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called switching operation. It is easy to see that the graph obtained from G by a
switching will have the same degree sequence as GG. The following theorem has been
shown by Havel and Hakimi.

Theorem 2.2 Letd = (dy,da, . .., d,) be a graphic degree sequence. If G1 and G2
are any two realizations of d, then Go can be obtained from Gy by a finite sequence
of switchings. O

As a consequence of Theorem 2.2, we can define the graph R(d) of realizations
of d, the vertices of which are the graphs with degree sequence d; two vertices being
adjacent in the graph R(d) if one can be obtained from the other by a switching.
Thus we have shown the following corollary.

Corollary 2.3 The graph R(d) is connected. O

We proved in [7] the following results (Theorem 2.4 - Theorem 2.11).

Theorem 2.4 Let R(d) be the set of realizations of d. If G and G’ are adjacent
in the graph R(d), then |x(G) — x(G")| < 1. O

Theorem 2.5 For any graphic degree sequence d, there exist integers a and b
such that d has a realization with chromatic number c if and only if ¢ is an integer
satisfying a < c < b. a

Let d be a graphic degree sequence. The chromatic range of d can be defined as
the interval of integers specified by Theorem 2.5, i.e.,

x(d) =la,b)| ={ceZ:a<c<b}.

Naturally, we can call a the minimum chromatic number for d and we write minx(d).
Similarly, b = maxx(d), the mazimum chromatic number for d. We write d = "
for the sequence (r,7,...,7) of length n, where r is a non-negative integer and n a
positive integer. It is easy to see that miny(0™) = maxx(0") = 1 and miny(1") =
maxx(1™) = 2. Because of this fact, from now on we will consider » > 2 and n > r+1.

Theorem 2.6 Ifr > 2 and n > 2r, then

miny (r") = 2 if nis even,
X ] 3 if nisodd.
O

Theorem 2.7 Ifr > 2, then miny(r" 1) = maxy(r"™!) = r+1, and minx(r"2) =
maxy (r"2) = (r +2)/2 (in this case r must be even,). 0

Theorem 2.8 For any r > 4 and odd integer s such that 3 < s <, let ¢ and t
be integers satisfying r + s = sq+t,0 <t < s. Then



4 Regular graphs and their chromatic numbers

q ift=0,
min(r" ) =4 ¢+1 if1<t<s—2,
qg+2 ift=s—1.

|

Theorem 2.9 For any even integer v > 6 and any even number s such that
4 <s<r, letq andt be integers satisfyingr +s =sq+1t, 0 <t <s. Then

. r4+s\ __ q if t = O,
minx(r )_{ g+1 ift>2
(]
Theorem 2.10 Let r > 2. Then
(1) maxy (r?") = r,
3 ifr=2
2r+1\ __ )
@) maxx(r) =9 e >4,
(3) maxx(r") =r+ 1 forn > 2r + 2. O

It should be noted that the result of Theorem 2.10 (3) satisfies for a realization
G = K,4+1 UH in R(d), where H is an r-regular graph of order n — r — 1. By using
a suitable switching, we have

max{x(G) : G is a connected realization of r"} = r.

Theorem 2.11 For any r ad s such that 3 < s <r — 1, we have
(1) maxy(r"*%) > (r +5)/2 if r + s is even, and
(2) maxy(r"*) > (r +s—1)/2 if r + s is odd. O

3. A formula for D(n, k)

We now have enough tools for giving a proof of Theorem 1. For this purpose, results
stated in the previous section will play a crucial role. To make the application easier,
we state the Theorem 2.5 in a special case as in the following Theorem.

Theorem 3.1 Let n,k,d be integers such that 3 < k < d < n — 2. Then
x(n,k,d) # 0 if and only if minx(d") < k < maxy(d"). O

The following Lemma and its corollary can be found in [3]. It will be useful in
finding a formula for D(n, k).

Lemma 3.2 Let n be an integer and [,t the remainder and quotient of the
division of n by k, k> 3. If t > 2 and x(n, k,d) # 0, then

(a) d<n—tifl=0,

b)yd<n—-t—-1if0<l<k-—1,
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(d<n—t—2ifl=k—1. 0

Corollary 3.3 Let e(n,t) = 1 or 0 according to the fact that nt is odd or even.
Suppose k > 3 and x(n, k,d) # (. Then

(a) d<n—tifl=0,

(byd<n—t—1—¢€(n,t) if0<l<k—1,

(c)d<n—t—2—¢(n,t+1)ifl=k—1. O

In [3], the authors used the graph G with G = kK; to show that x(kt, k, (k —
1)t) # 0 and hence D(kt, k) = (k—1)t. In case of 0 < I < k —1, they used a method
of graph construction to prove that

D(n,k)=n—t—1—¢(n,t)for0 <l <k—1, and

D(n,k)=n—t—2—¢(n,t+1)forr=%k—1,

and in both cases, the construction could work only when ¢ > k. We are ready
to go to the proof.

Proof of Theorem 1. Since x(n,k,d) = 0 if nr is odd, we only consider the
case when nd is even.

(a) Let n =kt, r = (k — 1)t and s = t. By Theorem 2.8 or 2.9, we have

miny (") = miny (((k — 1)) *F~ D) = k.
This shows that x(n,k,r) # () and hence D(kt, k) > (k — 1)t, and by Corollary 3.3
(a), we have D(kt, k) = (k — 1)t.

(b) We consider 3 cases:

Case 1. If both t and n are even, then €e(n,t + 1) = 0. In this case, let n =
kt+k—1,r=(k—1)t+k—3and s =t+2. We want to show that x(n, k,r) # 0.
We first consider a special case when k£ = 3 and ¢t = 2, and hence n = 8,7 = 4 and
s = 4. By Theorem 2.6 and Theorem 2.10, we have miny(4%) = 2 and maxy(4%) = 4,
respectively. Hence by Theorem 3.1, we have x(8,3,4) # (). We now consider k > 3
and ¢ > 2, and then r > 6 and s =t 4+ 2 > 4. By assumption on ¢ and n, we can
apply Theorem 2.9 we have

miny/(r

r+S8 k: k_l k ]_
== = sl <k

where [x] is the smallest integer greater than or equal to x. Similarly, by applying
Theorem 2.11, we have
r+s kt+k—1

’T‘+S > — > k'
maxy(r' %) > 5 5 >

Again by Theorem 3.1, we have x(n, k,r) # 0.

Case 2. If t is even and n is odd, then e(n,t+1) = 1. In this case, let n = kt +k—
1, r=(k—1)t+k—4 and s =t+3. Since s is odd and r is even, this forces k to be
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even. Thus k > 4. Since r+s = kt+k—1 = (t+3)(k—1)+t—2(k+1), miny(r"*%)
by Theorem 2.8. Moreover by Theorem 2.11, we have maxy(r"*%) > %
Hence by Theorem 3.1, we have x(n, k,r) # (.

Case 3. If t is odd, then €(n,t + 1) = 0. In this case, put n = kt + k — 1, r =
(k—1)t+k—2and s =t+2. Since r+s = kt+k—1= (t+2)(k—1)+t—(k—1), then
by Theorem 2.8, miny(r" %) < k. From Theorem 2.11, we see that maxy/(r"+%) >
T+§7_1 > k. By applying Theorem 3.1 we have x(n, k,r) # 0.

<k
> k.

(c) We consider separately every case, depending on the parity of ¢ and n.

Case 1. If t is even, then €(n,t) = 0. In this case we can put n = kt +1, r =
(k—1t+1—1and s =t+ 1. We can write r + s in the form r +s = kt +1 =
(t+1)(k—1)+t— (k—1—1). This implies k —{ —1 > 1. By Theorem 2.8, we have
miny (r" %) < k. From Theorems 2.11 and 3.1, we can conclude that x(n, k,r) # (.

Case 2. If t is odd and n is even, then €(n, t) = 0. Put n = kt+1, r = (k—1)t+1—1
and s = t+ 1. In this case we can show that x(n, k,r) # 0 by writing r+s = kt+1 =
(t+1)(k—1)4+t— (k—1—1) and applying Theorems 2.9, 2.11 and 3.1.

Case 3. We now consider the case when both ¢ and n are odd. Thus €(n,t) = 1.
Now we put n = kt+1, r = (k—1)t+1—2 and s = t+2. We express r+ s in the form
r+s=kt+l=(t+2)(k—1)+(t+2)— (2k—1) and observe that 2k —1 > 2. With an
easy application of Theorems 2.8, 2,11 and 3.1, we can conclude that x(n, k,r) # 0.

O

4. The values of d for which y(n,k,d) # 0

In the preceding section, we have determined a formula for D(n, k), where D(n, k) =
max{d : x(n,k,d) # (0}. In this section we give a proof for Theorem 2 by using the
following lemmas under the conditions given in Theorem 1. It should be noted once
again that we consider only n, k, d in which nd is even and k < d < n/2. The problem
becomes easy when k € {1,2}.

Lemma 4.1 If 3 < k < d < n/2, then x(n,k,d) # 0.

Proof. First we consider n = 2k. Thus d = k = n/2 and therefore maxy (k?*) =
k by Theorem 2.10. This shows that x(2k, k, k) # 0. We now consider n > 2k and
k < d <n/2. By Theorem 2.6, we have miny(d") = 2 or 3 according to n is even or
odd. By Theorem 2.10, we have maxx(d") = d > k. Thus by Theorem 3.1, we can
conclude that x(n, k,d) # (), proving our lemma. 0.

Lemma 4.2 Ifn/2 < d < D(n, k), then x(n,k,d) # 0.
Proof. By Theorem 2.11, we have

(n—1)/2 if nisodd,
) >
maxy(d") > { n/2 if n is even.



N. Punnim 7

Thus maxx(d") > k. For the sake of convenience in calculating miny(d"), we
restate the two Theorems 2.8 and 2.9 in the following form.

If n/2 <d < D(n, k), then

q ifp=0
miny(d") =< ¢+1 if1<p<(n—d-—2),
q+2 ifp=n—-d-—1,

where n=(n—d)g+p, 0<p<n-—-d—1.

Recall that miny(D™) < k, where D = D(n, k), as we have shown in the preced-
ing section. In order to apply Theorem 3.1, we must show that miny(d"™) < k. Since
t<n—D<n—d, n=(n—d)g+p, 0 <p<n—-d—landn=kt+l, 0 <1< k-1, we
have ¢ < k—1.1f ¢ < k—2, then miny(d") < k. If¢g=k—1and 1 <p < (n—d—2)
then miny(d") < k. Thus there is the only case to be considered when ¢ = k—1 and
p=n—d—1. We want to show that this is impossible by considering the following
3 cases.

Case 1. n = kt.

In this case D(n, k) = (k—1)t. Since n/2 < d < (k— 1)t by assumption, we have
n—d=t+1ifor somei>1 Thus kt = (t+i)(k—1)+t+i—1=kt+ik—1, a
contradiction.

Case 2. n=kt+k — 1.

This would imply D(n,k) = (k—1)t+k—3 —€(n,t+1). If ¢ is even and n odd,
then D(n, k) = (k—1)t+k —4. Since n/2 < d < D(n, k), we have n —d =t +3+1
forsome ¢ > 1. Thus kt+k—1=(t+3+i)(k—1)+t+3+i—1=kt+3k+ik—1.
This is also a contradiction. If ¢ is odd, then D(n,k) = (k — 1)t + k — 3. Thus
there exists an ¢ > 1 such that n —d = ¢t + 2 4+ 4. It would imply kt + k — 1 =
(t+2+4d)(k—1)+(t+2+i—1) =kt + 2k + ik — 1, again a contradiction.

Case 3. n=kt+1, 1 <I<k-—2.

In this case, D(n,k) = (k—1)t+1—1—e(n,t). We first consider when ¢t is even.
Then D(n, k) = (k—1)t+1—1. Hence, there exists an ¢ > 1 such that n—d = t+1+1
and kt+1 = (t+1+4)(k—1)+t+1+i—1 = kt+k+ik—1, so it is impossible. Finally,
if both ¢ and n are odd, then D(n,k) = (k — 1)t + 1 — 2. Hence there exists an ¢ > 1
such that n—d = t+2+i and kt+1 = (t+2+4)(k—1)+t+2+i—1 = kt+2k+ik—1.
This contradiction together with the above cases show that the condition ¢ =k — 1
and p =n —d — 1 is impossible.

Thus x(n, k,d) # (. This completes the proof of this lemma. O

From the two Lemmas 4.1 and 4.2, we can see easily that the Theorem 2 is
satisfied.



Regular graphs and their chromatic numbers

Acknowledgement

I would like to thank Professor R. B. Eggleton for drawing my attention to the

subject.
References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, 15 Edition,
The MacMillan Press (1976).

[2] L. Caccetta and N. J. Pullman, Regular graphs with prescribed chromatic num-
ber, J. Graph Theory 14 (1990), 65-71.

[3] L. Caccetta and N. J. Pullman, coloring regular graphs, (preprint).

[4] P. Erdds and T. Gallai, Solution of a problem of Dirac, Theory of Graphs and its
applications: Proceedings of the symposium, Smolenice, June 1963. Publishing
House of the Czechoslavian Academy of Science, Prague (1964), 167-168.

[5] S. Hakimi, On the realizability of a set of integers as the degree of the vertices
of a graph, STAM J. Appl. Math. 10 (1962), 496-506.

[6] M. Havel, A remark on the existence of finite graphs (in Hungarian), Casopis
Pest. Mat. 80(1955), 477-480.

[7] N. Punnim, Degree sequences and chromatic number of graphs, J. of Graphs
and Combinatorics 18(3), (2002), 597-603.

[8] I. Tomescu, Problems in Combinatorics and Graph Theory (translated from

Romanian by R.A. Melter), A Wiley Interscience Publication, New York (1986).



The matching number of regular graphs”

N. PunNIMm
DEPARTMENT OF MATHEMATICS, SRINAKHARINWIROT UNIVERSITY,
SUKHUMVIT 23, BANGKOK 10110, THAILAND.
email: narongp@swu.ac.th

Abstract

Let a1 (@) be the matching number of a nonempty graph G. We prove that
if G runs over the set of graphs with a fixed degree sequence d, then the values
a1 (G) completely cover a line segment [a, b] of positive integers. For an arbitrary
graphic degree sequence d, we define min(as,d) and max(a;,d) as follows:
min(a,d) := min{a;(G) : G € R(d)} and max(a;,d) := max{a1(G) : G €
R(d)}, where R(d) is the set of realizations of d.

The two invariants ¢ := min(asq,d) and b := max(a1,d) naturally arise. For

a graphic degree sequence d = ™ := (r,r,...,r) where r is the vertex degree
and n is the number of vertices, the exact values of a and b are found in all
situations.

Keywords: degree sequence, graph parameter, matching number, interpolation
graph parameter.
AMS Subject Classification (2000): 05C07, 05C70

1. Introduction

All graphs considered in this paper are undirected, finite, loopless and have no
multiple edges. For the most part, our notation and terminology follows that of
Bondy and Murty [3].

As usual, we use |S| to denote the cardinality of a set S. Let G = (V, E) be a
graph. The order of GG is the cardinality of V. To simplify writing, we write e = uv
for the edge e that connects the vertices u and v. The degree of a vertex v of a
graph G is defined as d(v) = [{e € E : e = uv for some v € V}|. The maximum
degree of a graph G is usually denoted by A(G). A graph G is said to be r-regular
if all of its vertices have the same degree r. For two disjoint graphs G and H (i.e.
V(G)NV(H) = 0), we denote G U H their union, and define pG the union of p
copies of G. We denote by C, and K, for the cycle and the complete graph of

*Work supported by the Thailand Research Fund under the grant number BRG/09/2545.



2 THE MATCHING NUMBER OF REGULAR GRAPHS

order n respectively. The complete bipartite graph with its partite set of cardinality
p and ¢ is denoted by K,,. For r > 1, the notation B(r; X,Y’) represents an r-
regular bipartite graph with partite sets X and Y. It is easy to see that B(r; X,Y)
exists if and only if |[X| = |Y| and 1 < r < |X|. Let G be a graph of order n and
V(G) = {v1,v2,...,v,} be the vertex set of G. The sequence (d(vy), d(v2), . ..,d(vy,))
is called a degree sequence of G. Moreover, a graph H of order n is said to have the
same degree sequence as G if there is a bijection ¢ from V(G) to V(H) such that
d(v;) = d(¢p(v;)) for all @ = 1,2,...,n. A sequence d = (di,da,...,d,) of non-
negative integers is a graphic degree sequence if it is a degree sequence of some graph
G and in this case, G is called a realization of d.

Havel [6] and Hakimi [5] obtained independently a mechanism for determining
whether or not a given sequence of non-negative integers is graphic. We state their
results in the following theorem.

Theorem 1.1 Let d = (dy,ds,...,d,) be a non-increasing sequence of non-
negative integers and denote the sequence

(do—1,d5—1,...,dgs1 — 1,dg,12,...,dn) =d.

Then d is graphic if and only if A’ is graphic.

Let G be a graph, ab and cd are independent edges in G, such that ac and bd
are not edges in G. Define G7(@b¢4) to be the graph obtained from G by deleting
the edges ab and cd and inserting the edges ac and bd. The operation o(a, b; ¢, d) is
called switching operation. It is easy to see that the graph obtained from G by a
switching will have the same degree sequence as G. The following theorem has been
shown by Havel and Hakimi.

Theorem 1.2 Letd = (dy,ds, . ..,d,) be a graphic degree sequence. If G1 and G
are any two realizations of d, then Ga can be obtained from G1 by a finite sequence
of switchings.

As a consequence of Theorem 1.2, we can define the graph R(d) of realizations
of d, the vertices of which are the graphs with degree sequence d; two vertices being
adjacent in the graph R(d) if one can be obtained from the other by a switching.
Thus we have shown the following corollary.

Corollary 1.3 The graph R(d) is connected.

2. Interpolation theorem

Let G be the class of all simple graphs, a function f : G — Z is called a graph
parameter if f(G) = f(H), whenever G = H. If f is a graph parameter and J C G,
f is called an interpolation graph parameter with respect to J if there exist integers
a and b such that {f(G) : G € J} ={k € Z : a < k < b}. We have shown in
[7], [8] and [9] that the chromatic number y, the clique number w, and the order
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of maximum induced forests I are interpolation graph parameters with respect to
J =R(d).

If f is an interpolation graph parameter with respect to 7, it is natural to write
min(f,J) = min{f(G) : G € J} and likewise max(f, J) = max{f(G): G € J}.

In the case where J = R(d), we simply write min(f,d) and max(f,d) for
min(f, R(d)) and max(f, R(d)) respectively.

Definition 2.1 A subset M of the edge set E of a graph G = (V,E) is an
independent edge set or matching in G if no two distinct edges in M have common
vertices. A matching M is maximum in G if there is no matching M’ of G with
|M'| > |M|. The cardinality of a maximum matching of G, written a;(G), is called
the matching number of G.

It is clear that o is a graph parameter. In this section we show that the matching
number, «q, is an interpolation graph parameter with respect to R(d), the set of
all graphs with a degree sequence d. We then find min(«ay,d) and max(a;,d) for all
graphic degree sequences d = r" := (r,7,...,r) of r-regular graphs of order n.

Theorem 2.2 If G is a graph with a1(G) = a1 and o(a,b;c,d) is a switching
on G, then oy (Gol@bied)) > o — 1.

Proof. Let M be an independent set of edges in E with |M| = a1(G). Let
o(a,b;c,d) = o be a switching on G. If {ab,cd} N M = 0, then |M| = |M?|. If
{ab,cd} C M, then |M| = |M?|. Finally, if M contains exactly one edge from the
set {ab, cd}, then |M?| = |M| — 1. Therefore oy (G?) > aq — 1.

Corollary 2.3 If 0 is a switching on G, then |a1(G) — a1 (G?)| < 1.

Proof. Since a switching is an involution, we may assume that o (G) > a1 (G?).
By Theorem 2.2, a1 (G?) is either a1 (G)—1 or a1 (G). In both cases we have |a1(G) —
Oq(Ga)| <1.

Theorem 2.4 For any graphic degree sequence d, there exist integers a and b
such that there exists a graph G with degree sequence d and a1(G) = ¢ if and only
if ¢ is an integer satisfying a < ¢ < b.

Proof. The proof follows directly from Corollaries 1.3 and 2.3.

3. Matching number of regular graphs

Let d be a graphic degree sequence. We have already defined the graph R(d) of
realizations of d. The range of matching numbers of R(d) can be defined as the
interval of integers specified by Theorem 2.4, i.e.,

ai(d) ={a(G) : GeR(d)}=[a,b]={ceZ : a<c<b}.

Naturally, we can call a the minimum matching number of R(d), thus a := min(ay, d).
Similarly, b := max(a1,d), the mazimum matching number of R(d). We write
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d = r" for the sequence (r,r,...,r) of length n, where r is a non-negative integer
and n is a positive integer. By the definition of graphic degree sequence, d = r"
is graphic if and only if rn = O(mod 2) and n > r + 1. It is easy to see that
min(ay,0") = max(ag,0") = 0 and min(aq, 12*) = max(ag,1?") = n. Because of
this fact, from now on we will consider r > 2 and n > r + 1.

We first investigate the value of max(aq,r™) by the following theorem.

Theorem 3.1 Forr >2,n > r+1 and nr = 0(mod 2), there exists an r-reqular
hamiltonian graph of order n. In particular, max(ay,r™) = |5].

Proof. Since there is a well known result by Dirac [4] that an r-regular graph of
order n with 7 > & is hamiltonian, we need to consider only when r < 5. It is easy to
construct a hamiltonian graph with 10 or fewer vertices. It is also easy to construct
such a graph with r =2 or 3. Let X = {zo,21,...,2¢—1} and Y = {yo,y1,---,yt—1}
where t > 5. For an integer r with 1 < r < ¢, take the edge set

E={zwiyj: i=0,1,2.. . ,t—1,j=0,1,2...,r—1},

where all subscripts are taken mod ¢. It is clear that the graph B(r; X,Y) = (X U
Y, E) is an r-regular bipartite graph and it is hamiltonian if » > 2. Suppose n = 2¢t+1
and r is an even integer with 4 < r < ¢, the graph G = (X UY U {u}, E’), where
E'=[EB(r—-2;X,Y)\{zw:: i=0,1,2,...,5}]

U{xixi—l—hyiyi—&-l :1=0,1,2,... ,t—l}U{umi,uyi :1=0,1,2,..., %},
is an r-regular hamiltonian graph. O

The rest of this section we will use the generalized result of Tutte and the result
of Wallis [13] to obtain all values of min(ay,7"). A 1-factor of a graph G is a
1-regular spanning subgraph of G. A 1-factorization of G is a set of pairwise edge-
disjoint 1-factors which together contain each edge of G. It is well known that Ko,
and K, , have 1-factorizations for all positive integers n. The question of which
graphs contain 1-factors is one that has attracted considerable attention. For a
comprehensive review we refer to the survey of Akiyama and Kano [1] and to Wallis
[14].

A necessary and sufficient condition for a graph to have a perfect matching was
obtained by Tutte [12]. A component of a graph is odd or even according as it has an
odd or even number of vertices. We denote by O(G) the number of odd components
of G. The following theorem is due to Tutte [12].

Theorem 3.2 G has a perfect matching if and only if
O(G\ S) < |S| for all S C V.

Berge [2] generalized Tutte’s result and it makes easier for application.

Theorem 3.3 The number of edges in a maximum matching of a graph G is

%(|V(G)| —d), where d = maxgcy(){O(G \ S) — |S]}.
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Let F(r,d) be the minimum order of an r-regular graph G with a; (G) = %(|V(G) |—
d). It is clear that |V (G)| = d(mod 2). Wallis [13] found F(r,2) for all » > 3. In
other words, he proved the following theorem.

Theorem 3.4 Let G be an r-regular graph with no 1-factor and no odd compo-
nent. Then

3r+7 ifrisodd, r > 3,
[V(G)| >< 3r+4 if riseven, r > 6,
22 if r =4.

Furthermore, no such graphs exists forr =1 or 2.

Suppose G is an r-regular graph with a1 (G) = %(|V(G)| —d). By Theorem 3.3
there exists a k-subset K of V(G) such that O(G\ K) = k +d. If k = 0, then r is
even, G contains d odd components, and each component of G has order at least
r+1. Suppose k > 1 and G\ K has an odd component with p vertices, where p less
than or equal to r. The number of edges within the component is at most %p(p —1).
This means that the sum of degree of these p vertices in G\ K is at most p(p — 1).
But G is an r-regular graph, so the sum of these p vertices in G is pr. The number
of edges joining to the component K must be at least pr — p(p — 1). For a fixed r
and for integer p satisfying 1 < p < r the function f(p) =pr—p(p—1), 1 <p<r
has minimum value f(1) = f(r) = r. So any odd component with r or less vertices
is joined to K by r or more edges.

Suppose there are O odd components of G\ K with more than r vertices and
O_ odd components with less than or equal to r vertices. Thus

O+ +0_=k+d, (1)
Oy +710_ <kr. (2)

From these 2 relations, we have

Oy > [Trjll] =d+ [Tfl] and k > (%} Thus we have the following theorem.

Theorem 3.5 Let r be an even integer, r > 2. Then F(r,d) = d(r + 1).

Proof. Since a1(dK,+1) = L(|V(G")| — d), F(r,d) < d(r +1). On the other
hand let G be an r-regular graph of order n such that a;(G) = 4(n — d). There
exists a subset K of V(G) such that O(G\ K) = d+ k. We have already shown that
O4+(G\ K) >d. Thus n > d(r + 1). It follows that F(r,d) = d(r + 1).

O

Corollary 3.6 Let r be an even integer, r > 2. If n = (r+1)d+e,0 <e <,
then min(ay, ) = & + | 1<,

Proof. Let G’ = (d—1)K,11UK, where K is an r-regular graph of order r+1+e.
Then a;(G') = €+ | 14¢]. Let G be an r-regular graph of order n = (r+1)d+e,0 >
e > r. By Theorem 3.5 we have ai(G) > [3(n —d —1)] + 1 = % 4 [1F€|. Thus

2
min(aq, r") = % + LHQ'EJ.

O
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Suppose r is odd and r > 3. Let G be an r-regular graph of order n such that
a1(G) = 3(n —d). Then d must be even. Put d = 2¢. By Theorem 3.3 there exists
a nonempty subset K of V(@) of cardinality k such that O(G'\ K) = k+ 2q. By (1)
and (2), we have

n>k+(r+2)04 > [24]+ (r+2)2¢+ [24])

= [24](r +3) +2q(r + 2). (3)

Wallis [13] defined G(x,y) to be a graph with x + y vertices, x being of degree
x+y—3and y of degree z +y — 2. G(x,y) exists if and only if y is even and y > 2.
It is noted that for any graph G(z,y), it has y vertices of degree the same degree, r

say, and x vertices of degree r — 1. Let x;,¥;,7 = 1,2,...,m be integers such that
G(zi,y;) exists for all i = 1,2,...,m. We construct the graph

G(z1, 1) * G(x2,y2) * ... * G(Tpm, Ym)

from disjoint copies of the graphs by inserting a new vertex, u say, and joining u to
all vertices of G(z;,y;) which have the lesser degree, for i = 1,2,...,m.

Using this notation, we see that for an odd integer r > 3 and ¢ = 1,2,..., %,
for any odd positive integers a;,7 = 1,2,...,1 4 2q whose sum is r,

Gy =G(a1,7 +2—a1) *G(ag, 7+ 2 —az) * ... * G(ai424,7 + 2 — a1424)

is an r-regular graph on (r +2)(1+ 2q) + 1 vertices with a1 (Gq) = 3(|V(G,)| — 2q).
We have the following theorem.

Theorem 3.6 For an odd integer r > 3. Then
1. F(r,2q) = (r+2)(14+2q) + 1, for q = 1,2,...,’";21,
2. if ¢ = %s—l—t,O <t< ’;1, then F(r,2q) = sF(r,r — 1) + F(r,2t), where
F(r,0) =0.

Proof. For an odd integer r > 3 and let GG be an r-regular graph of order n with
a1(G) = 5(n - 2q).

(1) By (3) and for ¢ = 1,2,..., 5%, we have
n > [24](r+3) 4+ 2q(r +2) = (r+2)(1 4+ 2¢) + 1.
The graph G, constructed above has the property that a1 (G,) = 3(|V(G,)|—2¢) and
|Gyl = (r+2)(1+2¢)+1. Thus F(r,2q) = (r+2)(1+2¢)+1, forall g =1,2,..., 5

(2) Ifg="As+t0<t <L, wehave n > [i—ql}(r+3)+2q(7“+2). Thus

> 3[(T+2)7’+1] ift:O,
T s+ 1] (220 +1 0 <t < T

Thus if t = 0, the graph sG,—1 has order s[(r+2)r+1] and a1 (sGr-1) = 1(s[(r+
2 2
2)r+1]—2q). If t > 0, the graph sG -1 UG, has order s[(r+2)r+1]+(r+2)(1+2t)+1
2
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and ai1(sGr-1 UGy) = $(s[(r + 2)r + 1] + (r + 2)(1 + 2t) + 1 — 2q). Therefore
2
F(r,2q) = sF(r,r — 1) + F(r,2t), where F(r,0) = 0.
O

Corollary 3.7 Let r be an odd integer, v > 3. If F(r,2q) <n < F(r,2(q¢ + 1),
then min(ay,7™) = 5(n — 2q).

Proof. Since r is odd, n is an even integer satisfying F(r,2q) < n < F(r,2(¢+1),
and by the definition of F(r,2(¢+1)), min(ay,r") > 1(n—2(g+1)+1 = £(n—2q). It
is easy to construct an r-regular graph G of order n having min(ay, ) = 1(n— 2q).
Thus min(a;,7") = (n — 2q).

|

4. Connected realizations

A study of interpolation theorems on graph parameters may be considered into two
parts. First is to consider whether or not a given graph parameter f is interpolated
over a subclass J of G. If it is, we will continue for the second part, namely, finding
the values of min(f,J) and max(f,J). For the graph parameter o, we have an-
swered two parts of the interpolation theorems completely for the class R(r™). We
have been suggested by Prof. Mikio Kano as a personal communication to consider
the interpolation theorems on graph parameters to the class of connected realizations
of a given graphic degree sequence d. With the constraint on connected realizations
of a given degree sequence, we will see later that the first part of the interpolation
theorem is followed immediately but the second part of the interpolation theorem
seems to be more difficult. Let P be a property which a graph may possess. De-
note by R(d, P) the subgraph of the graph R(d) induced by those vertices which
correspond to graphs with property P. Properties for which R(d, P) is connected
are called complete. If a property P is complete we may find all the graphs of a
given degree sequence with the property by switching constrained to graphs with
the property.

Colbourn (cited from [11]) showed that the property of being a tree is complete
and Syslo [10] extended this to the property of being unicyclic. Taylor (cited from
[11]) generalized these results by showing that the property of being connected is
complete. The property of being 2-connected was shown to be complete also by
Taylor [11]. Thus by Corollary 2.3, we have the following theorems.

Theorem 3.7 For any graphic degree sequence d, there exist integers a and b
such that there is a connected graph G with degree sequence d and oy (G) = ¢ if and
only if ¢ is an integer satisfying a < ¢ < b.

Theorem 3.8 For any graphic degree sequence d, there exist integers a and b
such that there is a 2-connected graph G with degree sequence d and a1(G) = ¢ if
and only if ¢ is an integer satisfying a < ¢ < b.
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Abstract

We consider the problem of determining the structure of induced subgraphs
of the graph of realizations of a degree sequence d with prescribe chromatic
number. We prove in this paper some significant results when d is a regular
degree sequence.

1. Introduction

All graphs considered in this paper are finite and simple. We use notation and
terminology as in the textbook of Parthasarathy [5]. Let G = (V,E) denote a
graph with vertex set V = V(@) and edge set E = FE(G). We use |S| to denote the
cardinality of a set S. We define n = |V| to be the order of G and m = |E| the
size of G. We simply write e = uv for the edge e that joins the vertices v and v.
The maximum degree of a graph G is denoted by A(G). A graph G is said to be
r-regular if all of its vertices have the same degree r. For two disjoint graphs G and
H (ie. V(G)NV(H) =), we denote G U H their union, and define pG the union
of p copies of G. For a graph G = (V,E) and v € V, we denote by Ng(v) to be
{ueV:vueFE}.

Let G be a graph of order n and V(G) = {vy,v9,...,v,} be the vertex set of G.
The sequence (d(v1),d(vs),...,d(v,)) is called a degree sequence of G, where d(v;)
is the degree of vertex v;. A sequence d = (dy,ds,...,d,) of non-negative integers
is a graphic degree sequence if it is a degree sequence of some graph G. In this case,

*Work supported by The Thailand Research Fund, under the grant number BRG/09/2545.
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G is called a realization of d. We denote R(d) for the set of all graphs with degree
sequence d.

A switching o(a,b;c,d) on a graph G is a replacement of any two independent
edges ab and cd of G by the edges ac and bd, where ac and bd are not edges in G.
(See Fig. 1 below.) The graph obtained from G and a switching is denoted by G°.

a c « ¢—@°

b d b o— @ @
Fig.1

It was shown by Havel [4] and Hakimi [3] that if G; and Gy are any two real-
izations of d, then GG can be obtained from G, by a finite sequence of switchings.
Thus The graph GR(d) of realizations of d can be defined as the graph whose vertex
set is R(d); two vertices being adjacent in GR(d) if one can be obtained from the
other by a switching. Thus the graph GR(d) is connected.

Let P be a property which a graph may possess. Denote by R(d, P) the subgraph
of the graph GR(d) induced by those vertices which correspond to graphs with
property P. Properties for which R(d, P) is connected are called complete. If a
property P is complete we may find all the graphs of a given degree sequence with
the property by switching constrained to graphs with the property.

Colbourn [2] showed that the property of being a tree is complete and Syslo [9]
extended this to the property of being unicyclic. Taylor (cited from [10]) generalized
these results by showing that the property of being connected is complete. The
property of being 2-connected was shown to be complete also by Taylor [10]. We
denote by CR(d) for the set of all connected realizations of d.

Let G be the set of all simple graphs, a function f : G — Z is called a graph
parameter if f(G) = f(H), whenever G = H. If f is a graph parameter and J C G,
f is called an interpolation graph parameter with respect to J if there exist integers
a and b such that {f(G) : Ge J}={keZ:a <k <b}.

Lemma 1.1 Let f be a graph parameter. For a graph G and o is a switching
on G. If f has a property that | f(G) — f(G7)| < 1, then f is an interpolation graph
parameter with respect to R(d).

O

Lemma 1.2 Let f be a graph parameter. For a graph G and o is a switching
on G. If f has a property that |f(G) — f(G?)| < 1, then f is an interpolation graph
parameter with respect to CR(d).
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Let G be a graph. The problem of determining the minimum number of colors
required to color the vertices of G' so that every pair of adjacent vertices receive
different colors is one of the most difficult problem in graph theory. For a graph
G, this minimum is known as the chromatic number of G, and denoted by x(G).
However, the set of those graphs G in which x(G) < 2 consists of all bipartite
graphs. For a nonbipartite graph G, it is difficult to tell whether x(G) = 3 or
not. Another graph parameter which closely related to the chromatic number is the
cligue number and is defined by the maximum order of the complete subgraphs of
a graph G and is denoted by w(G). It is clear that for a graph G, w(G) < x(G).
We respectively proved in [6], [7] that if G is a graph and o is a switching on G,
then |x(G) — x(G7)| < 1 and |w(G) —w(G7)| < 1. Hence, x and w are interpolation
graph parameters with respect to R(d) and hence with respect to CR(d).

2. Preliminaries

Brooks [1] observed that every graph G may be colored by A(G) + 1 colors and he
characterized the graphs for which A(G) colors are not enough.

Theorem 2.1 Any graph G satisfies x(G) < 1+ A(G), with equality holds if
and only if either of the following holds:
(1) some component of G is the complete graph Ka11, where A = A(G);
(2) some component of G is an odd cycle, and A(G) = 2.
O

Let d = (dy,ds, ... ,d,) be a graphic degree sequence. The chromatic range of d
can be defined as the interval of integers as

x(d) :=[a,b] ={c€Z:a<c<b}

Naturally, we can call a the minimum chromatic number of d, and we write a :=
min(y,d). Similarly, b := max(y,d), the mazimum chromatic number of d. Note
that Brooks’ theorem implies b < 1+ A, where A = max{d;,ds, ...,d,}. Thus for
a regular degree sequence r", we have b < 1+ r. We found in [6] the corresponding
value of b for all values of r and n except the cases when r and n are even and
r+4 <n < 2r — 2. In general the Brooks’ bound can be very far from the actual
value. Reed [8] observed and made a series of conjectures for upper bounds of the
chromatic number of a graph G in terms of A(G) and w(G).

For each ¢ € x(d), let R(d; ¢) denote the subgraph of GR(d) induced by the ver-
tices corresponding to graphs with chromatic number c. Similarly for any ¢ € x(d),
let R(d; p < ¢) denote the subgraph of GR(d) induced by the vertices corresponding
to graphs with chromatic number p < ¢. We consider the problem of determining
the structure of induced subgraph R(d; ¢) and R(d; p < ¢). In general, what is the
structure of R(d; ¢) and of R(d; p < ¢)? In particular, are these graphs connected?
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If R(d; ¢) is connected, it must be possible to generate all realizations of d with
chromatic number ¢ by beginning with one such realization and applying a suitable
sequence if switchings producing only graphs with chromatic number c. Similarly if
R(d; p < ¢) is connected.

Note that x(0") = {1}, x(1") = {2} (n is even), x(2*) = {2} x(2") = {2,3} if
n is even and n > 6, and x(2") = {3} if n is odd and n > 3. For x(3"), we have
x(3%) = {4}, x(3°%) ={2,3} and x(3") = {2,3,4} if n is even and n > 8.

3. Main results

Let G be a graph with x(G) = k and o a switching on G. o is called a k-safe
switching if x(G°) = k. and a sequence o1,09,...,0; of switchings is called a
sequence of k-safe switchings if for each i, =1,2,...,t, x(G70727%) = L.

Theorem 3.1 Ifr > 3 and max(x,r") = r+1, then the graphs R(r";r+1) and
R(r™;p <r) are connected.

Proof. Note that if r > 3, then max(y,r") = r+ 1 if and only if n =7+ 1 or
n > 2r + 2. Moreover, if G is a realization of " and x(G) = r + 1 if and only if G
has K, as a component. The theorem is true for n = r + 1. For n > 2r + 2, let
(G1 and G5 be any two realizations of r” such that x(G1) = x(G2) = r + 1. Thus
G, = K, 1UH; and Gy = K,,1UH,. Since H; and Hy are r-regular graphs of order
n —r — 1, Hy can be obtained from H; by a finite number of switchings. Thus G4
can be as well as obtained by those switchings. Furthermore, it is easy to observe
that those switchings are (r + 1)-safe switchings.
Let G be a realization of r™ such that x(G) < r. If G is disconnected, then
G does not contain K, as its component. Thus there exists a suitable sequence
of switchings which transform G to a connected realization of r™ such that each
resulting graph obtained in this transformation will have chromatic number less
than or equal to r. By using the result by Taylor [10], the proof is complete.
O

Let C,, be the cycle of order m. Thus C,, exists for all integer m > 3, we call
Cy, odd cycle or even cycle according to m is odd or even. A realization of 2" can
be written as U'_,C,, and Y¢_, n; = n. Tt is well known that if G = U_,C,,,, then
X(G) = 2 if and only if for all i, n; is even. It is clear that any two even cycles C,
and Cf, there is a 2-safe switching which transforms these two cycles to C,.s. Thus
GR(2"; 2) is connected. The corresponding result can be obtained for the graph
R(2™; 3) with only one exceptional.

Theorem 3.2 If 3 € x(2"), then the graph R(2"; 3) is connected if and only if
n # 10.

Proof. Observe that if n is odd and n > 3, then x(2") = {3}. Thus the graph

R(2"; 3) is connected. If n = 10, we can not transform 2C5 to 2C5 U C; without
passing C1o. Thus the graph R(2'%; 3) is not connected. For n > 12, let U!_,C,,, be
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a realization of 2" and suppose that n; is odd. Then there is a sequence of 3-safe
switchings which transforms Ui_,C,,. to C,, UC,_,,. Since n > 12, C5 U C,,_5 can
be transformed to C5 U C3 U C,,_g and to C3 U C,,_3. If m is odd and m > 7, then
Cy, UC,_,, can be transformed to C3 U C,,,_3 U C,,_,, then to C3 U C,,_3. The proof
is complete.

O

Lemma 3.3 Let G and H be bipartite graphs with bipartitioning sets X and Y .
If dg(v) = dy(v) for allv € X UY, then there is a sequence of 2-safe switchings
that transforms G into H.

Proof. We prove by induction on |X|. It is clear that if | X| = 1, then G = H.
Thus the theorem is true for | X| = 1. Suppose | X| > 1. Let G be a bipartite graph
with bipartitioning sets X and Y. Let v be a vertex of maximum degree in X and
suppose that dg(z) = k. Let uq, ug, ..., u, be k vertices of highest degree in Y and
up > ug > ... > ug. If ug € Ng(v), then there exists u € Ng(v) \ {u,ug, ..., ux}
and v; € Ng(up) such that wv; € E(G). Tt is easy to choose a 2-safe switching
o so that the resulting graph G? will have the bipartitioning sets X and Y and
uy € Ngo(v). Thus we may assume that there exists ¢ such that 1 < i < k, with
VU, VU, . .., 0Ui—1 € Ng(v) but vu; & Ng(v). Thus there exists u € Ng(v) \
{ur,ug, ..., u} and v; € Ng(u;) such that uwv; ¢ E(G). It is easy to choose a 2-safe
switching o so that the resulting graph G will have the bipartitioning sets X and
Y and uqy,us,...,u; € Ngo(v). By continuing this process, we get a sequence of
2-safe switchings which transforms G to G' with N = {uy, ua, ..., u;}. The same
result can be obtained a graph H’ from the graph H. Thus the graphs G’ \ {v} and
H'\ {v} are bipartite graphs with bipartitioning sets X \ {v} and Y. By induction,
there exists a sequence of 2-safe switchings which transforms G’ \ {v} to H'\ {v}.
The proof is complete.

O

The following theorem is a consequence of the above lemma.

Theorem 3.4 If 2 € x(r"), then the graph R(r"™ ;2) is connected.
O

Theorem 3.5 If ¢ € x(3"), then the graph R(3"; ¢) is connected.

Proof. We have already proved when ¢ = 2,4. Note that G € R(3") with
X(G) = 3 if and only if G' does not contain K as its component and G has an odd
cycle as its subgraph. It is easy to check that the theorem is true if n < 8. Let
G be a cubic graph of order n > 10 with x(G) = 3. We first suppose that G has
a triangle 7" with V(T) = {z,y,z} and E(T) = {xy,yz,zz}. If x and y have a
common neighbour v € G'\ T, then there exists an edge ab in G \ T independent to
the edge zv. Thus there is a 3-safe switching o such that G contains a triangle T’
such that any two vertices of 7" have no common neighbour in G \ 7.

Now suppose that GG contains an odd cycle C' of smallest order k > 5. Let x,y
be two adjacency vertices in the cycle. Thus z and y have no common neighbour
in G. Let z be the neighbour of y in G\ C. Then there exists a 3-safe switching
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o such that G? contains a triangle 7' = {x,y, z}. Thus for a graph G € R(3") and
X(G) = 3, there is a sequence of 3-safe switchings which transforms G to G’ such
that G’ contains a triangle 7" = {z,y,2} and G’ \ 1" is a graph having exactly 3
vertices of degree 2. Since G is an arbitrary graph in R(3™), the proof is complete.

([

Conjecture: If ¢ € x(r"), then the graph R(r"; c) is connected.
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Abstract

For a graph G and S C V(G), if G — S is acyclic, then S is said to be a
decycling set of G. The cardinality of smallest decycling set of G is called the
decycling number of G and is denoted by ¢(G). We prove in this paper that if
G runs over the set of graphs with a fixed degree sequence d, then the values
(@) completely cover a line segment [a,b] of positive integers. Let R(d) be
the class of all graphs having degree sequence d. For an arbitrary graphic
degree sequence d, two invariants

a := min(¢,d) = min{¢(G) : G € R(d)}

and

b :=max(¢,d) = max{4(G) : G € R(d)},

arise naturally. For a regular graphic degree sequence d = r" := (r,7,...,7),
where 7 is the vertex degree and n is the order of the graph, the exact value of
min(¢, ™) and max(¢,r™) are found in all situations. As an application, we
can find all cubic graphs of order 2n having the smallest decycling number.

Keywords: degree sequence, graph parameter, decycling number, interpolation
graph parameter, cubic graph.
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2 Decycling regular graphs

1. Introduction

The problem of determining the minimum number of vertices whose removal elim-
inates all cycles in a graph G is difficult even for some simply defined graphs. For
a graph G, this minimum number is known as the decycling number of G, and is
denoted by ¢(G). The class of those graphs G of which ¢(G) = 0 consists of all
forests, and ¢(G) = 1 if and only if G has at least one cycle and a vertex is on all of
its cycles. It is also easy to see that ¢(K,,) =n—2and K, , =p—1if p < ¢, where
K, denotes the complete graph of order n and K, , denotes the complete bipartite
graph with partite sets of cardinality p and q. The exact values of decycling numbers
for many classes of graphs were obtained and cited in [1]. In the same paper, they
posed the following problems:

Problem 1. Which cubic graphs G with |G| = 2n satisty ¢(G) = [%H1]?
Problem 2. Which cubic planar graphs G with |G| = 2n satisfy ¢(G) = [2]7?

Problem 1 has been answered in [2] by proving that for a random cubic graph
G of order n, ¢(G) = [§ + %] holds asymptotically almost surely, but no answer for
the second problem yet.

We prove in this paper that if G' runs over the set of graphs with a fixed degree
sequence d, the values ¢(G) completely cover a line segment [a,b] of positive inte-
gers. Let R(d) be the class of all graphs having degree sequence d. For an arbitrary
graphic degree sequence d, two invariants

a :=min(¢,d) = min{¢(G) : G € R(d)}

and

b:=max(¢,d) = max{¢(G) : G € R(d)},

arise naturally. For a regular graphic degree sequence d = ™ := (r,r,...,r) where
r is the vertex degree and n is the number of graph vertices, the exact values
of min(¢, ™) and max(¢,r") are found in all situations. Finally we shall answer
Problem 1.

In this paper we only consider finite simple graphs. For the most part, our
notation and terminology follows that of Bondy and Murty [3]. Let G = (V, E)
denote a graph with vertex set V' = V(G) and edge set E = E(G). Since we only
deal with finite and simple graphs, we will use the following notation and terminology
for a typical graph G. Let V(G) = {v1,vs,...,v,} and E(G) = {e1, ea,...,en}. As
usual, we use |S| to denote the cardinality of a set S and therefore we define n = |V/|
to be the order of G and m = |E| the size of G. To simplify writing, we write e = uv
for the edge e that joins the vertex u to the vertex v. The degree of a vertex v of a
graph G is defined as dg(v) = |{e € E : e = uv for some v € V}|. The maximum
degree of a graph G is usually denoted by A(G). Let S and T be disjoint subsets of
V(G) of a graph G. We denote by (.S, T") the number of edges in G that connect S
toT. If S C V(G), the graph G|g is the subgraph induced by S in G and denotes
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e(S) the number of edges in the graph G|s. A graph G is said to be regular if all of
its vertices have the same degree. A 3-regular graph is called cubic graph.

Let G be a graph of order n and V(G) = {v1, v, ..., v,} be the vertex set of G.
The sequence (dg(v1),dg(v2),...,dg(v,)) is called a degree sequence of G, and we
simply write (d(vy),d(vs), ..., d(vy,)) if the underline graph G is clear in the context.
A graph H of order n is said to have the same degree sequence as G if there is a
bijection f from V(G) to V(H) such that dg(v;) = dg(f(v;)) for all i =1,2,...,n.
A sequence d = (dy,ds, . .., d,) of non-negative integers is a graphic degree sequence
if it is a degree sequence of some graph G. In this case, GG is called a realization of
d.

An algorithm for determining whether or not a given sequence of non-negative
integers is graphic was independently obtained by [5] and [4]. We state their results
in the following theorem.

Theorem 1.1 Let d = (dy,ds,...,d,) be a non-increasing sequence of non-
negative integers and denote the sequence

(dy —1,d3—1,...,dg, 11— 1,dg,42,...,d,) =d.

Then d is graphic if and only if d’ is graphic.
O

Let G be a graph and ab, cd € E(G) be independent, where ac,bd ¢ E(G). Let
Ge@abed — (G — {ab, cd}) U {ac, bd}.

The operation o(a,b;c,d) is called a switching operation. It is easy to see that
the graph obtained from G by a switching has the same degree sequence as GG. The
following theorem has been shown by [5] and [4].

Theorem 1.2 Letd = (dy,ds, . .., d,) be a graphic degree sequence. If G1 and Gs
are any two realizations of d, then Gy can be obtained from Gy by a finite sequence
of switchings.

o

As a consequence of Theorem 1.2, we can define the graph R(d) of realizations of
d whose vertices are the graphs with degree sequence d; two vertices being adjacent
in the graph R(d) if one can be obtained from the other by a switching. Thus we
obtain the following theorem.

Theorem 1.3 The graph R(d) is connected.

2. Interpolation theorem

Let G be the class of all simple graphs, a function f : G — Z is called a graph
parameter if f(G) = f(H), whenever G = H. If f is a graph parameter and J C G,
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f is called an interpolation graph parameter with respect to J if there exist integers
a and b such that

{f(G):GeT}=la,b|={keZ:a<k<b}.

We have shown in [7, 8, 9] that the chromatic number y, the clique number w,
and the matching number «; are interpolation graph parameters with respect to
J =R(d).

If f is an interpolation graph parameter with respect to J, it is natural to write
min(f, J) = min{f(G) : G € J} and max(f,J) = max{f(G): G € J}.

In the case where J = R(d) we simply write min(f,d) and max(f,d) for
min(f, R(d)) and max(f, R(d)) respectively.

Theorem 2.1 If G is a graph and o(a,b;c,d) is a switching on G, then
(b(Ga(a,b;c,d)) < ¢(G> T 1.

Proof. Let S be a decycling set of G with |S| = ¢(G). Let o(a,b;¢c,d) = o be
a switching on G. We claim that (G — S)° contains at most one cycle. If ab,cd €
E(G —95), then (G — S)7 is well defined. Since G — S is a forest, there is at most
one path in G — S from a to c¢. If there is a path from a to ¢ in G — S, then the
path can be modified as the unique path from b to d. Thus the claim is true. If
one or both of ab, cd are not edges in G — S, then the claim is also true. Therefore
o(G7) < o(G) + 1.

O

Corollary 2.2 If o is a switching on G, then |¢(G) — ¢(G7)| < 1.

Proof. Since a switching is symmetric, we may assume that ¢(G) < ¢(G?).
By Theorem 2.1, ¢(G7) is either ¢(G) + 1 or ¢(G). In both cases we have |¢(G) —
GG < 1.

O

Theorem 2.3 For a given graphic degree sequence d, there exist integers a and
b such that there is a graph G with degree sequence d and ¢(G) = ¢ if and only if ¢
1s an integer satisfying a < ¢ < b.
Proof. The proof follows directly from Theorem 1.3 and Corollary 2.2.
O

Let d be a graphic degree sequence. We have already defined the graph R(d)
of realizations of d. The range of decycling numbers of R(d) can be defined as the
interval of integers specified by Theorem 2.3, i.e.,

o(d) ={¢(G) : GeR(A)} =[a,b]={ceZ : a<c<b}

Naturally, we can call a the minimum decycling number for d, thus a := min(¢,d)
and b := max(¢,d), the mazimum decycling number for d. We write d = r™ for
the sequence (r,r,...,r) of length n, where r is a non-negative integer and n is a
positive integer. By the definition of graphic degree sequence, d = r™ is graphic if
and only if rn = 0(mod 2) and n > r + 1. Moreover, R(r™) contains a disconnected
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graph if and only if n > 2r 4+ 2. It is easy to see that min(¢,0") = max(¢,0™) = 0
and min(¢, 1?") = max(¢,1*") = 0. When r = 2, we have min(¢,2") = 1 and
max(¢,2") = []. Because of this fact, from now on we will consider the cases
when r >3 and n > r + 1.

3. min(¢,r")

It was a remark in [1] that if G is a connected graph with maximum degree A, then
o(G) > w. Thus if G is a connected r-regular graph of order n, then
¢<G) Z nr—2n+2'

2(r—1)
In order to obtain the exact values of min(¢, ™) we first state some useful facts
arising from elementary arithmetic as follows:
1. Let n and r be integers, n > r > 3. Thenr — 1 < %ff)“? if and only if n > 2r.
2. Let n and r be integers, n > 2r and nr = 0 (mod 2). Then ”;&?flf)r?

if and only if n is even and n = 2 + 2(r — 1)q for some positive integers ¢, or n is
odd and n = r + 14 2(r — 1)g for some positive integers gq.

Theorem 3.1

is an integer

r—1 ifr+41<n<2r-—1,

min(¢,r") = { ng&lel—l)-Q if n > 2r.

The proof of Theorem 3.1 follows from Lemmas 3.2, 3.3, 3.4, and 3.5.

O

If S is a decycling set of an r-regular graph G with E(G — S) = (), then for any
veS, S—{v}isalso a decycling set of G. Thus for a minimum decycling set S of
an r-regular graph G, there exists v € V(G — S) such that dg_g)(v) = 1. It follows
that min(¢,r™) > r — 1. With this observation, we will see that the lower bound
is precise when n < 2r. Moreover, the lower bound can be improved to [% )
otherwise.

Lemma 3.2 min(¢,r") =r — Lif r+1<n <2r —1.

Proof. In order to achieve the exact the value of min(¢,r"™), we now construct
an r-regular graph G of order n such that ¢(G) =r—1. Putn=r+j1<j<r—1.
It should be noted that an r-regular graph of order n = r + j exists if and only if j
is odd or both r and j are even.

Let X = {s1,50,...,82} and Y = {t1,ts,...,t;42}, where r < j + 2. Let
G be a graph with V(G) = X UY and E(G) = E; U Ey U E3, where E; =
{tltg,tztg,...,tj+1tj+2,tj+2t1},E2 = {Sptq o1 S P S r — 2,1 S q S ]+ 2}, and
E; = E(H), where H is an (r — j — 2)-regular graph on X. Note that an (r —j —2)-
regular graph of order r — 2 exists if and only if an r-regular graph of order r + j
exists. It is clear that G is an r-regular graph of order n with a decycling set
S = X U{t;} of cardinality » — 1. Hence S is minimum.
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Suppose r = j + 1. In this particular case, we see that an r-regular graph of
order n = r 4+ j = 2r — 1 exists if and only if 7 is odd and r is even. Let X =
{s1,82,...,8.—2} and Y = {tq,t9,...,t,11}. Let G be a graph with V(G) = X UY
and E(G) = E1 U EQ U Eg, where E1 = {tltg, t2t3, e atrtr—l-l; tr—i—ltl};
Ey={spty:1<p<r—21<qg<r}— {51t2,52t3,...,5%tg}, and

E3 = {s1t,q1, tat,r1, Sotri1, tatrsn, . .. ,t%trﬂ}. Thus G is an r-regular graph of order
2r — 1 with a decycling set S = X U{t,;1} of cardinality r — 1. Hence S is minimum.
The proof is complete. O

Lemma 3.3 min(¢,r*) = r — 1, for all r > 3, and min(¢,r* 1) = r, for all
even integers r > 4.

Proof. Let X and Y be disjoint sets, |X| = |Y| = r. The complete bipartite
graph G on the partite sets X and Y is an r-regular graph of order 2r. For each
r € X,put S =X —{z} and T = Y U {x} we see that S is a decycling set
of G, E(G|s) = 0 and G|r is a tree. Since |S| = r — 1, S is minimum. Thus
min(¢, r?") =r — 1.

For an even integer r > 4, let X = {s1,89,...,8,.} and Y = {t1,ta,...,¢,} be
disjoint sets. An r-regular graph G whose V(G) = X UY U {v}, where v is a new
vertex not in X UY, and E(G) = Ey U Ey U Es, where Ey = {spt, : 1 <p<r1<
q < rp# qt, By = {tite, tsta, ..., t,1t,}, and E5 = {vs, : 1 < p < r}. Since

[Ertlp 22 — g min(, r2 ) = 7. :

Lemma 3.4 If n > 2r and w is an integer, then min(¢,r") = “L-20+2

(r=1) 2(r—1)
Proof. Case 1. Suppose n is even and n > 2r. Since ”72"(;27”1*)2 =5 — 28—:21),

we write n = 2(r — 1)q + 2,q > 1. By induction on ¢, it is true when ¢ = 1, by
Lemma 3.3. Moreover, the graph G constructed in Lemma 3.3 has the property that
V(G)=SUT,E(G|s) =0, |S| =r—1, and G|r is a tree on r + 1 vertices.

Suppose there exists an r-regular graph Gy on n = 2(r — 1)g + 2 vertices with
V(Go) = SoUTy, SoNTy = 0,8 = {s1,82,...,8.} and Ty = {t1,t,...,t,} where
a=(r—2q+1and b = rq + 1. We suppose further that E(Ggls,) = 0, and
Golr, is a tree with d(t,) = 1. Let Sy = {uy,ua, ..., u,—o} and Ty = {vy,v9,...,0,.}.
Now let G be a graph with V(G) = SUT, where S = SoU S, T = Ty U Ty, and
E(G) = Ey\U Ey U Es, where Ey = E(Go) — {satp}, Eo = {upv, : 1 <p<r—2/1<
q <1}, B3 = {tyv1,v109, ..., 0,10, V.8, }. It is clear that G is an r-regular graph
on 2(r — 1)(g + 1) + 2 vertices, E(G|s) = 0, and ¢(G) = (r —2)(q¢ + 1) + 1, where
S = Sy U Si. Moreover G|y is a tree and dgj, (t,) = 1.

Case 2. Suppose n is odd and r is even. Write n = 2(r — )g+7r+ 1,9 > 1,
and consider when ¢ = 1. Let S = {s1,892,...,8,} and T" = {t1,1s,...,t}, where
a=32r—2and b =32r+1. Let H be an (r — 2)-regular bipartite graph with
partite sets S and 7" = {t1,ts,...,t,}. Since |S — {s,}| = 3r — 3 = 3(; — 1),
S — {84} can be partitioned into § — 1 sets each of which contains 3 elements. Let
P ={S51,8,...,Sz_1} be such a partition. Let K be a bipartite graph with partite
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sets S —{s,} and {ty_o,tp_1,tp} such that F(K) is the union of all edges in 2- regular
bipartite graphs with partite sets {t,_s,t,—1,%} and S;, for all 4 = 1,2,..., 5 — L.
Finally let G be a graph with V(G) SUT and E(G) = E(H) UE(K) U Ey, where
Ey = {sal1, Satp, t1ta, tats, ..., ta_1t.}. Therefore G is an r-regular graph on 3r — 1
vertices with ¢(G) = |S| = %r — 2. Moreover G|r is a path with dg,.(t;) = 1 and
E(Gls) =10
Suppose there exists an r-regular graph Gy on 2(r — 1)g+r + 1,q > 1, vertices
with V(G()) = SU U TOyE(GO|So) = @, |So| = a = %T -2+ (q - 1)(?” - 2), and GO‘T@
is a path ¢ty ...t of length b = %T + 14 (¢—1)r. Let Sy = {uy,ug,...,u-—2} and
Ty = {vy,v9,...,v,.}. We may assume that s,t, € Go. Now let G be a graph with
V(G) = SoUSl UT0UT1 and E(G) = E1UE2UE3, where E1 = E(Go)—{satb}, Eg =
{upvy, : 1 <p <r—21<¢q <r}, and E5 = {s,0,, tpv1, v102, U203, ..., Vp_10, }. It
is clear that G is an r-regular graph on n = 2(r — 1)(¢ + 1) + r + 1 vertices,
E(Gls) =0, and|S| = ¢(G) = 3r — 2+ ¢(r — 2), where S = Sy U S;. Also note that
G — S =Glr=tity.. . trorve ... v, is a path and dg,. (t1) = dgjp (vr) = 1.
O

Let f(n,r) = (”g(f”f)“ﬂ r>3and n > 2r. If - 2”52 is an integer, then it is
easy to show that

r) if1<i<r-—2,

. fn
f(n+21,7"):{f<n+2(7~_1) r) ifi=r-—2.

Lemma 3.5 If n > 2r, then min(¢,r"*?) < min(¢, ") + 1.

Proof. For n > 2r we have constructed an r-regular graph G on n vertices

having minimum decycling set when n = 2r and n = 2r + 1 in Lemma 3.3. We

have also constructed an r-regular graph G on n vertices when "g(ffff is an in-

teger and ¢(G) = ”;&21’52 in Lemma 3.4. Moreover, such constructions give us
decycling sets S with E(G|s) = 0. Let Gy be an r-regular graph on n vertices
with ¢(Go) = min(¢,r"). We may further assume that V(Gy) = Sp U Ty where
E(Gyls,) = 0, and G|z, is a forest. Since Gy is r-regular and [Sp| > r — 1, by
Hall’s Theorem (See, e.g. [6] page 227), there exists a set of  — 1 independent edges
My joining Sy to Tp. Let G be a graph with V(G) = V(Gy) U {z,y} and E(G) =
EyUFEyUE;, where By = E(Go) — My, By = {xty, xty, ..., xt,—1,51Y, S2Y, - - -, Sr_1Y },
and F3 = {zy}, where My = {s1ty, salo,...,Sr—1t,—1}, with s; € Sy and t; € Tp.
Thus G is an r-regular graph on n + 2 vertices with a decycling set SoU{x}. There-
fore p(G) < ¢(Go) + 1.

O

It is interesting to observe that the proof of Theorem 3.1 is now complete.
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4. max(¢p,r")

The problem of determining the decycling number of a graph is equivalent to finding
the greatest order of an induced forest and the sum of the two numbers equals the
order of the graph. Let F' C V(G) of a graph G. F is called an induced forest of G,
if G| contains no cycle. For a graph G, we define, I(G) as:

I(G) :== max{|F| : F is an induced forest in G'}.

Observe that for a minimum decycling set S of a graph G, if v € S, then there
exists a connected component C' of G — S such that v is adjacent to at least two
vertices of C. Thus A(G|s) < A(G) — 2. With this observation, we find that if G
is an r-regular graph and S is a minimum decycling set of G, the graph G|s may
not be an (r — 2)-regular graph. This causes a difficulty in finding max(¢,r") if
we consider only the class of regular graphs. It is reasonable to enlarge the class of
regular graphs into the following class of graphs. Let A be a nonnegative integer
and n be a positive integer such that n > A + 1. Let G(A,n) be the class of all
graphs of order n and of maximum degree A. The (A, n)-graph is a graph having
G(A,n) as its vertex set and two such graphs being adjacent if one can be obtained
from the other by either adding or deleting an edge.

Lemma 4.1 The (A, n)-graph is connected.

Proof. For any graph G € G(A,n),if F=KiaU(n—A—-1)K; and G # F, G
can be obtained from F by a finite sequence of adding edges. The proof is complete.
U

Lemma 4.2 If G; and Go are adjacent in the (A, n)-graph, then |p(Gi) —
P(Ga)| < 1.

Proof. Without loss of generality we may assume that G5 is a graph obtained
from G; by adding an edge e. Thus ¢(G1) < ¢(Gs). On the other hand, if S is
a minimum decycling set of GGy, then Gy — S contains at most one cycle. Thus
#(G2) < |S] + 1. Therefore ¢(G1) < ¢(Ga) < ¢(G1) + 1. The proof is complete.

O

As a consequence of Theorems 4.1 and 4.2, we have the following corollary.

Corollary 4.3 For any class of graphs G(A,n), there exist integers a and b such
that there is a graph G € G(A,n) with ¢(G) = c if and only if ¢ is an integer
satisfying a < ¢ < b.

O

Note that the result of Corollary 4.3 is an interpolation theorem of ¢ with respect
to G(A,n), and it is easy to see that min(¢,G(A,n)) = 0, the graph F in the
proof of Lemma 4.1 is such a graph. In order to investigate the exact values of
max (¢, G(A,n)), we first give its upper bound.



N. Punnim 9

Lemma 4.4 If G is a graph of order n with mazimum degree A(G) = A > 1,

n(A—1
then ¢(G) < (A+1)'

Proof. The theorem is trivial if A < 2. If A = 3 and S is a minimum decycling

set of G, then for each v € S,dg),(v) < 1. This means that both G|g and G — S are

decycling sets of G and hence |S| < § = n(AA—J:ll). Suppose A > 4 and S is a minimum

decycling set of G. Thus A(Gls) < A(G) — 2. Since I(G) > I(G|s), it follows that

n—¢(G) > |S| = 6(S) > |S| — EETY. Therefore ¢(G) < M1,

a

Theorem 4.5 Let d = (dy,ds,...,d,),dy > do > ... > d, > 1 be a graphic
degree sequence and di +1 <n < 2dy + 1. Then
(1) max(¢,d) =n — 2 if and only if R(d) = {K,} and
(2) if K, & R(d), then max(¢,d) = n— 3 if and only if there exists a union of stars
as a realization of d, where d = (n—dy,n—dy_1,...,n—dy).

Proof. (1) By Lemma 4.4, we have max(¢,d) < n — 2 and max(¢,d) =n — 2 if
and only if any induced subgraph of 3 vertices of G € R(d) forms a triangle. Thus
max(¢,d) = n — 2 if and only if R(d) = {K,}

(2) By (1), we have max(¢,d) < n — 3. If R(d) does not contain a union of stars
as its realization, then for every realization G of d, G must contain a Cj5 or P; as
an induced subgraph. Thus /(G) > 4 which is equivalent to max(¢,d) < n — 4.
Conversely, if G € R(d) and G is a union of stars, then any induced subgraph of 4
vertices of G must contain a triangle or Cy. Therefore max(¢,d) = n — 3.

O

Theorem 4.6 Let n = (A+1)g+t,0 <t < A. Then
(1) max(¢p,G(A,n)) =n—2q, ift =0,

(2) max(¢,G( ))=n—2q—1,ift=1, and
(3) max(¢, G( ))=n—2¢—2,if2<t<A.

Proof. (1) By Lemma 4.4, max(¢,G(A, (A + 1)q)) < n — 2q¢. It is easy to
see that the graph ¢Kay1 € G(A, (A + 1)q) and ¢(¢Ka+1) = n — 2q. Therefore
max(¢,G(A,n)) =n—2¢q,if t = 0.

(2) By Lemma 4.4, max(¢, G(A, (A+1)g+1)) <n—2g—1. It is easy to see that the
graph ¢Ka 1 UK; € G(A, (A+1)g+1) and ¢(qgKa 1 UK;) = n—2q— 1. Therefore
max(¢,G(A,n)) =n—2¢—1,if t = 1.

(3) Let n = (A+1)g+t,2 <t < A. Since ¢Kp11UK; € G(A,n) and ¢(¢Ka1UK;) =
n —2q — 2, max(¢,G(A,n)) > n — 2q — 2. We first consider the case ¢ = 1. Since
n = (A+1)g+t,2 <t < A, the minimum degree of G is t for all graphs G € G(A, n).
Thus G is not a union of stars and therefore max(¢,G(A,n)) =n — 4 for g = 1.

Suppose ¢ > 2 and ¢ is the smallest integer such that max(¢, G(A, (A+1)g+1)) =
n — 2q — 1. Let v be a vertex of G of degree A and let H be the graph obtained
from G by deleting the vertex v and its neighbors. It is clear that H has order
(A+1)(¢g — 1)+t and by minimality of g, there exists a minimum decycling set S
of H of order at most n —2(q — 1) — 2 = n — 2q. Equivalently, |H — S| > 2q. Since

An
An
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(H — S) U {v} is an induced forest of G and |(H — S) U {v}| > 2¢ + 1, we have
|(H—S)U{v}| =2¢+1. Put F = (V(H)—-S)U{v}and D = G—F, thus D is a min-
imum decycling set of G with |D| =n —2¢ — 1. Since v € V(G|r) and dg,.(v) = 0,
G|F contains at most 2q vertices of degree at least 1. Let T the subgraph of G|p
consisting of all nontrivial components. By being maximality of G|, V(T) # 0.
Thus 1 < |V(T)| <2¢. Since |D| = (A—-1)g+t—1,e(D,T) > 2(A—-1)g+2(t—1).
But %;2@_1) > A — 1, there exists a vertex f € T such that dg(f) > A. This
is a contradiction. The proof is complete.

O

Theorem 4.7 Forr >3, andr+1<n<2r-+1,

(1) max(¢,r™) =n—2, if and only if n =r + 1,

(2) max(¢,r™) =n — 3, if and only if n =r + 2,

(3) max(¢,r™) =n — 4, for all even integers n, r +3 < n,

(4) max(¢,r") =n —4, for all odd integers n, r +3 < n and n > f(j),
(5) max(¢,r™) =n — 5, for all odd integers n, r +3 < n and n < f(j),

where  f(j) = g(j — 1) if j = 3(mod 4), and
F(G) =1+ 3G —1) if j = 1(mod 4).

Proof. (1) and (2) follow directly from Theorem 4.5.

(3) From (1) and (2), we have max(¢,r") < n — 4 for all integers n = r + j,
3 < j <r+1. Suppose n is even and let G be an r-regular graph of order n such
that G is bipartite. Thus the induced subgraph of any 5 vertices of G must contain
a cycle in G. Thus ¢(G) = n — 4. Therefore max(¢, r") =n — 4,

(4) In [7], we have shown that if j is odd and j > 3, then there exists a (j —1)-regular
triangle-free graph of odd order n if and only if n > f(j), where f(j) = 3(j — 1)
if j = 3(mod4), and f(j) = 14 2(j — 1) if j = 1(mod 4). Note that if H is a
triangle-free graph of order at least 5 and for any subset K of H with |K| =5, then
E(H|k) <5. Thus if n > f(j) and H is a (j — 1)-regular triangle-free graph on n
vertices, then any induced subgraph of 5 vertices of H contains at most 5 edges in
H. Therefore ¢(H) > n — 4. Hence max(¢, ") = n — 4.

(5) If n < f(j) and j > 5, then any (j — 1)-regular graph H on n vertices must
contain a triangle. Let T" = {u,v,w} be a set of 3 vertices of H which induces a
triangle. Since n < g(] — 1) and H is a (j — 1)-regular graph, there exist z,y € T
such that either Ny (z) N Ng(y) # 0 or there exist a € Ny (x) and b € Ng(y) such
that ab € E(H). In either case there are at least 5 vertices of V (H) induced a forest
in H. Thus I(H) > 5 and it is equivalent to ¢(H) < n — 5.

Finally, let X = {z1,2,..., 2} and Y = {y1,90,...,u:},t = %51, Since n <
g(j —1),n is odd, and j > 5, there exists a (j — 1)-regular bipartite graph K with
the partite sets X and Y and {x;y; : @ = 1,2,...,t} € E(K). Now choose H to
be a (j — 1)-regular graph with V(H) = V(K) U {v} and E(H) = E, U E,, where
Ey = E(K)—A{zyy; 11 = 1,2,...,%} and Fy = {vz;,vy; 11 = 1,2,...,%}. It is
clear that H is a (j — 1)-regular graph on n vertices such that ¢(H) = n — 5.
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Theorem 4.8 Forn > 2r +2 and r > 3, writen = (r + 1)g+t,q > 2 and

0<t<r. Then

(1) max(¢,r") =n —2q ift =0,

(2) maX( ”)—n—2q—1 ift=1,

(3) max(¢,r") =n—2¢—2 if2<t<r—1,
(4) max(¢, ”) n—2q—3 ift=r.

Proof. The proof of (1), (2) and (3) follows directly from Theorems 4.6 and 4.7.
(4) Note that max(¢,G(2,3q +2)) = ¢ and a graph G € G(2,3q + 2) with ¢(G) =
if and only if G = (¢ — 1)C5 U C5 or (¢ — 2)C5 U 2C,. It should be also noted that
an r-regular graph of order (r 4+ 1)q + r exists if and only if r is even. By Theorem
4.6, we have max(¢p, r" ) < (r —1)g + (r — 2). We first consider the case r = 4.
Suppose there is a 4-regular graph G of order 5g + 4 and ¢(G) = 3¢+ 2. Let S be a
minimum decycling set of G such that |S| = 3¢+ 2. Put F' = V(G) — S. Since for
each vertex v € S we have e({v}, F') > 2, e(S, F) > 2(3¢+2). lf e(S, F) =2(3¢+2)
holds for every minimum decycling set S of G, then S is a 2-regular graph of order
3q + 2. In this case G|g is either (¢ — 1)C3 U C5 or (¢ — 2)C3 U 2C4.

Let Fi be an induced forest of S of order 2¢ + 2. Then F} is also a maximum
induced forest of G and G — F} is a 2-regular graph of order 3¢ + 2. It is clear that
Fy can be obtained from S by removing one vertex on each cycle. Since F) contains
an induced path of at least 3 vertices and there exists a vertex v € F' adjacent to
exactly two vertices in the path, we can choose a maximum induced forest F, of
S of order 2¢ + 2 in such a way that e({v}, F5) = 1. Thus F;, U {v} is an induced
forest of G' of order 2¢ + 3, this is a contradiction. If e(S,F) > 2(3q + 2), then
S € G(2,3¢ +2) and S is not regular. Therefore I(G) > I(S) > 2q + 3. A graph
(¢ — 1)K5 U H, where H is a 4-regular graph of order 9 satisfying the condition in
Theorem 4.7(5), has the property that ¢((¢ — 1)Kz UH) =3(¢— 1) +4 =3¢+ 1.
Thus max(¢,4°+) = 3¢ + 1.

Now suppose r > 6 and let G be an r-regular graph of order n = (r+1)g+r and
#(G) = (r—1)g+ (r —2). Let S be a minimum decycling set of G such that |S| =
(r—=1)g+(r—2). Put F} = V(G)—=S. Ife(S, F) = 2((r—1)g+ (r—2)), then S is an
(r—2)-regular graph of order (r—1)g+(r—2). By induction on r, I(S) > 2¢+3. Since
I(G) > I(S) > 2q+3, we get a contradiction. Thus e(S, F}) > 2(n—2g—2). Since r
iseven and e({v}, F1) > 2 for all v € S, there exists v € S such that e({v}, F) > 4 or
there exist two vertices u,v € S such that e({u}, F}) > 3 and e({v}, F}) > 3. Thus
e(S, F1) > 2(r—1)q+2(r—2)+2. On the other hand by counting edges from S to F},
we find that e(S, F1) =2(r—1)g+2(r—2)+2and F} = (¢+1)Ks. Put Gy = G- F
and G; = G;_1 — F;, for 2 <i < 7’52 and F; is a maximum induced forest of G;_;.
If2¢+2=1I1(G) =I1(G) =1(Gy) = ... = [(G%Al), then G:—2 has order 3¢ + 2,
maximum degree 2 and not regular. Thus I(G %) > 2g+ 3. This is a contradiction.
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Therefore min (7, r"+V4+7) > 2¢4-3. A graph (¢q—1) K, UH, where H is an r-regular
graph of order 2r + 1 satisfying the condition in Theorem 4.7(5), has the property
that ¢((¢— 1)K, nUH) = (r—1)(¢—1)+(2r+1-5) = (r—1)g+r—3 =n—2¢—3.
Therefore max(¢, r7+V4+7) = n — 2¢ — 3.

([

5. Decycling number of cubic graphs

Let R(3%") be the class of cubic graphs of order 2n. As a consequence of the previous
sections we have the following result concerning the class of cubic graphs.

Theorem 5.1 For any integer n > 2, we have

n—+1
2

min (¢, 3*") = [ 1, and

my | M if nois even
max(¢, 3 )_{ n—1 if n is odd.

Thus, by Theorem 5.1, the range of decycling can be obtained, namely
¢(3*") = {¢(G) : G € R(3*")} = [min(¢, 3°"), max(¢, 3°")].

For each ¢ € ¢(d), let R(d; ¢) denote the subgraph of the graph R(d) induced
by the vertices corresponding to graphs with decycling number c. We consider the
problem of determining the structure of induced subgraph R(d; ¢). In general, what
is the structure of R(d; ¢)? In particular, are these graphs connected? If R(d; c)
is connected, it must be possible to generate all realizations of d with decycling
number ¢ by beginning with one such realization and applying a suitable sequence
of switchings producing only graphs with decycling number ¢. In this section, we
prove that the induced subgraph R(3%"; [%£17) is connected.

Let G € R(3*; [2]) and S be a minimum decycling set of G. The structure
of R(3%"; [”T“D, for n = 2,3, can be easily verified. From now on we will consider
when 2n > 8. Put F' = V(G) — S. Thus, by counting edges in the graph G, we get
e(S)+e(S, F)+e(F)=3n,2|S| <e(S, F) <3|S| and e(S, F) = 3|S| —2¢(S). Since
|E(G|p)| < |F| =1, 252 —1 > e(F) = 3n — 3[2H] + ¢(S). The following Lemma
is easily obtained.

Lemma 5.2 Let G € R(3*; [%1]) and S be a minimum decycling set of G.
Put F =V (G)—S. Then
(1) e(S) =0, if n is odd and e(S) < 1, if n is even,

(2) if n is odd, then G|r is a tree,
(3) if n is even and e(S) =1, then G| is a tree,
(4) if n is even and e(S) = 0, then G| has 2 connected components.
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Let F(nq,n2,n3) be the class of trees T" having n; vertices of degree i,7 =1,2,3
and A(T) < 3. Thus for any T € F(ny,na,ng) we have |V(T)| = ny + ny + ns,
ny =ns+ 2, and ny > 2.

Lemma 5.3 Let n be an odd integer withn > 5 and N = . Then there ezists
G € R(3*; ) with a minimum decycling set S such that G S € F(ny,na,ng)
if and only if there exist nonnegative integers n;,i = 1,2,3, ny + no +ng3 = N,

2ny +ng = 3(";1), and ny > 2.

Proof. Suppose there is a cubic graph G of order 2n with ¢(G) = %=1, Then by
Lemma 5.1, there exists a minimum decycling set S such that |S| = %, ¢(S) = 0,
and G — S is a tree of order N. Put FF = V(G) — S. Since A(G|r) < 3, we
define n;,i = 1,2,3 as the number of vertices of G| of degree i. It is clear that

ny +ng +ns = N7 2ny +ng = ”T“ and ny > 2.

Conversely, suppose there exist nonnegative integers n;, i = 1,2,3, ny+nqo+nz =
N, 2ny +nyg = "TH, and ny > 2. We first consider ny = 2. Thus ny = 3”2 5
ns = 0. Let T is a path of order N with V(T') = F; U Fy, where F} = {f1, fo} and
Fy ={fs, fa,..., fn} are the sets of vertices of T of degree 1 and of degree 2 of T,

respectively. Let G be a graph with V(G) = V(T)US, where S = {s1, 59, ..., s%},
and B(G) = {sif1,s1f2: 51f3, 821, s2f2, 52fa} U En, where

Ey = Uz 0{53+Zf3z+5aS3+lf3z+6733+lf31+7} It is clear that G € R(32n 21) and
G — S € F(2,n2,0). Suppose ny > 3. Since nj = n; — 1, ny, = ny + 2 and
ny = ng — 1 satisfy the conditions of the theorem, by induction on n,, there exists
G’ € R(3%"; ™) and a minimum decycling set S such that G' — S € F(n}, n}, nj).
Let F/ ={f € G —S :de_s(f) =i},i=1,2,3 be the corresponding vertices in
G' — S of degree i. Since n), > 2, there exists v,w € Fj and v # w. There exist
s1,89 € S such that vsy, wsy € E(G'). If s1 # sg, then the graph G = G/ (wviw,s2)
contains a maximum induced forest T" with n, vertices of degree 1. If s; = s, and
us; € E(G"), there exists s € S — {s;} such that us € E(G'). Thus G'owsvs1)
is a graph such that v and w have different neighbors in S. Finally, if s; = s9
and us; € E(G'), there exists s € S — {s1} such that us € E(G’) and there exists

€ (G' = 8) —{u,v,w} such that xs € E(G’). Thus G"?("*1%%) is a graph such that
v and w have different neighbors in S. Thus the proof is complete.

a

Lemma 5.4 Let n be an even integer with n > 4 and N = 37" — 1. Then
there exists G € R(3*"; % + 1) with a minimum decycling set S such that G — S €
F(ni,n9,n3) and e(S) = 1 if and only if there exist nonnegative integers n;,i =

1,23, n1+no+n3 =N, 2ny +ny = 3”—1—1 and ny; > 2.

Proof. The proof follows from Lemma 5.2 and similar argument in Lemma 5.3.
(]

Let n be an even integer with n > 4 and N = =* — 1. For a set S of cardinality
2 +1, agraph G € R(3*; 2 + 1) with the mlnlmum decycling set S, G is called
a cubic graph of type 0 or 1 if e(S) = 0 or e(S) = 1, respectively. Let G €
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R(3*"; % + 1) be of type 0. Then there exists a decycling set S of G such that
S| =% +1, E(G|s) =0, and FF = G — S is a forest containing two connected
components. Thus there exist fi, fo € V(F) such that dp(f;) <1, dp(f2) <1, and
f1, f2 are not in the same components of F. There must also exist s1,s2 € S such
that s; # so and s1.f1, sofo € E(G). Thus G?(sy, f1; 89, fo) € R(3*"; % 4 1) having
S a minimum decycling set and G?(s1, f1; s, f2) is of type 1. Thus the graphs of

two types can be transformed to each other by a suitable switching.

Lemma 5.5 Let n be an even integer withn > 4 and N = 37” —1. Then there ex-
ists a cubic graph G of order 2n with minimum decycling set S such that |S| = 5§ +1
and e(S) = 0 if and only if there exists a switching o such that G° € R(3*"; % +1)
with a minimum decycling set S and e(S) = 1.

O

Let n, N, ny, ng, n3 be integers satisfying conditions in Lemma 5.3. Let F(ny, ng, n3)
be the class of trees T" having n; vertices of degree 7,7 = 1,2,3 and A(T") < 3. We
first consider in the case when ny = 2. Thus n3 = 0 and F(2,n,,0) contains the
path of N vertices. Let Py be the path fify--- fx and let S; = {s1,52,...,5:},
where t = "T“ It is clear that there are cubic graphs obtained by joining 3t
edges from S to vertices in Py and such graphs are not unique. Now we will con-
struct a cubic graph of order 2n. When N = 4, it is easy to see that there is a
unique cubic graph G4 obtained in this way. That is V(G4) = Sy U V(P,) and
E(Gys) = {s1f1,51f2, 1[4, 521,523, 52 f4}.

A cubic graph G7 of order 10 can be constructed by taking V(G;) = S3 U
V(P7) and E(G7) = (E(G4) — {82f4}) U {82f7, 53f5, 83f6, 83f7}. Thus G7 is a cubic
graph of order 10 with ¢(G7) = 3. Similarly the graph Gy can be obtained from
G by extending the path P; to Py, removing the edge s3f; and inserting edges
s3f10, Safs, Safo, Safio- In general, if t > 4, then N = 3t — 2. We can construct the
cubic graph G obtained from G _3 by extending the path Py_3 to Py, removing
the edge s;_1 fy_3 and inserting edges s;_1fn, St fn_2, St fn_1,Stfn-

Lemma 5.6 Let G be a cubic graph of order 2n, n is an odd integer, with
?(G) = ”TH If G has a path Py as a mazimum induced forest, where N = 3”2_1,
then Gy can be obtained from G by a finite sequence of switchings o1, 09, ..., 0 such

that for allt=1,2,... k, G7'92% 4s a cubic graph with Py as its induced forest.

Proof. It is easy if N = 4. Let G be a cubic graph of order 2n with Py as
its induced forest. Put Py = fifo -+ fy and S; = {s1,52,...,8;} where t = ”T“
If sify ¢ E(G), there are exactly 2 vertices in S which are adjacent to fy and
there are exactly 3 vertices in V(Py) which are adjacent to s;. Thus there exist
s; € S and f; € V(Py) such that s;fy,s.f; € E(G) and s;f; ¢ E(G). The graph
G' = GoGofiifnsi) has a common edge s,fy with Gy. If s,fv_1 & E(G'), there
exists s € S, such that sfy_; € G'. Put s = s,_;. Since Py is a path and ¢t > 3,
|N(s;_1) N N(s;)] < 1. Thus there is a switching which transforms G* to G? such
that G? has s, fy, s;fn_1 as common edges with Gy. By continuing in this way, we
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can transform the graph G by a finite number of switchings o1,05,...,0, to Gy

such that for all ¢« = 1,2,... k, G792% is a cubic graph with Py as its induced
forest.

O

Lemma 5.7 Let G be a cubic graph of order 2n, n is an odd integer, with

¢(G) = . If G does not have Py as its mazimum induced forest. Then a cubic

graph Gy can be obtained from G by a finite sequence of switchings o1, 09, ...,0%

such that for alli=1,2,... k, G727 € R(3*"; L) and G177 = Gy.

Proof. In the proof of Lemma 5.3 and Lemma 5.6 a sequence of suitable switch-
ings can be obtained in order to transform G into Gy.
O
Similar argument can be made to obtain the same result for cubic graphs of order
2n and n is even.

Combining the results in this section, we have the following theorem.
Theorem 5.8 The induced subgraph R(3*"; [21]) is connected.
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Abstract

For a graph G, a subset S C V(G), is said to be a decycling set of G if
G — S is acyclic. The cardinality of smallest decycling set of G is called the
decycling number of G and it is denoted by ¢(G).

Bau and Beineke posed the following problems: Which cubic graphs G
with | G |= 2n satisfy ¢(G) = [%:L]? In this paper, we give an answer to
this Problem.

Keywords: degree sequence, decycling number, cubic graph.

1. Introduction

We consider in this paper only finite simple graphs. For the most part, our notation
and terminology follows that of Bondy and Murty [2]. Let G = (V, E) denote a
graph with vertex set V = V(G) and edge set £ = E(G). Since we deal only with
finite and simple graphs, we will use the following notations and terminology for a
typical graph G. Let V/(G) = {vy,vs,...,v,} and E(G) = {e1,ea,...,en}. As usual,
we use |S| to denote the cardinality of a set S and therefore we define n = |V| to be
the order of G and m = |E| the size of G. To simplify writing, we write e = uv for
the edge e that connects the vertices u and v. The degree of a vertex v of a graph
G is defined as d(v) = |[{e € E : e = uv for some u € V}|. The maximum degree

*Work supported by The Thailand Research Fund, under the grant number BRG/09/2545.
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of a graph G is usually denoted by A(G). Let S and T be disjoint subsets of V(G)
of a graph G. We denote by e(S,T') the number of edges in G that connect from S
and T. If S is a subset of V(G) of a graph G, by the graph S we mean the induced
subgraph of S in G and we denote e(S) to be the number of edges in the graph S. A
graph G is said to be regular if all of its vertices have the same degree. A 3-regular
graph is called a cubic graph.

Let G be a graph of order n and V(G) = {vy,vs,...,v,} be the vertex set of
G. The sequence (d(vy),d(ve), ..., d(v,)) is called a degree sequence of G. Moreover,
a graph H of order n is said to have the same degree sequence as G if there is a
bijection f from V(G) to V(H) such that d(v;) = d(f(v;)) for alli =1,2,...,n. A
sequence d = (dy, dy, ... ,d,) of non-negative integers is a graphic degree sequence if
it is a degree sequence of some graph G and in this case, G is called a realization of

d.

Let G be a graph, and let ab and cd be independent edges in GG such that ac and
bd are not edges in G. Define G7(*%¢% to be the graph obtained from G by deleting
the edges ab and cd and replacing the edges ac and bd. The operation o(a, b; c,d) is
called switching operation. It is easy to see that the graph obtained from G by a
switching will have the same degree sequence as G. The following theorem has been
shown by Havel [4] and Hakimi [3].

Theorem 1.1 Let d = (dy,ds, . ..,d,) be a graphic degree sequence. If G and
Gy are any two realizations of d, then Gy can be obtained from Gy by a finite se-
quence of switchings.

O

As a consequence of Theorem 1.1, we can define the graph R(d) of realizations
of d, the vertices of which are the graphs with degree sequence d; two vertices being
adjacent in the graph R(d) if one can be obtained from the other by a switching.
Thus, as a direct consequence of Theorem 1.1, we have shown the following theorem.

Theorem 1.2 The graph R(d) is connected.
O

Let G be a graph. The problem of determining the minimum number of vertices
whose removal eliminates all cycles in the graph G is difficult even for some simply
defined graphs as stated in Bau and Beineke [1]. For a graph G, this minimum is
known as the decycling number of G, and denoted by ¢(G). However, the class of
those graphs G in which ¢(G) = 0 consists of all forests, and ¢(G) = 1 if and only if
G has at least one cycle and a vertex is on all of its cycles. It is also easy to see that
o(K,) =n—2and ¢(K,,) =p—1if p < ¢, where K,, and K, , denote the complete
graph of order n and the complete bipartite graph with partite sets of cardinality p
and ¢, respectively. The value of ¢(G) for many classes of the graphs were obtained
by Bau and Beineke [1] including an upper bound of connected cubic graphs of a
given girth. In the same paper, they posed the following problems:
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Problem 1. Which cubic graphs G with |G| = 2n satisfy ¢(G) = [%]?
Problem 2. Which cubic planar graphs G with |G| = 2n satisfy ¢(G)
We shall answer the Problem 1.

We proved in [5] that the graph parameter ¢ has the property that if the graphs
G4 and G, are adjacent in the graph R(d), then |¢(G1) — ¢(G2)| < 1. Thus for any
graphic degree sequence d, there exist integers a and b such that there is a graph
G with degree sequence d and ¢(G) = c if and only if ¢ is an integer satisfying
a < ¢ < b. We proved in the same paper that if R(3?") is the class of all cubic
graphs of order 2n, then min{¢(G) : G € R(3*")} = [2}]. Thus to answer the
Problem 1 is equivalence to find all cubic graphs of order 2n in R(3?") having
minimum cardinality of decycling set.

Bk

2. Main results

For a graphic degree sequence d, let ¢(d) = {¢(G) : G € R(d)}. Thus there exist
integers a and b such that ¢(d) = {k € Z : a < k < b}. For each ¢ € ¢(d), let
R(d; ¢) denote the subgraph of the graph R(d) induced by the vertices correspond-
ing to graphs with decycling number ¢. We consider the problem of determining the
structure of induced subgraph R(d; ¢). In general, what is the structure of R(d; ¢)?
In particular, are these graphs connected? If R(d; ¢) is connected, it must be pos-
sible to generate all realizations of d with decycling number ¢ by beginning with
one such realization and applying a suitable sequence of switchings producing only
graphs with decycling number c. In this section, we find all cubic graphs of order 2n
with decycling number [%1] and prove that the induced subgraph R(3?*; [%1])
is connected.

Let GG be a cubic graph of order 2n with a minimum decycling set S of cardinality
[”THW Since there is only one cubic graph of order 4 and there are only two cubic
graphs of order 6, it is easy to that those graphs have the decycling number {”T“}
From now on we will consider when 2n > 8. Put F = G — S. Thus e(5) +

(S F)+4e(F) = 3n, 2|S| < e(S,F) < 3|5] and e(S, F) = 3|S| — 2¢e(S5). Hence
—[2H] =1 > e(F) =3n — 3[%2] + €(S). Thus we have the following Lemma:

Lemma 2.1 Let G be a cubic graph of order 2n with a minimum decycling set
S of cardinality ["31]. Put F =G — S. Then
(1) e(S) =0, if n is odd and e(S) < 1, if n is even,
(2) if n is odd, then F is a tree,
(3) if n is even and e(S) = 1, then F is a tree,
(4) if n is even and e(S) = 0, then F has 2 connected components.

|

For an odd integer n > 5, there exists a cubic graph G with independent decycling
set S of GG of cardinality ”T“ Furthermore, FF' = G — S is a tree of order N = 3"2—_1
and A(F) < 3. Let n;, i = 1,2,3 be the number of vertices of F' of degree i. It is
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clear that ny +no +n3 =N, 2ny +ny = @ and n; > 2.

Let F(nq,n2,n3) be the class of trees F' having n; vertices of degree i,i = 1,2,3
and A(F) < 3. Thus for any F' € F(ny,ne,n3) we have |V (F)| = ny + ny + ng,
ni =nz+ 2, and ny; > 2.

Lemma 2.2 Let n be an odd integer withn > 5 and N = 3”2’1, Then R(¢; ”TH) #+

0 of and only if there exist nonnegative integers n;,i = 1,2,3, ny +ny +ng = N,
2n, +ng = @ and ny; > 2.

Proof. We have already proved the first part of this lemma. Suppose there
exist nonnegative integers n;,t = 1,2,3, ny + no +ng = N, 2ny + ny = ”TH, and
ny > 2. We first consider when n; = 2. Thus ny = %, ng = 0. Let F' is a path
of order N with V(F) = Fl U FQ, where F1 = {fl,fg} and F2 = {f37f47--~7fN}
are the sets of vertices of F' of degree 1 and of degree 2 of F', respectively. Let

G be a graph with V(G) = V(F) U S, where S = {81,82,...,87%1}, and E(G) =

n—>5

{S1f1, s1f2, 513, 52f1, 2 f2, 82f4}UE1, where E; = Uizzo {53+if3i+5> 5341 f3i165 53+7Lf3i+7}-
It is clear that G € R(3?"; 2£1). Suppose ny > 3. Since nj =n; — 1, ny = ny + 2
and n§ = ng — 1 satisfy the conditions of the theorem, by induction on n;, there
exists G € R(3%"; [%H]) and a minimum decycling set S such that F/ =G’ — S €
F(nl,nb,nk). Let F,i = 1,2,3 be the corresponding vertices in F” of degree i. Since
ny > 2, there exists v,w € Fj and v # w. Since v has two neighbors in F”, there
exists u € V(F') such that u # w, uwv € E(F'), and vw ¢ E(F'). Let s1,80 € S
such that vs;, wsy € E(G’). We will consider into 2 cases.

Case 1. If s; # s, then the graph G = G'7(“*52) contains a maximum induced
forest F' with V(F') = V(F") having n; vertices of degree 1.

Case 2. If s; = s9, then there exist s € S — {s;} and =z € V(F') — {v,w}
such that zs € E(G') and xzs; ¢ E(G'). Thus the graph G'(z, s;s1,v) contains a
maximum induced forest F' with V(F') = V(F"), v,w are of degree 2 in F', and v, w
have different neighbors in S. By applying a suitable switching in Case 1., we get a
cubic graph G with n, vertices of degree 1. Thus the proof is complete.

O

Lemma 2.3 Let n be an even integer with n > 4 and N = 37” — 1. Then

there exists a cubic graph G of order 2n with minimum decycling set S such that
|S| = 5 +1 and e(S) = 1 if and only if there exist nonnegative integers n;,i = 1,2, 3,
ni+n,+n3=N, 2n1+n2:37"—|—1 and nqy > 2.

Proof. The proof follows from Lemma 2.1 and the similar argument form Lemma
2.2.

O

Lemma 2.4 Let n be an even integer with n > 4 and N = 37” — 1. Then

there exists a cubic graph G1 of order 2n with minimum decycling set Sy such that

|S1| = 541 and e(S1) = 0 if and only if there exist a cubic graph G' of order 2n with
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a minimum decycling set S of cardinality "L, e(S) =1, and a suitable switching.

9
|

Let n, N, ny,ns, and n3 be integers satisfying the conditions in Lemma 2.2. We
first consider in the case when ny = 2 in the class F(nj,ng,n3). Thus ng = 0 and
F(2,n2,0) contains the path of N vertices. Let Py be the path fify--- fy and let
Sy = {s1, 82, ..., 8¢} be a set of independent vertices, where ¢t = ”T“ It is clear that
there are cubic graphs obtained by joining 3t edges from S to vertices in Py. In
particular case when N = 4, there is a unique cubic graph G4 obtained in this way.
That is V(G4) = V(Sg) U V(P4) and E(G4> = {81f1,31f2,$1f4,82f1,82f3,82f4}.
Let G; be a cubic graph with V(G7) = V(S3) UV (P;) and E(G7) = (E(Gy) —
{saf1})U{saf7, s3f5, 83f6,53f7}. Thus G is a cubic graph of order 10 with ¢(G7) =
3. The graph Gip can be obtained from G; by extending the path P; to P,
removing the edge s3 f; and inserting edges s3 f10, S4.fs, S4fo, Saf10. In general, if ¢t > 4,
then N = 3t — 2. We can construct the cubic graph G obtained from Gy_3 by
extending the path Py_3 to Py, removing the edge s; 1 fy_3 and inserting edges
St—1fnySefn_2,Stfn_1,Sfn. The graph Gy is called the standard cubic graph of
order 2n.

Lemma 2.5 Let n is an odd integer and G a cubic graph of order 2n with
o(G) = ”T“ If G has a path Py as a mazximum induced forest, where N = 3”2_1,
then G can be obtained from G and a finite number of switchings o1, 0s, . .., 04 such

that for every 1 =1,2,...t, G792 4s a cubic graph with Py as its induced forest.

Proof. 1t is easy if N = 4. Let G be a cubic graph of order 2n with Py as
its induced forest. Put Py = fifo--- fy and S; = {s1, S2,...,5:} where t = ”T“
If sifny & E(G), there are exactly 2 vertices in S which are adjacent to fy and
there are exactly 3 vertices in V(Py) which are adjacent to s;. Thus there ex-
ist s, € S and f; € V(Py) such that s;fn,s.f; € E(G) and s;f; ¢ E(G). The
graph G!' = G, where 01 = o (s, fj; v, Si), has a common edge s;fx with Gy. If
sifn_1 € E(GY), there exists s € S; such that sfy_; € G'. Put s = s,_;. Since
Py is a path and ¢ > 3, [N(s;—1) N N(s;)| < 1. Thus there exists f; € V(Py) such
that f; # fn—1,5:.f; € E(G'), and s,_1f; & E(G"). Therefore the graph G* = G2,
where 09 = o(sy, fj; fn—15¢—1, has s, fn, s fn—1 as common edges with G. By con-
tinuing in this way, we can transform the graph G by a finite number of switchings
01,09, ...,0: to Gy such that for every i = 1,2,...t, G?*?2-% is a cubic graph with
Py as its induced forest.

a

Lemma 2.6 Let n is an odd integer and G a cubic graph of order 2n with

o(G) = ”TH If G has no Py as its maximum induced forest. Then Gy can be

obtained from G and a finite number of switchings o1, 09, ..., 0, such that for every
i=1,2,...t, p(G7ro2-01) = nil,

Proof. In the proof of Lemma 2.2 and Lemma 2.5 a sequence of suitable switch-
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ings can be obtained in order to transform G into Gy.
O

Similar argument can be made to obtain the same result for cubic graphs of order
2n and n is even.

We have constructed all cubic graphs of order 2n having decycling set of cardi-
nality ”T“ In particular, we have proved the following theorem.

Theorem 2.7 The induced subgraph R(3*"; [2£1]) is connected.
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Abstract

For a graph G and S C V(G), if G — S is acyclic, then S is called a
decycling set or feedback set of G. The decycling number of G is defined to be

¢(G) :=min{|S] : S C V(G) is a decycling set}.

This paper reviews some recent results and problems on the decycling number
of graphs, with an emphasis on the decycling number of regular graphs and
random regular graphs. A computational method using differential equations
developed by N.C. Wormald has been applied to an algorithm over the prob-
ability space of random regular graphs to obtain asymptotic results that are
difficult to obtain otherwise. Some completely deterministic interpolation re-
sults have also been obtained recently by N. Punnim for the decycling number
of regular graphs. These will be reviewed, together with some open problems
in this area.

1 Decycling Number

Let G be a graph and let X C F(G). Then the minimum |X| such that G — X is
acyclic is the dimension of the cycle space of the graph. If GG is connected, then the
dimension of the cycle space of G is ||G|| —|G|+1, where as in [8], |G| and ||G|| denote
respectively the order and size of G. It was natural to investigate the corresponding
problem in terms of vertices, and this was indeed considered by Kirchhoff [12] in his
work on spanning trees.



2 Decycling Number of Regular Graphs

Let G be a graph and S C V(G). If G — S is acyclic then S is called a decycling
set of G. The decycling number or the feedback number of G is defined to be

&(G) == min{|S] : S C V(G) is a decycling set }.

The computation of ¢(G), in general, is difficult [11]. A decycling set S with
|S| = ¢(G) is said to be a minimum decycling set of G. The determination of
the decycling numbers of graphs in the following families is shown to be computa-
tionally difficult: planar graphs, bipartite graphs, and perfect graphs. The problem
is known to be polynomial for the following families of graphs: cubic graphs [13, 21],
permutation graphs [14], and interval and comparability graphs (graphs with tran-
sitive orientation) [15]. Further investigation of this parameter is therefore well
motivated.

The decycling number of the n-cube was determined for n € {1,2,---,8} and
fairly close bounds were also obtained for n € {9, 10, - - -, 13} (see [3] for a summary).
This also provides a coding theoretic connection. The decycling number of grid
graphs (the cartesian product of two paths) was considered in [5]. While these
problems are not completely solved, progress has been made on computation of the
decycling numbers of these classes of graphs. In [3, 5], a problem has been left open
for determination of the decycling numbers of the cartesian products of cycles. For
a solution of this problem for the cartesian product of two cycles, see [17]. Several
problems had been left open in the summary paper [3], among which was a problem
of determination of all cubic graphs with

where |G| = 2n. A hint of an algorithm for determining the graphs for this problem
has been given in [18] using the method of switching and direct constructions.

Approximation algorithms have been investigated. In [2], it was shown that a
polynomial time algorithm exists for computation of a decycling set of cardinality
2¢(G) in an arbitrary graph G.

Application of the computational method of differential equations is classical and
can be found everywhere, in- and outside mathematics. In this note, an application
of differential equation method to a simple algorithm over the probability space
of random regular graphs will be illustrated. This method was developed by N.C.
Wormald [22, 23, 24]. and has been producing sharp asymptotic results which are
otherwise difficult to obtain. While determining the decycling number of regular
graphs for degree d > 4 appeared to be difficult, good deterministic interpolation
results have been obtained recently by N. Punnim for regular graphs using a simple
switching technique. These results will also be reviewed in this paper.
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2 Cubic Graphs

Let S C V(G) be a decycling set of G with |S| = ¢(G). Denote by A(G) the
maximum degree of G and by w(G) the number of components of G. Then since
G — S is acyclic,

1G =8| =|G -S| —w(G—8) and w(G—S) > 1.

Hence

S|+ w(G = 5) +[[Glsll = ¢ + 1.

Then by counting the edges in different classes,

A¢ > |[S,G =S|I+ 2|G[s|
= |G|l = [IG = S| = IG5l + 2[|G]s]]
= [|G]| = |G = S| + w(G = 5) + [|Gs]|
=[Gl = G|+ |S[+w(G = S) + |G|l
> |G| — |Gl + 1+ ¢.

o 1G] — |G|+ 1
> -
»(G) > .

For a graph G regular of degree d, it is natural to ask whether there is a constant ¢

such that o al .1
Mop LA

This is not the case. Let H be a cubic graph and let |H| = 2n. Replace each vertex
of H with a triangle and denote the resulting graph by G. Then |G| = 6n and
»(G) > 2n. Hence

G| — |G|+ 1 3n+1_n
- >2n-— > —.
#(C) 2 =TTy =
This motivated the following problems in [3].
1
Problem 2.1 Which cubic graphs G with |G| = 2n satisfy ¢(G) = n;L —‘?
Problem 2.2 Which cubic planar graphs G with |G| = 2n satisfy ¢(G) =
n+1
?
2

It seems that there is an algorithm for determing the graphs asked by Problem
2.1, as shown in [18] using a switching technique and explicit constructions. This
will be reviewed in Section 5.

Bounds on the decycling number of cubic graphs have been investigated for some
time. For a connected cubic graph G with girth ¢(G) = g, Speckenmeyer proved
the following theorem in [20].
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Theorem 2.1 Let G be a connected cubic graph with girth g(G) = g. Then

g+1 g—1
< .
4(G) < 5161+ 5

In [25], Zheng and Lu sharpened this for connected cubic graphs of order at least
8 without triangles.
Theorem 2.2 Let G be a connected cubic graph with |G| > 8 and without trian-

gles. Then
¢(G) < [@w :

This settles a conjecture by Bondy, Hopkins and Staton in [6] in the affirmative.

A sharp upper bound for the decycling number of cubic graphs has been obtained
in [16] by Liu and Zhao and that for connected graphs with maximum degree 3 has
been obtained in [1]. Let G denote the family of cubic graphs obtained by taking
cubic trees and replacing each vertex of degree 3 by a triangle and attaching a copy
of K, with one subdivided edge at every vertex of degree 1.

Theorem 2.3 Let G be a cubic graph with g(G) = g. Then

g—3
2g — 2

g
4C) < g0+

if G & {K4,Q3, W} UG where Qs is the 3-cube and W is the Wagner’s graph. If
G € G, then

3 1
9(G) = §|G| 1

Corollary 2.1 If g(G) > 3 then ¢(G) < g\G| for G ¢ {K,}UG. IfGis a

connected cubic graph with g(G) > 4 and G # Q3 or W, then ¢(G) < @

Theorem 2.4 Let G be a connected graph of maximum degree 3. If G # K, then

o +1)

¢<G)§{ 1

The family G of graphs show the sharpness of this result.
A polynomial time algorithm to decide the decycling number of any cubic graph
has been found by Li and Liu in [13].

3 Random Regular Graphs

The computational method of differential equations may be applied when one deals
with random variables. This has been applied frequently in classical continuous
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processes. For the probability space of random regular graphs, an algorithm gives
rise to discrete random variables. This makes it possible for applications of the
differential equation method.

The method may be summarized as follows. For a random process, some random
variables arise from execution of an algorithm, whose behavior may be modelled by
differential equations based on the mathematical expectations of their changes over
a unit increment of time. Solutions (usually numerical) of these equations provide
asymtotic estimates for the variables under a main theorem concering existence and
uniqueness of solutions for the differential equations, which is established by a second
moment or large deviation inequality.

A random graph process is a sequence

GOlea"'7Gna"'

so that V(Goy) =V (Gy) = --- =V(Gg) = -+ and G;11 = G; U A; where A; is a set
of edges that is chosen according to a stochastic rule. If for all ¢ > ¢, G141 = G;
then Gy is called the final graph (or the terminal graph) of the process. The smallest
such ¢ is called the stopping time. After the stopping time A; = 0.

A sequence {A,} of events A,, € Q occurs asymptotically almost surely or a.a.s.
for brevity, if

lim P{A,} =1.
Probability and expectation are denoted by P and E respectively.

The uniform model for random regular graphs (indeed for graphs) is classic. In
the uniform model, each graph in the space has equal probability for being sampled—
they occur with uniform probability.

There is another model, the pairing model. Assume that dn = 0 (mod 2). A set
of dn points is partitioned into n vertices containing d points each. A partition of
these dn points into dn/2 pairs is called a pairing. There is a bijection between the
set of all such pairings and the set of all d-regular multigraphs of order n. Denote
by G, 4 the uniform space of these pairings, and by H,, the uniform space of random
hamiltonian cycles on the same vertex set as G,, 4.

Let P, and Q,, be two discrete probability spaces over the same underlying set
for each n > 1. Sequences of spaces {P,} and {9, } are said to be contiguous if any
sequence of events A, (n > 1) occurs a.a.s. in {P,} if and only if it occurs a.a.s.
in {Q,,}. For simplicity, we also say that the spaces P, and Q,, are contiguous and
write P, = Q,,.

For two probability spaces P and Q of random graphs on the same vertex set, the
sum P + Q is the space whose elements are determined by the random multigraph
(called superposition of G and H) whose edge set is the edges of G together with
the edges of H, where G € P and H € Q are generated independently. Define the
graph-restricted sum P & Q to be the space which is the restriction of P + Q to
simple graphs. The operations + and @ are commutative and associative.
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We now cite an important and deep theorem of Robinson and Wormald (see
22, 23, 24] for details).
Theorem 3.1 Let d > 3 and n be even. Then

gn,d ~ Hn D (d - 2)gn,1-
This theorem has been applied in obtaining an asymtotic value for the decycling

number of random cubic graphs in [4].
Theorem 3.2 Let G be a random cubic graph. Then

g p oo = [Tl

Also in [4], the pairing model has been used in running a greedy algorithm for
random regular graphs of degree d > 4 to obtain fairly close probabilistic asymtotic
bounds for the decycling number.

Table 1: Lower and upper bounds.

d b(d) B(d)
1 1/3 0.3787
5 0.3786 0.4512
6 0.4232 0.5043
7 0.4610 0.5459
8 0.4932 0.5800
9 0.5210 0.6085
10 0.5453 0.6328

Theorem 3.3 Let d > 4. For a random d-regular graph G,

. ¢(G) _
|G1|1LnooP {b(d) < Gl < B(d)} =1

where b(d) and B(d) are constants given in Table 1.

The proof of Theorem 3.3 is by an algorithm using the strategy of deferred deci-
sions over the space of random cubic graphs that is contiguous with the probability
space of direct sum of a random hamiltonian cycle and a random 1-factor (perfect
matching) by Theorem 3.1. The algorithm is executed simultaneously with gener-
ating the perfect matching M. The main idea of this algorithm is as follows. When
a vertex ¢ is being processed by the algorithm, the direction of the matching edge
incident with i is first revealed by generating this edge at random with correct prob-
ability. The direction of an edge of the random matching is backward if the other
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end of the edge is a vertex that is already processed, and forward otherwise. Only
if it is an edge whose direction is backward, the current vertex i is then chosen for
membership in a decycling set S; otherwise the next vertex along the random hamil-
tonian cycle is processed. Note that if an edge of the random matching is backward,
then the other end of this edge is not a vertex that is already decided membership
in S.

Suppose that the random hamiltonian cycle is
H=(1,2,---,n,1).

Begin from vertex 1. When the algorithm processes vertex ¢, the probability that
the edge incident with ¢ that is in the random matching is backward is equal to the
number of unmatched vertices in [1, -+, i — 1] divided by n —i+ 1. In this case, the
vertex that matches with 7 is chosen uniformly at random from those available and
add this edge to M;_; to obtain M;. If adding this edge and the edge {i — 1,4} (and
{n,1} if i = n) to G;_1 creates no cycle, then let G; be the graph obtained this way
and set S; «— S;_1; otherwise set G; < G;_1 and S; < S;_1 U {i}. In the case that
the edge incident with ¢ that is in the random matching is forward, leave the vertex
i unmatched and set M; «— M; 1, S; < S;_1, and G; «— G;_1 U{i — 1,i}. Increment
¢ and repeat this until ¢ = n. For ¢ = n return S := S,, and M := M,,.

It is clear that G; = G|p,...;\s,- Equivalently, G; is the subgraph of H induced
by [1,---,7]\S; and the matching edges incident with these vertices. It is also clear
from the algorithm that G; is acyclic, and in particular, G,, is acyclic. Hence S, is
a decycling set of G. It is also easy to see that the only possible edge in G|g, is the
edge {n — 1,n}. Otherwise, S =S, is an independent set. This means that

15, G = Sl + IGsl| = 3[S] - 1.

The main part of the proof of Theorem 3.2 is to show that the subgraph G,, of
G is a.a.s. connected (i.e., a tree). This was effected by way of two intermediate
results:

(1) For any fized constant K > 3 and j = [n'/3], the number of vertices in the

interval [1,---,n — j] that are in S; and the latest component of G;_1 has at most
K unmatched vertices is a.a.s. O(log®n);
(2) A.a.s., no vertex in the interval [n — j + 1, -+, n| is matched with another

vertex in this interval.
Once it is established that G, is a.a.s. a tree, the total number of edges of G
may be counted

3
S = @IS =D+ m—1S|-1)
and hence n
S| < i 1

and therefore

$(G) <2 +1.

n
4
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But as seen in the beginning paragraphs of Section 2,

Hence Theorem follows since [n/4 + 1/2] = [n/4 + 1] for each even integer n.

4 Differential Equations

The idea of proof of Theorem 3.3 will be discussed in this section. Of course,
Theorem 3.1 may be applied again, just as in the proof of Theorem 3.2, with a
slight modification of the algorithm. Let H = (1,2,---,n,1) be a random hamilton
cycle. Beginning at 1, the algorithm walks along H, the vertex currently visited
is given membership in the decycling set if (1) at least two edges in the matchings
are backward, or (2) only one edge in the matchings is backward but it creates a
cycle with vertices so far placed in the growing forest, or (3) the vertex before the
current vertex which had at least one backward matching edge was not placed in
the decycling set.

The standard differential equation method [22] is applied to yield a probabilistic
asymtotic upper bound for ¢(G)/n. The upper bound provided by this method is
weaker than one obtained by using a natural algorithm on the pairing model, idea
of which will be reviewed in this section.

This algorithm returns a decycling set and an induced forest (usually a tree)
simultaneously with generating a random pairing uniformly. Simultaneous genera-
tion of random structures and execution of algorithms has been used many times
[21]. Two points that are being paired are called mates. The method of deferred
decision is again used: when a vertex is placed in the decycling set, points that
pairs back to the growing tree are first determined, and their mates are chosen with
correct probability, and the mates of the other points deferred (left undetermined).
The particular property that the random pairing has a.a.s. happens to hold for the
uniformly random d-regular graphs as well.

The algorithm executes as follows.

Recall that in the pairing model, vertices of a random d-regular graph are sets
containing d points each. Let S; and T; denote the decycling set and the growing
forest respectively at time t. Let U; be the set of unpaired points in the vertices of the
growing forest (tree) 7;. Choose a point x € U; uniformly at random. Select a mate
y of = from the points in the vertices not in Sy UT;. The vertices in V(G)\(S; UT})
are said to be untreated and points in these vertices are said to be untreated points.
Let u = {y, 21, -, zq—1} be the vertex containing y. For each of z; decide whether
the mate of z; is in U;. (This is to be done with correct probability, given that the
pairing is uniform subject to all of U; being paired with untreated points. See below
for the estimate of this probability.) If no mate of z; is in Uy, then set Sy < S; and
set T;+1 be the forest obtained from 7; by adding u together with the edge joining u
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and the vertex containing x. Else, set S;11 < S; U {u}, T;11 < T} and select mates
for those z; with mates in U; as determined above. These are selected uniformly
at random from U;\{z}. In the second case, the mates of those points which are
untreated are left undetermined. All new pairs that are determined are placed in
the pairing P. If t + 1 = dn/2 then stop and return S := Sgn/2, T := Ty, /2 and the
pairing P. Otherwise, increment ¢ and repeat.

Let X () denote the number of untreated vertices at time ¢. Hence the number of
untreated points in the untreated vertices is X (t)d. Let Z(t) = |T3| and Y (¢) = |Uy
(the number of unpaired points in untreated vertices). Let u be the vertex currently
being treated. In a general step of the algorithm, i.e., X (¢) > logn, the probability
that a point in w is paired with an upaired point of T; is asymptotically

Y ()

X(t)d

This is because the pairing is uniform subject to all Y'(¢) unpaired points in T} being
paired with the X (¢)d points in the untreated vertices. During the processing of the
unpaired points in u, the change in this probability is o(1). Hence the probability
that u is to be placed in the growing forest T; is

Y(t)

P(t)" + o(1) where P(t) =1— X6 (1)

Consequently,
E[Z(t+1) - Z(t)] = P(t)™ + o(1).

For a suitably small € > 0, three intervals for ¢ are dealt with separately (7y to
be determined later): (1) ¢t < en, (2) en < t < (19 — €)n, and (3) t > (19 — €)n.
Special consideration has to be given to the end intervals. The first inerval has to be
examined separately and carefully. The last interval contains a negligible number
of steps and it may be made sure that it does not alter the general analysis. The
analysis of the middle interval (the main interval) is to be reviewed here.

After an analysis of the first interval, it may be assumed that Y (¢) > 0 for
t = |en]. Assume that Y'(¢) > 0 at each step in the second interval (see [4]). In
the middle interval, asymptotically 7} is a tree. In the vertices of T} there are Z(t)d
points, 2Z(t) + O(1) are used by FE(T;) and Y (t) are unpaired. Hence (d — 2)Z(t) —
Y (t) have been paired with vertices in S;. Thus S; has

W(t) =dn—2() - X@®)] - [(d-2)Z(t) - Y(t)]
=dln— X(t) — 2Z(t)] + Y (t) + 2Z(t)

unpaired points.

At the moment the algorithm upgrades the pairing P, points x counted by Y ()
is used up. For each of the d — 1 points in u other than y, the probability that its
mate is a point counted by Y (¢) is 1 — P(¢). Hence the expected number of such
points in u paired to T} is (d — 1)[1 — P(¢)].



10 Decycling Number of Regular Graphs

Event Probability | Value of Y
a1 (d—1[1 - P@)]
u+ — Sy | 1— P(t) -1- 1= Pyt
-1 (d—1Dld- X(t) = Y(t)]
wt =T P Tt Uxe v W

Therefore,
EY(t+1)-Y#)] =@d-1) 755 Fomm - PO
—(d—1)[1 = P(t)] — 1.

It is clear that
EX(t+1) —X(t)]=-1.

Let
r= b =T ey 2 2Oy Ty 20
Then )
Y\t
p(r) =1- d-z(7)
and

w(t)=d-[1 —x(r) — 22(7)] + y(7) + 22(7).
Now we have the following system of differential equations
( dx

xd —y
'm—(d—l)(l—l?)—l (2)

\ dt

This initial value problem has been solved numerically, from which 7 is deter-
mined to be the first positive 7 satisfying © =0, xd —y +w = 0.

For all € > 0, z(7p) — € is a.a.s. a lower bound on the proportion of vertices in
the induced forest T' (tree in general). Hence a.a.s.,

¢(G)

— <1 .
Gl S z(10) + €
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This is so because Z(t) = |T}|.

Note that from this algorithm it follows that there is a.a.s. an induced tree of
the same asymptotic size as the induced forest found. Note also that no analytic
solution or qualitative behavior other than the trend of z(7) has been attempted.
No general formula for B(d) for all d is given. These may furnish further research
in this direction.

A comparison of numerical results produced by the contiguity model and the
pairing model was also performed in the work leading to [4].

The lower bound b(d) is obtained by solving an algebraic equation numerically,
which provides an estimate of the expected number of trees and forests.

This is a brief sketch of the proof of Theorem 3.3.

The following problem, suggested by Table 1 is open.

Problem 4.1 For G € G, 4,

lim P{QS(G) —~ {%+ﬂ} =17

|G| —o0

5 Regular Graphs

The result of Theorem is a probabilistic asymptotic result which furnishes a good
insight and does not furnish a deterministic solution to Problem 2.1. Existence of an
algorithm for deciding which graphs are in the class for which the decycling number
is minimum is indicated in [18]. This will be reviewed in this section.

A simple switching technique that was used in [9, 10] has been applied in [18] to
prove that the values of ¢(G) cover a segment [a, b] of positive integers, where a and
b are defined as follows. Let R(d) be the class of all graphs with degree sequence d.
For an arbitrary graphic degree sequence d two parameters a and b may be defined,
by lettting

a :=min(¢,d) = min {¢(G) : G € R(d)}

and

b := max(¢,d) = max {¢(G) : G € R(d)}.
For the degree sequence of a d-regular graph of order n
d=d":=(d,d,---,d).
———

A simple and useful switching technique was employed in the proof of the necessity
part of the well known theorem of Haval and Hakimi [9, 10].

Theorem 5.1 Let d = (dy,ds,---,d,) be a non increasing sequence of non
negative integers and let

dI: (d2_17d3_17"'7dd1+1_17dd1+27"'7dn)~
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Then d is graphic if and only if d’, rearranged in non increasing order, is graphic.
Let G be a graph and ab, cd € E(G) be independent, where ac, bd ¢ E(G). Then
the switching operation o(a, b;c,d) on G is defined to be

Geolabed) — (G — {ab, cd}) U {ac, bd}.

Note that the degree sequence of G7(*%¢4 is the same as that of G. The following was
also established in [9, 10]. A graph G with degree sequence d is called a realization
of d.

Theorem 5.2 Let d = (dy,ds, - ,d,) be a graphic sequence. If G and H are
any two realizations of d, then there is a finite sequence

GZGOaGla'”sz:H

such that for each i € {1,---,s}, there is a switching o; and G; = G*|.

Define the realization graph R(d) to be the graph with vertices all realizations
of the sequence d, with two vertices adjacent if and only if one may be obtained
from the other by a switching. As a consequence of this definition and Theorem 5.2,
we have

Theorem 5.3 The graph R(d) is connected.

Let G be the set of all simple graphs and X be a set. A function f : G — X
is called an invariant of graphs if for all G,H € G, G ~ H = f(G) = f(H). For
example, (1) if X is the set of all integer sequences, then the degree sequence function
f = d is an invariant; (2) if X is the category of all groups then the automorphism
group function f = Aut is an invariant. (3) Each of a and b defined above is an
integer invariant for graphs; other integer invariants include the determinant of the
adjacency matrix of G.

Let 7 C G, X = Z and f be an integer valued function defined on 7. Then f
is called an interpolation parameter on J if there exist a,b € Z such that

{f(G):GeT}=la,b]:={keZ :a<k<b}.
If f is an interpolation parameter, then it is natural to write
a:=min(f,J)=min{f(G) : G € J}

and

b:=max(f,J) =max{f(G): G e J}.

For J = R(d), write more simply min(f,d) and max(f,d) for min(f, R(d)) and
max(f, R(d)) respectively.

Now let S C V(G) be a decycling set of G with |S| = ¢(G) and let o = o(a, b; ¢, d)
be a switching on G. If ab, cd € E(G — 5), then (G — S)7 is defined. Since G — S is
a forest, there is at most one path in G — S connecting a and c. If there is a path
connecting a and ¢, then it may be modified to a unique path connecting b and d.
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Hence (G — S)? contains at most one cycle. If one or both of ab, cd are not edges of
G — S, then (G — S)? contains at most one cycle. Hence ¢(G7) < ¢(G) + 1.

Theorem 5.4 If G is a graph and o = o(a,b;c,d) is a switching on G, then
H(G7) < H(G) +1.

Since the switching operation is symmetric, it may be assumed that ¢(G) <
H(G).

Corollary 5.1 If o is a switching on G, then |p(G?) — ¢(G)| < 1.

From Theorem 5.3 and Corollary 5.1, it was very simple to deduce the following
[18]:

Theorem 5.5 For a given graphic degree sequence d, there exist integers a and
b such that there is a graph G with degree sequence d and ¢(G) = c if and only if
a<ec<hb.

By this theorem, one may introduce the definition

o(d) :={¢(G) : GeR(d)} =[a,b] :={c€ Z :a <c<b}.

For a regular graphic sequence d = d", a sequence of direct construction has
been given in [18] to show the existence of graphs with decycling number a or b.

For each ¢ € ¢(d), denote by R(d; ¢) the subgraph of the graph R(d) induced by
graphs G with ¢(G) = ¢. The problem of determining the induced subgraph R(d; c)
is open for general ¢ € [a,b]. A particular question is to decide whether R(d;c) is
connected for each ¢ € [a, b]. The following was proved in [18].

Theorem 5.6 The induced subgraph R (32”; PTHD s connected.

This certainly pointed a direction for an algorithm for determining all cubic
graphs attaining the trivial lower bound for the decycling number proposed in the
first paragraphs of Section 2. In such an algorithm, one needs to guarantee that the
decycling number is held invariant by the switching performed at each step of the
algorithm.

Under what condition on the quadruple of vertices on which a switching is per-
formed, the decycling number is invariant under the switching?
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