
fla) = f"*H(u) = f™(u) = f(b) and f(c) = f**'(v) = f(u). Hence,
|A| = [Imf| + 2. Next, we show that A(f)} = n — 2. Because of |4| =
[Imf| + 2, it is enough to show that A D [mf D Imf? > ... D Imfr—2.

Since |A| = [Imf|+ 2 and Imf D {f(v),..., f"7%(v)} we get I'mf =
{f(),--..f"%*(v)}. Now, we consider the cases m =1 and mn > 1.

If m = 1, then A = {wu, f(u)} U {v. f(v),..., f5(@)}. If k = 0O, then
A=A{v,u, f(w)}and Imf = {f(u)},n =3, Mf)=1=3-2,[Imf| =1,
ie. fisa LT, — function. If k > 0, then ff(v) € Imftforalll <t <k
with n — 2 = k£ + 1; and in this case we have f(u) # f¥(v) € Imf*, but
flu) = f5**w) &€ Imf'*! for all 1 <t < k which implies Imf' O I'm f'*!
foralll1 <t<k<n-—2andfisa LT, — function.

If m > 1, Then f**'(v) = f(u) implies fm™! = fm%(f(u)) =
M2 (fF () = frrkole) = M3 (e) € Imfn3 Since Imfm? D
Imftforallt < n -3, we have fMm '(u) € Imftforalll <t <n-—2
Now fm™ Nu) # f™(u) in Imf*, whereas f(f7 '(u)) = f(f™(u)) in-
plies that Imf' D Imf'*! for all 1 < t < n — 2. This shows
ADImf D Imf?. .. > Imf~? and together with 4] = [Imf] + 2,
this means |[imf"~2%| = 1 and A(f) = n — 2. This finishes the proof. O

Now, we consider the case that |Imf"~2?| = 2. Then [A] = [Imf|+1
and |Imfk| = |Imf**'|+1fork = 1,...,n—3. The restriction f*~?|Im.f
can be the identity function or a permutation on a two-element set.

Theorem 2.7: Let A be a set with |[A] =n > 3 andlet f: A — A be
a unary operation. Then A(f) = n — 2 and [[Imf"~?| = 2 if and only if
there are different elements u,v € A such that either

(i) A = {v,u, f(u),....f""*(u)} withv = f(v)and A u) =

fr*(u), or
(i) 4 = {x, f(u), f2(u)...,v = f""2u), f*"(u)} where v = f™(u) =
Frm2 (w).

Proof: By Lemma 2.2(iii) we have |A| = |[Imf|+1 > [Imf|. Therefore,
there are exactly two elements a,b € A such that f(a) = f(b) = s and
there is an element y € A with y # f(t) forallt € A. Then the restriction
of f to A\{a,b} is a bijective mapping fla\(apy = A\{s,y}. We consider
the two cases s € {a,b} and s ¢ {a,b}.
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Casel: s € {u, b}. Without loss of generality we may assume that s = a.
Then f(s) = s € I'mf"~%. Now we consider two subcases. y € {a,b} and

y ¢ {a,b}.

Casel.l: y € {a,b}. Then {a,b} = {5,y} and flav(apy Is a permutation.
Since |[A| > 3 and |[Imf"~2| = 2, we have |A| = 3 because of s € [mfr—2,
Then A = {a,y, f(y)}} with f(a) = a and f?(y) = y. This corresponds
to (i).

Casel.2: y ¢ {a,b}. Because of the bijectivity of f|.i\(as) : A\{a, b} —
A\{s,y}, we can choose elements z|,12,...,2,_; from A\{a,b,y} and
Tq = y such that f(z;) = b and f(z;,) = z;.; for 1 < ¢ < q. So, A =
{zq, flzg), ..., fixy) = b, f9%(z,) = a} C A. Since [Imf™7?| = 2, we
have A\X # ¢ and f|a\ x is a permutation. Thus |A\X| =1 and |4| =
g+3. It follows that 4 = {¢,y, f(y),..., [T (y)} withe € A\ X, f(c) = ¢
and f9%%(y) = f9*!(y). This corresponds to (i).

Case2: s ¢ {a,b}. Then s is not a fix point with respect to f since
otherwise |A| > [Imf|—2, a contradiction. We consider the two subcases

f(s) ¢ {a,b} and f(s) € {a, b}.

Case2.1: f(s) ¢ {a,b}. The bijectivity of f|a\(as) onto A\{s,y} implies
s # f(s) and {s, f(s)} C A\{a,b}. Now assume that thereisa k& > 1
such that {s, f(s),..., f¥(s)} is a subset of A\{«a, b} consisting of pairwise
distinct elements. From the injectivity of f|a\(aey and f571(s) # f*(s)
we obtain f*(s) # f*+1(s). If f5*'(s) = f!(s) for some 1 < t < k, then
1 <t—1<kand f(f*s) = fF(f*'(s)) implies f¥(s) = f*'(s) which
contradicts our assumption. If f¥*!(s) = s, then by Lemma 2.2 we get
another contradiction. This means, X = {s, f(s),...,f*(s),...} is an
infinite set, a contradiction.

Case2.2: f(s) € {a,b}. Assume that f(s) = a. From Lemma 2.2 we
obtain a,s € Imf"* 2. So, f(t) ¢ {a,s} for all t ¢ {a,b, s} since |A] =
[ Imf|+ 1. If y = b, then A\{a,b,s} = A\{a,s,y}. Hence f|a\(ass) 18
a permutation. There follows that A = {a,b,s} = {b, f(b), f?(b}} where
f3(b) = f(b). This corresponds to (ii). The other subcase of 2.2 is that
y # b. Then b € A\{s,y}. By surjectivity of fli\(as) onto A\{s,y} and
because of the finiteness of |4\ {a, b}| we may choose g-1 pairwise distinct
elements z,, z,,...,z,-) which are different from a and from b such that
f(z;}) = f(zi_)) for 1 < 7 < g and with 79 = b,z = y. Therefore,
X = {z,, f(zy),. .., fi(xg) = b, [ (z,) = s, f97(zg) = a} € A and
flayx is a permutation. Assume that A\.X # ¢, then [Imf"~?| > 3, a
contradiction. Thus 4 = X and ¢+ 2 = n — 1, i.e. ¢ = n — 3 with

|



v = xq we have A = {u, f(u)...., /" "(u)} with f"(u) = f*~2(u) and
this corresponds to (ii).

Conversely, let A be a finite set with [4] > 3 and let f: 4 — 4 be
a function satisfying (i) or (ii). Then we have f"~!(u) # f*2(xu) (in
case (a)) or [N (u) # f"73(u) (in case (b)) but f(f*~'(u)) = f*(u) =
[ w) = F(S72(w) (in case (a) or F(/" () = fo(u) = FT-2(u) —
fOf"7%(w)) (in case (b)). In either cases, we have 4 D Imf.

If n = 3, then A = {a,b, f(b}} where f(a) = a and f2(b) = f(b). Thus
AMf)=1=3—-2and [Imf| =2, ie fisa LT, — function. Therefore
we may assume that n > 4 we show that A > Imf D Imf? > ... D
Imfr=? = I'mf"'. Since v ¢ Imf, we have 4 D Imf O Imf? >
c. D Imf"72 In case (i) the elements f*~3(u) and f*~?(u) are distinct
in Itnf' which have the same image in Imf™ forall 1 < t < n —
3. Similarly, in case (b), we have f*3(u) and f* '(u) being distinct
elements in /m f* having the same image in Imf'* for all 1 < t <
n—3. This shows that [l f!] > [Imf**]| + 1 which implies that Imft D
Imf**! for all 1 <t < n — 3. Therefore we have A(f) = n — 2. We have
to show that |Imf"~2| = 2. In case (i), f has two different fix points, v
and f""?(u). Both are elements of Imf"~2. Therefore |[Imf" 2| = 2. In
case (ii), f*~!(u) and f*~2(u) are different elements from Imf™ 2 and
therefore, using A\(f) = n — 2, we have |Imf| =2 O

3 Invariant Equivalence Relations

Let 8 C A x A be an equivalence relation on the finite set A, [4]| > 2

and let f : A — A be an arbitary unary operation defined on A. Then
we say, f preserves 6, or # is invariant under f if the following is satisfied

Va,b € A{(a,b) € 8 = (f(a), f(b)) € 0)

Let PolV@ be the set of all functions defined on A which preserve
#. Then we ask the fllowing question: which equivalence relations are
invariant under LT or LT, — function. For LT — functions the answer
is given by the following theorem.
Theorem 3.1 : Let A be a finite set with [A] > 2 and let 8 be a

non-trivial equivalence relation defined on A. Then f € Pol'*)§ is a LT-
function if and only if there is only one block with respect to & which has

more than one element.



Proof: Since A(f) = n — 1, there is an element ¢ € A4 such that 4 =
{d, f(d),..., f*'(d)} and f*~'(d) = f(d). Since 8 is non-trivial. there
is a block B with respect to  containing more than one element. Then
there exists a least integer ¢ > 0 and an integer j with 1 < j < n — 1 such
that (f'(d), f7(d)) € 6. From this we obtain (f*(d), f*~'(d)) € 8 for all
s > 1, This means, the elements f*(d), f**!(d),..., f*~1(d) belong to B:
and by the choice of i, all other elements form singleton blocks.

Conversely, let 8 be a non-trivial equivalence relation on A having
only one block with more than one element. We denote the elements of
A by ao....,a,-1 and may assume that {a;,...,a,_1} is the only non-
trivial block with respect to . Then the operation f : 4 — 4 defined
by f(a;) = a;4) for 0 <7 < n—1and f(an_1) = an_y preserves § and is
obviously a LT-function. O

We will answer to the same question for LT, — functions, i.e. if
A(f) = n — 2. Here we have again to distinguish the cases [Imf"~?| =1
and |Imf"~?| = 2.

Preposition 3.2: Let A be afiniteset with |4| =n > 3and f C Ax.1be
a non-trivial equivalence relation on A. Then there is a unary operation
f with A\(f) = n — 2 and |Imf" 2| = 1 which preserves # if and only if
either

(i) there exists only one block with respect to 6 with more than one
element, or

(ii) there are exactly two blocks with respect to € with more than one
element and one of thern consists exactly two elements.

Proof: Assune that f: 4 — A4 with A(f) = n — 2 and |[Imf*7? = 1.
Then there are distinct elements u,v € 4 and intergers m = 1 and

kE > 0such that m+ & = n— 2 and 4 = {u,v, f(v),..., "% (v)} =

{u, f(w),..., f™(w)} U {v, fv),..., f¥(v)} where ) = f™(u) =
fmri(y) = fmrétly) and f(uw) = f*'(v). Let 6 be a nontrivial

equivalence relation on A which is invariant under f and assume that
X = {v,f(v),..., fF*™(v)} and Y = {u, f(u),..., f™(u)}. Then
|X| > 3 and |Y| > 2 and f|y and f|y are LT-functions. Moreover, f|x
preserved # := |\, and f|y preserves 0 = 9];—;}-. By theorem 3.1,
there is exactly one block with respect to ¢ and 8; respectively, which
has more than one element. We consider the following cases:

Case 1: The block of u with respect to € consists only one element. Then
0 = 0| xxxU{{u,u)} = 0U{(u,u)}. Hence, there exists only one element
of A|6@ having cardinality greater than one.
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Case 2: (u, f'(v)) € 8 for some 0 < ¢t < k. If t = 0, then (u,v) € § which
implies (f**!(v) = f(u), f(v)) € 0, so {f(v),.. ., f™* ()} = X\{v} is
a subset of the block C of f(v) with respect to § = #|y.x and also with
respect to &; hence § = A x 4 if v € C, a contradiction since € is non-
trivial. This shows u ¢ C' and B = {u,v} and C = X'\ {v} are the only
elements of .4/6. Since & > 0, this gives (ii).

If ¢t > 0, then also & > 0 and f(u) # [f*). Then
{fY ), ... A w) = f(u),..., fm™* (v)} is a subset of the block C
of f(u) with respect to § (and also with respect to €) containing f*(v)
and f(u); hence |C| > 1.

If w € C, then C is the only block with respect to @ with cardinality
greater than 1 and if u € C, then {u, f'(u)} and C are the only block
with respect to # having cardinalities greater than 1 and |{u, f'(v)}| = 2.

Case 3: (u, f'(u)) € 0 for some 1 < ¢t < m and (u, f*(v)) ¢ @ for all
0 < s < k. Then Y is a block with respect to 8 and the block of each
f°(v) for 0 < s < k is singleton. Therefore, Y is the only block with
respect to 6 with |Y| > 2.

Case 4: (u, f¥(v)) € 6. If (c,d) & 6 for all ¢ # d in A — {u, f*(v)}
then {u, f*(v)} is the only block with respect to @ having more than one
element. We consider that there are ¢ # d in A — {u, f¥(v)} such that
(c,d) € 8. If ¢ or d belong to X — Y then {¢,d, f¥(v)} is a subset of the
only block C with respect to 6 (hence with respect to 6) with [C| > 1;
and so, C' U {u} is the only block with respect to @ which has more than
one element. But, if ¢ and d are both in Y — {«} then they are in the
only block C with respect to 8 (hence with respect to 8) with |C| > 1;
so, in this case, C and {u, f*(v)} are the only blocks having more than
one element and one of them has cardinality 2.

Conversely, let A be aset with |A] = n > 3andlet § C Ax.A4 satisfy either

case (i) or case(ii). We may assume that A = {ao, a1, ..., an_1} and either
B = {a;,aiy1,...,an1} for some 0 < i < n—1 in case (i) or B = {ao, a;}
and C = {@i41,...,an_1} for some 0 < i < n—1 in case (ii) are the blocks

with respect to #. In either cases, we define f : A — A by f(a;) = aip if
i ¢ {0,n—1}, f(ag) = a;s1 and f(an_1) = @n_1- In both cases f preserves
6. Further, we have f(a;.1) = f(ap) and f(an—2) = an_1 = f(an_1) for
a;_1 # ag and a,_, # an_; and there are no other elements ¢ # d in A
such that f(¢) = f(d). Thus [/mf| = |A| — 2. Since a,—1 # an—» and
Qn_1,8n_o € ImfFforalll < k <n—2and f(an_1) = f(an_2), we have
Imf* > Imf**+! for all 1 < k < n — 2. Together with A = |[Imf| 4+ 2
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we get |[Imf"~?| < 1. But, ap_; € If""? implies {Jm f"~2| = 1 and
Imfr=2 = Imf"2 and therefore \(f) =n —2. O

Now we will consider the case |Imf"~?| = 2.

Proposition 3.3: Let A be a finite set with n > 3 and let # C 4 x A
be a nontrivial equivalence relation. Then there is a unary operation
f:A—> Awith AM(f) =n —2and |[/mf"*? = 2 such that # is invariant
under f if and only if either

(i) there is only one block B with respect to # which has more than
one element; or

(ii) there are only two blocks B and C with respect to € which have
more than one element and |B| — |C| < 1.

Proof: By Theorem 2.7. there are different elements u, v € 4 such that
either

(i) A= {v,u, f(u),..., f* Hu)} with v = f(v) and f*"Hu) = f**(u).

or
(i) A = {u, f(u),...,v=F*"2(u), f*Yu)} where v = f*(u) = f"*(u).
We consider at first case(i).

(i) Let X := A\{v}. Then f|X is a L'T-function and #|. v is invariant
under f|.X. Therefore, there is onlv one block with respect to fx. v
which has more than one element. If v ¢ B, then 6 = 8|x.x U {(v,v)}
and therefore B is the only block with respect to  with more than ore
element. If v € B, then (v, f{(u)) € € for some 0 < ¢t < n — 2 and thus
(v, f5(u)) € 6 for all s with t < s < n — 2 and then also (v, 2 (u)) € 6.
This means that every block B with respect to 8 with [B| > 1l and v € B
contain also f"~?(u).

Now, B = {v, f*~2(v)} implies that the block of each f*(u) for 0 <
t < n — 2 is singleton, hence B is the only block with respect to @ which
has more than one element. But, if {v, f*~*(u)} is a proper subset of B,
then B\{v} is the only block with respect to #|x.y with [B\{v}| > 1
which implies that the block of each f'(u) ¢ B with respect to 8|y« x
(and also with respect to 8 ) is singleton; hence, B is the only block with
respect to 8 with |[B] > 1.

Now we consider the second case.

(ii) From v = f"(u) = f*2(u) we obtain f2(f""'(u)) =
PN, £ 2(w) = fr(w), AN ) = f7 T (w) and

11



FRAR (7 w) = f7%(w) for all ¢ > 1. Since 6 is nontrivial, there
are numbers i, j with 0 < i < j < n — 1 such that (f*(u), f7(u)) € 8,
From this we obtain casily (f'(u), f*7'(u)) € 6 or (fi(u), f*%(u)) € 0.
If (f*~(u), f*"%*(u)) € 6, there is only one block B with respect to
§ such that |B| > 2. We assune that (f* u), f*~%(u)) ¢ @ then
we get (f'(u), fI(u)) € 6,(f/(u), """ (u)) € @ or (fi(u), fi(u)) € O
or {f7(u), ff"%(u)) € 8. Without restriction of the generality we as-
sume that (f*(w), /" '(u)) € 6. Let f~'(u) € B € Al8 and let
f"%(u)) € C € Al6. Then |B| > 2,|C|> 1 and BNC = ¢.

Now let D be a block of # with more than one element. Then
(f5(u), f(u)) € 6 for some 0 < s < ¢t < n — 1. Then from
(fo(u), A (u) € 6 or (f5(u), f"%(u)) € O there follows that either
D = B or D = C. In ecither cases, if [C| = 1, there is only one
B € A|f such that |B| > 2. If |[C| > 2, then B and C arc the only
two elements of A4|@ containing more than one element. For the proof
of the last statement in (ii) we have only to consider the case that
(fm Y (uw), ff2(u)) ¢ 8. Let i with 0 < ¢ < n — 1 be the least inte-
ger such that (f*(u), f7(u)) € 6 for some j > i. If i and j have different
parity, it can be easily checked that (f?~}(u), f"~2(u)) € 8. Therefore
(fi(uw), fi*'(u)) ¢ 6. Let fi(u) € B € A|¢ and f**'(u) € C € A|f. Then
|B| > 2 since fi(u) # f7(u) are in B. Then we have either f*~!(u) € B or
f*%(u) € B. In the first case we get f*~2(u) € C and if f*(u), f'(u) € B
or f*(u), fi(u) € C, we get s - t = 2q for some ¢ > 1. By the choice
of i, we can write B = {fi(u), f**%(u),..., f**(u), f'(u}} and C =
{fitt(w), fi+3(u), ..., f* Hu), f*"%(u)}. So, the function o : B — C, de-
fined by a( ft(u)) = fHi(u)ift # n—1and a(f""'(u)) = f*~*(u) is injec-
tive on B\{f™ '(u)}. Together with a(f™*~*(u)) = [ *(u) = a(f*'(u))
this gives |B| = |C| + 1.

In the case f* %) € B we have f*'(u) € C and
B = Cr), fo ), o £ W), 22w} and
C = {f**Y(u), fi*3u),. .., f"3u), [ (u)}. In this case, « : B — C
defined by a(f(u)) = f*'(u)(1 <t < n—2)is a bijection and |B| = [C].

Conversely, let A be a set with |[A| =n > 3 and let § C A x A satisfy

either case (i) or case (ii). We may assune that 4 = {ag,a1,---,Gn_1}
and either B = {a;,a;41,..-,an_1} for some 0 < ¢ < n — 1 in case (1)
or B = {a;, @it2,Qisa,---,an_1} and C = {ai11, @43, .., an-2} for some

i with 0 < ¢ < n — 1 such that i and n-1 have the same parity. In case
(i) we define f : A — A by f(ai) = aiy: il a; ¢ {an_-2,an_1}, f(a;) = a;
if a; € {an_2,a,_,}. In case (ii), let define f: A — A by fla;) = a4 if
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g; # a1 and f(a,_) = ¢, s In either cases, it is clear that that ¢ is
invariant under f.

Since f(an_3) = flan_2) = apyo» in case (1) and flan-4) = tn.» =
fla,-1) in case (i1) we have I f D 4 in both cases.

Since flav(a..,} 18 a LT-function and f(a,-)) = a,-, in case (i) we
have AM(f) = nn — 2 in case (i), In case(it), a, 5 and a, ., are in Fmf* for
all k with 1 < & < n — 2 which implies that

ADImf o . . DImf* 7 and [mfr == {an 1 dn 2}

hence Imf"=> = Imf* ' So[Imf > =2ud \M(f)=n-2. O
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ESSENTIAL OPERATION SYMBOLS IN TERMS *

N. Pabhapote, C. Ratanaprasert and K. Denecke

Abstract

Generalizating the concept of an essential variable in a term with re-
spect to an algebra or variety we define essential operation symbols in
a term with respect to an algebra or with respect to a variety of alge-
bras. After proving some elementary propositions, we extend our definition
to essential operation symbols in hypersubsttutions and determine some
monoids of hypersubstitutions which contain the same essential operation
symbols.

Using the concept of a unitary Menger algebra of rank n we define so-
called operator term and prove that essential operation symbols in terms
with respect to an algebra correspond to essential veriables in operator
terms with respect to the same algebra. Using the isomorphism between
the monoid of all clone endomorphisms at the monoid of hypersubstitu-
tion we get the equivalence between essential variables in hyperterm with
respect to clone V and essential operation symbols in hypersubstitutions
with respect to the variety V.

2000 Mathematics Subject Classification: 08A70, 08A62.
Key words and phrases: essential variable, essential operation symbol,
hypersubstitution, operator term.

1 Introduction

In [Sht-D; 98] the concept of an essential variable in a term with respect to
an algebra or with respect to a variety was introduced. Let 7 = (n;);e; be
an arbitrary type and let W,(X,) be the set of all n — ary terms of type 7
built up by the n, — ary operation symbols f;,2 € I, and by variables from
an alphabet X, = {zy,...,z,} and let W, (X) := UpZ, W, (X,) be the set of
all terms of type 7 where X = {z,,...,Tn,...} is an arbitrary countably infi-
nite alphabet. Let A4 = (A; (f')ics) be an algebra of type 7 with the sequence

*Serearch supported by The Thailand Research Fund.
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9 Essential Operation Symbols in Terms

(Ff#)icr of fundamental operations where (f) is n; —ary. Let := (W,(X); (F,)ier)
with fi(¢1,...,tn,) = fi(t1,...,t,,) be the absolutely free albebra. On the set
W:(X,) of all n — ary terms of type 7 we may define an (n + 1) — aryoperation
St W (X,)"H - W, (X,) by

Sn(.’.l?l', t,;, ey tn) = tl,

St fi(s1s - a S vtr, -y tn) = fil SM(s1 b, - tn)y o S (Sny t, - E)).
Adding the variables z,, ..., z, asnullary operations we get an algebra
n — cloner = (W (X,); 5", 71,...,2,) which is called a uniary Menger algebra
of rank n. An algebra of the same type can be constructed if we define a super-
position operation S™4 on the set O (A4) of all n — ary operations f : A® — A
defined on A.
St4 . O (A — OM(A) is defined by S™(fo, (f1,....fa)(a1, ..., a,) =
folfilar,-. . an),. .., falay,...,a,)) for all a,...,a, € A™ Then OM(A4) :=
(O (A); S™A e .. eM?) is also a unitary Menger algebra of rank n since it
satisfies the identities which can be used to define n — cloner and which will be
given later on. F(A) :=< {f# | i € I} > denotes the subalgebra of O™ (A)
defined by the fundamental operations of A.
Let 8:z — W, (X) be a substitution. By the freeness of F,(X) each such map-

ping can be uniquely extended to an endomorphism 3 : F (X) — F,(X).

Definition 1.1([ Sht-D; 98]) Let t be an n — ary term of type 7. A variable z;
is essential in t with respect to an algebra A of typed T iff there is a substitution
B X, = W (X)) with f(z;) = z; for all j # i and 3(z;) = Tpy such that
B(t) = t is not an identy in A.

By Ess(t, .A) we denote the set of all variables which are essential in ¢ with respect
to A. If s =~ ¢ is satisfied as an identity in the algebra A we will write A |= s = ¢.
To every term ¢t € W,(X,,) and every algebra A of type 7 there belong an induced
n — ary term operation which is inductively defined by

= e where e?'A : A" —» A and e?’A(al,...,an) = a; is the n — ary
projection n th i—th component and 1 <17 < n,
A
(fi(s1y ..oy, ) i= S™A(SA, 8T, .. s

Then A = s = t means simply s = t4. If V is a variety of algebra of type T,
then VI Es=x~tmeans AEs~t VAeV.
The following properties of the Ess(t, A) are quite clear.

1. z; € Ess(z;, A) < |A| > 1,

2. z; € vat(t) = x; &€ Ess(t, A)
( here var(t) denote the of all varibles occurring in the term ¢),
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3. AEs~t=— FEss(s, A) = Fss(t, A).

It is very natural to define variables which are essential in the term ¢ with respect
to a variety V of the same type.

Definition 1.2 Let V' be a variety of type 7,t € W.(X,). Then a variable x;|inX,
is called essentialin t with respect to a varity V' if it s essential in t with respect
to the free algebra F\(X) with X = {z,...,z,,...}. The set of all variables in
t which are essential with respect to the variely V' 1is denoted by Ess(t, V).

Then for variety V' and 1V of type 7 we have
4. VC W —= Ess(t,V) C Ess(t, ).

Hypersubstitutions of type 7 are mapping which assign to each n; —ary operation
symbol of type 7 an n, — ary term of the same type. If o : {f; |1 € 1} - W, (X)
is a hypersubstitution of type 7 then its extension ¢ : W, (X,) — W, (X,) is
defined inductively by the following steps:

(i) If t = z; for some 1 < i < n, then 6[t] = z,,

(i1) If t = fi(t1,...,tn,) for the n; —ary operation symbol f; and some n; —ary
term, then &[t] = S (o (f.),d[t1], ..., [tn.].

Let Hyp(t) be the set of all hypersubstitutions of typr 7. Together with the
identityhypersubstitution o;¢ mapping f; to f;(z1,...,Ty,;) forall j € I we get a
monoid.

Here the superposition operation S™ : W, (X} x (W (Xp))™ — W (X,) is
defined in a similar way as we defined 5".

An identity s = t of terms of type 7 is called a hyperidentity of a variety 1" if for
every substitution of n; — ary terms of V for the operation symbols f; in s =~ ¢ the
resulting identity holds in V(i € I), i.e. if V |= &[s] = o[t] for every o € Hpy(7).
If s ~ t is a hyperidentity in V we will also write V' [=pyp s = t.

Essential variables in hypersubstitutions of type 7 = (n) can be defined as follows:

Definition 1.3 Let t € W,,)(X,), let V' be a variety of type (n),n > 1, and
let g, : f > t be a hypersubstitution of type (n). Then x; is essential in o, with
respect to the variety V if z; is essential in t with respect to V.
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Then we can consider the following set of hypersubstitutions:

l\/f,(V) = {Ut l T € ESS(t, V),t € I’V(n)(Xn)}.
In general, M;(V) is not a submonoid of Hyp(n). In [Den-K; 01] we gave the
necessary sufficienced conditions for V' to make M,;(V') a monoid.

2 Essential Operation Symbols
We cxtend the definiton of essential variables to essential operation symbols

Definition 2.1 Let t € W, (X, )} be an n—ary term of type 7, let A be an algebra
of type T and let ops(t) be the set of all operation symbols occurring in the term
t. An operation symbol f; of arity n; is essential in t with respect to A iff there 1s
a hypersubstitution o of type 7 and an n; — ary operation symbol g ¢ op,(t)such
that o(f;) = fi(z1,. .., zn,) for every j # 4,5 € I and o(f;) = g(z1,-..,%n,) with
filzy, ..., zp) = g(zx),...,T,,) is not an identity in A and A B 6[t] = t.

The opposite case, f; is called fictitious in ¢ wity respect to .A.

Let Hypess(t, A) be the set of all essential operation symbols in ¢ with respect
to A.

Corollary 2.2 Let 5,t € W, (X,) and let A be an algebra of type 7. Then
A Ehyp 5 =t => Hypess(s, A) = Hypess(t, A).

Proof. Assume that f; € Hypess(t, A). Then there exists a hypersubstitution
o € Hyp(7) and an n; — ary operation symbol g € op,(t) such that o(f;) =
fi(z1,... ,zp,) forevery j # 4,5 € Tand o(fi) = g1, .-+, Tn,) with A B 5[t] = ¢.

If A = 6(s] & s then together with A |= 6(s] = &(t] we would have A |= &[t] =
¢, a contradiction. Therefore A [ &[s] = s and f; € Hypess(s, A). This shows
Hypess(t, A) C Hypess(s,.A) and similarly, Hypess(s, A) C Hypess(t, A). 0O

For the set of all operation symbols occurring in the term ¢ we have f; ¢ op,(t) =
fi ¢ Hypess(t, A). Further, for variables z; we have Hypess(z;, A) = 0.

One more consequence of the definition is:

Proposition 2.3 Let A be an algebra of type 7 and assume that the type contains
one at least binary operation symbol f;. Then A is trivial iff for every t € W, (X)
we have Hypess(t, A) = 0.

Proof. The trivial algebra satisfies [t] ~ t for every hypersubstitution and for
every term. Therefore, there is no essential operation symbol in ¢ with respect to
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A. Conversely, assume that for every term ¢ € W, (.X') we have Hypess(z;, A) = 0.
That means, for every hypersubstitution ¢ € Hyp(r) and for every 7 € I with
J(fi) = g(:El: .- '*‘Iﬂi) # fi(xl% AR I'ﬂi)?g §E Ops(t) and G(fj) = fj(a:l: <o :mnj) if
j # i we have A = 6[t] = t. Consider the hypersubstitutions o; with o (f;) =
er(z1,...,Zn,) and o1(f;) = fi(z1, ..., &a,) if 7 # 1 and o2(fi) = en, (21, .., Z0,)
and 02(f;) = fi(z1,...,Tn, ) if j # ¢ where e is the n;—ary projection on the i~
th component and the term ¢t = f;(zy,...,x,, ) where f; is at least binary operation
symbol. Then A | &;[fi(z1,...,z0)] = fi(z1,. .., Zn,) le. AEe(zy,...,T,,) =
filz1,...,zn,) and similary A = en, (z1,...,%n) = fi(z1,...,2,). But then
Al ez, ..., xn,) = ep,(z1,...,2Z,,) and this means A is trivial. O

As in the case of essential variable in terms with respect to algebras we may
extend our definition to varieties.

Definition 2.4 Let V be a variety of type 7 and assume that t € W, (X,,). Then
fi is called essential in t with respect to the variely V if f; is essential in t with
respect to the free algebra £y (X).

In this case we consider the set Hypess(t, V).
An easy consequence of this definition is

Corollary 2.5 If V is a subvariety of W, then Hypess(t,V) C Hypess(t, W).

Proof. If V C W we get IdW C IdV for the sets of all identities satisfied
in W and in V respectively. Assume that f; ¢ Hypess(t,W). Then for ecv-
ery o € Hyp(r) with o(f;) = 9(z1,..-,Tn,) # filZ1,-.,2n), 9 ¢ ops(t) and
o(f;) = fi(z1,...,2n,) if § # 1 we have W |= 6[t] =~ £. But then V = 6[t] ~ t and
fi ¢ Hypess(t,V). O

Essential operation symbols in hypersubstitutions can be defined as follows:

Definition 2.6 Let V be a variety of type 7 and let o € Hyp(r). Then f; is

essential in o with respect to V iff fi is essential in the term o( f;) with respect

to V.

We consider the set of all hypersubstitutions o such that f; is essential in o, i.e.
M;(V) := {0 | o € Hyp(r) and f; is essential in o}.

Assume now that 7 = (n),n > 2. In this case we write simply M (V).



6 Essential Operation Svmbols in Terms

In general, 3/ (17} is not a submonoid of Hyp{n). We ask the following question:
For which varieties of type(n) do the sets M{(1") form submonoids of Hyp(n)?

Now for proving the set M(1") with V" = V] = Mod{f{z;.. .. .1.) =~ 1,} forms a
submonoids of Hyp(n)., we need one auxiliary result.

Lemma 2.7 Let V, = Mod{f(ri...., In) = 1,}. Then V, 15 minimal rariety.

Proof. Let 17 be a variety such that 17 C 1, and V7 3 1. Bv uzsing the fact thart
s &= t € Id\, iff there exists r; which occurs in s and in ¢. Since V7 C 1, and
V # 1. there is a term ¢t € 1V ,,{.X,) with 1, £ var(t) such that t = r, = /d\"
Ift=1r1,,7#¢and r; = r,. then V" is trivial.

Let t = f(ty,....tn) where t, € W, (X,) and fit;.....t} = 1, € Jdl". Using
the substitution rule, we substitute in f{f,,...,¢,) = z, on both sides for r, the
variable z; # r,. This gives f(t,,....t.) = 1, € Id\" and then 1 is trivial. 3

Proposition 2.8 Let 7 = (n).n > 2 and let V7 be a non-trivial varety of type
(n) with V" £V, = Mod{f(z;...., In) = 1.} Then
MAV)Y={o|f € hypess(a(f).V)} is a submonaid of Hyp(n).

Proof. Since V" # 1] and every variety V" with V7 C 17 is trivial, there 1s a hyper-

substitution o € Hyp(n) with o(f) = e,(z(..... r.) where e™" is the n-—-ary pro-
jection on the 1 — th component such that V B &{f(zy,..  .rop1 = fz.... .. Il
That means. f is essential in f{z,..... In, = ol f) with respect to 17 and so we

get g4 € M{V).

Let 01,00 € M(V'). Then f € hypess{oi(f). V) and f € Aypessiza(f). V)
with oy(f) # r,.02(f) # r; for all i = 1,2..... n and there are Lyvpersub-
stitutions o, ¢’ € Hyp(n) with o(f) = gu{z1.. .. In). g (f) = galz .. .. In)
where g, € op,(c1(f)) and g2 2 op,(c2{ f)) such that V" 7= gloi(f)] = «.(f) and
V¥ &o2(f)] = o2(f). That means, there exist variables ry, r; € X, such that
T, & var(oy(f)) and 1, € var(za(f)).

Let gy o 03(f) = &1[e2(f)] = w where w is n — ary term with w # z, for all 1 =
1,2,...,n. Then by induction on complexity of w. we get x, ¢ var{w). Therefore.

there is a hypersubstitution ¢’ € Hyp(n) with o' fy=elzy.....2n). & & op,(w)
such that V' £ ¢[w] &= w. That means. f 1s essential in oy 4 o2( f) with respect
to V7 and so we have oy oy 052 € M(17). a
Proposition 2.9 Let = = (niher.n = 2 and let 17 be a non-trivial varety of

type T with V' # \; = Mod{f(z:.....z) = 1,.1 € I}. Then
MAV) = {o | fi € hypess(a(f.).V)} is a submonowd of Hyp(7).
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Proof. Since V # V; and every varicty V with V C V; is trivial, there is a hyper-

substitution o € Hyp(7) with o(f;) = e;(x1,..., z,,) and a(f;) = Loy, ooy
where e*" is the n;, — ary projection on the i — th component such that V'
olfilzr, ..., zn)] = fi(z1,...,2,,). That means, f; is esseutial in filey, . r ) =

oa( fi) with respect to V' and so we getl 0,4 © M, (V).

Let 01,00 € M(V). Then f, € hypess(o(f;),V) and f, € hypess(aa(f.), V)
with o1(fi) # x:,02(f;) # x; for all « = 1,2,...,n; and there are hypersubsti-
tutions o,0" € Hyp(r) with o(f)) = gi(r1, ., z,), o'(fi) = g2(x), ..., 2, and
U(f]) - fj(Il}- --,Zlfnj)agl(fj) - f](zla---amnj) it 7 # 1 where g ¢ ops(a(fi))
and g2 & ops(oa(fi)) such that V' [ alo(f,)] = o1(f;) and V ¥ &'[o,(fi)] =~
a2(f,). That means, there exist variables ¢, z; € X, such that =, & vur(o(/f,))
and x; € var(a.(/f;)).

Let oy oy 03(f.) = oiloa(f))] = w where w is n; — ary term with w # o,
for all 2 = 1,2,...,n,. Then by induction on complexity of w, we get z; ¢
var(w). Therefore, there is a hypersubstitution ¢” € Hyp(r) with o”(f) =
efT1, ..., Zn) 60 & ops(w) and o”(f;) = filze, oo yz) i 7 # 4 such that
V ¥ 6"[w] &~ w. That means, f; is essential in o, oy o.(f;) with respect to V

Ji

and so we have gy o gy € M, (V). 0

3 Essential Operation Symbolsin Terms and
Essential Variables in Hyperterms

Is this section we study this correspondence in a restricted setting, that of n - ary
type and algebras. We will call a type of algebras n — ary if all the operation
symbols of the type are n — ary, for some fixed natural number n, and any al-
gebra of such a type will be called an n — ary algebra. Throughout ths section
we assume that 7, is such a fixed n — ary type, with operation symbols (f:)ie;
indexed by some set 1.

By W, (X,) we denote the set of all n — ary terms of type 7, built up from the
operation symbols f; of type 7, and the alphabet X,

Next we want to consider some algebra of another type 7 = (n 4+ 1,0,...,0),
having n nullary operation and one (n - 1) - ary operation, for a fixed natural
number n. The first algebra of this type can be defined using the n — ary term
operations of an algebra of our first type 7,. That is;, we let A = (A4; (fA)%') be
any n — ary algebra. Every n — ary term ¢t € W, (X,,) induces an n — ary term
operation ¢ on A which is inductively defined by the following steps:
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(i) For every 1 < 7 < n, the variable z, € .Y, induces the n — ary j — th
projection e}l‘A : A" — A defined by e?’A(al, o an) = ay;

(ii) If ¢33, ..., #7 are the n — ary term operations which are induched by the
terms ¢, ..., tn € W, (X)), then ([, (¢, ..t ) = [0, ) isthen —ary
term operation induced by f,(f,...,1,).

We will use 7" (.A) for the sct of all n —ary term operation of the n—ary algebra
A. To define an algebra of type 7 on this set, we sclect the n project operation
e?‘A, for y = 1,2,...,n as the nullary operations, and we de an (n + 1) — ary
superposition opration S™, inductively defind by

n

S"‘A(e?'A,t*f‘, oty =t for 1 < j < ny and

SPA(filsyy - syt oL E5Y
= fAS (s Y, ST A D).
This gives analgebra 7™ (4) = (T (A); 74, e, ..., er?), called the n —ary
(terin) clone of the n — ary algebra A.

An algebra of the type 7 = (n+1,0,...,0) can also be defined on the set 117 (X))
of n — ary terms of type 7, In this case the {(n - 1) — ary superposition operation
S™ 1s defined inductively by

S™x;,t1, .., ty) =t for 1 < j <n; and

Sn(fi(sla' . '1Sn)atly- . -atn)
= fi(Sn(Sl,tl, A '1t?1))' . .,Sn(Snjtl,. .. \fn))-

Selecting the variable terms z,,...,z, for the nullary operation, we form the
algebra
n — cloner, := (W, (X,); S™ x1,-,20)

call the n — ary 7, — clone.
Now we want to consider identities of the type 7 = (n +1,0,... ,0). To do this
we use the new language built from an (n 4 1) — ary operation symbol 5™ and

n nullary operation symbols Aj,..., A,. We also introduce an alphabet of new
variables, X = {X, |i € I}.

Terms of typ (1) = (n + 1,0,...,0) are defined in the following way:
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(1) .X, is a term of type 7 for all 7 € I,
(ii) Ay, ..., A, are terms of tvpe 7,

(i) if T, 1, ..., T, are terms and if S"in (n+1)— ariy, then 5‘”(T, Ty ... 7.)
is a term of type 7.

By TV, (X,) we denote the of all n — ary terms of tvpe 7 and let 11.(A") be the
set of all terms of type 7.

Our identities will use terms from the new language 1 (A7),

Lemma 3.1[Den-J-\W; 03] The algebra n —cloner — n satwsfies the following iden-
tities of type T

(C1) S™(Nog, S™(N )  Noy oo, Nagp) e ST Xay o Vo))
oo Sn(Srl(YO"\Ji" ..,4\}'“),.\'2,...,,\-,,__,_1)).

(C2) 5’”(,\1,‘\"1, ..... Noa) = N, forl <) <mn,

(C3) SMX, A1, A = A, for1 < j<n.

Next we will show the fact that there is a bijection with 11 (A") and W, {\,}.

Lemma 3.2 If n: {X; | i € I} U{N\,..., ) = {filo,o30) | o€ T U
{z1,.. .,z } s a bijection with n(X,) = f,(x),..., 1) and n{As) = -\:, then n can
be extended to a bijection with W.(X = {X, |1 € I}) and 1V, (X}

Proof. Let 7 : W, (X)) — 1V, (X)) defined by

(X)) = filey, oL r,) foralliée [/

n(A) =X, foralli=1,2,...,n

A(S™(To, Tu, ... Tn) »= S™(1(To), 7(T1), -, 1(Tn)).
Given t € W, (X,). To prove that there exists a term T e TV, (&) such that
(T} = t by using induction on the complexity of the term ¢.

If t = z, for some 4,7 € {1,2,...,n}, then there exists A, € 11,.(X) such that
(A = X,
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Ift = filry... .. In} and assume that there exist T, 75, . ., T, € 11.i1X} such
that (7)) = # (T, =t, then we have
DS N To. o Tot = ST NG I Teh . atTo)) = filay. i),

This 15, 7 15 surjecuive.

Let T.77 €« WXy with T ) = (1), To prove that T = T
T =X, thenn(\,} = fir.... .7, =77 and so we get T' = X\,
If 7 =\, then nitAy = Nt T and so we get T = A,

7T =8I, T0... .. I.v.1T' = §'”rT.-j. g 7!y and assume that if

...... n

1T,y =701y then T, = T forall j = 0.1... . n. we have

il

rn

Ty Tooo o Ty =S (T T T/} and then

mn

SHMAI T 0ty .. Al = S™alTh . alT]y. . ... ATy,

That is. 5(7,) = (7]} and then for all j = 0.1....n. Therefore T = T'. this
means 7 i1s surjective. Altogether. 7 18 bijectivee. —

Now we extend the definition of essential variables in terins ro essentia variables
in hyperterms

Definition 3.3 Let A be be a non-trivial n — ary algebra of type = and leot
T W (X)) Then X,.1 <1< m s called essential in T with respect to T H{A)
uf
T A # 3T =T.

where 3 X, — W (X)) is a mapping defined by

N,y =X, forall j #iand 3{X,) =X, .
and when 3 is the extension of 3 to a mapping defined on terms. ie.

3 W (X)) — W (X )

For proving the following Theorem. we need one more auxiliary results.

Lemma 3.4 Ifo = fodon loa witha  {fi il — {filr1. .. ... ra) e}
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then & = nodonl
Proof. Let t € 117 (.\},). It is easy to show that ¢[t] = 5o 3 e n~!t] by using

induction on the complexcity of the term ¢, 0

Lemma 3.5 Let A be be a non-trivial n — ary algebra of type 7, and
let T'e WX, Dand let fq(xy... ... ro) = filogo, ) € IdA
with f.1 € op(n}. Then
BT L TTTA e (3T £ AT

where 3 XAy — W (X)) 18 a mapping defined by

HN)) =N, forall j # 1 and I(X,) = X4
and when 3 is the ertension of 3 to a mapping defined on terms, i.e.

3V () = (X))

and when 77 : W (X)) — W5 (X)) defined by

X)) = filvy,..ooxn) forallie ]

Proof. Let T € 1V, (A,,). To show that
FT)T A = PTA e (3T = AT
by using induction on the complexity on the term 7.

If T = X;, then 3(T)7™A = 3(\, )T‘"‘M o NI T
— ﬁ(B(T))A: _](\m—H) ’_fm+l( 1,_,,1‘?;“‘_'7:,‘(_[1)"&,

IfT = STy, Th,...,T,) and let 3(T) =T = S”(TE;,T{, ..., T!) and

assume that ﬁ(T;) n(’_f‘ )A forall j =1,2,...,n <= (T;)T(”’(.A)
= (T,))T"™) for all j = 1,2,...,n. Then we have 7(3(T))*
StA(T), n(T7), TJ(T')A) = NT)* = S ((To)™, U(Tl) (T )

> B(T)T‘“)(A) — Sn A((Té)T("){A """" (T:;)T(n) ,.1)) - TT(n)(_\ ) _
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SPA((To) T (T) ), &

Now we want to prove that for essential variables in hyvperterms with respect to
the n — ary clone of n — ary algebra .4 and essential operation symbols in terms
with respect to the algebra A are equivalent.

Theorem 3.6 Let A be a non-trivial n — ary algebra of type 7, and let
TOIA) = (T (A);, S e ey and also let T &€ W, (X). Then

N, € Bss(T. T"M(A)) = fi € Hess(f(T). A)

when 72 W, () = W, (X)) defined by

() = filry.o.. ... rn) foralliel

Proof. Let T € W, {X) and assume thatb\; € Ess(T,7(A)). Then there
is a natural number m such that T ¢ W, (A&,,) and we have T # X, for all
=12 ....m T # A, forall j =1,2,... . n and there is a mapping © such that

TUHAY B 3(T) =T,

where 3 A}, — W, (A%41) 1s a mapping defined by
B(X;) =X, forall j # 7 and 3(X,} = X,

and when [ is the extension of 3 to a mapping defined on terms, i.e.

G W (X)) — W, (Xuy). To show that f, € Hess(7(1), A).
Since X; € var(T), we have f;, € op,(7{T)).

1

Define a hypersubstitution o of type 7, with ¢ = noJon~ oa. Then by LEmma

3.5 we have
BT) = T ¢ 1dT™(A) = 2(B(T)) = 7(T) & 1dA = 6[5(T)] ~ A(T) & Id.A.
This means, f; ¢ Hess(77(1),.A).

Conversely, assume that f; € Hess(7(T),. A}, then there exists o of type 7, and
an n — ary operation symbol fi,.1 & ops(7(T))such that o(f;) = fi(a1,...,10)
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for every j # 4,5 € I and o(f;) = faui(z, .. 2,) with fi(zi....,2,,) =
foms1(®1, ..., zn) is not an identity in A and A B &[7(T)] = 7(7T)] and so we
get p(T) # x; forall i =1,2,...,n and X; € var(T).

To show that X; € Fss(T, T (A)).

Define a mapping 3 : X, — W.(X41) by
B(X;) =X, for all 7 # ¢ and A(X;) = Xyt
Then by Lemma 3.5 we have
ST = A(T) ¢ TdA = H(B(T)) =~ 2(T) ¢ TdA = B(T) ~ T ¢ IdTC(A).

This means, .X; € Ess(T, T (A)). )
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