

บทความเรื่อง

A characterization of maximal non k -factor-critical graphs

โดย

N. Ananchuen, Silpakorn University, Thailand

L. Caccetta, Curtin University of Technology, Australia

W. Ananchuen, Sukhothai Thammathirat Open University, Thailand

สนับสนุนโดย สำนักงานกองทุนสนับสนุนการวิจัย
(ความเห็นในรายงานนี้เป็นของผู้วิจัย ลาก. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

A *matching* M in G is a subset of $E(G)$ in which no two edges have a vertex in common. A vertex v is saturated by M if some edge of M is incident to v ; otherwise v is said to be unsaturated. A matching G is *perfect* if it saturates every vertex of G . For simplicity we let $V(M)$ denote the vertex set of the subgraph $G[M]$ induced by M . A graph G of order p is *k-factor-critical*, where p and k are positive integers with the same parity, if the deletion of any set of k vertices results in a graph with a perfect matching. G is called *maximal non-k-factor-critical* if G is not k -factor-critical but $G + e$ is k -factor-critical for every missing edge $e \notin E(G)$. The concept of k -factor-critical is a generalization of the concepts of factor critical and bicritical. k -factor critical graphs have been studied by many authors including Favaron [3, 4] Favaron and Shi [6, 7] and Favaron et. al. [5].

A closely related concept to k -factor-critical is that of *k-extendable*. For $1 \leq k \leq n - 1$, a connected graph G of order $2n$ with a perfect matching is k -extendable if for every matching M of size k in G there is a perfect matching in G containing all of edges of M . For convenience, a graph G with a perfect matching is said to be 0-extendable. G is called *maximal non-k-extendable* if G is not k -extendable but $G + e$ is k -extendable for every missing edge $e \notin E(G)$. A connected bipartite graph G with a bipartitioning set (X, Y) such that $|X| = |Y| = n$ is *maximal non-k-extendable bipartite* if G is not k -extendable but $G + xy$ is k -extendable for any edge $xy \notin E(G)$ with $x \in X$ and $y \in Y$. Extendable graphs have been studied by many authors including Plummer [9], Ananchuen and Caccetta [1], Kawarabashi et. al. [8], Ryjáček [12] and Yu [14]. Excellent surveys are the papers of Plummer [10, 11]. In this paper, we introduce the concepts of maximal non- k -factor-critical, maximal non k -extendable and maximal non k -extendable bipartite graphs.

A $2k$ -factor-critical graph is obviously k -extendable but the converse need not be true since a complete bipartite graph $K_{n,n}$ is k -extendable for $0 \leq k \leq n - 1$ but is not $2k$ -factor-critical. Further, the graph G formed by joining two K_{2k} 's with a perfect matching is k -extendable non-bipartite but is not $2k$ -factor-critical. On the other hand, the graphs G_1 and G_2 , shown in Figure 1.1, are both maximal non-2-extendable graphs and maximal non-4-factor-critical graphs whilst the graphs G_3 and G_4 , shown in Figure 1.2, are both maximal non-2-extendable bipartite graphs since the edge u_1v_1 together with the edge u_2v_2 cannot extend to a perfect matching in each G_i for $1 \leq i \leq 4$. Note that these graphs are 1-extendable. This is not coincidence as it is true in general, a fact we establish later. However, definitions of maximal non- k -factor-critical, maximal non- k -extendable and maximal non- k -extendable bipartite graphs have no suggestion on this property.

Further, the above examples suggest that there may be a relationship between maximal non- k -factor-critical graphs and maximal non- k -extendable graphs. In this paper, we establish the strong connection between these two classes of graphs. More precisely, we establish that for a connected graph G on $2n$ vertices with a perfect matching, G is maximal non- k -extendable if and only if G is maximal non- $2k$ -factor-critical for $1 \leq k \leq n - 1$. We also provide a characterization of maximal non- k -factor-critical graphs, maximal non- k -extendable graphs and

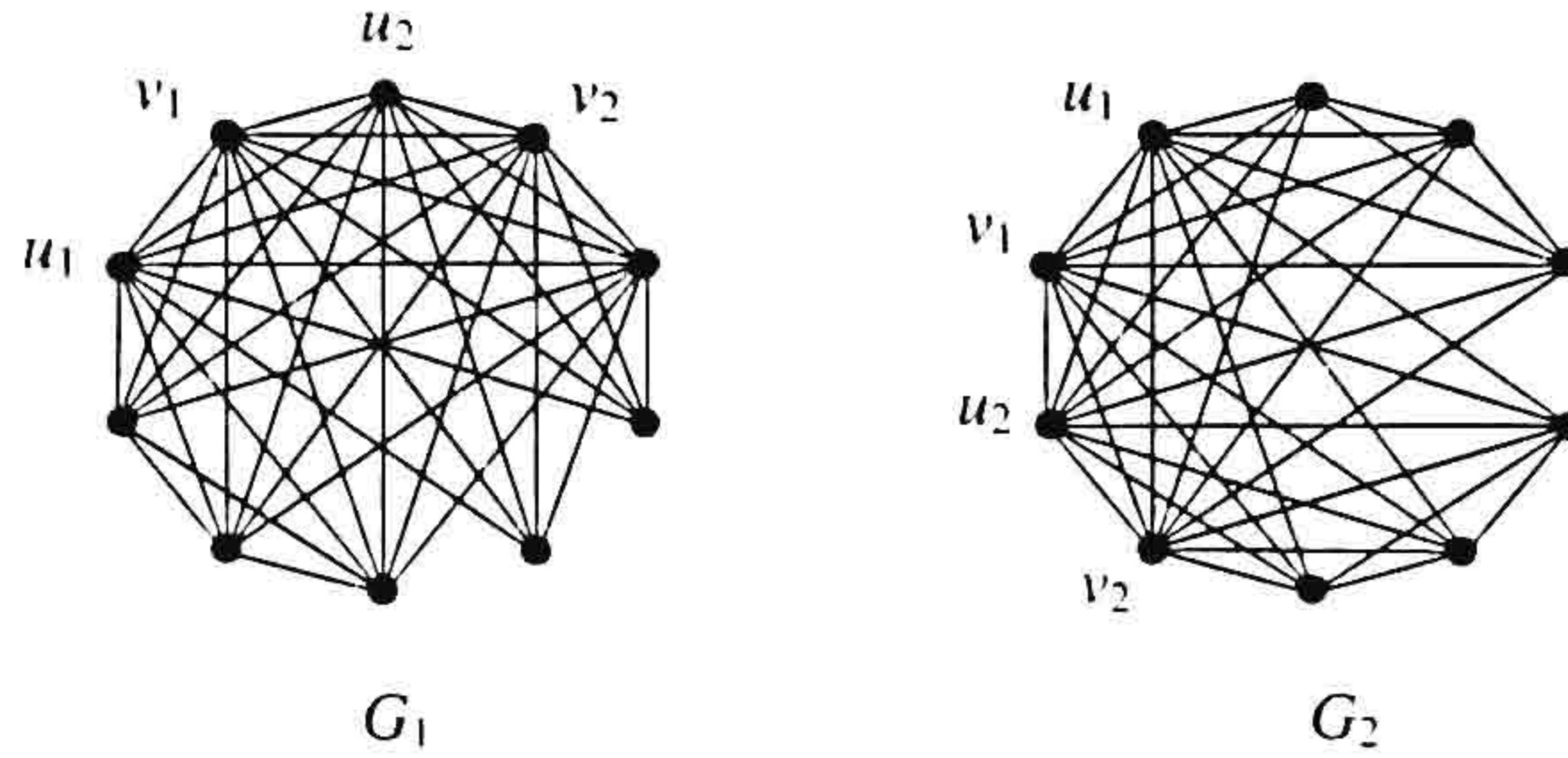


Figure 1.1

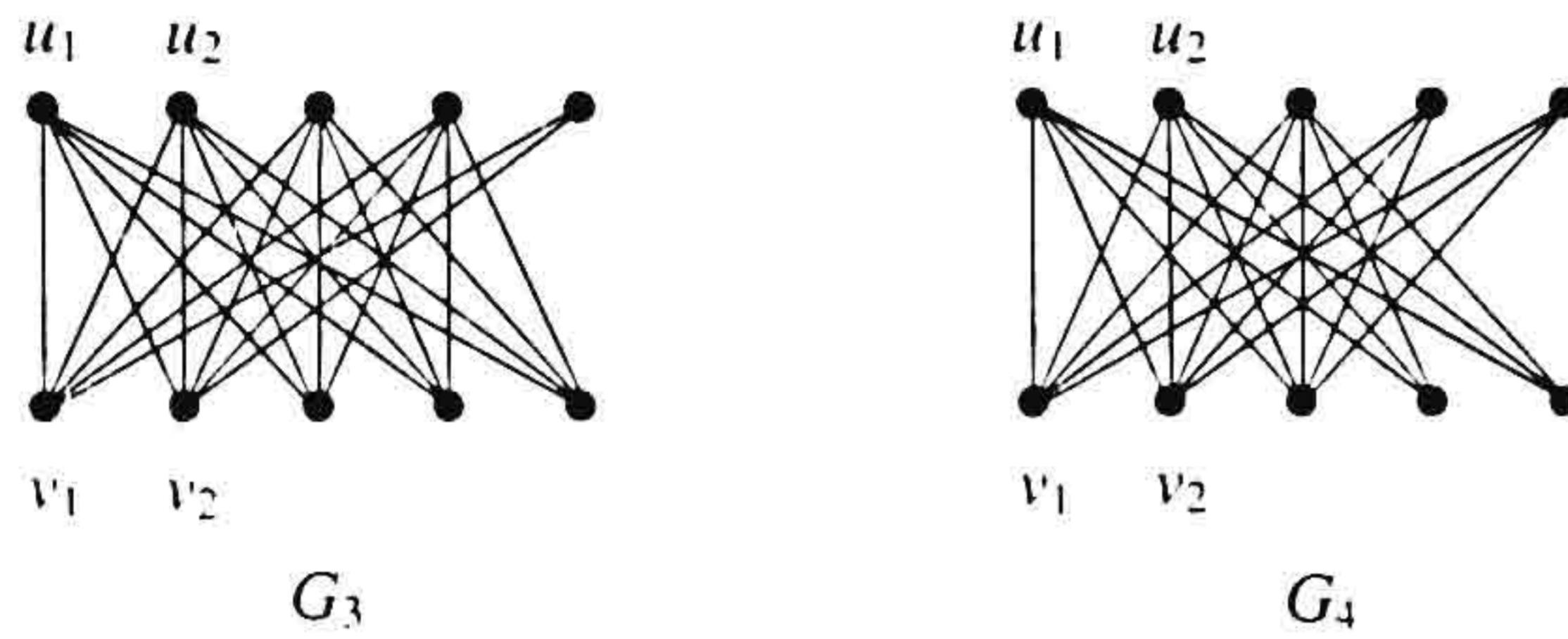


Figure 1.2

maximal non- k -extendable bipartite graphs.

2. Maximal non- k -factor-critical graphs

In this section, we establish a characterization of maximal non- k -factor-critical graphs. We begin with the following lemma.

Lemma 2.1: *For positive integers p and k having the same parity, and non-negative integers $s, t_1, t_2, \dots, t_{s+2}$ with $0 \leq s \leq \frac{1}{2}(p-k)-1$ and $\sum_{i=1}^{s+2} t_i = \frac{1}{2}(p-k)-s-1$, the graph*

$$G = K_{k+s} \vee \bigcup_{i=1}^{s+2} K_{2t_i+1}$$

is maximal non- k -factor-critical of order p .

Proof: Let $H = K_{k+s}$ and $G_i = K_{2t_i+1}$ for $1 \leq i \leq s+2$. Then $G = H \vee \bigcup_{i=1}^{s+2} G_i$. Let T be a subset of $V(H)$ with $|T| = k$. Clearly, $G - T = K_s \vee \bigcup_{i=1}^{s+2} G_i$ has no perfect matching. Thus G is not k -factor-critical.

We next show that G is maximal. Let u and v be non-adjacent vertices in G and let us consider $G' = G + uv$. Clearly, u and v are vertices of G , and G_i for some $i \neq j$, respectively. Without any loss of generality, we may assume that $u \in V(G_1)$ and $v \in V(G_2)$. Now let T' be a subset of $V(G')$ with $|T'| = k$. Further, let $r = |V(H) \cap T'|$ and $r_i = |V(G_i) \cap T'|$ for $1 \leq i \leq s+2$. Clearly, $r + \sum_{i=1}^{s+2} r_i = k$. Then $0 \leq r \leq k$. We now distinguish 3 cases according to r .

Case 1: $r = k$.

Then $G' - T' \cong K_s \vee (D \cup \bigcup_{i=3}^{s+2} G_i)$ where $V(D) = V(G_1) \cup V(G_2)$ and $E(D) = E(G_1) \cup E(G_2) \cup \{uv\}$. Clearly, $G' - T'$ has a perfect matching.

Case 2: $r = k - 1$.

Then $r_j = 1$ for some j , $1 \leq j \leq s+2$. Thus $G' - T'$ contains at most $s+1$ odd components and the equality holds for $r_1 = 1$ or $r_2 = 1$. It is not difficult to show that $G' - T'$ has a perfect matching.

Case 3: $r \leq k - 2$.

Then $H - T' = K_{r'}$ where $r' = k + s - r \geq s + 2$ and $G' - (V(H) \cup T')$ contains at most $s + 2$ odd components. The edge uv is in $E(G' - T')$ if $T' \cap \{u, v\} = \emptyset$. It is not difficult to show that $G' - T'$ has a perfect matching.

Therefore, in all cases, $G' = G + uv$ is k -factor-critical and hence G is maximal non- k -factor-critical. \square

Before we establish a characterization of maximal non- k -factor-critical graphs we recall Tutte's Theorem which we make use of in our proof.

Theorem 2.2: Tutte's Theorem (see Bondy and Murty [2] p.76)

A graph G has a perfect matching if and only if $o(G - S) \leq |S|$ for all $S \subset V(G)$. \square

Now we are ready for our main theorem in this section.

Theorem 2.3: *Let G be a connected graph on p vertices and k a positive integer having the same parity with p . G is maximal non- k -factor-critical if and only if*

$$G \cong K_{k+s} \vee \bigcup_{i=1}^{s+2} K_{2t_i+1}$$

where s and t_i are non-negative integers with $0 \leq s \leq \frac{1}{2}(p - k) - 1$ and $\sum_{i=1}^{s+2} t_i = \frac{1}{2}(p - k) - s - 1$.

Proof: The sufficiency follows from Lemma 2.1. Now we prove the necessity. Since G is maximal non- k -factor-critical, there is a subset T of $V(G)$ of size k such that $G' = G - T$ has no perfect matching. Then, by Tutte's Theorem,

there is a subset S' of $V(G')$ such that $o(G' - S') > |S'|$. Put $s = |S'|$. Because G' is of even order, it follows that s and $o(G' - S')$ must have the same parity. Thus $o(G' - S') \geq s + 2$.

Let C_1, C_2, \dots, C_r be odd components of $G' - S'$. We first show that $r = s + 2$. Suppose to the contrary that $r \geq s + 3$. Then $r \geq s + 1$. Let $c_i \in V(C_i)$ for $i = 1, 2$ and let us consider $G + c_1c_2$. Clearly, $(G + c_1c_2) - (T \cup S')$ contains at least $s + 2$ odd components. Thus $G + c_1c_2$ is not k -factor-critical. This contradicts the fact that G is maximal non- k -factor-critical. Hence, $r = s + 2$ as required.

We next show that $G' - S'$ has no even components. Suppose to the contrary that $G' - S'$ contains D as an even component. Let $d \in D$ and $c_1 \in V(C_1)$. Now consider $G + dc_1$. Clearly, $(G + dc_1) - (T \cup S')$ contains exactly $s + 2$ odd components since the components D and C_1 together with the edge dc_1 forms an odd component of $G + dc_1$. Thus $G + dc_1$ is not k -factor-critical, a contradiction. This proves that $G' - S'$ has no even components.

Now we claim that $G[T \cup S']$ is complete. Suppose it is not the case. Then there exist vertices x and y in $T \cup S'$ such that $xy \notin E(G)$. Now consider $G + xy$. Since $(G + xy) - (T \cup S')$ contains exactly $s + 2$ odd components, $G + xy$ is not k -factor-critical. This contradiction proves that $G[T \cup S']$ is complete. By a similar argument, it is easy to establish that each C_i is complete for $1 \leq i \leq s+2$. Further, for $1 \leq i \leq s+2$, each vertex of C_i is adjacent to every vertex of $T \cup S'$.

Now, for $1 \leq i \leq s+2$, let $|V(C_i)| = 2t_i + 1$ for some non-negative integer t_i . Then $p = |V(G)| = k + s + \sum_{i=1}^{s+2} |V(C_i)| = k + 2s + 2 + 2 \sum_{i=1}^{s+2} t_i \geq k + 2s + 2$.

Hence, $\sum_{i=1}^{s+2} t_i = \frac{1}{2}(p - k) - s - 1$ and $0 \leq s \leq \frac{1}{2}(p - k) - 1$ as required. This completes the proof of our theorem. \square

As a corollary we have:

Corollary 2.4: *If G is a maximal non- k -factor-critical graph on p vertices where k is a positive integer greater than 1 having the same parity with p , then G is $(k-2)$ -factor-critical.* \square

3. Maximal non- k -extendable graphs

In this section, we turn our attention to a closely related concept to maximal non- k -factor-critical, namely that of maximal non- k -extendable graphs. We establish a characterization of maximal non- k -extendable graphs and it turns out that these classes of graphs have very closed relationship.

Theorem 3.1: *Let G be a connected graph with a perfect matching on $2n$ vertices. For $1 \leq k \leq n-1$, G is maximal non- k -extendable if and only if*

$$G \cong K_{2k+s} \vee \bigcup_{i=1}^{s+2} K_{2t_i+1}$$

where s and t_i are non-negative integers with $0 \leq s \leq n - k - 1$ and $\sum_{i=1}^{s+2} t_i = n - k - s - 1$.

Proof: The sufficiency follows from Lemma 2.1 and the definitions of factor-critical graphs and k -extendable graphs. For the necessity, the proof is almost identical with the proof in Theorem 2.3 so we omit it. \square

As a corollary we have:

Corollary 3.2: *Let G be a maximal non- k -extendable graph on $2n$ vertices for $1 \leq k \leq n - 1$. Then G is $(k - 1)$ -extendable.* \square

Corollary 3.3: *Let G be a maximal non- k -extendable graph on $2n$ vertices for $1 \leq k \leq n - 1$. If $E' \subseteq E(K_{2n}) \setminus E(G)$ with $|E'| \geq 1$, then $G + E'$ is k -extendable.*

Proof: The result follows by applying a similar argument as in the proof of Lemma 2.1 to the graph $G + E'$. \square

Remark 3.1: (1) A connected graph with a perfect matching which is not k -extendable need not be $(k - 1)$ -extendable. For example, a cycle on $2n \geq 8$ vertices is not 3-extendable and it is not 2-extendable. In the case of a maximal non- k -extendable graph G , G is not k -extendable but it is $(k - 1)$ -extendable. Although immediately obvious, one can simply prove from the definition that a maximal non- k -extendable graph is $(k - 1)$ -extendable.

(2) In [14] Yu proved that if G is a k -extendable graph on $2n$ vertices with $1 \leq k \leq n - 1$, then $G + e$ is $(k - 1)$ -extendable for any edge $e \notin E(G)$. Hence, adding a new edge into a k -extendable graph G might destroy the k -extendability property of G . However for a maximal non- k -extendable graph, this is not so, no matter how many edges in $E(K_{2n}) \setminus E(G)$ are added into G . The resulting graph is still k -extendable providing that the number of edges is at least 1.

By Theorems 2.3 and 3.1, we have the theorem.

Theorem 3.3: *Let G be a connected graph on $2n$ vertices with a perfect matching. For $1 \leq k \leq n - 1$, G is maximal non- k -extendable if and only if G is maximal non- $2k$ -factor-critical.* \square

Remark 3.2: As we mention in the Introduction that k -extendable graphs need not be $2k$ -factor-critical but for a maximal non k -extendable graph G , $G + e$ is both k -extendable and $2k$ -factor-critical for any edge $e \notin E(G)$.

Remark 3.3: A variation of k -extendability is that of induced matching extendability or IM-extendability for short which was introduced by Yuan [15].

A matching M of G is induced if $E([V(M)]) = M$. A graph G is IM-extendable if every induced matching of G is included in a perfect matching of G . Notice that an IM-extendable graph is 1-extendable. Further, a k -extendable graph with no induced matching of size greater than k is IM-extendable. Wang and Yuan [13] introduced a concept of maximal IM-unextendable graphs. A graph G is called maximal IM-unextendable if it is not IM-extendable but $G + xy$ is IM-extendable for every two non-adjacent vertices x and y of G . They established that the only maximal IM-unextendable graph is $M_k \vee (K_s \vee (K_{n_1} \cup K_{n_2} \cup \dots \cup K_{n_{s+2}}))$ where M_k is an induced matching of size $k \geq 1$, s is a non-negative integer and each n_i is odd. Observe that the class of maximal IM-unextendable graphs coincides with the class of maximal non- k -extendable graphs only for $k = 1$.

4. Maximal non- k -extendable bipartite graphs

In this section, we extend our idea on maximal non- k -extendable graphs to the case of bipartite graphs as follows. Let G be a connected bipartite graph on $2n$ vertices with a bipartitioning set (X, Y) such that $|X| = |Y| = n$. For non-negative integers k and n with $0 \leq k \leq n - 1$, G is *maximal non- k -extendable bipartite* if G is not k -extendable but $G + e$ is k -extendable for any edge $e = xy \notin E(G)$ where $x \in X, y \in Y$. Thus we are interested in adding a missing edge $e \notin E(G)$ which has one of its end vertices in X and the other in Y . We also establish a characterization of maximal non- k -extendable bipartite graphs. We first recall Hall's Theorem.

Theorem 4.1: Hall's Theorem (see Bondy and Murty [2] p.72)

Let G be a bipartite graph with bipartitioning (X, Y) . Then G contains a matching that saturates every vertex in X if and only if $|N(S)| \geq |S|$ for all $S \subseteq X$. \square

Lemma 4.2: For any non-negative integers n, k and s with $1 \leq s \leq n - 1$ and $2 \leq k + s \leq n$, let (X, Y) be a bipartitioning set of $K_{n,n}$ and let $S \subseteq X, T \subseteq Y$ with $|S| = s$ and $|T| = n - k - s + 1$. Then

$$G = K_{n,n} - \{xy \mid x \in S, y \in T\}$$

is a maximal non- k -extendable bipartite graph on $2n$ vertices.

Proof: The result is obvious for $k = 0$. We have to consider only $k \geq 1$. Let M be a matching of size k in G which each $e_i = u_i v_i \in M, u_i \in X \setminus S, v_i \in Y \setminus T$ for $1 \leq i \leq k$. Then $S \subseteq X \setminus V(M)$ with $|N_{G-V(M)}(S)| = s - 1 < s = |S|$. Thus $G - V(M)$ has no perfect matching by Hall's Theorem. Hence, G is not k -extendable.

Now we establish that G is maximal. Let $e = xy \notin E(G)$ where $x \in X$ and $y \in Y$. Clearly, $x \in S$ and $y \in T$.

Consider $G' = G + xy$. Let M' be a matching of size k in G' and

$$k_1 = |(X \setminus S) \cap V(M')|, \quad k_2 = |S \cap V(M')|, \\ k_3 = |(Y \setminus T) \cap V(M')|, \quad \text{and} \quad k_4 = |T \cap V(M')|.$$

Then $k_1 + k_2 = k = k_3 + k_4$, $|X \setminus (S \cup V(M'))| = n - k_1 - s$ and $|Y \setminus (T \cup V(M'))| = k + s - 1 - k_3$. We distinguish two cases according to k_1 .

Case 1: $k_1 = k$.

Clearly, $k_2 = 0$ and $|S \setminus V(M')| = s$.

Subcase 1.1. $k_4 = 0$. Then $k_3 = k$ and $xy \in E(G' - V(M'))$. There must be a matching M'_1 of $G' - V(M')$ of size $s - 1$ joining vertices of $S \setminus \{x\}$ to vertices of $Y \setminus (T \cup V(M'))$ and a matching M'_2 of $G' - V(M')$ of size $n - k - s$ joining vertices of $T \setminus \{y\}$ to vertices of $X \setminus (S \cup V(M'))$. Now $G' - V(M')$ contains $M'_1 \cup M'_2 \cup \{xy\}$ as a perfect matching as required.

Subcase 1.2. $k_4 \geq 1$. Then $k_3 \leq k - 1$. Thus $s \leq k + s - 1 - k_3$. Now let M''_1 be a matching of $G' - V(M')$ of size s joining vertices of S to vertices of $Y \setminus (T \cup V(M'))$. Further, let M''_2 be a matching of $G' - V(M')$ of size $n - k - s + 1 - k_4$ joining vertices of $T \setminus V(M')$ to vertices of $X \setminus (S \cup V(M'))$. Now $G - V(M' \cup M''_1 \cup M''_2) \cong K_{m,m}$, where $m = k_4 - 1$, contains a perfect matching M''_3 . Hence, $M''_1 \cup M''_2 \cup M''_3$ forms a perfect matching of $G' - V(M')$.

Case 2: $k_1 \leq k - 1$.

Then $k_2 \geq 1$. Further, $n - k - s + 1 \leq n - k_1 - s$ and $s - k_2 \leq s - 1 \leq k - k_3 + s - 1$. Now let M'''_1 be a matching of $G' - V(M')$ of size $s - k_2$ joining vertices of $S \setminus V(M')$ to vertices of $Y \setminus (T \cup V(M'))$. Further, let M'''_2 be a matching of $G' - V(M')$ of size $n - k - s + 1 - k_4$ joining vertices of $T \setminus V(M')$ to vertices of $X \setminus (S \cup V(M'))$. Now $G - V(M' \cup M'''_1 \cup M'''_2) \cong K_{m,m}$, where $m = k_2 + k_4 - 1$, contains a perfect matching M'''_3 . Hence, $M'''_1 \cup M'''_2 \cup M'''_3$ is a perfect matching of $G' - V(M')$. Therefore, $G' = G + xy$ is k -extensible as required. This completes the proof of our lemma. \square

Now we establish the main result of this section.

Theorem 4.3: *Let G be a connected bipartite graph on $2n$ vertices with a bipartitioning set (X, Y) such that $|X| = |Y|$. For $0 \leq k \leq n - 1$, G is maximal non- k -extendable bipartite if and only if there are subsets $S \subseteq X, T \subseteq Y$ with $|S| = s$ and $|T| = n - k - s + 1$ such that*

$$G \cong K_{n,n} - \{xy \mid x \in S, y \in T\}$$

for an integer s with $1 \leq s \leq n - 1$ and $2 \leq k + s \leq n$.

Proof: The sufficiency follows from Lemma 4.2. So we need only prove the necessity. Since G is maximal non- k -extendable bipartite, there is a matching M of size k in G such that $G - V(M)$ has no perfect matching. Let (X', Y') be a bipartitioning set of $G' = G - V(M)$. Clearly, $X' = X \setminus V(M)$ and $Y' = Y \setminus V(M)$. Further, $|X'| = n - k = |Y'|$. Since G' has no perfect matching, by Hall's Theorem, there is a subset $S \subseteq X'$ such that $s = |S| \geq |N_{G'}(S)| + 1 \geq 1$.

Clearly, $s \leq n - k$. We next show that $s = |N_{G'}(S)| + 1$. Suppose to the contrary that $s \geq |N_{G'}(S)| + 2$. Then $|Y' \setminus N_{G'}(S)| = n - k - |N_{G'}(S)| \geq n - k - s + 2 \geq 2$. Let $x \in S$ and $y \in Y' \setminus N_{G'}(S)$. Clearly, $xy \notin E(G)$. But $(G + xy) - V(M) = G' + xy$ contains S as a subset of X' with $s = |S| > (s - 2) + 1 \geq |N_{G'}(S)| + 1 = |N_{G'+xy}(S)|$. Thus $(G + xy) - V(M)$ has no perfect matching. Hence, $G + xy$ is not k -extendable. This contradicts the fact that G is maximal non- k -extendable bipartite. Therefore, $s = |N_{G'}(S)| + 1$.

We next show that each vertex of S is adjacent to every vertex of $(V(M) \cap Y) \cup N_{G'}(S)$. Suppose this is not the case. Then there are vertices $a \in S$ and $b \in (V(M) \cap Y) \cup N_{G'}(S)$ such that $ab \notin E(G)$. Clearly, $(G + ab) - V(M)$ contains S as a subset of X' with $s = |S| = |N_{G'}(S)| + 1 = |N_{(G+ab)-V(M)}(S)| + 1$. Thus $(G + ab) - V(M)$ has no perfect matching. Hence, $G + ab$ is not k -extendable. This contradicts the fact that G is maximal non- k -extendable bipartite and proves that each vertex of S is adjacent to every vertex of $(V(M) \cap Y) \cup N_{G'}(S)$. By a similar argument, one can establish that each vertex of $X \setminus S$ is adjacent to every vertex of Y . Consequently, each vertex of $(V(M) \cap Y) \cup N_{G'}(S)$ is adjacent to every vertex of X and each vertex of $T = Y \setminus (V(M) \cup N_{G'}(S)) = \overline{N}_G(S) \cap Y$ is adjacent to every vertex of $X \setminus S$. Note that

$$|V(M) \cap X| + |X' \setminus S| = k + (n - k - s) = n - s.$$

$$|V(M) \cap Y| + |N_{G'}(S)| = k + s - 1$$

$$\text{and } T = \overline{N}_G(S) \cap Y = n - (k + s - 1) = n - k - s + 1.$$

Hence, $G \cong K_{n,n} - \{xy \mid x \in S, y \in T\}$. Clearly, if $k + s = 1$ or $n - s = 0$, then G is disconnected, contradicting the connectedness of G . Hence, $k + s \geq 2$ and $n - s \geq 1$. This completes the proof of our theorem. \square

Remark 4.1: Note that the maximal non- k -extendable bipartite graph G in Theorem 4.3 is isomorphic to the graph

$$\overline{K}_s \vee \overline{K}_{k+s-1} \vee \overline{K}_{n-s} \vee \overline{K}_{n-k-s+1}.$$

As a corollary we have:

Corollary 4.4: *Let G be a maximal non- k -extendable bipartite graph on $2n$ vertices, $1 \leq k \leq n - 1$. Then G is $(k - 1)$ -extendable.* \square

References

- [1] N. Ananchuen and L. Caccetta, Matching extension and minimum degree, *Discrete Math.* 170 (1997) 1-13.
- [2] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*. The Mcmillan Press, London, (1976).

- [3] O. Favaron, On k -factor-critical graphs, *Discuss. Math. Graph Theory*, 16 (1996) 41-51.
- [4] O. Favaron, Extendability and factor-criticality, *Discrete Math.* 213 (2000) 115-122.
- [5] O. Favaron, E. Flandrin and Z. Ryjáček, Factor-criticality and matching extension in DCT-graphs, *Discuss. Math. Graph Theory*, 17 (1997) 271-278.
- [6] O. Favaron and M. Shi, k -factor-critical graphs and induced subgraphs, *Congr. Numer.* 122 (1996) 59-66.
- [7] O. Favaron and M. Shi, Minimally k -factor-critical graphs, *Austral. J. Combin.* 17 (1998) 89-97.
- [8] K. Kawarabayashi, K. Ota and A. Saito, Hamiltonian cycles in n -extendable graphs, *J. Graph Theory*, 40 (2002) 147-151.
- [9] M.D. Plummer, On n -extendable graphs, *Discrete Math.* 31 (1980) 201-210.
- [10] M.D. Plummer, Extending matchings in graphs: a survey, *Discrete Math.* 127 (1994) 227-292.
- [11] M.D. Plummer, Extending matchings in graphs: an update, *Congr. Numer.* 116 (1996) 3-32.
- [12] Z. Ryjáček, Matching extension in $K_{1,r}$ -free graphs with independent claw centers, *Discrete Math.* 164 (1997) 257-263.
- [13] Q. Wang and J. Yuan, Maximal IM-unextendable graphs, *Discrete Math.* 240 (2001) 295-298.
- [14] Q.L. Yu, A note on n -extendable graphs, *J. Graph Theory*, 16 (1992) 349-353.
- [15] J. Yuan, Induced matching extendable graphs, *J. Graph Theory*, 28 (1998) 203-213.