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We did not attempt to optimize the model with respect to
the index g, but we did compare results obtained for g =
1.0 with those obtained forg = 1.5. Figure 4 displays selected
1 minute pitch-angle distributions along with model predictions
for the two values of g. The theoretical curves are those implicit
in the fits to the time profiles of density and weighted anisotropy
in Figure 3; no additional free parameters were introduced in
making the comparison shown in Figure 4.

Although the difference is not visually dramatic, we conclude
that the ¢ = 1.0 fits generally provide a better description of the
observations than ¢ = 1.5. For the interval 13:56-15:00 UT,
g = 1.0 provides the better fit for 53 out of 64 available
1 minute samples, as determined by a x° test. Summing over
the entire interval, the Fisher F-statistic (Bevington & Robinson
2003) has a value of 1.2994 (ratio of ¢ = 1.5 to g = 1.0) for
444 degrees of freedom, indicating with 99.7% confidence that
g = 1.0 yields a significantly better fit. This justifies our use
of ¢ = 1.0 for modeling the Easter GLE. Further, the radial
mean frec path and injection onset are not very sensitive to ¢;
with ¢ = 1.5 the radial mean free path increases to 0.18 AU,
and the injection onset is | minutc earlier.

4, PARTICLE INJECTION ONSET

One of the key features of Spaceship Farth observations
combined with detailed modeling of the data is that injection
onset times can be determined with unprecedented precision.
(The high particle speed and relatively large mean free paths
also contribute.) We conclude that the onset of particlc injection
onto the Sun-Earth field line was at 13:42 UT % | minute. First
detection of particles at Earth was 14 minutes later, implying
that the particles traveled a total path length of 1.7 AU in the
interplanetary medium. In contrast, that travel timc would be
~10 minutes and the path length ~1.2 AU in the case of scatter
free propagation along the spiral magnetic field line. According
to our model, scattering by magnetic turbulence in the inter-
planetary medium is the cause of the extra 0.5 AU in path
length and the extra 4 minutes of travel time.

There is now compelling ¢vidence that particles of MeV
energies from large gradual solar events (such as the Easter
2001 event) are accelerated by shock waves driven by coronal
mass ejections (CMEs; Reames 1999). However, the case for
shock acceleration to GeV energies is less firmiy established
{but see Pomerantz & Duggal 1974 and Levy, Duggal, & Pom-
erantz 1976). Comparison of the precise injection onset deter-
mined from Spaceship Earth with solar radio and optical data
reveals clues to the acceleration site and mechanism (cf. Tylka
et al. 2002, 2003; Gopalswamy et al. 2002).

An X14.4 soft X-ray cvent began at 13:11 ST and peaked
at 13:42 ST (Note that in this discussion, we report time of
emission at the Sun, which we designate “ST.” For electro-
magnetic radiation, ST is simply the Universal Time of ob-
servation minus the 8 minute travel time,) Hard X-rays were
emitted starting at 13:28 ST. Ha emission from a flare located
at 520 W85 began at 13:28 ST and peaked at 13:41 ST. Type
Ili radio emission® due to energetic electrons began at 13:36
ST. Radio burst onsets signifying the formation of a shock wave
occurred at 13:40 ST (type LI} and 13:44 ST (type IV). CME

* Timing information for solar radio, optical, and soft X-ray data is available
on-line from the Space Environment Center. The URL for the Easter event listing
is htip://solarsce.noaa. gov/fipdir/indices/2001_events/200104 | Sevents.txt. Tim-
ing information for hard X-rays is from Yohkoh/hard X-ray telescope and is
available online at htip://www.lmsal.com/SXT.

* The frequency range of all radio data mentioned here is 30 80 MHz.
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FiG. 4—Selected | minute pitch-angle distributions compared with model
predictions for ¢ = 1.0 (selid line) and ¢ = 1.5 (dashed line). Each data point
represents the intensity recorded by an individual Spaceship Earth station for
the UT minute starting at the time shown in the top left of each panel. Pitch
angle is the angle between the station asymptotic viewing direction and the
symmetry axis determined from the first-order fit to the data.

liftoft is estimated to have occurred between 13:24 ST (lincar
fity and 13:31 ST (quadratic fit).” From the start of particle
injection at 13:42 ST until the end of the interval shown in

* Source: Solar and Heliospheric Observatory (SOHO)/Large Angle and
Spectrometric Coronagraph Experiment CME catalog, available on the Web
at http://cdaw.gsfc.nasa.gov/CME _list. This CME catalog is generated and
maintained by NASA and Catholic University of America in cooperation with
the Naval Research Laboratory. SOHO is a project of international cooperation
between ESA and NASA.
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Figure 3, the CME moved from a height of approximately 2
solar radii above the solar surface to approximately 10 solar
radii above the solar surface.’

5. DISCUSSION

In summary, flare onset in the Easter 2001 event was at
13:11 ST (onset of soft X-ray emission), CME liftoff was be-
tween 13:24 and 13:31 ST, and particle injection onset was at
13:42 ST. The particle onset is only 2.6 minutes earlier than that
reported by Tylka ct al. (2003) using the inverse velocity method,
but we believe that our onset is the more reliable because it is
based on a more complete treatment of interplanetary transport.
Since the CME release and flare onset both preceded the particle
injection onset, acceleration in the flare or by a CME shock are
both possibic sources for the GeV solar particles observed on
Easter 2001. Nonetheless, the onset timing would tend to favor
shock acceleration, because (1) the particle injection onset is
closer in time to the CME liftoff than the flare onset (~15 vs.
31 minutes), and (2) the particle injection onset is accompanied
by shock-associated radio signatures.

Our modeling has yielded not ouly the particle injection onsct
but also a detailed time profile of the injection process (Fig. 3,
top panel). The shape of this profile is presumably determined
by details of the acceleration process and possible transport
processes in the solar corona. Modeling these processes is be-
yond the scope of this Letter, but we invite researchers in flare
acceleration and shock acceleration to attempt to explain this
profile with their models.

* See figure at http://cdaw.gsfe.nasa. gov/CME_list/UNIVERSAL/2001_04/
htpng/20010415.140631.p268 htp html.
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Our modeling of particle pitch-angle distributions in the Easter
event has also provided information on the “¢” parameter, which
according to scattering theory is linked to the slope of the mag-
netic power spectrum {Jokipii 1966). Specifically we found that
a value g = 1 provides a better fit to the data than g4 = 1.5
This is somewhat surprising, because 2 GV particles are typically
resonant with the low end of the turbulence inertial range, where
a slope near the Kolmogoroff value, g = 5/3, might be expected.
[Specifically, the resonant wavenumber is k., = (R cos )7/,
where R, and @ are the particle Larmor radius and pitch angle.
In this event, we estimate &, > 107° km™', whereas the inertial
range would typically begin at 5 times lower wavenumber,
k=72 % 107" kin™'] Indeed, pitch-angle distributions in the
Bastille Day event do exhibit a rapid variation near 90° pitch
angle, which is characteristic of the higher g values (see Fig. 12
of Bieber et al. 2002).

However, a preliminary analysis of Wind Magnetic Fields
Investigation magnetic field data for the Easter event does re-
veal an unusual spectral break atk = 107 k™', with a spectral
index of g = 1.3 below and g = 1.8 above this value. This is
qualitatively in accord with our result of a low g-value in the
Easter cvent.

We thank R. Schwenn for a useful discussion. We thank our
colleagues at IZMIRAN (Russia), Polar Geophysical Institute
(Russia), and Australian Antarctic Division for furnishing data.
This work was supported by the US National Science Foun-
dation under grant ATM-0000315, by the Thailand Research
Fund, and by the Rachadapisek Sompoj Fund of Chulalongkorn
University.
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ABSTRACT

The problem of the separation of random magnetic field lines in collisionless astrophysical plasmas is
closely related to the problem of the magnetic field line random walk and is highly relevant to the transport of
charged particles in turbulent plasmas. In order to generalize treatments based on quasi-linear theory, here we
examinc the separation of nearby magnetic field lines by employing a nonperturbative technique based on the
Corrsin independence hypothesis. Specifically, we consider the case of two-component turbulence in which
the magnetic field fluctuations are a mixture of one-dimensional (slab) and two-dimensional ingredients, as a
congrete example of anisotropic turbulence that provides a useful description of turbulence in the solar wind.
We find that random field trajectories can separate in general through three regimes of the behavior of the
running diffusion coefficient: slow diffusive separation, an intermediate regime of superdiffusion, and fast
diffusive separation at large distances. These features are associated with the gradual, exponential diver-
gence of field lines within islands of two-dimensional turbulence, foilowed by diffusive separation at long dis-
tances. The types of behavior are determined not by the Kubo number but rather a related ratio that takes
the turbulence anisotropy into account. These results are confirmed by computer simulations. We discuss
implications for space obscrvations of energetic charged particles, including “dropouts™ of solar energetic

particles.

Subject headings: diffusion — magnetic fields — Sun: particle emission — turbulence

1. INTRODUCTION

The random walk of individual magnetic field lines relative
to the mean magnetic field and the rate of separation of nearby
field lines are key issucs in defining the topology and structure
of random magnetic fields in magnetohydrodynamic (MHD)
turbulence. The statistics of such a random walk arc often
central to understanding the diftusion of energetic charged
particles perpendicular to the mean magnetic field in astro-
physical plasmas (Jokipii 1966; Jokipii & Parker 1968). Per-
pendicular diffusion is an important component of the solar
cycle—dependent modulation of Galactic cosmic rays {Parker
1965; Moraal 1976; Cane ct al. 1999; Reinecke et al. 2000).
Determining the rate of perpendicular diffusion of energetic
particles in the heliosphere may be crucial in distinguishing
between two popular models for explaining the dramatic
observations by the Ulysses spacecraft of apparent corotating
interaction region (CIR) modulation of Galactic and anoma-
lous cosmic rays (Kunow ct al. 1995; McKibben et al. 1995;
Stmpson ct al. 1995) and acceleration of low-energy electrons
and ions (Sanderson et al. 1995; Simnett et al. 1995) at higher
heliospheric latitudes than where CIRs were observed, L.¢., the
models of Kota & Jokipii (1995) and Fisk (1996). Other issues
of energetic particle transport in the heliosphere may rely on
details of perpendicular diffusion, such as the poor access of
Galactic cosmic rays into a coronal mass ejection (Cane et al.
1994) that can account for the deep minima of Forbush de-
creases, or energetic particle acceleration at a nearly perpen-
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dicular shock (Jokipii 1987; Jokipii et al. 1993; Kirk et al.
1996; Jones ct al. 1998).

On the other hand, there are also situations in which the
behavior of distributions of energetic charged particles might be
better understood in terms of the mutual separation offield lines
than by the random walk of individual field lines (Jokipii 1973).
Indeed, for an initially concentrated distribution of particles
(assumed to be following field lines) to spread in the directions
perpendicular to the mean magnetic field requires that the field
lines threading the distribution mutually separate; a corrclated
wandering of nearby ficld lines would just displace the particle
distribution without distorting it. Figure 1 illustrates the random
walk perpendicular to the mean field (Ax), the displacement
between nearby ficld lines (X = x; -- x(), and their separation
AX = X — X,. In the extreme ¢ase in which two turbulent field
lines are completely decorrelated, the mean squared separation
would be twice the mean squared random walk. On the other
hand, two nearby field lines could follow highly correlated
trajectories with a mutual separation much lower than the dis-
placement from the mean field, as represented by the lower two
field lines in Figure l. Therefore, field line separation is a
sensitive probe of the dissimilarity of nearby ficld lines and the
transverse structure of magnetic turbulence.

One application of calculating the field line separation is
to address the long-recognized phenomenen of “channeling,”
or sudden changes in the fluxes of solar energetic particles
(SEPs), which has been revisited by recent, detailed mea-
surements of Mazur et al. (2000), who refer to such events as
*dropouts.” These are presumably due to sudden changes in
magnetic connection to a spatially localized injection region.
This picture requires that field lines that are adjacent when
near the Sun remain confined to localized flux tubes out to
distances ~1 AU along the mean field.

In particular, Mazur et al. (2000) identify episodes of dra-
matic SEP intensity changes on an average timescale of 3 hr,
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Ax

IX

i 1. lustration of the magnetic field line random walk perpendicular
to the mean fcld (Ax), displacement between nearby ficld lines (X = x5 —x; ),
and their separation (AX =X — Xy). The present work calculates the mean
squared separation vs, distance along the mean field.

2

corresponding i0 a spatial (longitudinal) scale of 0.03 AU
Giacalone et al. (2000) point out that if there is effectively no
turbuient random walk, one can understand dropouts in terms
of the field line random walk due to photospheric motions.
This leads to the question, Why is there no apparent urbulent
random walk? There certainly is turbulence in the interplan-
etary medium. One might expect a longitudinal diffusion of
field lines {due {0 the two-dimensional component of solar
wind fluctuations) 1o a scale of (Ax),,, — (20, Az)'/, where
the diffusion coefficient of the turbulent random walk is
D) = (b/Ba¥+/V2) (Matthacus et al, 1995) and £ is the
“ultrascale™ or “mesoscale,” inferred from observations to be
~0.2 AU (Matthacus et al. 1999). For a typical rms turbulent
magnetic field of one-half the mean field, & = 0.5B,, the
expected longitudinal scale of the turbulent random walk is
0.37 AU, which would wash out the obscrved dropouts. One
possible explanation might be that the separation of nearby
ficld fincs, which controls the spread of particles from a small
injection region near the Sun, could be much slower than the
turbulent random walk relative to the mean ficld, as illustrated
in Figure 1. This issue, which is discussed again in § 6, is just
one examplc of an astrophysical problem rclated to the sep-
aration of nearby magnectic fieid lines.

The theory of the separation of adjacent field lines has
been cxamined by Jokipii (1973) and Zimbardo et al. (1984).
This issuc has been recognized as relevant to physical pro-
cesses in fusion plasmas (e.g., Rechester & Rosenbluth 1978,
Kadomtsev & Pogutse 1979; Isichenko 1991a, 1991b), the
solar corona (e.g., Similon & Sudan 1989), energetic particle
transport in the heliosphere (Erdés et al. 1997, 1999}, cosmic-
ray transport and acceleration in the Galaxy { Barge et al. 1984;
Chandran 2000). and thermal conduction in galaxy clusters
{Maron ot al. 2004). Much attention has been devoted in the
past to description of the exponential separation of field lines
(Rechester & Rosenbluth 1978; Kadomtsev & Pogutse 1979)
in the regime of small separation before the ficld lincs undergo
independent random walks, becausc of the relationship of
that phenomenon to mixing in ergodic theory (Zaslavsky &
Chirikov 1972) and stochastic instability in general. In the
present paper we arc mainly concemed with regimes of diffu-
sive behavior, although we comment on the relationship be-
tween these two views of field line separation. The length scale

along the mean field over which field lines separate by a per-
pendicular coherence scale is relevant to incompressible MHD
turbulence (Goldreich & Sridhar 1997, Lithwick & Goldreich
2001).

Apart from the observational issues discussed above, there
are also a number of theoretical issues that provide motiva-
tion for reconsidering field line separation in a “realistic™ (or,
at least, observationally motivated) three-dimensional model
magnetic field. For example, one feature of turbulence struc-
ture that has become recognized in recent years (Jones et al.
1998) is that modets that are one-dimensional (“*slab’™) or that
admit even one ignorable coordinate give rise to pathological
statistical representations of particle transport. There are also
indications that the stochastic instability of field lines has a
character in models having small numbers of coherent modes
that contrasts strongly with its character in a continuum of
incoherent modes (Rax & White 1992). It is rcasonable to
anticipate that such differences would affect the onset and
nature of diffusion. One is cautioned, then, that some prop-
erties that emerge from the simpler models of ficld line sep-
aration should not be taken as rigorous, especially in the light
of better understood properties from observations and turbu-
lence simulations. Aun example is the rather general identifi-
cation of the correlation scale with the exponential separation
scalc (e.g., Sagdeev et al. 1988), although this is not a well-
understood relationship (Rechester & Rosenbluth 1978).
Similarly, the identification of the correlation scale of mag-
netic fluctuations with the correlation scale of the spatial
gradients of the fluctuations (Isichenko 1991a) is manifestly
incorrect for turbulence having distinct inner and outer scales.
Moreover, for homogeneous turbulence, the correlation scale
of dervatives, i.e., the Taylor microscale, may differ from
the fluctuation correlation scale by orders of magnitude
(Batchelor 1953). This difference is at least 3 or 4 orders of
magnitude in the solar wind {Matthaeus & Goldstein 1982).
Finally, we note that the realm of applicability of the pertur-
bative guasi-linear (QLT) limit is often expressed (Isichenko
1991a) in terms of a dimensioniess (Kubo) number R =
(b/Bo)( Ay /A1), where Ay and 2, are, respectively, correlation
scales in the directions parallel to and perpendicular to the
large-scale mean magnetic field By. QLT is supposed to be
accurate when R << 1. While qualitatively comrect, we can see
that a criterion based solely on R cannot be complete, in view
of the fact that the contribution to field line diffusion due
to a quasi-two-dimensional component of the trbulence
{Matthacus et al. 1995) depends on not /4 but a distinet scule
{the *“ultrascale™; see below) that characterizes large-scale
transverse magnetic structure.

In the following sections we reexamine the theory of the
separation of adjacent field lines in astrophysical MHD tur-
bulence in light of improved understanding of solar wind
turbulence in recent years ( Matthaeus et al, 1990; Bieber et al.
1994). We consider field line separation in two-component
turbulence consisting of a slab component that varies only
along the mean field, as well as a two-dimensional component
that varics only in the two transverse directions, which has
been shown to serve as a useful model of solar wind turbu-
lence (Bieber et al. 1996). This turbulence mode! can also be
viewed as a concrete example that is representative of aniso-
tropic turbulence in general, i.e., turbulence that varies dif-
ferently along or perpendicular to the mean magnetic field. We
proceed using a nonperturbative approach similar to that
which has been used previously (Matthacus et al. 1995; Gray
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Ta, 2. Ficld line motion in a realization of 2D+slab wrbulence. In the left part of the figure, the shading indicates the initial value of a(x, ), the potential
function for the two-dimensional compenent. In the right part, that initial shading is convected along random field lines. The mean field direction, Z, is to the right. 1t
can be scen that same cepions exhibit strong mixing, while others are still orpanized as distinet flux fubes.

ct al. 1996) 1o examine the field line random walk. The ana-
Iytic results are verified by computer simulations. We then
consider their astrophysical implications.

2. 2D+ SLAB TURBULENCE

In the 2D+slab model of magnetic turbulence, we assume
B = By + b{x,.2), (l)

where the mean field By is constant. We also use
By =58z, b L2 {2)

and the fluctuating field, of mean zero, is given by

b =5 y) FET). (3)

For brevity, we refer to a quantity such as (/*) as the magnetic
energy of the fluctuations. In general, we can write

B*P(x, v) = V x[alx,1)3]. “

where aZ can be interpreted as a vector patential for the
two-dimensional companent of turbulence or ag a poloidal
(transverse) Aux function, in the scnse that [ &P hdf =
a(2} - a(l), where d# is the line element alonyg any curve
cornecting peints 1 and 2 and 2 i the two-dimensional nor-
mal to that curve. Note that any large-scale gradicnt in a
would violate the assumption that the mean magnetic field is
unitorm and along the 2-direction. Thus, a(x. v} can be viewed
as a random function, Huctuating about a constant mean value,
taken to be zero for convenicnee, with a well-behaved power
spectrum Ak, £,).

This form of magnetic turbulence was motivated by an
analysis of magnetic fluctuations in the solar wind ( Matthacus
et al. 1990). Note that with b | Z, we have B. = By, so in this
model it is unpossible for a magnetic field line to backtrack in
the z-direction, and the z-coordinate uniquely specifies 4 point
on a magnetic field line. This permits a direct analogy between
the perpendicular motion of a magnetic field line versus z
and the trajectory of a fluid element in incompressible, two-
dimensional fluid dynamics versus time.

Figure 2 illustrates the flux function a(x, ¥} and the motion
of field lines for a realization of such 2D+slab turbulence with
an 80:20 ratio of two-dimensional to slab component encr-
gies, as found in the solar wind (Bieber et al. 1994, 1996). In
the absence of a slab component, the 2D-turbulent field lines
would move along curves of constant a, since equation (4)
indicates that ¥V | Va. (This is analogous to Hamiltonian
flow, upon the substitutions @ — A and z — ¢.) In three di-
mensions, such field tines arc constrained to flux tubes that
are “cylinders™ in the mathematical sense of surfages of con-
stant a(x,y). What makes 2D+slab turbulence interesting is
that the slab component imposes random perturbations on the
field line motion, leading to mixing of ficld lines and wan-
dering to regions of diffcrent w(x.v) (see also Matthacus et al.
1995), Thig is tllustrated in Figure 2, where the 1eft pancl shows
an initial shading according to a realization of a(x. y) and the
right panel shows how that shading is convected along random
field lines (the distance = along the mcan ficld increases to the
right). In the abscnce of slab turbulence, the shading would be
constant with z as ficld lines stick to the same value of ¢, in
contrast, Figure 2 illustrates how the slab turbulence “mixes™
field lines of different initial a-values. It is interesting that
some regions cxhibit strong mixing and spreading, while in
others the initial shading is clearly visible in the same location,
indicating that a flux tube structure is maintained over this
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distance, a phenomencn that is discussed further by Ruffolo
el al. (2003).

3. RANDOM WALK OF A SINGLE FIELD LINE

It is instructive to first review the diffusive random walk of a
single magnetic field line in the 2D+slab model of turbulence.
While yielding the same result as Matthaeus et al. (1995) in the
tong-distance limit, the present calculation allows us fo deter-
mine its range of applicability and employs a different form of
Corrsin’s hypothesis, which we also use in the calculation of
field line separation.

Following Jokipii & Parker (1969) and Jokipii (1973), we
start with the defining equation of a magnetic field line,

ﬁi dy dz

= e 5
B, B8, B’ )

and express the change in, say, the x-coordinate of a field line
over a distance Az along the mean magnetic field as

1 Az
AEAM-@FE££WWMAHM-@

This quantity is illustrated in Figure 1. The ensemble average
of (Ax)? is then given by

, 1 Az Az , , ,
mw=g£ £w¢mwnﬂ

x by [x(z™"), (2", 2"}y d7’ iz

1 Az Ar
E‘f (b;(x"yr.zf)bx(x”.y”,z”)) dZ!dZ”‘ (7)
0 /0 0

where we introduce the notation x' for x{z'), etc. We can also
write

2 ! Az phe N
(AX )"' E/‘ / {b.\’(x Y ,Z)
0/0 J-
xb(x, v 2 + AZNdALdY, (8)

where Az’ = z" — 2', and with the assumption of homogeneity,

5 1 Ar Az—z'
(B = / (5(0,0,0)
0 /0 oz

wh(AX AY AL AL dE, (9)

where Ax' =x" —x' and Ay =" — /. This equation de-
scribes the random walk of a single field line, and the quan-
tities z', 27, Az, and Ax’ are illustrated in Figure 3.

Before proceeding further with the mathematical derivation,
it is interesting to motivate the Matthaeus et al, (1995) result.
Physically, a random walk should give diffusive behavicr,
with

(Ax?) = 2D, Az, (10)

{B3)
BZ

DL~<(a’r/d)> ¢ (1)

for a “mean free distance™ &, In terms of equation (9), b, at 2’
and 7'/ decorrelate over some distance Az’ ~ £, so the inner
integral is of order 2{h2}£, the outer integral of order 2{h?)¢Az,

Fi. 3.—Schematic of two random field lines and definition of wing
guantities.

and the diffusion coefficient as given above. For slab turht
lence, one might estimate £ to be the correlation length (2
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( 995) refer to as the “ultrascale™ (to be precisely defi
later, in eg. (37]). Then
52 (b7 P2
§ o —— L St

By 2D,

4 /(B
D~ =

V2 By

which depends on the rms level of fluctuation mstead_’
mean square. From the detailed mathematical derivation
is seen that the ultrascale 4 can be identified with the m
squared fluctuation of a(x, ) divided by that of 5" (x,yid
that this result {eq. [14]) refers to two-component tu
in the limit of vanishing slab fluctuations. This limit §
gular because for pure two-dimensional turbulence, fi
on closed flux surfaces remain confined and form
undergo diffusion.

Continuing with the derivation, note that Lagrang
relation functions such as (b (x', 3", 2 )b, (" v 25 di
standard (Eulerian) correlation functions; in a Lagr
semble average over representations of the magnetic
lence, the positions themselves depend on the rep
However, it is possible to separate the statistics of then
fluctuations from those of individual trajectories whi
positions are displaced by more than a coherence leng
parallel or perpendicular direction. (Over smaller dis
is not necessarily accurate, e.g., straight line trajectori
one spatial distribution, are associated with higher m
correlation than bending trajectories, which have a dil
spatial distribution.) This approximation, known as C
independence hypothesis (Corrsin 1959; Salu & Mc
1977, see aiso McComb [990) can be CXpl{:bSLd eitheri
vector space (as in Matthaeus et al. 1995) or in posili
Computer simulations have been used to verify th
for the random walk calculation (Gray ct al. 1996) and
used to verify its validity in the present work.
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Here we demonstrate the implementation of Corrsin’s hy-
pothesis in position space. We consider the Lagrangian cor-
relation function to be the Eulerian correlation function, R,, =
{(5:(0,0,00b,(x, y,2)), weighted by the conditional probabili-
ties of finding Ax" and Ay’ after a given Az":

(B,(0,0,0b,(AX"(AZ),AY(AZ), AZ);

o
- ] / Ru(AX, A, AZ)

x PIAX'|AZYWPAY | Ay dAXY dAY

(15)
s I Az pAz—2' o =S , , ,
@ =z [ [ [ raaxiayag
040 —zf G - 00

x P(AX|AZYWPLAY | AZVdAX dDy dAZ d7',
{16)

where we invoke the statistical independence of Ax" and Ay,
Another key assumption is that the conditional probability
distributions are Gaussian,

] (Ax"?
PAX Ay = -
(Ax]AZ) 27a? exp[ 202 |
"2
PAYIA) = ep N
27wa? 2'7.3

¥

Furthermore, we assume that the variances ¢ = {Ax?} and
= {Ay?) are diffusive and statistically axisymmetric in the
sense that
(Ax?y = (Ay?) = 2D, A7, (18)
where I is the desired perpendicular diffusion coefficient. The
distributions in equation (17) guarantee the statistical inde-
pendence assumed in equation (16). For slab or two-component
turbulence, these assumptions arc accurate for sufficiently large
Az, by the central iimit theorem. A check on the validity of the
result is that (Ax?) should be proportional to Az in that limit,
and as Az decreases, viclation of that proportionality indicates
the limit of validity of the diffusion approximation. For exam-
ple, at small Az, over which b is nearly constant, there is a
“frec-streamting” regime in which field lines have nearly
straight-line trajectories and (Ax?) ox (Az).
So far, our calculation of (Ax2) has not yet specified the
nature of the magnetic turbulence. Now let us focus on axi-
symmetric, two-component 2D+slab turbulence (egs. [1]-[3]):

Rl AX Ay, AZ) = REN(AZY + RIP(AX, Ay, (19)

or in terms of power spectra,

Rslab(Azf) / Pslab(k ) ik A df(z,

RINAX, Ay% / / P03k, ke~ B
xe D gk dk,. (20)

Then, substituting equations (19) and (20) into equation (16)
and separating slab and two-dimensional contributions, we have

Yol. 614
(AxP) g =
1 1 / slab(k)/ /Az i /‘m P(Ax'|AzJ)dAx'
VR Y
y [/ P(Ay’lAz’)dAy’] e O ANz d e, (1)

N e T

Az—z’ bS] ) ,
x/ / [/ e A PAX A" dAx’]
¢ -z -

00
x[ _/ e’f"’AyP(Ay’\Az')dAy’}dAz’dz’dkxdky.
(22)

For the slab component of turbulence, in which Rﬂ“b does not
depend on Ax’ or Ay, the conditional probabilities simply
integrate to 1, yielding

1 1

Ax? ==
( )s}ab mBé’i
o0 Ar phz 2 ‘ .
x f / / Pk Ye A AN de’ d..
—oc SO S =2
(23}
For the two-dimensional component, we have
b . v
/ e kB pA Y | AZYdAX
o e—ik‘Ax’ (Ax.')l
expl - dAx
oo /4D |AZ] p[ 4D1|AZ’J
_ eﬂi)lkflﬂz’;1 (24)

and with the analogous formula for the Ay’ integral, we obtain

Az Nz—z
(Ax mn = ZWBZ/ / / [ Pﬂ)(k.nky)

x e DN A L g dk dk,. (25)

So far this derivation is equivalent to that of Matthaeus et al.
{1995), except that we consider the exact limits of the Az’
integration, not approximating the limits as +oc.

Now we may carry out the integration over Az’ and z' in
equations (23) and (25), to obtain

11 /"0 2[1 — cos (k:Az)]
V27 By o k2

(Ax? / [OC 28zP20(k, k)
*hw = 2qu2 oo DR RS

—0 (B )Ar

(DX g, = Py di,.

(26)

x |1+

DL (k2 + kD)Az

1t 2Az / PZD(k,,k)
278 Dy

x [! ~ gDk Az)] dic, d..  (27)

1
¢ } dk, dk,
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where k7 = k24 k2, and g(u) = (1 — e™)/u behaves as a
low-pass ﬁlter 1e gy~ 1 for u << 1 and monotonically
declines to zero as ¥ — oo. We then obtain an expression for
the perpendicular diffusion coefficient for a single field line,

D = (AxYY/(2Az2):
o * 1~ cos h, 2 A2)] oap L L
_ \/2_qu2/_\ Chs PRk dh 5

— gDk Az)] dkodk,.  (28)

f f PZD(kn

Note that this formula is implicit in the sense that D, appears
on both sides of the equation and nonperturbative in the sense
that it applies for any P3™ and P;7. Note also that a diffusion
coefficient is a valid concept only when {Ax?} o Az, ie,
when this expression for [, is constant in Az. Next, we show
that this is indeed the case for sufficiently large Az

Equation (28) can be interpreted further when we consider
that most observed power spectra of magnetic turbulence have
power concentrated below and in the vicinity of a certain scale
ko, which is associated with a coherence scale ¢ = 1 /k. Now
if there is no two-dimensional component, we have

[1 — cos (k. AzZ)]

a l =
= T Vin B / k2Az — Pk ke (29)
Note that as Az — oo,
1 — cos{k,Az)
— " w8(k,) (30)
klAz
and
Dslﬂb - \/}Pﬂﬂh(o) (3 l)
L 2 Bé

This dependence, originally derived by Jokipii & Parker
(1968), is approximately true for large Az, ie, Az {, =

1 /kp., where £ i$ a parallel coberence length provlded that
P is roughly constant for &, << Ag,. Equation (31) can also
be expressed as

<b2 )Slab

£, 32
7 62)

slab __
D =

for the correlation length £., as physically motivated earlier

(eq. [12)).
Next, considering the limit of vanishing slab turbulence, we
have D, = D3P, and

X PZI)U“ I'C)
( L ZWBU_/ /

x [l —g{(D. K {Az)] dk,dk,.  (33)
(A note on notation; D refers to the perpendlcu ar random
walk in the limit of no slab turbulence, while (A x?), refers to
the contribution of two-dimensional turbulence even if slab
turbuience is present.) Since g acts as a low-pass filter, 1 — ¢
acts as a high-pass filter, which is close to 1 except that it
becomes small within a “hole™ in {k, 4} space,.for &k =
H/(DJ_AZ)}I 2 As Az — oo the width of this hole decreases,
and our expression for D2P is equivalent to that of Matthaeus
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et al. {1995). The effect of the hole around &, = 0 is negligbl
if its size is much smaller than kg, so the expression

PZDkx,A
D = zqu?// ( y)dkd"’

is valid for koﬂDLAz > 1, i.e., {&x?) > £, for perpendic
excursions greater than the scale £, = 1/ky, . Referring tot
flux function (vector potential) a(x, y) for the two-dimensior
turbulence (see § 2), we have

P ke k) = oAGL)  and Pod(k, k) = hgA(ky),
where Ak, ), the (axisymmetric) power spectrum of alx,yl
defined as the Pouncr transform of the correlation
{a(0, 0)a(x, »)}. Then Py +P“)D = k7 A, and assuming ax
metry, the integral of P20 /7 is one-half that of 4. Thus, wee
relate D3P to the variance of a(x, y):

sz,/-——f ] Ak, ) die dk, = /m—
s 2B o ST 28

and finally we can define the “ultrascale”

again yielding a form that was physically motivated e

{eq. [14]):

po_ LV
i - ﬂ Bl’)

By way of an analogy with hydrodynamic correlatio
(Batchelor 1953), we see that 4 is the length associal
the curvature of the {aa’} correlation at zero separ:
eq. [37]) and therefore may be thought of as the Tay
scale, or “inner scale,” of the {aa’} correlation funeti

In summary, substituting equations (29) and
equation (28) gives

(o°)*

D, =D D

D) =

Dslab Dslab 2 x
i + ( é )+(D2!_“).

for D5 and D°P as in equations (32) and (38), respee
(Matthaeus et al. 1995). We recall that this derivatio
a diffusive random walk of the field line, which is val
the regime where {Ax?) o Az This is true of lhe'—_
large Az as given above, and evaluating (Ax?) on
this formu!a for D, verifies that the range of va
{Ax?) 172 and Az greater than the respective coheren
This built-in check of the range of validity arises
approximating the limits of d Az integration as +oc
(28) agrees with previous results while also providing ab

— s A e

R T ~ Tl DC Sy
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Fic. 4. - Schematic of the separation of field lines, i.c., the change in displacement (X', ¥') between two field lines for a small initizl displacement (Xp, 0. (@) Two-
dimensional turbulence is strongly correlated enly for displacements within the dashed circle, of less than a perpendicular coherence length ¢, . (b—d) Distribution of
field line displacements with increasing Az (b) Slow diffusive separation. (¢) Superdiffusive separation. (¢) Fast diffusive separation.

check on the regime of validity. This is important in the fol-
lowing derivation of the ficld line separation.

4, SEPARATION OF TWO FIELD LINES
4.1. Mathematical Derivation

In this section, we derive the separation of two magnetic
field lines in two-component 2D+slab turbulence. Now we
consider the lateral coordinates of two different field lines,
x1{2), vi(z), x2(2), and y,(z), expressing the displacement be-
tween them by X = x; — xp and ¥ =y — y; (see Figs. 1 and
3). Without loss of generality, we consider X(z = 0) = X, and
¥Y(z =0) = 0; ie., the x-direction is defined to be along the
displacement between the two field lines at z = 0. Then the
separation of the field lines is cxpressed as the change in
displacement, (AX, AY), as a function of distance Az along
the mcan magnetic field.

Note that although the turbulence can be assumed to be sta-
tistically homogeneous and axisymmetric in position space
(x.)), the same cannot be said for displacement space (X, )
(see Fig. 4). In particular, when one considers the correlation
between the two-dimensional component of the turbulent field,
b°" at the positions of the two field lines, there is a fundamental
differcnce between a distance much less than ¢ (strong corre-
lation) and a distance much greater than £, (weak correlation).
When we define the initial displacement as (X, 0), then the
separation in the two directions, AX and AY, need not be

statistically identical, as we show mathematically in this sec-
tion. Physicalty, A X initially represents a changing distance be-
tween the two ficld lines, while AY initially implies a changing
orientation of the displacement (Fig. 4). After a large Az, when
(AX2Y'? and (AY?)"/? are both much greater than ¢, the
separation becomes axisymmetric, with (AX 2}/ & (AY2)/2,
Let us first treat A X, the x-separation between two field lines
after a distance Az, which can be expressed as (Jokipii 1973)

Az
AX = Axl — AJ[2 = BLO’[O [hx(l',l,yijgr) - b((xé,yé,z’)] dz’.
(40)

Then we have
5 1 Az Az
(AX7) =5 /0 / (be (x}, 1,2 ) bulx 3y 2y d2” 2
0- S0
1 Az Az
tE /ﬂ / (balxy. 3, 2V0ulxy y3 2" d' 2
0 J0 *
1 Az Az
R ] f (belx] vy, 2V0uly 37 2)) d2' d”
ndo Jo

1 Az Az
- F/o [0 (bo(xy, ¥3, 2 ¥bux) 1Y, ")) dz’ d2".
D
(41)
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From the symmetry of “1™ and ‘2" indices, we have

(AXYY =20 - 20, (42)

where we define

Iy =(Ax") = f / {belx), ¥, 200y 2™ ) d2 2,
(43)
| e pas
{12 = EE/ j (belx), ¥) 200y pY, )y de’ dz”.
nJo Je
(44)

Since slab Auctuations are independent of x- and y-coordinates,
the contributions of slab turbulence to [, and /)2 are equal.
Thus, the direct slab contributions to (AX?) cancel, which
makes sense because in pure slab turbulence the two field lines
maintain a constant relative displacement at all z. This leaves
us with

<Axﬁzﬂaﬁbo

/ / (B2°0x; 0} 2 WPy ) 2y de 2
(45)

An equation for {A¥?) can be obtained by the substitutions
OX — AY, Ax — Ay, and b, — b,; with the assumption of
axisymmetry in x and », we have (Ax?) = (A)?). Note that
although the direct slab contributions have cancelled, the
presence of slab turbulence still affects the results in that both
terms on the right-hand side of equation (45) implicitly in-
volve the total perpendicular diffusion coefficient, D, =
{AX%Y /(2A2) (including the slab contribution).

The calculation of the field line separation for a given Az
proceeds as in § 3. With the assumnption of homogeneity, and
again treating AX first,

2 Az Az -z'
ors / ] (60,0, 0)
BG 4Q -z

x 620 (Ax) — X' Ay - V' Az yd Az d'.

(AX2>:2(A-"2>20

(46)

Suppressing “2” subscripts and using the simplified notation
X'— X, Y — Y, and 2/ — z, we have

L t2 2 Az Nz—z n .
(AX?) = 2(Ax%), ~ — {62(0,0,0)p}
B{) 0 — ’
x(Ax'— X, Ay — ¥, AZ"))dAz' dz.
(47)
Here the displacement between x5 and x} is expressed in terms
of displacements from a common pomtx2 as shownin Figure 3.

Then Corrsin’s hypothesis and the assumption of independence
of X and ¥ displacements allow us to write

SEPARATION OF MAGNETIC FIELD LINES

(AXY) =2{Ax)5p

f / PRk k)
Az Az—z . ' f |

" { f |: / (] iane P(AI’}A;:") dAx
o L/ .

o
X (f e'j"‘y"\‘y'P(Ay'lAz')dAy'> d!.\z'}

x [ f ~ &4X Py |z) dX]

X [ / %7 P(Y]z) dY} dz} dky, dk,.

We can evaluate the three square-bracketed expressions
turn, making use of Gaussian and diffusive conditio
ability distributions. In the first, the Ax’ and Ay infeg
(inside parentheses) can be evaluated as in equation (24}, @
which the Az’ integral is straightforward:

Az—z o0 . ,
f ( / e""‘r’“P(Ax’mz’)cmx’)

o0
x (/ e PUAY | Az dAy') dAz

J oo
| _ D (Aeg) Dk}
= lei (2 4 € )}._

For the sccond bracketed expression, we note that X =X
A X, where Xy is the initial displacement between the two
lines. Then

o0 [ee]
/ e"k-xXP(X\z)dX:e’k‘XU/ AN P(A K[z) AR

— oo gDkl
)

again making use of equation (24), where D, = (AX
is the diffusion coefficient for the x-separation of tw
field lines. The third bracketed expression is similar:

o . 2
/ MY P(YI)dY = e PohE,

We note that defining the initial displacement as (Xp, 0) big
the axisymmetry of AX and AY (sec also Fig. 4), s?
Dy, may be distinct.
Substituting equations (27), (35), and (49)-(51) intg
tion {48} and performing the z-integration, we obtain
plete expression for {AX?):

o 8/_\22 CO]sz(kL)
AXT) = Ax?) 27r82/ ]

(mmf <M->k;)
g

_ Xy

2 2
| ,((Axlwf? (AYD)K]

2 T
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TABLE 1
Tvees oF SErARATION oF Two MaaneTic FisLp Lines 1IN Two-ComponenT TURBULENCE

Random Walk and Separation®

Distance Range

Type of Separation

£ (ALY and (AXE) e,
{AXYY 8 {AX) .
{AXY) € & € {AX) e,
(A% and (AXD S e

Long Az

Short Az

Intermediate Az (only for D3P << D)
Intermediate Az (only for D0 « DY)

Fast diffusive separation
Superdiffusive

Slow diffusive separation
Nondiffusive®

? The quantity {Ax?}) is the mean squared “random walk,”

the perpendicular displacement of a single magnetic field

line relative to the mean field. The quantity {AX?} is the mean squared separation bctween two magnetic field lines; see

also Fig. 1.

" if D2 < plb ) nondiffusive behavior applies at a shont distance Az < £, regardless of the magnitudes of {Ax?)

and (A X"}

where ¢'(u, v} = (e™ — e7")/{v — u) is a two-dimensional low-
pass filter that approaches | when and only when both 1 << 1
and v << 1. The analogous expression for (A¥?) is

SAZ sz(k ) (AT
{AXZ) ZwBZ/ f { g( 2 l)

_ ke [g((AXZ)kf 4 ([_\Yl)kjf)

(AY%) =

2 2
1, ((sz)kf N (AYHE (sz)ki)

29172 2 T 2

1 (axhi (AT (AR
_59( 5 + 3 + 5 dk, dk,,

{53)

which differs from (AXZ) only in that sz(kJ ) is replaced by
k2A(ky).
In terms of diffusion coeflicicnts, we have

"Oszk
D - = / / ( 1) 1
DL 2?1'3 o

_ ei"(x)‘/ll ltg (DuszZ + DsykﬁAZ)

— g (D_L ki Az)

1
- ‘ig’ (szkaZ + nykaZ,D LkiAZ)

1
-3 g(DS_,kaz + Dk Az + DLk?LAz)} } dk, dk,,

(54)
and
x kZA(k )
D, = 1 —g(D, B2 Az
R4 DLzﬂB / / { 9Dk Az)
_ pikeX [g ( szk_f Az + D_U,.kf Az)
1 4 kl EAZ 2
59 (Duk?Az + Dyki Bz, DK )
1
-3 g(psxkfm + Dokl Az + DK Az)] } b, dk,.
(55)

4.2, Interpretation: Regimes of Diffusive Separation

Fortunately, the low-pass filters ¢ and ¢’ facilitate the in-
terpretation of the general behavior of the mean squared

separation between two magnetic field lines, described by
{AX?) and {AY?) as functions of distance along the mean
field, Az. The behavior of (AX?} is summarized in Table 1;
that of {AY?) is similar.

The interpretation presented in this section has been con-
firmed by numerical evaluation of equations (26}, (27), (52),
and (53) with the MATHEMATICA program (Wolfram Re-
search, Inc.). Results for specific numerical cxamples are
shown in Figures 5 and 6; sece Appendix for details, including
the turbulence parameters. Figure 5 shows {Ax®) and {AX?)
as a function of Az, with a log-log scale, so diffusive behavior
corresponds to lines of slope 1, with a diffusion coefficient
proportional to the intercept at log Az = 0. Regimes of dif-
fusive behavior are highlighted with solid lines. Figurc 6
shows diffusion coefficients D, and D,, as functions of Az, so
here diffusive behavior corresponds to the flat portions of the
curves. We must point out that the assumptions underlying our
quantitative derivation are invalid if' the behavior is non-
diffusive. However, we can draw the qualitative conclusion
that superdiffusive behavior “connects” the two diffusive
regimes in Figures 5k and 6.

The regimes of behavior of the mean squared separation are
controlled by the low-pass filters g and ¢'. The arguments of g
and ¢’ depend on quantities such as {Ax*)k> or (AX?}42, and
the k. and k, integrals are dominated by the region with
k| £ kyy, so the different regimes of behavior are defined by
whether {(Ax?) and {AX?} are greater or less_than the per-
pendicular coherence length squared, €7 = 1/kG, .

First, we consider the case where { Ax“) > 0 and (AX?) >
2, which occurs at long distances Az. In this case, all the ¢’
and g-terms tend to zero, and we have

(AX?) = (AY?) = 2(Ax")yp,
i D U N o o
Dy =Dy, =2 e 56
Dy D, D, Bl D, B} (56)

We see that in the long-distance limit, the field line separation
is axisymmetric, independent of the starting displacement
X, and diffusive with a diffusion coefficient twice as great
as the two-dimensional contribution to the random walk. This
behavior, which we refer to as fast diffusive separation, can
be seen in the long-distance regimes of Figures 5 and 6. Note
th;l[t) for the case of a slab-dominated random walk (D2 >
D),
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and for a two-dimensional-dominated random walk we have

. ,‘2 bz 203
Dg=- D {%)

oy 55 A B, (58)

To understand these results for fast diffusive separation,
recall tfrom § 1 that if two turbulent ficld fines were completely
uncorrelated, undergoing mdependent random walks, the mean
squared separation {AX?%) would be twice the mean squared

'lD"'zL L

L
10° 0% 108 10

Az

Fig. 6. —Coefficicnts of diffusive separation, 0., (thick fines) and Dy, {thin
fines), as a function of’ As for the slab-dominated case of Fig. 56 and various
initial displacements Ay, with x-quantities in units ¢of £, and z-quantities in
units of {, .
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-Examples of the field line random walk (Ax*} and separation (A X7} as a function of Az, the distance along the mean magnetic field. The random walk s
dominated by {a) the two-dimensional component of turbulence, (b) the slab component of turbulence. Solid lines indicate diffusive behavior; dashed lines indicas

log{az2)

log{AaX 2)

o] 2 4 6 3
- log{Az)

in the perpendicular directions, so we can understand why the
fast diffusive separation in the long-distance limit is twice 2
great as the two-dimensional contribution to the random walk
Since this regime involves large separations and dumrclatmn
of the two-dimensional turbulence at the two field lines, a
shown in Figure 4d, we can also understand why this behavior
is axisymmetric (with (AX?) = (A¥?)) and independent of |
the initial displacement between the field lines, Xp. T

Paradoxically, equatlon (56) implies that when the slab
turbutent energy (bz}‘ “® s increased, D, increases and the
coefficient of diffusive separation decreases {as does the twos
dimensional contribution to Dy ; see eq. [39]). This is illus-
trated by Figures 5a and 50, which differ only in the amplitude
of slab turbulence (see the Appendix for details). An inter-
pretation of this effect is that rapid lateral excursions due to
siab turbulence quickly decorrelate the “random flights™ in
the relative excursions of the two field lines, AX and AY. The
random flights depend on two-dimensional turbulence and
hence x and y, which change more rapidly with increased slab
turbulence. This yields a shorter mean frec z-distance in the
motion of one field line relative to another, hence the lower
coefficient of diffusive separation.

Now let us consider what happens as Az decreases. In the
long-distance limit, we have fast diffusive separation when
(AX?) = 2(Ax?},,. In the case in which the two-dimensional
component dominates the random walk, D?P 2 D*t e ind
have (AX?) ~ 2(Ax?). That implies that these two qudntlli&'
both reach #2 at about the same distance Az (Fig. 5a). Wheu
(Axhy 28 and (AXz) < ¢7, then the low-pass filters g and g°
switch on, our expressions for {Ax2Y,n and {AX?) instead vary
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as (Az), and our detivation is no longer valid in this regime.
This indeed happens at short distances Az even if the two-
dimensional component does not dominate the random walk.
Physically, we expect such behavior in the “free-streaming”
limit where b is nearly unchanged in direction. Such non-
diffusive behavior, the last case listed in Table 1, can be seen at
low Az in Figures 5 and 6.

Therefore, when the two-dimensional cornponent domi-
nates the random walk, the two quantities {AX?) and {Ax?)
arc of the same order of magnitude. On the other hand, if the
slab component dominates the random walk, we can have the
field line random walk much greater than the field line sepa-
ration because the slab fluctuations directly contribute to the
former but not the latter. Furthermore, it is possible to have

(AX?) < 5 < {AX), (59)

which is intermcdiate to the short-distance and long-distance
regimes described above. In this case, two nearby field lines
follow highly correlated trajectories with a mutual separation
much lower than the displacement from the mean field, as
represented by the lower two field lines in Figure 1. We refer
to this behavior as **slow diffusive separation.”

Referring to equations (52)—(55) and recalling that the
integrals are dominated by k| £ ko, = 1/€,, we have g’ — 0
and g — 0, with the exception that g{{AX?)43 /2) — 1, so

oo sz(kl)

“TD, zrrBO/ /

b / / sz(kl)
v Dl 2782

Recall that 4 is the power spectrum of a(x, y), i.c., the Fourier
transform of the autocorrelation function {a(0, Ma(x, ¥}). Thus,
the directionally averaged coefficient of slow diffusive sepa-
ration is

— * XY di dk,,  (60)

— Y dk dk,. (61)

L @) — (a(0,00a0Xs, 0)
T 2 - e

Dy

This expression for D, varies linearly with the autocorre-
lation of the flux function g at the initial displacement between
the field lines and has a direct physical interpretation. If the
field lines are initially far apart with Xj > £, so that the cor-
relation {a(0, 0)a{Xy, 0)) — 0, then we recover the expression
for fast diffusive scparation (eq. [56]). Physically, this refers to
the separation between two field lines for uncorrelated two-
dimensional turbulence (and perfectly correlated siab turbu-
lence, at the same z-coordinate), and there is no difference
from the fast diffusive separation regime. On the other hand,
for Xp £ £, ficld lines are initially close together with a sub-
stantial correlation in the flux function a, and the coefficient
of diffusive scparation is slower in this regime.

Transforming equation (62) to obtain

1 {la(Xe, 0) — a(0,0)")
D, 252 '

we see that this expression is also related to the mean squared
difference between a at the positions of the two field lines. Note
that a{Xy, 0) — (0. 0) can be interpreted as fl »*P -f df, where
d£ is the line clement along any curve connecting the locations
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of field lines 1 and 2 and A 1s the two-dimensional normal to
that curve, i.e., the two-dimensional magnetic flux threading
any such curve. There is an interesting similarity between this
expression and equation {56) for fast diffusive separation.

Another property of slow diffusive separation is that it is
nonaxisymmetric, ie., (AY¥Y?} > (AX?). Recalling that the
axisymmetry is broken by defining the initial displacement as
(Xo,0), AX initially refers to the change in the distance be-
tween the two field lines, while AY implies a changing ori-
entation of the displacement (Fig. 4). Mathematically, in the
limit of small Xp and with a transformation to polar coor-
dinates (%, , ), equations {60) and (61) become

L X3 S 2 3
”:DiLZﬁB% ; SN cos @ dy A ko Atk ydky

1 ¢ Y LA >y
by ~p g, eostede] [ Ak o

The bracketed integrals are ;7 and 27, respectively, so for
small Xp the ratio of (A¥?) to {A X2} is 3:1. Using the rela-
tion k4 = P20 + P22, we have

11 »°
Dy = -7 ( )2 Xg—:
8D, B
31 P,
Djy:m)L 7 X (65)

or in terms of the correlation of a, we have

11 e~ (a0, 00k, 0)
.u'—'EBI BE) '
31 @) {a(0,0a(%,0))
Dy =55 5 . (66)

Note that when {a?) — {a(0, 0)a(Xy, 0)) is expanded in terms
of Xj, odd terms vanish by symmetry and the leading term is
of order X¢. Numerical values of Dy, and Dy, arc shown in
Figure 6 for various values of Xp (in units of #,).

Figure 4 also illustrates the transition between slow diffu-
sive separation and fast diffusive scparation for a slab-
dominated random walk and for Xy < £,. When the two field
lines are closer than £, the two-dimensional fluctuations are
strongly correlated, leading to slow diffusive separation. The
distribution of the field line separation is nonaxisymmetric,
preferentially changing the direction of the displacement in-
stead of the distance. This is related to the motion of field lines
subject to two-dimensional turbulence: at any given position,
two field lines are typically both rotating around the same two-
dimensional “island.” The mutual random walk is suppressed
by the temporary confinement of field lines within a perpen-
dicular coherence length. When the distance is of order £,
the two-dimensional fluctuations decorrelate and the rate of
separation increases. This is a regime of superdiffusion that
bridges between the slow diffusive separation and fast diffu-
sive scparation (also seen in Figs. 5 and 6). Then for distances
much greater than £, one obtains the long-distance limit of
fast diffusive separation, which is axisymmetric and inde-
pendent of Xj. The various regimes of field line separation of
summarized in Table 1.
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In Figure 6, it is seen that the onset of superdiffusive be-
havior occurs at a certain Az value, independent of Xp. This is
similar fo the behavior of the mcan separation versus z in
Figure 2 of Maron et al. (2004). This can be understood in
terms of a universal curve of (R?) versus z, defined by the
Ansalz

d{R?)
dz

= 4D,((R*)). (67)

Here the function D,({R%}) is a ruaning diffusion coefficient,
related but not neccssarily identical to the diffusion coefficient
derived earlier, and (#?) refers to the mean squared distance
between the two field lines,

(RY) = (%) +{1%) = %§

The value of D({R?}) is set to D;(X3) from the slow diffusive
separation regime (in which (A.X2 FAY?Y) < X7 and (R?) =
XU) as given by equation (62) The above Ansatz proposes that
D is a function only of (R*) and not a function of the details
of the displacement distribution, which is particularly accurate
for slow diffusive separation and the onset of superdiffusion
{e.g., eq. [65] shows that D; oc X7, so replacing X by the
mean {R?) leuves D, nearly unchanged). Then the choice of X3
is viewed as the choice of a starting point (zo,(RZ; = X3
along the universal curve, with {AX? 4+ AY?) = (R%) — X{
and Az = z — zg. This model can approximately reproduce the
results in Figure 6 for slow diffusive separation and the onset
of superdiffusion. In that range, using D) = D% and from
equations (32) and (65), we have ‘

(1™ (R

+{AX?) +(AYY),  (68)

Dy({R*)) = (b7 2E, (69)
and solving equation {67) we obtain
(R?) = X2eblt,
(AX? + AYY) = X2 (e"-‘-z/fs 1), (70)

where the exponential growth length along the mean magnetic
field,

gc (bZ)slab
Yy 2 </_‘|3>2D !

‘s

(71)

marks the end of the approximately lincar dependence of
{AX? + AY?) on Az, ie., the end of slow diffusive separa-
tion. In this way, the onset of superdiftusion can be viewed as
part of a process of exponential growth of {R?) as a function
of z, which is an cxample of stochastic instability. The result
(eq. [71]) amounts to a calculation of the Kolmogorov-Lyapunov
length (Rechester & Rosenbluth 1978) for a slab-dominated two-
component magnetic field turbulence mode.

5. COMPUTER SIMULATIONS

To confirm the conclusions of these analytic calculations,
we also developed computer simulations of field line separa-
tion in 2D+slab turbulence. While the simulations inevitably
involve some discretization and statistical errors, they do
avoid the key assumptions of the analytic work (Cormrsin’s
hypothesis, Gaussian probability distributions, and diffusive

. the regimes in which our analytic cxpressions are not valid
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Fio. 7. -Cocfficients of diffusive separation derived from computer sime
ulations, I3, (thick solid line} and Dy, (thun solid line), compared wﬂy
Dy = Dy, from analytic calculations (dashed line), as a function of Az fara
random walk dominated by the two-dimensional component of furbulens
The long-distance limit is the regime of fast diffusive separation. (See textiat
details.)

separation) and thus provide an independent check of lhw'!L
validity. Computer simulations are also useful for examinig
I

i.e., where the field line separation is not diffusive. The
methods and results are presented here, and more technics
details can be found in the Appendix. .

The simulations involved two steps: !

1. Generating representations of slab and m()-dimensinmk
turbulence with desired statistical properties, such as a powq
spectrum that follows the Kolmogorov power law over rheub
ertial wavenumber range and rolls over in the cnergy- contamu&
range, as observed for solar wind turbulence (Jokipii & Colem
1968). (See the Appendix for mathematical cxpressions.) Rar
dom phases are used in wavenumber space, Ioliowed by inverse
fast Fourier transforms to obtain b0(z) and b*°(x,)). The
transforms in z used 22° (=8.4 » 10) points, while the trans:
forms in x and y used 2'2 = 4096 points in cach dimension,

2. Tracing magnetic field lines, ie., solving the coupled
ordinary differential equations

dx  bx,y,2)  dy  byfx,y.2) m

dz By ' dz By '
We used a fourth-order Runge-Kutta method with adaptin
time stn,pping regulated by a fifth-order error estimate step
{Press ct al. 1992). The Dy, and Dy, values were based o8
averages over 1000 pairs of field lines, and each pair was fora
distinct realization of slab and two-dimensienal turbulence.

Now the key physical conclusions of the analytic work
(Table 1) can be checked using the computer simulations, It
the two-dimensional-dominated case, where 3P 2 DI ue
expect a nondiffusive (free-streaming) regime ut short Az
followed by fast diffusive separatlon at long Az (whee
(Ax?) =z ). The analytic expression is expected 10
quanntanvely for diffusive behavior in the long-distance lim
in particular, the fast diffusive separation rate should be given
by equation (56). ]

Figure 7 shows a specific example of two- damenSI
dominated behavior. Specifically, we used (473" (bz)
B3/8, Xo = 0.1339, and other parameters as in the Appen@l

A
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Fia. 8.—-Coeflicients of diffusive separation derived from computer simu-
lations, D., (thick solid fine)y and Dy, (thin solid line), compared with those
from analytic calculations (thick dashed line and thin dashed line, respec-
tively), as a function of Az for a random walk dominated by the slab com-
ponent of turbulence, in the regime of slow diffusive separation. (See text for
details.)

These yield D2 = 0.144 and D% = 0.0625. The computa-
tional box sizes were L. = 10%, and L, = L, = 200¢,. The
simulation results for Dy, (thick solid line) and Dy, (thin solid
line) are comparcd with the analytic predictions for £, and
Dy, from equations (54) and (55), which are indistinguishable
in Figure 7 (dashed line). The difference of about 10% at large
Az represents good quantitative agreement, given the simu-
lation uncertainties. These include the statistical uncertainty,
as estimated from the difference between simulation results
for Dy, and D,, and their stochastic variation with Az, and
the discretization error of about 6%, which we estimate
by replacing continuous integration over k in the analytic
expressions with discretc sums over the k-modes used in the
simulations. Note also that the analytic expression correctly
tdentifies the Az range in which diffusive separation behavior
begins, i.c., the lower limit of applicability of the diffusion
approximation.

Another simulation with the same total turbulent energy but
a 20:80 ratio of (6™ to (b2)*" showed a similar level of
agreement. Indeed, agreement on the order of 15% was also
found between computer simulations and analytic calculations
for the field line random walk (Gray et al. 1996). In addition to
the long-distance limit, another noteworthy feature of our two-
dimensional—dominated simulations is that in the free-streaming
regime, there is nonaxisymmetric separation, Dy, > Dy, rem-
niscent of the analytic results in the slow diffusive regime for the
slab-dominated case (see also Fig. 4).

The interesting features of analytic results for the slab-
dominated case (D%*° > D?P) are a regime of nonaxisym-
metric slow diffusive separation, with D;, = 3D,,, followed by
a superdiffusive transition to fast diffusive separation in the
long-distance limit. We performed computer simulations for
the same parameter values as in Figures 56 and 6, with the
exception that Xy was set t0 0.01. The computational box sizes
were L, =2x10%. and I, = L, = 200¢,. The comparison
with analytic calculations (Fig. 8) demonstrates good agree-
ment, with both simulation and analytic values flattening over
the same range of Az at the ratio Dy, /D), ~ 3. The difference
of ~15% is again of the same order as the statistical and dis-
cretization crrors in the simulations (the latter is estimated
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at 10%—15%]) and is similar to that obtained by Gray et al.
(1996).

Note that in the slab-dominated case, the slow diffusion and
onset of superdiffiusion can also be expressed as an exponential
separation phase (see § 4.2). When fitting the computational
results for (R?) = X7 + {AX?} + (AY?) to an exponential
function of z, we find that the best fit is for {R?) =9.97 x
1075 exp (- 2/6.57 % 10%), Referring to equations (70) and
(71), the analytic expectation is (R%) = X7 exp (-~ z/£,),
where for this case X7 = 107% and £, = 6.67 x10°. Thus, the
analytic and numerical calculations agree to within 0.3% for
the prefactor and to within 1.5% for the exponential growth
tength, £,.

6. DISCUSSION AND CONCLUSIONS

We have developed an analytic formalism for the ensembie-
averaged field line random walk and separation that does
not assume a long-distance limit, i.e., in which fluctuations
between the two field lines have not completely decorrelated.
This is possible by retaining finitc limits of integration in
Az'. The results of the analytic theory have been confirmed
by numerical simulations, justifying the use of Corrsin’s
hypothesis.

The analytic results we have derived are nonperturbative
in the sens¢ that neither the total turbulent energy nor the
turbulent cnergy of the slab or the two-dimensional compo-
nent is constrained to be small. The results are also not re-
stricted to a specific functional form for the power spectrum.
We consider a particular case of anisotropic turbulence, in which
power in k-space is concentrated along the paralle] axis and
(axisyminetrically) along the perpendicular plane.

With its idealized and clear separation of parallel and per-
pendicular fluctuations, the two-component magnetic turbu-
lence model considered here is an archetype of highly an-
isotropic turbulence, which also serves as a useful model of
turbulence in the solar wind {Matthaeus et al. 1990; Bieber
et al. 1996) and has helped to quantitatively explain solar
energetic particle transport (Bieber et al. 1994). In compari-
son, in the work of Jokipii (1973) all the turbulence is taken to
decorrelate after a certain z-distance. In this sensc it is like the
slab component in our work but differs in that it also con-
tributes to field line separation. The results of Jokipii (1973)
were generalized by Zimbardo et al. (1984) to other mean field
geometries.

Qur overall picture of diffusive separation at long distances
and nondiffusive separation at short distances, with possible
regimes of slow diffusion and superdiffusion in between, is
qualitatively consistent with that presented by Isichenko
(1991a, 1991b} for general magnetic turbulence. As discussed
in the previous section, the slow diffusion and onset of super-
diffusion in the mean squared separation {AX? + AY?) can be
identified as an exponential growth of the mean squared dis-
tance between two field lines, (R?}, as discussed by various
authors (e.g., Skilling et al. 1974; Rechester & Rosenbluth
1978; Krommes 1978; Similon & Sudan 1989; Isichenko
199ta, 1991b and references therein). It was shown by
Barghouty & Jokipii {1996) that the results of Jokipii (1973)
can also be interpreted in such terms. In terms of the separation
of field lines, we have shown that there is a regime that can be
usefully considered as diffusive and nonaxisymmetric in the
perpendicular directions (slow diffusive separation; Figs. 4, 5,
6, and B).

In our detailed work for the particular case of two-component
turbulence, we find a criterion for different types of field line



No. 1, 2004

separation behavior that is somewhat different from that of
Isichenko (1991a, 1991b). That work, as well as Krommes
(1978) and Kadomtsev & Pogutse (1979), stressed a parameter
R given (in our notation) by

‘ 2
R VL -

£’

sometimes called the Kube number. On the other hand, our
work identifies regimes of behavior that depend on D""’/DED,
the ratio of contributions to the ficld line random walk, which
are in turn related to the araplitude of each component and
the relevant distance scales. (Recall that D3P contains 7, the
ultrascale, which is in general distinct from thc perpendlcular
cohercnce scale €1.) Both D, and D have different depen-
dences for D5 /D0 x> | or <« | (compare cqgs. [32] and [38]
with egs. [57] and [581).

Can we reconcile the roie of R in previous studies with the
role of D5 /DY in our work? We note that the previous work
that considered R as « key parameter did not specifically
consider turbulence with very different amplitudes for quasi-
parallel and quasi-perpendicular wavevectors k, apparently
making the implicit assumption that those amplitudes are
comparable. Indeed, the ratio

DY (B g2

DYy, AV 7o

reduces to R (modulo constants of order unity) in the case
where (57 ~. (92" and 1 ~ ¢, . Therefore, we suggest that
the ratio of contributions to D from quasi-parallel and quasi-
perpendicular wavevectors k may be a more gencral criterion
for determining the behavior of field line separation in an-
isotropic turbulence.

The exponential growth rate for the mean squared distance,
which has also been called the Kelmogorov entropy or to-
pological entropy (see Appendix B of Isichenko 1991b), is
also found to be different for various cases of magnetic tur-
bulence (Jokipii 1973; Barge et al. 1984; Similon & Sudan
1989; Isichenko 1991a, 1991b; Barghouty & Jokipii 1996;
Maron et al. 2004), showing that general expressions are not
always applicable to particular cases of interest. In our case
of two-component turbulence, the exponential growth length,
given by equation (71}, 15 again rclated to the ratio between
the amplitudes of slab and two-dimensional components of the
turbulent magnetic field, not only correlation lengths and the
overalt amplitude as suggested by Isichenko (1991a, 1991b).

Now let us return to a specific issue raised in § 1: can
observed dropouts (i.e., sharp spatial gradients) of solar

APPENDIX
NUMERICAL EVALUATION OF ANALYTIC EXPRESSIONS
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energetic particles be explained by field line separation in i
solar wind that is much slower than the field line randog
walk? Apparently not, because observed particle motion i
magnetic turbulence in the solar wind are best modeled by
roughly 80 : 20 ratio in two-dimensional : slab turbulenten
(Bieber et al. 1994, 1996}, and A is inferred from observatk
to be ~0.2 AU (Matthaeus et al. 1999), so the derived value
D?P = 0.37 AU is about an order of magnitude higher thani
slab contribution. This corresponds to a lwo-dimensiond
dominated random walk, the case of Figure 5a, and we -«1-__.*_3_‘
fast diffusive separation (D = 2D3P) for dlbt'lllCCS :

line separation should correspond to uncom,laled
walks of two field lines starting.in the samc region.
ternative explanation of dropouts, corresponding to tempor
trapping of field lines near O-points in the turbulence §
presented by Ruffolo et al. (2003).

In conclusion, we use nonperturbative analylic technigi
based on the Corrsin independence hypothesis and compii
simulations to investigate the separation of magnetic fieid ling
in a fwo-component model of anisotrapic turbulence, whi
has proven to be a useful model of turbulence in the sl
wind. In the long-distance limit, we predict ™ fast diffusive s&
aration” with a diffusion coefficient D == 2(D2P)7 /D, wit

aration at a rate related to the correlation of the flux finc
(vector potential) at the initial separation, followed b
diffusive separation at Az 2 £, which increases up to th
diffusive separation rate. The length ¢, is identified with anl
ponential growth scale for the dlbldr!CL between neighbof
magnetic field lines, which is related to the relative amp tudsy
of the slab and two-dimensional components.

the Thalland Research Fund, the Rauhadapmek Sompej ';‘.f'j
of Chulalongkorn University, and thc NASA Sun-Ba
Connections Theory Program (grant NAG 3-8134).

The present work yields somewhat complicated analytic expressions for the separation between two magnetic field lines i

component turbulence (§ 4.1), which are interpreted in § 4.2. We found it useful to verify that interpretation by num
evaluating the integrals in equations (26), (27), (54), and (55) with the MATHEMATICA program (Wolfram Research,
some special cases. Those results, plotted in Figures 5 and 6, are found to agree with the interpretation of the analytic express
in §4.2. In conirast, the comparison in Figures 7 and 8 with numerical simulations, which do not incorporate the analytic ticon
any way, 15 an independent test of the validity of the analytic theory itself and its underlying assumptions, ‘
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For the numerical evaluation of analytic expressions, the following power spectra were used:
]
P;lcab(k) _ PSIab(kz) x - \ (Al)
Z ¥y (l + kzz/kgz)Sfﬁ
1
Ay X ————————7 . (A2
= TRy )

These forms roll off to a constant at low &, and far above &y, or &y, they follow a Kolmogorov law, with the omnidirectional power
spectrum (OPS) varying as & /3. To see this, note that for slab (one-dimensional ) fluctuations the OPS is simply Pie® 4 pi®,
which has the correct dependence, and for two-dimensional fluctuations at a given magnitude &, , the OPS oc k(PP + P)Z,yD =
k3 4, which varies as & /3 for large k,. However, we stress that the results described in the main text do nef require power
spectra of these specific forms.

For convenience, By, £, kg, , and £, were all sct to 1. Effectively, the calculations are for B in units of By, and x and z in units of
£, and £, respectively. For the slab turbulence spectrum of equation (A1), setting £, = 1 implies that £; = 1/ky, = 1.339, and for
the two-dimensional spectrum of equation (A2), £, = 1 implies an ultrascale A = 0.577. Figure 5 used Xy = 0.1. For Figure 5a, the
slab and two-dimensional turbulence energies were set to (h2)™ =7.07x1077 and ($)°° = 7.5x107%, yielding D™ =
3.54 %1077 and D?P = 3.54 x 10 °, for a random walk dominated by the two-dimensional component. For Figures 5h and 6, the
only difference was that the slab energy (i.e., (h2)™*°) was set to 0.01, or 1.41x 10* times stronger, for D%* = 5 x 1073, so that slab
turbulence dominates the random walk. These values were chosen for clarity, to separate the various physical regimes, and not to
correspond to any specific physical situation such as the solar wind.

Using MATHEMATICA, we first directly calculated (Ax?},,,, for various values of Az and then iteratively calculated (Ax?} and
D, . Next D, and Dy, were calculated iteratively and simultaneously by a secant method (using FindRoot). Care was required to
ensure precision and accuracy fine enough to yield good results yet coarse enough to allow the integrals and iterations to converge.
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[17  The solar cosmic ray cvent associated with the X17.2
class tlare of 28 October 2003 was unusual in several
respects: { 1) Several high-latitude neutron monitors observed
a large, highly anisotropic spike at event onsct. (2) The
carliest onset was detected by stations viewing towards the
anti-Sunward hemisphere. {(3) The event displayed an
extremely slow, protracted decay. (4) The near-equatorial
moniter in Tsumeb, Africa recorded a small increasc
consistent with a solar neutron event /=7 minutes prior to
the onset at high latitudes. We analyze these signals and infer
that relativistic solar neutrons were emitted over a duration
ol =9 minutes, starting ~7 minutes betore the main injection
of relativistic protons. Citation: Bicher, J. W.. J. Clem.
P. Evensan, R. Pyle. D. Ruffolo, and A. Siiz (2005), Relativistic
solar neutrons and protons on 28 October 2003, Geophys. Res.
Len., 32, LO3S02Z, doi10.1029/2004GL0O2 1492,

1. Introduction

[2] Relativistic solar cosmic rays provide a vital observa-
tional basis for understanding acceleration processes near the
Sun. When a high tlux of solar nucleons with energy greater
than a few hundred MeV strikes Earth’s atmosphere, the
nuclear byproducts cascade to Earth™s surface resulting in a
“eround level enhancement™ (GLE). A distributed network
of neutron monitors, such as the Spaceship Earth observing
network [Bicher er of., 2004]. provides an effective means of
studying the angular distribution and energy spectrum of
these cnergetic solar particles.

[*] The extreme solar activity of October-November
2003 produced 3 GLEs, with onsets occurring on 28 Oclober,
29 October, and 2 November. This Letter concerns the first
and largest of these. We present an overview of neutron
monitor observations and point out a number of unusual
features of this cvent. We propose that relativistic solar
neutrons were emitted at the start of the event. We also model
the main phase of the event to determine the solar proton
release time and injection [unction.
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2. An Unusual GLE

[4] Figure 1 presents count rates measured by sclected
stations of the Spaceship Eurth neutron monitor network
as a function of time on 28 October 2003. This GLE was
associated with an X17.2 solar flare located at S16 EO8
that rcached maximum soft X-ray intensity at 11:10 UT.
The time profiles in Figure 1 display several unusual
features.

[s} First, a fow stations observed a large. narrow spike at
cvent onset. McMurdo observed the largest spike, a 43%
increase over the pre-cvent Galactic background, Most
stations did not observe such a spike, or saw a smaller
teature, indicating that the particles causing the spike were
extremely anisotropic. An expanded view of the spikes
appears in Figure 2b. Note that all Spaceship Earth neutron
monitors are at polar locations and have essentially identical
encrgy responses: any differences in count rates can be
attributed to the different viewing directions,

l6] Second. the carliest arriving particles were detected
by stations observing the anti-Sunward hemisphere, At high
latitudes the earliest onsets were at Novilsk (11:14 UT)y and
Cape Schmidt (11:13 UT), which were respectively viewing
towards GSE longitudes ot 1277 and 192°, the latter being
almost directly anti-Sunward!

[7] Third, the event displayed an unusually slow decay.
Intensitics remained clevated by several percent over the
pre-event background until about 06:00 UT the following
day, a total of about 19 hours. In comparison, station
intensitics in the more typical GLE of Easter 2001 [Bicher
et al.. 2004] declined to one-tenth their peak value after only
4 hours, The 28 October 2003 GLE persisted unti! the
coronal mass ¢jection (CME) shock associated with the
X17.2 flare arrived at Earth, resulting in the largest Forbush
decrease of the present sofar eycle. (The decrease continues
beyond the time shown in Figure 1, wltimately reaching
27% at South Pole.)

[¢] Fourth, as shown in Figures Ib and 2a, the near-
equatorial neutron monitor in Tsumcb, Namibia obscrved a
small but clear increase in count rate beginning at 11:06 UT
and lasting for ~9 minutes, (Note'that the ordinate in these
panels is excess count rate; the increase at Tsumeb amounts
to 3—4% above the pre-event background.) This precursor
increasce scen at a high-altitude (1240 m) station near the
subsolar point {senith angle 8.4%) is reminiscent of catlicr
solar neutron events detected by neutron monitors [Chupp et
al., 1987 Shea ot al., 1991b]. The prescnce of direct
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Figure 1. (a) Overview of the 28 October 2003 ground
level enhancement {(GLE), as observed by four sclected
stations of Spaceship Farth. Count rates are expressed as a
pereent increase over the pre-event Galactic background.
All data arc S-minule averages cotrected o standard
pressure (760 mm Hg) using an assumed solar particle
absorption length of 100 g cm 2. (b) Excess count rate
cbserved by the neutron monitor in Tsumeb, Africa (red),
compared with our best fit for extended neutron ¢mission at
the Sun (blug) and expeetation for &-function emission at the
Sun {green).

neutrons at Tsumeb in this cvent was previousiy noted by
Plainaki er al. [2004].

3. Modeling of the Neutron Event

[¢] During intense solar events, accelerated protons and
nuclei preduce high energy necutrons through inelastic
collisions in the solar atmosphere. These (uncharged)
veutrons follow a straight line path from the emission point
to Earth undisturbed by magnetic fields, amiving before
dircet protons from the same cvent. If the neutron emission
time is very short compared to the propagation time 1o
Earth, the observed lime profile of the neutron monitor
allows a divect time-of-flight measurcment of the encrgy
speclrum. However. there have been reported cases of
extended emisston lasting hours, while others may be as
bricf as a minute [ Chupp, 1995, Muraki und Shibata, 1995,
and reterences therein].

[10] The nuclear processes responsible for solar neutron
cmission also generate high energy gamma rays [Lingenfelter
and Ruamatny, 1967]), which can provide a key proxy for the
neutron emission profile. Unfortunately, we have not
obtained such measurements at the time ot writing.
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[1] On 28 October 2003 at 11:06 UT the Tsumeb
neutron monitor recorded a 3—4 percent increase that began
7 minutes before the onset of charged particle GLE signals
and persisted for roughly 9 minutes. The Tsumeb monitor 1s
an 18-NM-64 instrument located in Namibia at 17.387F,
19.2°8 (9.12 GV vertical cutoft rigidity), with 1240 m
elevation resulting in average atmospheric pressure of
660 mm Hg. Using a Monte Carlo code [Clem and Dorman,
2000; Fasso er af., 2001] to simulate high energy and
nuclear transport through the atmosphere and through an
18-NM-64 neutron monitor, the Tsumeb yield function for
solar neutrons was calculated. The resulting Tsumeb yield
function is shown in Figure 3 (red squares) along with
relaled quantitics.

[12] The black curve in Figure 3 is Chupp’s [1990]
spectrum derived for the 2 June 1982 cvent

()
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Figure 2. {a) Exccss count rate at Tsumeb nentron monitor
with fits as in Figure 1b. (b) I'xpanded view of the spikes
observed by several stations at the begmning of the GLE,
Station intensitics are expressed as a “pereent increase”
over the pre-cvent Galactic background during a normal-
ization inferval 10:30-11:00 UT indicated by the horizontal
bar. These arc }-minute data correcied to standard pressurc,
(c) Directionally averaged intensity (blue) at polar neuiron
moniters and medel fit (red) o main peak. {d) Model
injection function (solar time) of relativistic solar protons,
optimized te it intensity and weighted anisotropy during
and after the main peak. for a closed magnetic loop of
length 4.2 Al
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Figure 3. Tsumeb 18-NM-64 yield function versus energy
for newtrons arriving 8.4° from zenith (red squares),
Chupp’s [1990] exponential spectrum  (black curve),
Tsumeb response function (blue), and propagation time of
a neuwtron from the Sun to | AU (green).

where @ iIs the spectrum in units of (sr MeV)"l. and £, 15
aeulren cnergy in MceV., We found that simple linear
sealing ot this spectrum provides a good description of the
28 October 2003 ¢vent, The blue curve in Figure 3 is the
Tsumeb response function (product of yield function and
spectrum), and the green curve shows the propagation time
of a ncutron from the Sun to | AL For a given cinission
time profile. we can derive the expected count rate profile
by integrating the response function in time delayed
segments based on propagation time to Earth.

f13] In order to derive start time and emission duration, a
least squares tit was performed assuming the emission time
profile can be represented by a boxcar function. The fit has
three free parameters: the normalization, onset time, and
duration. The result of this fit is shown in Figures 1b and 2a.
The blue line represents the best fit with cmission onset
at the Sun at 10:56:30 ST +1 minute (“ST" is Solar Time,
and refers to the Universal Time of an event at the Sun) and
an emission duration of 8.7 minutes. The scaling factor
(relative to Chupp’s [1990] spectrum) is 0.93. The modcl
represents the data well,

[1a] The green curve in Figures 1b and 2a illustrates the
count rate profile expected for an instantaneous cmission
with the same normalization and start ttime determined from
the three parameter fit, This is clearly inconsistent with the
data. We tried other neutron spectral shapes (power law
variations) and found that the emmission duration time did not
vary by more than ~1 minute.

4. Why Did the First Particles Arrive From
Anti-Sunward?

15| Given strong indications that relativistic solar
neutrons were detected in the 28 Qctober GLE, we consid-
cred the possibility that neutron decay protons (NDP)
[Ruffola, 1991; Shea et af, 1991a} might account for
the carly onset and anomalous arrival dircctions observed
at Norilsk and Cape Schmidt. Neutrons decaying locally
onto a (hypothetical) acar azimuthal ficld will have an
initial pitch angle near 907 One-half” gyroperiod after
they decay, they will be moving back toward the Sun
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and could in principal be detected by stations viewing
anti-Sunward.

f16] However the NDP hypothesis encounters difficulties
on two grounds. First, one would expect NDPs to onset at
the same time as direct neutrons, but the Cape Schmidt
(proton) onset followed the Tsumeb (ncutron) onsct by
7 minutes. Second, we modeled NDP intensity using the
neutron spectrum derived above, and we obtained a sea
level NDP signal less than 1%, morc than 20 times smaller
than the increase observed at Norilsk.

{17] A second hypothesis for the anomalous arrival
dircction of the tirst particles is that Earth was located
inside a closcd magnetic loop al event onset. If the first
injection of particles was on the far leg (rclative to Earth)
of the loop, then the far-leg particles would move past
I AU, loop back. and be obscrved at Earth coming from
anti-Sunward. Indecd, even without the anti-Sunward
spike, trapping of particles in a magnetic loop might be
hypothesized to account for the unusually slow decay of the
event. Anti-Sunward streaming in a loop geometry explains
various unusual features of the 22 October 1989 GLE
[Rugffolo et al., 2004] and is observed rather commonly in
lower energy ions [Richardson and Cane, 1996]. The
problem with this scenario is a lack of independent evidence
that Earth was in a closed magnetic loop at event onset.
Fuarther analysis is nceded to answer the question posed in
the title of this scction.

5. Modeling Relativistic Solar Protons

(18] While the excess counts of the Tsumeb ncutron
monitor ¢an be attributed to solar neutrons, the GLE at
high latitude stations is atwibuted to relativistic solar pro-
tons. Given the uncertain origin of the initial spike from the
anti-Sunward hemisphere, we do not attempl quantitative
modeling of those data at present. Instead, we concentrate
on the later anisotropic spike observed at McMurdo, Cape
Schmuidt, and Terre Adelic (Figure 2b).

[1s] We first fit data trom 13 neutron monitors (11 stations
of the Spaceship Earth network supplemented by Terre
Adclic and Barentsburg) to a sccond-order Legendre
expanston about an optimal axis of symmetry taking into
account bending of particle trajectorics in Earth’s magnetic
field. The omnidirectional intensity and weighted anisotropy
(standard amsotropy multiplicd by intensity} are extracted
as quantities to be tit by the transport model, Then we
numerically solve a transport cquation that takes into
account pitch angle scattering and adiabatic focusing
[Rrffolo, 1991 Nutwo et al., 2001].

[20} In this analysis. we consider two types of magnetic
ficld configurations: (1) a standard Archimedean spiral for
the measured solar wind specd of approximately 800 km/s
[Source: http/fwww.srl.caltech.cdu/ACE/ASC/level2/
IVIZDATA_SWEPAM. htinl.], and (2) a closed magnetic
loop of total length ¢ = 4.2 AU. In both models, Sun-Earth
distance along the magnetic field ,is taken 1o be 1.03 AU,
For the focusing length L = --B/AdB/d-), where B is
magnetic ficld strength and = is distance along the magnetic
field, the loop model uses the functional form

Jofs



