Considerg — /=" Z l_l{1+a(.\'—(:)+a2(.\'—a)+...+ad |(.\'—a)}

E N ne A
[Tid--aw-h -*x-by- ... —a’ '(x- bt
bec li
Since, in the product I—[{ 1+ oy - a) + az(.r )+ L+ et My - )} cach factlor is at

most & and one¢ factor 1s 1 and in the product rl e - 1)y —~ o - b)) - az(.\' -b)y - ... -

he B
o’ '(.\' - b)) each factor 15 at most « and one factor 1s « - 1 and ¢ither -t or B can be
empty. then we can estimate g - fas
g - <d - Dnd'
"Hence f=2h—(d-nd '

>(d -1 g - 2" -2 WWd - 1) g~ d = Dnd”

.. 3 g2 .
Now, if ¢ > n~™" " then £ 0 as required.

O

Section 7. Generalized Palev digraphs with the properties Q(n, &) and

O@m, n, k)

In this section. our graphs are directed. Note that for ¢ and « positive integers
which ¢ a prime power and > 1 1s even and (¢ - 1V« 1s odd. there exists a character o of

order ¢ of I, and a( -«) = —u(u) for all a € Iv,. Further more, if a and b are any vertices of

D‘qd' , then
1, if «1s dominates b,
ula — by= <0, if a=h,
0, otherwise,

Yimn

wherew e {e ¥ [hk=1,.,d-1}.

In this section, we will show that the generalized Paley digraphs having properties

O(n, kY and QQn, n, k).



Theorem 7.1. Let g and d be positive integers such that q is a prime power and d > 1 is
even and (¢ — 1)/d is odd. If

g>1 +d -n-dyd" '1Jqg + (1 +kd-d)d" ", 7.1)

then D\ has property Q(n. k). In particular, for k = 1 the graphs P\"" has properny

O(n. k) whenever g = e d™
Proof: Let 4 subset of V(P‘q‘” ) with |4} = n. Then there is a vertex u# & A that dominates
every vertex of 4 if and only 1f

f= Z [Tt +atx—a)+ @’ (x—a) + ... + & Hx - a)}

. . ae A
‘Elq
&8

> (k-1)d".

Let /z be defined similarly as f except that the sum is taken over all x € F,. Now,

by Lemma 2.4, we have

hzg-[1 +(nd—n-dd ']\/5

Consider

h—f= Z ﬁ{ 1 +a(x -a) +a2(.\'+a,)+ o+ \(x—a,-)}, (7.2)

=K =)
where 4 = {a.a>, ..., a,}.

If h — f= O then for some xy the product

1_1 1+ a(xp—aiy+ o (xg — a)+ ...+ o’ "xo - apnt =0 (7.3)
inl .

With out any loss of generality suppose xg = a;. For (7.3) to hold we must have
olay —a) +a(ag —a)+ ..o+ a Nak - a;) = -1 for all i. This means that for i # & a(a, —
a,) + o (ay —a) + ..+ ot l(ak —a,) = d ~ 1. Therefore, a; is unique 1 — f = d" " Then,

since /1 - fcould be 0 we conclude that

h—f<d .
So
f2h-d
Szqg-[1+wd-n-dd" l]\/?] -d .
Now. if inequality (5.1) holds, then /> (k - 1)d” as required. a



For the property Q(m, i, k), we have the following result.

Theorem 7.2. Let ¢ und d be positive integers such that ¢ is a prime power and d > 1 is
even and (¢ — 1)d is odd. If

g>01 +d—n—~dyd "1Jg + (1 +kd—d)d" ™", (7.4)

then D' has property Q(m, n, k).

Proof: Let A and B be disjoint subsets of vertices othf’ with|A|=mand|B|=n.

Then, there are at least k vertices, each of which is dominates every vertex of A but is

dominated by every vertex of B if and only if

= 2, [l +ac-a+dx-a)+ ... +a’ 'x-a)

- as A
.rElq

XEAIB
[J{d-1—ax-b)-c’(x-b)— ... —a’ '(x-b)}
he 8
> (k- 1)d'.
Now, using the method of proof of the theorem 5.1 and 7.1 we have the result. Q

Section 8. Generalized Paley digraphs with the n-e.c. property

In this section, our graphs are directed. Recalled that a digraph D 1s n-e.c. if for

any two subsets A4 and B of vertices of D with 4 m B = and |4 w B| = n, there is a

vertex 1 € A B such that i dominates every vertex of 4 and dominated by every vertex
of B.

Theorem 8.1. Let g and d be positive integers such that g is a prime power and d > 1 is
even and (¢ — 1Yd is odd. If

5
P

bl ‘ _
qg>nd"

then D" has n-e.c. property.

27



Proof: Let 4 and B be disjoint subsets of vertices ofD‘q‘“ with |4« B| = n. Then there 1s

a vertex u € 4 w B that dominates every vertex of 4 but is dominated by every vertex of
B if and only if

/= Z 1—[{ l+a(x—a)+a’(x—a)+ ... +a’ (x—-a)}

aed
S Fq

& INE
[Tt 1 —atx- by—a’(x-b)— ... —a’ x- b)}
be 8
> 0.

Now using the method of proof of the Theorem 4.1 we get /> 0 when
g > ntd"

Hence, the result. a
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_Abstract

A graph G is n-existentially closed or n-e.c. if for any two disjoint subsets 4 and B of vertices of G
with |4 « B| = n, there is a vertex u g A \ B that is adjacent to every vertex of 4 but not adjacent to any
vertex of B. It is well-know that almost all graphs are n-e.c. However, few classes of n-e.c. graphs have
been constructed. A good construction is the Paley graphs which are defined as follows. Let g = 1({mod 4)
be a prime power. The vertices of Paley graphs are the elements of the finite field F,. Two vertices g and &
are adjacent if and only if their difference is a quadratic residue. Previous results established that Paley
graphs are n-e.c. for sufficiently large ¢. By using higher order residues on finite fields we can generate
other classes of graphs which we called cubic and quadruple Paley graphs. We show that cubic Paley graphs

are n-e.c. whenever g > 723" - 2 and quadruple Paley graphs are n-e.c. whenever g > 4> ~ 2. A similar
result for quadruple Paley digraphs is also obtained.

Keywords : adjacency property. n-e.c. property, Paley graph, Paley digraph

1. Introduction

For a fixed integer » 2 1. A graph G is called n-existentially closed or n-e.c. if for
any two subsets 4 and B of vertices of G with 4 m B = & and |4 v B| = n, there is a
vertex u € A \U B that is adjacent to every vertex of 4 but not adjacent to any vertex of B.
Observe that if a graph G has property n-e.c., then G, the complement of G, also has
property n-e.c. It is well-known that almost all graphs are n-e.c. However, the problem
of constructing graphs with the n-e.c. property seems difficult, especially for n > 4.

The n-e.c. property was first studied by Caccetta et al. [9], where they were called
graphs with property P(n). The authors established, using probabilistic argument, the
existence of n-e.c. graphs for a range of n. In particular, they determined the largest
integer {v) for which there exists a graph on v vertices having property P(f{v)) for a
given integer v. They proved that log v — (2 + o(1))log log v < flv)log 2 < log v. In
addition, a class of 2-e.c. graphs was given for all orders 2 9.

; Research supported by the Thailand Research Fund grant #BRG /15/2545.
Research supported by the Western Australia Centre of Excellence in Industrial Optimisation (WACEO).



Bonato at al. [8] constructed a new class of 3-e.c. graphs. based on Hadamard
matrices. They showed that Bush-type Hadamard matrics of order 16m’ give rise to
strongly regular 3-e.c. graphs, for each odd m for which 4m is the order of a Hadamard
matrix. By taking certain affine designs to be Hadamard designs obtained from Paley
tournaments, Cameron and Stark [10] have use probabilistic methods to showed that
many non-isomorphic strongly regular n-e.c. graphs of order (g + 1)* exist whenever q >
167°2%" is a prime power such that g = 3(mod 4).

An important graph in the study of the n-e.c. property is the so-called Paley graph
P, defined as follows. Let g = 1(mod 4) be a prime power. The vertices of P, are the
elements of the finite field F,. Two vertices a and b are adjacent if and only if their
difference is a quadratic residue, that is a — b = y* for some y € F,. The n-e.c. property of
Paley graphs have been studied by a number of authors [3, 5, 7]; a good discussion is
given in the book of Bollobas [7]. With respect to the n-e.c. property, we proved in [3]

" that if ¢ = 1(mod 4) is a prime power with g > {(n — 3)2"'l + 2} \/5 + {(n+1)2"" ' 1},
then P, has the n-e.c. property.

By using higher order residues on finite fields we can generate other classes of
graphs. More specifically, for ¢ = 1{mod 3) a prime power we define the cubic Paley
graph. P! as follows. The vertices of P}’ are the elements of the finite field F,. Two

vertices a and b are adjacent if and only if @ — b = ) for some y € F,. Since g = 1(mod 3)
is a prime power, —1 is a cubic in F,. The condition -1 is a cubic in F, is needed to ensure
that ab is defined to be an edge whenever ba is defined to be an edge. Consequently, P.”

is well-defined. Figure 1(a) gives an example.

For g = 1(mod 8) a prime power. define the quadruple Paley graph, P‘q,“Il as
follows. The vertices of P." are the clements of the finite fieid F,. Two vertices a and &
are adjacent if and only if a - b = y* for some y € F,. Since ¢ = 1{mod 8) is a prime
power, —1 is a quadruple in F,. Therefore. P." is well-defined. Figure 1(b) gives an
example. The cubic Paley graph and the quadruple Paley graph were first defined in [1].

@ Py’ (b) Pi7
Figure 2.1. Graphs P{} and P{3.

Paley constructions have played an important role in constructing classes of graphs
with the n-e.c. property. especially for n 2 4. see [3. 7, 10]. In addition to directly



providing graphs with interesting adjacency properties, Paley designs played an important
role in the construction of strongly regular n-e.c. graphs given in [10]. In the same paper
it was noted that the case of affine geometries in place of Paley designs can provide n-e.c.

graphs only for n < 3. In Section 3, we show that the cubic Paley graph P;’ ' has the n-e.c.

property whenever ¢ > n*3*" "2, and the quadruple Paley graph P!}’ has the n-e.c. property
whenever g > n4>" 2,

Another version of adjacency property that has been studied is the following. Let
m and n be non-negative integers and k& a positive integer. A graph G is said to have
property P(m, n, k) if for any disjoint sets 4 and B of vertices of G with |[4| =m and |[B|=n
there exist at least k other vertices, each of which is adjacent to every vertex of 4 but not
adjacent to any vertex of B. The class of graphs having property P(m. n, k) is denoted by
G(m, n, k). The class G(m. n. k) has been studied by Ananchuen [1], Ananchuen and

.Caccetta [3, 5], Blass et. al. [6] and Exoo [11]. In [1] we proved that the cubic and
quadruple Paley graphs are n-e.c. for sufficially large g.

The concept of n-e.c. property of graphs can be extended to digraphs as follows.
If (i, )) is an arc in a digraph D, then we say vertex i dominates vertex j. A digraph D is n-
e.c. if for any two subsets 4 and B of vertices of D with 4 ~n B = & and

|4 U B| = n. there is a vertex ¥ ¢ A w B such that ¥ dominates every vertex of 4 and
dominated by every vertex of B.

Let g = 5(mod 8) be a prime power. Define the quadruple Paley digraph, D'q'“ as
follows. The vertices of D" are the elements of the finite fields F,. Vertex a joins to

vertex b by an arc if and only if @ — b is a quadruple in F,; that is @ — b = y* for some y
F,. The n-e.c. property of Paley digraphs have been studied by [4. 7].
In Section 4, we prove that DL" has the n-e.c. property whenever g > T S

2. Preliminaries

We make use of the following basic notation and terminology. Let F, be a finite
field of order g where ¢ is a prime power and let F [x] be a polynomial ring over F,,.

A character y of F; , the multiplicative group of the non-zero elements of F,, is a
map from F to the multiplicative group of complex numbers with | x(x)| =1 forall x €

F_ and with x(xy) = x(x)x(y) forany x, y € F; . Among the character of F; , we have the
trivial character y, defined by %.(x) =1 forallx e F; ; all other character of F; are called

nontrivial. A character y is of order 4 if x" = Xo and d is the smallest positive integer
with this property.

It is customary to extent the definition of nontrivial character y to the whole F, by
defining %(0) = 0. For y, we define %4(0) = 1.

Observe that

x'(a) = x(a"), 2.1



for any a € F, and ¢ a positive integer.
The following lemma, due to Schmidt [12], is very useful to our work.

Lemma 2.1. Let x be a nontrivial character of order d of F,. Suppose f(x) € F,[x] has
precisely s distinct zero and it is not a d* power; that is fx) is not the form c{g(x)},
where ¢ € Fy and g(x) € Fy[x]). Then

S x| <¢s-1)fg. Q

Let g be a fixed primitive element of the finite field F,; that is g is a generator of
the cyclic group ¥, . Define a function o by
- ' 2wt
a(gh=e? ,
where i = —1. Therefore, a is a cubic character, character of order 3, of F,. The values of

2r

o are the elements of the set {1, ®, ®?} where ® = e 3 . Note that a? is also a cubic
character. Moreover, if @ is not a cubic of an element of F; , then a(a) + o*(@) = —1. This

fact is very important in our methodology.
Further, define a function 3 by
Bgh=14"
Therefore, B is the quadruple character. character of order 4. of F;,. The values of P are in
the set {1, —1, i, —i}. Observe that B is also a quadruple character while Blisa quadratic
character. Moreover, if a is not a quadruple of an element of F ; , then B(a) + BX(a) + B (a)

= —1. This fact is very important in our methodology.

The following lemmas were proved in [1].

Lemma 2.2. Let o be a cubic character of ¥, and let A and B be disjoint subsets of F,
with |A U B|=n. Put

g=Y JI{1+ax-a)+?x-a)} [[{2-alkx—b)—o’(x~ b))

xeF, oged hel

Then
gz 28g—@m2"'-2"+1)2"Jq. Q

Lemma 2.3. Let B be a quadruple character of ¥q and let A and B be disjoint subsets of
F, with |4 U B|=n. Put

h=3 TJ{1+Bx-a)+p(x—a)+P(x—a)} [ {3 -B(x—b)—P(x—b)— B3(x— b)}.

xeF, ued beH

Then
h23%g—@m2""'-2"+1)3"q. Q



3. The cubic and quadruple Paley graphs

FFor ¢ = 1tmod 3) a prime power. there cxists a cubic character « of F, and «(—a) =
af{a) for all @ € F,. Further, for ¢ = limod 8) a prime power. there exists a quadruple
character § of F, and B(—0) = B(e) toralt u € F,.

Observe that if « and & are any vertices of £ then for /=1 and 2

1. if «is adjacent to b,
ota—hy={0. if =5,
™ Or . otherwise.

Also. if ¢ and b are any vertices of'Pf,“ .thentforr=1and?3

1. if ¢ 1s adjacent to b,
RBla — b) = 1 0. if = h.
| -1.70r —i. otherwise.

Note that B~ is a quadratic character: that is
1. af a = hisaquadratic ressidue.
Ba—bhy=14 0, i = h

—1. othernwise.

Qur first result concerns cubic Paley graph having property n-c.c. for any tixed
integern = 1.

Theorem 3.1. Ler g = Limod 3) he a prime povwer. If
Rl 7
g - }2~3311 =
then P;"" has the n-e.c. property.  Furthermore. for n > 1 the graph P'lf' is n-e.c

. 2aln 4
whenever g > n= 37" 7.

Proof: Let 4 and B be disjoint subsets of 117" ) with |4 W B| = n. Then there is a vertex

u & A B that adjacent to every vertex of 4 but not adjacent to any vertex of 5 1f and

only if
f= Z n-{ 1 + a(x — )+ uz(,\‘ — )} 1—‘[{ 2-—-olx—b) - az(.\‘ — by}
\';sllin o nes
> Q.
Let

g=> Jlit+atx-ay+a’r—an} [ [{2 -y = b) - a’(x - b)}.

.\‘El:q el hehR

Now, by Lemma 2.2 we have



H — ~—
gz 2 g~ 2" 2"+ 12" g

Consider
g—r/= Z 1—[ f1+ (v —a)~+ a:(.\' —a)y 1_[ P2 — oy — h)y—- az(.\- —- .

S re M

Since. in the product H: I + oy — ay+ o {x — ) each tactor is at most 3 and one factor

i1s 1 and in the product 1_[ § 2 — ol — b — a{x — b))} each tactor 15 at most 3 and one
heH
factor is 2 we have
g <3+ 3" 2R
= (4" + 2BH3" !
<23t

Consequently.

fz2" g2 =2 2 \/E — 23
Now. if ¢ > #7377 _then /> 0 as required.
It is easily cheeked that /> 0 when ¢ > #73% ¥ for n > 1.

C

Remark 3.1. The bound for ¢ in Theorem 3.1 can be improved to 77377 for 1 < » < 55.

We now turn our attention to the adjacent property of the quadruple Paley graph
P. g4

of

Theorem 3.2 Ler g = Lamod 83 he u prime pover. s
g =g

then P4 has the n-e.c property.

Proof: Let 4 and 8 be disjoint subscis of l'(P'_H" ywith |4« B] = . Then there is a verex

u e 4w B that adjacent 1o every vertex of .4 but not adjacent to any vertex of 3 1t and
oniy af

1= > n{1+B(.\'—u)+B:l.\'—u)+[33(.\‘*ﬁ)}1_[[3—[3(-\'—17)—[33(.\'—/5)—B:‘(.\'—b)‘.

vet aw he h
> 1)
L.et
= 3_‘ ﬂ{ 1+ (v =)~ B:(x—u)* By —ai! I—[‘: 3—B(.\'*h)*ﬁ:(.\f—b)ABE(.\‘—h];

ve b WS Ve

Now,o by Lemma 2.3, we hine

i . P -
hz 37 4—(n2" L B

Consider

nr= 3> =B ar=Ra-a - B T3 -Biv—m—By—h—plx—hy.

N LR L T =



Since. in the product ]—[ U1+ Bx - a) + B(x - o) + B(x — @)} each factor is at most 4 and

ae |

one factor is 1 and in the product l—[ (3 —PBx—h)—P(x = h)— plix = b)) each factor is at

i
most 4 and one factor is 3 we have
h—f< |44+ 384"
< 3pd7 "
Consequently.
f2 37 g2 =2+ 3 g -3

Now. if ¢ > 1n7d¥ ™ then /> 0 as required. o

Remark 3.2. The bound for ¢ in Theorem 3.2 can be improved to ¢ > 5 4" % for n > 1
ormd? ¥ for 1 €1 <14,

4. Quadruple Paley digraphs

In this section. our graphs are directed. Recalled that, digraph D is n-e.c. if for
any two subsets o1 and B of vertices of D with .4 m B =& and |4 v Bl = n. there is a
vertex 7 g W B such that # dominates every vertex of 4 and dominated by every vertex
of B. For ¢ = 5(mod 8) be a prime power. Define the quadruple Paley digraph D°" as

follows. The vertices of D'j’ are the clements of the finite freids F,. Vertex « joins 1o

vertex b by an arc it and onlyv if ¢ — b 15 a quadruple in F,. Since ¢ = 3(mod §) 15 a prime
power. —} 1s not a quadruple 1in F,,. The condition 1 1s not a guadruple in F, is needed 10
ensure that (b, «) 15 not detined to be an arc when (a. A} 15 defined w be an arc.
Consequently, D'"" is well-defined. Towever, D" is not a tournament. Figure 4.1

displays the digraph D{3'. The quadruple Paley digraph was [irst defined in [2].

Figure 4.1. Paley digraph D3}



For g = 5(mod 8) a prime powcer, there exists a quadruple character 3 ot F, and

noting that if ¢ and A arc any vertices ot 2" then forr =1 and 3

1 it « donunates A,
Blla—hmi= 4 0O i a = h,
= lior -1, otherwise.
Note that B° is a quadratic character. Further. Bt—uy = =Pley forany « e F,.

Theorem 4.1, Leoi g = Stmod &) he a prime povweer. Jf
G =

then D'V has n-c.c properiy
ot A B

-Proof: Let.d and 72 be disjomt subsets of vertices of I)‘j’ with 1w B] = »n. Then there is

avertex 1 ¢ 4w B that dominates every vertex of o but s dominated by every vertex of
Bt and onlv if

I= Z ]_[‘. I+ y—w)+ B:(.\‘—— )+ [’»';(.\‘Wu): 1_]‘ 3—B(.\'—h)u[’»:(_\'—h)rBB(_\'fh)_:

e b NI
v e M

> 0).
Now using the method of proof ot the Theorem 3.2 we wet £ = O when
q - ’7,__‘..‘1.‘ - -
Hence. the result. .

1

Remark 4.1. The bound for ¢ in Theorem 4.1 can be improsed o o747 7 for 1 € n < 14,
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Abstract

Let m and n be non-negative integers and & a positive integer. A graph G is said
to have property P(m.n.k) if for any disjoint subsets .4 and B of vertices of G with
|A] = m and |B| = n there exist at least k other vertices. each of which is adjacent
to every vertex of A but not adjacent to any vertex of B. Furthermore, a graph G is
called n-existentially closed or n-e.c. if for any two subsets A and B of vertices of &
with ANB = & and |4 U B| = n. there is a vertex u ¢ AU B that is adjacent to
every vertex of A but not adjacent to any vertex of B. It is well-known that almost
all graphs satisfy the P(m.n.k) property and the n-e.c. property. However, the
problem of constructing graphs with the P{(m.n, k) property and the n-e.c. property
seems difficult. In this paper. we show Lhat all sufficiently lerge generalized Paley
graphs defined by using higher order residues on finite ficlds satisfy the P{m.n. k)

property and the n-e.c. property. Similar results for generalized Paley digraphs are
also obtained.

2000 Mathematics Subject Classification: 05C75: 05C20
Keywords: adjacency property, n-e.c. property, Paley graph. Paley digraph

1. Introduction

Let m and n be non-negative integers and k a positive integer. A graph G is
said to have property P(m.n. k) if for any disjoint subsets A and B of vertices of
G with {A| = m and |B| = n there exist at least & other vertices, each of which
is adjacent to every vertex of A but not adjacent to any vertex of 3. The class
of graphs having property P(m, n. k) is denoted by G(m. n.k). Observe that if
a graph G has property P(m.n. k), then G. the complement of G, has property
P(n,m, k). It is well-known (6] that almost all graphs have property P(m.n. k).
Despite this resuit, few graphs have been constructed which exhibit the property
P(m,n, k). The class G(m,n.k) has been studied by many authors including:

1Research supported by the Thailand Research Fund grant #BRG/15/2545.
2Research supported by the Western Australia Centre of Excellence in Industrial
Optimisation (WACEOQO).



Ananchuen [1}; Ananchuen and Caccetta (2, 4): Blass et al. [6]: Bollobas [7]:
and Exoo (11].

An important graph in the study of the property P(m,n.k) is the so-called
Paley graph P, defined as follows. Let ¢ = 1{mod 4) be a prime power. The
vertices of P, are the elements of the finite field F,. Two vertices a and b are
adjacent if and only if their difference is a quadratic residue. that isa—b = y? for
some y € Fq. The adjacency properties of Paley graphs have been studied by a
number of authors [2, 4, 6, 7]: a good discussion is given in the book of Bollobas
(7). With respect to the property P(n.n,1) we proved in [2] that if ¢ = 1(mod
4) is a prime power with g > ((2n — 3)22"~! + 4)? | then F, € G(n.n.1).

By using higher order residues on finite fields we can generate other classes
of graphs. More specifically, let ¢ and d be positive integers such that ¢ is a
prime power and

d>1is odd or (g — 1)/d is even.
We define the generalized Paley graph, P,}d) as follows. The vertices of Pgd) are
the elements of finite field F,. Two vertices ¢ and b are adjacent if and only if
a—b = y? for some y € F,. Since ¢ is a prime power and d > 1 is odd or (g—1)/d
is even, —1 = y9 for some y € F,. The condition —1 is a d*" power of an element
of F, is needed to ensure that ba is defined to be an edge precisely whenever

ab is defined to be an edge. Consequently, P,;d) is well-defined. Clearly. P,;z) is

the Paley graph. Péa) is called the cubic Paley graph and Pé“ the quadruple
Paley graph in [1]. It has been proved (1! that all sufficiently large cubic and
quadruple Paley graphs satisfv the P{m, n, k) property.

In Section 3. we will show that the generalized Paley graphs satisfy the
property P(n.n,1) whenever ¢ > n2d*™.

Another version of adjacency property that has been stuaied is the following.
For a fixed integer n > 1. A graph G is called n-existentially closed or n-e.c. if
for any two subsets A and B of vertices of G with ANDB = @ and |Au B| = n.
there is a vertex u ¢ AU D that is adjacent to every vertex of .4 but not adjacent
to any vertex of B. Observe that if a graph G has property n-e.c.. then G. the
complement of G. also has property n-e.c. It is well-known that for any fixed n.
almost all graphs are n-e.c. However, the problem of constructing graphs with
the n-e.c. property seems difficult, especially for n > 4.

The n-e.c. property was first studied by Caccetta et al. |9], where they were
called graphs with property P(n). The authors established, using a probabilistic
argument. the existence of n-e.c. graphs for a range of n. In particular, they
determined the largest integer f(n) for which there exists a graph on n vertices
having property P(f(n)}) for a given integer n. They proved that log n — (2 +
o{l1))loglogn < f(n)log2 < logn. In addition, a class of 2-e.c. graphs was
given for all orders > 9.

Bonato et al. [8] constructed a new class of 3-e.c. graphs. based on Hadamard
matrices. They showed that Bush-type Hadamard matrics of order 16m? gives
rise to strongly regular 3-e.c. graphs. for each odd m for which 4m is the order
of a Hadamard matrix. By taking certain affine designs to be Hadamard designs
obtained from Paley tournaments. Cameron and Stark [10] have use probabilis-



tic methods to show that many non-isomorphic strongly regular n-e.c. graphs of
order (g+1)? exist whenever ¢ > 16n222" is a prime power such that g = 3{mod
4). Ananchuen and Caccetta [5] show that the cubic Paley graph P.,“” has the

n-e.c. property whenever ¢ > n23%"-2, and the quadruple Paley graph P\%
has the n-e.c. property whenever ¢ > n243"~2. In section 4, we prove that the
generalized Paley graph has the n-e.c. property whenever ¢ > n2d3"-2.

The concept of adjacency property of graphs can be extended to digraphs
as follows. If (i,j) is an arc in a digraph D. then we say vertex i dominates
vertex j. A digraph D is said to have property Q(n.k) if every subset of n
vertices of D is dominated by at least k other vertices. Graham and Spencer
[12] defined the following digraph. Let p = 3{mod 4) be a prime. The vertices
of digraph D, are {0.1....,p — 1} and D, contains the arc (a.b) if and only if
a — b is a quadratic residue modulo p. The digraph D, is sometimes referred
to as the Paley tournament. Graham and Spencer [12] proved that D, has
property Q(n.1) whenever p > n222"-2. Bollobds [7] extended these results to
prime powers. More specifically, if ¢ = 3(mod 4) is a prime power, the Paley
tournament D, is defined as follows. The vertex set of D, are the elements
of the finite field F,. Vertex a joins to vertex b by an arc if and only if e — b
is a quadratic residue in F;. Bollobas [7] noted that D, has property Q(n.1)
whenever ¢ > {(n — 2)2"~! + 1} + n2"~!. Ananchuen and Caccetta [3] proved
that D, has property Q(n. k) whenever ¢ > {(n — 3)2"~ 4+ 2} + k271

Let ¢ and d be positive integers such that g is a prime power and

d > 1 is even and (g — 1)/d is odd.
We define the generalized Peley digraph. D.Sd) as follows. The vertices of D.Sd)
are the elements of the finite field F,. A vertex a joins to vertex b by an arc if
and only if a — b = y® for some y € F,. Since d > 1 is even and (g — 1)/d is odd,
—1 is not a d*® power of any element of F,. The condition —1 is not a d'* power
of any element of F, is needed to ensure that (b.a} is not defined to be an arc
whenever {a.b) is defined to be an arc. Consequently. D.S,d’ is well-defined.

In Section 5, we show that the generalized Paley digraph D,(‘-,'JU has the prop-
erty Q(n.1) whenever ¢ > n?d?".

A digraph D is n-e.c. if for any two subsets A and B of vertices of D with
ANPB =2 and |AU B| = n. there is a vertex u § AU B such that u dominates
every vertex of A and dominated by every vertex of 3.

In Section 6. we show that the generalized Paley digraph D.(,‘” is n-e.c. when-
ever ¢ > n2d*" -2,

2. Preliminaries

We make use of the following basic notation and terminology. Let F, be
a finite field of order ¢ where ¢ is a prime power. A character x on F;. the
multiplicative group of the non-zero elements of F,, is a homomorphism from F?
to the multiplicative group of complex number with [x(z)| = 1 for all z. Among

the characters of F;. we have the trivial charocter x, defined by xo(z) = 1 for



all x € Iz all other characters of F; are called nontrivial. A character x is of
order d if x? = \, and d is the smallest positive integer with this property.

It is customary to extent the definition of character x to the whole F, by
putting x(0) = 0 and 3,.(0) = 1.

Observe that (see[13])

d -1, if = y* for some y € F;,
> x(z) = ¢ o. ifr=0, (2.1)
A of orde:di\-idiug d —1. otherwise.
This fact is very important in our methodology. Moreover,
x(a”) = x"{a}, (2.2)

for any a € F, and r is a positive integer.
The following lemma, due to Schmidt [13], is very useful to cur work.

Lemma 2.1. Let \ be a nontrivial character of order d of ¥,. Suppose
f(z) € F,|x] has precisely s distinct zero and it is not a d'* power; that is f(x)
is not the form c{g(r)}?. where c € F, and g{z) € Fylx]. Then

P2 x(flz) < (s - 1}/4 Q

refF,

For g a fixed primitive element of the finite field F,: that is g is a generator
of the cyclic group F;. Define a function a by

algh) = ™.
where i2 = 1. Therefore. a is a character of order dividing d and the value of

a are the elements of the set {e%u ik =0.,1.....d — 1}. It is not too difficult to
verify that a.a?.....a"?"! are characters of order dividing d «nd are all different.

The following two lemmas are extensively used in establishing our results.

Lemma 2.2. Let a be a character of order d of F, and let A and B be
disjoint subsets of F,. Put

9= S [II (1 +alz—a)+a?(z-a)+ .. +a? (z - a)}
reF, ucA

I1{{d=1)—alz —b) —a?(z —b) — ... — a® (z — b)}].
beB
Then

g>(d-1)"g~ (#2- -2 + 1) (d - 1) /G .
where |A|=m.|B|=n and m+n =1t.

Proof: Let AU B = {c;.¢3.....¢;}. Expanding g and noting that
3 (d-1)" = (d — 1)"g, we can write

z€EF,
¢
lg—-(d—-1)"ql <| X 2 2 (d—1)"Ix(z — )|+
ref; xe{a.al....ad-1} i=1
| 3 2. 3 (d— 1) 2x1(x — @, )x2{z — cig)| + -t

zeF, x;€{aal.....af-1} i1<i2



DX 3 2. (@1 txa(w =y )xa (T — ip )X (T — )

x€Fg y,e{a.a?,. . ..ad 1} n1<iz... <1,
+oo+| 2 P (d-1)"*x1(x — c1)xa(x — €2)...xe{Z — &)l
reF, 3,€{a.al.....a?-'}
Now, by {2.1). (2.2) and Lemima 2.1 we have
! t

g-(@-1ra < S (d -2 - 1 ($) s~ 1)va

= (t2!7 - 2¢ 4 1)(d — 1)*.
Therefore. g > (d — 1)"g — (2'~! — 2! 4+ 1)(d — 1)! /G as required. O

Lemma 2.3. Let a be a character of order d of Fy and let A be a subsets
of n vertices of Fy. Put

h= Y TJI{l+calz-a)+a?(x—a)+..+a? !z -a)}.
re¥F, acA
Then

h2gqg-[1+(nd—n-dd 'l /g

Proof: Let A = {a,.az.....a,}. We can write
n
h= 31+ > Soxlr —ai)+
TeF, vel{a.a?.. . ..a¥- 1} 1=1

2 2 3 onlr —ai)xalr —ai,) + ..+

TEF, \,e{a.a?. ...a’ 1} n<n

2 alr —ai)x2(z - aq)xs{x —ai, ) + .+
*€Fg 3 €{a.0? ... ad-1} i1<2z... <1,

> X1(z — a1)x2(x — az)...xn(x — aq).

z€F; 3 e{a.a?,. . ad-1}

Now, by (2.1). {2.2) and Lemma 2.1 we have

h-ar< S@-1(7)e-1va

=L+ (nd = n — d)d"~'] /3.
Therefore. h > ¢ — |1 + (nd — n — d)}d"~'|/§ as required. O

3. The property P(m.n.k)

Note that, for ¢ and d positive integers such that ¢ is a prime power and
d > 1 is odd or {g — 1)/d is even, there exists a character a of order d of F; and
a(—-a) = afa) for all a € F,. Furthermore, if a is a character of order d of F,

and a and b are vertices of P{”, then

1, if a is adjacent to b,
ala—b) = 0, ifa = b,
w. otherwise;

where w € {e*™ |k =1,....d - 1}.
Our first result concerns the generalized Paley graphs having property P(m.n. k).

Theorem 3.1. Let q and d be positive integers such that g is a prime power
and d > 1 is odd or (g — 1}/d is even. If

5



g> (t27' =2t +1)(d - 1)™ /G + [m + (d — L)n + (k — 1)d)(d — 1)~"d*~!,(3.1)
then qu € G(m.n, k) for all m,n with m+n < t.

Proof: 1t clearly suffices to establish the result for m +n = t. Let 4 and
B be disjoint subsets of V(P,}d)) with |A| = m and |B| = n . Then there are
at least k other vertices, each of which adjacent to every vertex of A but not
adjacent to any vertex of B if and only if

Ff= X [ll{l+alz—-a)+a%(x—a)+ .. +a% 1z - a)}

xeF, acA
¢ AUB
I[T{{d=1)—a(z—b) —a?(z-b) —... —a® !z — b}}]
beB
> kdt.

To show that f > kd', it is clearly sufficient to establish that f > (k — 1)d*.

Let g be defined similarly to f except that the sum is taken over all z € F,,.
Now, by Lemma 2.2 we have

g=2(d—1)"q— (2"} — 2t +1)(d - 1) /g.

Consider
g—-f= ¥ [II{1+alr-—a)+a?(z—a)+..+a’ Yz —a)}
zCAUD a€A
I1{d—1)-afx—b)-a?(z—b) — ... —a? }z — b)}]
Y y:]

<d 'm+(d-1)d"n
= m=(d - 1)njdt—?

since, in the product [] {1 + a(z — a) + a%(x — a) + ... + &~ }(z — a)} each
a€A
factor is at most d and one factor is 1 and in the product [ {{d — 1)} - a(x —
beB

b) — a®(x — b) — ... — a® !(x — b)} each factor is at most d and one factor is
d — 1. Therefore,
fzg—td-1d1
>(d—1)"g— (2" -2 + 1(d - 1) /g — [m + (d — 1)n|d* .
Now, if inequality (3.1) holds, then f > (k — 1)d* as required. 0

For the case m = n, we have the following sharper result.

Theorem 3.2. Let q and d be positive integers such that q is a prime power
and d > 1 is odd or (g — 1)/d is even. If

g>(n2?" —2" + 1)(d - 1) /@ + [(d - 1)n+ (k — 1)|(d — 1)~"d?*~!, (3.2)
then P.,(‘ﬂ has property P(n.n.k). In particular, for k =1 the graphs Péd) has
property P(n.n,1) whenever ¢ > n%d".

Proof: Let A and B be disjoint subset of V(P{?) with |4] = |B| = n. Then
there is a vertex u ¢ AU B that adjacent to every vertex of A but not adjacent
to any vertex of B if and only if

f= ¥ IITO0+alz-a)+a%(x—a)+..+a% (z —a)}
reF, a€A
rgAUD



bIe_[B{(d —1)—a(z—b) -a®(xz - b) — ... —a? Yz — b)}]
> (k — 1)d?".
Let h be defined similarly to f except that the sum is taken over all x € F,.
Now, by Lemma 2.2, we have
h > (d-1)"¢q - (n2¥ — 22" 4+ 1)(d — 1)*" /3.
Consider

h—f= 2 ﬁ[{l+0(I—a:’)+¢12(1—ﬂi)+---+ad_l(-'-"—as')}
rEAUB i=1

{(d-1)—a(z—b) —a?(z —b) — ... —a®"(z - ;) }],(3.3)
where A = {a;,4a0.....a,} and B = {b),bs,.... 5, }.
IE. h — f # 0. then for some z, the product
" II{1 + a{xe — ai) + a®(z, — a;) + ... + a®~ Yz, — a;)}
im1
{(d—-1) —alz, - b)) —a?(zo — &) —... —a% Nz, — b;)} # 0. (3.4)
With out any loss of generality suppose x, = ai. For (3.3) to hold we must
have
alax — a;) + a?(ax — a;) + ... + a® " ax — a;) # —1
and
alax — b;) + a?(ax — b)) + ... +a% Yax — b)) # d — 1 for all <.
This means that
alar —a;) +o?(ax —ai) +...+a% ey —a;)=d—-1fori# k
and
alakr — by) +a?(ax — b;) + ... + % (ar — b;) = —1 for all i.
Hence, the term in (3.4) with z = b; for all i contributes zero to the sum.
Thus we can write (3.3} as

h—f= ST + oz — ai) + 02z — ag) + ... + a®~}(z - a:)}
TEA i=]
{(d=1) —a(x — &) —a®(z— b} — ... — a® 1z - b;)}]
< n(d — 1)@ 1,

1
since in the product [] {1 + a(z — a;) + a?(z - a;) + ... + a¥"}(z — a;)} each
i=1

n
factor is at most d and one factor is 1 and in the product [] {(d - 1) — a(z —
=1

bi) — a?(x — b;) — ... — a® " 1{x — b;)} each factor is at most d and one factor is
d — 1. Therefore,
f>h-n(d~ 1d*!
f>(d-1)"g— (n22" — 22" 4+ 1)(d - 1)?" /g — n(d — 1)d*"L,
Now, if inequality (3.2) holds. then f > (k — 1)d2" as required. It is easily
checked that f > 0 whenever g > n2d*" for k = 1. 0

4. The n-e.c. property

In this section, we will show that the generalized Paley graphs having prop-
erty n-e.c.



Theorem 4.1. Let q and d be positive integers such that q is a prime power
and d > 1 is odd or (g — 1)/d is even. If
q Y n2d3n—2l
then Pq(d) has the n-e.c. property.

Proof: Let A and B be disjoint subsets of V(P,;‘n) with |JAU B| = n. Then
there is a vertex u ¢ AU B that adjacent to every vertex of A but not adjacent
to any vertex of B if and only if

f= % [[I{t+a(r-a)+a¥z—a)+..+a% Yz —a)}

reF, acA
g AUB
I1{(d - 1) - a(z - b) — a%(z — b) — ... - a¥~1(z — b)}]
>0 be B

Let g be defined similarly to f except that the sum is taken over all x € F,,.
Now, by Lemma 2.2, we have
g (d-1)Blg—(n2-' —27" 4 1)(d - 1) /q.
Consider
g-Ff= ¥ [[I{1+alr—ea)+a?(z-a)+..+a? !z -a)}
reAuB acA

[1{(d—=1)-alzx—b)—a?x—b)—..—-a? Yz -Db)}]
be B
Since, in the product [] {1 +a(r—-a)+a?(z-a)+..+a% }(z - a)} each
ac A
factor is at most d and one factor is 1 and in the product [] {(d - 1) — a(x —
be B
b) —a?(x ~b)—...—a? (xr —b)} each factor is at most d and one factor isd — 1
and either A or B can be empty. then we can estimate g -- f as
g—f<(d-1)nd"!.
Hence f>2h—(d-1)nd"-!
>(d—1)Blg - (n2"" ' - 2" + 1)(d - 1)" /G — (d — 1)nd"" L.
Now, if ¢ > n2d3"~2, then f > 0 as required. O

5. The property Q(n.k)

Note that for g and d positive integers which ¢ a prime power and d > 1
is even and (g — 1)/d is odd. there exists a character a of order d of F, and

a{—a) = —a(a) for all u € F,. Further more. if a and b are any vertices of Df,d).
then
1, if a dominates b,
ala —b) = Q. ifa=0=5b,
w, otherwise;

where w € {e*™ |k =1.....,d - 1}.

In this section, we will show that the generalized Paley digraphs having
property Q{n. k).

Theorem 65.1. Let g and d be positive integers such that q is a prime power
and d > 1 is even and (g — 1)/d is odd. If

8



g> L+ (nd —n—d)d" '/ + (1 + kd — d)d"-?, (5.1)

then D‘(,d) has property Q(n,k). In particular, the graphs Df,d) has property
Q{(n.1) whenever q > n3d?".

Proof; Let A subset of V(D) with |A| = n. Then there is a vertex u ¢ A
that dominates every vertex of A if and only if

Ff=% M{l+alz—a)+ae?(x—a)+..+a% Yz —a)}
I€F, a€A
€A
> (k — 1)d™.
Let h be defined similarly to f except that the sum is taken over all x € F,.
Now, by Lemma 2.2, we have
h2q—[1+(nd—n-d)}d1],/3.
Consider n
h-f=3Y {1+ alz — a;) + a®(z — a;) + ... + % Yz — a;)}. (5.2)
I€EA i=1
where A = {a;,aa.....a,}.

If h — f # 0. then for some z, the product

n

[1{1 + a(z, — a;) + a®(z, — ;) + ... + a®*" Yz, — a;)} #0. (5.3)
im=]

With out any loss of generality suppose z, = ar. For (5.2) to hold we must
have a{ay — a;) + a®(ax — a;) + .- +oz""‘1(a;r — a;i) # —1 for all i. This means
that for i # k.a(ax — a;}+ a?(ax — a:) + ... + a%"(ayx — a;) = d — 1. Therefore,
ax is unique A — f = d"~1. Then. since h — f couid be 0 we conclude that

h—f>d 1t

So

f > h— dn—l
2q—-[1+(nd—n-dyd'),/g—d 1.

Now, if inequality (5.1) holds, then f > (k — 1)d" as required. It is easily

checked that f > 0 whenever ¢ > n2d?" for &k = 1. a

6. The n-e.c. property for digraphs

Recalled that a digraph I is n-e.c. if for any two subsets A and B of vertices
of D with AN B = & and |[AU B| = n, there is a vertex u ¢ AU B such that u
dominates every vertex of A and dominated by every vertex of B.

Theorem 6.1. Let g and d be positive integers such that g is a prime power
and d > 1 is even and (g — 1)/d is odd. If
q> nzdan—z‘
then D.Sd) has the n-e.c. property.

Proof: Let A and B be disjoint subsets of vertices of D},d) with |ANB| = n.
Then there is a vertex u € A N B that dominates every vertex of A but is
dominated by every vertex of B if and only if



Ff= X [[I{1+alz-a)+a?(x—a)+..+a% }z - a)}
rzF, a€A

z¢ AUB
[T {(d-1)—a(z—b) —a?(x —b) — ... — a?(z — b)}]
> 0. beB

Now using the method of proof of the Theorem 4.1 we get f > 0 whenever
q > n?d3"-2,
Hence, the resuit. O
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