UNAIIVIST DY

A characterization of maximal non k-factor-critical graphs

Tae

N. Ananchuen, Silpakorn University, Thailand

L. Caccetta, Curtin University of Technology, Australia

W. Ananchuen, Sukhothai Thammathirat Open University, Thailand

advayulay d1INNUNBINUTHLAYUMITIVY

= q.. 1o o o
@mmn lusenuiiduesdise ana. ldduiludeuriudsane 1)

e

L




A matching M 1n G is a subset of E((G) in which no two edges have a vertex
in common. A vertex v is saturated by Al if some edge of A is incident to v:
otherwise v 1s said to be unsaturated. A matching G is perfect if it saturates
every vertex of G. For simplicity we let V(Af) denote the vertex set of the
subgraph G|M | induced by Al. A graph G of order p is k-factor-critical. where
p and k are positive integers with the same parity, if the deletion of any set of k
vertices results in a graph with a perfect matching. G is called marimal non-k-
factor-critical if G is not k-factor-critical but G + e is k-factor-critical for every
missing edge ¢ ¢ E(G). The concept of k-factor-critical is a generalization of
the concepts of factor critical and bicritical. k-factor critical graphs have been
studied by many authors including Favaron [3, 4] Favaron and Shi (6, 7| and
Favaron et. al. [5].

A closely related concept to k-factor-critical is that of k-ertendable. For
1 < Kk < n -1, aconnected graph G of order 2n with a perfect matching is
k-extendable if for everv matching A of size & in G there is a perfect matching
in G containing all of edges of Af. For convenience. a graph G with a perfect
matching is said to be 0-extendable. G is called marimal non-k-ertendable
if G is not h-extendable but G + € 15 k-extendable for every missing edge € ¢
E(G). A connected bipartite graph G with a bipartitioning set (.X.Y ) such that
X| = Y| = nis marimal non-k-extendable bipartite if G is not k-extendable
but G + ry is h-extendable for any edge ry ¢ E(G) with r € X and y € Y.
Extendable graphs have been studied by many authors including Plummer '9].
Ananchuen and Caccetta 1|, Kawarabashi et. al. [8|. Rvjacek [12] and Yu [14].
Excellent surveys are the papers of Plummer [10, 11|. In this paper. we introduce
the concepts of maximal non-A-factor-critical, maximual non A-extendable and
maximal non A-extendable bipartite graphs.

A 2k-factor-critical graph is obviously k-extendable but the converse need
not be true since a complete bipartite graph A, ,, is k-extendable for 0 < k <
n — 1 but is not 2k-factor-critical. Further, the graph G forined bv joining
two Rop's with a perfect matching is A-extendable non-bipartite but is not 2A-
factor-critical. On the other hand, the graphs G, and G5, shown in Figure 1.1.
are both maximal non-2-extendable graphs and maximal non-4-factor-critical
graphs whilst the graphs G3 and G4, shown in Figure 1.2, are both maximal non-
2-extendable bipartite graphs since the edge u;v; together with the edge ujsv»
cannot extend to a perfect matching in each GG; for 1 <1 < 4. Note that these
graphs are l-extendable. This is not coincidence as it 1s true in general. a fact we
establish later. However, definitions of maximal non-k-factor-critical. maximal-
non-k-extendable and maximal-non-A-extendable bipartite graphs have no sug-
gestion on this property.

Further, the above examples suggest that there may be a relationship be-
tween maximal non-k-factor-critical graphs and maximal non-k-extendable graphs.
In this paper, we establish the strong connection between these two classes of
graphs. More precisely, we establish that for a connected graph GG on 2n vertices
with a perfect matching, GG is maximal non-k-extendable if and only if G is max-
imal non-2k-factor-critical for 1 < k < n—1. We also provide a characterization
of maximal non-k-factor-critical graphs, maximal non-k-extendable graphs and




Figure 1.2

maximal non-A-extendable bipartite graphs.
2. Maximal non-A-factor-critical graphs

In this section. we establish a characterization of maximal non-A-factor-
critical graphs. We begin with the tollowing lemma.

Lemma 2.1: For positive integers p and k having the same parity, and
s+2

non-negative integers s.ty.to,....t,40 with 0 < s < %(p — k) -1 and > t, =
1=l

(p— k) — s — 1, the graph

o | —

s+2
G = Aks, vV U Kot 41

1=1
is maximal non-k-factor-critical of order p.

Proof: Let H = Ky4, and G; = Ky 41 for 1 <1 < s+ 2. Then G =
s+2 s+ 2

Hv |J G,. Let T be a subset of V(H) with |T| = k. Clearly. G-T = K,V |J G,
p==] =1

has no perfect matching. Thus G is not A-factor-critical.



We next show that G is maximal. Let u and v be non-adjacent vertices 1n
G and let us consider G = G + uv. Clearly, u and v are vertices of G, and
G, for some i # j. respectively. Without any loss of generality. we may assume
that u € V(G) and v € V(G3). Now let T’ be a subset of V(G') with ([T'| = k.

Further, let r = |[V(H)NT'| and r, = |[V(G,)NT’'| for 1 < i < s—+ 2. Clearly.
§+2

r+ » r; =k. Then 0 < r < k. We now distinguish 3 cases according to r.
=1
Case 1: r =&k.
s+2

Then G' - T = K, Vv (DU |JG,) where V(D) = V(G;) U V(G2) and
3

j=
E(D)= E(G,)U E(G2)U {ur}. Clearly, G' — T" has a perfect matching.

Case 2: r=k — 1.

Then r, =1 for some j.1 < j < s+ 2. Thus G' — T" contains at most s + 1
odd components and the equality holds for r; = 1 or ro = 1. It is not difficult
to show that G’ — T" has a perfect matching.

Case 3: r <k — 2.

Then H-T' = K, wherer’ = k+s—r > s+2and G'—(V(H)UT"') contains
at most s + 2 odd components. The edge uvv isin E(G' - T")f T"'N{u.v} = o.
It is not difficult to show that G' — T' has a pertect matching.

Therefore. in all cases. G' = G + uv i1s k-factor-critical and hence G is

maximal non-Ak-factor-critical. [ ]

Before we establish a characterization of maximal non-Ak-factor-critical graphs
we recall Tutte's Theorem which we make use of in our proot.

Theorem 2.2: Tutte's Theorem (see Bondy and Murty (2| p.76)
A graph G has a perfect matching if and only if oG — 5) < S| for all
S VI(G). =

Now we are ready for our main theorem in this section.

Theorem 2.3: Let G be a connected graph on p vertices and k a positive
integer having the same parity with p. G s marimal non-k-factor-critical if and
only tf

N+42
G = [\'L--H- v U hﬁ?t.-f—l

1=1

542
where s and t, are non-negative integers with 0 < s < s(p—k)—1and Y t, =

1 =1

%{p— Ay —s—1.

Proof: The sufficiency follows from Lemma 2.1. Now we prove the necessityv.
Since G is maximal non-k-factor-critical, there is a subset T of V(G) of size k
such that G = G — T has no perfect matching. Then, by Tutte's Theorem.



there is a subset S’ of V(G") such that o(G' = 8') > |S’|. Put s = |5’]. Because
G’ is of even order. it follows that s and o(G" — S') must have the same parity.
Thus o(G" —= 8") > s+ 2.

Let Cy.Ch.....C be odd components of G = 8" We first show that r = s+ 2.
Suppose to the contrary that r > s = 3. Then r > s+ 1. Let ¢, € V() for
i = 1.2 and let us consider GG + eyeq. Clearly, (G + ¢yc2) — (T 25") contains
at least s + 2 odd components. Thus G + ¢yc2 i1s not k-factor-critical. This
contradicts the fact that G is maximal non-A-factor-critical. Hence, r = s + 2
as required.

We next show that G' =S’ has no even components. Suppose to the contrary
that G’ — S’ contains D as an even component. Let d € D and ¢, € V((')).
Now consider G + dey. Clearly, (G + dey) — (TU S") contains exactly s + 2
odd components since the components D and (') together with the edge dc,
forms an odd component of G + dey. Thus G + dey 1s not A-factor-critical. a
contradiction. This proves that G — 5" has no even components,

Now we claim that G770 S 18 complete. Suppose 1t 1s not the case. Then
there exist vertices . and yin 7708’ such that ry ¢ E(G). Now consider G+ ry.
Siee (G - ry) - (T 208" contains exactly s = 2 odd components. G + ry is
not A-factor-critical. This contradiction proves that G170 8" is complete. By a
similar argument. it is easy to establish that each C') is complete for 1 <0 < s+2.
Further. for 1 <1 < s+ 2. each vertex of C, is adjacent to every vertex of T S’

Now, for 1 < i < s-+2 let V() = 2t, - 1 for some non-negative integer

TR )

- e

f. Thenp=1V(G) =k +s+ S VIC)H =k +2s+2+25 4, >k =25 +2

i
[ — H

Jr= )

N+

Hence., Nt = s(p— k) —s—land 0 < 5 < 5(p - k' - | as required. This
==} B )

completes the proot of our theoreni u

As a corollary we have:

Corollary 2.4: If G 1s a marimal non-k-factor-critical graph on p vertices
where k s a positive inteqger qreater than 1 having the same parity with p. then

1

G s (h = 2)-factor-eritical ]
3. Maximal non-k-extendable graphs

In this section. we turn our attention to a closely related concept to maximal
non-k-factor-critical. namely that of maximal non-A-extendable graphs. We
establish a characterization of maximal non-A-extendable graphs and it turns
out that these classes of graphs have very closed relationship.

Theorem 3.1: Let G be a connected graph with a perfect matching on 2n
vertices. For 1 <k < n -1, G is marimal non-k-extendable if and only if

s+ 2
G = RKogys V U Ko, 41

=]



s+ 2
where s and t, arc non-neqative integers with 0 < s < n -~k -1 and Zf, =
=]

n—k—-—s-—1.

Proof: The sutficieney follows from Lemima 2.1 and the definitions of tactor-
critical graphs and A-extendable graphs. For the necessity. the proot 1s almost
identical with the proof in Theorem 2.3 so we omit it. ]

As a corollary we have:

Corollary 3.2: Let G be a marimal non-k-ertendable graph on 2n vertices

for 1 < k<n-1. Then G s (kK — 1)-ertendable. L

Corollary 3.3: Let GG be a marimal non-k-ertendable graph on 2n vertices
for 1 < k< n-=1. 1If E' C EXK:,)\E(G) with |[E'| > 1. then G + E' s
k-ertendable.

Proof: The result follows by applving a sunilar argument as in the proof of

Lemima 2.1 to the graph G + £7. _

Remark 3.1: (1) A connected graph with a pertect matching which is not
k-cxtendable need not be (A — 1)-extendable. For example. a evele on 2n > 5
vertices 18 not 3-extendable and 1t 1s not 2-extendable In the case of a maximal
non-k-extendable graph G. G 1s not A-extendable but 1t as (A — 1)-extendable.
Although immediatelyv obvious. one can simply prove trom the definition that a
maximal non-A-extendable graph 1s (A — 1)-extendable.

(2) In |14] Yu proved that if G 1s a A-extendable graph on
2n vertices with 1 < A < n — 1. then G + ¢ 15 (kK = 1i)-extendable for anv edge
¢ ¢ E(G). Hence, adding a new edge imnto a A-extendable graph G nnght destrov
the A-extendability property of . However for a maximal non-A-extendable
graph. this 1s not so. no matter how manyv edges in E(A», )\E(G) are added
mto GG. The resulting graph is still A-extendable providing that the number of
edges 1s at least 1.

Byv Theorems 2.3 and 3.1, we have the theorem.
Theorem 3.3: Let G be a connected graph on 2n vertices unth a perfect

matching. For 1 <k < n —1. G s marimal non-k-exrtendable if and only f G
is marimal non-2k-factor-critical. ]

Remark 3.2: As we mention in the Introduction that A-extendable graphs
need not be 2k-tactor-critical but for a maximal non k-extendable graph G,
G + € is both k-extendable and 2A-factor-critical for any edge ¢ ¢ E(G).

Remark 3.3: A variation of k-extendability is that of induced matching
extendability or IM-extendability for short which was introduced by Yuan [15].



A matching A of G is induced if E([V (AM)]) = AL. A graph G is [N-extendable if
every induced matching of GG is included in a perfect matching of G. Notice that
an IN-extendable graph is 1-extendable. Further, a k-extendable graph with no
induced matching of size greater than k is IN-extendable. Wang and Yuan (13
introduced a concept of maximal IN-unextendable graphs. A graph G 1s called
maximal IN-unextendable if it is not IN-extendable but G+.ry is IN-extendable
for every two non-adjacent vertices r and y of G. They established that the only
maximal IM-unextendable graph is M, V(K V (K,, UK, U...UK, ,,)) where
M is an induced matching of size & > 1,s is a non-negative integer and each
n, is odd. Observe that the class of maximal IN-unextendable graphs coincides
with the class of maximal non-k-extendable graphs only for k =1

4. Maximal non-k-extendable bipartite graphs

In this section. we extend our idea on maximal non-A-extendable graphs
to the case of bipartite graphs as follows. Let G be a connected bipartite
graph on 2n vertices with a bipartitioning set (X.Y) such that | X| = [Y| = n.
For non-negative integers k and n with 0 < &k < n —1, G is marimal non-k-
ertendable bipartite if G is not k-extendable but G + ¢ 1s k-extendable for any
cedee ¢ = ry ¢ E(G) where v € X.y € Y. Thus we are interested 1 adding a
missing edge ¢ ¢ E(G) which has one of its end vertices in .X and the other in
Y. We also establish a characterization ot maximal non-A-extendable bipartite
graphs. We first recall Hall's Theoremn.

Theorem 4.1: Hall's Theorem (see Bondy and Murty [2] p.72)

Let G be a bipartite graph with bipartitioning (X.Y). Then G contains a
matching that saturates every vertexr in X if and only of IN(S)| 2 |S! for all
o o L

Lemma 4.2: For any non-negative imtegers n.k and s with 1 < s < n —1
and 2 < k+s < n, let (X.Y) be a bipartitioning set of R, , and let S C
N.TCY with|Si=sand |T|=n—k—s+1. Then

G' = KFT,.,,"{;I"y ' I & SU - T}

(s a marimal non-k-extendable bipartite graph on 2n vertices.

Proof: The result is obvious for & = 0. We have to consider onlv & > 1. Let
M be a matching of size & in G which each ¢; = u,v, € M.u, € X\S.v, € Y'\T
for 1 <1 < k. Then § € X\V(M) with (Ng_van(S) =s—-1< s = |S].
Thus &G — V(M) has no pertect matching by Hall's Theorem. Hence. G is not
k-extendable.

Now we establish that G i1s maximal. Let e = ry ¢ E(G) where r € X and
y€ Y. Clearly. r € Sand y € T.

Consider G' = G + ry. Let M’ be a matching of size k in G’ and



by = [CXAS) O VM), kg = (S V(M)
k.‘i = (}EJ)IFI‘{\F) and A'l _ ‘Y-'ﬁil'(a‘f’]f

Then Ay «+ ko = b = by + b INSUVMD) =0 -k s and Y\ (T UV(A ) =
A+ s — 1 - Ay We distingush two cases according to Ay

Case 1: k) = A

Clearly, A, = 0 and [S\V (M) = &

Subcase 1.1. A; = 0. Then Ay = bk and ry € E(G" — V(A')). There
must be a matching M| of G = V(A") of size s — 1 joining vertices of S\ {r} to
vertices of Y\(T U V(M) and a matching M, of G" = V(M) of size n — k - 5
joining vertices of T\ {y} to vertices of X\(SUV (M), Now G' =V (A" contains
MU MU {ry} as a perfect matching as required.

Subcase 1.2 k-l > 1. Then A‘;; < A— 1. Thus s < A-s —1-— A‘:;.
Now let M be a matching of G = VM) of size s joining vertices of § to
vertices of Y \(T" U V(M) Further. let MY be a matching of G° = V(A) of
size 1 — A —s+1 =4, joining vertices of T\V (M) to vertices of X\(SUV (M),
Now G — V(M O MO NMY = K, L, where o= Ay — 1. contains a perfect
matching MY, Heneeo M 0N O MY forms a perfect matching of G — V(M)

Case 2: by <k -1

Then k> > 1. Further.n—A—s-1<n hky-sands- Ak, < s-1 < h-hky+s-1.
Now let MUY be a matching of G7 - VMY of size s Ao joming vertices of
S\UVAANM) to vertices of Y \(T U VM) Farther, let MY be a marching of
G — V(M"Y of sizve n —k — s+ 1 — &y joinng vertices of 77 V(M) to vertices of
NV(SUVT(A))., Now G = V(M UM OMT ) = Ky, .0 where m = ko + ky — 1.
contains a perfect matching M5 Hence, MO N0 s a perfeet matching
of G' — VI(M"). Therefore, G' = G + ry s k-exten1able as required.  This
completes the proof of our lemma. L]

Now we establish the main result of this section.

Theorem 4.3: Let G be a connected bipartite graph on 200 vertices wunth

bipartitioning set (XN.Y) such that | X =1Yi. Foro<khk<n-1.G s marimal
non-k-ertendable hpartite of and only of there are subsets S T X. T — Y uith
Si=sand T\ =n -k -5+ 1 such that

C; = f{n.n o {Iy ] € D Y S I}

for an integer s with 1 <s <n—-1and 2<k+s<n.

Proof: The sufficiency follows from Lemma 1.2. So we need onlyv prove the
necessity. Since G is maximal non-A-extendable bipartite, there is a matching
M of size k in G such that G — V' (A) has no perfect matching. Let (X', YY)
be a bipartitioning set of G' = G — V(Af). Clearly, X' = X\V (M) and Y’ =
Y\V(AM). Further, | X'| = n — k = |Y'|. Since G’ has no perfect matching, by
Hall's Theorem, there is a subset § C X’ such that s = |S| > |[Ng/(S)|+ 1 > 1.




Clearlyv, s < n—A. We next show that s = [N (S)+1. Suppose to the contrary
that s > |I.N(S) =2, Then YO\ NGAUSY =0 - M= | Ne(S) >n—-k-5+22> 2.
Let r € S and y € Y\ N (S). Clearly, ry & E(G). But (G + ry) — V(M) =
G-+ ry contains S as a subset of X' with s =[S/ > (s —2)+1 2 | N (S)+1 =
NSV Thus (G o+ ry) - VM) hias no perfect matehing. Hence, G + ry is
not A-extendable. This contradicts the fact that G s maxinal non-k-extendable
hi]‘ulrtitt‘. Therefore, s = (N (8S) + 1.

We next show that cach vertex of S is adjacent to every vertex of (V(A) M
Y) U NG (S). Suppose this is not the case. Then there are vertices a € S and
be (VMM ) UNe(S) such that ab ¢ E(G). Clearly, (G+ab)—1V (M) contains
S as a subset of X' with s = |5 Neo(S)+1 = ii\'i(;*_,,p_,}_y{‘”l(bh"l + 1. Thus
(G + ab) — V(M) has no perfect matching. Hence, G + ab is not k-extendable.
This contradicts the fact that ¢ s maximal non-A-extendable bipartite and
proves that each vertex of S is adjacent to every vertex of (V(A)NY )U NG (S).
Byv a similar argument. one can establish that each vertex of X\ S 1s adjacent to
cvery vertex of Y. Consequently, ecach vertex of (V(M)IMY ) UN (S) 18 adjacent
to every vertex of X and cachi vertex of T = Y (VX)) U N (5)) = .\_'r;{ S5)NY
Is adjacent to every vertex of XS, Note that

V(MHIN X1 =" X""\S =hk+(n=~k=58)=n-as

e

1{,\1} Ol }', -+ |1\'(,”{.}'1'}| = b x = ]
Al T = NAatS)YnY =n--th+ws—=—11=n-hk-xs5=1

Heuce. G = Ky, — {aey | 0 € S, 9 € T'}. Clearly. if b = s = 1orn-=s = 0.
then G is discounccted. contradicting the connectedness of (0 Henee, A - s > 02

=

and n — s > 1. This completes the proof of our theorer,

L

Remark 4.1: Note that the maximal non-A-extendable bipartite graph G
i Theorem 1.3 1s wsomorphic to the graph

K VRyeo o VR, VK, ko

As a corollary we have:

Corollary 4.4: Let GG be a maxrimal non-k-extendable bipartite graph on 2n
vertices. 1 < k< n—1. Then G is (k - 1)-extendable. L
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