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Fig. 4.—{a) Average hourly counting rate for eight sea-ievel polar neutron monitors (colored fines) along witk the omnidirectional average {heavy black line) from
1989 October 21, 12:00 UT to October 23, 12:00 UT. {h} Anisotropy of GCRs before the GLE onset, where the radius of a green (red) circle indicates the positive
(negative) percentage deviation from the average in (&). (¢) Bidirectional anisotropy, the residual when subtracting a dipole anisotropy from (&), is associated with a

closed magnetic loop configuration,

100°, indicating that stations viewing anti-sunward relative to
the nominal spiral observed intensities more than 2% above the
mean, while stations with small pitch angles observed intensities
about 2% below the mean. Presumably this strong unidirectional
anisotropy occurs because GCRs are refilling the inner helio-
sphere during the recovery phase of the Forbush decrease, fol-
lowing departure of the CME ejecta.

Figure 4c¢ is similar to Figure 45, except that here the dipole
anisotropy {or first-order anisotropy) has been subtracted from
the data. The residual after subtraction then represents higher
order anisotropies present in the data. The important feature of
Figure 4c is that thete is noticeable bidirectional anisotropy after
12:00 UT on October 22, just before the GLE onset. The char-
acteristic feature of bidirectional flow is that intensities are sup-
pressed near 90° pitch angle and are elevated at both 0° and 180°.
In the figure this is evidenced by comparatively large red circles
(suppressed intensity) in the middle of the plot, with green circles
{elevated intensity) on either side. The bidirectional flow is quite
strong in comparison with the low or undetectable bidirectional an-
isotropy generally found in undisturbed interplanetary conditions.

Richardson et al. (2000} have shown that such bidirectional
flows of GCRs are associated with a magnetic loop configura-
tion. CMEs and their interplanetary ejecta are known to often

remain magnetically connected to the Sun by large-scale closed
magnetic loops. Because the actual ejecta, as defined by physical
properties of the plasma such as a depressed proton terperature
(Richardson & Cane 1993), have a limited radial extent, the
*“legs” of closed magnetic loops that connect back to the Sun
must include substantial regions of more normal plasma that does
not bear the physical signatures of gjecta, {Unfortunately, plasma
data from the [nterplanetary Monitoring Plaiform 8 spacecrafl,
which indicated the presence of ejecta up to the start of October 22,
were unavailable thereafter; see Richardson et al. 2000.) Thus the
bidirectional anisotropy of GCRs preceding the GLE of October
22 is best explained if the Earth was inside a closed magnetic
loop configuration, although perhaps not inside the ejecta from the
October 19 event but instead in one leg connecting back to the Sun.

2.3, Relativistic Solar Protons

To analyze the distribution of relativistic solar protons, the
total count rate from each polar neutron monitor was corrected
for atmospberic pressure variations using separate absorption
lengths for Galactic and solar particles. For the latter we adopt a
value of 100 g cm~2 as generally found in prior studies {Duggal
1979). Data from all stations were formatted to a common ca-
dence of 5 minutes and corrected to a common standard pressure
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Fic. 5. (a) Percent increases recorded at the South Pole by a standard
(NM64) neutron monitor and » Polar Bare neutron counter that lacks the usual
lead shielding. (b) Ratic of percent increases ( filled circles), which provides an
indication of spectral index «. The varialions at vnset reflect the sequence of
dispersive onset and exit of the spike and dispersive onset of the hump. Speciral
indices of Cramp et al. (1997) for § minute intervals are shown for comparison
{open circles).

of 760 mm Hg. We thereby obtain the percentage increase of
each counting rate over the GCR background, which was mod-
eled by filting a linear trend to the hourly density (Fig. 4a, heavy
dark line) over the interval 00:00—18:00 UT on October 22.

[nformation on the spectrum of relativistic solar protons was
obtained by comparing the count rate of the South Pole neutren
monitor with the count rate of a nearby “Polar Bare” set of
neutron counters that lack the usual lead shielding of a standard
NMG64 detector system (Bieber & Evenson 1991). The count
rates and their ratio are shown in Figure 5. As shown in the top
panel, the Polar Bare is relatively more sensitive to low-energy
primaries, and it records a higher percentage increase than the
standard NM64 owing to the soft spectrum of solar cosmic rays.
With the aid of yield functions provided by Stoker (1985), the
Bare/NM64 ratio can be translated into a spectral index. We as-
sume a differential rigidity spectrum of power-law form (=7
with P the rigidity and -y the spectral index) with an upper cutoff
at 20 GV. The inset scale on the left side of the lower panel shows
the spectral index implied by the corresponding Bare/NM64 ratio.
Error bars include both a random component and a systematic
component from the uncertainty of the Galactic background. In
addition, during the spike there could be a small systematic error
of up to 0.6 in the spectral index estimate, due to the strong an-
isotropy and the different Bare and NM64 asymptotic directions
(Bieber & Evenson 1991; Cramp et al. 1997).

For comparison, the results from the previous analysis of
Cramp et al. (1997) using data from neutron monitors at different
cutoff rigidities are shown by open circles. Each open circle in-
dicates an estimate for a 5 minute interval. The overall agreement
is remarkable, and it improves our confidence in both techniques.

The dramatic variations in v with time at the start of the GLE
are correlated with changes in the particle flux. They are due lo
nigidity dispersion during the onset of the spike, end of'the spike,
and onset of the hump. For example, as the “spike’ of particles
arrives from the Sun, faster particles arrive first, so there is a
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lower spectral index while the flux rises. When this pulse of pag
ticles passes beyond Earth, the faster particles leave first, resulting
in 2 higher spectral index when the flux declines. Since the timg
variation in the spectrum of particles arriving at the Earth§
qualitatively explained by such dispersion effects, the spec ur
injected at the Sun may well be constant, and is assumed so f
simplicity. We adopt a spectral index of 5.9 for the solar profa
spectrum. This implies that the median rigidity detected by a pol@
neutron monitor is 1.6 GV, and the central 50% of the deteciat
response is for ions of 1.1-2.3 GV.

As discussed in § 2.1, the time profiles of nine polar neur
meonitors directly provide the time-dependent distribution of pa
ticles in nine viewing directions. This information on the dire
tional distribution is to be compared with transport modeling
of the distribution of particles in time, position, momentum, au
pitch angle. To do so, we need to assign a pitch angle to the
viewing direction of each neutron monitor. For particies of mug
lower energy, the pitch angle could safely be defined with resped
to the local magnetic field. However, there is a gap in measue
ments of the solar wind speed and magnetic field in the OMN
database maintained by the US National Space Science
Center between 1989 October 22, 02:00 UT and October 2§
18:00UT (see Fig. | of Cane & Richardson 1995). Furthermor
it should be noted that a 2 GV proton has a Larmor radius
about 0.01 AU, on the same order as the coherence lengthal
interplanetary magnetic turbulence (=20.02 AU}, so it is not cleg
that the particle orbits should be organized around the instante

practice, energetic particles in interplanctary space are typicl
found to exhibit distributions with an axis of symmetry, &

an empirical axis ofsymmetry and to define the pltch ang,le il
respect to that for a comparison with the transport modeling

It is clear that an interpretation of the directional distributiop
of energetic particles requires some modeling, at least to defes
mine the axis of symmetry. Furthermore, it would be difficulti
fit the station data directly, as they have correlated uncertami
in the pitch angle, an independent variable, due to the unee
tain axis of symmetry. Thercfore, we characterize the directiond
distribution in terms of the omnidirectional average intensity.of
“densily” n and the weighted anisotropy s (product of d
and dipole anisotropy, also the first-order Legendre coeffic
In terms of the cosmic-ray directional intensity, f{z), the densi
and weighted anisotropy are defined as

+1

n=3 [ S,

3 +1 %

F=g / wf (uydp, {1y
-1

where (. is pitch-angle cosine relative to the axis of symmietn)
The quantities # and s have the same units as f(y¢), whichint
analysis of GLEs is often expressed as a “percent increa
relative to the pre-event Galactic background. Throughout thi
article, we refer to » as the “*density” because it has the same time
profile as the true density up to a constant scaling factor. No
that the ordinary dipole anisotropy € can be t:xptt.SSLd in termsl
nand 5 as £ = s/n. In model refinements in § 4.2, we also fit i
curvature of the pitch-angle distribution, dulmed as the second

order Legendre coefficient.



N
Q

lIli[lIllllIlIlllli

—
)]
llllllll

Density (%)

llllllllll

OO0 O N O

Dipole
Anisotropy
N

lIIIlI|II|
W
lIIiIIIII]I

— ]
3N i
o~ ]
2x :
£ ]
o2 ]
w -
e .
c .
< C ]
-20 PN I N TR WA RN TN I VR SN TR TR NN U TV N SR SN DU NN S N SRS T N WY B
=)
T T
S 45T
N
o Or
'g B
£ —45
m =
| -
S -90f
L L ]
8 -135 PR S NS WS N N TN NN (NN SN SN N TN TN (NUR SR SRS N TN P SN S N S S SN NN N1

w
Q
I

&
o
I

]

|
Y
wn

|

|
0
L]

GSE Latitude (deg)
o
1

17:30 18:00 18:30 19:00 19:30 20:00
Hours UT —— October 22, 1989

Fio. 6.—Density, dipole anisotropy, and weighted anisotropy of relativistic sobar protons and GSE longitude and latitude of the axis of symmetry as derived from fits
to directional information from nine polar neutron monitors for four models of the pitch-angle distribution: a first-order Legendre polynomial (green), exponential plus
constant (bfue), second-order Legendre polynomial (red), and two exponentials ptus constant (hlack). The average values of the density and weighted anisoiropy,
expressed as the percent increase over the Galactic background, is then fit to evaluate the candidate magnetic field configurations,
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Figure 6 shows the density, dipole anisotropy, weighted an-
isotropy, and GSE longitude and latitude of the axis of symmetry
for fits to four models of the pitch-angle distribution at each time:

flu) =ao + arp, (2a)
S(p) = ag + ay exp (by), (2b)
3
f(u)=ao+a|,u+ag(5p2—é>, (2c)
S) = ag + ay exp (by) + az exp (—byp), (2d)

where {a;} and b are fit parameters. These represent, respectively,
a first-order Legendre polynomial, exponential plus constant,
second-order Legendre polynomial, and two exponentials plus
constant. The latter two are expected to provide better fits to
bidirectional Auxes. Note that for equations (2a) and (2¢), ag
and a, are directly interpreted as # and s, respectively, whereas
for equations (25) and (24), n and s must be computed by per-
forming the integrals in equations (1a) and (14).

Our results for the axis of symmetry are reasonably consistent
with those derived by Cramyp et al. (1997) for neutron monitors
with a variety of cutoff rigidities. With the exception of the spike
penod of 17:55—18:10 UT (to be discussed shortly), results for our
four models are reasonably similar for the density and weighted
anisotropy, which are then taken as data to be fit to determine the
optimal transport model and injection function of relativistic solar
protons. For 18:10—19:30 UT, the fitting in § 4.1 uses the average
density and weighted anisotropy for these four models. The stan-
dard deviation among the four models over 18:15-19:30 was used
to estimate the uncertainty in the density and weighted anisotropy
data for these time intervals. The uncertainties for 18:10-18:15
are evidently greater and were estimated from the standard devi-
ation among the four fits for this single 5 minute interval. At 19:30
there is an abrupt change in the axis of symmetry. Note that as the
weighted anisotropy becomes smaller, the inferred axis of sym-
metry tends to fluctuate substantiafly.

We do nol mean to imply that the directional distribution is
completely described by specifying the density and weighted
anisotropy, or indeed by the model functions we have chosen.
The reason for extracting the density and weighted anisotropy is
that, in practice, these two quantitics adequately discriminate
between correct and incorrect scenarios of interplanetary trans-
port. { For example, the anisotropy can constrain the mean free
path of interplanetary scattering.) As a check, we take the trans-
port model and injection function that best fit the density and
weighted anisotropy profiles and examine the complete pitch-
angle distribution produced by the model, in comparison with
the pitch angle and count rate at individual stations for various
time intervals. In previous analyses for other GLEs, we have
found that models that fit the density and weighted anisotropy
profiles generally also provide an adequate representation of the
observed pilch-angle distributions (Bieber et al. 2002, 2004a).

During the time of the initial spike with high anisotropy,
17:55-18:10 UT, only two neutron monitor stations, MC and SP,
registered a noticeable increase in count rate (see Fig. 2). This is a
special case where the directional distribution is so narrow that a
large portion could fall in the ““holes™ in our directional coverage
(see Fig. 3). This is why the density and weighted anisotropy
estimates vary so widely among the four models. For this time
period, we therefore determine lower limit values for the density
and weighted anisotropy by fitting the station data to an exponen-
tial function of the pitch-angle cosine, subject to the constraint that
McMurdo station was lorced to have a pitch angle of 0°. This
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procedure provides a valid lower limit, because the exponent
function is monotonic and because McMurdo observed the
est increase of all the stations during this interval. Any fit¥
McMurdo at nonzero pitch angle would necessarily yield a high
density and weighted anisotropy than the fit with McMurde alll
These lower limits are enforced when fitting time profiles.

3. MODELING OF TRANSPORT AND INJECTION
3.1. Interplanetary Transport

This section describes how we fit the density and anisot)
profiles extracted from these nine polar neutron monitors bysis
ulating the interplanetary transport of solar protons and ther
termining the optimal injection function near the Sun for ¢
magnetic field model. We fiest solve a transport equation thattag
into account pitch-angle scattering and adiabatic focusing (Ruffg

solar wind convection and adiabatic deceleration { Ruffolo 1988
We could neglect these processes in comparison with scattemis
and focusing because the solar wind speed is much slower thanii
speed of relativistic particles (by a factor of =2500). Similarly
could neglect the Compton-Getting transformation (Complond
Getting 1935) of the pitch-angle distribution from the solar wi
frame, in which it is calculated, into the Earth’s reference fram
which has a negligible eftect on the anisotropy for the relativigé
particles considered here. In our simulations we include di
effects Lor spiral and bottleneck configurations, but neglect thi
for the loop configuration to avoid specifying the precise shape
the magnetic field line as would be required to properly desenl
those minor effects. We note that the present numerical meih
¢an reproduce the results of Ruffolo (1995), which have also bes
reproduced by independent numerical techniques { Hatzky et
1997, Lario et al. 1998; Kocharov et al. 1998).

The transport equation governs the fime evolution of il
particle distribution function F(Z, 12, z, p), where ¢ is time, jisih
pitch-angle cosine, which determines the velocity compongs
along the magnetic field, v; = pw, z 15 the arclength along
magnetic field line from the Sun, and p is the particle momentus

o other words, we determine the directional distributiona
particles at all locations along the local magnetic field line, 2!
function of time and for each rigidity (momentum) of in
The initial condition is that particles are initially close to theSi§
corresponding to an instantaneous injection. The simulationss

are taken (o be protons. In reality the neutron monitor respoj
any primary cosmic-ray ions with a rigidity-dependent
function, and there is a small admixture of other ions in Sk
However, the interplanetary scattering mean free path is cof
monly viewed to be a function of rigidity alone, and velocitydi
persion is a minor effect at relativistic energies, so viewing GEE
ions of a given rigidity to be protons does not have a majorefi
on the transport caleulation. In order to represent the mome
distribution of the primary refativistic protons to which the
tron monitors are responding, we perform simulations for
mentum values corresponding to the Sth, 1 5th, . . ., 95th pero
rigidities for the spectral mdex of 5.9. Results for these 10
mentum values are averaged to determine the density, wei
anisotropy, and curvature expected near the Earth. For the
angle scattering coefficient, we use the standard parameteriz
Alp!? (1 — 442) and relate A to the scattering mean free palii
as described by Ruffolo (1991). [n the context of standard gl
silinear theory, ¢ is identified with the spectral index of the powe



No. 2, 2006

spectrum of interplanetary turbulence (Jokipii 1971). We ini-
tially use a value of g = 1.5, which was found to provide a good
fit to the GLE of 2000 July 14 (Bieber et al. 2002). This is also in
the range of 1.3—1.7 inferred by Bieber et al. (1986) for lower
energy particles. On the other hand, the value of ¢ = 1.0 pro-
vided a better fit than ¢ = 1.5 for pitch-angle distributions
measured during the GLE of 2001 April 15 {Bieber et al. 2004a).
In refinements to the fits (§ 4.2) we allow this parameter to vary.

In this analysis, we consider three types of magnetic field con-
figurations, cerrespending to different ideas as discussed in § 1.
These configurations are illustrated in Figure 7. Note that the key
transport processes are scattering and focusing, and while scat-
tering depends on small-scale, turbulent magnetic fluctuations,
focusing depends on the large-scale magnetic field configura-
tion. The strength of focusing is proportional to 1/L, defined by

1 1 dB
1= B4 {3}
where L is called the focusing length. Therefore, the key property
of each magnetic field configuration, in terms of the particle trans-
port, is the dependence of 1/L on z, the distance along the magnetic
field from the Sun. The magnetic field configurations are as follows:

1. The standard Archimedean spiral cenfiguration (Parker
1958} for open field lines carrted out by the solar wind (Fig. 7a).
The inverse focusing length is given by

I R(7Z+2RY 4
L P+ P )

where R = v,,/(£2 cos 8), §2 is the sidereal angular frequency of
solar rotation {derived from a synodic period of 26.75 days; Bai
1987), and 6 is the Earth’s heliolatitude (with respect to the solar
equator) or 3° N for this event. For the solar wind speed, we
adopt the value of 600 km s~! after the data gap in solar wind and
magnetic field measurements (1989 October 26 at 18:00 UT)
as charactenistic of the fast solar wind speed throughout late
October. { The value of =800 km s~ preceding the data gap, near
the start of October 22, was temporarily elevated due to the CME
passage around that time.) We therefore estimate R to be 1.38 AU,
In this magnetic field configuration, the only free parameter is the
radial mean free path, ,. Previous authors suggest that it is real-
istic to take /A, 1o be constant in position ( Palmer 1982; Beeck et al.
1987, Kallenrode et al. 1992; for a comparison with constant-/
fitting, see Ruffolo et al. 1998). Note that the parallel mean free
path is given by 4 = A.fcos?4h, where 4 is the “garden hose™
angle between the field line and the radial direction, given by
cos ¢ = R/A(r? + RY'?. Thus in this model ) vaties with posi-
tion, and at Earth (» = 0.995 AU) we have /| = 1.524,.

2. A magnetic bottleneck bevond Earth (Fig. 7b). Such a
configuration provided a good fit to polar neutron monitor data
for the 2000 July 14 GLE ( Bieber et al. 2002). The local field line
is still taken to follow an Archimedean spiral. The difference is
that we now consider a compression in (In 8) of Gaussian form

(r=—rf
lnBz(iﬂB)Amh”‘"TlexP[—_Ea—g— .
1 d (] ren (r—r)
A InB = (Z)AthrT’COS i g exp{—T ,

(3)

where “ Arch™ refers to values for an uncompressed Archimedean
spiral field, r, is the heliocentric distance at the center of the
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Fia. 7.—Three magnetic field configurations considered iny this work: (a) stan-
dard Archimedean spiral, (&) magnetic bottlepeck beyond Earth, and (c) closed
interplanetary magnetic loop, injecting particies along the near leg of the loop
that undergo reflection in the far teg, or injecting particles along both legs of the
loop. Configurations & and ¢ could be caused by a previous CME. The only case
that provides a good fit to the data is injection along both legs of a closed inter-
planetary magnetic loop.
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bottleneck, ¢ is a measure of the width of the botileneck, taken to
be 0.05 AU, and the amplitude 7 is chosen so that the discrete sum
offocusing occurring at each grid point corresponds to the desired
reflection coefficient (RC) for an isotropic distribution. Thus the
free parameters are 4,, ry, and RC.

3. A closed interplanetary magnetic toop (Fig. 7¢). Note that
as discussed above, there is no need to specify the detailed shape
of the loop, e.g., it could be ceiled as in a magnetic cloud. The
physical requirements for a loop of fength / are

asz — 0. (6)

—_a z— 7
7 T, o 4, (7)

0 be consistent with a nearly radial field near the Sun, and

dB 1 {
E-—O and ZgO forz—a (8)

for symmetry. We satisfy these requirements with the function

e

Since the cross-sectional area of the loop A is inversely pro-
portional to B, we have 1/L = (dA/d=)/A and A x sin(mz/i). In
order to avoid further constraining the shape of the field line, we
do not relate the distance z along the loop to the radius #. There-
fore, we use the parallel mean free path k", taken to be constant
for simplicity, and the free parameters for this configuration are
4y and ! (We also tried varying the distance ajony the field from
the Sun to the observer, z,,,). We have considered injection along
either one leg of the loop or both legs of the toop.

Note that the bottleneck and loop configurations would corre-
spond to disturbances by a previous CME. Indeed, as discussed
earlier, a flare/CME cvent from the same active region on 1989
October 19 produced a large GLE and has aiso been asscciated
with a CME-driven shock that arrived at Earth on October 20 at
251 7:00 UT and the subsequent Forbush decrease in GCRs (Cane
& Richardson 1995). That Forbush decrease persisted until the
onset of the October 22 GLE, and in § 2.2 we showed bidirec-
tional anisotropies in GCRs that support the model of a loop
configuration at the time of GLE onset. Thus there was a major
CME-related disturbance of the interplanetary medium shortly
belore the Qctober 22 GLE, which could have either distorted
the fields as in the boltleneck scenario or enveloped the Earthina
magnetic loop, perhaps in one of the legs of nearly radial mag-
netic field connecting the CME back to the Sun.

3.2, Fitting to Time Profiles of Density and Anisotropy

For a given magnetic field configuration and transport model
parameters, we simultaneously fit the time profiles of density and
weighted anisotropy to determine the optimal piecewise linear
injection function. In medel refinements (§ 4.2) we simulta-
neously fit the curvature, as well as another type of anisotropy.
The injection function is defined as the rate at which particles are
injected at a solar footpoint of the Sun-Earth magnetic field line
as a function of time. We evaluate the goodness of fit with a x?
stalistic and thereby determine the optimal transport parameters
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.of 24-210 MeV SEP proton density presented by Nemzek )

and magnetic field configuration. Bieber et al. (2002) compar
results for the GLE of 2000 July 14 from this procedure w
independent simulation and fitting techniques, and found el
agreement,
The estimation of the injection function is a type of inversij
problem, in which the data measured at Earth are the know
“response” of the transport process. The response is viewedd
a convolution between a Green’s function for an instantane
(6-function) injection, which we determine by the transport sims
ulations described above, and the injection function. Thed
version problem is to determine a best-fit injection function,a
we should remark on the general requirements for this
procedure. The convolution is only valid if the conditions ef il
planetary transport are independent oftime. This 1s not valid whe
the data are strongly affected by transient changes in local inies
planetary conditions. In data with multiple energy channels, i
transients can often be identified as affecting all channels simgk
taneously, while transport effects tend to be energy dispersiy
For example, the spectral variations for the 1989 Octob
GLE at spike onset and hump onset {Fig. 5) indicate ener
dispersive transport effects. At lower energies, (he time profi

(1994) are dominated by a sudden, nondispersive declingi
various energy channels (see further discussion in § 3). S
profiles are not amenable to the present type of analysis.

Furthermore, the source location is taken to be fixed, a gog
approximation only so long as the source remains near the Sig
For gradual flare/CME events, there is strong evidence that @
caping SEP ions of moderate energy are not produced deepl
side the solar corona, but rather are accelerated at travel
CME-driven shocks (Mason et al. 1984; Lee & Ryan 198§
Reames 1990; Ruffolo 1997). Therefore, when we fit data {§
gradual events, which include all GLEs, a check on the vali I
of the method is that the resulting injection function should béd
sufficienily short duration that the shock was still near the St
High-energy SEPs such as those considered in the present wo
are generally injected quite close to the Sun {e.g.. Cliver etil

from gradual events, which can be continuously accelem
throughout the motion of the shock from the Sun to Earth.

spread out the distribution, so one can determine at best a smal
number of injection parameters. A piecewise linear injecti
function is chosen to provide a flexible shape for the injection
function and for computational efficiency. The fit parameters s
the injection amplitudes {a;} at joint times ¢ = fo + 27, The
number of joint times, amplitudes, and uncertainiies are dews
mined by linear least-squares fitting { Ruffolo et al. 1998) ford
grid of trial values 4 and 7. F

A special consideration i fitting the density and weighted

only lower limits are available for these quantities. We also e
force a minimum dipole anisotropy of 2.0, as suggested by the
data in Figure 6. Each of these limits was enforced after the lease
squares fitting to other data points by adding a penalty of .-';_:
the x> value when the limit was violated. One problem wil
using lower iimits that only partially constrain the onset is thil
the fit may ‘“‘cheal” by injecting the particles too early. §
therefore padded the data with three intervals of zero val
before the spike period, assigning uncertaintics as for laterti
which serve 1o prevent a premature onset. For the initial analysig
of § 4.1, onty joint times before 18:12 UT are considered.
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4. RESULTS
4.1. Magnetic Field Configuration

{n our initial analysis, we fit the average of the density and
wetghted anisotropy profiles shown in Figure 6 to find a magnetic
field configuration and transport parameters that can explain five
special features of the 1989 October 22 GLE:

1. The strongly anisotropic spike in density of very short du-
ration, from 17:55to 18:15 UT.

2. The dip in density to a low value at 18:15-18:20 UT.

3. The rapid onset of a large hump in density at 18:20-
18:30 UT.

4. The weighted anisotropy near zero at hump onset, which
actually corresponds to bidirectional flows (Cramp et al. 1997).

5. The very slow decay of the hump.

To address these key features, this part of the analysis is limited
to data before 19:30 UT. For a manageable optimization problem,
we fix various quantities that are not directly relevant to the
magnetic configuration. For example, we fix the value of g to 1.5
{see § 3.1), as this mainly affects the detailed pitch-angle distri-
bution, and allow this to vary in refined fits in the next section. We
do not fit the curvature of the pitch-angle distribution in this
section, as that information is mainly relevant to constraining ¢.

Figures 8 and 9 show the simulation results for an instanta-
neous injection near the Sun, as well as the fit to the data after con-
volution with the best-fit injection function. The various panels
are for the best-fit transport parameters for different magnetic
field configurations, or for the case of a closed magnetic loop, for
injection along one or both legs. The simulated profiles in Fig-
ure 8 are summed over the 10 percentile rigidity values used to
represent the neutron monitor response (§ 3.1), giving rise to the
artificial multiple peak structure within the spike. The profiles
could be smoothed by simulating for a larger number of per-
centile rigidity values, but the data for this event are in 5 minute
intervals and the injection has a duration of several minutes, so
the present simulations provide sufficiently smooth fit profiles
to analyze these data. In all cases the simulation results (Fig. 8)
are in units of protons cm 2 sr™! 57! MeV™! per injection of
10%% protons MV ! per unit solid angle in solar latitude and
longitude, and the fits and data (Fig. 9) are expressed as a percent-
age of the GCR background flux at the start of the GLE. Table 1
provides the y? values, degrees of freedom, and best-fit transport
parameters.

The first configuration is an Archimedean spiral magnetic
field (Parker 1958; see Fig. 7a), which applies in the undisturbed
solar wind, allowing the possibility of multiple injections (Shea
& Smart 1997). The strong anisotropy of the spike requires a
long mean free path, for which a highly anisotropic distribution
passes by the deteclor leaving nearly no density at late times
(Figs. 8a and 8b). Even when convolved with an extended in-
jection function, this model is unable to explain the hump ofhigh
density and nearly zero weighted anisotropy (Figs. 9¢ and 95),
yielding a high y? value.

The second configuration is 2 magnelic bottleneck beyond
Earth (Fig. 7h), as inferred for the GLE of 2000 July 14 (Bieber
et al. 2002), which is similar to the suggestion of Cramp et al.
{1997) that a fraction of the particles were reflected back by a
region of enhanced scattering beyond Earth. Physically the re-
flection coeflicient ( RC) cannot be greater than one. This model
has treuble producing enough backscattering to account for the
strong density in the hump, favoring the maximum RC value of
0.99 with a very large density and weighted anisotropy in the
spike (not ruled out by our data, which are lower limits at those
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times). Note that the reflection coefficient RC is formally defined
for an isotropic distribution; for the anisotropic distribution of an
outgoing coherent pulse, particles are preferentially in the loss
cone near zero pitch angle and the reflection is actually less than
RC. Assuming conservation of the magnetic moment, we have
RC = (1 — By/By)"?, where B,/By is the magnetic field enhance-
ment at the bottleneck, so RC = 0.99 implies By/By = 50, an
unreasonably large value. We consider that the optimal fit for
RC = 0.99 may instead indicate a completely reflecting config-
uration such as a loop. For a physically reasonable bottleneck, we
restrict the bottleneck configuration to RC < 0.95 or a magnetic
field enhancement of B,/By < 10.2. The fits again favor the
maximum value, RC = 0.95, with results as shown in Figures 8c,
8d, 9c, and 94. The Xz value at RC = 0.95 is over twice that for
RC = 0.99 (see Table 1}, mainly because the leakage of par-
ticles through the bottleneck leads to an excessively fast density
decline. These results suggest rying a closed magnetic loop
configuration in which particles can be trapped, at least in terms
of transport parallel to the mean field.

Next we consider a closed interplanetary magnetic loop, as
indicated by the bottleneck fitting and bidirectional anisotropy of
relativistic solar protons, as well as the bidirectional anisotropy
of GCRs prior to the GLE (§ 2.2). We initially thought in terms
of injection along one leg of the loop, with the hump due to fo-
cusing {mitroring) of particles by the converging magnetic field
lines near the solar footpoint of the far leg (see Fig. 7¢). To our
surprise, the fits clearly distinguished this configuration from a
perfectly reflecting bottleneck. The difference is that the bottle-
neck changes the pitch-angle cosine from i to —p over a very
shorl distance, and a coherent pulse of SEPs can be reflected
intact, whereas the loop has focusing that gradually increases as
particles move toward the Sun. In the absence of scattering, par-
ticles reflect after penetrating to a u-dependent mirror point. We
varied z,, the distance along the field from the injection loot-
point to the observer, and the fits strongly favor the minimum
value of 1.1 AU as for an Archimedean spiral. Best-fit results are
shown in Figures 8e, 8/, 9¢, and 9/ Interestingly, the best fit gave
a x* value 70% larger than that for the bottleneck with RC =
0.99. The key problem is that the fits give a strong, negative
weighted anisotropy at the hump onset, which is not observed.

Thus those three scenarios [ail to provide a good fit to the data
for reasonable parameters. A better fit is obtained for a bottleneck
with RC = 0.99, the physically unreasonable case of a nearly
perfect magnetic mirror in interplanelary space. However, one
scenario that is equivalent to 100% magnetic mirroring is to
inject particles simultancously along both legs of a magnetic
leop. If the loop and injection are symmetric around z = //2, then
a particle passing the midpoint of the loop with w is matched by
one passing the other way with — .. Mathematically, the distribu-
tion function behaves as if there is perfect mirroring at the half-
way point; physically, the spike corresponds to particles injected
along the near leg and the hump to particles from the far leg.

Based on our experience for the loop with injection along one
leg, we fix zps to be 1.1 AU. The besi-fil transport parameters are
/) = 2.5AUand/ = 4.0 AU. Although the scenario of injection
along both legs of a loop is conceptually similar to a bottleneck
beyond Earth with 100% reflection, and the fit value for /2 is
similar to that for r, there are diffetences in the details (e.g.,
I/ = 0 atz = /2 for a loop, but not at r, for a bottleneck), and
the best-fit loop model has a x? that is 3 times lower. In Fig-
ures 8g and 84 the thin lines indicate simulated profiles for each
injection, which are added to form the Green’s function for fitting
(thick lines). This model has a strong hump and also a slightly
negative weighted anisotropy at hump onset, which is then offset
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TABLE |
Fit PARAMETERS FOR Var10Us MAGNETIC FiELD CONFIGURATIONS

RUFFOLO ET AL. Vol. 63

TRrANSPORT PARAMETERS”

CONFIGURATION ¥ DEGREES OF FREEDOM A ra RC A ! Zath
Archimedean spiral ............. 19,814.4 32 1.6 e e
Bottleneck, RC < 0.99...... 309.9 30 2.0 1.9 0.99
Bottleneck, RC <0 95....... 657.3 30 2.2 1.9 0.95
Loop, one-leg injection....... 52).2 31 3.5 2.6 1.1
Loop, two-leg injection ...... 97.4 31 2.5 4.0

* In units of AU, except RC (reflection coefficient), which is dimensionless.

by continued injection along the near leg to produce bidirectional
fluxes of nearly no net weighted anisotropy, as in the data. The
optimal fit 1s visually superior to that for other configurations
(see Fig. 9) and matches the five key features of the data.

4.2. Model Refinements

Given that the above fits strongly favor a closed inferplanetary
magneiic loop with injection along both legs, we now ask what
further information can be extracted from the data by refining our
models to be more physically accurate. On a longer timescale,
Figures | and 2 indicate that the density eventually does decay
with a nearly exponential profile (see also Mathews & Venkatesan
1990). This indicates that an escape mechanism should be in-
cluded in our transport model, with an escape time T fit to the
data. Physically, the escape of particles from the loop could result
from transport perpendicular to the mean (large-scale) magnetic
field. For simplicity, we include a uniform loss rate 1/T, and
then we can fit a longer span of the data. (Note that if the late-time
data were included in the analysis of the previous section, the
least-squares fitting would be dominated by the many data points
in the exponential decay, rather than addressing the 5 key fea-
tures of interest.} A simple exponential fit to the decay yields
Tese = 180 minutes, a value confirmed in fits to the full data set.

According to our usual procedure, we also examine pitch-
angle distributions for the nine polar neutron moenitors, which are
indeed the raw data from which the density and weighted an-
isotropy are extracted. To do so, we select one of the four models
of the directional distribution. We choose the second-order
Legendre polynomial model because it is generally consistent
with most other models and should be able to model bidirectional
fluxes. Again, the aim is not necessarily to completely model the
directional distribution, but rather 1o exiract parametess appro-
priate for fitting.

Pitch-angle distributions at selecled times are shown in Fig-
ure [0. (Note that meaningful distributions are not obtained
during the spike, for which only two monitors registered an
enhancement.) The peak near pitch-angle cosme g = | persists
up to 19:35 UT, clearly indicating fresh injection up to 19:25 at
the Sun (see also Cramp et al. 1997). At 19:35 UT the observed
pitch-angle distribution abruptly changes to be nearly isolropic,
possibly with loss-cone features {dips) near g = --1 and 1 (see
Fig. 10/). Apparently the injection was cut off sharply at =219:25,
a feature that we now incorporate in the fitting program. Sirnul-
taneously, the density and curvature determined by the second-
order Legendre model abruptly deciines and then the density enters
its exponential decay phase (Fig. 11).

The pitch-angle distributions can also indicate the proper
value of ¢, which appears in the parameterization of the pitch-
angle scattering coefficient p(p) = A{uff (1 = 1), a formula
from standard quasilinear theory where g 15 the spectral index of

turbulence (see § 3.1). Previous work has found that the
indication of ¢ is in data during the late phase of injeciion, wh
the directional distribution is in a near steady state. In g
pitch-angle diffusion tends to make wdF/Fu a smooth funchio
of u, so where i is large the gradient is small, and vice verss
Thus ¢ = 1.5, for which ¢ is small and 9F/dpu is large for jn
zero can model the step in the intensity j near g = 0 for the GEE
on 2000 July 14 (Bieber et al. 2002), while ¢ = | gives a smoof
variation through o = 0 for 2001 April 15 {Bieber et al. 20043}
In Figure 10 the profiles for 19:20 UT (panel &) and 19:25 U]
{panel e) show a nearly flat distribution through u = 0, will
freshly injected particles highly collimated near pu = 1, whig
could indicate a value of ¢ < 1. To our knowledge. a valugel
g < | has never been previously inferred from time variationsg
SEP distributions.

To determine appropriate vajues of g, in addition to fitting (&
density and weighted anisotropy, we can simultaneously fif i
curvature in the pitch-angle distribution. (Recall from § 2.3 h
these three quantities are the three coefficients in a second-ords
Legendre polynornial fit.) For example, at the start of the humgy
over ~18:30-19:00 UT, the density and near-zero weig l
anisotropy are consistent with a flat {isotropic) distribution
whereas in reality there were bidirectional fiows, as showni
Figures 4a—4¢. By including the curvature, we demand thatk
goad fit should reproduce the bidirectional flows. The fit theg
better addresses the shape of the pitch-angle distribution and}
appropriate for examining the effect of g.

For each value of g, simultaneous fits to the density, weig’l
anisotropy, and curvature as a function of time yield the optima
injection function and transport parameters 4 and /. Results fif
g = —1,0,and | are shown in Table 2 and Figure 11. [1 is se&
that ¢ = | provides a noticeably worse fit, especially 1o (i
curvature throughout the hump and weighted anisotropy at hum
onset. The key problem in fits with ¢ = | or higher is that (%
densily due to the far-leg injection does not rise quickly enougl
to match the observed sunward intensily, and the optimal fit mug
inctude a second injection peak along the near-leg to match the
density at hump onset. This second peak is an artifact of thefiy
and 1t results in incorrect values of the weighted anisotropyan
curvature. For lower values of ¢ the fits in Figure 11 are i
proved, although there is still a residual second pezk in the
jection function forg = —1 (Fig. 11, top panel). Because thefi
still have some residual systematic errors, we do not consid
that the quantitative differences in x* indicate an optimal valueg
q. We are not sure how well our procedure determines lhe
welghted anisotropy and curvature of SEPs at late times, wheg
the anisotropy is weak and there are fuctuations in the dires
tional distribution, as well as possible time variations in (g
GCR background as the Earth rotates. While the data were fil8
shown in Figure 11, we do not 1ake the systematic variationsi
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Fii. 10.—Pitch-angle distributions constructed from the observed intensity at each polar neutron monitor station (solid circles) as a function of the cosine of its pitch
angle relative to the inferred axis of symmetry (Fig. 6), along with model distributions for relativistic proton injection along both legs of a closed interplanetary magnetic

loop for g = — | (solid lines), ¢ = O {dashed lines), and ¢ = 1 (dotted lines).

weighted anisotropy and curvature after 19:35 UT to be phys-
ically meaningful.

In sum, the least-squares fitting indicates that g = 1 provides a
substantially worse (it but is unable to provide a clearly optimal
value of g.

As a further check, Figure 10 shows how well each fit re-
produces the pitch-angle distribution at various times. As a ca-
veat the assignment of a pitch angle to an individual neutron
monitor station depends on the estimated axis of symmetry and
represents what is actually a distribution of asymptotic directions
(see Fig. 3). Furthermore, up to 19:00 UT the axis of symmetry
tends to align with the station with highest intensity { McMurdo,
MC), an artifact of our procedure. Therefore, we beligve that
point should not be exactly at 42 = 1 and are not concerned when
fits yield a maximum intensity at ¢ = 1 higher than MC. How-

ever, a model with a maximum iniensity lower than MC is in
conflict with the data. In Figure 10 we see thatat 18:30 UT, all fits
yield bidirectional anisotropy, although ¢ = —1 has trouble
matching the pitch-angle distribution. At 18:50 UT and 19:00
UT none of the fits correctly treats the sunward flux (at ;2 < 0).

One important assumption is that the injection along both legs
of the loop is taken to be the same. Indeed, we can only weakly
constrain the ratio of injection along the far leg to that along the
near leg, because the spike was so highly collimated that it was
only observed at two stations and we can only derive lower limits
to the particle density at that time. Another important model as-
sumption is that 4 is constant along the loop, which is a simpli-
fication given that the central part of the loop probably comprises
CME gjecta with quite different plasma properties. Given these
model assumptions, we do not feel that the detailed quantitative
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Fii. 11.—Optimal injection profile (arbilrary units) of relativistic solar protons along both legs of a closed interplanetary magnetic loop for g == 1, and optima
1o density, weighted anisotropy, and curvature as a lunction of time for g = — 1 (solid lines), ¢ = O (dushed lines), and ¢ = 1 (dotted lines).

fitting at hump onset is sufficient grounds to rule out high
values. Indeed, these assumptions are probably responsible for

TABLE 2 failure to match the sunward flow in Figures 105 and 10c

RerFived FIT PARAMETERS FOR 1NIECTION ALONG BoTh LEas oF a Cuoses Loor
FOR VARIOUS §-VALUES

i !

II

g e Degree of Freedom (ALY (AL)
503.7 210 2.0 4.4
446.9 209 1A 4.7
437.0 209 1.2 4.9

-and Table 2), we again conclude that ¢ < 1.

A more robust feature is the strong enhancement near j
during the quasi—steady state over 19:15—-19:30 UT (see Figs. i
10e), due to continued injection along the near leg superimpe
on an isotropized distribution. Since the ¢ = [ model pé
matches the shape of the piteh-angle distribution in this time
riod, as well as yielding an inferior fit to the time profiles (Fig

For g-values from -1 to 0.75 (even lower values of g ar¢
ruled out by the data but are in our opinion physically unikg
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the optimal scattering mean free path 4 is 1.2-2.0 AU, the loop
length/ = 4.7 + (.3 AU, and the injection has a start time (at the
Sun) of 17:46 UT, peak time of 17:51 UT, and FWHM of 6 min-
utes, all with estimated uncertainties of 2 minutes.

5. DISCUSSION .
5.1. Overview

A key lesson of the present work is the value of precision
modeling of the interplanetary transport of solar energetic par-
ticles {(SEPs). From numerical simulations and careful compar-
isons with observed time profiles, various reasonable ideas can
be excluded. Only after three magnetic field configurations were
tested and found to not properly fit the data did we turn to the
explanation of injection along both legs of a closed interplane-
tary magnetic loop, which provides a much better fit. If the
analysis of observed time profiles had remained qualitative, the
improved explanation would not have surfaced.

The start time of injection of relativistic solar particles, 17:46
UT +2 minutes, would correspend to Earth observation of
electromagnetic emission at 17:54 UT £2 minutes. This corre-
sponds closely to the actual peak of Ha detection (17:56 UT)
and X-rays (17:37 UT). A similar correspondence with the X-ray
peak was found to within a few minutes for the GLEs of 2000
July 14 (Bieber et al. 2002), 2003 October 28 (Bieber et al.
2005), and to one-minute accuracy, 2001 April 15 (Bieber et al.
2004a). This indicates a delay between the energetic (rising)
phase of the flare and the injection of relativistic particles, which
could be attributed to acceleration at a CME shock that takes
some time to form.

We concur with Cramp et al. {1997) that there was an ex-
tended solar injection. There was an apparent sharp cutoff of in-
jection at 19:30 UT. This cutoff feature, identified in the context
of relativistic solar protons, is seen much more dramatically in
24-210 MeV protons { Nemzek et al. 1994). For the relativistic
protons, the intensity is continuous at most pitch angles, and the
sudden change is only in the outgoing direction, as if the source
turned off (Fig. 10). On the other hand, the axis of symmetry
changed suddenly at that time to a new direction and then re-
mained roughly constant for the remainder of QOctober 22 (not
including Llime periods of very low anisotropy when the inferred
axis can fluctuate widely), implying that the apparent cutoff of
injection actually indicates the arrival of a new flux tube with
different magnetic connection. This change in magnetic connec-
tion is much more evident for the 24-210 MeV protons, causing
a nondispersive 30%—50% drop in proton density.

These observations can be understood in terms of magnetic
connection to the acceleration region at a traveling interplanetary
shock. Relativistic particles were mostly injected at the event
onset, when the shock was at low solar altitude, followed by
extended injection at a lower intensity (Fig. 11). Before 19:30
UT, the Earth was apparently magnetically connected to the
source ever since the start of the GLE. For cenvenience let us
refer to this as the “first flux tube."” The second “flux tube,” after
19:30, was apparently sufficiently well connected to the source at
event onset to obtain almost the same relativistic particle density
as the first flux tube, and both flux tubes are apparently loops.
The difference is only that the second flux tube magnetically
disconnected from the shock at some stage before passing by the
Earth at 19:30, so the only observed change at 19:30 was the
disappearance of the small outgoing flux. {From a modeling
point of view, this is functionally equivalent to a cutoff of in-
jection.) The same scenario can explain the 24-210 MeV proton
observations because particles at lower energies typically have a
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much longer duration of injection by a CME-driven shock.
When the second flux tube disconnected from the shock some
time after event onset, it therefore received a significantly lower
total injection than the first flux tube.

As noted earlier, the polar neutron monitor data cannot pre-
cisely determine the ratio of far-leg to near-leg injection because
the spike was only caught by two monitors and only lower limits
in density are available. While all fitting results assumed a ratio of
1.0 with identical and simultaneous injection functions along the
two legs of the loop, we found that multiplying the far-leg injec-
tion by anywhere from 0.5 to 3 also yielded reasonable fits. Note
that we do not know whether the two legs were physically close
together near the Sun, e.g., connected to the same active region. If
they were in close proximity, that would provide a natural expla-
nation of why the data are consistent with the same injection func-
tion along both legs of the closed interplanetary magnetic loop.

If the relativistic solar protons were accelerated by the CME-
driven shock simultaneously along both legs of the loop, those
acceleration processes were independent and not synergistic, for
the following reasons. The bulk acceleration took place over a
FWHM duration of only 6 + 2 minutes, so particles from one leg
could not have traveled / = 4.7 = 0.3 AU to reach the other in
time to serve as seed particles for bulk reacceleration. The in-
ferred values of the mean free path 1y are smaller than the loop
length / (see Table 2}, so the particles from one leg would not
survive as a beam to reach the other, and indeed most would
suffer magnetic mirroring and would not reach the acceleration
region near the Sun.

Our analysis of the 1989 October 22 GLE relies aimost ex-
clusively on observations of relativistic solar protons. In the
future, a much wider range of corroborating data should be
available. For example, the STEREQ (Solar Terrestrial Relations
Observatory) mission will provide detailed data on the magnetic
field topology. In that case we can apply our precision modeling
to probe the conditions of parallel and perpendicular transport of
SEPs, providing further information about magnetic loops and
the interior of CMEs in interplanetary space. Improved under-
standing of transport conditiens is relevant to understanding cer-
tain space weather effects. For example, relativistic solar particles
are a space weather hazard to air crews flying polar routes as well
as a possible hazard to astronauts on missions to the Moon or
Mars. Our observations that these particles can form intense and
extremely collimated beams along an axis far from the magnetic
field direction, and can come along both legs of an interplanetary
magnetic loop, are relevant to shielding requirements for astronaut
safety and protection of spacebome electronic components. In
particular, an intense beam of particles can actually amive in an
unpredictable direction (see also Bieber et al. 2005), so it is not
sufficient to simply shield against or prepare for such a beam
coming from the typical 45° angle of the Archimedean spiral field
as one might imagine.

5.2. Magnetic Fluctuations

To our knowledge, this is the first report of an inference of
g < 1 to fit time variations in SEPs. The parameter 4 enters the
transport equalion as a parameter in the pitch-angle scattering
coefficient () = A|ul*" (1 — 42), and in the context of qua-
silinear theory is identified as the power-law index of the mag-
netic turbulence power spectrum (Jokipii 1971) at wavenumbers
k resonant with the particle rigidity of interest. More specifically,
Matthaeus et al. (1990) showed that interplanetary fluctuations
are predominantly at wave vectors nearly parallel to the mean field
(the *“slab™ component) and nearly perpendicular to the mean
field (the “iwo-dimensional” component, and particles underge
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resonant scattering with the slab compeonent {Bieber et al.
1994). The power spectrum has long been known to comprise a
Kolmogorov spectrum, ie., with power-law index g ~ 5/3,
over an inertial range, and a rollover at low & to a roughly con-
stant spectram (Jokipii & Coleman 1968), i.e., ¢ ~ 0. The roll-
over wavenumber k., corresponds to the turbulent correlation
length /. ~ 1/k.. Therefore, it is not unreasonable that very high-
energy particles would experience ¢ < 1.

What is unusual is to observe g < 1 for 1-3 GV protons.
Based on a compilation by Bieber et al. (1994), Leerungnavarat
etal. (2003) point out {and illustrate in their Fig. 2) that the spec-
tral rollover, with g ~ 1, typically corresponds to a proton rigidity
of ~10 GV. Therefore, under normal solar wind conditions one
would expect 1-3 GV protons to resonate with turbulent fluctu-
ations in or close to the inertial range. Indeed, previous analyses
for this energy range were consistent withg = 1.50n2000 July 14
(Bieber et al. 2002) and ¢ = 1.0 on 2001 April 15 (Bieber et al.
2004a).

We therefore postulate that the unusually low value of g in-
ferred in this work for 1989 October 22 was associated with the
closed interplanetary magnetic loop configuration. We infer that
the correlation length of slab fluctuations was at least an order
of magnitude smaller than usual, i.e., £0.002 AU instead of
~0.02 AU. This makes £, unusually high and yields ¢ < 1 in
the wavenumber region resonant with 1-3 GV protons,

There is an observational precedent for unusual magnetic fluc-
tuations in closed loops. Previous work has found that a mag-
netic cloud (comprising closed loops) embedded in CME plasma
can have unusually weak fluctuations (Burlaga et al. 1981)and a
particularly weak slab component ( Leamon et al. 1998). As the
slab component is responsible for resonant scattering of particles
(Bieber et al. 1994), the results of Leamon et al. (1998) are also
consistent with the long mean free path of 4 = 1.2-2.0 AU
inferred in the present work. Note that Torsti et al. (2004) found
a very long mean free path inside the magnetic cloud of 1998
May 2-3, and the much earlier work of Tranquille et al. (1987)
identified weak particle scattering and low magnetic fluctuations
at a time of intense magnetic fields.

We note that the results of Leamon et al. (1998) [or a magnetic
cloud are similar to those of Buttighoffer {1998), Buitighoffer
etal. (1999}, and Smith et al. (2001, 2004) for rarefaction regions
of open magnetic field lines in the solar wind. Very weak particle
scattering was alsc observed in such regions by Buitighofter
{1998). Mullan et al. (2003) proposed the interesting physical
explanation that MHD waves are refracted away from regions of
high Alfvén speed. That work aimed to explain the low fluctu-
ations and very low slab fluctuations observed by Smith et al.
(2001} for rarefaction regions, but it could clearly apply to mag-
netic clouds in CMEs as well. Indeed, if one imagines a cylindrical
region where the Allvén speed is high, external fluctuations with
wave vector aligned nearly along the mean field (i.e., slab fluc~
tuations) can undergo total reflection and fail to penetrate the
cytinder, while other, oblique waves are more likely to enter. Work
by Reames et al. (2001) and Crooker et al. (2003 ) indeed found a
correlation between strong particle anisotropy, e, weak scatter-
ing, and the plasma /7 parameter, which in the context of Mullan
et al. (2003) can be interpreted as a proxy for the Alfvén speed.

Therefore, the long mean free path inferred in the present work
is part of a coherent picture that emerges from a large body of
work in the literature: regions of high Alfvén speed refract away
magnetic fluctuations, especially the slab fluctuations responsi-
ble for particle scattering, and provide “highways" ( Torsti et al.
2004) of particle transport with low scattering and sfrong anisot-
ropy. To this picture we add the inference of ¢ < 1 and an un-
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usually small correlation length /. < 0.002 AU inside a closed log
for which we cannot at present provide a physical explanation.

5.3. Interpreting the Decay Rate

The decay in density at late times is quite slow by the standanié
of GLE observations and favors a loop configuration in whigh
the particles can be trapped for extended times. Qur implemgg:
tation of the loop geometry in the transport code traps pariicle
very effectively, so to explain the data we introduce an escap
process with an exponential decay time of 3 hr. Now we addres
the physical mechanism of this escape and the interpretationl
the timescale.

First note that there is very little escape due to parallel trans
port. While particles could in principle be absorbed at the sole
surface, the focusing (magnetic mirroring) there is very int
and very few particles reach such low altitudes. Indeed the trané
port simulation code includes absorbing boundaries at 0.01 Al
(=22 solar radii) from the solar center, and there is no significa
loss in the particle phase-space density, which quickiy becoms
constant in time, space, and direction. This leaves three e
sonable possibitities: (1) adiabatic deceleration, which remoyes
particles from the detected energy range; (2) perpendicular drifis)
and (3) perpendicular diffusion. These mechanisms could fake
place in the central part of the loop, presumably a magnetic cloud
embedded in CME plasma, and/or in the legs with plasma ang
magnetic field conditions that are more typical of the solar wind

Adiabatic deceleration was actually not included in our ireas
ment of the loop configuration for reasons described in § 3.8
this is a candidate process to explain the density decay. The raieth
density decay due to adiabatic deceleration is (2/3)(8 — ug
a radial solar wind of constant speed ( Ruffolo 1995), where 6 st
spectral index, taken to be 6.5 for the time period of interest (Fig.3)
and we use a solar wind speed vy, = 600 km s~ . At Earth (h§
yields a decay timescale of 18.9 hir, much longer than the observed®
value of 3 hr. Given that observed major CMEs are typically ~6
in extent, and based on the inferred loop length of 4.7 AU, w
estimate that the volume-averaged rate of decay over the loop yiel@
a value similar to that at Earth. Thus adiabatic deceleration doesno
explain the density decay, and we can justify its neglect in i
transport simulations in loops at these relativistic energies,

This implies that perpendicular transport processes are needsd
and the observed 3 hr decay time heralds a new type of informaliof
on the perpendicular transport of energetic particles in space. St
transport processes include systematic drifls and random diffusion

Particles orbiting Archimedean magnetic field iines in (h
solar equatorial plane expenence curvature and gradient drifis
the same direction, either southward or northward depending
the magnetic field direction and particle sign. (Note that the e
orem of Jones et al. [1998), if applicable, would imply that
ticles remain confined to a nearly constant heliolatitude; howe
there are drifts along or counter to the interplanetary electric fi
so their assumption of energy conservation does not apply.)
ever, inside a magnetic cloud, the coiling of magnetic field lings
can confine the drift orbits to closed surfaces inside the cloud, :
tokamak [uston plasmas. [tis not clear whethier the coiling ofmag
netic field lines persists throughout the flux rope, e.g., in the lgg
connecting back to the Sun, Drawings by Burlaga et al. ( 1990)an
Vandas et al. (1996) show coiling with a lower pitch in the lg
which is reasonable in the sense that the CME is driven fo
with high speed and the legs should be stretched. In the leg regiont
with lower pitch (or possibly no coiling at ally near the Sun, alowe
fraction of the drifl orbits would remain confined to the loop.

Therefore, it is likely that many drifi orbits are confined in the
central, magnetic cloud portion of the loop and not confined i
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the legs. Then escape from the loop due to drifts takes place
preferentially near the Sun. The escape can be an exponentizal
process because of random pitch-angie scattering into a loss cone
where particles can be removed by drifts near the Sun. The pitch-
angle distribution in Figure 10f seems to exhibit loss cone fea-
tures consistent with that idea, although our analysis of polar
neutron monitor data during the decay phase does not.consis-
tently show loss cone features at all times. Note that the issue of
how relativistic solar protons escape from a clesed magnetic loop
is closely related to the issue of second-stage Forbush decreases
of GCRs (Cane et al. 1994), where the depth of the decrease is
related to how well Galactic particles can get into the loop. The
bidirectional flows of GCRs discussed in § 2.2 are consistent
with preferential inflow at the portions of the loop near the Sun.
Without knowing the precise three-dimensional magnetic to-
pology for a given CME, it is very difficult to estimate the rate at
which drifis cause particles to drain out of (or enter into) the loop;
for different coiling pitch and stretching of coils in the fegs, very
different escape rates can result.

Another possibility is that particles escape by means of per-
pendicular diffusion. For escape from the uniform interior of a
tube of circular cross-section, the long-time decay rate of the
particles {uniformly distributed over the volume of the tube) is
given by

1 x’
_f:nl—R—z’ (10)

where x| is the average perpendicular diffusion coefficient, x =
2.4 is the first zero of the Bessel function Jy, and R is the average
radius of the tube (averages are over the length of the tube). (See
also Wibberenz et al. 1998.) Here we measure T = 3 hr,so k| =
1.6 x 10~% s~1)R%. For example, if R = 0.2 AU, the inferred
diffusion coefficient would be s, = 1.4 x 10¥ em?® s~!, which
corresponds to a perpendicular mean free path 43 = 3k /v =
0.001 AU, where v is the particle speed. This value is in excellent
agreement with the recently proposed “nonlinear guiding center”
(NLGC) theory of perpendicular diffusion ( Matthaeus et al. 2003;
Bieber et al. 2004h). According to an approximate expression
given by equation (56) of Shalchi et al. (2004),

hs % 0.0676B /B, (1

where we have taken v = 5/6 in the notation of Shalchi et al.
According to Zank et al. (2004, see their Fig. 5), 4, displays
surprisingly little radial variatton, at least beyond 1 AU. In the
absence of better information, we assume that 4, is also con-
stant in the inner heliosphere and adopt values characteristic of
1 AU for the parameters in equation (9). We therefore take
8B% = B} (see, e.g., Bieber et al. 1994), [. = 0.002 AU (see
£5.2), and ’:'H = 1.6 AU. Weobtain /4, = 0.0012 AU, which s
precisely the value required to explain the 3 hr decay time.
There have been reports of open field line regions embedded
inside magnetic clouds in association with an inflow of GCRs
{ Bothmer &t al, 1997; Cane et al. 2001). Given the smooth decay
profile, Earth itself probably did not encounter such a region
during the decay phase of the 1989 October 22 GLE, but a
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nearby region of open field lines could provide a rapid escape
path, and equation (10) would underestimate the decay rate. The
presence or absence of such an escape path inside the magnetic
cloud could lead to strong event-to-event variability.

In sum, we interpret the 3 hr decay timescale of the 1989
October 22 GLE as the time constant for particles to escape from
the loop. Two possible mechanisms, perpendicular drifts or dif-
fusion, can explain this timescale. In the drift mechanism, escape is
likely to occur predeminantly in portions of the loop near the Sun.

6. CONCLUSIONS

The following are the conclusions of our analysis of data from
nine polar neutron monitors for the unusual ground-level en-
hancement of relativistic solar protons on [989 October 22:

1. The five key features of the density and anisotropy profiles
(see § 4.1) are not well explained by magnetic field configura-
tions of an Archimedean spiral, a bottleneck beyond Earth, or a
loop with injection along one leg. They are well explained by
injection along both legs of a closed interplanetary magnetic
loop that included the Earth.

2. Observed time profiles can be understood in terms of stan-
dard transport processes of scattering and focusing, with the
additional process of escape from the loop.

3. Relativistic solar protons were injected near the Sun start-
ing at 17:46 UT and peaking at 17:51 UT, with a FWHM dura-
tion of 6 minutes (all £2 minutes). There was also extended
injection for ~90 minutes at a lower level, followed by a cutoff
presumably associated with changing magnetic connection to
the source.

4. Observed pitch-angle distributions indicate ¢ < I, whereg
is a transport parameter identified with the spectral index of
magnetic fluctuations. To our knowledge such a low value has
not previously been inferred from solar particle observations.

5. Relativistic protons escaped from the loop with a time
constant of 180 minutes, which is interpreted as an escape time
due to transport perpendicular to the large-scale magnetic field.

6. The length of the loop is inferred to be 4.7 + 0.3 AU, and
the parallel mean free path is estimated as 1.2-2.0 AU, de-
pending on the value of g.

7. These results are consistent with an overall picture from
various reports in the literature of low magnetic fluctuations,
very low slab fluctuations, and long scattering mean free paths in
magnetic loops and other regions of high Alfvén speed. The
present results suggest that the turbulent correlation length can
be unusually short in magnetic loops.
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Science Foundation (grant ATM-0000315).
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1. Introduction

Turbulent motions, ncarly universal in tenuous astrophysical plasmas, lead to magnetic
turbulence and the random walk of magnetic field lines. The field lines define the magnetic
topology and play an important physical role by guiding the motion of charged particles. The
classic work of Jokipii (1966) and Jokipii & Parker (1968} expressed a relationship between
the random walk of ficld lines in magnetic turbulence and the diffusion of energetic charged
particles perpendicular to the mean magnetic field in astrophysical plasmas, [or the case of
weak fluctuations, often described as the quasilinear (QLT) limnit.

Recent work on the field line random walk has stressed the importance of large ampli-
tude Huctuations, as well as the generally anisotropic character of MHD turbulence (Isichenko
1991a,b; Wang et al. 1995; Matthaeus et al. 1995; Pommois et al. 1999). This involves not
only extending the analytical methods bevond the QLT approach, but also appropriately
representing more complex three dimensional magnetic turbulence properties. In particular,
a two-component “2D+slab” model adds slab and two-dimensional turbulence to provide a
useful model of solar wind fluctuations (Matthaeus et al. 1990; Bieber et al. 1996). This mod-
el of amsotropic turbulence is sufficiently simple to allow analytic caleulations of ensemble
average properties while still including a rich variety of local topological effects {Ruffolo et
al. 2003; Chuychai et al. 2005). The anisotropy is strong in the low latitude solar wind, with
a. roughly 80:20 ratio of 2D to slab turbulent energy (Bieber et al. 1994, 1996}, and is cven
stronger in magnetic clouds (Leamon et al. 1998) and rarelaction regions in the solar wind
{(Smith et al. 2001, 2004). Recent results suggest thal the fast wind has lower 2D admixture,
with perhaps a 50:50 ratio of energies (Dasso ¢t al. 2005). The anisotropic nature of solar
wind turbulence has been shown to have interesting physical effects. Bieber et al. (1994)
showed that this anisotropy may resolve the long-standing discrepancy between theorctical
and observed mean free paths of solar energetic particles. Matthacus et al. {1995) derived an-
alvtic formulae for the ficld line random walk in two-component turbulence, later confirmed
by computer simulations {Gray ct al. 1996}, that indicate diffusion tending as */B3 for slab
turbulence (Jokipii & Parker 1968) but as b/ By for the two-dimensional component. Note,
however, that many of the classic concepts of transport phenomena in turbulent media are
based on implicit assumptions of nearly isotropic turbulence. Ruffolo et al. (2004) showed
that in two-component turbulence, the separation of magnetic field lines only develops an ex-
ponential form {Rechester & Rosenbluth 1978) when the slab component dominates the field
line random walk, and the Kubo number that classically defines quasilinear vs. percolative
behavior (¢.g., Isichenko 1991a,b) needs to be modified for strongly anisotropic turbulence.

Understanding has greatly improved by considering the ansotropy of magnetic turbu-
lence; however, most of this work has continued to assume azrisymmetry, with some notable
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exceptions (e.g., Pommois et al. 1999, 2001). Axisymmetry about the z-axis (usually the
coordinate along the mean field) implics that statistical properties of the turbulent ficld arce
rotationally symmetric in the perpendicular coordinates « and y. However, there are indica-
ttons that the variances of magnetic fluctuations may be non-axisynunctric in some cases of
interest. The classi¢ work of Belcher & Davis (1971) indicated a roughly 4 : 3 ratio in solar
wind (luctuation energy in the 2 x # direction relative to the orthogonal direction (Table
6 of that work) along the Mariner 5 Venus flyby trajectory. Recent studies also suggest a
possible role of non-axisymnetric fluctuations in enhanced latitudinal transport of cosmic
rays al high heliographic latitudes {Jokipii et al. 1995; Burger & Hattingh 1998). Note that
the Archimedean spiral magnetic ficld (Parker 1958) iu the outer heliosphere is mainly in
the azimuthal direction, so the two perpendicular coordinates are r and #. However, the
solar wind flow is essentially radial with a small deceloration, se the solar wind plasma is
greatly stretched in ¢ with a slight compression in . This difference in the two dircetions
perpendicular to the mean magnetic field may well induce a degree of non-axisymmetry in
magnetic turbulence in the outer heliosphere {Jokipii 1973), even if there is some transfer
of energy hetween these two perpendicular directions due to dynamical couplings. For these
reasons there is ample motivation to extend our understanding of axisymmetric turbulence
to the more general case of non-axisymmetry.

In this work we develop a theory for the non-axisyminetric field line random walk in
a general nonperturbative scheme (Matthaeus et al. 1995). This approach is useful for
transverse fluctuations in general, and is cxplicitly applied here to non-axisymmetric two-
component turbulence, The non-axisymmetry includes both polarization of the slab compo-
nent and stretching of the two-dimensional component in wavenumber space. Our principal
result is a set of coupled biguadratic equations in the diffusion coefficients D, and D,. Com-
puter simulations are also performed, which verify the analytic solutions and justify the
underlying assnmptions. An interesting finding is that increased fluctuations in one direc-
tion can inhibit the field line random walk in the other direction. It is also found that the
limit of extreme non-axisyminetry leads to a first-order dependence of the field line random
walk on b/By. We derive closed-form solutions for several limiting cases, which should find
immediate application in heliospheric scattering problems such as cosmic ray modulation.

2. Analytic theory

The present work considers statistically homogencous, non-axisymmetric iwo-component,
magnetic turbulence. In the iwo-component model, we assume

B = Bg + b(z,y, 2}, (1)
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where the mean field By is constant. We also use
Bp=5yz, bl 3z (2)
and the fluctuating field, of mean zero, is given by
b = b2(z, y) + be(2). (3)

For brevity, we will refer to a quantity such as (b?) as the magnetic energy of the fluctuations,
F, and define & = /(b?). In general, we can write

b*P(z,y) = Vx[a(z, y)2]. (4)

The potential function a(z,y) can be taken to be a random function fluctuating about a
constant mean value, taken to be zero for convenience, with a well-behaved power spectrum
Alky, k,) (Ruffolo et al. 2004).

I the absence of a slab component, the field lines {or two-dimensional turbulence would
move along curves of constant a, since equation (4) indicates that b*” L Va. In three
dimensions, such field lines are constrained to flux tubes that arce “cylinders” in the mathe-
matical sense of surfaces of constant a(z,y). This can account for the repeated dropouts in
obscrvations of solar energetic particles from impulsive solar flares (Mazur et al. 2000; Ruf-
folo et al. 2003). A key feature that makes the two-component model of turbulence realistic
and interesting is that the slal component imposes random perturbations on the field line
motion, leading to mixing of field lines and wandering to regions of dilferent a(x, y) (see also
Matthaeus et al. 1995).

Note that B, = By, so in this model it is impossible for a magnetic field line to backtrack
in the z-direction, and the z-coordinate specifies a unique location along a magnetic field
line. Therefore, we follow the standard practice of defining the field line diffusion coefficient
m terms of the distance Axz:

_ ((Az))
Do = a0
((Ay)*)

Dy = A, ®)

For non-axisymmetric turbulence, we nole that {(Az)?} # {((Ay)?). To obtain a non-
axisynunetric slab field, we can explicitly set the parallel correlation length, £, and rms slab
magnitude, #*% = \/(2)5% to be different in the x and y directions. For two-dimensional
turbulence, the power spectrum A(k,, k,) for the axisymmetric case depends only on k& =
\/E-F_ks, i.c., it is constant along circles in (k,, k,) space. To consider non-axisymmetric
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two-dimensional turbulence, we use a form that is instead constant along ellipscs in (k,, k)
space (Figure 1). Note that our model incorporates the two key ways to violate axisymmetry:
L. a difference between the two “polarizations” (for the slab component), and 2. a difference
between correlation scales in different directions (for the two-dimensional component).

Our analytic derivation of D, and D, [ollows those of Matthaeus et al. (1995) and
Ruffolo et al. (2004) in assuming Corrsin’s independence hypothesis (Corrsin 1959; Salu
and Montgomery 1977; see also McComb 1990), Gaussian random walk distributions, and
diffusive behavior. Computer simulations have becn used to verify the validity of these
assumptions for the field line random walk (Gray et al. 1996) and field linc separation
(Ruffolo et al. 2004) in two-component turbulence.

Following Jokipii & Parker (1969), we express the change in the z- and y-coordinates
of a field line over a distance Az along the mean magnetic field as

i Az
Ar = z{Az) — x(0) = E,/ b,z ("), y(2"), 2']d2’
]
Az

Ay =82~ 4(0) = 5 [ b)), 2la (6)

The ensemble average of (Az)? is then given by
. 1 Az Az
(o) = o / / (hal(2), (), 2|bal(2"), (2", 2] d' dz"
0 J0 S0
l Az Az
= [ e e (7)
oJo Jo
where we introduce the notation #' for (2}, etc. We can also write
1 Az phz—2
(Az?) = Ei/ f (b (29", 2 )b (2" y", 2" + ALY dALd2, (8)
0 J0 —z'
where Az = 2" - 2/, and with the assumption of homogeneity,
) 1 Az pAz-z2
(Ax?)y = P / {b:(0,0,0)b,(AZ', Ay, A NdAZd7 (9
00 S

where Ar' = 2”7 — ' and Ay’ = y” — /. By changing b, to b, we can obtain a similar formula
for {Ay?).

Here we use Corrsin’s hypothesis in position space and consider the Lagrangian cor-
relation function {b.(x',y', 2")b, (2", y", 2”)} to be the Eulerian correlation function, R,, =
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(bx(0,0,0)b;(:ﬂ, ¥, z)), weighted by the conditional probability of finding (Az’, Ay') after a

given Az
1 Az phAz—2' poo poo
{Az?y = B_g/g /r / / R, (Ax', Ay, AZ)

x P(AZ'|AZYP(AY|AZYdAZ dAy' dAZ d2'. {10)

The formula for (Ay?) is similar:

) 1 Az pAz—z poo o5 , , ,
(Ay®y = B2 R {(Ax, Ay’ A
0 J0 —z' —00 J =00

x P{AT'|ALVP{AY|AZ)dAZ dAy' dAZ'dZ . {11)

We assume the probabilities in equations (10) and (11} to be Gaussian distributions as

[ 1 Az')?
P{AZ'[AZ) = o exp [— ( 202) J
A 1 Ay')?
POVAY) = —ew {(2)] , (12)
Yy 2

where o2 and cr,"j are the variances in z and y components. We apply the diffusion approxi-
mation for the variances, which are

ol = ((Az')?) =2D, |AY|
oy = ((&yY)) =20, |A7. (13)
Thus equations (12) become
WA 1 (Ad')?
PATIAZ) = i &P [“wxlm’l
A 1 (Ay')?
2y = S - A 14
PVIAD = D a) ex‘)[ 4D,|AZ| (14)

Next we integrate equations (10) and (11) over Az’ and 2" and introduce the power spectra
.. and I, as the Fourier transforms of the correlation functions R, and R, respectively.
Again using the diffusion approximation, we set (Az?) = 2D.Az and (Ay®) = 2D, Az
Finally, we obtain the coupled equations for D, and D, as

DI: =

o Pslab kz dk‘z
27z Vor B ) . KAz w (K

{Ax?y 1 1 /"O 1 — cos(k,Az)
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/ f PPk ky)
szQ (Dk2 + D,k2)

x{l— [DngrD k2 Az]}dk dk,

2 1 1~ cos
PZD(kr,k)
zﬁﬁ_g/ / (D k2 + D,k2)
x {1 — g (DK% + Dyk2)Az] } dbpdky, (15)

where g(u) = (1 — e™")/u behaves as a low-pass filter, i.c., g{u) = 1 for v <« 1 and mono-
tonically declines to zero as u — 0o.

Following Ruffolo et al. (2004), when we choose a large Az, equations (15) become

D, — Db — OIW ;2 / / ;;ﬂ; AIJ’; zg)dk‘mdky
D, - Dt — %; / ._; ?;:2 k’;‘ ;Q)dkxdky, (16)
where
Dy = \/i Pgibz(o) = emfﬁéfﬁ H
Dy \/;PB 0) _ f;b (18)

Here ¢, and £, are the correlation lengtihs in the z and y directions, respectively, f,. is the
fraction of turbulent encrgy that is slab energy in the x direction, fo, = (b2)*'%®/{b?), and
similarly [, is the fraction that is slab energy in the y direction.

Equations (17) and {18), which correspond to the results of Jokipii & Parker (1968),
make it clear how non-axisymmetry affects the field line random walk due to the slab compo-
nent of turbulence. The effect on the two-dimensional component is not as clear, especially
because P2 (k,,k,) and ij (ky, ky) are not independent functions. From equation {4),
which relates b?”(x,y) to the potential function alx,y), we infer that P2P = k2A and
P20 = k2 A, where A(k,, k,) is the power spectrum of a(z, y). Thus non-axisymmetry in the
two-dimensional component of the turbulent magnetic field is generated by non-axisymmetry

in A(k,, k).

For the axisymmetric case, A(k., k,) is constant, along circles of constant k| = /kZ + &2
n (k. k,) space, so A = A(ky). For the non-axisymmetric case, we model the two-
dimensional component by taking A(k,, k,) to be constant along ellipses in (k;, k,) space
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that have a major to minor axis ratio of G/« (see Figure 1). We refer to this ratio as
the ellipticity parameter £, and Figure 2 shows examples of A(x,y) and representations of
the two-dimensional potential function a{z,y) for £ = 1 (axisymmetric case) and £ = 4 (a
non-axisymmetric case). Note that using £ # 1 stretches the “islands” of constant a(z,y).
Now we write &k, = ky /o, ki, = k, /3, and k| = JkZ + k2 = \/k2/a? + k2/73% and assume

A= A(K\). This yields

‘ ﬁQk.QA(kJ ) ’
_ slab — N ALt
De =Dy o 32 / /m (D,a?k? + D, 2k2) dlorke)a(5k,)

. 252 AR _
D, — Dol = = - o Ry AL Aok (3K ). 19
v Dy o Bg /x /x (Dya?k? + D, k) (ke A5k (19

Next, we write equations (19) in polar coordinates &' and ¢ such that &, = &', cos ¢ and
k, = k' sin#:

‘ . 2 szu 9/1 1%
D:n _ D;lah _ ”{)6 / / D HlIl ( ) kldkide
&

27 B 2§72 cos2 0 + D, 32k sin” 0)
af3 }32 [OO Pyt gt /ﬂ 1
= K, dk —
27 BED, o ARIK “Jo cot?ot Bo
o o2 E2 cos?
k't cos® GA(K)
p, - pueb — 20 / / K dk', do
v ¥ 2ﬂ'b’ (D02k" cos?  + D, 32k sin” 6)
1
= AR K dE| —df. 20
Qszp / ( / 142 ”v fan 2" 20)
Note that o
| /et 0+ a0 = 25/t + ) (21)
()
and o
/ [1/(1 + p*tan® 0)]d8 = 27 /(p + 1), (22)
Jo
where p = (#/a)\/ D,/ D, in our integrals. Then we obtain
¥
/f o }62 1
D, D = (Y[ AR K dK, | -
e p (Bg f (K K dk, a?Dy 3 HJ;, (1_'_[; /D )
2 D.E
g t 1
D, — D = (—/ AR K dk’)———. (23)
' L B2 LML D, a /o,
3 Jo : (1 +8 D_)
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Let us define J to be the term in parentheses:
ge's!
= %‘?L AGK, YK, di,. (24)

Transforming &' back to k, and &,

i [ors] o0
0Jd-00d—x
2 _p2DN 2
- 9- (%)
B3 By
= 2D, (25)

where A is called the “ultrascale” (Matthaeus et al. 1995). Combining equations (23) and
(24), we obtain the coupled biquadratic equations for the field line random walk in a non-
axisymmetric two-component model of magnetic turbulence:

(D:r - Ditab) (Dy + %\/ DTDU) =
(Dy = D;mb) (DI -+ g\/‘ DrDu) = I (26)

In terms of the ellipticity parameter £ = 3/ we have

(D, — D3teb) (DI + £ /D;,,Dy)

These equations are straightforward to solve numerically for a given case of interest, and in

i
-

(27)

the next section we derive closed-form solutions for certain limiting cases.

3. Interpretation

To solve the coupled biquadratic equations (27), a “user” of the calculation needs to
specify certain physical inputs:

By, the mean magnetic field,

b. the root-mean-squared turbulent magnetic field,
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Sss the slab fraction of turbulent energy,

7 = fsr/ [sy, the slab anisotropy,

¢, the correlation length of bf“b,

£, the correlation length of 6%,

A, the ultrascale (of two-dimensional turbulence), and

&, the ellipticity parameter.

Actually, instead of providing both b and By, it is sufficient to specify only their ratio. The
two anisotropy parameters n and £ are quite distinet physically: We will show shortly that £
is also the anisotropy of the field line diffusion coeflicients for the two-dimensional component,
alone: & = D2P/D2P  In terms of these inputs, the quantitics in equations (27) are given

as

2 32

siex "q Efﬂ./sb
Dy = =l (28)

n+1 Bj

1 4,fb
Ds.!ab — yJ s 29
¥ T]Z + 1 B{Q) ( )

b 2

and from equation (25) we have [ = 2(D3P)% so

po = b Iy 31
L 2 Bl,’] ( )
Note that D% and D:** depend on (b/Bn) , whereas D*” o b/By (sce also Taylor &
McNamara 1971).

Let us stress that the results in §2 apply for general and independent functional forms
of Pglst(k,), P2 (k,), and A(K ). For the slab fluctuations, we allow a general polarization
in the sense that z- and y-polarizations have independent power spectra, and we see that
the calculation depends only on the product 7; f,;, where 1 = x or y. For the two-dimensional
fluctnations, we take A{k,, k) to be stretched in one direction relative to the axisymmetric
configuration (Figures 1 and 2). Thus the slab anisotropy 1 and ellipticity £ represent
physically distinct types of non-axisymmetry.

In many applications, direct measurements of the physical inputs arc not available, so
onc must make educated guesses or ad hoc approximations. Here we present solutions of
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the general cquations (27) for specific Bmits and approximations. Naturally, the simplest
approximation is that either slab or two-dimensional turbulence can be neglected. For the
case where two-dimensional turbulence is absent, we have f, = 1, [ = 0, Dy = D% and
D, = D;”ab, so we rccover the Jokipii & Parker {1968) results for slab turbulence as in
equations (28) and (29).

Next, consider the limit where the slab fraction goes to zero. It is uscful to define the

geometric mean of overall diffusion coefficients, DY, = /D, D, and an anisotropy ol overall
diffusion coefficients, é = \/D;/D,. Setting D““b Ditat — (), equations (27) give

5
D1+ = I
J"(W)

D (1 + g) — I, (32)

which are only satisfied for § = &, giving D) = /T/2 = D3 as in Matthaeus et al. (1995).
Therefore,

D, = 6D, =¢D%
D, D*

D o= T4 33
and we can indeed interpret £ as the anisotropy of the field line random walk for two-

dimensional turbulence, £ = |/ D2P /D22,

Now suppose that both the slab and two-dimensional components are present. If  and
£ are not known, a simple approximation is to set them equal (r = £). Let us also set
¢, = £, = ¢, which along with equations (28) and (29) implics that n = ,/Dsleb/D3teb Then
from an argument similar to that for the pure two-dimensional case, it can be shown that
d = £ as well. Therefore, equations (27) decouple to these two equations:

(D, — D) (%‘) -

(Du - Dslab) (szv) =

BO| b D[ P

The solutions for this case are

D, = % [D;’ﬂb /(D)2 + 4(,9;50)?]]
1
Dy — 5 [Ds[a5+ \/Dslab + 4 DQD) :l (35)
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which is the same as the formula obtained by Matthaeus et al. (1995) but now applied
separately to D, and D, quantities. In terms of the physical inputs, we have

1| e o ey’ )
D = .- 2 2D
* 2182+1 B2 + £+1 B2 +48(D1)
r - 5
1 1 Of 8 1 éf2N" (D)
D, = - 4 . 6
Y 2 |&2+1 B2 +\/(52+1 Bg) + £2 (36)

Now further suppose that the turbulence is extremely non-axisymmetric, i.e., that all
other input values are fixed bul n and £ both tend to 0 or both tend to oo. Then from
equations {36} it can be seen that the two-dimensional contribution dominates. That is,
when ¢ tends to zero, D, — £D?P and D, -~ D2P/¢, Similarly, as £ goes to oo, we
again have D, — £D%” and D, — D?P/¢. Such extreme non-axisymmetry might occur in
the outer heliosphere if field fluctuations are “frozen in” the solar wind as it expands very
differently in the two perpendicular directions.

Now let us return te the general case of any possible input parameters. For convenience
in analyzing the coupled equations (27), we can rewrite all variables to compare with the
two-dimensional values, yielding

DL _ Dslab
D, = S5 Di="4s
4 DiD 1 DQLD

§ = o VDD (38)
£ \/DﬁD/DgD
N~ \/ Dgia { Dsiab

£ ng”/DijD '

where we define Dy, D3P, and DY as the geometric means /DD, /D2’ D27 and
DylabDstab - regpectively. Now equations (27) become two coupled equations with two

unknown parameters D', and §":

T =

1
D (d’ + 1) (D), —n'Dy = 2

, . Di‘ Dsn'
T+ 1) (M&iw nf) = 2. (40)




13 -

Note that DS’ and 7' are known in terms of the input parameters via equations (28) to (30)
(recalling that D*’ = \/1/2). In particular,

231 Ey ] fs b

D50 = — 41
* A 41V - [ By (41)

’ ' \/Eg:r o1 5 b
gpy - Y= 1S b (42)

)\ ?7+1£ lmfsB[]

Ds’ 2¢ ; b

TIJ X 772+1V1‘fsB_(}.

Now suppose that 1 — oo, while £ is fixed. Then the terms D3’ /%" and 1/ DY’ go to zero
and a constant, respectively. The coupled equations become

1 ry ! st
Di(d;+1)(6DLnDl) = 2 (44)

‘ D
Dl(a’+1)(6f) = 2 (45)

For this case. il 7/ D%’ < 1, which implies D3 < D2P | the equations above are
i 1 7 J D]
DL 5 + 1 (5 DL) — =

Dr
D+ 1) ( dj) = 2.

The solutions are D', = 1 and § = 1. That is, when 5 — oo and D% < D20 the diffusion
cocfficients tend to two-dimensional values (D; = D?P). If instead 7/ D3’ > 1, which implies
D3tab 5 DD then considering equation (44) we know that &'D’, must be greater than n' D3’
because the left hand side of that cquation needs to be positive. Thus &' > 5/ D3'/D' . From
equation {45), we can write

o DE
27— 17

P

Here we note from (47) that 0 < D < +/2, so & > 1. This in turn implies D/ = v/2,
and then equation {44} implics that & D, ~ 'D3’ and & =~ ' D3'/V2. Converting these
to diffusion coefficients, the solutions for the case where n — oo and D# » DZP are
D, ~ D and D, = 2D2PD2P /D3, which is much lower than D27, Paradoxically, the

(46)

and also
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increased slab turbulence in the z-direction leads to decreased y-diffusion. That means that
when D3%* makes D, very large, it decorrelates the random flights in the y-direction and
also decreases the mean free path in the y-direction and D,. An analogous result in the case
of field line separation was found by Ruffolo et al. (2004).

If % instead goes to zero, the roles of z- and y-components are reversed. That is if
D;i“b < D;D , then the diffusion coefficients tend to two-dimensional values. If, on the other
hand, Dgfe® > D27, then D, =~ D3'* and D, = 2D2° D27 /D3, which is much lower than
D2,

Finally, we consider the case where £ — oc for fixed 7. [t can be shown that if Dsi? >
D3P, then D; & Dil* If DY « D?*P| then Dy, & D3 while D, =~ 2D2P D20 / Ds'® | which
is again much lower than D27,

4. Numerical Confirmation

To conlirin the conclusions of these analytic calculations, we have also performed com-
puter simulations of the ficld line random walk in non-axisymmetric two-component turbu-
lence. While the simulations inevitably involve some discretization and statistical errors,
they do avoid the key assumptions of the analytic work (Corrsin’s hypothesis and Gaussian
probability distributions) and thus provide an independent check of their validity. For ax-
isymnetric turbulence, these assumptions have been computationally verified for the ficld
line random walk {Gray ct al. 1996) and for ficld Jine separation (Ruffolo ct al. 2004) to
within ~ 15%.

In order to simulale non-axisymrmetric turbulence, we construct the power spectra d-
ifferently in the z- and y-directions. For slab turbulence, we sel the power spectrum for

simulations as
slab
C;

]—)i‘;iab kz = TR
( ) [1 + (k‘z/\i)z]ll/(r

(1 =x.y), (48)
where C#'% is a normalization constant of the i-component, set so as to obtain the desired
slab turbulence energy, and A; is the parallel correlation scale of the i-component, which is
direcily related to the correlation length ;. For the two-dimensional component, we instead
specify the power spectrum A(k,, &, ) because as discussed in §2, the power spectra P2Y and

PqijD can be written as

P20k, k) = k2A(K,)

T

P2k, ky) = K2A(K), (49)

vy
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where &' is defined in §2. The function of A that we use for simulations is

Al C?D
(k1) = TENTRTS (50)

This form of the two-dimensional spectrum also perinits the axisymmetric case when £ = 1.

These forms of the slab and two-dimensional power spectra are consistent with a Kolmogorov
power-law in the omnidirectional power spectrum at high wavenumber {Ruffolo et al. 2004),
while rolling over to constant values of P and A at small wavenumbers. They provide
a. reasonable description ol observed power spectra in interplanetary space over the energy-
containing and inertial ranges of turbulence (Jokipii & Coleman 1968; Bieber et al. 1996).

Now we have the spectra of magnetic turbulence. The relations between the magnetic
field fluctuations and power spectra are

bi!ab(kz) — /P;iabe“ﬁ(kﬁ (51}

b;lab(kz) — /P;;ab6i¢(kz) (52)

VA0 (ko k) = —ikyy ] Alky, ky etk (53)
WPk ky) = ihon) Alky, kye?F50), (54)

where ¢ is an independent random phase for each Fourier mode. After we generate the
magnetic fluctuations in k-space, we use inverse Fourier transforms to coanvert them to
real space. Now we have a representation of two-dimensional and slab fluctuations in the
simulation box. Next, the field line equations

do  by(z,y,2) dy  by(z,y,2)

dz By dz By
are solved by a fourth-order Runge-Kutta method with adaptive step size control (Press et
al. 1992).

(55)

After we get the positions of each field line, yielding the diffusion coefficients, values
of {Arx?) and {Ay?) arc averaged over the set of ficld lines at Az much greater than the
correlation length. Then we determine D, = {Az?)/(2Az} and D, = (Ay?)/(2Az2). To
ensure that our sct of field lineg properly samples the ensemble of magnetic fluctuations and
to avold periodicity effects. we randomly set starting points of the field lines in the simulation
hox, change the realization of the two-dimensional component for every simulation, and trace
the field lines to only a few percent of the box length L.

To verify the theory, we perform the simulations for three cases. For the first case, we
confirm the theory for non-axisymmetric slab turbulence with no two-dimensional compo-
nent. The results from simulations are compared with the discrete theory, ie., the solution
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lo equations {27) to (30) in which the integrals used to determine £, £,, (b*)*%*, and X are
replaced by discrete sums over the actual Fourier mades used in the simulations. This helps
reduce the effect of discrete Fourier modes on the comparison, and allows us to better check
the assumptions underlying the theory. We set L, = L, = L, = 100,000, and trace the
field lines over only 2.5% of L,. The number of grid points is N, = 2?2 =~ 4 million. The
paramelers governing anisotropy for this case are fi./fsy, Az, and Ay, In the axisymmet-
ric case, we usually set A\, = A, = 1 and f,, = fo, = 0.5, where f,, = (82)*"®*/{b*) and
foy = (B2)°*°/(6%). If we change these three parameters to other values, the system be-
comes non-axisymmetric. In this sirulation we set b/ B3=0.5 as a constant for all runs. The
simulation results are shown in Table 1, and they match the discrete theory quite closely.

In the second case, we simulate ficld lines in two-component maodels that are non-
axisymmetric only in the two-dimensional component but axisymmetric in the slab com-
ponent (Db = D;t“}’). We maintain fo, = fsy = 0.5f; and A, = Ay, = 1, and vary only
the ellipticity & of A(k,, k,}. Therelore, we should have a constant D = D;""‘b for all of
these runs. Moreover we set £, = 1 and b/B; = 0.5 and perform (wo scts of simulations,
for E#° . E2P = 20 : 80, a good approximation for the solar wind {Bieber et al. 1994,
1996), and for E*%* . E2P — 80 : 20. In the simulations, we trace 1,000 field lines in the
large box with L, = 100,000\, and L, = L, = 200X,. The numbers of grid points are
N, = N, = 4,09 and N, = 2%, Tables 2 and 3 indicate the numerical and theoretical
values and their differences when we vary the ellipticity & for E%¢ . E2P? = 20 : 80 and
80 : 20. The theoretical values and numerical results for those two cases are also plotted
in Figures 3 and 4, respectively. For E*? . E2P = 20:80, we add two columns in Table 2
with kurtosis values of cach component, x, = {Az*)/{Az?%)? and «, = (Ay") /{Ay?)?, to test
for similarity to Gaussian distributions, which have a kurtosis of 3. We conclude that all
kurtosis values are consistent with those of Gaussian distributions.

Finally, to be sure that the theory also works for various cases in which both the slab and
two-dimensional turbulence are non-axisymmetric, we independently vary the paramelers
that cause non-axisymmetry of the two-component turbulent ficld, We use the box size and
other parameters as previously but vary fo/fs, Az, Ay, and & Table 4 shows the results,
which indicate reasonable agreement between simulations and the discrete theory.

5. Summary

We analytically derive the field-line diffusion cocfficients in the directions z and y,
perpendicular to the mean field direction z, for non-axisymmetric, two-component (2D +
slab) turbulence, with variances transverse to the mean magnetie field, and adopting the
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additional assumptions of spatial homogeneity, the diffusion approximation, and Corrsin’s
independence hypothesis. The validity of the diffusion approximation and Corrsin's hypoth-
esis 1s verified by numerical simulations that do not rely on these agsumptions. The analytic
resulls are non-perturbative in the sense that neither the turbulent energy of the slab or the
2D compoment is constrained to be small. The results also allow general and independent
functional forms for the slab and 2D power spectra.

We can see that the numerical results and theory are in quite good agreement. For
pure non-axisymmetric slab turbulence, the simulations agree very well with the theory,
with differences less than 3% (Table 1). It is interesting to note the discrepancy between
simulations and theory when E,u : Fop = 20 : 80 (the energy ratio in the solar wind)
and the field is non-axisymmetric only in the two-dimensional component {see Figurc 3 and
Table 2). This is large {9%-13%) when £ is near 1 and it drops when & > 1 and € <« 1.
Moreover, the discrepancy in the direction that gives a large diffusion coeflicient is always
greater than that in the direction that gives a small value. When we decrease the [raclion
of turbulent energy in the two-dimensional component to 20% (Ega @ Fap = 80 @ 20; sec
Figure 4 and Table 3}, the differences between theory and numerical results decrease. It
scems that the two-dimensional turbulent energy affects the discrepancy between theory and
simulations. Howcever, the differences are still within 15%, which is similar that obtained by
Gray et al. (1996). Furthermore, the theory is also verified in the case where both slab and
two-dimensional turbulence are non-axisymmetric (Table 4).

The two-component model considered here is a particular case of anisotropic turbulence,
in which power in k-space is concentrated along the parallel (k,) axis and along the perpen-
dicular (k,, &,) plane, which has been shown to provide a useful description of solar wind
turbulence and associated particle transport phenomena Matthaeus et al. {1990); Bieber ot
al. (1994, 1996). For slab turbulence, we allow non-axisymmetry in the form of independent
power spectra in the z- and y-directions, i.e., a general polarization. For two-dimensional
turbulence, one can have non-axisymmetry in terms of stretching in one direction, so we
consider a power spectrum A(kx, k) of the potential function that is constant along ellipses
in (ky, k). Some previous studies of non-axisymmetric turbulence (e.g., Pommois et al.
1999, 2001} have instead considered an “ellipsoidal” power spectrum with no polarization
and turbulent energy that is constant along ellipsoids in k-space, which has the advantage
of including oblique wavevectors, and the disadvantages that analytic caleulations are more
difficult and certain quantitics cannot be varied independently, such as £, as k— 0 along
different, directions. The model differences are sufficiently great that we defer a proper com-

parison for future work.

The solution for the diffusion coeflicients in our model of non-axisymmetric two-component
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turbulence is in the simple form of ¢oupled biquadratic equations. We also show closed-form
and limiting expressions for special cases of interest. In some cases there is a counter-
intuitive result that enhanced fluctuations in one direction lead to decreased diffusion in
other direction. This is because the long random flights in one direction tend to decorrelate
the turbulence in the other direction. It is shown that extreme non-axisymmetry always leads
to diffusion cocfficients proportional to the root-mean-squarcd two-dimensional fluctuation
(i.e., proportional to b/3;). Since strong non-axisymmetry might be expected in the outer
heliosphere as the solar wind stretches differently in the two perpendicular (non-azimuthal)
directions, this result is relevant to the heliospheric transport of charged particles, such as
solar modulation of galactic cosmic rays.

This research was partially supported by a Basic Research Grant and a Royal Golden
Jubilee Fellowship from the Thailand Research Fund, the Rachadapisek Sompoj Fund of
Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant
NAG 5-8134).
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Fig. 1.— Comtours of constant power A{k., k,) of the two-dimensional potential function
for the axisymmetric model and for our non-axisymmetric model. To maintain the same
turbulent energy, we can set v = 1/v/€ and # = /€, where € is an ellipticity parameter.
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Fig. 2.— Contours of constant power A(kg,k,) for axisymumetric (€ = 1, upper left) and
non-axisymmetric (£ = 4, upper right) cases, and contours of corresponding representations
of the potential function a{z,y) (€ = 1, lower left; £ = 4, lower right). Note that the
two-dimensional component of magnetic turbulence, b*?(z,y) = Vx[a{z,y)Z], follows the
contours of constant a(x,y}.
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Table 1: Discrete theory and simulation results for the diffusion coeflicients and their differ-
ences when we vary f;, £,,, and £,,, for slab turbulence only.

Run [, {l., f D, D, D, D, AD, AD,

theory  theory  stm. sim. (%) (%)
0.50 1.0 1.0 0.09762 0.09762 0.09591 0.09632 -1.75 -1.33
025 1.0 1.0 004881 0.14644 0.04879 0.14400 -0.04 -1.67
075 1.0 1.0 0.14644 0.04881 0.14859 0.04815 +1.47 -1.35
050 1.0 2.0 009762 0.19200 0.09717 0.19738 -0.46 +2.80
0.50 1.0 0.5 0.09762 0.05016 0.09989 0.04875 +2.33 -2.81
0.50 2.0 1.0 0.19200 0.09762 0.19011 0.09640 -0.98 -1.25

0.50 05 1.0 0.05016 0.09762 0.04941 0.03661 “1.50  -1.03
0.75 1.0 2.0 0.14644 0.09600 0.14338 0.09625 -2.09 +40.26
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