

รายงานวิจัยฉบับสมบูรณ์

การเปลี่ยนรูป การผ่อนคลาย และการแตกตัวของอนุภาคในพอลิเมอร์สมัยใหม่เข้ากัน

รองศาสตราจารย์ ดร. อนุวัฒน์ ศิริวัฒน์

ตุลาคม 2549

สัญญาเลขที่ BRG 4680015

รายงานวิจัยฉบับสมบูรณ์

การเปลี่ยนรูป การผ่อนคลาย และการแตกตัวของอนุภาคในพอลิเมอร์สมแบบไม่เข้ากัน

รองศาสตราจารย์ ดร. อนุวัฒน์ ศิริวัฒน์

วิทยาลัยปิโตรเคมีและปิโตรเคมี จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความคิดเห็นในรายงานนี้เป็นของผู้วิจัย สก. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

ACKNOWLEDGEMENTS

The authors would like to acknowledge the funding provided by Thailand Research Fund through the Basic Research Grant no. BRG 4680015. Valuable suggestions and recommendations were kindly provided by Professor Ronald G. Larson from Department of Chemical Engineering, University of Michigan.

Table of Contents

	Page
Acknowledgements	1
Table of Contents	2
Abstract	3
Introductions	5
Outputs	6
Chapter I Oscillatory Shear Induced Droplet Deformation And Breakup in Immiscible Polymer Blends	8
Chapter II Drop Deformation and Breakup in PS/HDPE Blends under Oscillatory Shear Flow	48
Chapter III Dynamics of Vorticity Stretching and Breakup of Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix	91
Chapter IV Transient and Steady State Deformations and Breakup of Dispersed-Phase Droplets of Immiscible Polymer Blends in Steady Shear Flow	132
Chapter V Influence of Dispersed-phased Elasticity on Steady-state Deformation and Breakup of Droplets in Simple Shearing Flow of Immiscible Polymer Blends	177

Droplet Deformation Relaxation Breakup and Coalescence in Immiscible Polymer Blends
(Project Duration: 1 September 2003 – 31 August 2005)
(PI: Anuvat Sirivat)

Introduction

Problem Statements

Polymers that are recycled usually do not mix because of the unfavorable enthalpic interaction. During mixing of a major and a minor phases into a single blend, the blend is subject to usually complex shearing forces which result in the deformation, relaxation, breaking, and coalescence of the minor phase droplets. The resultant size distribution, and its various moments, control mechanical properties of the final solid state blend. Therefore, it is important to know key factors and/or conditions which influence the individual physical processes (deformation, relaxation, breakup, and coalescence) which lead to the final size distribution in the immiscible blend.

Droplet morphology of immiscible polymer blends depends on many factors: thermodynamic variables, rheological properties of individual polymers, and processing conditions. The understanding of the correlations between the blend morphology and the rheological properties in the past was based on Newtonian theories and are therefore inadequate to predict final blend physical/mechanical properties. The effects of viscoelastic properties, shearing conditions, interfacial tension, minor phase concentration on morphology of immiscible polymer blends subject to a simple *oscillatory* shear flow have not been previously addressed or understood. The *oscillatory* shear flow is a shear flow in which the applied stress or strain varies sinusoidally; it is a mode of shearing employed in many mixing devices.

Objectives

Our objective is to understand the relations between resultant blend morphology and its thermodynamic variables, rheological properties and processing conditions. If the proposed relations are available, then for a given polymer pairs in which we know the rheological properties and the processing conditions to be used, we can predict droplet size (mean value). The mean droplet size then can be used to predict several mechanical properties of the final solid state blend. Specifically, we will investigate the unexplored *oscillatory* flow mode on the deformation, relaxation, breakup, and coalescence processes.

Tasks Accomplished

We carried out various experiments to investigate the effect of unsteady shear flow on droplet deformation, relaxation, and breakup. In the first part (Chapters 1 and 2), we investigated the effects of frequency and amplitude of sinusoidal imposed shear strain on the droplet behaviors. We employed the polydimethyldisiloxane/polybutadiene material systems as the Newtonian blends and weakly elastic blends; both systems possess a small shear thinning behavior in the shear strain range studied.

Subsequently, we studied the same effect of frequency and amplitude on the droplet behavior of polyethylene/polystyrene material systems as the models of highly viscoelastic blends. In the second part (Chapters 3 and 4), we turned our attention to the transient droplet behaviors of highly viscoelastic blends of polyethylene/polystyrene material systems in which we observed for the first time the transient droplet deformation under steady state shear flow. In the third part, we studied the effect of elasticity on the steady state droplet deformation in the steady state shear flow.

Outputs of TRF-BRG 4680015

Refereed Publications

- 1) Lerdwijitjarud, W., Sirivat, A., Larson, R.G. (2004) Influence of dispersed-phased elasticity on steady-state deformation and breakup of droplets in simple shearing flow of immiscible polymer blends. *J. Rheology*, v. 48(4), pp. 843-862.
(2004 ISI Impact Factor: 2.525)
- 2) Cherdhirankorn, T., Lerdwijitjarud, W., Sirivat, A., Larson, R. (2004) Dynamics of vorticity stretching and breakup of isolated viscoelastic droplets in an immiscible blends. *Rheol. Acta*, 43, pp. 246-256.
(2004 ISI Impact Factor: 1.558)
- 3) Tanpaiboonkul, T., Lerdwijitjarud, W., Sirivat, A., Larson, R. (2006) Transient and steady state deformations of dispersed -phase droplets of immiscible polymer blends in steady state shear flow. Submitted to *Polymer*.
(2004 ISI Impact Factor: 2.433)
- 4) Chanpaen, V., Lerdwijitjarud, W., Sirivat, A., (2006) Droplet deformation and breakup in Newtonian immiscible blends under oscillatory shear flow: effect of weak elasticity. Submitted to *J. Rheology*
(2004 ISI Impact Factor: 2.525)
- 5) Sirivat, A., Patako, S., Lerwijitjarud, W. (2006) Droplet deformation and breakup in viscoelastic immiscible blends under oscillatory shear flow. Submitted to *Rheol. Acta*.
(2004 ISI Impact Factor: 1.558)

Conference Proceedings

- 1) Lerdwijitjarud, W., Sirivat, A. Cheerdhirankorn, T. Solomon, M.J. (2003) Effect of dispersed phase elasticity on droplet deformation and breakup of immiscible polymer blends. 8th Pacific Polymer Conference, Bangkok, 24-27 November 2003.

Oral Presentations

- 1) Lerdwijitjarud, W., Sirivat, A., Larson, R. (2003) Non-Newtonian effect on morphology of immiscible polymer blends. RGJ-PhD Congress IV, Cholburi, 25-27 April 2003. *Selected as the best oral presentation in the Polymer Science and Engineering Session.*
- 2) Cherdhirankorn, T., Lerdwijitjarud, W., Sirivat, A., Larson, A. Dynamics of vorticity alignment and breakup of viscoelastic droplets in an immiscible viscoelastic matrix under shear. AIChE Annual Meeting 2003, San Francisco, CA, 16-21 November 2003. *(Invited Talk Presented by Ronald Larson)*
- 3) Sirivat, A., Cherdhirankorn, T., Lerdwijitjarud, W., Larson, A. Droplet deformation relaxation and breakup in immiscible polymer blends. TRF "New Researchers Meet Senior Maethee Research Scholars", Petchaburi, 13-15 October 2005. *(Invited speaker by A. Sirivat).*

Poster Presentations

- 1) Lerdwijitjarud, W., Larson, A., Sirivat, A. (2003) Deformation and breakup of droplet in shearing flows of immiscible polymer blends: effect of constituent-component elasticity. Advances in Petrochemicals and Polymer in the New Millennium, Bangkok, 23-25 July 2003.
- 2) Sirivat, A., Cherdhirankorn, T., Lerdwijitjarud, W., Larson, R. (2003) Transient deformation and breakup of isolated viscoelastic droplets in a viscoelastic matrix. AIChE Annual Meeting 2003, San Francisco, CA, 16-21 November 2003.

MS Graduates

- 1) Cherdhirankorn, T. (2003) Dynamics of Vorticity Stretching and Breakup of Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix. M.S. Thesis, Polymer Science, the Petroleum and Petrochemical College.
- 2) Tanpaibookul, P. (2004) Transient and Steady State Deformation of Dispersed-Phase Droplets in Immiscible Polymer blends in Steady State Shear Flow. M.S. Thesis, Polymer Science, the Petroleum and Petrochemical College.
- 3) Janpaen, V. (2005) Oscillatory Shear Induced Droplet Deformation and Breakup in Immiscible Polymer Blends. MS thesis, Polymer Science, the Petroleum and Petrochemical College.

**Chapter 1: Oscillatory Shear Induced Droplet Deformation And Breakup in
Immiscible Polymer Blends**

Vitsarut Janpaen ^a, Wanchai Lerdwijitjarud ^b, and Anuvat Sirivat ^{a*},

**^a Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330,
Thailand**

**^b Department of Materials Science and Engineering, Faculty of Engineering and
Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand**

*** Corresponding author: anuvat.s@chula.ac.th**

Tel: 662 218 4131, Fax: 662 611 7221

OSCILLATORY SHEAR INDUCED DROPLET DEFORMATION AND BREAKUP IN IMMISCIBLE POLYMER BLENDS

Synopsis

Deformation and breakup of droplets in polybutadiene/polydimethylsiloxane blends subject to oscillatory shear flow were investigated experimentally using an optical shear flow cell. The apparent major axis (a^*), the minor axis (c) in the vorticity direction of the droplets were measured as functions of time. From the time series of the deformation parameters, $(a^* - c)/(a^* + c)$, we can define the deformation amplitudes as one halves the differences between the maximum and minimum values. The deformation parameters generally decreased with increasing viscosity ratio, time scale ratio and droplet elasticity. The dependence of the deformation parameters on capillary number is generally linear up to a certain value for Newtonian droplets, regardless of viscosity ratio and time scale ratio. The dependence becomes totally nonlinear with increasing droplet elasticity. Droplet viscosity and elasticity generally impede breakup under oscillatory shear. Critical capillary number for breakup, the number of resultant daughter droplets, and the number of cycle required for breakup to occur increase with time scale ratio. The apparent breakup pattern changes from the dumbbell type to the end-pinching type as time scale ratio increases.

I. INTRODUCTION

Droplet size, shape and their distributions as obtained from blending immiscible polymers are important factors which influence physical and mechanical properties of the blends. The resultant morphology is controlled by the physical, chemical, and rheological properties of individual polymers, as well as the processing conditions. The deformation and breakup of a suspended immiscible Newtonian droplet in another Newtonian matrix in a steady state shear flow was first investigated and studied by Taylor (1932, 1934). He suggested that the droplet deformation is controlled by two dimensionless numbers: the viscosity ratio, η_r which is the ratio between viscosity of droplet (dispersed phase) (η_d) and viscosity of matrix (η_m), and the Capillary number (Ca) or Taylor number, defined by the viscous force to the interfacial surface force:

$$Ca = \frac{\gamma \eta_m D_0}{2\Gamma} \quad (1)$$

where γ is the shear rate, D_0 is initial droplet diameter and Γ is interfacial tension. For small deformations, the shape of droplet is ellipsoidal and its deformation is described by the parameter Def, given by:

$$Def \equiv \frac{a - b}{a + b} = Ca \frac{19\eta_r + 16}{16\eta_r + 16} \quad (2)$$

where a and b are the lengths of the major and minor axes of the deformed droplet (ellipsoidal shape), respectively. Taylor predicted that the critical point at which the viscous force overcomes the interfacial force leading to droplet breakup occurs at Ca_c (critical capillary number for droplet breakup) ≈ 0.5 and Def_c (critical deformation) ≈ 0.5 for a steady simple shearing flow (or quasi-steady), if the flow rate is very slowly increased with a viscosity ratio of around unity. These basic predictions have been later confirmed by several experiments [Rumscheid and Mason (1961); Grace (1982); Bentley and Leal (1986); Guido and Villone (1998)]. These results show that for Newtonian fluids, droplet deformation and breakup are strongly influenced by viscosity ratio. In simple shearing flow, no breakup occurs when the viscosity ratio is higher than four [Grace (1982)]. For steady state shearing of an isolated Newtonian droplet in a Newtonian matrix, the critical capillary number at which breakup occurs is minimized when the viscosity ratio is around unity [Grace (1982)].

In typical polymer blends, the viscoelasticity and the shear-thinning effect of individual components are expected to affect the droplet deformation and breakup. Droplet deformation and breakup in immiscible blend systems when either one or both phase is viscoelastic fluid have been studied by several workers [Flumerfelt (1972); Elmendorp and Maalcke (1985); Wu (1987); Milliken and Leal (1991); Varanasi *et al.* (1994); Levitt *et al.* (1996); Mighri *et al.* (1997, 1998); Hobbie and Migler (1999); Migler (2000); Mighri and Huneault (2001); Tretheway and Leal (2001); Lerdwijitjarud

et al. (2003, 2004); Cherdhirankorn *et al.* (2004)]. There is a thorough review of the literature on the influence of elasticity on droplet deformation and breakup reported in the earlier works [Cherdhirankorn *et al.* (2004)]. The main finding is that droplet elasticity suppresses droplet deformation and breakup, and can cause droplet widening, possibly due to the existing normal stresses.

Nearly all experimental work on droplet deformation and breakup reported in the literature has been carried out on droplets in steady simple shearing flow. The deformation and breakup of droplets in oscillatory shear are rare. Wannaborworn and Mackley (2002) was the first pioneering work to observe and investigate the deformation and breakup of immiscible Newtonian drops with a viscosity ratio of unity under oscillatory shear. For moderate strains, the drop deformation parameters varied sinusoidally between the maximum and the non-zero minimum values. At large strains, the drops breakup occurred through the pattern of end-pinching.

In the present work, we carried out further a systematic investigation of the droplet deformation and breakup in oscillatory shear flows. The immiscible polymer blends used were Newtonian fluids and the Boger fluids without shear thinning. In particular, we are interested in the influence of the viscosity ratio; it may be expected that a lower viscosity ratio value would favor larger droplet deformation and subsequent breakup, whereas a very large value would lead to a droplet solid body translation. The influence of time scale ratio, the droplet relaxation in the blend over the imposed oscillatory time scale, should also be important factor to investigate. In the limit of small time scale ratio, the droplet is expected to be deformed in a quasi-equilibrium

state; on the other hand, the limit of large time scale ratio would lead to a droplet solid body translation, irrespective of viscosity ratio. Lastly, the effect of droplet elasticity is expected to suppress droplet deformation and breakup, for given viscosity and time scale ratios. One of our objectives is to observe droplet deformation versus Capillary number in both linear and nonlinear regimes under the influences of the three factors mentioned. Another objective is to observe various possible breakup patterns, and the factors that control the number of resultant daughter droplets. The last finding may serve as relevant and useful knowledge for the emulsion or immiscible polymer processing.

II. EXPERIMENTS

A. Materials

The materials used in this study were polydimethylsiloxanes, PDMS, with viscosity value of 30,000 centiStoke (Viscasil 30M) (donated by General Electric International Operations Company, Inc.) as the matrix phases and a polybutadiene, PBd, (Ricon 150, donated by Chemical Innovation) as the dispersed phase. The properties of the blend components are listed in Table I. High-molecular-weight polybutadiene (M_w ~841,000, M_w/M_n ~1.20 purchased from Fluka Chemical Corp.) was used as the high molecular weight polymer component additive for the Ricon 150 to make a "Boger" fluid [Boger and Binnington (1977)] with significantly higher elasticity but a slight shear thinning behavior. The polymer blend systems investigated are listed in Tables II, III, and IV.

B. Sample Preparation

PDMS's were used as received. Because of possible volatile components in PBd as received, it was vacuum dried at 50 °C until the volatile components were driven off and the weight loss discontinued. The elastic dispersed phases (for the blend systems B1 and B2 in Table IV) were prepared by completely dissolving a high molecular weight PBd into chloromethane. The solutions were mixed with small amounts of low molecular weight PBd at room temperature to obtain "Boger" fluids. The mixtures were left for five days to obtain homogenous solutions. The chloromethane and other volatile components were subsequently removed by vacuum drying at 50 °C.

C. Rheological Characterization

The storage modulus (G') and loss modulus (G'') of each blend component were measured by a cone and plate rheometer (Rheometrics Scientific, model ARES), with 25-mm plate diameter with cone angle of 0.04 rad. and a gap of 0.051 mm. Because of the difference in temperature dependences of the viscosities of PBd and PDMS, a proper choice of operating temperature permits a blend of equal viscosity value, or a desired viscosity ratio between the two components (or equivalently a desired ratio between the values of G'' at the frequency of interest). From the rheological properties of pure polymers at various temperatures, the desired pairs of polymers and operating temperatures were selected for further study. The rheological properties are

shown in Figures 1, 2, and 3. In our study, we chose blend systems A1, A2, and A3 at G'' ratios equal to 0.16, 1 and 3 at temperatures of 67, 33 and 20 °C, respectively. Since $G'' \gg G'$ at all frequencies and temperatures investigated, both components of the blend systems A1-A3 can be considered to be pure viscous fluids with nearly zero elasticity.

D. Observation of an Isolated Droplet in an Oscillatory Shearing Flow

1. Shearing Apparatus

To observe the droplets in an oscillatory shear flow, we used a flow cell (Linkam CSS 450, Linkam Scientific Instruments Ltd.) consisting of two transparent quartz parallel disks mounted on an optical microscope (Leica DMRPX, Leica Imaging Systems LTd.), and connected to a CCD camera (Cohu 4910, Cohu Inc.). The observation window is located at 68 mm from the center. The images taken were analyzed on a computer using the Scion image software (www.scioncorp.com). To obtain isolated droplets, the PDMS matrix phase was first loaded into the flow cell. The PBd dispersed phase was added at low concentrations, i.e less than 1% in order to form

isolated droplets, into the matrix phase by using a microsyringe. To avoid wall-induced migration effects, only droplets near the center of the gap were chosen.

2. *Droplet Shape Relaxation Time*

The samples were loaded into the flow cell, and the temperature was adjusted to obtain a preselected G'' ratio. We selected a droplet with an initial diameter of 200 ($\pm 10\%$) μm . We imposed step strains on the sample with magnitude 0.5-20% and shear rates of 1, 2 and 3 rad/s. The deformation of the isolated droplet after a step strain was recorded.

Using the optical microscope, the droplet images were captured only from the top view; the true lengths of the principle axes cannot be directly measured as the droplet was tipped in a direction normal to the viewing plane. However, the lengths of these axes can be determined by assuming an affine angle of rotation of the droplet in plane containing the flow and shear-gradient directions together with the condition of volume preservation, $D_o^3 = abc$ (Almusallam *et al.* (2000)). Although the lengths of the principle axes can be appropriated by using the method mentioned above, we adopt to use the apparent lengths of the observable axes (i.e., projected into the observation plane) to describe the behavior of each droplet. We thus define a modified deformation parameter Def^* as:

$$\text{Def}^* \equiv \frac{a^* - c}{a^* + c} \quad (3)$$

where a^* and c are major and minor axis of droplet images obtained from the top view.

A time series of the retracting droplet deformation parameter Def^* vs. time was computed, which has been found to decay exponentially as [Lucinia *et al.* (1997)]:

$$Def = Def_0 \exp\left(-\frac{t}{\tau}\right) \quad (4)$$

The characteristic relaxation time for a single isolated droplet (τ) can be derived from a semi-logarithmic plot of droplet deformation parameter versus relaxation time. The slope of the straight line was fitted to the data in the linear relaxation regime [Luciani *et al.* (1997), Mo *et al.* (2000), Xing *et al.* (2000)]. By equating this characteristic relaxation time to that predicted by the Palierne model (Eq.3) [Palierne (1990) and Graebling *et al.* (1993)], the interfacial tension was then calculated from the following relation:

$$\tau = \frac{(3 + 2\eta_r)(16 + 19\eta_r)r_o\eta_{m,o}}{40(1 + \eta_r)\Gamma} \quad (5)$$

where $\eta_r = \eta_d/\eta_m$ is the ratio between the dispersed phase viscosity and the matrix phase viscosity, Γ is the interfacial tension and r_o is the radius of the spherical drop. Two hundred to three hundred images were typically recorded (ten to twenty frames per second) while the droplet relaxed from the deformed shape to its original spherical shape.

3. Oscillatory Deformation

As before, a sample was loaded and the operating temperature and the size of the droplet were chosen. The shearing mode was sinusoidal oscillatory. The Linkham device, which has one stationary and one moving plate, typically causes the droplet to move back and forth. Before we started each experiment, the drop was allowed to relax until it retained a spherical shape. Appropriate strain and frequency were then chosen and applied.

We define the characteristic time scale ratio (τ_r) as the characteristic relaxation time scale (τ_{rel}) divided by the oscillatory time ($\tau_{osc} = 1/f$, with f in Hertz), and we use it to describe the ability of droplet to relax its shape under an oscillatory shear flow at various frequencies. For the system A2, with a viscosity ratio equal to one, we considered τ_r values of 0.15, 0.45, and 0.79, corresponding to oscillating frequencies of $f = 0.1, 0.3$, and 0.52 Hz, respectively. For a given frequency, we increased the strain amplitude until we could no longer capture all images during a droplet deformation cycle. In each experiment, 600-700 images were recorded; for each period of deformation the number of captured images was equal to or greater than 32 in order to track the deformation time series in detail.

III. RESULTS AND DISCUSSION

A. Rheological Characterization

Figures 1 and 2 show the storage modulus (G') and the loss modulus (G'') of blend components, respectively. The data indicate that the rheological responses of the

two polymers are in the terminal zone over the frequency range studied (up to 100 s^{-1}) since the slope of G' is approximately equal to two and the slope of G'' is approximately equal to one on the log-log plots. Polydimethylsiloxane has a lower temperature-dependent viscosity than does polybutadiene, allowing us to obtain the desired ratios of G' or G'' values for one component relative to the other by adjusting the operating temperature. Alternatively, we can vary the G' and G'' ratios by using different molecular weights without changing the temperature. However, this later method is more time consuming and it is difficult to obtain the desired ratios and thus it was not employed in our work. The values of the G' and G'' ratios used are shown in Figure 3.

In most of our experiments, the working fluids were highly viscous so G'' ratio is more relevant than the G' ratio. In the experiment on the effect of viscosity ratio, G'' ratio was equal to 0.16, 1 and 3 at 67°C , 33°C and 20°C (Table II). For the 0.02% high Mw PBd solⁿ and the 0.05% high Mw PBd solⁿ, G'' ratio was equal to 1 at 27°C and 25°C respectively, at all frequencies examined (Table IV).

B. Relaxation Experiment

The relaxation time scale of each blend studied was obtained from a step strain experiment. The values of interfacial tension values obtained were $3.85 \times 10^{-3}\text{ N/m}$, $3.90 \times 10^{-3}\text{ N/m}$, and $3.94 \times 10^{-3}\text{ N/m}$, with the characteristic relaxation times equal to 0.5 sec., 1.5 sec. and 3.6 sec. for G'' , ratio equal to 0.16, 1 and 3, corresponding to temperatures of 67°C , 33°C , and 20°C , respectively. For the 0.02% high Mw PBd solⁿ and the 0.05% high Mw PBd solⁿ, the interfacial tension values were equal to 3.94×10^{-3}

N/m and 4.09×10^{-3} N/m with the characteristic relaxation times equal to 1.8 and 1.7 sec, respectively.

C. Oscillatory Shear Experiment

In oscillatory shear, there are several parameters that can be grouped into dimensionless groups; namely the Capillary Number (Ca_m), Reynolds number (Re_{osc}), the time scale ratio (τ_r), and the Weissenberg number. Ca_m and Re are defined as:

$$Ca_m = \frac{G_m''(\omega) \gamma d}{\Gamma} \quad (6)$$

$$Re_{osc} = \frac{\rho_d \omega^2 d^2}{G_d''(\omega)} \quad (7)$$

where γ is the strain amplitude imposed on the blends, d is the diameter of the droplet, $G_m''(\omega)$ is the loss modulus of the matrix phase, $G_d''(\omega)$ is the loss modulus of the dispersed phase, ρ_d is the density of the dispersed phase, and Γ is the interfacial tension between two polymers. In all experiments here, the Reynolds number is very small, less than 10^{-5} , and so inertial force is negligible. The time scale ratio is defined as:

$$\tau_r = \tau_{rel}/\tau_{osc} \quad (8)$$

where τ_{rel} is the relaxation time obtained from the relaxation experiment. τ_{osc} is the period of oscillation, $\tau_{osc} = 1/f$, where f is the oscillation frequency used.

The Weissenberg number, which is a dimensionless number used in the study in viscoelastic flows, is defined here as the ratio between the dispersed phase elasticity and the matrix phase shear stress at a particular shear rate:

$$Wi_d = 2G'_d(\omega)/G''_m(\omega)\gamma \quad (9)$$

The values of the Weissenberg number of our blend systems investigated are shown in Tables II, III, and IV: system A1 ($G''_r = 0.16$, $\tau_r = 0.17$), $Wi_d = 0.0006-0.006$; system A2 ($G''_r = 1$, $\tau_r = 0.15$), $Wi_d = 0.0034-0.034$; system A2 ($G''_r = 1$, $\tau_r = 0.45$), $Wi_d = 0.0045-0.045$; system A2 ($G''_r = 1$, $\tau_r = 0.79$), $Wi_d = 0.0057-0.057$; system A3 ($G''_r = 3.0$, $\tau_r = 0.14$), $Wi_d = 0.0092-0.092$; system B1 (0.02%high M_w PBd solⁿ, $G''_r = 1$, $\tau_r = 0.18$), $Wi_d = 0.006-0.068$; and system B2 (0.05%high M_w PBd solⁿ, $G''_r = 1$, $\tau_r = 0.15$), $Wi_d = 0.018-0.186$.

We divide our experimental work into 3 parts: the effects of the viscosity ratio, of Deborah number (or time scale ratio), and of elasticity ratio.

Figure 4 shows optical micrographs of a droplet under oscillatory deformation: $G''_r = 1$, $Ca_m = 0.6$, $Re_{osc} = 2 \times 10^{-8}$, and $\tau_r = 0.15$. The drop size was 200 μm . The droplet can be seen to stretch along the flow direction, to retract to its original value, to stretch again, and finally to retract back when the cycle is complete. We may note that droplet deformation in an oscillatory shear is distinct from that in steady shear due to the combination of the cyclic droplet rotation and the periodic changes in shear direction and amplitude.

Figure 5 shows the deformation amplitudes, a^* , c , and Def^* vs time for the droplet of Figure 4. We can see clearly that there is a period of an initial transient deformation, lasting about 8 seconds, prior to attainment of the final steady state oscillatory deformation. In the final steady state, we can define the deformation

amplitudes δa^* , δc , and δDef^* as one half of the differences between the maximum and the minimum values of the corresponding deformation parameters: a^* , c , and Def^* , respectively.

Figures 6a, 6b, and 6c show the steady state deformation amplitudes δa^* , δc , and δDef^* vs. Ca_m of the three blend systems A1, A2, and A3: $G''_r = 0.16, 1.0$ and 3.0 . In these experiments, the oscillatory frequencies were chosen to be 0.35 Hz, 0.1 Hz, and 0.04 Hz, respectively, so that the corresponding time scale ratios are nearly the same value, i.e. $0.14 - 0.17$. Ca_m was varied by varying strain amplitude up to the value in which all images in a cycle can be taken. Droplet sizes were ~ 200 μm . We can see that, for a given Ca_m , Def^* is greater for a droplet with a smaller G'' ratio (or viscosity ratio). This implies that droplet viscosity resists droplet oscillatory deformation, a similar finding to that of the steady state shear flow. In Figure 6c, we may note that the relation between Def^* and Ca_m is linear when the G'' ratio (or viscosity ratio) is 0.16 or 1.0 . This may stem from the fact that for these two blends variations in Ca_m were small, below 1.2 . On the other hand, for the blend of G'' ratio equal to 3.0 , the relation between Def^* and Ca_m is nonlinear. We also note that the deformation frequency, f_{def} , the inverse of the period of δa^* , δc , or δDef^* of these blends, are nearly the same as the excitation frequency, f_{osc} , for the ranges of Ca_m examined. The departure from linearity occurs through the amplitudes first.

Figure 7a, 7b and 7c show the deformation amplitudes δa^* , δc , and δDef^* vs. Ca_m of the blend system A2 at various time scale ratios: $\tau_r = 0.15, 0.45$, and 0.79 . The corresponding G''_r was fixed and equal to one. We can see that, for a given Ca_m , Def^* is

greater for a droplet with a smaller time scale ratio τ_r . A smaller time scale ratio means that droplet relaxes very fast relative to the deformation time scale so the droplet tends to be close to its equilibrium shape of a particular shear strain rate at any instants of time. On the other hand, when the time scale ratio is much greater than unity, the droplet cannot adjust its shape fast enough to attain the equilibrium shapes. In the limit of τ_r approaches infinity, we would expect Def^* to attain its asymptotically low value in which Def^* becomes independent of Ca_m and a 'frustrated' deformation state is attained.

Figures 8a, 8b and 8c show the amplitudes of the deformation parameters δa^* , δc , and δDef^* vs. Ca_m of three systems (Table IV): no elasticity, system A2; 0.02% high M_w PBd solⁿ, system B1; and 0.05% high M_w PBd solⁿ, system B2. G''_r were fixed at 1.0, and the variation in time scale ratios was relatively small, i.e. 0.15 – 0.18. The corresponding oscillatory frequencies were then 0.1 Hz for the zero-elasticity system, 0.099 Hz for the 0.02% high M_w PBd solⁿ and 0.087 Hz for the 0.05% high M_w PBd solⁿ. We can observe from these figures that at small values of Ca_m , below 0.4, the amplitudes of the deformation parameters of the three systems are nearly the same. At $\text{Ca}_m > 0.4$, the non-elastic droplet deforms more than do the more elastic droplets at the same Ca_m . This implies that droplet elasticity resists droplet deformation.

Figures 9 and 10 show photographs of droplet breakup under oscillatory shear for system A1 (Table II, $G'' = 0.16$) at oscillatory frequencies of 0.05 Hz and 0.3 Hz, and the corresponding time scale ratios of 0.019 and 0.114, respectively for the chosen droplet size of $\sim 150 \mu\text{m}$. In Figure 9, at an oscillatory frequency equal to 0.05 Hz and time scale ratio of 0.019, the drop was observed to stretch along the flow direction. As

the amplitude of oscillation was increased further, the drop progressively deformed further and at the critical condition, the usual dumbbell shape leading to breakup was observed. The drop broke into two nearly equal parts, as shown in Fig. 9. This is a droplet breakup pattern presumably under its quasi-equilibrium state. In Figure 10, for a droplet of system A1 (Table I, $G'' = 0.16$) with oscillatory frequency of 0.30 Hz and time scale ratio of 0.114, the breakup pattern now assumes the end-pinching type. The obvious quantitative difference is that now there are four daughter droplets resulting from the breakup. The number of daughter droplets appears to increase with the time scale ratio. We also note that the numbers of cycle required for breakup to occur are approximately 1 and 48 for droplets of system A1 with time scale ratios of 0.019 and 0.114, respectively. Our results should be compared with those of Wannaborworn *et al.* [2000] in which they observed droplet breakup pattern to be end-pinching type along with many daughter drops for their system with G'' equal to one. Our experimental data of droplet breakup of system A2 (G' , equal to one) also confirm their findings; we found end-pinching patterns, and in addition, along with more daughter droplets as time scale ratio increases.

Figure 11 shows the critical capillary number vs. time scale ratio for system A1, with $G''_r = 0.16$. The droplet size was $\sim 150 \mu\text{m}$. We can see that the critical Ca_m increases linearly with the time scale ratio: its intercept value at zero time scale ratio is approximately one. Finally, we may note that we were unable to observe drop breakup for system B2 with our present apparatus and experimental conditions allowed.

IV. CONCLUSIONS

From experimental measurements of droplet deformation in oscillatory shear, we have investigated the effects of viscosity ratio, time scale ratio, and elasticity on the Newtonian and Boger droplet deformation and breakup. The oscillatory amplitudes decrease with viscosity ratio, time scale ratio and the droplet elasticity. Droplet viscosity and elasticity impede oscillatory deformation. At low time scale ratio, droplet deformation varies with time under quasi-equilibrium state; for large time scale ratio, the visually apparent deformation can be referred to be in a frustrated state. The number of resultant daughter drops and the number of cycle required for breakup to occur increase with time scale ratio. The critical Ca_m increases linearly with time scale ratio. The breakup pattern changes from the dumbbell type to end-pinching with increasing time scale ratio.

ACKNOWLEDGEMENTS

The authors would like to thank General Electric International Operations Company Inc. for supplying polydimethylsiloxane (viscasil 30M), Chemical Innovation for supplying low molecular weight polybutadiene (Ricon 150). AS would like to acknowledge the funding from TRF, grant no. BRG4680015, and the funding from Conductive and Electroactive Research Unit, Chulalongkorn University. WL would like to thank Faculty of Engineering and Industrial Technology, Silpakorn University for partly supporting the research utility. We also would like to thank Professor Ronald G. Larson for his kind helps in preparing this manuscript.

REFERENCES

1. Almusallam A. S., R. G. Larson, and M. J. Solomon, "A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends", *J. Rheol* **44**, 1055-1083 (2000).
2. Bentley, B.J., and L. G. Leal, "An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows," *J. Fluid Mech.*, **167**, 241-283 (1986).
3. Boger, D. V. and R. J. Binnington, "Separation of elastic and shear thinning effects in the capillary rheometer", *Trans. Soc. Rheol.* **21**, 515-534 (1977).
4. Cherdhirankorn T., W. Lerdwijitjarud, A. Sirivat, and R. G. Larson, "Dynamics of Vorticity Stretching and Breakup of Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix" *Rheologica Acta* **43**, 246-256 (2004).
5. Elmendorp, J. J. and R. J. Maalcke, "A study on polymer blending microrheology: Part 1", *Polym Eng. Sci.* **25**, 1041-1047 (1985).
6. Flumerfelt, R. W. "Drop breakup in simple shear fields of viscoelastic fluids", *Ind. Eng. Chem. Fundam.*, **11**, 312-318 (1972).
7. Grace, H. P., "Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems", *Chem. Eng. Commun.* **14**, 225-277 (1982).

8. Graebling, D., R. Muller, and J. F. Palierne, "Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids", *Macromolecules* **26**, 320-329 (1993).
9. Guido, S., and M. Villone, "Three-dimensional shape of a drop under simple shear flow", *J. Rheol.* **42**, 395-415 (1998).
10. Hobbie, E. K. and K. B. Migler, "Vorticity elongation in polymeric emulsions," *Phys. Rev. Lett.* **82**, 5393-5396 (1999).
11. Lerdwijitjarud, W., R. G. Larson, and A. Sirivat, "Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/Poly(dimethylsiloxane) blends," *J. Rheol.* **47**, 37-57 (2003).
12. Lerdwijitjarud, W., A. Sirivat, and R. G. Larson, "Influence of dispersed-phase elasticity on steady state deformation and breakup of droplets in simple shearing flow of immiscible polymer blends," *J. Rheol.* **48**, 843-862 (2004).
13. Levitt, L., C. W. Macosko and S. D. Pearson, "Influence of normal stress difference on polymer drop deformation", *Polym. Eng. Sci.* **36**, 1647-1655 (1996).
14. Luciani, A., M. F. Champagne, L. A. Utracki, "Interfacial tension coefficient from the retraction of ellipsoidal drops", *J. Polym. Sci. Pol. Phys.* **35**, 1393-1403 (1997).
15. Mighri, F., A. Ajji, and P. J. Carreau, "Influence of elastic properties on drop deformation in elongational flow", *J. Rheol.* **41**, 1183-1201 (1997).
16. Mighri, F., P. J. Carreau, and A. Ajji, "Influence of elastic properties on drop deformation and breakup in shear flow" *J. Rheol.* **42**, 1477-1490 (1998).

17. Mighri, F. and M. A. Huneault, "Dispersion visualization of model fluids in a transparent Couette flow cell," *J. Rheol.* **45**, 783-797 (2001).
18. Migler, K. B., "Droplet vorticity alignment on model polymer blends," *J. Rheol.* **44**, 277-290 (2000).
19. Milliken, W. J., and L. G. Leal, "Deformation and breakup of viscoelastic drops in planar extensional flows", *J. Non-Newtonian Fluid Mech.* **40**, 355-379 (1991).
20. Mo, H., C. Zhou, and W. Yu, "A new method to determine interfacial tension from the retraction of ellipsoidal drops", *J. Non-Newtonian Fluid Mech.* **91**, 221-232 (2000).
21. Palierne, J. F., "Linear rheology of viscoelastic emulsions with interfacial tension", *Rheol. Acta* **29**, 204-214 (1990).
22. Rumscheidt, F. D., and S. G. Mason, "Particle Motions in Sheared Suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow", *J. Coll. Sci.* **16**, 238-261 (1961).
23. Taylor, G. I., "The viscosity of a fluid containing small drops of another fluid", *Proc. R. Soc. London, Ser. A* **138**, 41-48 (1932).
24. Taylor, G. I., "The formation of emulsions in definable fields of flow", *Proc. R. Soc. London, Ser. A* **146**, 501-523 (1934).
25. Tretheway D. C., and L. G. Leal, "Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid" *J. Non-Newtonian Fluid Mech.* **99**, 81-108 (2001).

26. Varanasi, P. P., M. E. Ryan, and P. Stroeve, "Experimental study on the breakup of model viscoelastic drops in uniform shear flow", *Ind. Eng. Chem. Res.* **33**, 1858-1866 (1994).
27. Wannaborworn S., M. R. Mackley, and Y. Renardy, "Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear," *J. Rheol.* **46**, 1279-1293 (2002).
28. Wu, S., "Formation of Dispersed phase in incompatible polymer blends-interfacial and rheological effects." *Polym. Eng. Sci.* **27**, 335-343 (1987).
29. Xing, P., M. Bousmina, and D. Rodrigue, "Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6", *Macromolecules* **33**, 8020-8034 (2000).

TABLES**Table I** Polymers used

Polymers	Suppliers	M _n	Specific gravity
Low M _w PBd	General Electric International Operations Company Inc.	3,900	0.89
High M _w PBd	Aldrich Chemical Company, Inc.	702,000	1.2
PDMS	Chemical Innovation	91,700	0.976

Table II Effect of viscosity ratio

Blend systems	Blend components	T (°C)	Γ (mN/m)	G ^{''} _r	Wi _d	f (Hz)	τ _{rel} (sec)	τ _{osc} (sec)	Time scale ratio (τ _r)
A1	PBd/PDMS	67	3.85	0.16	0.0006-0.006	0.35	0.5	2.86	0.17
A2	PBd/PDMS	33	3.90	1.0	0.0034-0.034	0.1	1.5	10.0	0.15
A3	PBd/PDMS	20	3.94	3.0	0.0092-0.092	0.04	3.6	25.0	0.14

Table III Effect of time scale ratio ($\tau_r = \tau_{rel}/\tau_{osc}$)

Blend system	T (°C)	Γ (mN/m)	G'' _r	W _{id}	f (Hz)	τ _{rel} (sec)	τ _{osc} (sec)	Time scale ratio (τ _r)
A2	33	3.90	1.0	0.0034-0.034	0.10	1.5	10.0	0.15
A2	33	3.90	1.0	0.0045-0.045	0.30	1.5	3.33	0.45
A2	33	3.90	1.0	0.0057-0.057	0.52	1.5	1.90	0.79

Table IV Effect of elasticity ratio

Blend system	Blend Components	T (°C)	Γ (mN/m)	G'' _r	W _{id}	f (Hz)	τ _{rel} (sec)	τ _{osc} (sec)	Time scale ratio (τ _r)
A2	PBd /PDMS	33	3.90	1.0	0.0034-0.034	0.1	1.5	10.0	0.15
B1	0.02% High PBd Sol ⁿ /PDMS	27	3.94	1.0	0.006-0.068	0.099	1.8	10.1	0.18
B2	0.05% High PBd Sol ⁿ /PDMS	25	4.09	1.0	0.018-0.186	0.087	1.7	11.5	0.15

FIGURE CAPTIONS

Figure 1 G' vs. frequency at various temperatures:

(a) dispersed phases (pure PBd, 0.02% high M_w PBd solⁿ and 0.05% high M_w PBd solⁿ) strain = 80% at frequency 0.1-1 rad/s, strain = 20 % at frequency 1-100 rad/s; (b) matrix phases (PDMS 30M) strain = 80% at frequency 0.1-1 rad/s, strain = 20 % at frequency 1-100 rad/s.

Figure 2 G'' vs. frequency at various temperatures:

(a) dispersed phases (pure PBd, 0.02% high M_w PBd solⁿ and 0.05% high M_w PBd solⁿ) strain = 80% at frequency 0.1-1 rad/s, strain = 20 % at frequency 1-100 rad/s ;(b) matrix phases (PDMS 30M) strain = 80% at frequency 0.1-1 rad/s, strain = 20 % at frequency 1-100 rad/s.

Figure 3 (a) G'_r at various temperatures, (b) G''_r at various temperatures.

Figure 4 Droplet deformation of blend system A2 at various times in one cycle at strain = 70 %, frequency = 0.1 Hz, $G''_r = 1$, $\tau_r = 0.15$, $T = 33$ °C, $Wi_d = 0.0238$, $d_o \sim 200$ μm and gap 2,200 μm .

Figure 5 Deformation parameters vs. time of blend system A2 at strain = 70%, frequency = 0.1 Hz, $\tau_r = 0.15$, $G''_r = 1$, $d_o = 200 \mu\text{m}$, gap = 2200 μm : a) a^* vs. time; b) c vs. time; c) Def^* vs. time.

Figure 6 Amplitude of deformation parameters vs. Ca_m at $d_o \sim 200 \mu\text{m}$, gap = 2,200 μm : system A1, $\tau_r = 0.17$, $T = 67^\circ\text{C}$, $G''_r = 0.16$, $G'_r = 0.12$, $\text{Re}_{\text{osc}} = 7.36 \cdot 10^6$; system A2, $\tau_r = 0.15$, $T = 33^\circ\text{C}$, $G''_r = 1.0$, $G'_r = 1.0$, $\text{Re}_{\text{osc}} = 6.081 \cdot 10^8$; system A3, $\tau_r = 0.14$, $T = 20^\circ\text{C}$, $G''_r = 3.0$, $G'_r = 3.0$, $\text{Re}_{\text{osc}} = 2.65 \cdot 10^{10}$, distance of drop from the center of plate $\sim 6.8 \text{ mm}$. a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; c) δDef^* vs. Ca_m .

Figure 7 Amplitudes of deformation parameters vs. Ca_m of system A2 at $T = 33^\circ\text{C}$, $d_o = 200 \mu\text{m}$, gap = 2,200 μm : frequency = 0.1 Hz, $\tau_r = 0.15$; frequency = 0.3 Hz, $\tau_r = 0.45$; frequency = 0.5 Hz, $\tau_r = 0.79$, distance of drop from the center of plate $\sim 6.8 \text{ mm}$. a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; c) δDef^* vs. Ca_m .

Figure 8 Amplitudes of deformation parameters vs. Ca_m at $G''_r = 1$, $d_o \sim 200 \mu\text{m}$, gap = 2200 μm : system A2 (PBd/PDMS), $\tau_r = 0.15$, $T = 33^\circ\text{C}$, frequency = 0.1 Hz; system B1 (0.02 % high Mw PBd sol⁰/PDMS), $\tau_r = 0.18$, $T = 27^\circ\text{C}$, frequency = 0.099 Hz; and system B2 (0.05% high Mw PBd sol⁰/PDMS), $\tau_r = 0.15$, $T = 25^\circ\text{C}$, frequency = 0.1 Hz. a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; c) δDef^* vs. Ca_m .

Figure 9 Droplet breakup of system A1, $G''_r = 0.16$, at strain amplitude of 558 %, $Ca_c = 1.5$, frequency = 0.05 Hz, $\tau_r = 0.019$, $T = 67^\circ C$, $d_o \sim 150 \mu m$ and gap 2,200 μm .

Figure 10 Droplet breakup of system A1, $G''_r = 0.16$, at strain amplitude of 490 %, $Ca_c = 4.1$, frequency = 0.30 Hz, $\tau_r = 0.114$, $T = 67^\circ C$, $d_o \sim 150 \mu m$ and gap 2,200 μm .

Figure 11 Critical capillary number vs. τ_r of system A1 (PBd/PDMS) at $T = 67^\circ C$, $G''_r = 0.16$ $d_o \approx 150 \mu m$, gap = 2,200 μm .

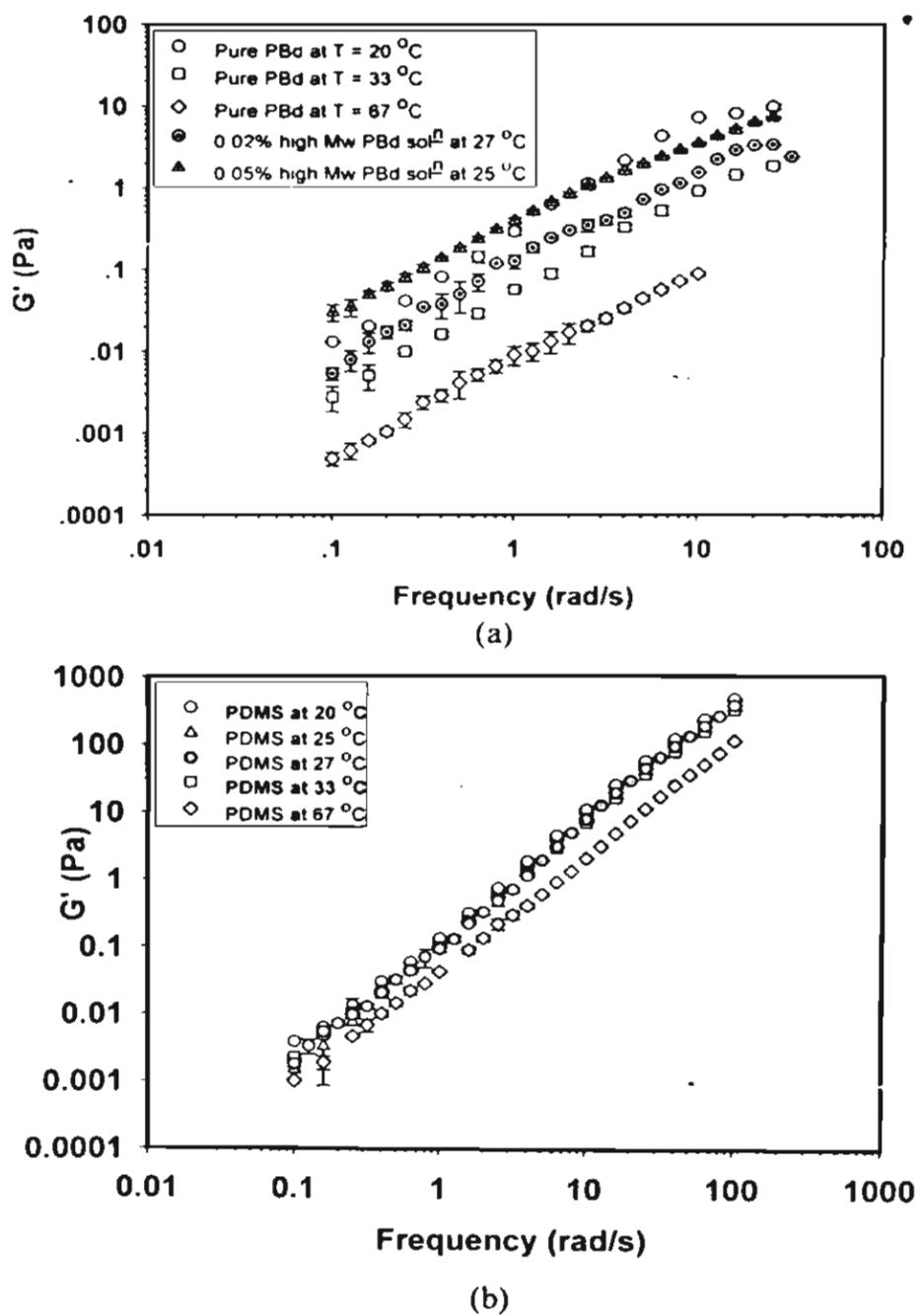


Figure 1

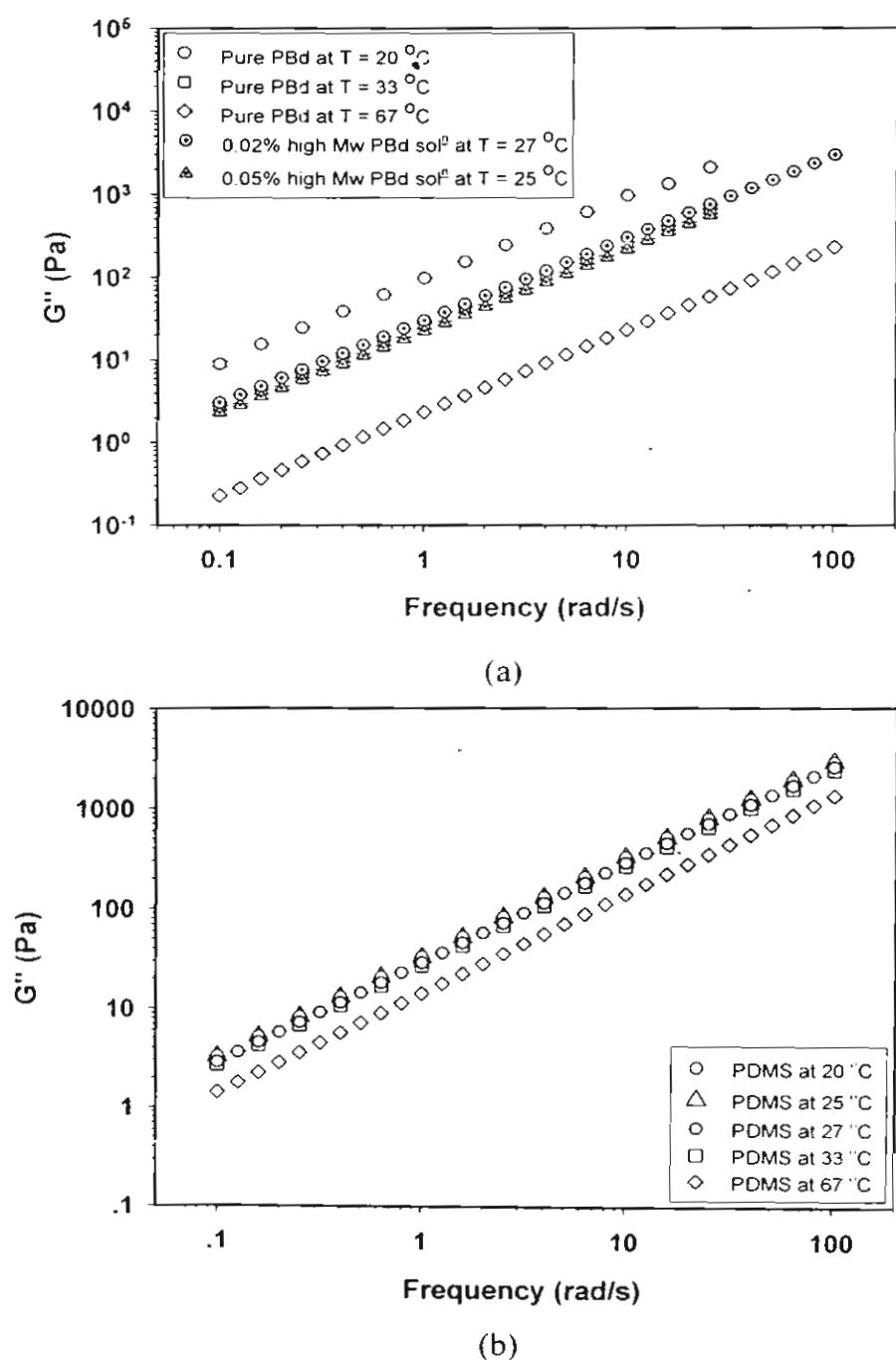


Figure 2

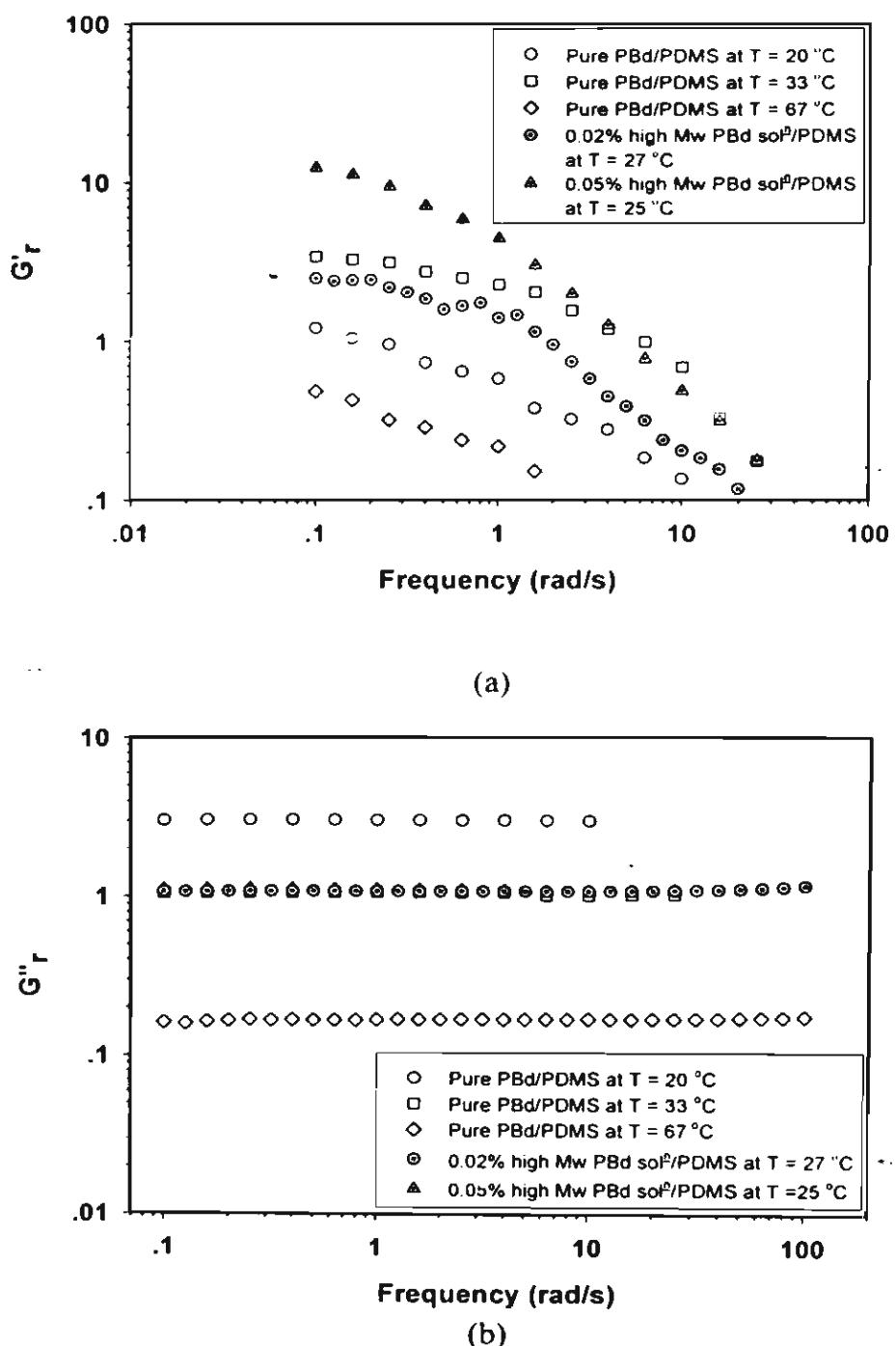


Figure 3

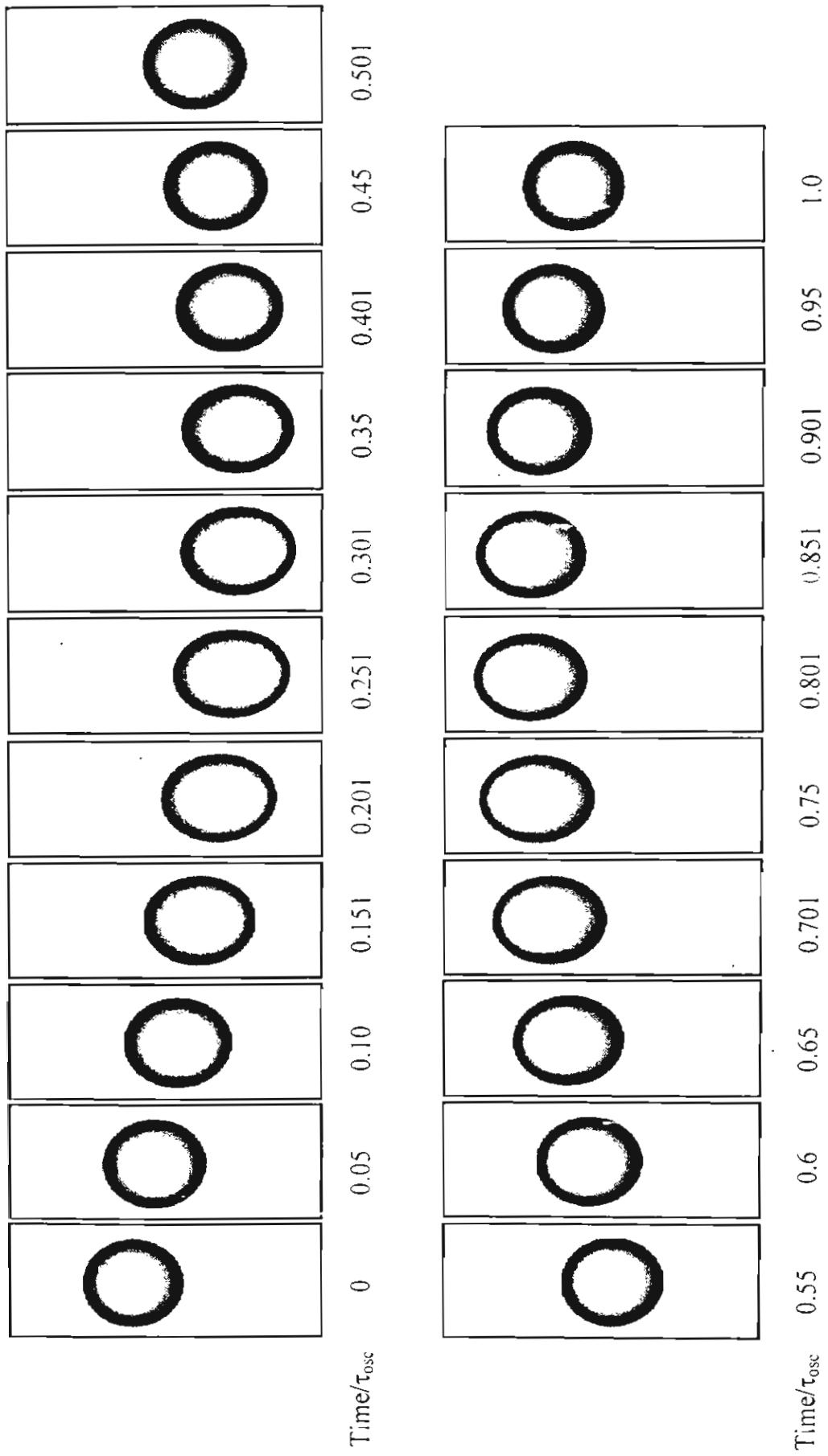
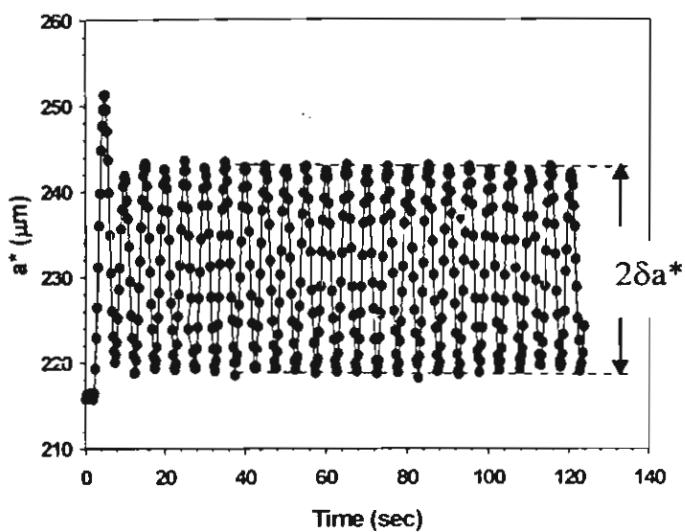
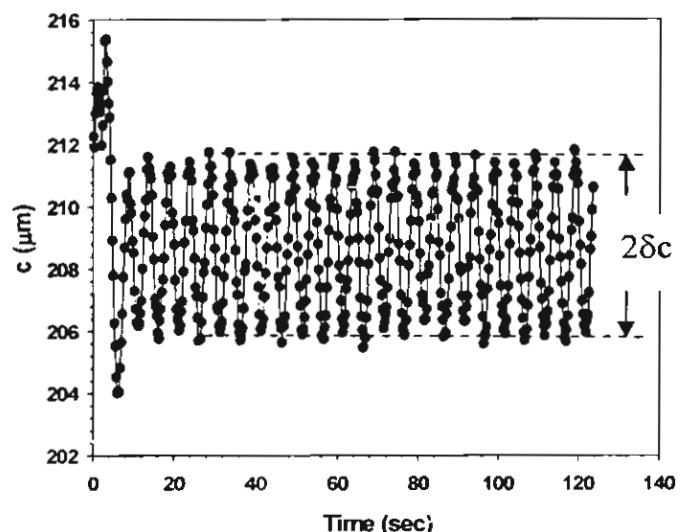


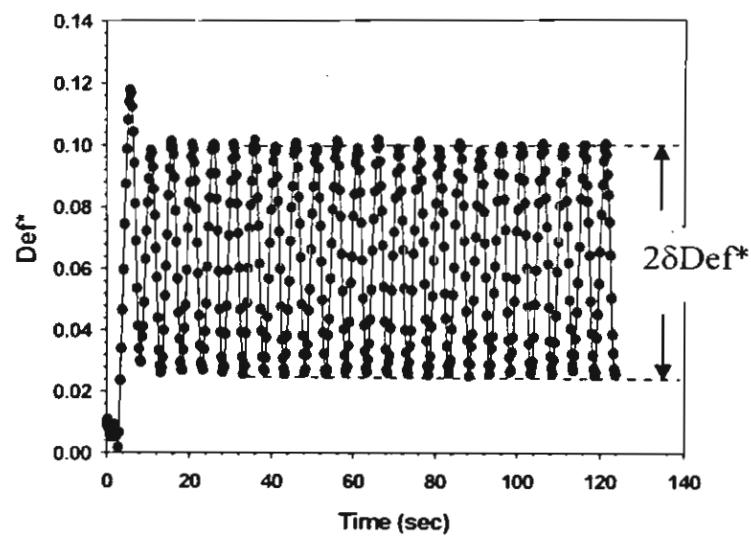
Figure 4



(a)



(b)



(c)

Figure 5

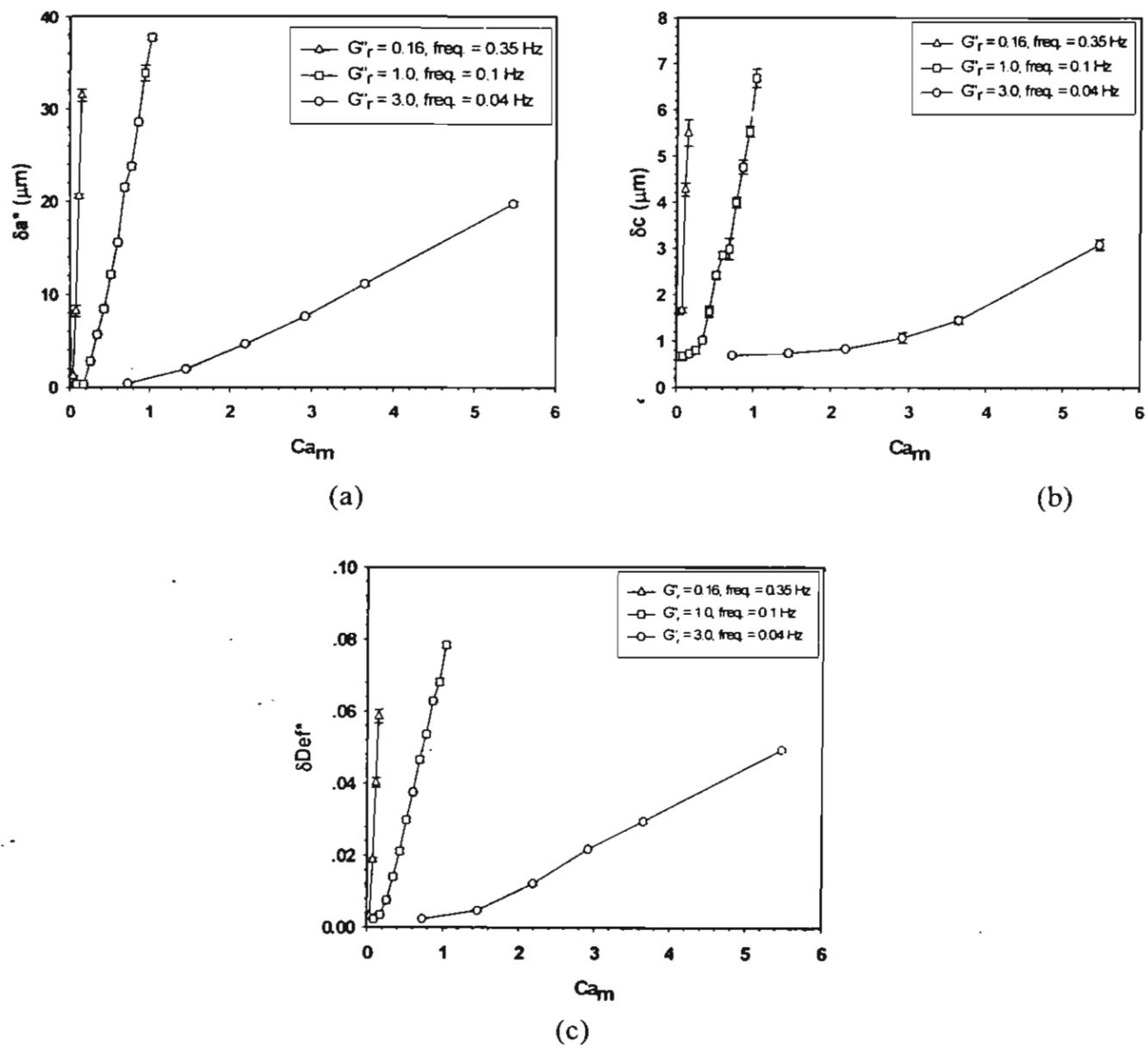


Figure 6

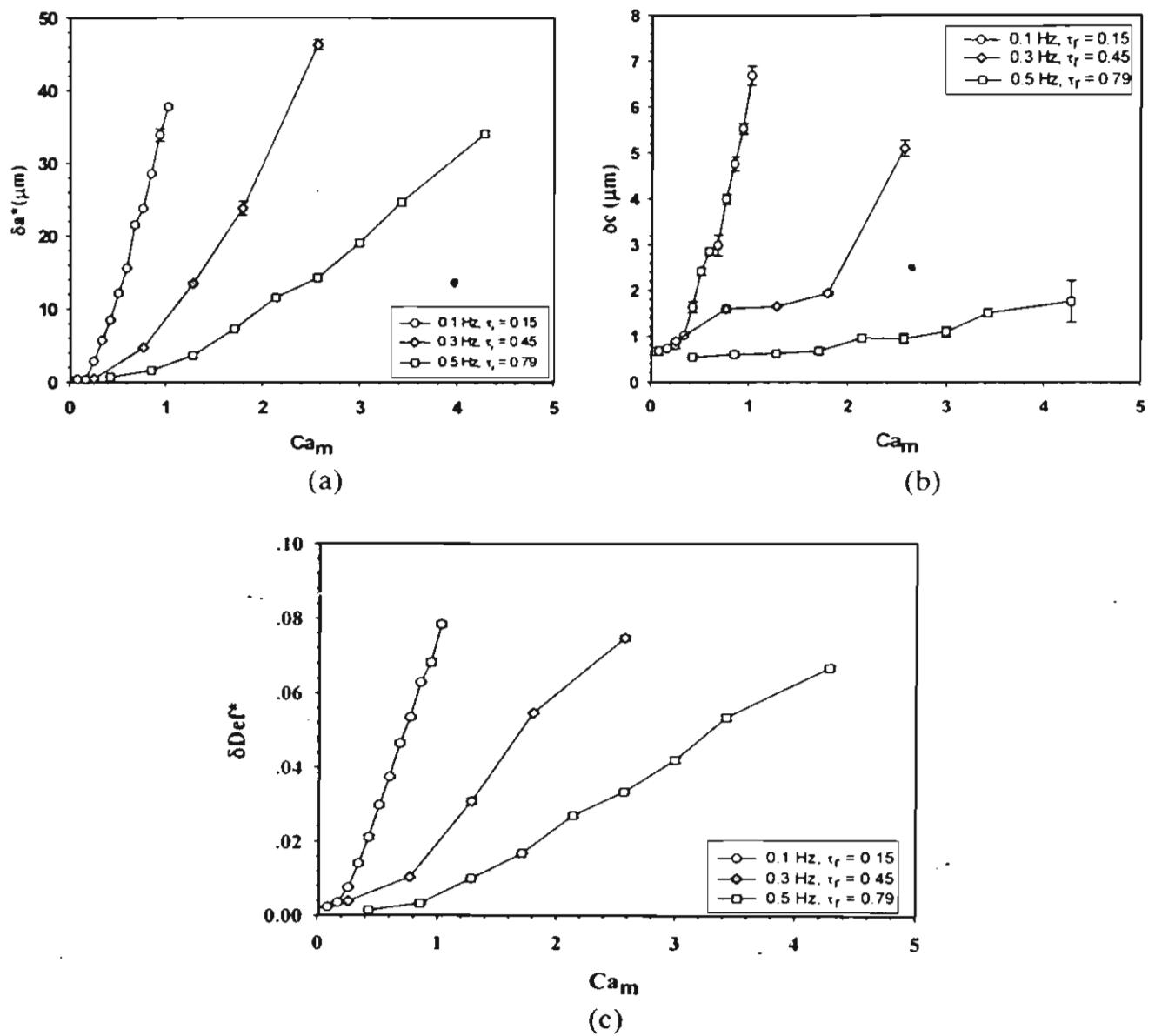


Figure 7

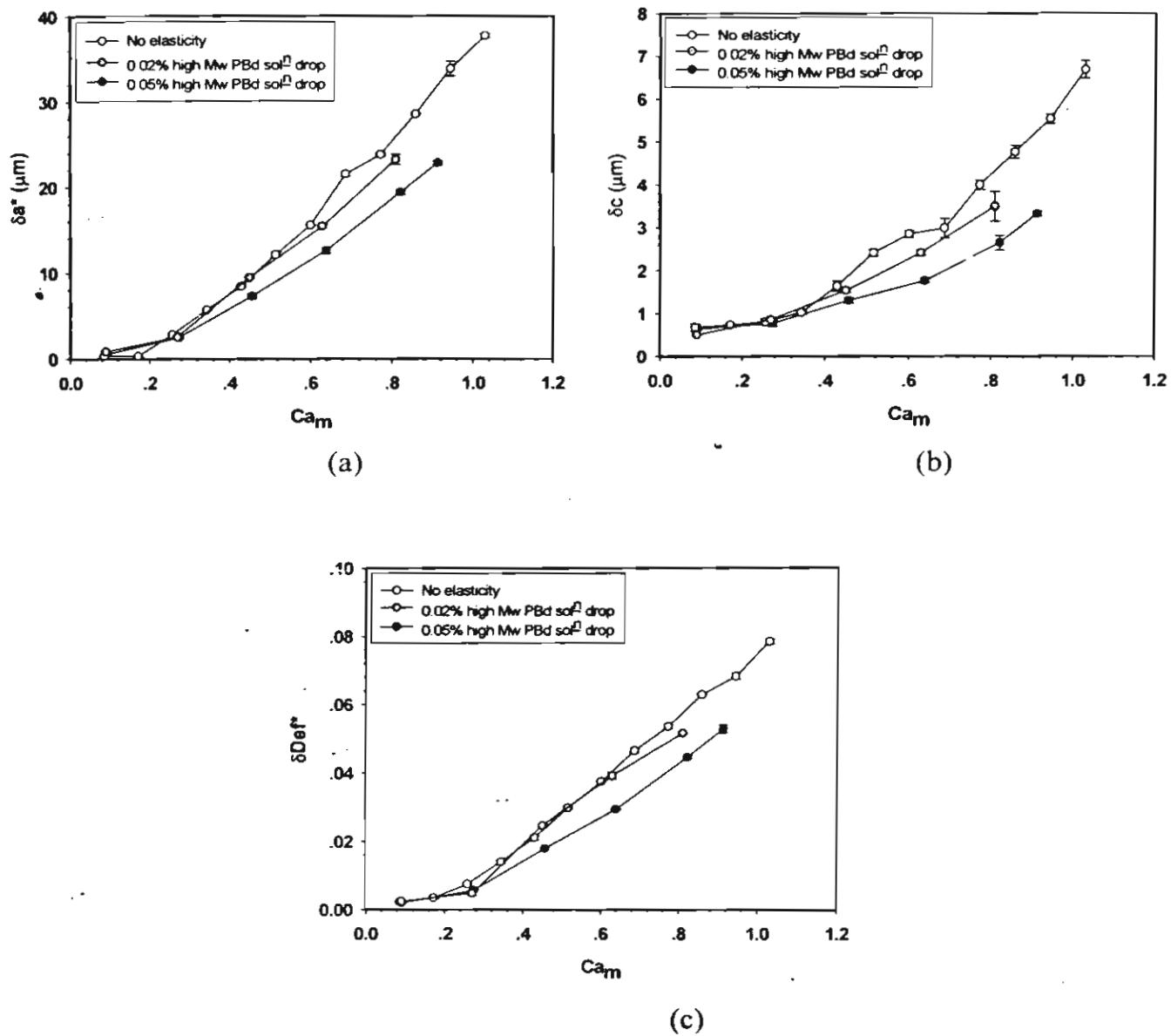


Figure 8

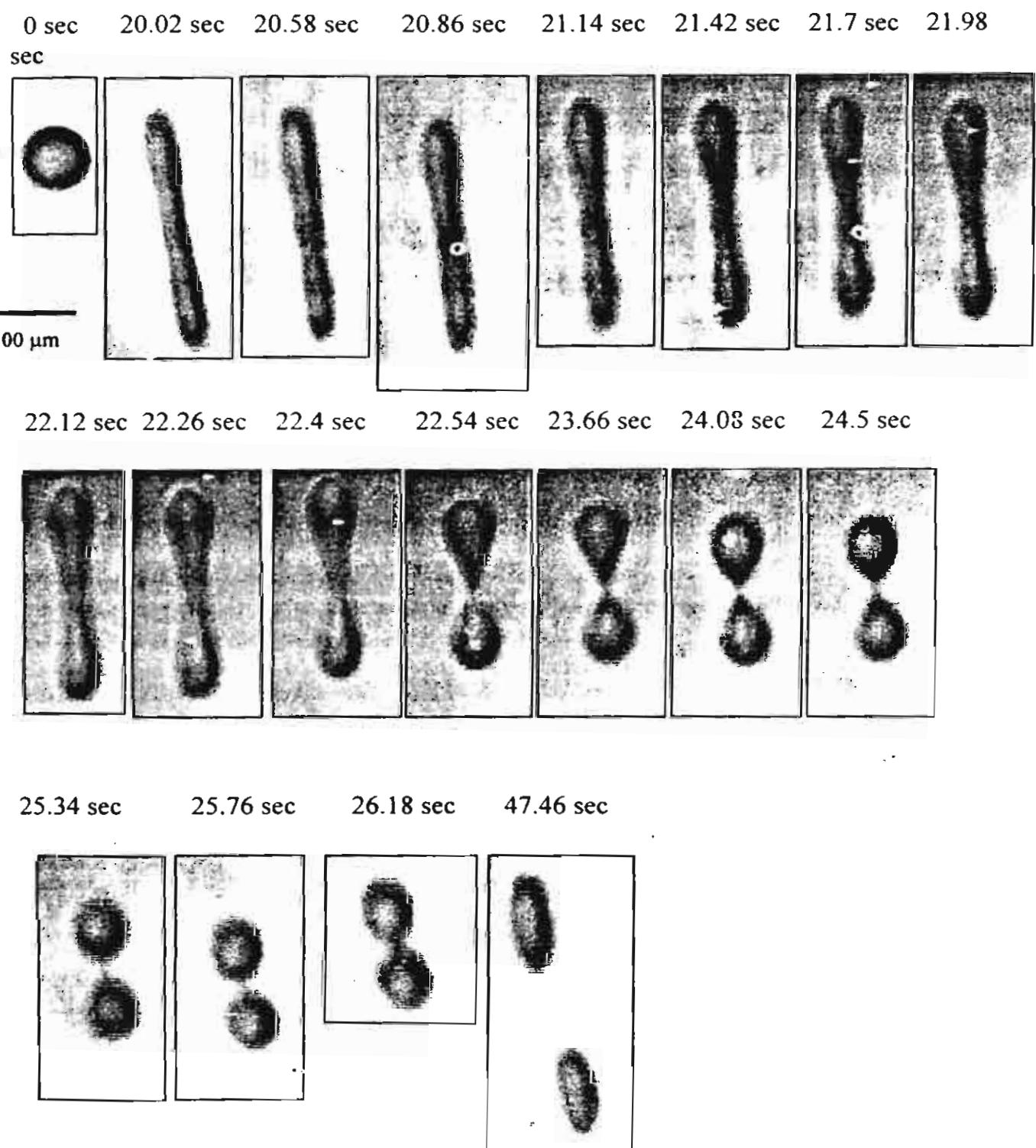


Figure 9

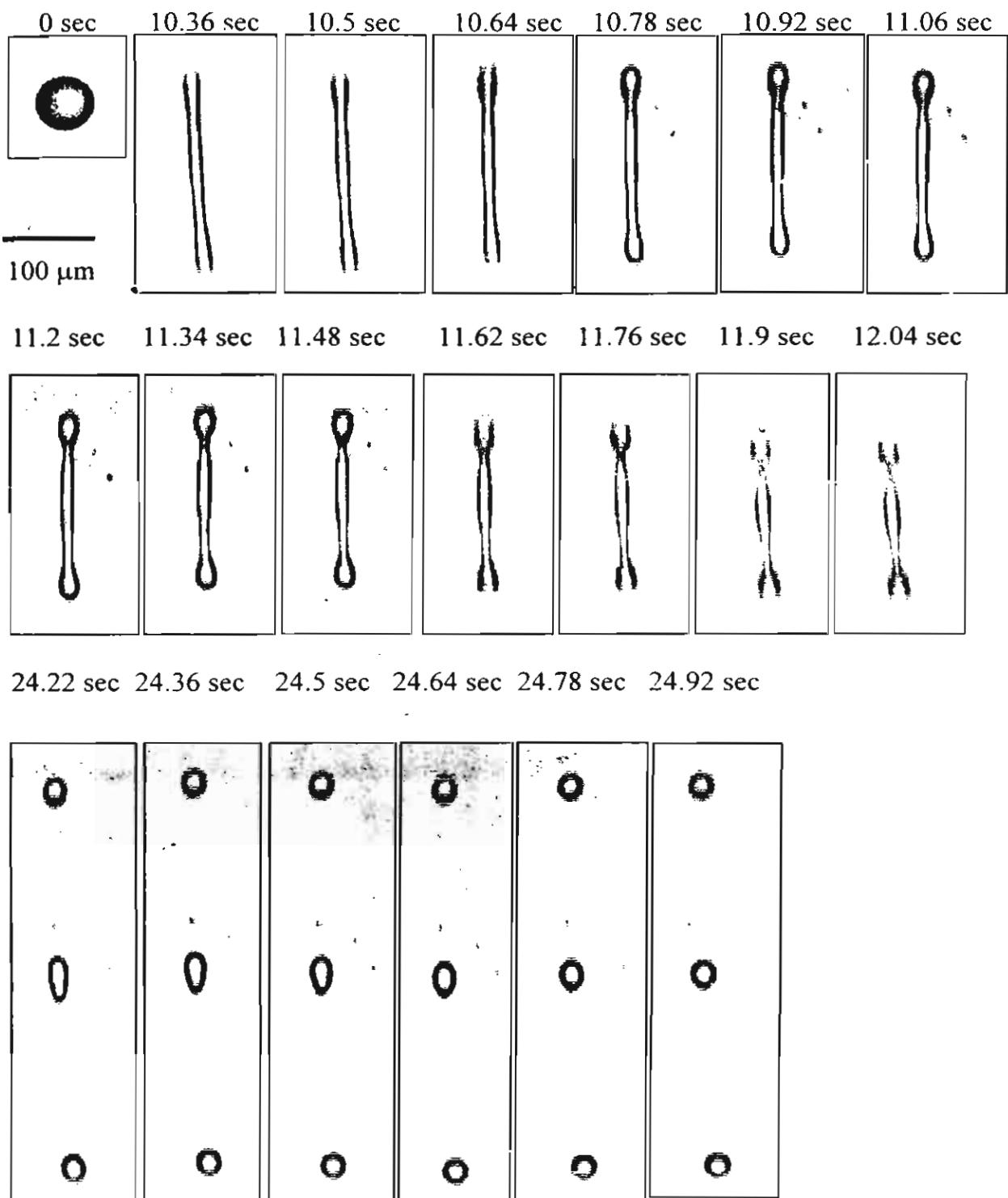


Figure 10

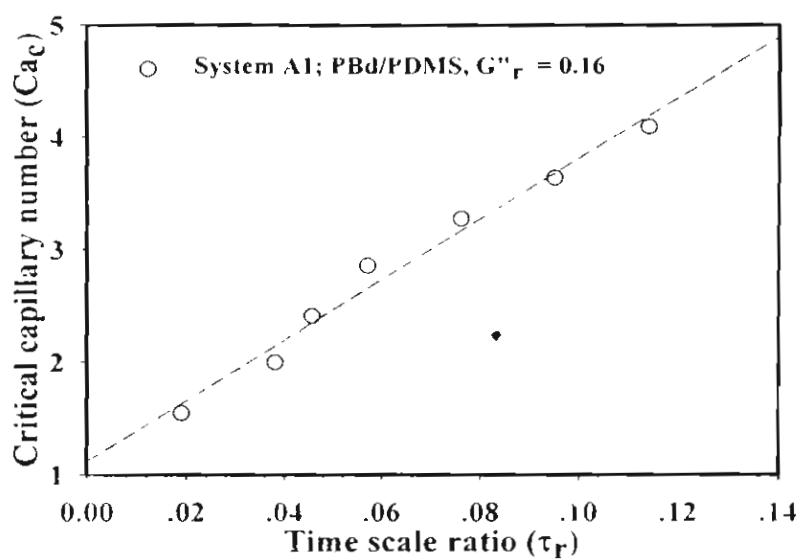


Figure 11

**Chapter 2: Drop Deformation and Breakup in PS/HDPE Blends under Oscillatory
Shear Flow**

Anuvat Sirivat ^a*, Sakchai Patako ^a, and Wanchai Lerdwijitjarud ^b

^a Conductive and Electroactive Research Unit, Petroleum and Petrochemical College,
Chulalongkorn University, Bangkok 10330, Thailand

^b Department of Materials Science and Engineering, Faculty of Engineering and
Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

* Corresponding author: anuvat.s@chula.ac.th

Tel: 662 218 4131; Fax: 662 611 7221

Drop Deformation and Breakup in PS/HDPE Blends under Oscillatory Shear Flow

Abstract

Drop deformation and breakup in PS/HDPE viscoelastic melt blends were investigated under the effects of viscosity ratio, the time scale ratio and droplet elasticity under oscillatory shear flow using an optical flow cell. The deformation was studied in term of deformation parameters, $Def^* = a^* - c / a^* + c$ where a^* and c are the apparent drop principal axes and the minor axes of the droplets as measured from the time series of images. Amplitudes of deformation parameters are defined as the difference between the maximum and minimum values divided by two. The amplitudes increased linearly at small capillary number and nonlinearly at large capillary number, where the capillary is defined as the ratio between the matrix viscous force and the interfacial tension force. The deformation amplitude parameters decreased with increasing viscosity ratio, time scale ratio, and elasticity at any fixed capillary number. Drop breakup patterns observed were the non symmetric one-end tearing pattern for the system with a lower viscosity ratio, and the two-ends stretching and twisting for the system with a higher viscosity ratio. The critical capillary number increased with viscosity ratio but varied slightly with the time scale ratio.

I. INTRODUCTION

The investigation of deformation and breakup of an isolated Newtonian droplet in an immiscible Newtonian matrix was first pioneered by Taylor (1932, 1934). He observed that droplet deformation and breakup of isolated droplets in a Newtonian blend under quasi-steady conditions (i.e., gradually increasing deformation rate) are controlled by two dimensionless parameters. The first parameter is the viscosity ratio (η_r), which is the ratio between the viscosity of the dispersed phase (η_d) to that of the matrix phase (η_m):

$$\eta_r = \eta_d / \eta_m \quad (1)$$

The second parameter is the capillary number (Ca), which is the ratio of matrix viscous stress to interfacial stress:

$$Ca = \frac{D_o \gamma \eta_m}{2\Gamma} \quad (2)$$

where $\gamma \eta_m$ is the viscous shear stress, with γ is the shear rate and η_m the matrix viscosity, D_o is initial droplet diameter, and Γ is the interfacial tension.

Taylor predicted that the deformation parameter, Def , depending on Ca and η_r , is given by

$$Def \equiv \frac{a - b}{a + b} = Ca \frac{19\eta_r + 16}{16\eta_r + 16} \quad (3)$$

where a and b are lengths of the major and minor axes of the deformed droplet, respectively. Taylor also predicted that the critical point at which the viscous force overcomes the interfacial force leading to droplet breakup occurs at $Ca_c \approx 0.5$ and $Def_c \approx 0.55$ for a steady (or quasi-steady, if the flow rate is very slowly increased) simple shearing flow with a viscosity ratio of around unity. Ca_c is a minimum when η_r is around unity [Grace (1982); De Bruijn (1989)]. For viscosity ratios near unity, the steady-state three-dimensional shape of an isolated deformed Newtonian droplet sheared in a Newtonian matrix can be represented by an ellipsoid having three different principal axes, in which the steady-state length of the minor axis of the ellipsoid in the vorticity direction was larger than that in the shear-gradient direction. The major axis of deformed droplet orients at an angle θ with respect to the flow direction, (Guido and Villone 1998).

The breakup condition for extensional flows differs from that for shearing flows; for general two dimensional incompressible flows droplet breakup is also controlled by the flow-type parameter, α , which is zero for shearing flow and unity for planar extensional flow [Rallison and Acrivos (1978), Bentley and Leal (1986)].

Elasticity of the droplet and/or matrix phase in binary blend of viscoelastic fluids should be an important factor influencing the droplet deformation and breakup. The behaviors of droplet under a flow field for immiscible viscoelastic blends have been investigated [Flumerfelt (1972); Elmendorp and Maalcke (1985); Wu (1987); Milliken

Capillary number over finite ranges. Droplet viscosity and elasticity generally impeded breakup under oscillatory shear. Critical capillary number for breakup, the number of resultant daughter droplets, and the number of cycle required for breakup to occur increased with the time scale ratio. The apparent breakup pattern changed from the dumbbell type to the end-pinching type as time scale ratio increased.

In our work reported below, we take a further step towards understanding the behaviors of commercial blends by using highly elastic polymer melts for both the droplet phase and the matrix phase. The oscillatory droplet deformation and the breakup were studied. The effect of the viscosity ratio (0.58, 0.12. and 0.06), the effect of time scale ratios (4.0, 16.6, 33.2 and 63.8), and the effect of the elasticity were investigated by using a flow cell mounted on an optical microscope where the deformation and various distinct breakup patterns of isolated droplets in oscillatory shear were first observed.

II. EXPERIMENTS

A. Materials

The materials used in this study were high-density polyethylene (HDPE) as the matrix phase and polystyrenes (PS) as the droplet phases, respectively (suppliers and grades are tabulated in Table I). Polystyrene grades were obtained from the manufacturers in the form of flake; they were crushed and size-selected by passing the flakes through a 425 μm sieve. To eliminate any possible volatile components, all polymers were heated at around 80°C under vacuum for 12 hours. The polymer blend systems and their experimental conditions are listed in Tables II - IV. The interfacial tension values for the polymer blend systems used in this work were taken from the literature [Brandrup and Immergut (1989)].

B. Rheological Characterization

Each polymer was molded into a disk, 25 mm in diameter and 1 mm thick by using a compression mold (Wabash, model V50H-18-CX) at 145°C for HDPE1, and at 135°C for PS1, PS2, and PS3. We used a cone-and-plate rheometer (Rheometrics Scientific: Model ARES, 25-mm plate diameter with cone angle 0.1 rad) to measure the dynamic storage modulus (G') and the dynamic loss modulus (G'') of each polymer. The rheological properties were obtained at frequencies between 0.1 and 100 rad/s using the dynamic frequency sweep test mode (strain control). From the rheological properties of pure polymers at various temperatures, the desired pairs of polymers and operating

temperatures were selected for further study. The rheological properties are shown in Fig. 1. In this study, we investigated the effect of viscosity ratio at G'' ratios equal to 0.58, 0.12 and 0.06 (systems A1, A2, A3) at a fixed time scale ratio equal to 32. We investigated system A4 at a fixed G'' ratio of unity at time scale ratios equal to 4, 16.6, 33.2 and 63.8; the time scale ratio was varied by varying frequencies. Different grades of PS were used to study the effect of droplet elasticity; they are tabulated in Table IV.

C. Observations of an Isolated Droplet in Shearing Flow

1. Oscillating Shear Apparatus

To generate oscillatory shear and to observe droplet deformations, we used a flow cell device (Linkam CSS 450, Linkam Scientific Instruments Ltd., UK) consisting of two transparent quartz parallel disks mounted on an optical microscope (Leica DMRPX, Leica Imaging Systems LTD., Cambridge, England), and connected to a CCD camera (Cohu 4910, Cohu Inc., CA). The images were recorded by a CCD camera, and they were analyzed on a computer using the Scion Image software.

2. Sample Preparation

HDPE used as the matrix polymer was molded into a disk 25 mm in diameter and 0.5-1 mm thick by compression molding. Various PS droplets were introduced into the matrix by using a pin to insert a small amount of PS powder on a HDPE disk, and it

was covered with another HDPE disk to form a sandwich. The sandwich was placed on the bottom quartz disk, which was then covered with the top quartz disk. The sample was held at the temperature until complete melting occurred.

3. Determination of Relaxation Time

The sample was inserted between the two quartz disks of the flow cell. The sample was heated to the temperature chosen for the measurement. A desired strain was imposed onto a selected drop. The drop then was allowed to relax into a spherical shape. Deformation of the ellipsoidal droplet was observed using an optical microscope with 5 – 10 frames/second for a total of 300 images.

Using the optical microscope, the droplet images were captured only from the top view, i.e., a view containing the flow and vorticity directions. Since only a projection of the droplet onto the flow-vorticity plane can be imaged from this view, this view cannot determine the true lengths of the principal axes (a, b, and c: figure 1), because two of them, a and c (those in the flow and the shear-gradient directions), are not parallel to the flow and shear gradient directions. However, the lengths of these axes can be determined by using the affine angle of rotation of the droplet in the plane containing the flow and shear-gradient directions together with the condition of volume preservation, $D_o^3 = abc$ [Almusallam *et al.* (2000)]. Although the lengths of the principal axes can be approximated by using the method mentioned above, we adopted to use the lengths of the observable axes, as shown in Figure 1, to describe the behavior of each droplet. Thus, we define a modified deformation parameter Def^* as:

$$Def^* \equiv \frac{a^* - c}{a^* + c} \quad (4)$$

where the asterisk denotes that the deformation parameter is an apparent one obtained from the droplet image projected onto the flow-vorticity plane, as shown in Figure 1. The deformation parameter, Def^* , of a retracting droplet vs. time was measured; it is known to decay exponentially [Lucinia *et al.* (1997)] in the form of the following equation:

$$Def^* = Def^*_0 \exp[-t/\tau_{rel}] \quad (5)$$

The slope of Def^*/Def^*_0 vs. t on a semi-log plot is simply the characteristic relaxation time for a single isolated drop. To ensure the characteristic relaxation time of single drop studied from the small deformation did not depend on the strain, the relaxation time experiments were carried out at various strain units (1%, 2%, 5% and 10%) at the same shear rate of 1.0 s^{-1} . The characteristic time scale ratio was calculated from the ratio of the relaxation time and the oscillation time ($\tau_r = \tau_{rel} / \tau_{osc}$).

4. Oscillatory Shear Deformation

This experiment is similar to the relaxation experiment, where the HDPE matrix phase was loaded into the flow cell and various PS droplets were subsequently inserted into the matrix by using a pin to put a small amount of PS powder on a HDPE disk. The sample was heated to a desired temperature and gap. Before we started each

experiment, the drop was allowed for relax until it retained a spherical shape. Appropriate strain and frequency were then applied. Since the shearing mode was sinusoidal oscillatory the Linkham device, which has one stationary and one moving plate, inevitably caused the droplet move back and forth. For a given frequency, we increased the strain in order to vary Ca_m up to a strain in which we could no longer capture all drop images during a deformation cycle. In a given droplet deformation experiment, six hundred to seven hundred images were recorded; for each period of deformation the number of captured images was equal to or above 32 in order to track the deformation time series in details. The droplet deformation parameters, i.e. the major and minor axes, were measured as functions of time, frequency, strain, G'' ratio, and G' ratio.

III. RESULTS AND DISCUSSION

A. Rheological Characterization

The rheological property of the blend components was obtained from the melt rheometer (ARES, Rheometrics Scietific, Ltd.). Figures 2 and 3 show the storage modulus (G') and the loss modulus (G''), respectively. The data indicate that the two polymers behave as Maxwell fluids since the slope of G' is approximately equal to two, and the slope of G'' is approximately equal to one. G' and G'' both vary with temperature; both functions decrease with increasing temperature. Polystyrene has a higher temperature-dependent viscosity than that of high-density polyethylene, allowing

us to obtain the desired G' and G'' values by adjusting the operating temperature. The values of the G' and G'' ratios of all blend systems studied are shown in Figure 4.

B. Relaxation Experiment

The relaxation time scale of each blend studied was obtained from a step strain experiments performed at various shear rates and drop sizes. The characteristic relaxation time scales were then determined and obtained only from the ranges of shear rates and drop size in which the time scales were nearly constant. The characteristic relaxation times were 290 sec, 220 sec, 180 sec and 332 sec, for PS2/HDPE1 blends with G''_r equal to 0.58, 0.12, 0.06 and 1, respectively (Tables II and III). The characteristic relaxation times are 670 sec and 105 sec for PS3/HDPE1 and PS1/HDPE1 blends, respectively, when G''_r is equal to 0.12 (Table IV).

C. Oscillatory Shear Experiment

In this study, there are many parameters involved, we grouped them into dimensionless pi groups; they are Capillary Number (Ca_m), Reynolds number (Re), time scale ratio (τ_r), and Weissenberg number (Wi_d). Ca_m and Re are defined as:

$$Ca_m = \frac{G_m''(\omega) \gamma d}{\Gamma} \quad (6)$$

$$Re = \frac{\rho_d \omega^2 d^2}{G_d''(\omega)} \quad (7)$$

where γ is the imposed strain on the matrix, d is the diameter of droplet, $G_m''(\omega)$ is the loss modulus of the matrix phase, $G_d''(\omega)$ is the loss modulus of the disperse phase, ρ_d is the density of the disperse phase, and Γ is the interfacial tension between two polymers.

The time scale ratio is defined as:

$$\tau_r = \tau_{rel}/\tau_{osc} \quad (8)$$

where τ_{rel} is the relaxation time scale obtained from the relaxation experiment, τ_{osc} is the period of oscillation, $\tau_{osc} = 1/f$, where f is the imposed oscillation frequency.

The Weissenberg number (Wi_d), a dimensionless number, is formally the ratio of the first normal stress difference to twice the shear stress at the imposed shear rate. It is defined in our oscillatory shear flow as

$$Wi_d = 2G_d'(\omega)/G_m''(\omega)\gamma \quad (9)$$

The values of the Weissenberg number for blend systems are shown in Tables II, III and IV : system A1 ($G''_r = 0.58$), $Wi_d = 0.012 - 0.084$; system A2 ($G''_r = 0.12$), $Wi_d = 0.0052 - 0.031$; system A3 ($G''_r = 0.06$), $Wi_d = 0.0051 - 0.031$; system A4 ($G''_r = 1$, $\tau_r = 4, 16.6, 33.2$ and 63.8), $Wi_d = 1.66 - 11.35$; system B1 ($G''_r = 0.12$), $Wi_d = 0.0014 - 0.0083$; system C1 ($G''_r = 0.12$), $Wi_d = 0.378 - 2.26$. We divide our work on droplet deformation into 3 parts: the effect of viscosity ratio, the effect of time scale ratio, and the effect of droplet elasticity. Finally, we investigated drop breakup patterns and determined the critical capillary numbers.

Figure 5 shows optical photographs of a droplet under sinusoidal oscillatory shear deformation: system A3, $G''_r = 0.06$, $Ca_m = 35$, $\tau_r = 32$. The nominal spherical drop size was $180 \mu\text{m}$. The droplet can be seen to stretch along the flow direction, to

retract to its original value, to stretch again, and finally to retract back when the cycle is complete, or when the observation time over the oscillatory time scale ratio is unity. No breakup was observed for this droplet even though G''_r was quite low. Ca values applied to the matrix and the disperse phase are 35 and 2.10, respectively. These values are well above the critical Ca_m values of Newtonian droplets in Newtonian matrices or viscoelastic droplets in viscoelastic matrices in steady state shear which vary between 0.5 and 1.0, depending on Wi_d [Lerdwijitjarud *et al.* (2003,2004)]. The large time scale ratio of 32 implies that the droplet did not have time to relax to attain equilibrium deformation at any particular instant. The apparent deformation observed probably comes from accumulated contributions from the previous stress history in a cycle. We may also note that the apparent droplet deformation in oscillatory shear as seen does not reflect the true deformation occurring, similar to but more complicated than that in steady shear, due to the combination of the droplet rotation and the periodic change in shear direction.

Figure 6 shows the deformation parameters, a^* , c , and Def^* vs. time for the droplet of system C1. In the steady state oscillatory shear deformation, we define the deformation amplitudes as the one halves of the differences between the maximum and the minimum values of the corresponding deformation parameters: a^* , c , and Def^* , respectively. There is an initial transient period, of about 2-3 cycles, in which the deformation parameters (a^* , c , and Def^*) fluctuate but do not yet attain the final steady state oscillations. Beyond this initial period, we determined the steady state deformation amplitudes from the time series of the captured images.

Figures 7a, 7b, and 7c show the deformation amplitudes δa^* , δc , and δDef^* as functions of Ca_m for the three blend systems studied: system A1, $G''_r = 0.58$; system A2, $G''_r = 0.12$; and system A3, $G''_r = 0.06$. The corresponding relaxation time scales of these systems are 290 sec, 220 sec, and 180 sec, respectively. In these experiments, the oscillatory shear frequency was chosen to be 0.11 Hz, 0.15 Hz, and 0.18 Hz, respectively so that the corresponding time scale ratios are all identical and equal to 32 (Table II). We can see that, for a given Ca_m , Def^* is greater for a droplet with a smaller viscosity ratio. This suggests that droplet viscosity resists the droplet oscillatory deformation, a similar finding to that of the steady state shear flow. For the blends systems A1-A3 studied, a^* , c , and Def^* appear to vary nonlinearly with Ca_m above certain values of Ca_m . Since a^* and Def^* are only apparent deformation parameters, due to the a^* projection and the periodic droplet rotation, we adopt to identify the extent of linear oscillatory deformation from c , the minor axis observed. In Fig 7b, we can see that nonlinear deformation appears at Ca_m equal to 43 and 47 for the systems with G''_r equal to 0.06 and 0.12, respectively. The corresponding products of Ca_m and G''_r are 2.58 and 5.64, respectively. The product of Ca_m and G''_r can be identified as simply the ratio of the droplet viscous shear force over its interfacial tension. For the blend with G''_r equal to 0.06, we were unable to observe the nonlinearity. Thus, a lower droplet viscosity leads to larger deformation amplitudes as well as it allows the droplet to deform nonlinearly at a lower applied shear force at a given time scale ratio.

Figures 8a, 8b and 8c show the deformation amplitudes δa^* , δc , and δDef^* vs. Ca_m for system 4 at four different time scale ratios: $\tau_r = 4, 16.6, 33.2$ and 63.8 , as also

tabulated in Table III. In order to study the effect of time scale ratio on droplet oscillatory deformation, system A4 was chosen so that G''_r was fixed at unity and its relaxation time scale was 332 sec. The time scale ratio was varied by varying the imposed frequency: 0.12 Hz, 0.05 Hz, 0.10 Hz, and 0.192 Hz, respectively. The corresponding periods of oscillation are 83.3 sec, 20.0 sec, 10.0 sec, and 5.2 sec, respectively. For a given time scale ratio, capillary number was varied by varying strain, according to Eq. (6). The droplet sizes chosen were between 185-200 μm . Consequently, Wi_d also varied with strain (Eq. 9). But the variations of Wi_d with strain or Ca_m are nearly within the same ranges for the four time scale ratio experiments (Table III): the range of Wi_d is between 1.6 and 11.4. Therefore, the results of the four experiments (Table III) can be compared and used to determine the effect of time scale ratio. In Fig. 8b, we see that δc varies linearly with Ca_m up to certain values; the departure from deformation linearity occurs at Ca_m equal to 35, 26, and 15 for corresponding τ_r equal to 63.8, 33.2, and 16.6, respectively. This finding is opposite to our expectation where we expect that a smaller relaxation time scale, or a lower time scale ratio, would favor the affine deformation and linearity would be extended to high Ca_m values. However, we may refer to data in Table III that the variations of Wi_d in these experiments are quite large, and the droplet elasticity may have played a role.

Figures 9a, 9b and 9c show the amplitudes of the deformation parameters δa^* , δc , and δDef^* vs. Ca_m for three systems: the low elasticity systems A2 and B1, and the high elasticity system C1 (Table IV). The corresponding G'_r is equal to 0.002, 0.0-1, and

0.55, respectively. G'' , for the three systems is equal to 0.12, as chosen and adjusted by the operating temperatures. Since the time scale ratio was fixed at 32, the oscillatory frequency was chosen to be 0.048 Hz, 0.15 Hz, and 0.33 Hz for systems B1, A2, and C1, respectively. The corresponding relaxation time scales are 670 sec, 220, and 105 sec, respectively. As shown in these figures, at any given Ca_m the amplitudes of the deformation parameters generally decrease with increasing elasticity; this implies that the droplet elasticity also resists oscillatory shear deformation. We can observe that the amplitudes of the deformation parameters of the low elasticity systems A2 and B1 increase linearly with Capillary number up to about 20. For the highly elastic system C1, the deformation amplitude parameter c , as shown in Fig 9b, increases less than linearly at all Ca_m investigated up to about 200. In Fig 9b, it may be noted that the relation δc vs. Ca_m would intercept the x axis at a finite value of Ca_m equal to 20, in the limit of δc approaching zero. This intercept can be interpreted as the oscillatory yield stress required to deform this highly elastic droplet.

Figures 10 and 11 show optical micrographs of drop breakups under oscillatory deformation of systems A1 and A3 whose G'' , are 0.58 and 0.06 (Tables II and III), respectively. For both systems, we applied an oscillatory frequency of 0.20 Hz; the corresponding time scale ratios were 58 and 36, respectively. The original drop sizes were 167 for system A1, and 173 μm for system A3. Wi_d numbers were of order 10^{-3} , and hence elasticity was negligible. The main difference is therefore the viscosity ratio: 0.58 for system A1, and 0.06 for system A3. In these two breakup experiments, drops were subjected to many cycles before breakups were observed. For system A1 of higher

viscosity ratio, the breakup occurred through the non-symmetric one-end tearing pattern which resulted in many daughter drops, as can be seen in Figure 10. For system A3 whose viscosity ratio was lower, the breakup occurred through a diamond shape formation, two-ends stretching and twisting which ultimately resulted in only few satellite drops at each end (Figure 11). The critical Capillary numbers, Ca_c , were 102 and 93, respectively. We may presume that the twisting at both ends is presumably a result of low viscosity ratio. Other breakup patterns of system A1 and A3 at other time scale ratios were also observed which are similar to the two patterns shown in Figures 10 and 11.

Figures 12, 13 and 14 show the critical capillary number, the critical Weisenberg number, and the number of cycles required for drop breakups to occur as functions of the time scale ratio of the two systems A1 and A3. From Figure 12, we may note that the system of higher viscosity, A1, has a higher critical capillary number. Therefore, a larger shear force exerted by the matrix is required to break a drop with a higher viscosity. On the other hand, the critical capillary number varied slightly with the time scale ratio; notably it is higher as the time scale ratio approaches zero. This finding suggests that a larger shear force is required for a drop to breakup when it is closer to the equilibrium deformation state. Figure 13 shows that the corresponding Weisenberg number increases linearly with the time scale ratio; the dependence changes to a nonlinear one at large time scale ratio. This may be interpreted as follows; a drop whose deformation state is far away from its equilibrium deformation state requires a smaller shearing force from the matrix for a drop to breakup at a given droplet elasticity. Finally,

Figure 14 shows that the number of cycles required for drop breakup; it increases with the viscosity ratio and the time scale ratio. The first dependence seems obvious. On the other hand, the explanation for the second dependence is less clear.

IV. CONCLUSIONS

We observed the oscillatory deformations of droplets in PS/HDPE blends. In particular, we investigated three effects on droplet oscillatory deformation: the effect of viscosity ratio, the effect of time scale ratio, and the effect of droplet elasticity

At a given capillary number, amplitudes of deformation parameters decreased with increasing viscosity ratio, time scale ratio and elasticity. The dependences of the amplitudes on capillary number were linear at small values; whereas the dependences became nonlinear at large capillary number. Droplet viscosity and elasticity tend to disrupt the affine oscillatory deformation, whereas a higher time scale ratio promotes the affine deformation.

The deformed droplet with little relaxation appears to be easier to break. The drop breakup patterns were the non symmetric one-end tearing and breaking pattern for the high viscosity ratio system, and the two-ends stretching and twisting pattern for the lower viscosity ratio system. The critical capillary number increased with viscosity ratio but varied slightly with the time scale ratio.

V. ACKNOWLEDGEMENTS

AS would like to acknowledge the fund from TRF, grant no. BRG 4680015, and the fund from Conductive and Electroactive Research Unit, Chulalongkorn University. Kindly help for manuscript preparation from Prof. Ronald G. Larson is gratefully acknowledged.

REFERENCES

1. Almusallam A. S., R. G. Larson, and M. J. Solomon, "A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends", *J. Rheol* **44**, 1055-1083 (2000).
2. Bentley, B.J., and L. G. Leal, "An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows," *J. Fluid Mech.*, **167**, 241-283 (1986).
3. Brandrup, J. and E. H. Immergut, *Polymer Handbook*, 3rd Ed., New York (1989).
4. Cherdhirankorn T., W. Lerdwijitjarud, A. Sirivat, and R. G. Larson, "Dynamics of Vorticity Stretching and Breakup of Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix" *Rheologica Acta* **43**, 246-256 (2004).
5. De Bruijn, R. A., "Deformation and breakup of drops in simple shear flow", Ph.D.Thesis, Eindhoven University of Technology, 1989.

6. Elmendorp, J. J. and R. J. Maalcke, "A study on polymer blending microrheology: Part 1", *Polym Eng. Sci.* **25**, 1041-1047 (1985).
7. Flumerfelt, R. W. "Drop breakup in simple shear fields of viscoelastic fluids", *Ind. Eng. Chem. Fundam.*, **11**, 312-318 (1972).
8. Grace, H. P., "Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems", *Chem. Eng. Commun.* **14**, 225-277 (1982).
9. Guido, S., and M. Villone, "Three-dimensional shape of a drop under simple shear flow", *J. Rheol.* **42**, 395-415 (1998).
10. Hobbie, E. K. and K. B. Migler, "Vorticity elongation in polymeric emulsions," *Phys. Rev. Lett.* **82**, 5393-5396 (1999).
11. Lerdwijitjarud, W., R. G. Larson, and A. Sirivat, "Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/Poly(dimethylsiloxane) blends," *J. Rheol.* **47**, 37-57 (2003).
12. Lerdwijitjarud, W., A. Sirivat, and R. G. Larson, "Influence of dispersed-phase elasticity on steady state deformation and breakup of droplets in simple shearing flow of immiscible polymer blends," *J. Rheol* **48**, 843-862 (2004).
13. Levitt, L., C. W. Macosko and S. D. Pearson, "Influence of normal stress difference on polymer drop deformation", *Polym. Eng. Sci.* **36**, 1647-1655 (1996).
14. Luciani, A., M. F. Champagne, L. A. Utracki, "Interfacial tension coefficient from the retraction of ellipsoidal drops", *J. Polym. Sci. Pol. Phys.* **35**, 1393-1403 (1997).

15. Mighri, F., A. Ajji, and P. J. Carreau, "Influence of elastic properties on drop deformation in elongational flow", *J. Rheol.* **41**, 1183-1201 (1997).
16. Mighri, F., P. J. Carreau, and A. Ajji, "Influence of elastic properties on drop deformation and breakup in shear flow" *J. Rheol.* **42**, 1477-1490 (1998).
17. Mighri, F. and M. A. Huneault, "Dispersion visualization of model fluids in a transparent Couette flow cell," *J. Rheol.* **45**, 783-797 (2001).
18. Migler, K. B., "Droplet vorticity alignment on model polymer blends," *J. Rheol.* **44**, 277-290 (2000).
19. Milliken, W. J., and L. G. Leal, "Deformation and breakup of viscoelastic drops in planar extensional flows", *J. Non-Newtonian Fluid Mech.*, **40**, 355-379 (1991).
20. Rallison J. M., and A. Acrivos, "Numerical study of deformation and burst of a viscous drop in an extensional flow", *J. Fluid Mech.*, **89**, 191-200 (1978).
21. Tanpaiboonkul, P., W. Lerdwijitjarud, A. Sirivat, and R. G. Larson, "Transient and Steady State Deformations and Breakup of Dispersed -Phase Droplets of Immiscible Polymer Blends in Steady Shear Flow", *Submitted to Polymerl*.
22. Taylor, G. I., "The viscosity of a fluid containing small drops of another fluid", *Proc. R. Soc. London, Ser. A* **138**, 41-48 (1932).
23. Taylor, G. I., "The formation of emulsions in definable fields of flow", *Proc. R. Soc. London, Ser. A* **146**, 501-523 (1934).
24. Tretheway D. C., and L. G. Leal, "Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid" *J. Non-Newtonian Fluid Mech.* **99**, 81-108 (2001).

25. Varanasri, P. P., M. E. Ryan, and P. Stroeve, "Experimental study on the breakup of Model viscoelastic drops in uniform shear flow", *Ind. Eng. Chem. Res.* **33**, 1858-1866 (1994).
26. Jaenapn, V., Lerdwijitjarud, W., Sirivat A., "Oscillartory shear induced droplet deformation and breakup in immiscible polymer blends" Submitte to *J. Rheol.* (2006).
27. Wannaborworn S., M. R. Mackley, and Y. Renardy, "Experimental observation and matching numerical simulation for the deformation and breakup of immiscible drops in oscillatory shear," *J. Rheol* **46**, 1279-1293 (2002).
28. Wu, S., "Formation of Dispered phase in incompatible polymer blends-interfacial and rheological effects." *Polym. Eng. Sci.* **27**, 335-343 (1987).

TABLES**Table I** Polymers used

Polymers	Suppliers	M_w^*	Specific gravity
HDPE1	Bangkok Polyethylene (Public) Limited (HDPE 1600J)	68,000	0.96
PS1	Aldrich Chemical Company, Inc.	162,000	1.04
PS2	Polyscience (Cat#18544)	50,000	1.05
PS3	Polyscience(Cat#23637)	800 – 5,000	1.05

* reported by the manufacturer

Table II Effect of viscosity ratio

Blend system	Blend components	T (°C)	Γ (mN/m)	G''_r	Wi _d	f (Hz)	τ_{rel} (sec)	τ_{osc} (sec)	Time scale ratio (τ_r)
A1	PS2/HDPE1	150	5.70	0.58	0.012 – 0.084	0.11	290	9.09	32
A2	PS2/HDPE1	155.5	5.61	0.12	0.0052 – 0.031	0.15	220	6.67	32
A3	PS2/HDPE1	158	5.54	0.06	0.0051 – 0.031	0.18	180	5.56	32

Table III Effect of time scale ratio ($\tau_r = \tau_{rel}/\tau_{osc}$)

Blend system	Blend components	T (°C)	Γ (mN/m)	G'' _r	Wi _d	f (Hz)	τ _{rel} (sec)	τ _{osc} (sec)	Time scale ratio (τ _r)
A4	PS2/HDPE1	147	5.76	1.0	1.66 – 10.15	0.012	332	83.33	4
A4	PS2/HDPE1	147	5.76	1.0	1.71 – 10.30	0.05	332	20	16.6
A4	PS2/HDPE1	147	5.76	1.0	1.72 – 10.32	0.10	332	10	33.2
A4	PS2/HDPE1	147	5.76	1.0	1.89 – 11.35	0.192	332	5.2	63.8

Table IV Effect of droplet elasticity

Blend system	Blend Components	T (°C)	Γ (mN/m)	G'' _r	Wi _d	f (Hz)	τ _{rel} (sec)	τ _{osc} (sec)	Time scale ratio (τ _r)
B1	PS3/HDPE1	148	5.76	0.12	0.0014 – 0.008	0.048	670	20.94	32
A2	PS2/HDPE1	155.5	5.61	0.12	0.0052 – 0.031	0.15	220	6.67	32
C1	PS1/HDPE1	232	4.89	0.12	0.378 – 2.26	0.33	105	3.03	32

FIGURE CAPTIONS

Figure 1 Schematic drawing of a single drop observed from the “side” and “top” views by optical microscopy, **a** and **b**: the long and short axes of the droplet in the flow-gradient plane, **a*** : the **a** axis projected into the flow direction and **c**: the principal axis in the radial direction.

Figure 2 G' vs. frequency at different temperatures: (a) dispersed phases (PS1, PS2, PS3) using strain = 80% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s; (b) matrix phases (HDPE1) using strain = 50% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s.

Figure 3 G'' vs. frequency at different temperatures: (a) dispersed phases (PS1, PS2, PS3) using strain = 80% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s; (b) matrix phases (HDPE1 1600J) using strain = 50% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s.

Figure 4 (a) G' , at different temperatures. (b) G'' , at different temperatures.

Figure 5 Droplet deformation under shear at strain = 60 %, frequency = 0.18 Hz, $G''_r = 0.06$, $Wi = 4.17 \times 10^{-3}$, $\tau_r = 32$, $T = 158^\circ C$, $d_o \sim 180 \mu m$ and gap 2,000 μm , at magnification 40X at various times in one cycle.

Figure 6 Deformation parameters vs. time of system C1 at strain 60%, frequency 0.33 Hz, $\tau_r = 32$, $G''_r = 0.12$, $d_o \approx 170 \mu m - 195 \mu m$, gap = 2,000 μm : a) a^* vs. time; b) c vs. time and c) Def^* vs. time.

Figure 7 Amplitudes of the deformation parameters vs. Ca_m of system A1, A2, and A3 at $\tau_r = 32$, $d_o \approx 190 \mu m - 205 \mu m$, gap = 2,000 μm : $T = 150^\circ C$, $G''_r = 0.58$, $G'_r = 0.032$; $T = 155.5^\circ C$, $G''_r = 0.12$, $G'_r = 0.009$; $T = 158^\circ C$, $G''_r = 0.06$, $G'_r = 0.0046$: distance of drop from the center of plate $\sim 6.8 mm$: a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; c) δDef^* vs. Ca_m .

Figure 8 Amplitudes of deformation parameters vs. Ca_m of system A4 at $T = 147^\circ C$, $d_o = 185 \mu m - 200 \mu m$, gap = 2,000 μm : frequency = 0.012 Hz, $G''_r = 1$, $Re_{osc} = 1.45 \times 10^{-11}$; frequency = 0.05 Hz, $G''_r = 1$, $Re_{osc} = 9.64 \times 10^{-11}$; frequency = 0.10 Hz, $G''_r = 1$, $Re_{osc} = 2.37 \times 10^{-10}$; frequency = 0.192 Hz, $G''_r = 1$, $Re_{osc} = 5.91 \times 10^{-10}$: distance of drop from the center of plate $\sim 6.8 mm$: a) δa^* vs. Ca_m ; b) δc vs. Ca_m , and c) δDef^* vs. Ca_m .

Figure 9 Amplitudes of deformation parameters vs. Ca_m of system A2, B1, and C1 at $G''_r = 0.12$, $\tau_r = 32$, $d_o \approx 170 \mu\text{m} - 190 \mu\text{m}$, gap = 2000 μm : of PS3/HDPE1, $T = 148^\circ\text{C}$, frequency = 0.048 Hz; PS2/HDPE1, $T = 155.5^\circ\text{C}$, frequency = 0.15 Hz and PS1/HDPE1, 232°C , frequency = 0.33 Hz: a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; c) δDef^* vs. Ca_m .

Figure 10 Droplet breakup under oscillatory shear of system A1 where $Ca_c = 102.13$, $Wi_d = 2.48 \times 10^{-3}$, strain = 178, frequency = 0.2 Hz, $G''_r = 0.58$, $G'_r = 0.03$, time scale ratio = 58, $T = 150^\circ\text{C}$, $d_o = 167 \mu\text{m}$, gap = 2000 μm , and magnification 40x.

Figure 11 Droplet breakup under oscillatory shear of system A3 where $Ca_c = 92.93$, $Wi_d = 2.6 \times 10^{-3}$, strain = 160, frequency = 0.2 Hz, $G''_r = 0.06$, $G'_r = 0.0045$, time scale ratio = 36, $T = 158^\circ\text{C}$, $d_o = 173 \mu\text{m}$, gap = 2000 μm , and magnification 40x.

Figure 12 Critical capillary number vs. τ_r of: a) system A1 at $T = 150^\circ\text{C}$, $G''_r = 0.58$, $d_o \approx 165 \mu\text{m} - 175 \mu\text{m}$; b) system A3 $T = 158^\circ\text{C}$, $G''_r = 0.06$, $d_o = 170 \mu\text{m}$, gap = 2,000 μm .

Figure 13 Critical Weisenberg number (Wi_c) vs. τ_r of: a) system A1 at $T = 150^\circ\text{C}$, $G''_r = 0.58$, $d_o \approx 165 \mu\text{m} - 175 \mu\text{m}$; b) system A3 $T = 158^\circ\text{C}$, $G''_r = 0.06$, $d_o = 165 \mu\text{m} - 175 \mu\text{m}$, gap = 2,000 μm .

Figure 14 Number of cycles required for drop breakup vs. τ_r of : a) system A1 at $T = 150^\circ\text{C}$, $G''_r = 0.58$, $d_o \approx 165 \mu\text{m} - 175 \mu\text{m}$; b) system A3 $T = 158^\circ\text{C}$, $G''_r = 0.06$, $d_o = 165 \mu\text{m} - 175 \mu\text{m}$, gap = 2,000 μm .

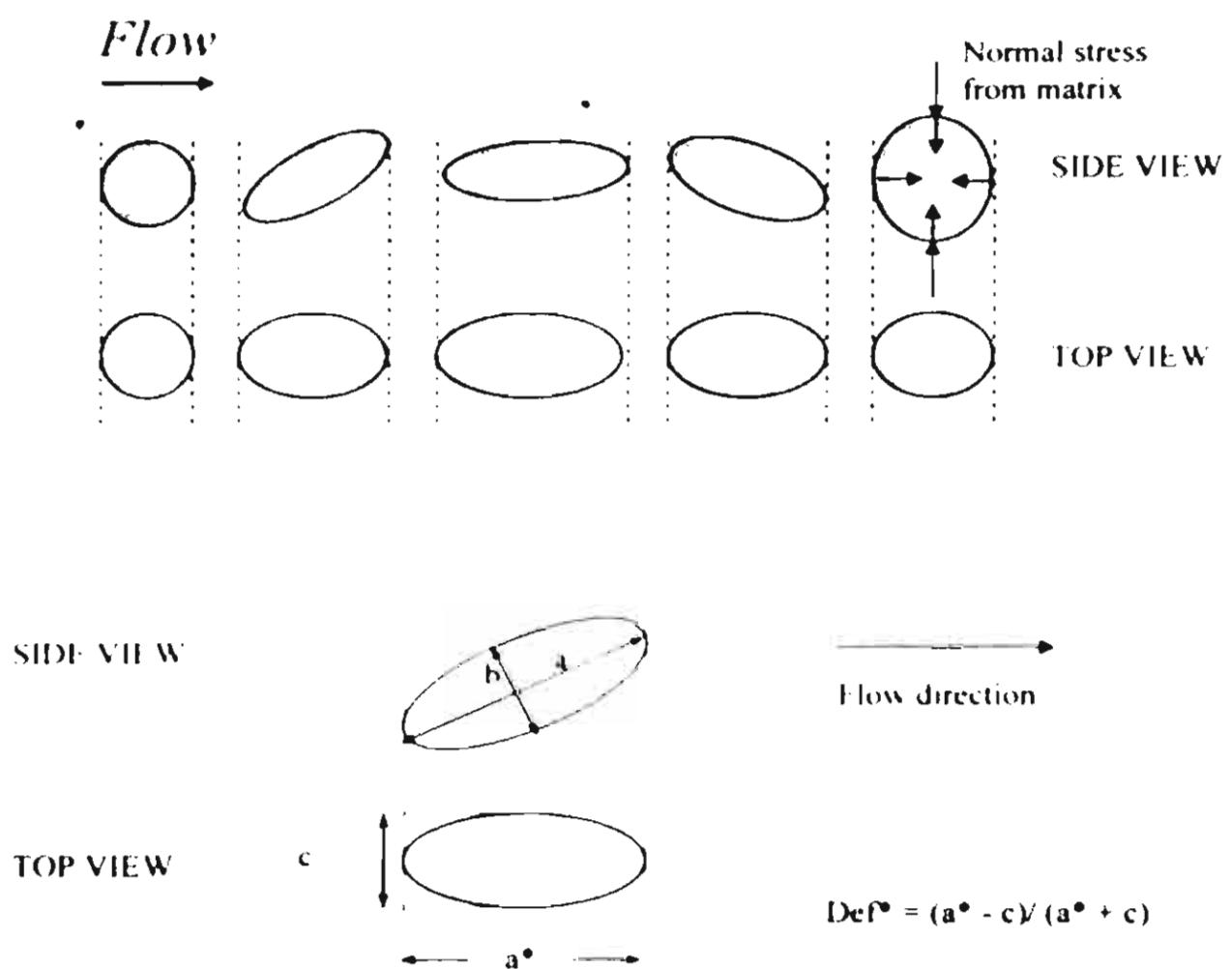


Figure 1 Schematic drawing of a single drop observed from the "side" and "top" views by optical microscopy, a and b : the long and short axes of the droplet in the flow-gradient plane, a^* : the a axis projected into the flow direction and c : the principal axis in the radial direction.

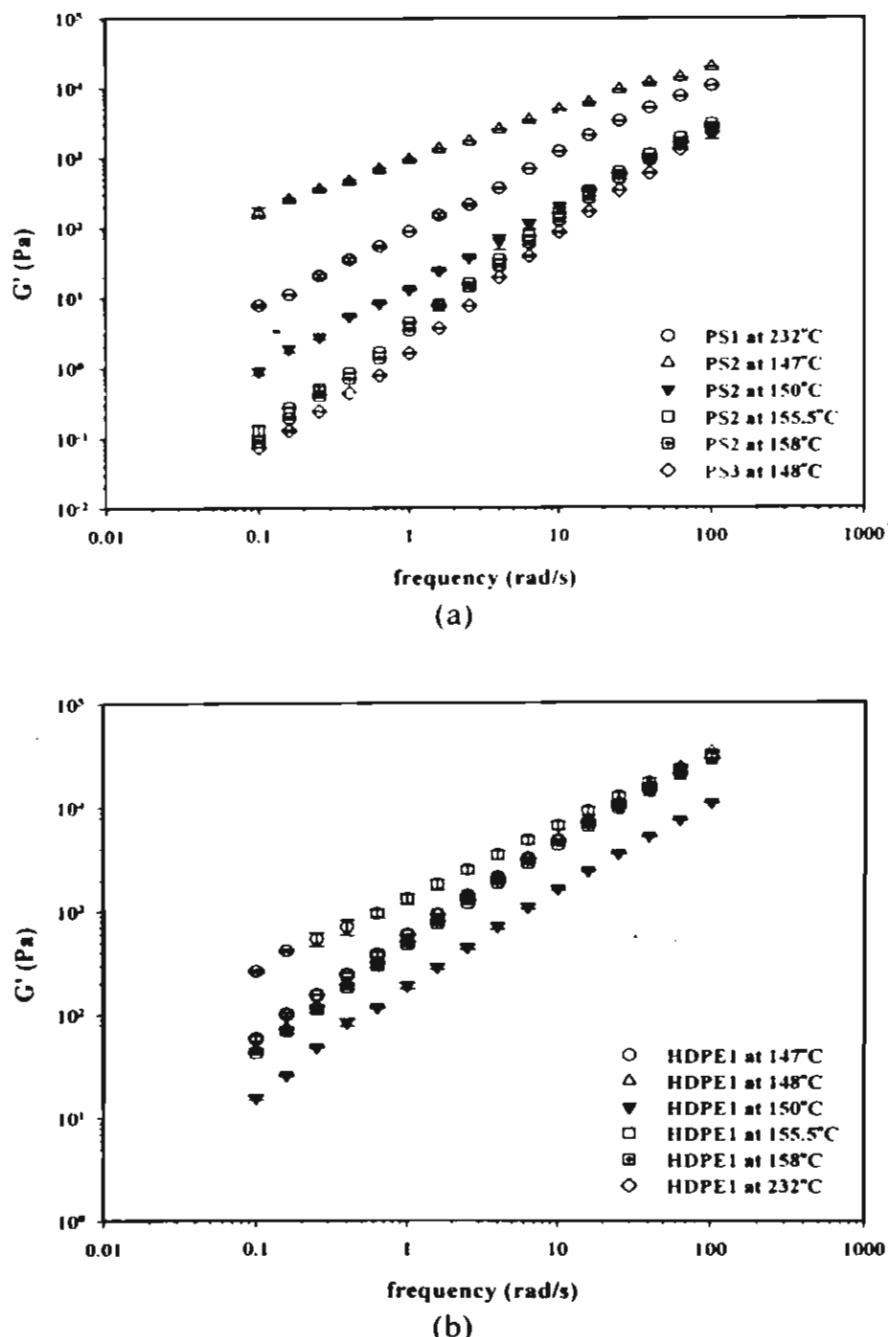


Figure 2 G' vs. frequency at different temperatures: (a) dispersed phases (PS1, PS2, PS3) using strain = 80% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s; (b) matrix phases (HDPE1 1600J) using strain = 50% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s.

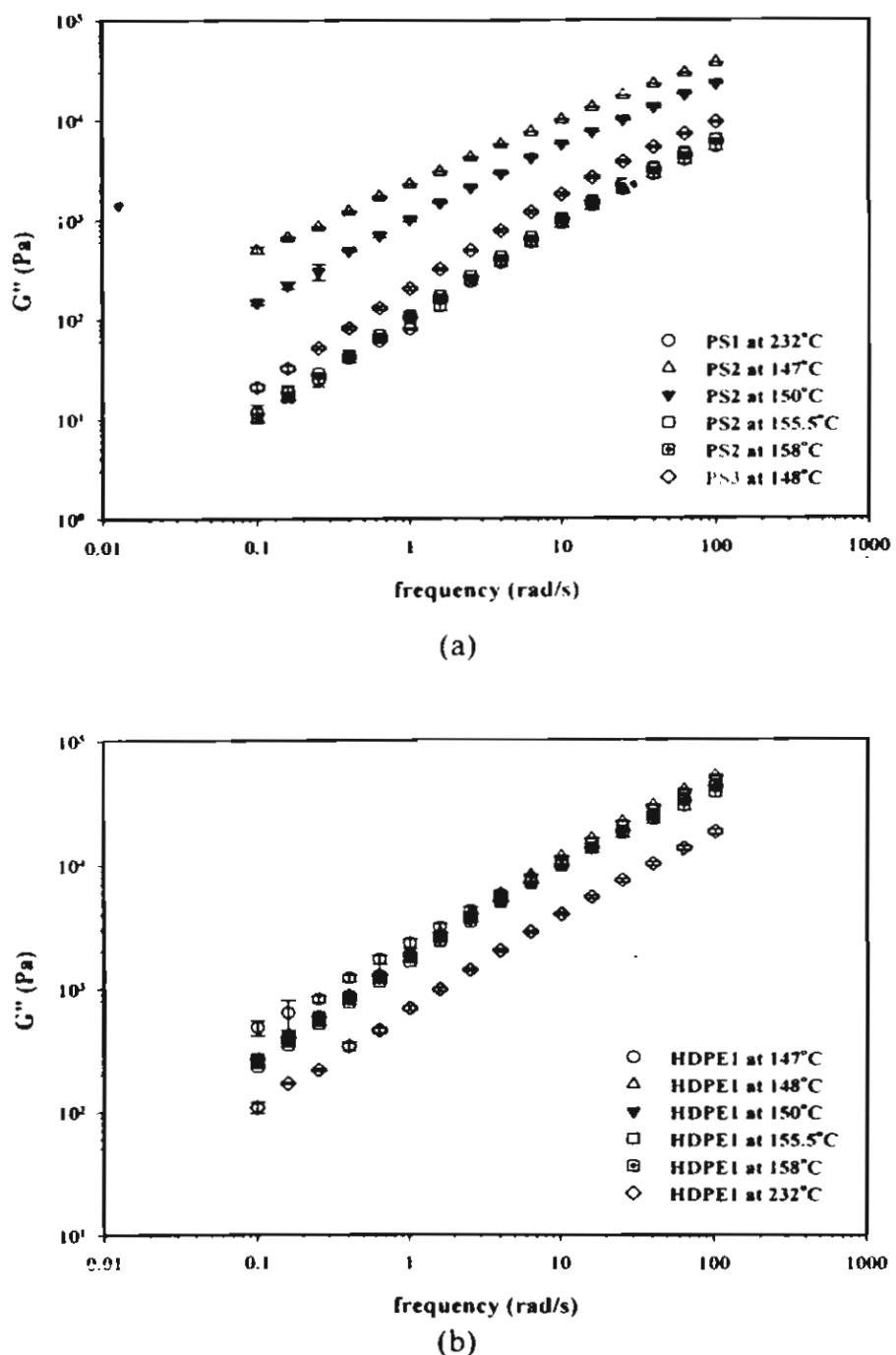


Figure 3 G'' vs. frequency at different temperatures:

(a) dispersed phases (PS1, PS2, PS3) using strain = 80% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s; (b) matrix phases (HDPE1 1600J) using strain = 50% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s.

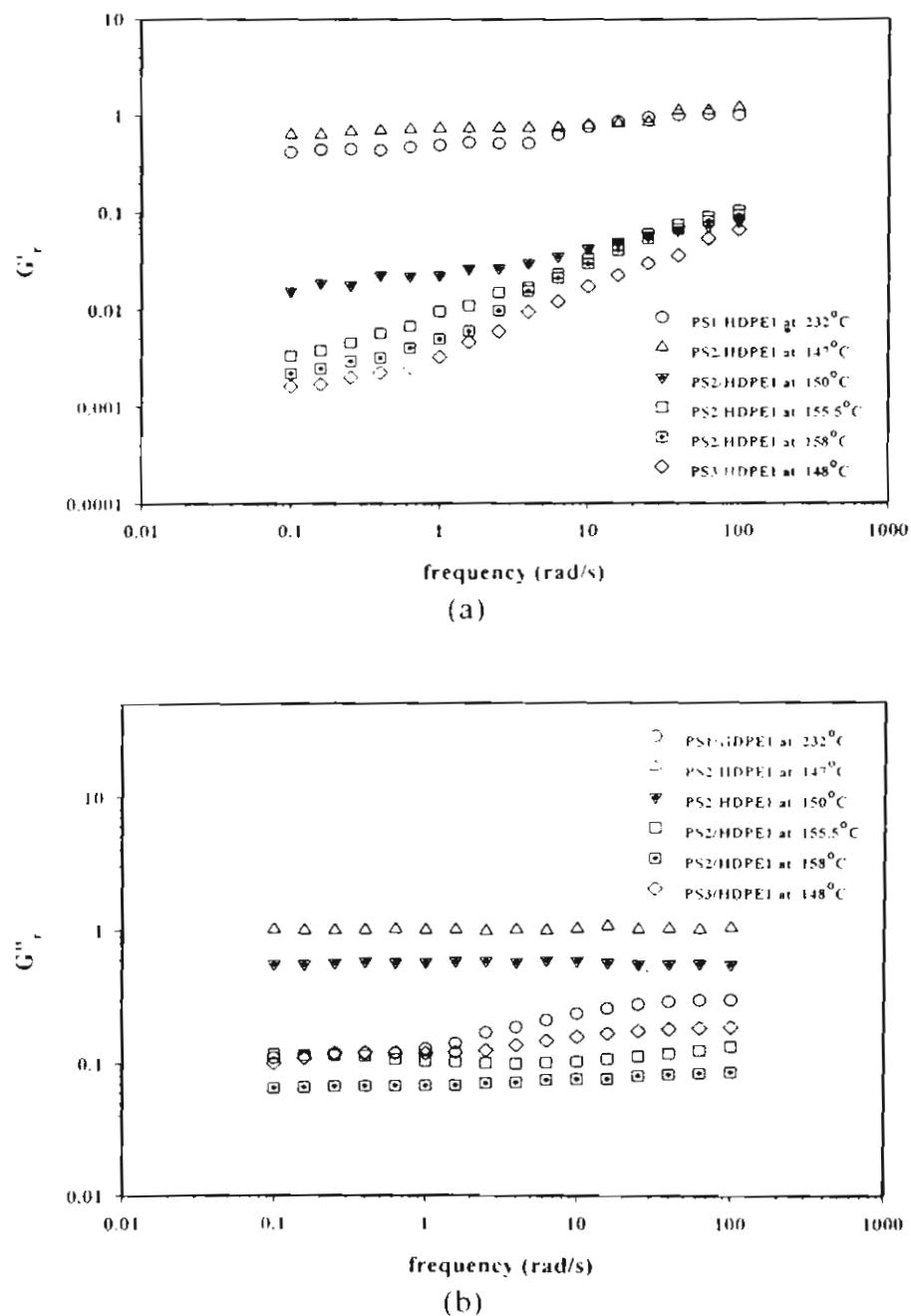


Figure 4 (a) G'_r at different temperatures, (b) G''_r at different temperatures.

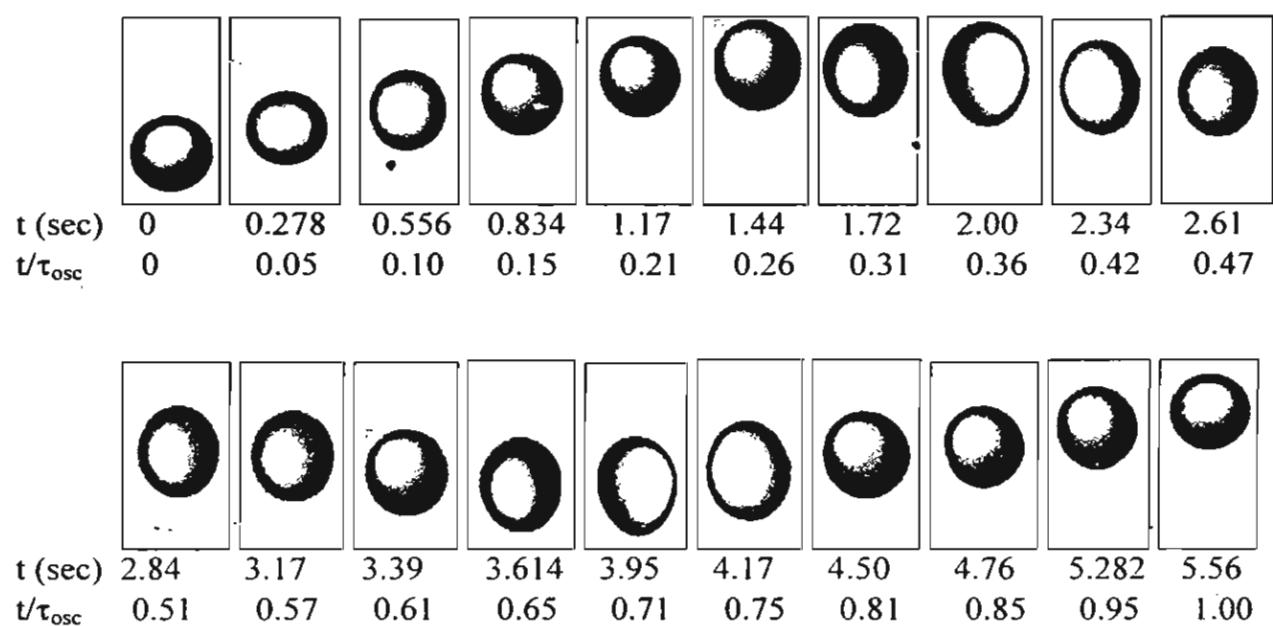


Figure 5 Droplet deformation of system A3 under shear at strain = 60 %, frequency = 0.18 Hz, $G''_r = 0.06$, $Wi = 4.17 \times 10^{-3}$, $\tau_r = 32$, $T = 158$ °C, $d_o \sim 180$ µm and gap 2,000 µm, at magnification 40X at various times in one cycle.

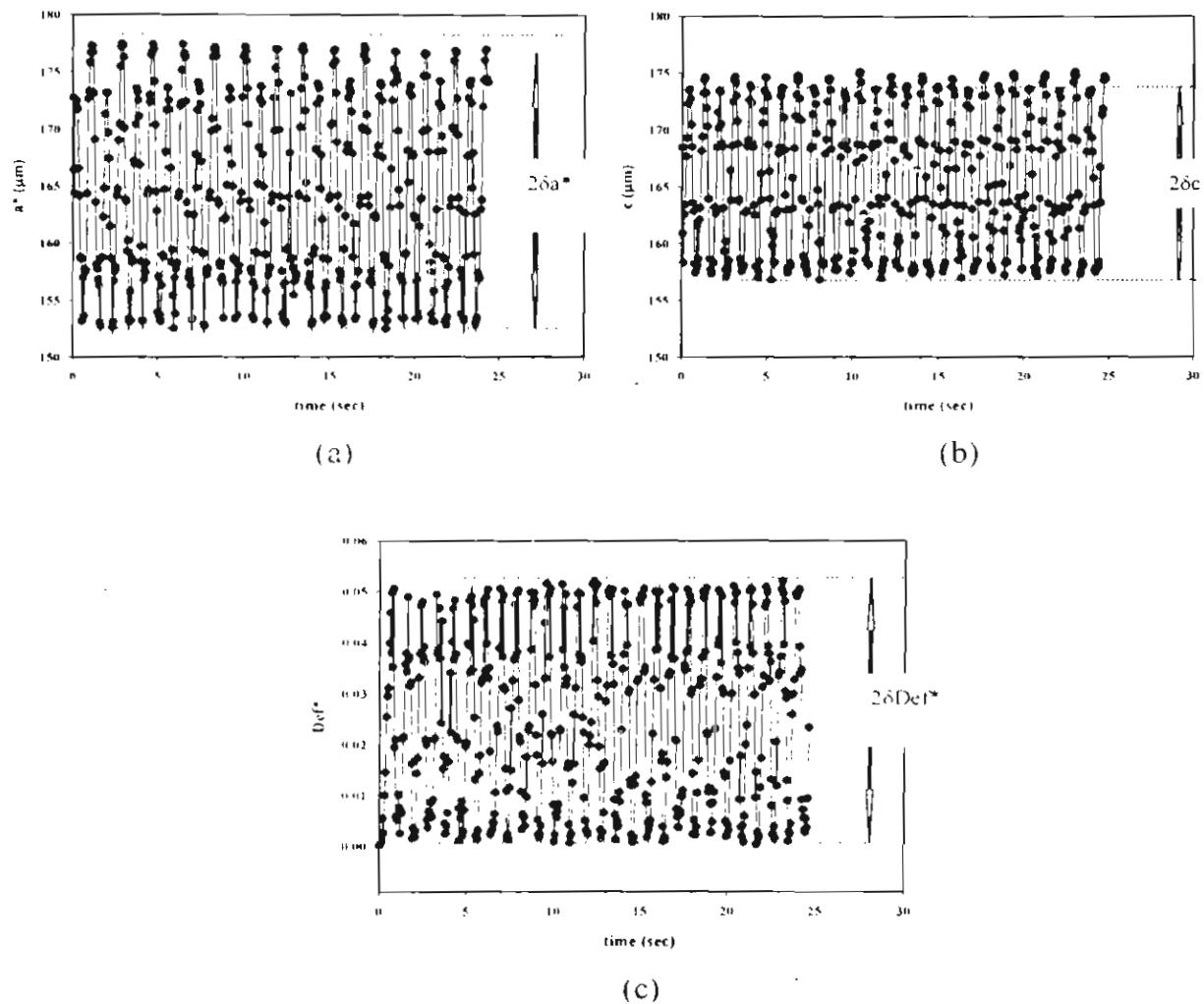


Figure 6 Deformation parameters vs. time of system C1 at strain 60%, frequency 0.33 Hz, $\tau_r = 32$, $G''_r = 0.12$, $d_0 \approx 170 \mu\text{m} - 195 \mu\text{m}$, gap = 2.000 μm ; a) a^* vs. time; b) c vs. time; and c) Def^* vs. time.

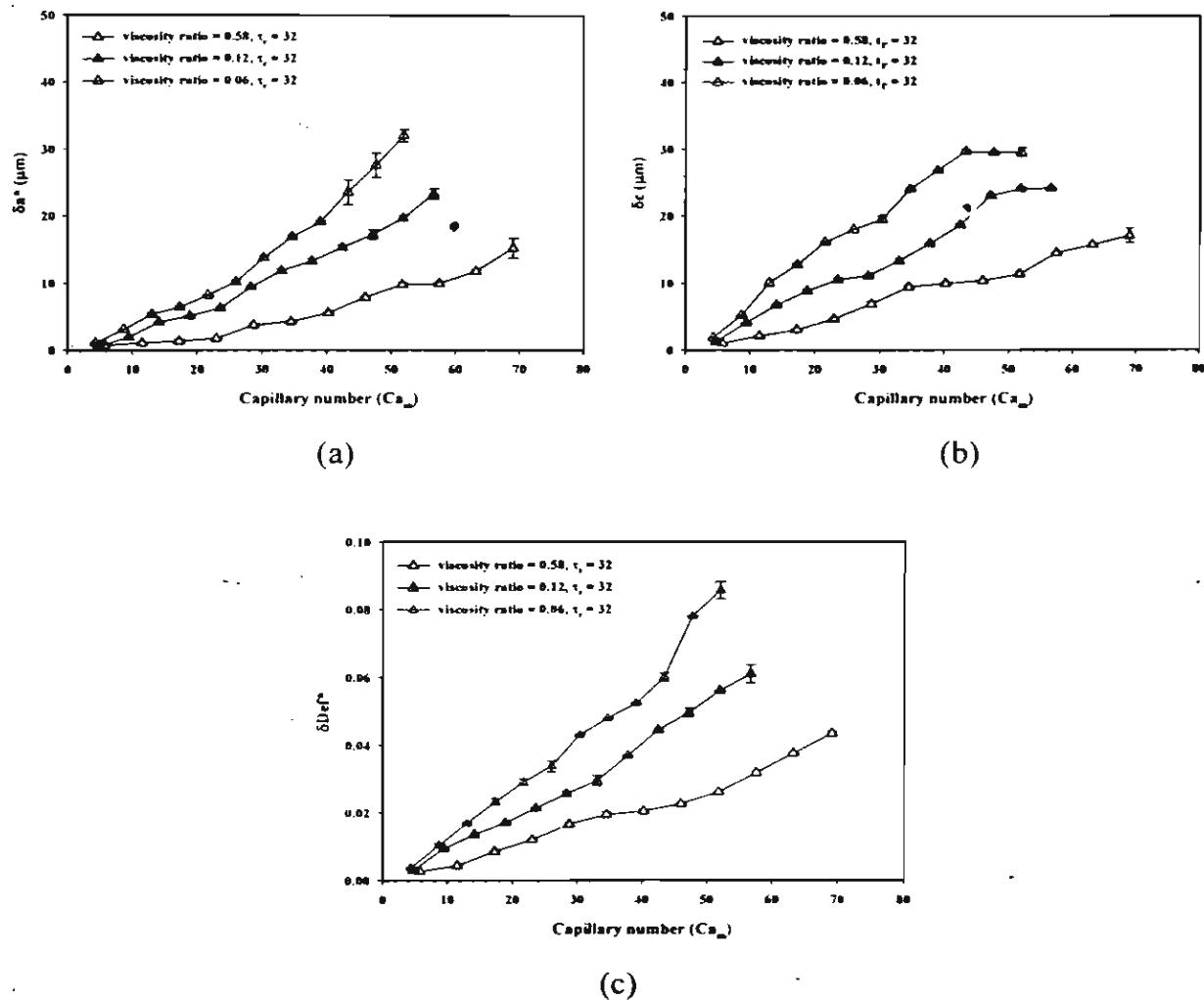


Figure 7 Amplitudes of the deformation parameters vs. Ca_m of systems A1, A2, and A3 at $\tau_r = 32$, $d_o \approx 190 \mu\text{m} - 205 \mu\text{m}$, gap = 2,000 μm ; $T = 150^\circ\text{C}$, $G''_{\tau_r} = 0.58$, $G'_{\tau_r} = 0.032$; $T = 155.5^\circ\text{C}$, $G''_{\tau_r} = 0.12$, $G'_{\tau_r} = 0.009$; $T = 158^\circ\text{C}$, $G''_{\tau_r} = 0.06$, $G'_{\tau_r} = 0.0046$; distance of drop from the center of plate $\sim 6.8 \text{ mm}$: a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; c) δDef^* vs. Ca_m .

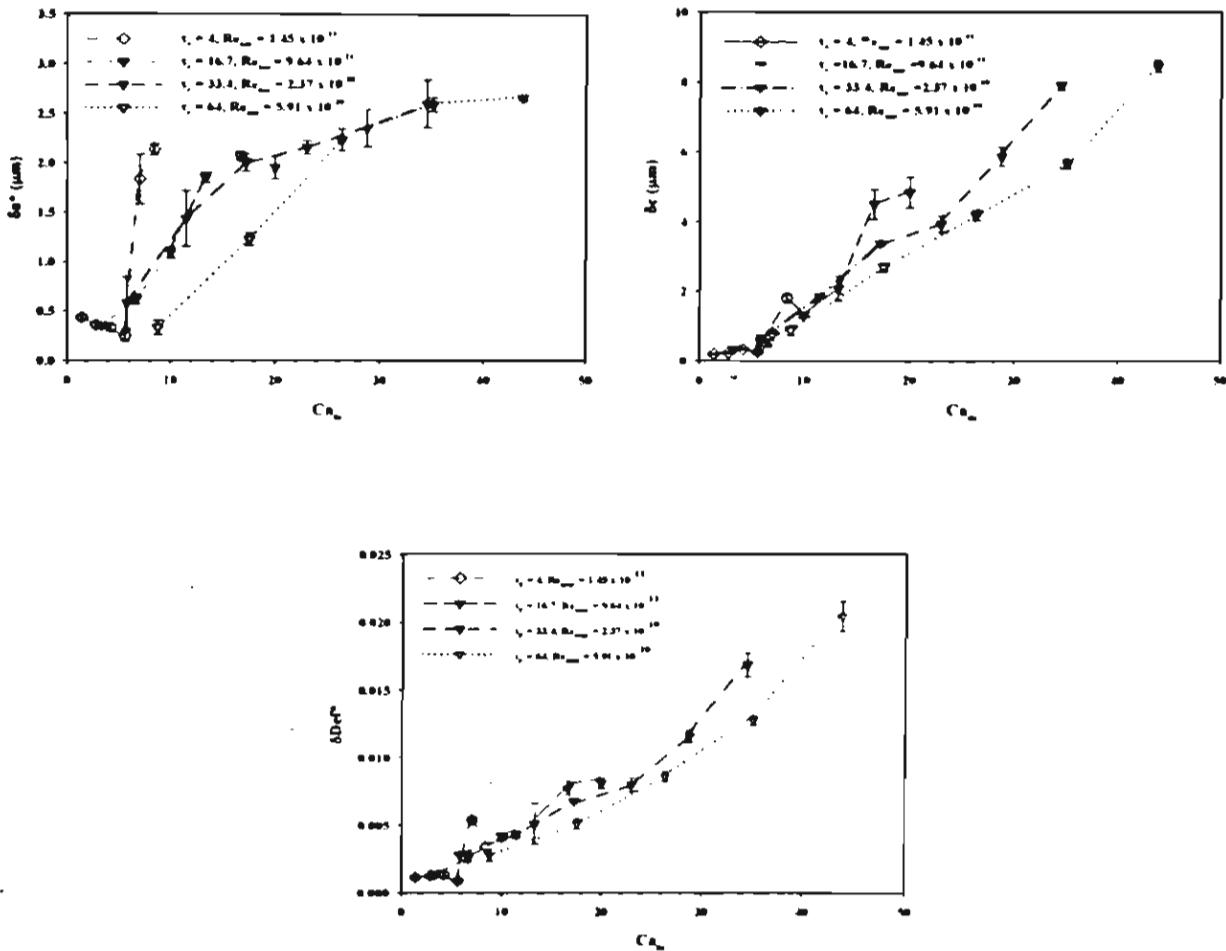


Figure 8 Amplitudes of deformation parameters vs. Ca_m of system A4 at $T = 147$ °C, $d_o = 185$ μm - 200 μm, gap = 2,000 μm: frequency = 0.012 Hz, $G''_r = 1$, $Re_{osc} = 1.45 \times 10^{-11}$; frequency = 0.05 Hz, $G''_r = 1$, $Re_{osc} = 9.64 \times 10^{-11}$; frequency = 0.10 Hz, $G''_r = 1$, $Re_{osc} = 2.37 \times 10^{-10}$; frequency = 0.192 Hz, $G''_r = 1$, $Re_{osc} = 5.91 \times 10^{-10}$; distance of drop from the center of plate ~ 6.8 mm: a) δa^* vs. Ca_m ; b) δc vs. Ca_m ; and c) δDef^* vs. Ca_m .

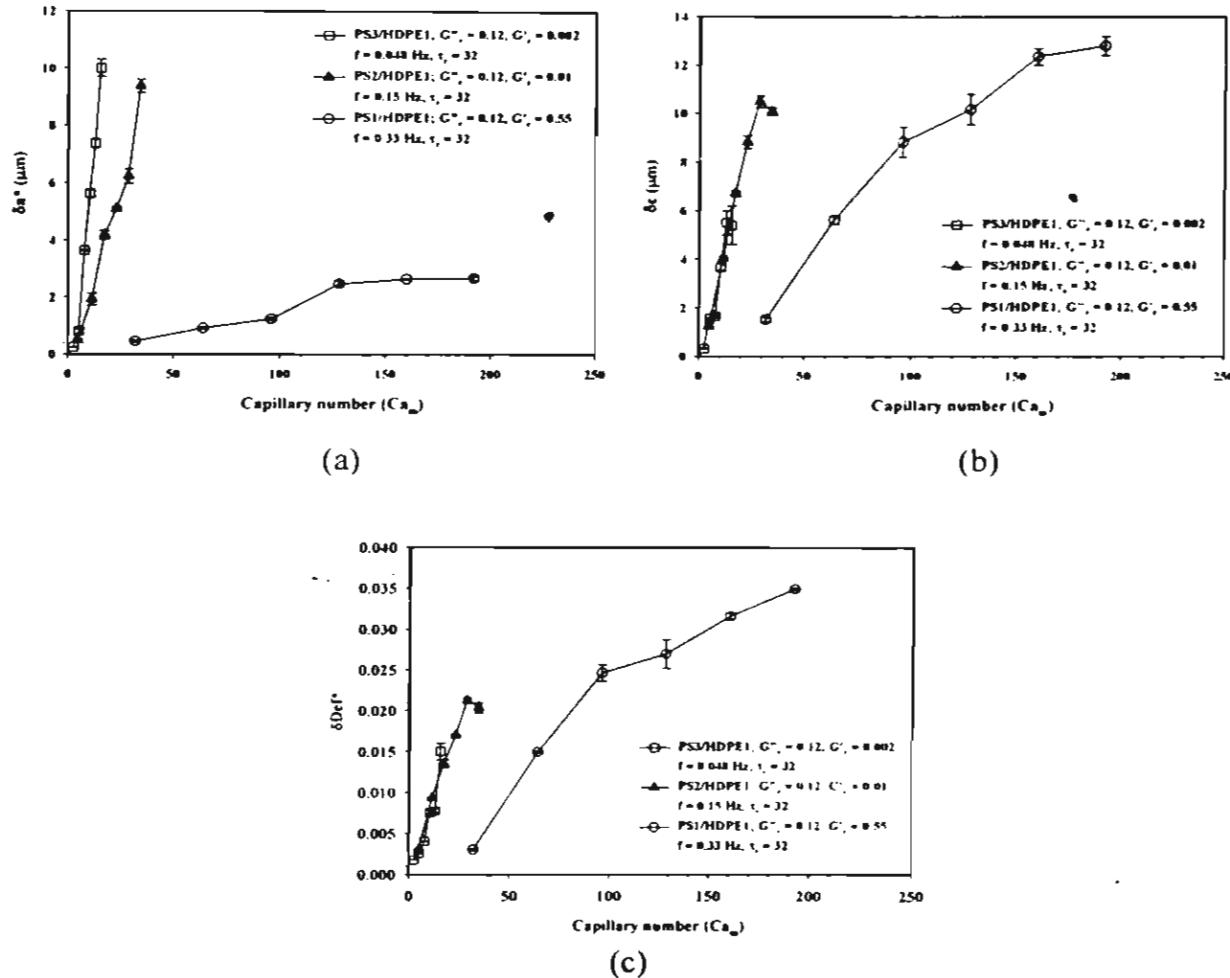
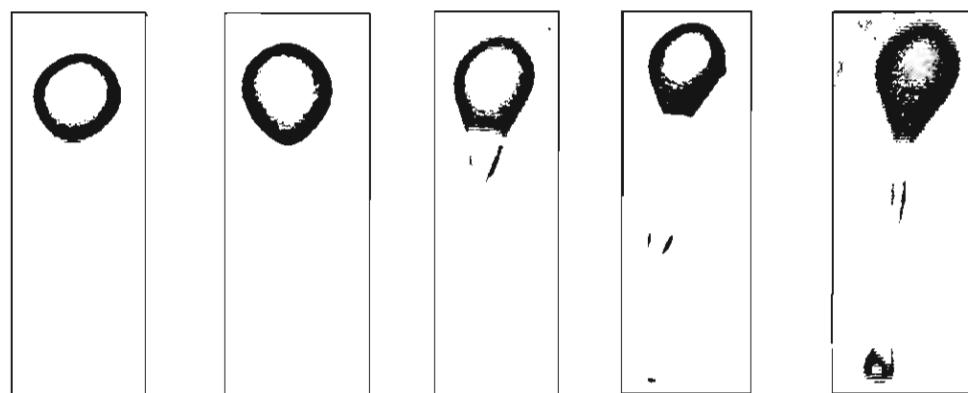
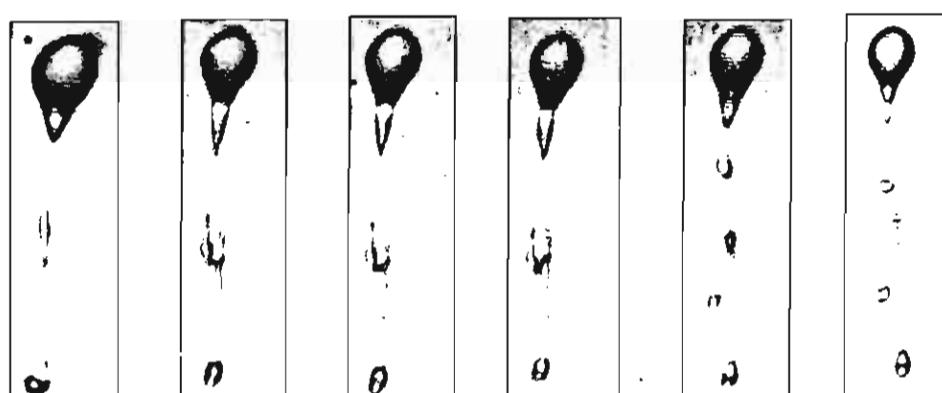


Figure 9 Amplitudes of deformation parameters vs. Ca_m of systems A2, B1, and C1 at $G''_r = 0.12, \tau_r = 32, d_0 \approx 170 \text{ } \mu\text{m} - 190 \text{ } \mu\text{m, gap} = 2000 \text{ } \mu\text{m: system B1, } T = 148^\circ\text{C, frequency} = 0.048 \text{ Hz; system A2, } T = 155.5^\circ\text{C, frequency} = 0.15 \text{ Hz; and system C1, } T = 232^\circ\text{C, frequency} = 0.33 \text{ Hz. a) } \delta a^* \text{ vs. } Ca_m; \text{ b) } \delta c \text{ vs. } Ca_m; \text{ c) } \delta Def^* \text{ vs. } Ca_m.$



t (sec)	10	60	371	684	874
-----------	----	----	-----	-----	-----

t/τ_r	2	12	74	136	174
------------	---	----	----	-----	-----



t (sec)	956	1014	1035	1050	1065	1140
-----------	-----	------	------	------	------	------

t/τ_r	191	202	207	210	213	228
------------	-----	-----	-----	-----	-----	-----

Figure 10 Droplet breakup under oscillatory shear of system A1 where $Ca_c = 102.13$, $Wi_d = 2.48 \times 10^{-3}$, strain = 178, frequency = 0.2 Hz, $G''_r = 0.58$, $G'_r = 0.03$, time scale ratio = 58, $T = 150$ °C, $d_0 = 167$ μm, gap = 2000 μm, and magnification 40x.

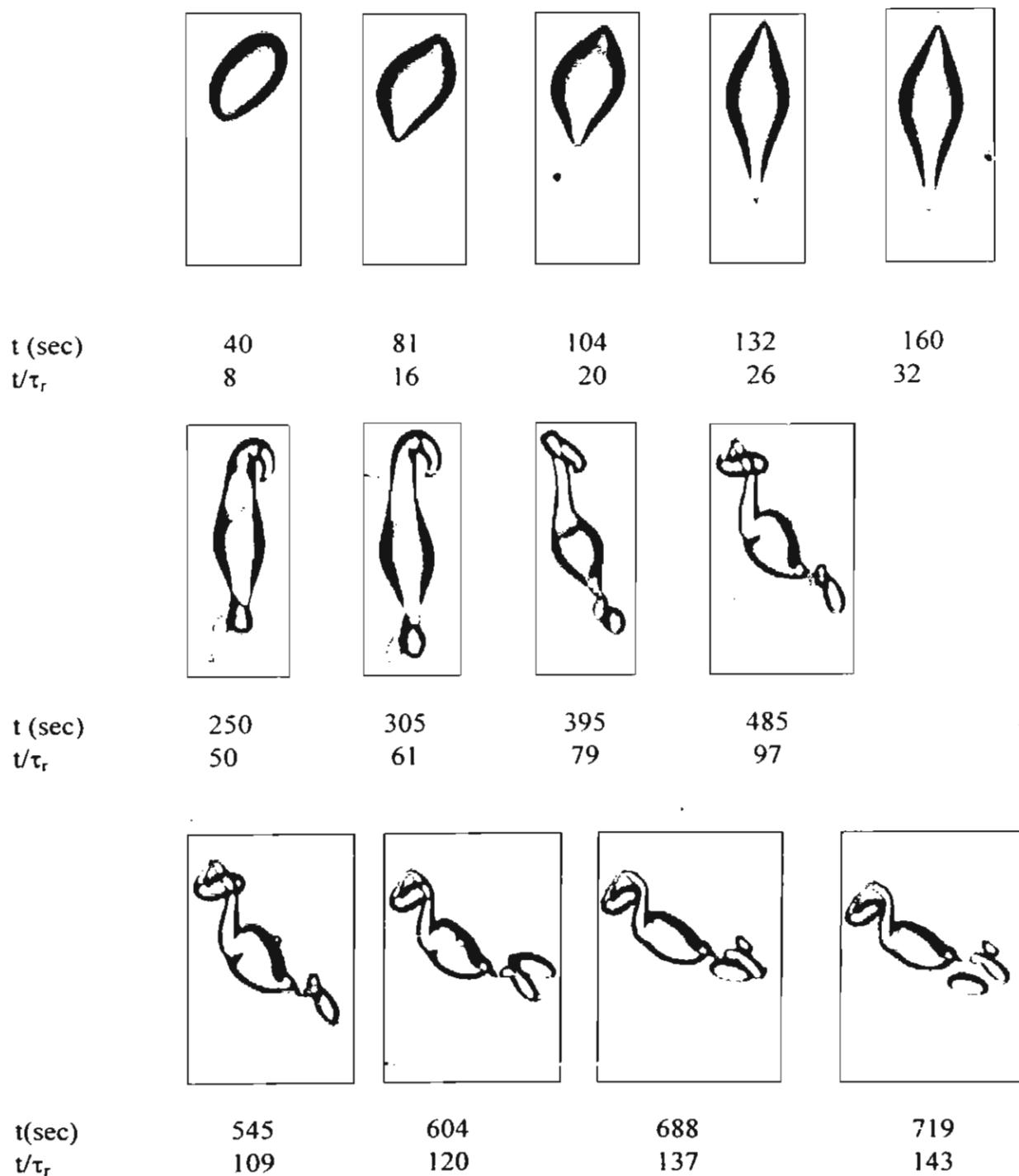


Figure 11 Droplet breakup under oscillatory shear of system A3 where $Ca_c = 92.93$, $Wi_d = 2.6 \times 10^{-3}$, strain = 160, frequency = 0.2 Hz, $G''_r = 0.06$, $G'_r = 0.0045$, time scale ratio = 36, $T = 158$ °C, $d_o = 173$ μm, gap = 2000 μm, and magnification 40x.

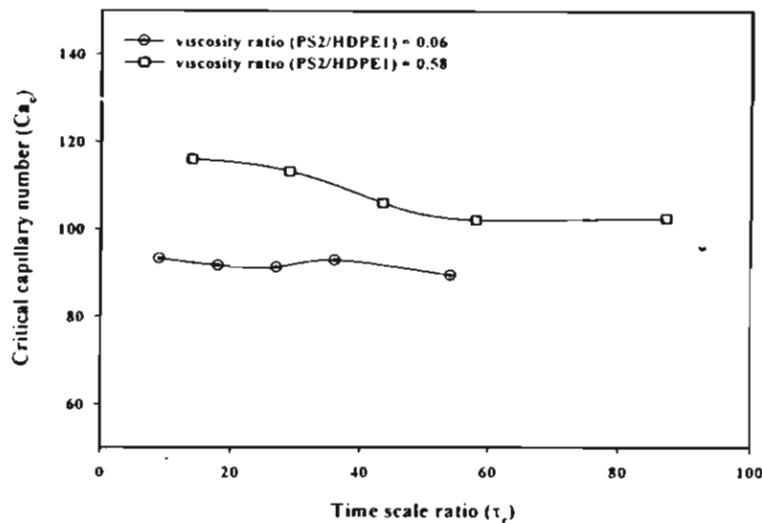


Figure 12 Critical capillary number vs. τ_r of: a) system A1 at $T = 150^\circ\text{C}$, $G''_r = 0.58$, $d_o \approx 165 \mu\text{m} - 175 \mu\text{m}$; b) system A3 $T = 158^\circ\text{C}$, $G''_r = 0.06$, $d_o = 170 \mu\text{m}$, gap = 2,000 μm .

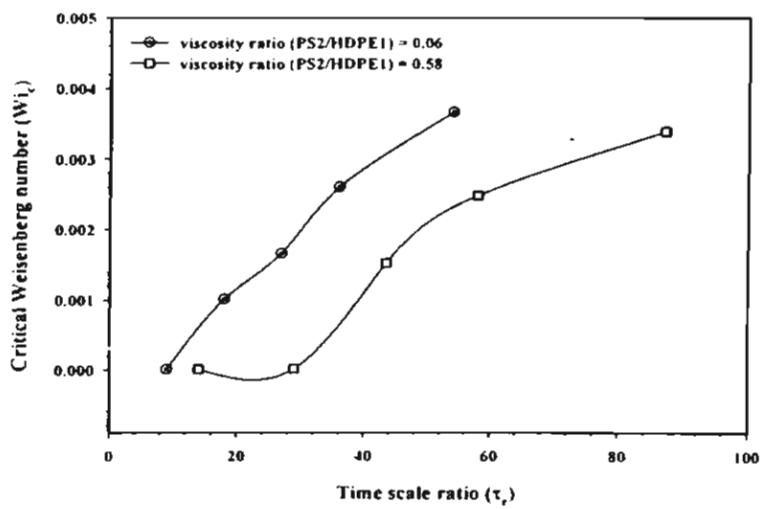


Figure 13 Critical Weisenberg number (Wi_c) vs. τ_r of: a) system A1 at $T = 150^\circ\text{C}$, $G''_r = 0.58$, $d_o \approx 165 \mu\text{m} - 175 \mu\text{m}$; b) system A3 $T = 158^\circ\text{C}$, $G''_r = 0.06$, $d_o = 165 \mu\text{m} - 175 \mu\text{m}$, gap = 2,000 μm .

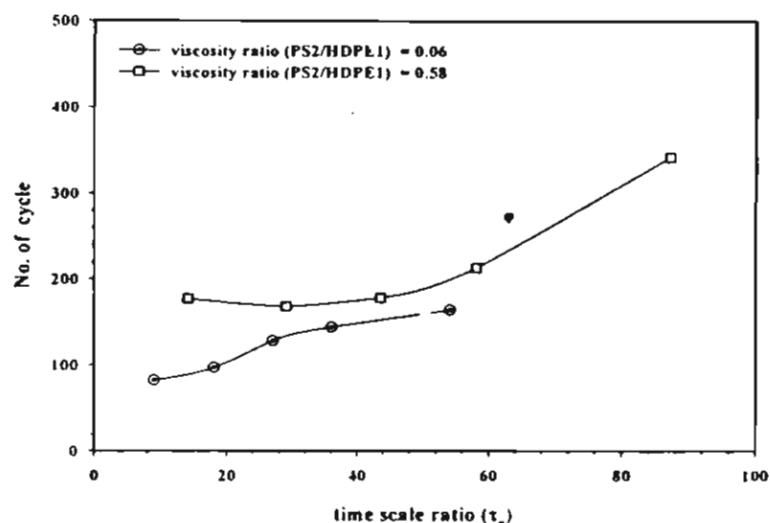


Figure 14 Number of cycles required for drop breakup vs. τ_r of: a) system A1 at $T = 150^\circ\text{C}$, $G''_r = 0.58$, $d_o \approx 165 \mu\text{m} - 175 \mu\text{m}$; b) system A3 $T = 158^\circ\text{C}$, $G''_r = 0.06$, $d_o = 165 \mu\text{m} - 175 \mu\text{m}$, gap = 2,000 μm .

Chapter 3: Dynamics of Vorticity Stretching and Breakup of Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix

Thipphaya Cherdhirankorn^a, Wanchai Lerdwijitjarud^b,
Anuvat Sirivat^{a, #}, and Ronald G. Larson^c

^a Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

^b Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Pathom 73000, Thailand

^c Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Keywords: Viscoelastic droplet, vorticity stretching, immiscible blends

Abstract

The effect of droplet elasticity on transient deformation of isolated droplets in immiscible polymer blends of equal viscosity was investigated. In terms of the deformation parameter, $Def^* = a^* - c / a^* + c$ where a^* and c are apparent drop principal axes, it undergoes two cycles of positive oscillations before reaching a negative value, followed by one cycle of oscillation before attaining a steady state negative value. This behavior was observed when Capillary number, Ca , was varied between 3 and 9 at a fixed Weissenber number, Wi , of 0.31, and when Ca number was held fixed at 8 and Wi number was varied between 0.21 and 0.40. In another blend of relatively lower Wi number of 0.21, one cycle of oscillation in Def^* was observed before reaching steady state negative values when Ca number was varied between 3 and 14. The steady state Def^* varies inversely with Ca number, with a stronger dependence for the blend with higher Wi number. The magnitude of oscillation increases with increasing Ca and Wi numbers. The critical Ca was found to be 12 and 14 for the two blends studied; these values are about 30 times greater than that of Newtonian blends.

INTRODUCTION

For Newtonian polymer blends in a simple shear flow, the morphology of the minor (or droplet) phase is governed mainly by two dimensionless parameters: the viscosity ratio, i.e., the ratio of droplet viscosity to matrix viscosity; and the capillary number, the ratio of viscous to interfacial forces (Taylor 1932,1934):

$$Ca = \frac{D_o \gamma \eta_m}{2\Gamma} \quad (1)$$

where $\gamma \eta_m$ is the viscous shear stress, with γ is the shear rate and η_m the matrix viscosity, D_o is initial droplet diameter, and Γ is the interfacial tension.

A steady applied shearing flow that is not so fast as to lead to droplet rupture will eventually stretch a droplet into a roughly ellipsoidal steady-state shape, and the steady-state degree of deformation, defined as the deformation parameter Def , is approximately linearly related to the capillary number as (Taylor 1932,1934)

$$Def \equiv \frac{a - b}{a + b} = Ca \frac{19\eta_r + 16}{16\eta_r + 16} \quad (2)$$

where a and b are the lengths of the major and minor axis of the deformed droplet, respectively. Taylor (1934) predicted that the critical point at which the viscous force overcomes the interfacial force leading to droplet breakup occurs at $Ca_c \approx 0.5$ and $Def_c \approx 0.5$ for a steady (or quasi-steady, if the flow rate is very slowly increased) simple shearing flow with a viscosity ratio of around unity. Here, the subscript “c” stands for the critical condition for breakup. These basic predictions have been confirmed and refined in a number of detailed single-droplet experiments (Rumscheid and Mason 1961; Grace 1982; Bentley and Leal 1986; Guido and Villone 1997). However, when the viscosity ratio is higher than four, no breakup can be observed (Grace 1982). These results show that for Newtonian fluids, droplet deformation and breakup is strongly influenced by viscosity ratio, a result that emphasizes the importance of controlling this parameter carefully in any attempt to study the effects of other factors, such as viscoelasticity, on droplet deformation and breakup.

The above results were obtained for Newtonian droplets and matrix fluids; however, most polymers are viscoelastic under normal processing conditions, and so elasticity of the droplet and matrix phases should be an important factor affecting the behavior of droplets under a flow field. It has long been noticed, for example, that in blends of viscoelastic polymer melts, the steady-state average droplet size that results from breakup and coalescence of droplets under shear corresponds to a much higher capillary number than is seen in blends of Newtonian liquids at comparable viscosity ratios. Wu (1987) observed, for example, that the steady-state droplet size in extruded viscoelastic polymer blends at a viscosity ratio of unity is around ten times higher than would be obtained for Newtonian components at the same viscosity and at the same shear rate. Lerdwijitjarud *et al.* (2002) found that in blends of 20% polystyrene in polyethylene sheared in a rheometer, the steady-state droplet size corresponded to a capillary number ranging from 2 to 30, depending on the relative magnitudes of the normal stress differences in the droplet and matrix phases and on the viscosity ratio. These capillary numbers are from 4 to 80 times higher than the critical capillary number for breakup of a Newtonian droplet in a Newtonian matrix. While it might be thought that this large increase in droplet size and hence capillary number could be due in part to coalescence effects present in blends, Lerdwijitjarud *et al.* (2003) showed recently that in a 20% blend of a Newtonian liquid in a Newtonian matrix the steady-state capillary number is actually lower than the critical capillary number for breakup of an isolated droplet, i.e., the disturbances to the flow produced by the presence of the other droplets enhances breakup of a given droplet to an extent that more than offsets any increase in droplet size due to coalescence. Thus, the high steady-state capillary numbers observed in blends of viscoelastic polymers must be attributed to the role of viscoelasticity.

Elasticity in the droplet or matrix phase can be quantified by the Weissenberg number Wi , a ratio of elastic to viscous forces, which we here will estimate using either the first normal stress difference N_1 or elastic modulus G' as a measure of the elastic forces and the shear stress as a measure of the viscous forces. Like the capillary number, the Weissenberg number increases with increasing shear rate, since elastic forces generally increase with shear rate more rapidly than do viscous forces. For a given droplet size, Wi and Ca are qualitatively proportional to

each other; however, since Ca depends on droplet diameter and Wi does not, these two dimensionless numbers can be varied independently by varying both the shear rate and the droplet size for a given pair of viscoelastic fluids. Since both phases can be elastic, there are two Weissenberg numbers, the droplet Weissenberg number Wi_d and the matrix Weissenberg number Wi_m . Since the elastic stresses in the droplet depend on the strength of the flow in the droplet, which is, in turn dependent on the viscosity ratio (more viscous droplets have weaker internal flows), it is clear that in general there is a coupling between the viscosity ratio and the strength of the elastic forces in the droplet. To minimize this influence, in what follows, we will work with fluids having viscosity ratios near unity, and use the macroscopic shear rate to characterize the flow inside the droplet. That is, following the work of Lerdwijitjarud *et al.* (2002), we will not attempt to use the actual flow in the droplet to estimate the droplet Weissenberg number, but will characterize the elasticity of the droplet using Wi_d defined by the droplet fluid properties at the macroscopic shear rate measured on the pure droplet fluid in a rheometer.

Recently, single viscoelastic droplets in Newtonian or viscoelastic matrices have been observed microscopically in simple shearing flows. Lerdwijitjarud *et al.* (2003) observed deformation and breakup of isolated droplets of weakly elastic fluid ($Wi_d \leq 0.02$) in a Newtonian matrix, and found that droplet elasticity produces a slight (up to around 20%) increase in Ca_c , the critical capillary number for droplet breakup. The breakup mechanism appeared to be similar to that in a Newtonian fluid; i.e., the droplet deformed increasingly in the flow direction as the shear rate was gradually increased, until breakup occurred. Elasticity of the droplet produced a reduction in the degree of deformation at any given shear rate and a greater critical deformation at breakup, resulting in a higher Ca_c . However, at the highest Weissenberg number, this effect appeared to be saturating, leading to only a modest increase in Ca_c .

Mighri *et al.* (1998) investigated the influence of elastic properties on droplet deformation and on the critical shear rate, or critical capillary number Ca_c for breakup. The deformed elastic droplet was roughly spheroidal with slightly sharpened edges while a Newtonian droplet retained smooth curved ends. Mighri *et al.* (1998) reported that the degree of droplet deformation, the critical shear rate for breakup, and the breakup time after startup of shearing increased with increasing

elasticity ratio between the droplet and the matrix fluids. They defined the elasticity ratio, k' , as the ratio of the Maxwell relaxation time (λ) of the droplet phase to that of the matrix phase, where $\lambda = N_{11}/2\eta\gamma^2$, where N_{11} is the first normal stress difference. Breakup occurred by an unsteady deformation of the droplet into a thin and long thread, followed by end pinching, and undulations along the droplet surface, finally resulting in a series of alternating large and small (or “satellite”) droplets. Moreover, they found that for a low or modest elasticity ratio, $k' \leq 4$, the critical capillary number Ca_c for droplet breakup in steady shearing flow increased with increasing k' , reaching $Ca_c \approx 1.75$ at high elasticity ratio, $k' \approx 4$, compared to $Ca_c \approx 0.5$ for Newtonian droplets. Thus, droplet resistance to deformation and breakup increases with increasing elasticity ratio of droplet to matrix phase. While the elasticities of the droplets studied by Mighri *et al.* (1998) were higher than those studied by Lerwijitjarud *et al.* (2003), the droplets in both studies deformed in the flow direction, and the increase in critical capillary number produced by elasticity saturated at a relatively modest values near unity, far below the steady-state values observed in highly viscoelastic polymer blends. These studies, and those described below, suggest that large increases in Ca_c result from a new mode of droplet deformation and breakup for highly elastic droplets.

A new, viscoelastic, mode of droplet deformation, that of droplet extension *in the vorticity direction* (perpendicular to both the shear and shear gradient directions) was apparently first reported for an elastic polymer droplet in a polymer matrix by Bartram *et al.* (1975). An apparently related phenomenon of *widening* of an extended viscoelastic droplet in a highly viscoelastic matrix was later observed by Levitt and Macosko (1996), who suggested that there is a relationship between the second normal stress difference of droplet and matrix phase and the degree of widening. Hobbie and Migler (1999) studied dilute emulsions of viscoelastic droplets in viscoelastic matrices at high shear rate and also observed elongation of the droplet in the vorticity direction at $\gamma \sim 280 \text{ s}^{-1}$ for viscosity ratio $\eta_r = 1.8$. By extrapolating data at high shear rates to lower rates, they obtained critical capillary numbers for droplet vorticity alignment of around 53, 13, and 11 for viscosity ratios, η_r , of 1.8, 22, and 240, respectively. The increase in critical capillary number for vorticity

alignment with viscosity ratio is consistent with a mechanism involving droplet elasticity, since a higher droplet viscosity would require a higher external flow rate to attain the same internal flow rate within the droplet, which would be needed to maintain a high elasticity of the droplet fluid.

Migler (2000) observed the deformation of highly elastic droplets in a polymeric matrix under a shear flow. The viscosity ratio was near unity, but the elasticity ratio of the droplet to the matrix was higher than 100; that is, the matrix phase was nearly Newtonian under the conditions of the experiments. In a weak shear and for small droplets [$Ca < 5$], the droplet orientation was found to be along the flow direction, whereas in a strong shear and for large droplets [$Ca > 5$], the orientation was along the vorticity axis with a broad distribution of aspect ratios.

Mighri and Huneault (2001) studied the deformation and breakup of a single droplet of viscoelastic Boger fluid in a Newtonian matrix, sheared in a transparent Couette flow cell. At low shear rate, they found that the steady-state deformation increased with shear rate as expected, but above a critical shear rate [$Ca \sim 5$] the deformed drop began contracting in the flow direction and changed its orientation to the vorticity axis. With further increases in shear rate, this elongation in the vorticity direction increased until breakup finally occurred at a capillary number no higher than $Ca \sim 35$. They proposed that the critical shear stress for reorientation of the droplet in the vorticity direction was probably related to the values of the first and second normal stress differences and their dependencies on shear rate. They also suggested that this reorientation occurred because of a the flow-induced circulatory flow in the droplet that produced an elastic circular hoop stress in the plane containing the shear and the shear gradient directions that squeezed fluid out along the axis perpendicular to this plane, that is, along the vorticity axis (Hobbie and Migler 1999; Migler 2000). They surmised that in a startup of a steady shearing flow, the deforming viscous stress rapidly reached steady state, but the normal stresses generated by the dispersed phase required a longer time, which caused a gradual increase in droplet elongation along vorticity axis until either a steady-state deformation was reached or breakup occurred. When a droplet was highly stretched in the vorticity direction, they observed small rocking instabilities in the velocity gradient direction causing the two ends of the droplet to sample significantly

different velocities periodically, which ultimately tore apart the droplet into two or more smaller drops.

In our work reported below, we take a further step towards understanding the behavior of commercial blends by using elastic polymer melts for both the droplet phase and the matrix phase. To neutralize any effect of variations in the viscosity ratio, we choose pairs of commercial polymers whose viscosity ratios remain relatively constant near unity when shear rate is varied. Using a flow cell mounted on an optical microscope, we observe the transient deformations of isolated droplets after startup of steady shear flow between parallel disks. By varying droplet size and shear rate, the effects of capillary number and elasticity (or droplet Weissenberg number) are isolated and investigated at fixed viscosity ratio very near unity. Our findings confirm those of Mighri and Huneault, who used nearly Newtonian matrix fluids, but, in addition, we find that when both the droplet fluid and the matrix fluid are highly elastic, droplet deformations during start-up of steady shearing show large oscillations before reaching steady state.

EXPERIMENTS

A. Materials

High density polyethylene and polystyrene (suppliers and grades given in Table 1) were used as matrix and droplet phases, respectively. Both polystyrene grades were obtained from the manufacturers in the form of flake; they were crushed and size-selected by passing the flakes through a 425-mm sieve. To eliminate volatile components, all polymers were heated to around 80°C under vacuum for 12 hours. The polymer blend systems and their experimental temperatures are listed in Table 2.

B. Rheological Characterization

Each polymer was molded into a disk, 25 mm in diameter and 1 mm thick by using a compression mold (Wabash, model V50H-18-CX) at 145°C for HDPE1 and PS1, and at 135°C for HDPE2 and PS2 under a force of 10 tons. We used a cone-and-plate rheometer (Rheometrics Scientific: Model ARES, 25-mm plate diameter with cone angle 0.1 rad) to obtain viscosities and first normal stress differences of the pure polymers. From the rheological properties of pure polymers at various temperatures, the desired pairs of polymers and operating temperatures were selected for further study; and their steady-state viscosities and first normal stress differences as functions of shear rate are shown in Fig. 1 (a) and (b). At low shear rates, the ratio of droplet-to-matrix first normal stress differences N_{1r} of system B could not be precisely determined due to the force-measurement limitations of the rheometer. However, in the low-shear-rate and low-frequency regimes, $N_1(\dot{\gamma})$ is approximately equal to twice $G'(\omega)$ at $\dot{\gamma} = \omega$, thus N_{1r} can be estimated by the corresponding ratio of storage moduli, G'_{1r} . The Weissenberg number (Wi) of both matrix and dispersed phases at testing conditions is also given in Table 3. The viscosity ratios and G' ratios of the two polymer systems are shown in Fig. 2. In addition, the stabilities of all polymers to thermal degradation were tested at their experimental temperatures by measuring the viscosity at a constant shear rate, 0.5 s^{-1} , for 4 hours; in all cases the viscosity values remain unchanged, allowing us to conduct blend experiments on each system for periods as long as four hours.

C. Observations of an Isolated Droplet in Shearing Flow

1. Shearing Apparatus

To observe the droplet behaviors in simple shearing flow, we used a flow cell (Linkam CSS 450, Linkam Scientific Instruments Ltd., UK) consisting of two transparent quartz parallel disks mounted on an optical microscope (Leica DMRPX, Leica Imaging Systems LTD., Cambridge, England), and connected to a CCD camera (Cohu 4910, Cohu Inc., CA). In addition, the images were analyzed on a computer using the Scion image software.

2. Sample Preparation

HDPE used as the matrix polymer was molded into a disk 25 mm in diameter and 0.5-1 mm thick by compression molding at 145°C for HDPE1 and 135°C for HDPE2. Various PS droplets were introduced into the matrix by using a pin to put a small amount of PS powder on a HDPE disk, and then covering this with another HDPE disk to form a sandwich. The sample was then placed between the top and the bottom disks of the flow cell, both of which were brought into contact with the sample, which was then heated to the testing temperature.

3. Droplet Shape Relaxation Time

We attempted to determine the interfacial tensions by measuring the deformation parameter Def (cf. Eq. 2) of a retracting droplet vs. time, which is known to decay exponentially [Lucinia *et al.* (1997)]:

$$Def = Def_0 \exp\left(-\frac{t}{\tau}\right) \quad (3)$$

so that the slope of Def vs. t on a semi-log plot can be related the characteristic relaxation time for a single drop, τ . By equating this characteristic relaxation time to that predicted by the Palierne model (Eq.4) [Palierne (1990) and Graebling *et al.* (1993)], the apparent interfacial tension was then calculated from the following relation

$$\tau = \frac{(3 + 2\eta_r)(16 + 19\eta_r)\gamma_o \eta_{m,o}}{40(1 + \eta_r)\Gamma} \quad (4)$$

To obtain images of the relaxing droplet after a large strain, the desired strain was imposed onto a selected drop in the field of view of the microscope which moved the droplet out of the field of view, then the droplet was left to relax at least 40-50 min (which is equal to or greater than the droplet relaxation time) to ensure that the drop had returned to the spherical shape, and then the droplet was moved back into the field of view by imposing the same strain in the reverse direction. A hundred to 200 images were then recorded (10-20 seconds per frame) while the droplet relaxed its shape. For both systems, the droplet size was varied from around a hundred micron up to 400 μm or thereabouts. For system A, with initial drop size of 96 μm shear rate 0.2 1/sec η_r equal to 0.79 and η_r equal to 3150 Pas, the relaxation time of Eq. 3 was 362 sec and the corresponding Γ was 1.66 mN/m. Fig. 3 (a) and (b) shows that the apparent interfacial tension values inferred from Eq. 4 increases with the droplet size. This dependence of apparent interfacial tension on droplet size is likely caused by the contribution of droplet elasticity to the relaxation of the droplet shape. For large enough droplets, relaxation should become slow enough that viscoelastic stresses relax too quickly to influence droplet shape relaxation and hence the rate of relaxation is governed by interfacial tension alone. Thus, the interfacial tension value obtained for large droplets is expected to be the most accurate. Unfortunately, because of the limitation in the ratio of a gap width to an initial droplet size, which was kept at greater than 5, we cannot attain a regime in which the apparent interfacial tension becomes independent of droplet size; see Fig. 3. Therefore, the values of the interfacial tension for the polymer blend systems used in this work were taken from the literature [Brandrup and Immergut (1989)], which are 5.79 mN/m for system A at 147°C, and 5.92 mN/m for system B at 139°C.

From the optical microscope, the droplet images were captured only from the top view, i.e., a view containing the flow and vorticity directions. Since only a projection of the droplet onto the vorticity plane can be imaged from this view, this view cannot determine the true lengths of the principal axes, because two of them

(those in the flow and the shear-gradient directions) are not parallel to the vorticity plane. However, the lengths of these axes can be determined by using the affine angle of rotation of the droplet in the plane containing the flow and shear-gradient directions (Larson 1988) together with the condition of volume preservation, $D_o^3 = abc$ (Almusallam *et al.* 2000).

Although the lengths of the principal axes can be approximated by using the method mentioned above, for convenience we use the lengths of the observable axes, shown in Fig. 4, to describe the behavior of each droplet. Thus, we define a modified deformation parameter Def^* as:

$$Def^* = \frac{a^* - c}{a^* + c} \quad (5)$$

where the asterisk denotes that the deformation parameter is an apparent one obtained from the droplet image projected onto the flow-vorticity plane; see Fig. 4.

4. Transient Deformation

The deformed shapes were observed as a function of time from initial to steady-state shapes. Because the Linkham device has one stationary and one moving plate, a single droplet cannot be viewed continuously from startup of shearing to attainment of steady-state shape, since this droplet will pass out of the viewing plane after imposition of around 10 strain units. However, since the behavior of a given isolated droplet is highly reproducible, the strain dependence of the deformation can be determined by combining the results of several experiments. In experiments of type 1, we first move the droplet out of the viewing window by imposing a shearing strain of less than 40 strain units. After allowing the droplet to relax its shape for at least 40 minutes, an observed shear rate was imposed at the same strain but in opposite direction, eventually bringing the droplet back into the viewing window, where it can be observed during deformation. However, the droplet could not be subjected to a large strain in this type of experiment, since this would move the droplet again out of the viewing window. So, to obtain droplet deformation at large strains, we performed experiments of type 2, in which we sheared continuously, and imaged the droplet each time it passed through the viewing window in its orbit

around the axis of the rotation of the rotating plate. Typically, one orbit would require around 40 strain units. To get a clear image of the droplet without a high-speed camera, we stopped the flow briefly each time the droplet reached the center of the viewing image and video recorded its shape over a period of around 1 second, which is a time much too short for the droplet to relax its shape significantly. Then the flow was resumed again until the droplet again reached the viewing window. By repeating the experiment on droplets of similar size, which were stopped at different times, we could assemble a consistent curve from multiple droplets of the droplet deformation versus time at a given shear rate. In the following, the results from different droplets will be presented using different symbols, showing the consistency of results combined from multiple droplets. In each experiment, the time for one revolution of a droplet was recorded with a stopwatch along with the time shown on the Linksys program. To avoid interactions with the plates, the ratio of the gap width to the initial diameter of a selected drop was kept higher than 10, and only droplets near the center of the gap were observed. The experiment was repeated with more than 10 droplets with initial diameters around 75 ($\pm 10\%$) μm . were used, and the imposed shear rate was 0.5 s^{-1} . Similar experiments (only type 2) were carried out using other droplet sizes, 52, 110 and 120 μm , but the same shear rate of 0.5 s^{-1} . To separate the effect of shear rate from that of elasticity, another set of experiments were carried out on droplets of different sizes [135, 75; and 46 μm] but in which the shear rate varied inversely with droplet size from 0.28, to 0.5, to 0.8 s^{-1} . In this way we could vary the viscoelastic forces, which increase with increasing shear rate, while holding the capillary number fixed at around 8 by varying the droplet size inversely with the shear rate.

5. Steady-State Deformation and Breakup

From the transient experiments, the required strain to reach steady state can be determined and was found to be around 2500 strain units. To determine the steady-state droplet shape as a function of capillary number, we carried out experiments up to high strains at two different shear rates and for different droplet

sizes. The selected shear rates were 0.3 and 0.5 s^{-1} for system A, and 1 s^{-1} for system B, which are high enough that the needed strain could be achieved within an acceptable time, but not so high that the steady-state droplet shapes are too small to be imaged clearly. In addition to using these two shear rates, different droplet sizes were chosen to vary the capillary number at fixed elasticity. After loading a sample, droplets were allowed to relax to spherical shapes for a period of at least 50 minutes, a bit longer than for the transient experiments described earlier, since some of the droplets used were larger and so needed somewhat longer to relax. A constant shear rate was then applied until a strain exceeding 2500 strain units had accumulated. When a selected droplet passed through the viewing window, the motor was stopped for less than a second and a video movie (speed 25-fps) was then recorded, as described earlier in the description of the experiments measuring transient droplet shapes. To ensure that the steady state deformation had indeed been attained, we repeated imaging the same droplet for several more passes of the droplet through the viewing window over a period of 5 to 10 min. In addition, after turning off the flow the droplet shape relaxation was recorded at a video recording speed of 10-20 seconds per frame for approximately 1 hour.

When the droplet size was varied at fixed shearing rate, we found a critical droplet size above which no steady state-shape was obtained. For these droplets, the unstable shape of the droplet was recorded with time, by imaging the droplet each time it passed through the viewing window (as in the experiments discussed earlier), until the droplet broke.

RESULTS AND DISCUSSION

A. Deformation in Steady Shear Flow

1. Observations of Droplet Deformation

We first consider system A, in which both matrix and droplet phases are highly elastic with a G' ratio of 0.7 at $\omega = 0.5$ rad/s. A shear rate of 0.5 s^{-1} and a droplet size of $75 (\pm 10\%) \mu\text{m}$ were selected for study at a well-controlled temperature (147°C). We observed that the shape of the deformed drop, Def^* , under steady shear flow oscillates before attaining a steady state shape, as shown in Figs. 5 and 6. We divide the transient deformation into 5 regimes. In the first regime, a^* , the principle axis projected in the flow direction, shown in Fig. 5 (c), oscillates with a periodicity of around 10 sec, while c , the length of the principle axis in the vorticity direction, shown in Fig. 5 (d), does not change from its initial value until near the end of regime 1. From the absence of a variation in c , we infer that this oscillation may arise from a droplet tilting or rotation around the vorticity (z) axis as shown schematically in Fig. 7. Eventually, near the end of regime 1, while it is still tilting or rotating, the droplet begins to contract in the $z\text{-}\theta$ plane, and the c axis increases slowly. In the second regime, the drop gradually elongates in the vorticity direction, and after around 500 sec (or 250 strain units) elongation in the vorticity direction reaches its maximum at the end of this regime. At the maximum $|\text{Def}^*|$ between the regime 2 and 3, as shown in Fig. 5 (a), the c axis is much larger than its initial value so that $c/D_0 \sim 1.35$, while the a axis returns to a length nearly equal to its initial value [Fig. 5 (c)]. From volume conservation, this implies that the droplet is flattened in the z direction, as shown in Fig. 8. However, the deformed drop is not stable at this point because in regime 3, the droplet rapidly contracts in the vorticity direction; see Fig. 5 (d). While contracting in the vorticity direction and stretching occur along the flow direction, cusps emerge out of each side of the droplet along the vorticity axis, as can be seen in Figs. 6 (k) and (l). After 1000 strain units have been imposed, the droplet stretches in the vorticity direction again (regime 4) until a steady-state shape is attained at around 2000 strain units in the fifth regime, as shown in Fig. 5 (b).

These phenomena do not occur in system B, whose droplet and matrix phase elasticities are both lower than in system A, but whose elasticity ratio of droplet to matrix phase is higher than in system A, as shown in Table 3 and Figs. 1 and 2. When a constant shear rate of 0.4 s^{-1} is applied to system B, the deformation parameter rises rapidly from zero to around 0.09, and then slowly and roughly exponentially decreases with time until attaining a steady-state value shown in Fig. 9. This finding is similar to that of Mighri and Huneault (2001) who reported that under a strong shearing flow, an elastic droplet in a Newtonian matrix rapidly stretches along the flow direction, and then gradually contracts in this direction after the first normal stress difference in the droplet has developed sufficiently. Our Fig. 9 is very similar to Fig. 7a of Mighri and Huneault, except that in the latter, the droplet eventually becomes aligned in the vorticity rather than in the shear direction; i.e., the deformation parameter becomes negative. We also obtain negative steady-state values of Def^* for system B at higher values of Ca (as will be presented below). The similarity between our results for system B in a torsional plate-plate flow and the results of Mighri and Huneault in a circular Couette flow implies that the unusual oscillatory droplet deformation we observe for system A is not an artifact of our system geometry. We speculate that the oscillations arise only in blends for which both phases are highly elastic, and occur because the different growth periods for the first normal stress differences of the two phases produce time-delayed imbalances in the normal stress conditions on the droplet surface.

2. Effect of Ca on Droplet Deformation.

In this section, the elasticity of the droplet and matrix phases are held constant by holding the shear rate fixed at 0.5 s^{-1} . At this shear rate, where the G' ratio for blend A at $\omega = 0.5 \text{ rad/s}$ is 0.7, we selected various initial droplet sizes to vary the capillary number at a fixed droplet/matrix elasticity ratio. The deformation parameter Def^* vs. time from the 2nd to 5th regimes of the 52, 79, 110 and 120 μm -drops is shown in Fig. 10 (a). It can be seen in Fig. 10 (b) that between the second and the fourth regimes, droplets with higher Ca show a greater deformation in the

flow direction (larger a^*/D_0). However, for all Ca values in these experiments, nearly the same value of c/D_0 is reached at its minimum point at the boundary between regimes 3 and 4, as shown in Fig. 10 (c). For Ca values of 5 and 8, steady shapes are attained at strains around 1300 and 2000 (times of 2600 and 4000 secs), respectively, with larger droplet deformations (more negative Def^*) occurring with increasing capillary number. The larger droplets with diameters of 110 and 120 μm (higher capillary numbers of 11 and 12), do not attain steady-state shapes. For these droplets, the vorticity axis, c , rapidly increases for a long period and the axis in the flow direction (a^*) slightly decreases until the drops eventually break [Fig. 10 (b) and (c)].

3. Effect of Elasticity on Droplet Deformation

To investigate the effect of elasticity in system A, the capillary number was kept constant at 8 and the shear rate and drop size were varied inversely with respect to each other. Shear rates of 0.28, 0.5, and 0.8 s^{-1} were chosen and the droplet sizes used for these shear rates were 135 (2 runs), 70-79 (repeated experiments), and 45 μm , respectively. Fig. 11 (a) shows that there is a significant decrease in the maximum value of Def^* vs. t (at a strain of around 900) as the shear rate (and hence the elasticity) increases. As shown in Figs. 11 (b) and (c), this decrease results mainly from a decrease in a^*/D_0 , rather than an increase in c/D_0 . The steady-state value of Def^* in regime five is nearly the same for all shear rates.

B. Steady-State Deformation and Droplet Breakup Mechanism

The strains required to attain steady state at each shear rate were determined at shear rates of 0.3 and 0.5 s^{-1} for system A, and at 1 s^{-1} for system B. By increasing the droplet size, the capillary number was varied. As shown in Fig. 12, when Ca increases, the steady-state deformation *in the vorticity direction* increases; i.e., Def^* becomes more negative. This contrasts with the behavior of a Newtonian system where the steady-state deformation *in the flow direction* increases *monotonically* with Ca [Taylor (1934), Tsakalos *et al.* (1998), Guido and Villone (1998)]. Fig. 12 shows that a droplet in both systems starts to stretch in the vorticity direction at Ca

around 3. Whereas Mighri and Huneault (2001), using less viscous liquids, found that at Ca less than 10, an elastic droplet in a Newtonian matrix deforms along the flow direction with steady-state deformation increasing with increasing Ca , until Ca reaches roughly 5, above which the droplet starts contracting in the flow direction. At each value of Ca a droplet in our system B deforms less in the vorticity direction than one in system A (lower $|Def^*|$; see Fig. 12). This might be the result of the generally lower elasticity of system B. At the shear rate of 0.5 s^{-1} in system A, for droplets larger than $92 \mu\text{m}$ do not attain a steady shape, but the droplet eventually breaks up (see Section part A2 above); this size corresponds to a critical value of Ca for breakup of around 9, where the corresponding value of Def^*_c is around -0.27 . In addition, the critical capillary number of system A is somewhat comparable to the steady state critical Ca , which was around 6, in Lerdwijitjarud *et al.* (2002). Their system, PS(drop)/HDPE(matrix), like ours, had a viscosity ratio of unity and an N_1 ratio of around 0.7. A droplet in system B breaks at a higher value of Ca (~ 14) than for system A (~ 9). At the viscosity ratio of unity and N_1 ratio of 2, the steady state critical Ca was found to be around 12 in Lerdwijitjarud (2002). This is slightly less than Ca_c of system B. As shown in Fig. 2, the elasticity ratio (G'_r at the selected shear rate) of system B is 3-4 times higher than that of system A, which might account for the difference in critical capillary numbers for systems A and B. An alternative explanation might be that the weaker elasticity of system B produces less deformation in the vorticity direction than that of system A at the same capillary number, and hence a greater shear rate is required to stretch droplets in system B to produce rupture. If this latter explanation is correct, then droplets with intermediate elasticity, high enough to avoid elongation in the flow direction, but low enough to avoid large elongations in the vorticity direction, will be most resistant to rupture and will break at the highest capillary number.

In our more elastic blend A, when a constant shear rate above Ca_c is applied, a spherical drop deforms non-monotonically until regime five is reached and the droplet then elongates continuously in the vorticity direction until breakup occurs as shown in Figs. 10 (a), (b), and (c). The droplet breaks when its two ends are quite far apart and no longer located on nearby streamlines, as shown in Fig. 13. Mighri and

Huneault (2001) found that in a counter-rotating circular Couette cell, a viscoelastic droplet breaks when its two ends separated along the vorticity direction develop unstable motions because of large velocity differences between the two moving layers. A similar instability may occur in our flow.

We note that we could find no clear correlation in the literature or in our data between droplet Weissenberg number and re-orientation or break-up. The effect of elasticity may involve a complicated interplay of the first and second normal stress differences of both phases, and may couple to viscosity ratio, shear thinning, and capillary number. Careful experiments in which all these quantities are carefully controlled, along with numerical simulations of viscoelastic droplet deformation and breakup will be needed to obtain a more quantitative picture of these fascinating phenomena.

CONCLUSIONS

We measured the dynamics of deformation of an elastic droplet in an elastic matrix by selecting two blend systems with viscosity ratio near unity, but of different elasticities of both droplet and matrix phases with the Weissenberg number of matrix phase around 0.1-0.5 and of droplet phase around 0.2-0.5. In start up of a steady shear flow, the different elasticities in the polymer blends produce qualitative differences in the droplet deformations that occur before the droplet attains its steady-state shape. In system A with higher elasticity, the deformation oscillates several times before reaching its steady-state shape. In system B with lower elasticity, the droplet first deforms in the shear direction, and thereafter continuously contacts in the flow direction until it reaches its steady-state shape. When the capillary number is increased at fixed shear rate (and hence fixed elasticity) by increasing the droplet size in system A and B, the steady-state droplet shape becomes increasingly elongated in the vorticity direction and develops cusps along the vorticity axis. In this system A, at still higher capillary number, droplet breakup occurs when two ends of a drop elongated in the vorticity direction are situated on streamlines of different velocity which pull the droplet ends apart, leading to rupture.

ACKNOWLEDGEMENTS

The authors (W.L. and A.S.) would like to acknowledge the financial supports: the Thailand Research Fund (TRF), grants no. BRG/12/2544 and BRG4680015, and the Petroleum and Petrochemical Technology Consortium grant.

REFERENCES

Almusallam AS, Larson RG, Solomon MJ (2000) A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends. *J Rheol* 44:1055-1083

Bartram E, Goldsmith HL, Mason SG (1975) Particle motions in non-Newtonian media. *Rheol Acta* 14:776-782

Branup J, Immergut EH (1989) *Polymer Handbook*. 3rd Ed., New York

Bentley BJ, Leal LG (1986) An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. *J Fluid Mech* 167:241-283

Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. *Chem Eng Commun* 14:225-227

Graebling D, Muller R, Palierne JF (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsions of viscoelastic liquids. *Macromolecules* 26:320-329

Guido S, Villone M (1998) Three-dimensional shape of a drop under simple shear flow. *J Rheol* 42:395-415

Hobbie EK and Migler KB (1999) Vorticity elongation in polymeric emulsions. *Phys Rev Lett* 82:5393-5396

Larson RG (1999) *The structure and rheology of complex fluids*. Oxford University Press, New York

Lerdwijitjarud W, Sirivat A, Larson RG (2002) Influence of elasticity on dispersed-phase droplet size in immiscible polymer blends in simple shearing flow. *Polym Eng Sci* 42:798-809

Lerdwijitjarud W, Larson RG, Sirivat A, Solomon MJ (2003) Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/Poly(dimethylsiloxane) blends. *J Rheol* 47:37-57.

Levitt L, Macosko CW, Pearson SD (1996) Influence of normal stress difference on polymer drop deformation. *Polym Eng Sci* 36:1647-1655

Luciani A, Champagne MF, Utracki LA (1997) Interfacial tension coefficient from the retraction of ellipsoidal drops. *J Polym Sci, Part B: Polym Phys* 35:1393-1403

Mighri F, Ajji A, Carreau PJ (1997) Influence of elastic properties on drop deformation in elongational flow. *J Rheol* 41:1183-1201

Mighri F, Carreau PJ, Ajji A (1998) Influence of elastic properties on drop deformation and in shear flow. *J Rheol* 42:1477-1490

Mighri F, Huneault MA (2001) Dispersion visualization of model fluids in a transparent Couette flow cell. *J Rheol* 45:783-797.

Migler KB (2000) Droplet vorticity alignment on model polymer blends. *J Rheol* 44:277-290

Paliere JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. *Rheol Acta* 29:204-214

Rumscheidt FD, Mason SG (1961) Particle Motions in Sheared Suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow. *J Coll Sci* 16:238-261

Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. *Proc R Soc A* 138:41-48.

Taylor GI (1934) The formation of emulsions in definable fields of flow. *Proc R Soc A* 146:501-523.

Tsakalos VT, Navard P, Peurel-Dissier E (1998) Deformation and breakup mechanisms of single drops during shear. *J Rheol* 42:1403-1417

Wu S (1987) Formation of Dispersed phase in incompatible polymer blends-interfacial and rheological effects. *Polym Eng Sci* 27:335-343

Yamane H, Takahashi M, Hayashi R, Okamoto K (1998) Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain. *J Rheol* 42:567-580

TABLE**Table 1** Properties of polymer blend components

Polymer	Suppliers	Grade	M _w *	Melt Flow Index*
PS1	Polyscience	Cat#18544	50,000	-
PS2	Polyscience	Cat#23637	800-5,000	-
HDPE1	Bangkok Polyethylene	1600J	-	14
HDPE2	Aldrich	Cat#42,801-9	-	42

* Quoted by the manufacturers

Table 2 Polymer blend systems

Blend system	Blend components (Drop/Matrix)	Temperature (°C)	Γ (mN/m)
A	PS1/HDPE1	147	5.79
B	PS2/HDPE2	139	5.92

Table 3 The rheological data of blend systems

Blend System	Shear Rate (s ⁻¹)	Matrix				Droplet			
		η [*]	N _I [†]	G'	W _I ^{††}	η	N _I	G'	W _I ^{††}
A	0.28	2524	403	135	0.38	2426	-	70	0.21
	0.3	2505	435	145	0.39	2425	-	79	0.22
	0.5	2340	772	247	0.42	2340	-	179	0.31
	0.8	2175	1359	400	0.46	2272	936	359	0.40
B	1.0	612	-	34.2	0.11	619	-	64.7	0.21

- not measurable

* η unit is Pa.s

† N_I, G' unit is Pa

†† The Weisenberg number was calculated from the relation W_I = (2G') / [η(γ).γ]

FIGURE CAPTIONS

Figure 1 Viscosity η , storage modulus G' , and first normal stress difference N_1 as functions of shear rate and frequency for each pure polymer at the temperatures at which the blend experiments were carried out: (a) matrix phase HDPE1 at 147°C, η (●), G' (○), and N_1 (○), HDPE2 at 139°C, η (■) and G' (□); and (b) droplet phase PS1 at 147°C, η (▲), G' (△), and N_1 (△), PS2 at 139°C: η (◆) and G' (◇).

Figure 2 Values of droplet to matrix ratios of viscosity η (●), storage modulus G' (○), and first normal stress difference N_1 (▲) for (a) system A PS1/HDPE1 at 147°C; and (b) system B, PS2/HDPE2 at 139°C.

Figure 3 Dependence of apparent interfacial tension value on droplet size for: (a) system A; and (b) system B, as inferred from the Palierne formula, Eq. 4.

Figure 4 Schematic drawing of a single drop observed from the "side" and "top" views by optical microscopy, a and b: the long and short axes of the droplet in the flow-gradient plane, a^* : the a axis projected into the flow direction and c : the principal axis in the radial direction.

Figure 5 The time-dependent deformation of 75 ($\pm 10\%$) μm -drops after startup of steady shear at a rate, 0.5 s^{-1} , for system A. (a) Def^* vs. time on a log time scale, (b) Def^* vs. time on a linear time scale, (c) a^*/D_0 vs. time on a log time scale, and (d) c/D_0 vs. time on a log time scale. [initial droplet sizes (μm): 76 (●), 68 (○), 74 (▼), 69 (▽), 71 (■), 85 (□), 76 (◆), 75 (◇), 74 (▲), 70 (△), and 79 (●)]

Figure 6 Sequence of images of deformed droplets of initial radius 75 ($\pm 10\%$) μm -after startup of a steady shear at a rate of 0.5 s^{-1} for system A; (a)-(f) images of different droplets with lens magnification of $20\times$ [$D_0 = 69, 69, 71, 76, 75$, and $74 \mu\text{m}$, respectively]; (g)-(p) images of a single droplet with the lens magnification of $4\times$ [$D_0 = 79 \mu\text{m}$].

Figure 7 Schematic drawing of droplet rotation in the flow-gradient plane.

Figure 8 Sketch of a steady-state deformed droplet.

Figure 9 Time-dependent deformation of a $204 \mu\text{m}$ -droplet under constant shear rate, 0.4 s^{-1} , for system B.

Figure 10 Time-dependent droplet deformation at different values of Ca , controlled by changing the droplet diameter D_0 [$D_0 = 52 \mu\text{m}$; $\text{Ca} = 5$ (\bullet), $D_0 = 79 \mu\text{m}$; $\text{Ca} = 8$ (\circ), $D_0 = 110 \mu\text{m}$; $\text{Ca} = 11$ (\blacktriangledown), $D_0 = 120 \mu\text{m}$; $\text{Ca} = 12$ (\vee)] at the same shear rate 0.5 s^{-1} (and therefore the same elasticity) for system A: (a) Def^* , (b) a^*/D_0 , and (c) c/D_0 .

Figure 11 Time-dependent droplet deformation at different shear rates (and therefore different elasticities), at a capillary number Ca of 8, held fixed by varying the initial droplet diameter inversely with the shear rate for system A: (a) Def^* vs time, (b) a^*/D_0 vs time, and (c) c/D_0 vs time. Three different shear rates were used. (1): $\dot{\gamma} = 0.28 \text{ s}^{-1}$, with $D_0 = 135 \mu\text{m}$ (\blacktriangle) and a repeat run at this shear rate with the same droplet size, $D_0 = 135 \mu\text{m}$ (\triangle)]. (2): $\dot{\gamma} = 0.5 \text{ s}^{-1}$: $D_0 = 70 \mu\text{m}$ (\bullet), and a repeat run with a slightly larger droplet, $D_0 = 79 \mu\text{m}$ (\circ). (3) $\dot{\gamma} = 0.8 \text{ s}^{-1}$, $D_0 = 45 \mu\text{m}$ (\blacksquare)].

Figure 12 Dependence of steady-state deformation parameter on Ca for system A: shear rate 0.3 s^{-1} (\circ), shear rate 0.5 s^{-1} (\blacktriangle), and for system B: shear rate 1 s^{-1} (\square)].

Figure 13 Sequence of images during droplet breakup in system A, $D_0 = 120 \mu\text{m}$, at a shear rate of 0.5 s^{-1} ($\text{Ca}=12$). The flow direction is horizontal, and the vorticity direction vertical.

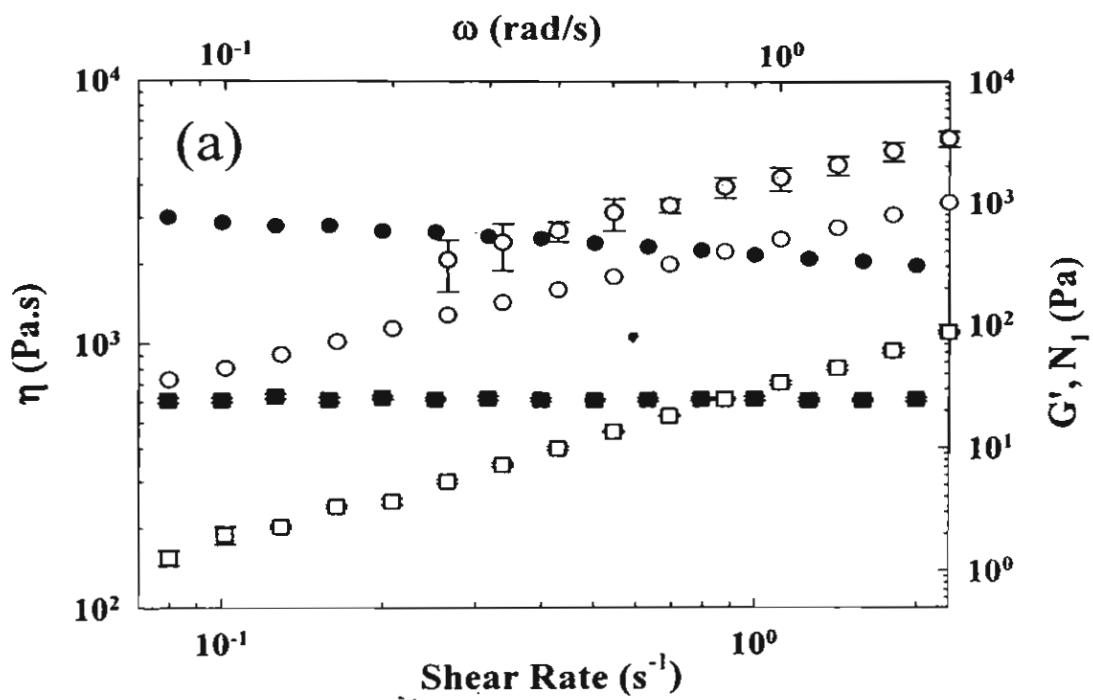


Figure 1 (a)

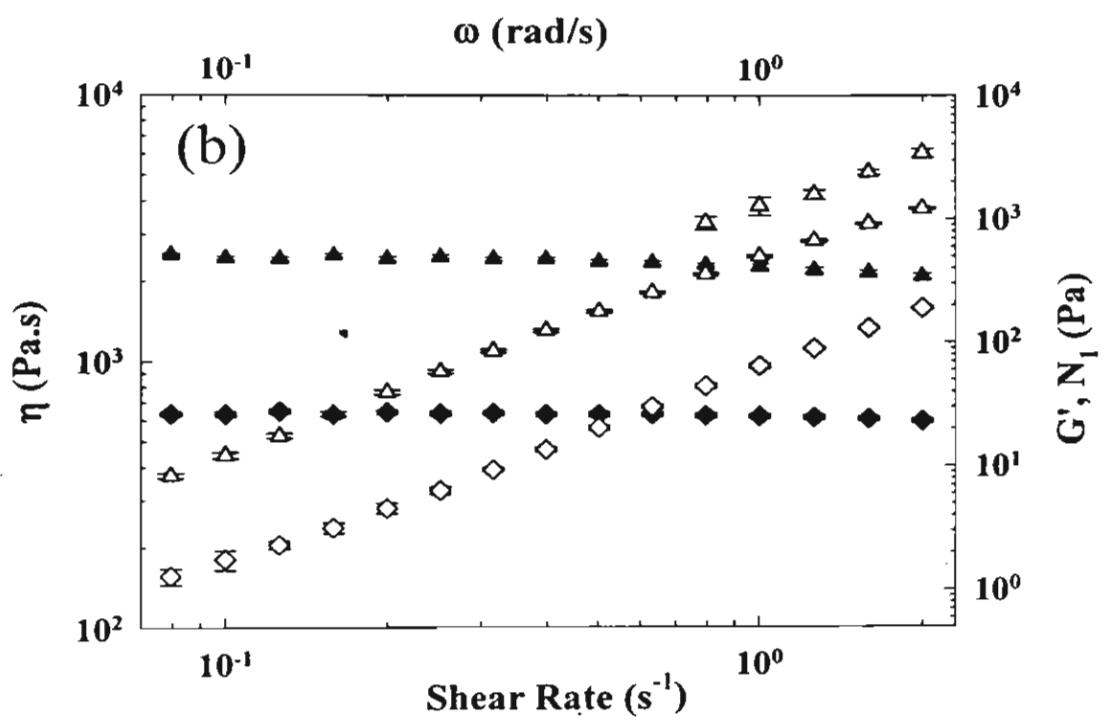


Figure 1 (b)

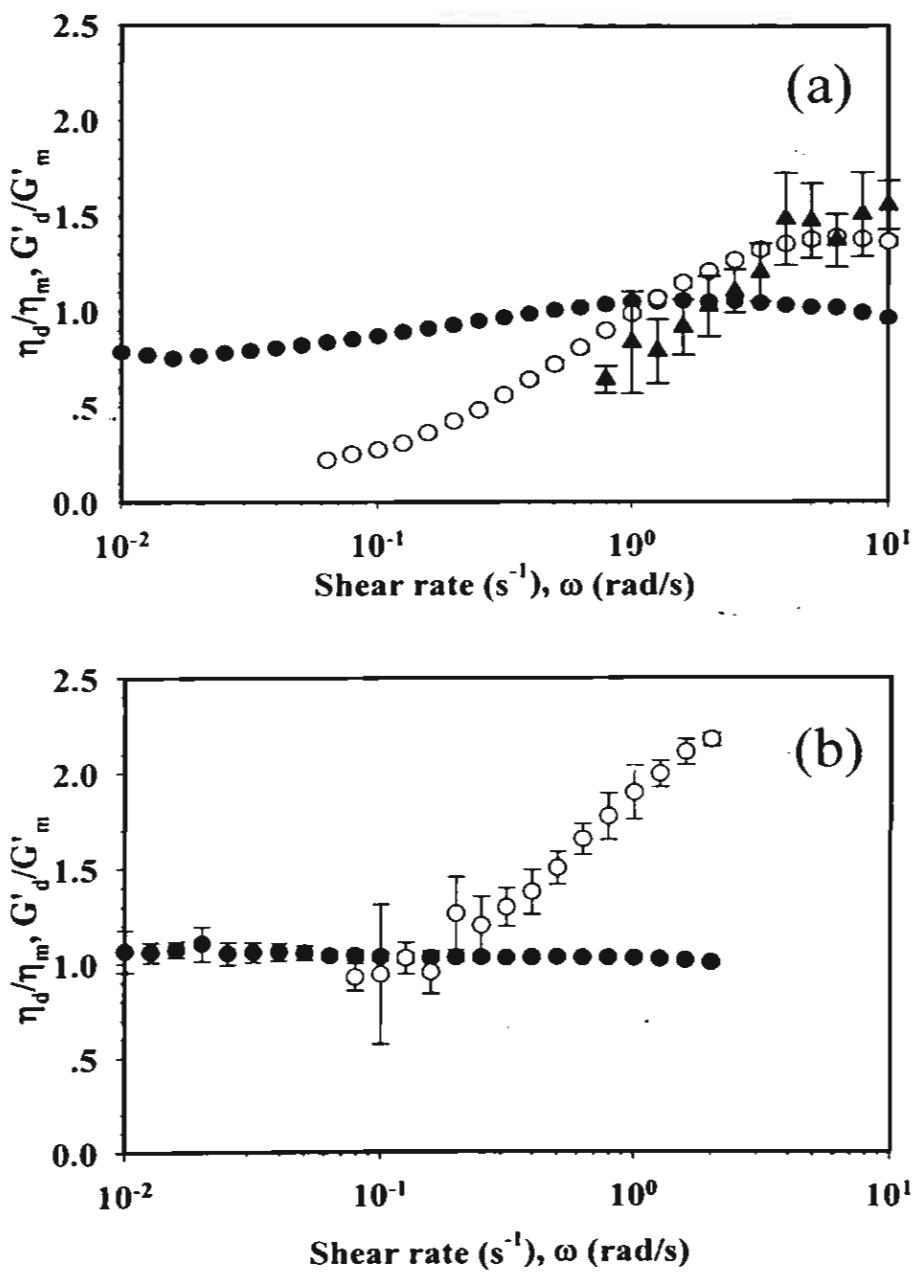


Figure 2 (a) and (b)

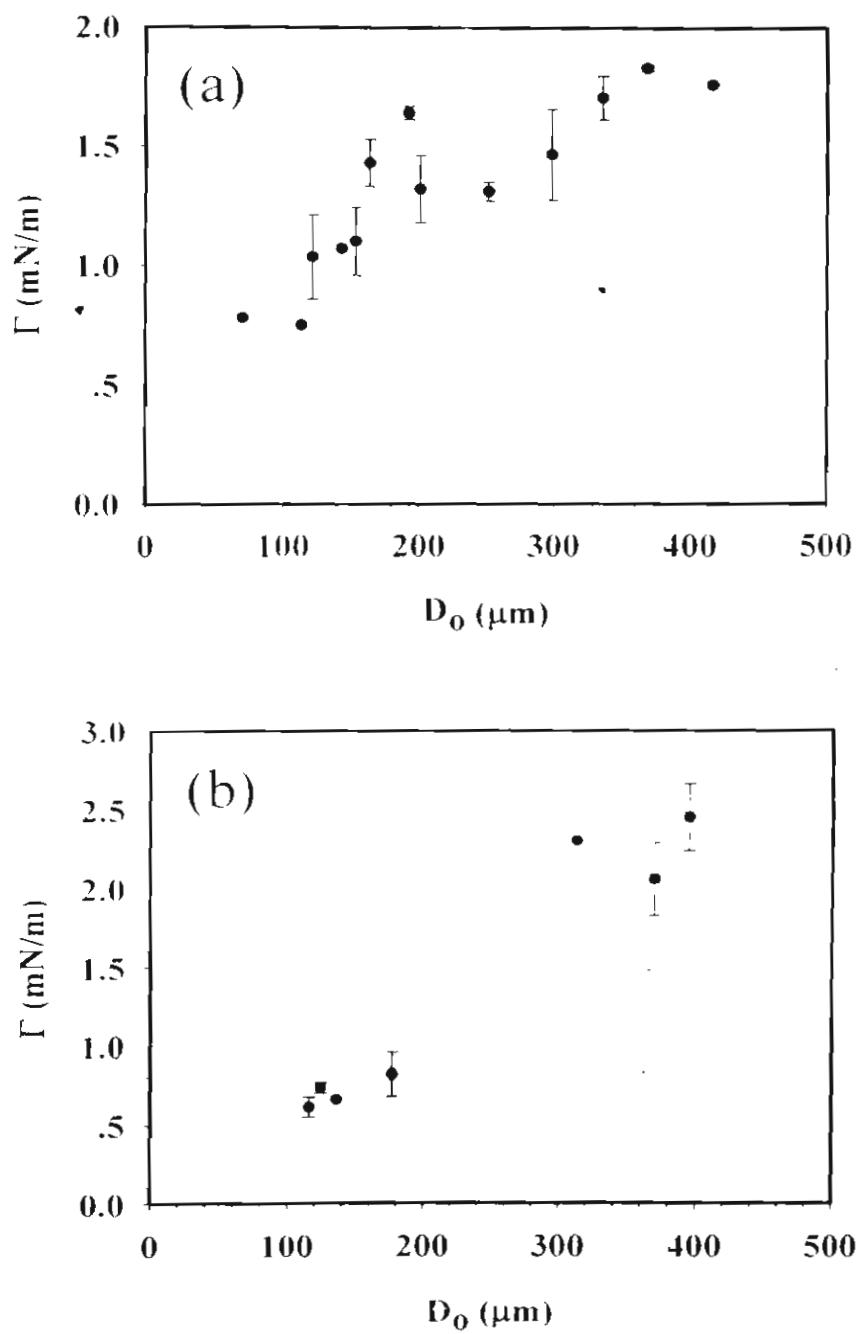


Figure 3 (a) and (b)

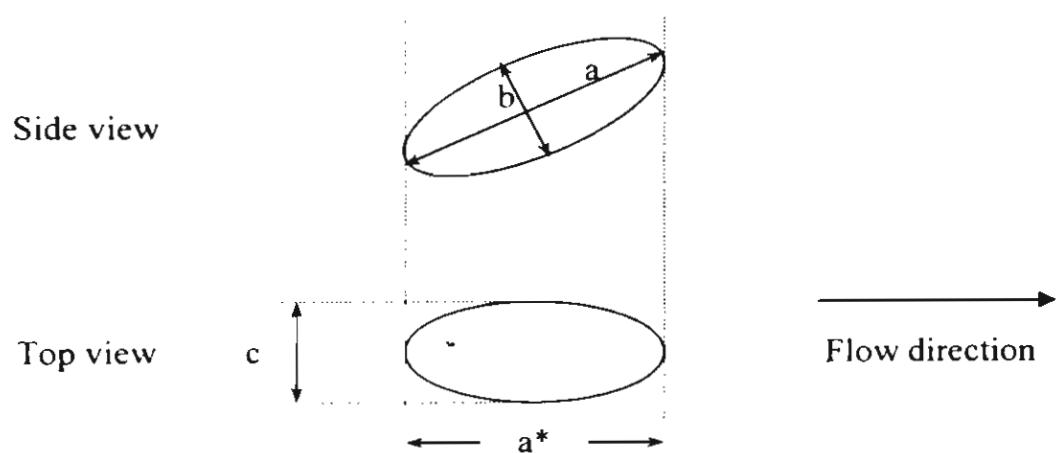


Figure 4

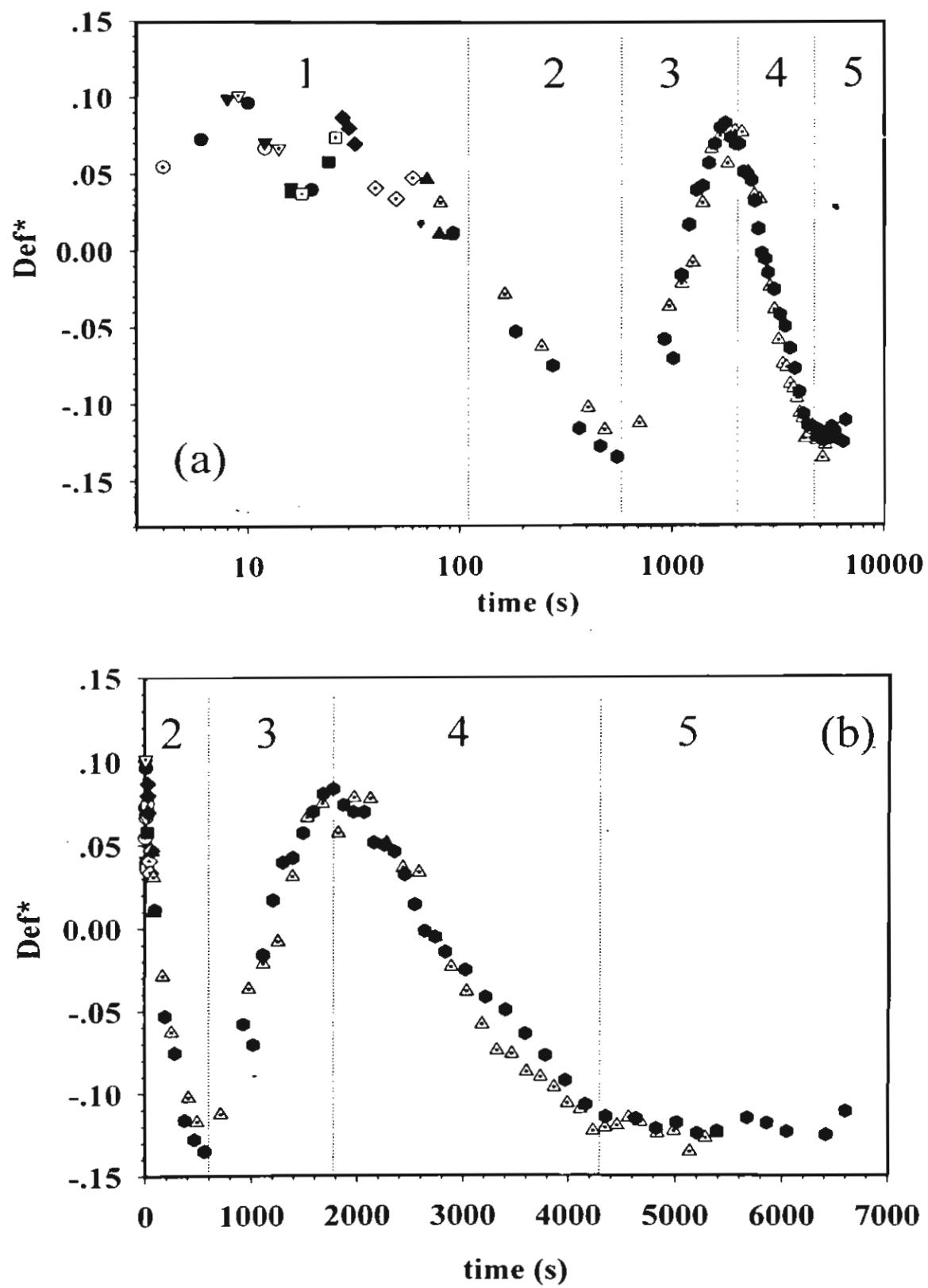


Figure 5 (a), (b)

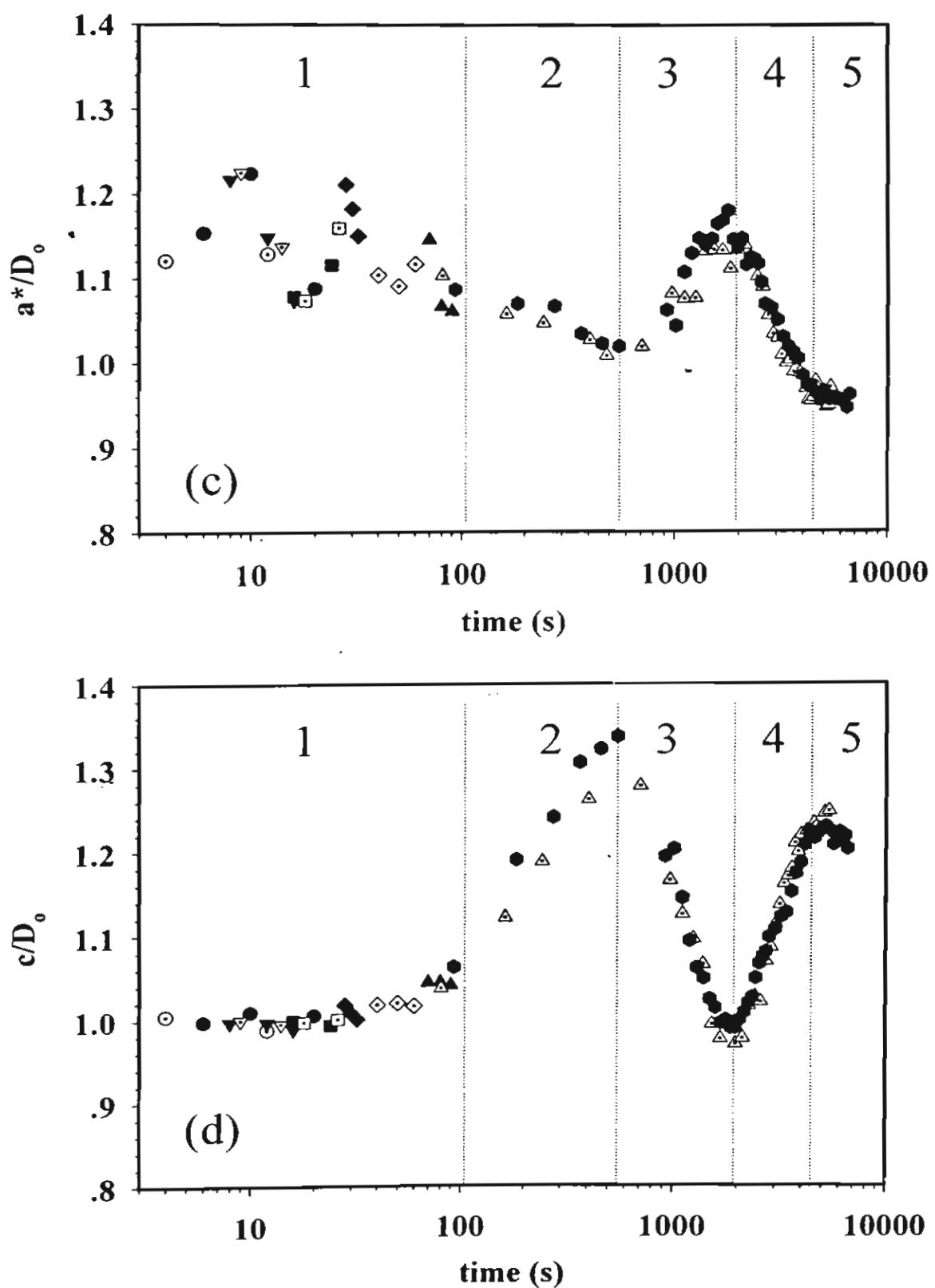


Figure 5 (c), (d)

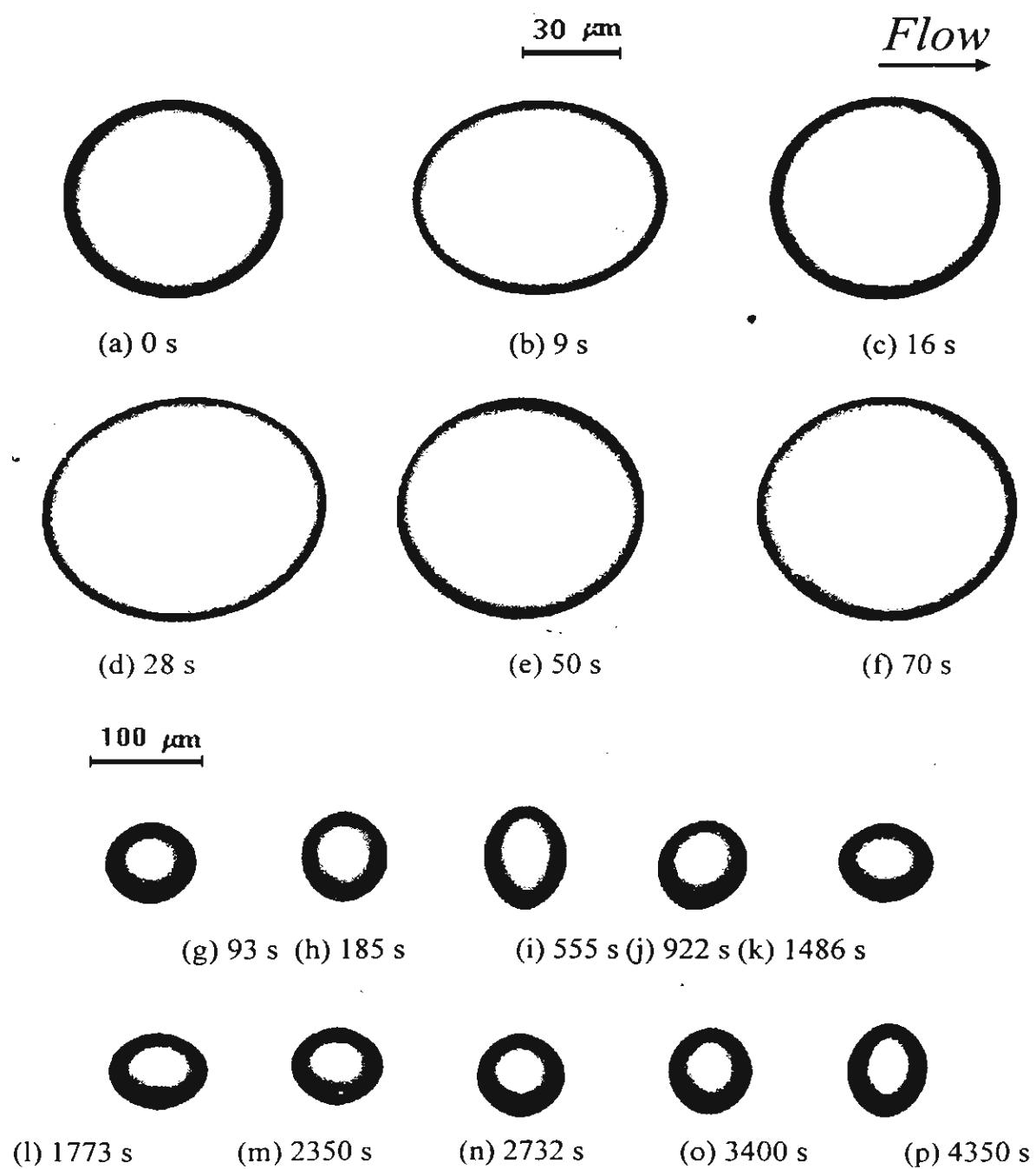


Figure 6

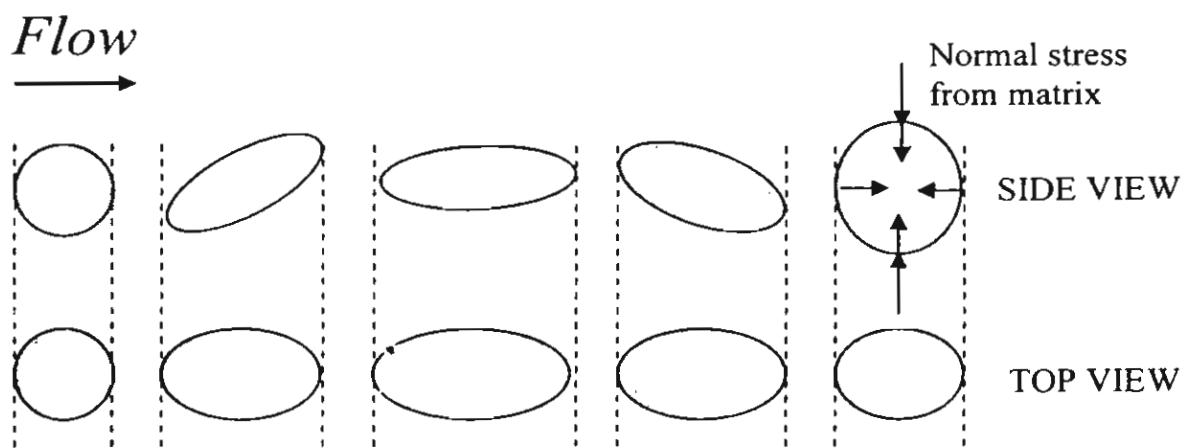


Figure 7

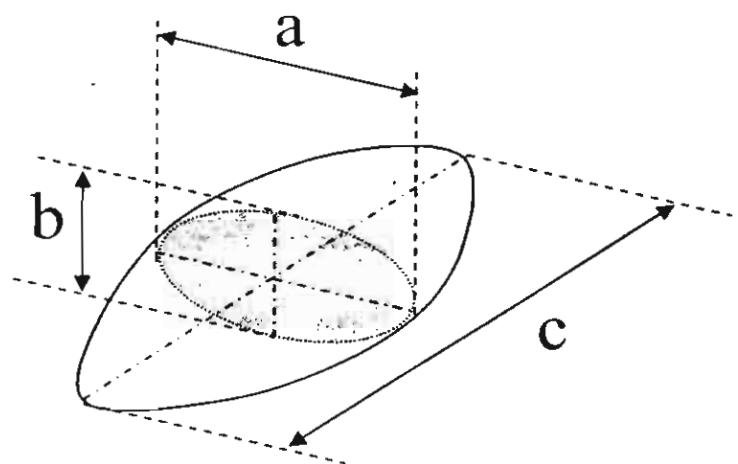


Figure 8

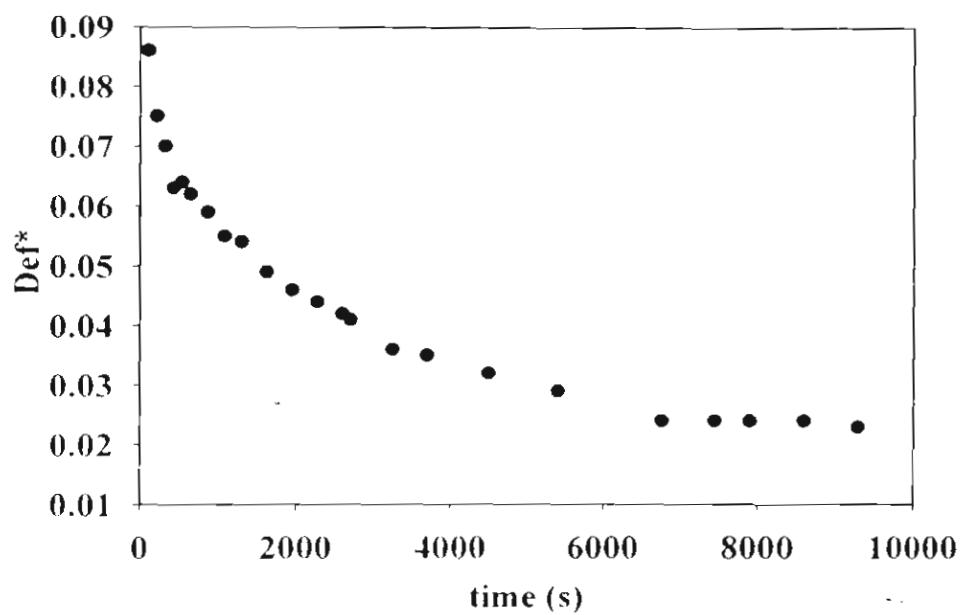


Figure 9

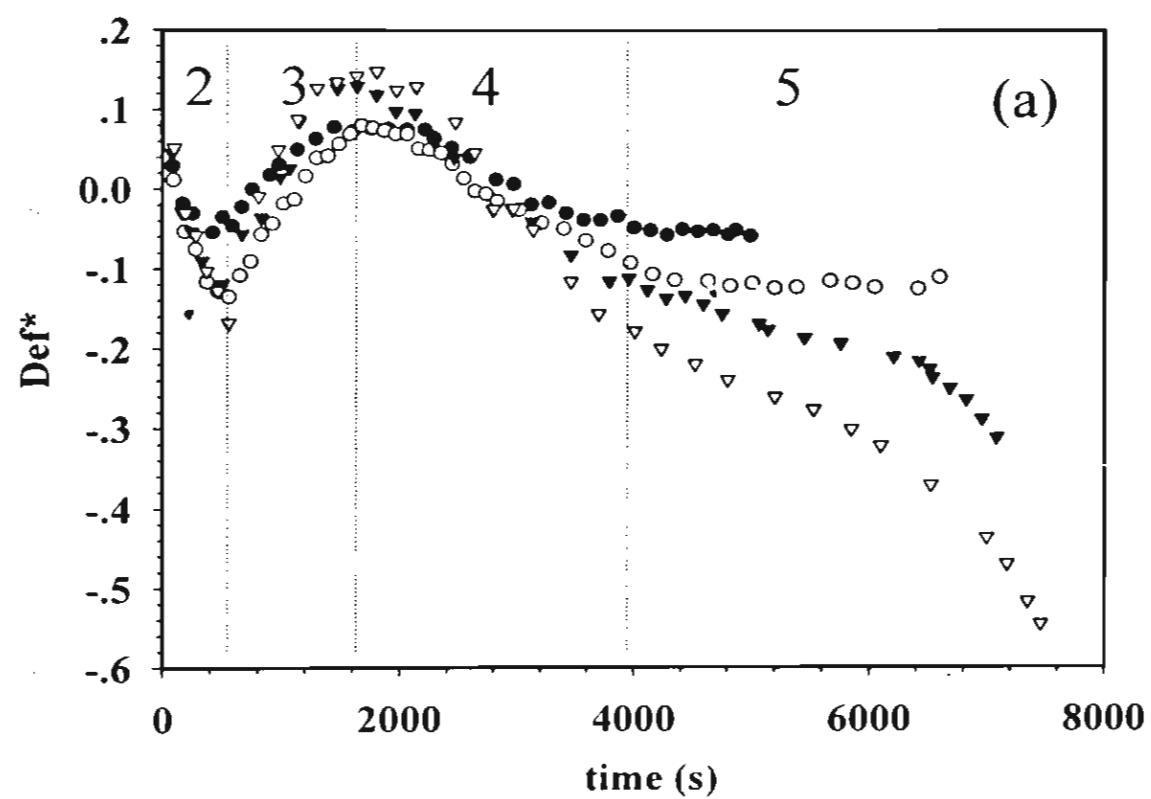


Figure 10 (a)

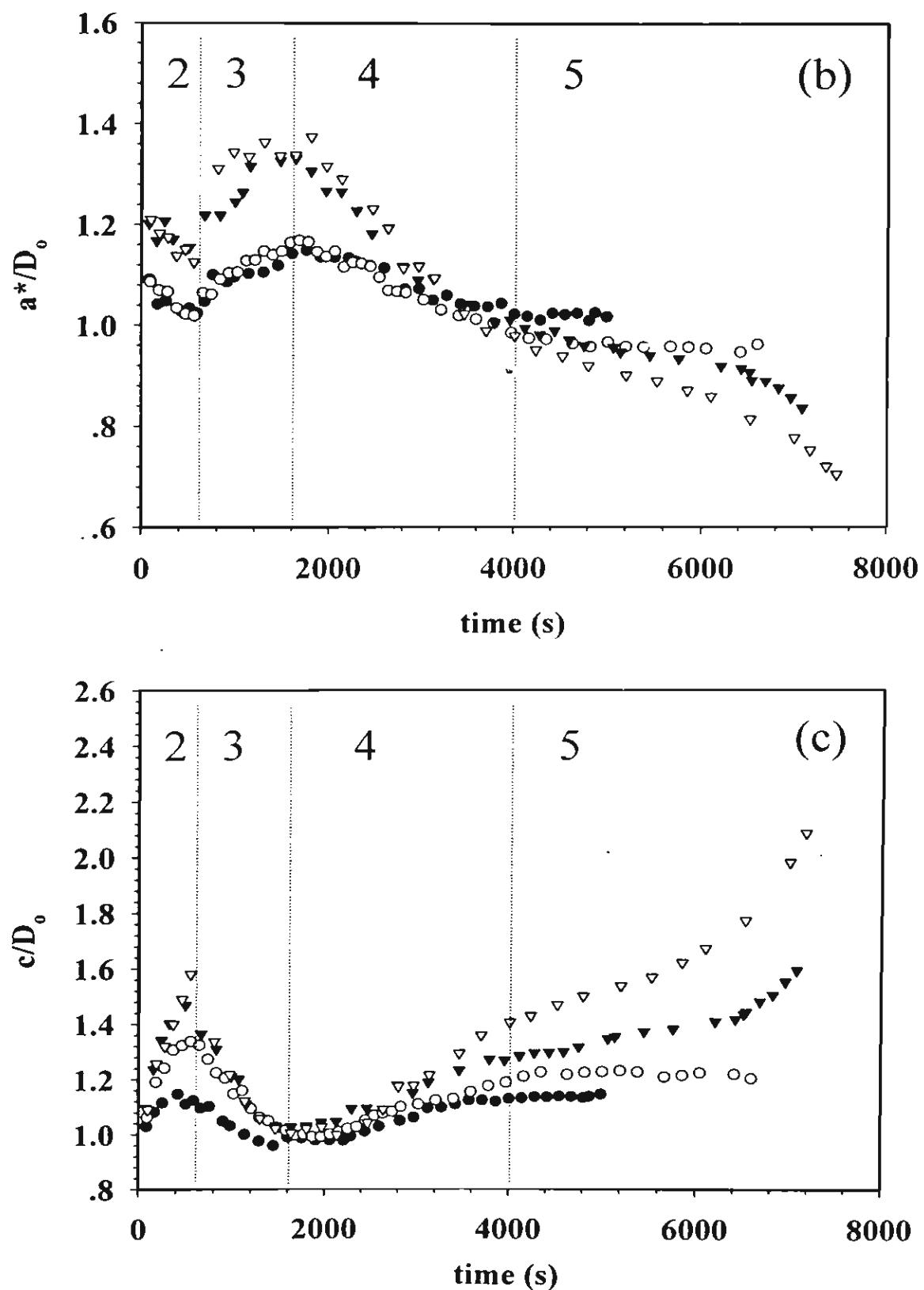


Figure 10 (b), (c)

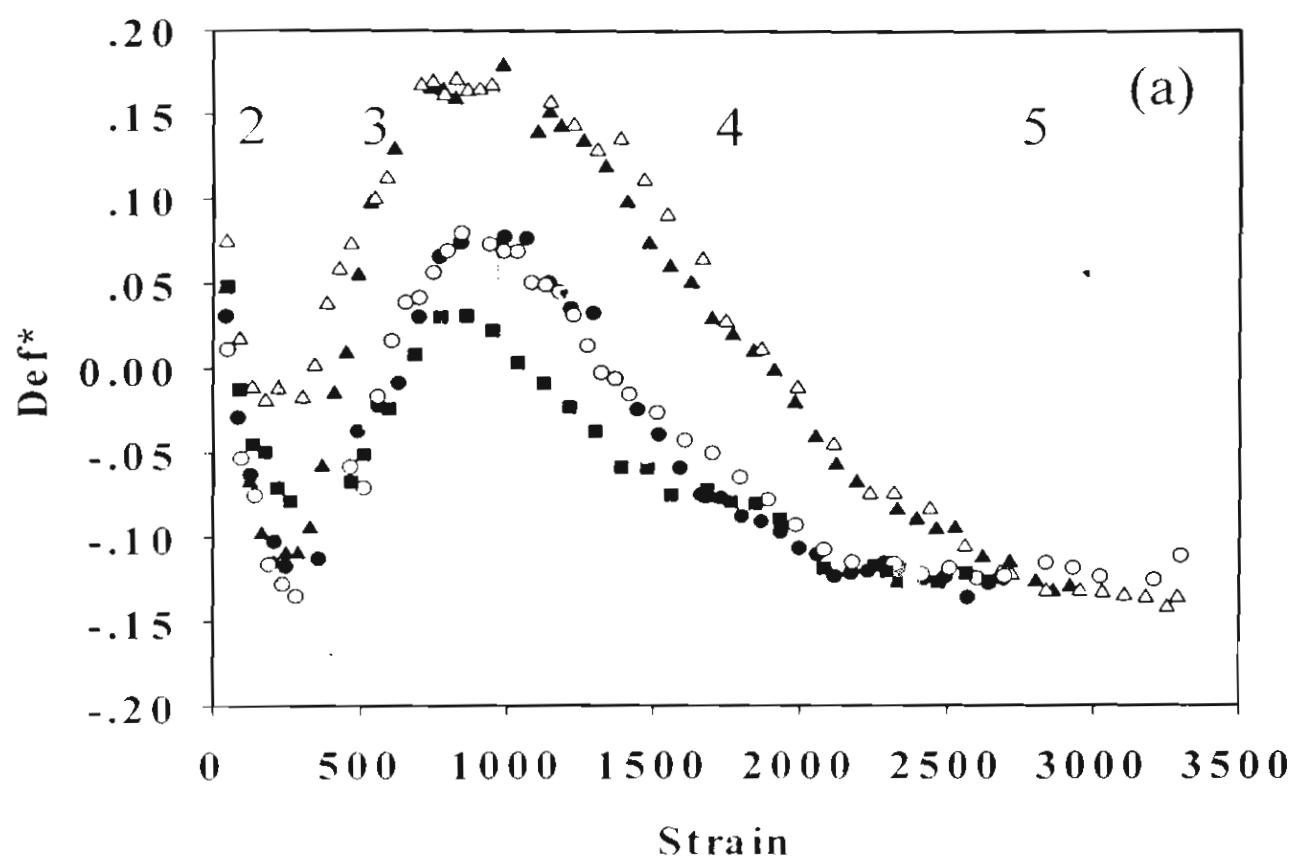


Figure 11 (a)

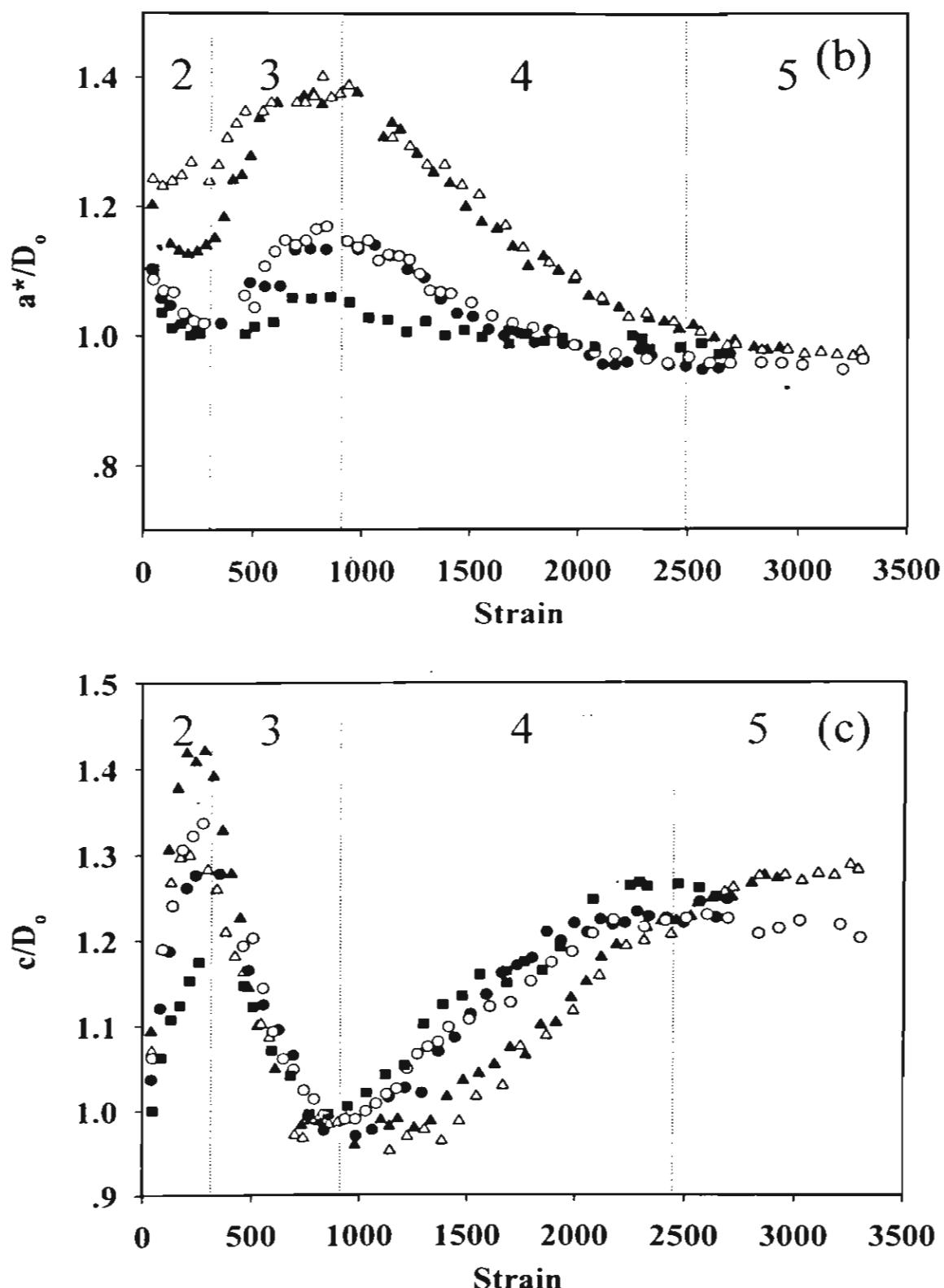


Figure 11 (b), (c)

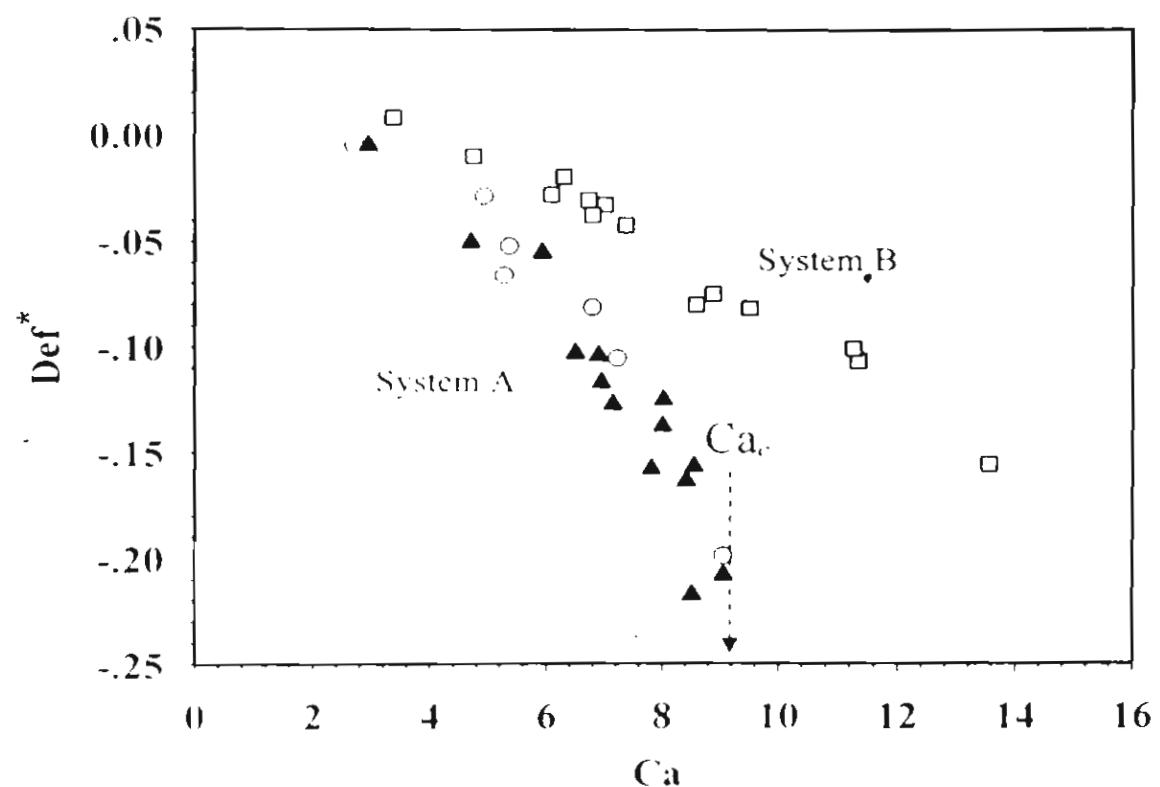


Figure 12

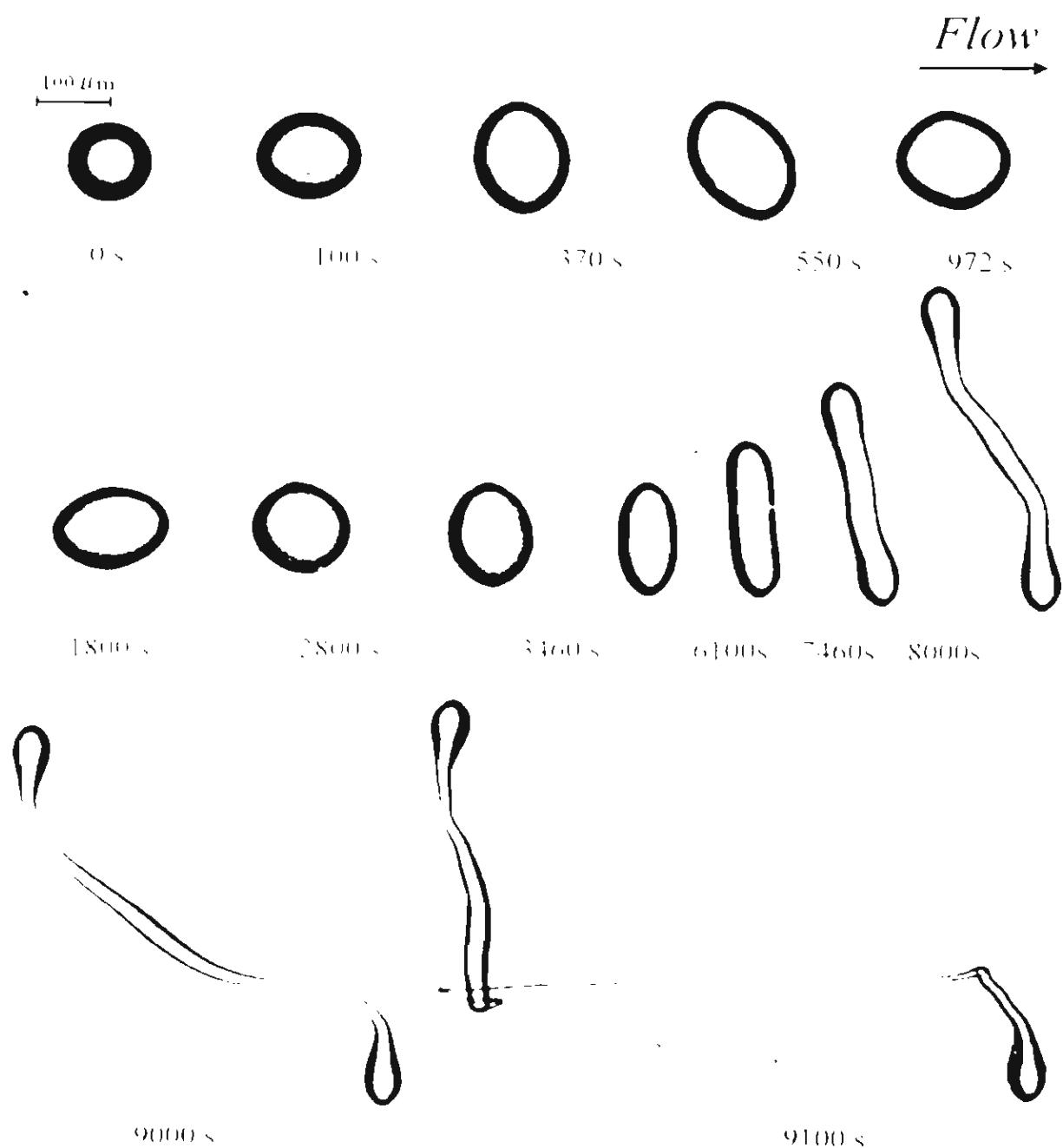


Figure 13

**Chapter 4: Transient and Steady State Deformations and Breakup of Dispersed-
Phase Droplets of Immiscible Polymer Blends in Steady Shear Flow**

Puritat Tanpaiboonkul ^a, Wanchai, Lerdwijitjarud ^b, Anuvat Sirivat ^{a#},
and Ronald G. Larson ^c

^a Conductive and Electroactive Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

^b Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

^c Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

Corresponding author, Email: anuvat.s@chula.ac.th

Transient and Steady State Deformations and Breakup of Dispersed-Phase Droplets of Immiscible Polymer Blends in Steady Shear Flow

Abstract

Transient and steady-state deformations and breakup of viscoelastic polystyrene droplets dispersed in viscoelastic high density polyethylene matrices were observed in a simple steady shear flow between two transparent parallel disks. By separately varying the elasticities of the individual blend components, the matrix shear viscosity, and the viscosity ratio, their effects on the transient deformation, steady-state droplet size, and the breakup sequence were determined. After the startup of a steady shear flow, the viscoelastic droplet initially exhibits oscillations of its length in the flow direction, but eventually stretches preferentially in the vorticity direction. We find that at fixed capillary number, the oscillation amplitude decreases with, increasing droplet elasticity, while the oscillation period depends primarily on, and increases with, the viscosity ratio. At steady-state, the droplet length along the vorticity direction increases with increasing capillary number, viscosity ratio, and droplet elasticity. Remarkably at a viscosity ratio of unity, the droplets remain in a nearly undeformed state as the capillary number is varied between 2 to 8, apparently because under these conditions a tendency for the droplets to widen in the vorticity direction counteracts their tendency to stretch in the flow direction. When a critical capillary number, Ca_c , is exceeded, the droplet finally stretches in the vorticity direction and forms a string which becomes thinner and finally breaks up, provided that the droplet elasticity is sufficiently high. For a fixed matrix shear stress and droplet elasticity, the steady-state deformation along the vorticity direction and the critical capillary number for breakup both increase with increasing viscosity ratio.

I. INTRODUCTION

Because of its importance in polymer processing, there has been considerable work on low Reynolds numbers shear-induced droplet deformation and breakup in blends of immiscible liquids, including blends of polymeric liquids. Taylor (1932, 1934) predicted that for an isolated Newtonian droplet in steady simple shearing flow of a surrounding immiscible Newtonian fluid in the small-deformation limit, two dimensionless parameters control the droplet deformation behavior. The first parameter is the viscosity ratio between the two phases;

$$\eta_r = \eta_d / \eta_m \quad (1)$$

where η_d and η_m are the viscosities of the droplet phase and the matrix phase, respectively. The second dimensionless parameter is a capillary number, Ca :

$$Ca = \frac{\eta_m \dot{\gamma} r_0}{\Gamma} \quad (2)$$

where $\dot{\gamma}$ is the applied shear rate, r_0 is the undeformed droplet radius, and Γ is the interfacial tension between dispersed and matrix fluids. Taylor also predicted that the deformation parameter, Def , depends on Ca and η_r according to

$$Def \equiv \frac{a - b}{a + b} = Ca \frac{19\eta_r + 16}{16\eta_r + 16} \quad (3)$$

where a and b are lengths of the major and minor axes of the deformed droplet, respectively. The capillary number is the ratio of the matrix viscous force ($\eta_m \dot{\gamma}$) to the interfacial stress (Γ/r_0). Correspondingly, for a given droplet and matrix fluid pair, there exists a critical capillary number, Ca_c at which the droplet ruptures in a flow

field. For simple shear flow, the shape of the curve Ca_c vs. η_r is well known; at $\eta_r \approx 1$ Ca is minimized at $Ca_c \approx 0.5$, while Ca_c becomes infinite at $\eta_r > 4$ so that droplets are stable at all capillary numbers [Taylor (1932,1934); Grace (1982); De Bruijn (1989)]. Other correlations between Ca_{crit} and η_r have also been reported [Rallison and Acrivos (1978); Bentley and Leal (1986)].

The non-Newtonian viscoelastic behavior of common high-molecular-weight polymer blends is expected to influence the droplet deformation and breakup. Working out a quantitative relationship between viscoelasticity and droplet deformation and breakup is a complicated task, however, because viscoelasticity is manifested in various ways, including first and second normal stress differences for both matrix and droplet fluids, and shear thinning in viscous and elastic properties of both fluids. Most experimental studies of droplet deformation and breakup with viscoelastic droplet and matrix fluids have been carried out with little or no systematic control that might allow the influence of one aspect of viscoelasticity to be assessed with others held fixed. However, from many experimental studies one can infer the general behavior that the elasticity of the droplet fluid inhibits droplet deformation causing the droplet to break at a higher capillary number, while elasticity of the matrix phase tends to destabilize the droplet causing it to break at a lower capillary number [De Bruijn (1989); Elmendrop and Maalcke (1985); Varanasi *et al.* (1994); Mighri *et al.* (1997, 1998); Lerdwijitjarud *et al.* (2004)].

In an effort to better control the contributions of fluid viscoelasticity, some studies have chosen only one of the fluids (either matrix or droplet fluid) to be viscoelastic, with the other being Newtonian. Further control can be exerted by choosing for the viscoelastic fluid a so-called “Boger fluid,” which is a weakly elastic dilute polymer solution in a Newtonian matrix. Boger fluids have the virtue of

possessing little or no shear thinning in the shear viscosity, and ideally also in the first normal stress coefficient. Studying a blend of a Boger fluid as the droplet phase in a Newtonian matrix fluid at a viscosity ratio of unity, Lerdwijitjarud *et al.* (2004) found that Ca_c increased linearly with Wi_d up to a value of Wi_d of around unity, and thereafter approached an asymptotic value of around unity for high values of Wi_d . Here the dispersed phase Weissenberg number, Wi_d , is defined as $Wi_d(\dot{\gamma}) \equiv [\Psi_{1d}(\dot{\gamma})/2\eta_d(\dot{\gamma})]\dot{\gamma}$, where $\Psi_{1d}(\dot{\gamma})$ is the first normal stress difference coefficient of the dispersed phase at an imposed shear rate $\dot{\gamma}$.

Studies with Boger fluids have generally only revealed rather modest effects of viscoelasticity on the deformation and breakup of droplets, relative to what is seen in Newtonian fluids. Namely one can observe a modest change (a factor of two or so) in Ca_c , but the droplets deform in the flow direction to a similar degree as in blends of Newtonian droplet and matrix fluids. For highly elastic melts, very large increases are observed (more than a decade) in the capillary number required for droplet breakup. Moreover, for some melts, a new mode of droplet deformation, namely transient and steady-state droplet widening or elongation along the vorticity axis, has been observed for viscoelastic droplets sheared in viscoelastic matrices [Levitt *et al.* (1996); Hobbie and Migler (1999); Migler (2000); Mighri and Huneault (2001); Cherdhirankorn *et al.* (2004)]. Experimental work showing this widening phenomenon was reviewed earlier [Cherdhirankorn *et al.* (2004)]. Here it suffices to note that droplet widening has only been observed in blends containing viscoelastic melts, with one exception. Mighri and Huneault (2001) studied the deformation and breakup mechanisms of droplets composed of viscoelastic Boger fluid in a Newtonian matrix (PDMS). At low shear rates, they found that the dispersed drop was oriented along the flow field

and drop deformation increased with shear rate, as expected. However, when a critical shear rate was reached [$Ca_c \approx 5.5$], the deformed drop began to contract in the flow direction. After increasing the shear rate above this critical value, drop contraction occurred, followed by elongation perpendicular to the flow direction. This elongation increased with shear rate until breakup occurred. In our studies with polybutadiene Boger fluids (Erdwijitjarud *et al.* 2004), we did not observe droplet widening over the range of Weissenberg numbers and capillary numbers we were able to access, despite using very high molecular weight polybutadienes (M_w above one million) at concentrations high enough (1%) to produce significant shear thinning.

In an effort to access more significant effects of elasticity than could be obtained using Boger fluids, Cherdhirankorn *et al.* (2004), studied blends of shear-thinning polymer melts with properties and temperatures chosen to maintain the viscosity ratio near unity at the shear rates used. Viscoelastic modes of transient droplet deformation and droplet extension in the vorticity direction were reported for isolated droplets in two immiscible polymer blends (PS-HDPE) of equal viscosity in a simple shearing flow. In the blend with high elasticity of matrix and dispersed phases, the droplets initially deformed in the flow direction after startup of a steady shear but then began reverting to a spherical shape, and eventually deformed in the vorticity direction. In the second, low-elasticity system, the droplets first deformed in the shear direction, and thereafter continuously contracted in the flow direction until they reached their steady-state shapes. The droplets eventually deformed preferentially along the vorticity direction with increasing capillary number. Above a critical capillary number, breakup occurred whose mechanisms critically depended on the droplet elasticity.

The new work reported here extends the previous study of Cherdhirankorn *et al.* by considering the effect of the viscosity ratio, as well as capillary number and droplet elasticity on isolated droplet deformation and breakup. In addition, we seek to determine if a blend system exists in which droplet deformation does not occur over a certain range of capillary number. Our earlier work [Cherdhirankorn *et al.* (2004)] suggested that such behavior might be exhibited under conditions in which the tendency of the droplet to stretch in the flow direction due to viscous forces is balanced by a tendency to deform in the vorticity direction due to elasticity, leading to a state of almost no deformation over a range of shear rates. Such a condition of shearing flow with no droplet deformation or breakup might be useful if spherical, or unusually large, droplets are desirable under a shearing flow, or might be a condition to avoid if the opposite is true.

II. EXPERIMENTS

A. Materials

The materials used in this study are two grades of high-density polyethylene (HDPE1 and HDPE2) as the matrices. Three grades of polystyrene (PS1 PS2, and PS3) are used as the dispersed phases. The properties of all polymers are tabulated in Table 1. Polystyrene resins were prepared by crushing them into small pieces and their sizes were selected by passing the flakes though a 425 μm sieve. All polymers were heated at 80°C under vacuum for 12 hours to eliminate any volatile substances.

B. Rheological Characterization

The steady-state shear viscosity and the first normal stress difference of each polymer were measured by a cone-and-plate rheometer (ARES, Rheometric Scientific) using a 25-mm diameter plate and a cone angle of 0.1 rad. Figures 1 and 2 show rheological properties of the polymers chosen in our study. Four pairs of polymers and operating temperatures were chosen in our study. Table 2 lists the polymers and the four blend systems (A,B,C, and D) investigated in this work, chosen to have viscosity ratios of somewhat greater than unity (2.6), less than unity (0.5), and unity. The interfacial tension values for the polymer blend systems were taken from the handbook [Brandrup and Imergut (1989)]: 5.84 mN/m for System A at 143°C. 5.60 mN/m for System B at 155 °C, 5.92 mN/m for System C at 139 °C, and 5.79 mN/m for System D at 147 °C.

C. Observation of an Isolated Droplet in Shearing Flow

1. Shearing Apparatus

To generate a simple shear flow and to observe droplet behaviors, we used a commercial flow cell device (Linkam CSS-450, Linkam Scientific Instruments Ltd., UK) with two quartz parallel disks attached to an optical microscope (Leica DMRPX, Leica Imaging Systems Ltd.). The images were recorded by a CCD camera (Cohu 4910, Cohu Inc., US). The obtained images were analyzed on a computer using the Scion image software (<http://www.scioncorp.com>).

2. Sample Preparation

HDPE was molded into a disk 25 mm. in diameter and 0.5-1.0 mm. in thickness by compression molding at 140 °C. To load PS droplets into the HDPE matrix, we used a pin to put a small amount of PS powder onto the HDPE disk, and then covered this with another HDPE disk to form a sandwich. The sandwich was then placed onto the bottom disk and covered with the top disk of the flow cell. The sample was held at the testing temperature until complete melting occurred.

3. Optical Microscopy of Isolated Droplets

Droplet deformation and subsequent relaxation from its deformed ellipsoidal shape were observed using an optical microscope at a magnification that depended on

the droplet size. Around 100 to 200 droplet images were recorded (10-20 seconds per frame).

Since the images of the deformed droplet were captured only in the plane perpendicular to the shear gradient direction, the true length of the major principle axes of the ellipsoidal droplet could not be determined directly. The lengths of all three principle axes can, however, be calculated from a planar image using the known droplet volume provided that we know the orientation angle (θ), i.e., the angle between the major axis and the flow direction. Lacking this orientation angle, we followed our earlier work [Cherdhirankorn *et al.* (2004)] and used the apparent observable lengths of the principle axes to describe the behavior of each droplet by defining a modified deformation parameter Def^* :

$$\text{Def}^* = (a^* - c) / (a^* + c) \quad (6)$$

where the asterisk indicates that the deformation parameter is an apparent one obtained from the droplet image projected into the flow-vorticity plane (see Figure 3).

4. Transient Deformation

Due to the limitation of the flow cell, a single droplet can not be observed continuously from startup until it attains a steady-state shape, since this droplet will move out of the viewing plane after imposing a given strain. Since the behavior of a given isolated droplet is assumed to be reproducible, the complete transient deformation history of an isolated droplet of a particular size was determined, as before [Cherdhirankorn *et al.* (2004)], by combining the results of several

experiments with the droplets of nearly equal sizes. In the experiment of type 1, the droplet was moved out of the viewing window by imposing a strain, typically less than 40 strain units (≈ 1 orbit). The droplet was then left to relax for at least 60 minutes. Then the isolated droplet was deformed at the required strain rate for the same strain but in the opposite direction until it moved back into the viewing window where we could image its deformation. In experiments of type 2, the droplet was deformed continuously at a fixed shear rate and images of the droplet were taken whenever the droplet passed through the viewing window. To obtain clear droplet images, we stopped the flow each time the droplet appeared within the viewing window for a period of less than 1 second and an image was taken. This time interval was sufficiently small enough to avoid droplet relaxation; the typical transient time scale for droplet relaxation in our experiments was of order 10^3 seconds. Then, the flow was then initiated again until the droplet passed through the viewing window again. By repeating this procedure, we could assemble a history of deformation from the initial time to the time at which the droplet attained its steady-state shape. The imposed values of capillary number, Ca , were chosen to be 5, 8, and 11 by using droplets of various sizes at a fixed shear rate of 0.4 s^{-1} . To separate the effects of viscous forces from those of elasticity, some experiments were carried out with the capillary number, Ca , held fixed. The elastic force was varied by changing the shear rate, $\dot{\gamma}$, from 0.10, to 0.17, to 0.40, to 0.63 s^{-1} and the corresponding droplet size, $2r_0$, was varied inversely with the shear rate from 290, to 177, to 85, to 56 μm , respectively, so that $Ca = \eta_m \dot{\gamma} r_0 / I$ was fixed at 8.

5. Steady-State Deformation and Breakup

Here, we describe the procedure used to obtain the steady-state shapes of isolated droplets below the critical capillary number for breakup. Generally, the strain required to reach a steady-state droplet shape increases with the droplet size. From several transient experiments, the required strain to reach steady-state droplet shape was found to be approximately 4000 strain units at $Ca = 8$ and $D_0 = 85 \pm 5\mu\text{m}$. Therefore a constant shear rate was applied until a strain exceeding 4,000 strain units was attained. To ensure that the steady-state deformation had indeed been attained, when a selected droplet passed through the viewing window, the droplet was imaged many times over a period of 5 to 10 min and Def^* was measured and determined until its value became constant. Subsequently, the flow was stopped and the droplet shape relaxation was recorded with the CCD camera at speeds of 10-20 second per frame for approximately 90 minutes.

The critical capillary number was determined by finding the smallest droplet size at which drop breakup was observed at a fixed shearing rate at 0.4 s^{-1} for Systems A and C, and at 0.63 s^{-1} for System B.

For droplets for which no steady-state shape was obtained, the unstable shapes of the droplets were recorded until the droplets broke. The breakup process for System A was studied at a fixed capillary number Ca equal to 11 using a shear rate of 0.40 s^{-1} ; and for System B, we selected Ca value of 9.5 with shear rates of 0.20 and 0.63 s^{-1} . These shear rates or capillary numbers were slightly above the minimum values needed to achieve breakup for these systems.

Our experiments were carried out at shear rates at which the viscosities and first normal stress coefficients were mildly shear thinning, so the capillary number and Weissenberg number were calculated using the actual viscosity and first normal stress difference at which the experiments were performed.

III. RESULTS AND DISCUSSION

Figure 4a shows a sequence of optical images during the transient droplet deformation for blend System A, with $\eta_r = 2.6$, $Ca \approx 8$ and $Wi_d \approx 0.30$. Here, the drop stretches at first along the flow direction, and later along the vorticity direction. It nearly recovers its spherical shape at a time of around 6000 s before it stretches again along the flow direction. Finally, it attains its steady state shape by contracting along the flow direction and stretching along the vorticity direction.

A. Transient Deformation in Steady Shear Flow

1 Effect of Imposed Capillary Number on Droplet Deformation

Here we describe the effect of imposed capillary number, Ca , on the transient droplet deformation, over a strain period between 40 and 4000 for blend System A. The conditions of the experiment are: a fixed shear rate of 0.4 s^{-1} , a fixed Weissenberg number, Wi_d , of 0.75, a fixed viscosity ratio of 2.6, and imposed capillary numbers, Ca , of 5, 8, and 11 obtained by choosing droplets of sizes equal to $52 (\pm 5)$, $85 (\pm 5)$, and $125 (\pm 7) \mu\text{m}$, respectively. The parameters of these experiments are tabulated in Table 3.

Figure 5a displays the transient deformation parameter Def^* vs. strain between 40 and 4000 at three capillary numbers: 5, 8, and 11. In these experiments, we can divide the deformation evolution into three regimes. Def^* initially decreases

towards a local negative minimum at a strain of around 300, in which its amplitude depends on Ca . In the second regime, $300 < \text{strain} < 900$, Def^* increases towards a local maximum whose value is close to zero, or the state of no deformation, at a strain of approximately 900. For strains > 900 , Def^* decreases and becomes negative until attaining its steady state negative value which depends on Ca : $\text{Def}_{ss}^* = -0.065$ and -0.205 for $Ca \approx 5$ and 8 , respectively. In the experiment with $Ca \approx 11$, Def^* eventually decreases to a value of -0.8 before breakup occurs, and therefore Def_{ss}^* does not exist at or above this capillary number. Qualitatively similar oscillations in droplet deformation were reported in our earlier work [Cherdhirankorn *et al.* (2004)].

Figures 5b and 5c show the corresponding evolution of a^*/D_0 and c/D_0 vs. strain between 40 and 4000. In the first regime, in which $40 < \text{strain} < 300$, a^*/D_0 first increases above unity and then decreases towards a local minimum of less than unity at a strain of 300. In this regime, there is an initial weak flow elongation followed by a shrinkage of the major principle axis to a value below its initial value. In the second regime with $300 < \text{strain} < 900$, a^*/D_0 increases again towards a local maximum whose amplitude depends on Ca at strain 900. In the third regime, where $\text{strain} > 900$, a^*/D_0 decreases towards its steady state value equal to 0.96 for both $Ca \approx 5$ and 8 , or towards its final value of 0.4 before drop breakup at $Ca \approx 11$. In the first regime, the deformation c/D_0 along the vorticity axis initially rises to a local maximum whose amplitude depends on Ca at a strain of 300. The stretching along the vorticity direction in this regime coincides with the initial period in which the major principle axis goes through an overshoot and shrinks. In the second regime, c/D_0 decreases slightly and then monotonically rises towards its steady state values of 1.09 and 1.34 for $Ca \approx 5$ and 8 , respectively. For $Ca \approx 11$, the final value of c/D_0 before breakup is equal to 5.2 at the strain of 4073. In summary, at a value of the

dispersed-phase Weissenberg number, Wi_d , equal to 0.75 and a viscosity ratio of 2.6, the evolution of the droplet deformation with time can be divided into three regimes. In the first regime, there is a weak flow elongation followed by a complete recovery along with a slight stretching in the vorticity direction. In the second regime, a flow elongation reappears along with a slight contraction in the vorticity direction. In the third regime, a contraction occurs in the flow direction along with continuous stretching along the vorticity direction until the droplet attains a steady state condition in which Def^{*ss} is less than zero. The critical capillary number for System A is approximately equal to 11.

2. Effect of Elasticity on Droplet Deformation

Next we investigate the influence of the droplet elasticity on the droplet transient deformation, for System A, whose viscosity ratio was 2.6, the capillary number Ca was fixed at around 8.0, and the shear rate was varied to be 0.17, 0.40, and 0.63 s^{-1} corresponding to droplet Weissenberg numbers of 0.48, 0.75 and 0.99, respectively. In order to keep Ca fixed at around 8.0, the droplet sizes subject to these shear rates were chosen to be 177, 85, and 56 (± 2) μm , respectively.

Figure 6a shows the evolution of Def^* vs. strain of droplets subject to three Weissenberg numbers: 0.48, 0.75, and 0.99. Table 3 summarizes the experimental parameters of this experiment. Similar to the results of Figure 5a, there also exist three regimes of the transient deformation when Wi_d is varied with Ca held fixed. The local maxima at a strain of around 900 and the steady state Def^* value depends on Wi_d . The negative minimum Def^* values at the end of the first regime are equal to -0.10. The positive maximum Def^* values at the end of the second regime are 0.109, 0.032 and 0.019, respectively, for Wi_d equal to 0.48, 0.75, and 0.99. The

corresponding steady state negative Def^* values are -0.230, -0.205 and, -0.142 respectively. Therefore, it appears that the steady state Def^* becomes less negative with increasing droplet elasticity, while the amplitude of the positive maximum Def^* decreases with increasing droplet elasticity. Figure 6b shows the corresponding evolution of a^*/D_0 vs. strain. The amplitude of the local maximum decreases with increasing Wi_d , but the final steady state value of a^*/D_0 is about 0.88, independent of Wi_d . This behavior should be contrasted with the evolution of c/D_0 in figure 6c, where the amplitudes of the local maximum and the steady state value of c/D_0 decrease with increasing Wi_d .

3. Effect of Viscosity Ratio on Droplet Deformation

To investigate the effect of viscosity ratio on the droplet transient deformation, experiments were carried out with the capillary number, Ca , fixed at 8.0 and the Weissenberg number, Wi_d , fixed at 0.30. The Systems A, B and D were investigated whose experimental conditions and rheological properties are tabulated in Table 4.

Figure 7a compares the evolution of Def^* of Systems B, D, and A whose viscosity ratios are 0.5 and 1.0, and 2.6 respectively. The magnitudes of the local minima of Def^* for the three experiments appear to be nearly the same at -0.12, and all minima occurred at the strain of 300. However, the locations of the local maxima are at strains of 600, 900, and 1,400, respectively and the corresponding maxima of Def^* are 0.16, 0.08, and 0.14, respectively. At first, it may seem surprising that the maxima and their locations are not the same for all three systems, given the fact that the capillary number, Ca , was held fixed at 8.0 and the Weissenberg number, Wi_d ,

was also fixed at 0.30. The likely explanation may not lie with the viscosity ratio itself; rather the deformation is controlled by the competition between the matrix shear force which tends to deform the drops, in particular along the flow direction, and the drop elasticity which generally resists droplet deformation and induces a retarded complex flow within droplet. These two competing types of force vary with time presumably at different rates after the startup of shearing. We also find that the steady state Def^*_{ss} value appears to depend somewhat on the viscosity ratio; the Def^*_{ss} values are -0.1, -0.12, and -0.22, respectively for Systems B, D, and A, which are listed in order of increasing viscosity ratio. Figures 7b and 7c show the corresponding evolution of a^*/D_o and c/D_o . We find that the locations for the local maxima in a^*/D_o and the local minima in c/D_o coincide with those of the local maxima in Def^* for the three viscosity ratios shown in Figure 7a. Finally, figure 4b shows a sequence of optical images of the transient drop deformation of System B with viscosity ratio equal to 0.5. We may state that a qualitatively similar deformation pattern occurs for both viscosity ratios of 0.5 and 1.0; the only difference appears to be that it takes a shorter time or a smaller strain to reach a steady state for the System B which has a lower viscosity ratio.

B. Steady-State Deformation

The steady-state deformation refers to the final shape of droplets after transient behavior has ceased. Figure 8 shows Def^* vs. Ca for Systems A, B, and C and D, corresponding to viscosity ratios of 2.6, 0.5, 1.0, and 1.0, respectively. In these systems, the droplet Weissenberg number, Wi_d , was fixed at 0.35, 0.28, 0.01, and 0.3 respectively. The capillary number of the droplets investigated was varied by

using droplets of various sizes, and thus Wi_d was fixed in each system studied. To determine the steady-state droplet shape as a function of capillary number, a strain sufficient to obtain a steady state shape was imposed. On comparing results for Systems A, B, and D in Figure 8, it is evident that Def^{*ss} becomes increasingly negative with increasing Ca and becomes more negative, at a given Ca , with increasing viscosity ratio, η_r . On the other hand, for Systems C and D with the same viscosity ratio equal to 1, we find that Def^{*ss} becomes more negative with increasing Wi_d . Therefore, droplet elasticity appears to be necessary for droplets to stretch along the vorticity direction, but the viscosity ratio also plays a role in determining the magnitude of the stretching in the vorticity direction. Finally, it is interesting to note that the steady-state values of Def^{*ss} for System C are quite close to zero and vary slightly as Ca increases from 2 to 8. Thus, it is possible to choose a material system with a fixed viscosity ratio with a corresponding low Wi_d (0.01) value such that droplets do not deform at steady shear rates over a range of values of Ca . For Newtonian fluids (for which $Wi_d = Wi_m = 0$), for $\eta_r = 1$ Def^{*ss} rises with Ca to a value of around 0.5 at $Ca \approx 0.5$, after which breakup occurs. Thus, even for Wi_d as low as 0.01, droplet deformation in these melts deviates considerably from that in Newtonian fluids.

C. The Critical Capillary Number

The critical capillary number for drop breakup was determined for Systems A, B, and D, corresponding to the viscosity ratios of 2.6, 0.5, and 1.0, respectively. The corresponding fixed Wi_d values are 0.35, 0.28, and 0.30, respectively. In each

system, the shear rate was fixed and drops of various sizes were chosen in order to vary the capillary number.

The critical capillary numbers for droplet breakup, Ca_{crit} , are 10.18, 9.10, and 8.95 for Systems A, D, and B respectively, which have viscosity ratios, η_r , of 2.6, 1.0, and 0.5. The corresponding droplet sizes are 115, 92, and 79 μm , and critical Def^*_c values are -0.40, -0.27, and -0.18. Thus, for comparable Wi_d , Ca_{crit} increases with viscosity ratio over this viscosity ratios. For Newtonian fluids, experimental Ca_{crit} values are 0.5 [Grace (1982)], whereas the predicted Ca_{crit} values are 0.44, 0.46, and 0.47, respectively [Taylor (1932, 1934)]. We were unable to observe the breakup of System C, presumably because the steady state deformation of this system is very small at the shear rates we could access.

D. Droplet Breakup Mechanism

Here, we investigate the droplet breakup sequences of Systems A and B, as shown in Figures 9 and 10. The shear rate applied to System A was 0.40 s^{-1} , $Ca \approx 11$ (slightly above Ca_{crit}) and $Wi_d = 0.75$. For System B, the shear rate used was 0.63 s^{-1} , $Ca \approx 9.5$ (slightly above Ca_{crit}) and $Wi_d = 0.28$. We can see that in both systems, with $\eta_r = 2.6$ and 0.5 under these experimental conditions, the droplets follow oscillation patterns described previously, and eventually break up along the vorticity direction. An S shape appears as the final droplet shape before breakup. This S shape presumably arises from the velocity gradient along the radial direction. A minor difference between the breakup patterns of Systems A and B is that, for System B whose viscosity ratio is smaller ($\eta_r = 0.5$), there is a more pronounced stretching along the flow direction.

IV. CONCLUSIONS AND PERSPECTIVE

We reported the transient droplet deformation, under startup of a steady shear flow, for viscoelastic melt blend systems whose viscosity ratios are 0.5, 1.0 and 2.6. The evolution of droplet deformation, Def^* , with time can be divided into three regimes: an initial flow elongation followed by contraction, a secondary flow elongation, and a final stretching along the vorticity direction. The magnitudes of the transient maxima and minima of Def^* depend on Ca and Wi_d ; but the period depends mostly on η_r . For the elastic melt components studied here, the steady-state deformation parameter, Def_{ss}^* , becomes more negative with increasing Ca ; it also becomes more negative with increasing Wi_d and η_r at fixed Ca . For η_r fixed at unity, we were able to find suitable experiment conditions, with $Wi_d \approx 0.01$, at which droplets do not deform at steady state, for Ca values ranging up to 8. Droplets break up along the vorticity direction if Wi_d is sufficiently high.

We also note that the critical value of the capillary number for breakup in the vorticity direction is high, around 8 in our experiments on elastic melt components. As noted in the introduction, for Newtonian fluids, the critical capillary number for breakup in the flow direction is around 0.5, and for weakly elastic droplet fluids with viscosity ratio of unity, this critical capillary number increases to around unity as the dispersed phase Weissenberg number increases to unity. For our melts, and those of Hobbie and Migler (1999), and the solutions of Migler (2000), and Mighri and Huneault (2001), droplet deformation in the vorticity direction is observed and breakup occurs at a much higher critical capillary number, around five or higher. Thus, it appears that viscoelasticity of the droplet phase impedes deformation and

breakup in the flow direction. Elasticity of the droplet and/or matrix phase, if strong enough, can completely block breakup in the flow direction by inducing deformation in the vorticity direction. In this case, breakup can be deferred to much higher capillary numbers, around five or higher.

The conditions required to produce droplet elongation in the vorticity direction are still unclear. For some droplet fluids consisting of dilute or semi-dilute solutions of polymers in a Newtonian matrix (i.e., "Boger fluids"), droplet Weissenberg numbers as high as unity can be reached with no droplet widening, while for the melts studied here, droplet widening is evident for Weissenberg numbers as low as 0.5, and droplet deformation in the flow direction is impeded for one system with a droplet Weissenberg number as low as 0.01. Thus, it seems clear that the droplet Weissenberg number is not the only, or even the most important, variable controlling droplet vorticity stretching. Our studies indicate that the viscosity ratio plays a role, and there have been suggestions in the literatures [Levitt *et al.* (1996); Hobbie and Migler (1999); Migler (2000); Mighri and Huneault (2001)] that the difference in first normal stress difference between the droplet and matrix fluids is important, as are the second normal stress differences of matrix and droplet fluids. To resolve this issue, fluids must be formulated with controlled first and second normal stress differences. Simulation of droplet deformation for viscoelastic droplet and matrix fluids would also help resolve this puzzle. Eventually, correlations of droplet vorticity stretching and breakup with the viscoelastic properties of the fluids are needed so that blends with desired droplet deformation and breakup characteristics can be designed.

ACKNOWLEDGEMENTS

The author, A.S., would like to acknowledge support from the Postgraduate Education and Research Programs in Petroleum and Petrochemical Technology (PTT Consortium), the Conductive and Electroactive Polymers Research Unit (CU-Ratchadapisek), and the financial support from Thailand Research Fund, grant no. BRG4680015.

REFERENCES

1. Arnett RL, Thomas CP. *J. Phys. Chem.* 1980; **84**: 649-652.
2. Bentley BJ, Leal LG. *J. Fluid Mech.* 1986; **167**: 241-283.
3. Brandrup J, Imergut EH. *Polymer Handbook*, 3rd Ed. New York: 1989.
4. Cherdhirankorn T, Lerdwijitjarud W, Sirivat A, Larson RG. *Rheol Acta* 2004; **43**: 246-256.
5. De Brujin RA. Ph.D.Thesis, Eindhoven University of Technology, 1989.
6. Elmendorp JJ, Maaleke RJ. *Polym Eng. Sci.* 1985; **25**: 1041-1047.
7. Grace HP. *Chem. Eng. Commun.* 1982; **14**: 225-277.
8. Guido S, Villone M. *J. Rheol.* 1998; **42**: 395-415.
9. Hobbie EK, Migler KB. *Phys Rev Lett.* 1999; **82**: 5393-5396.
10. Lerdwijitjarud W, Sirivat A, Larson RG. *J. Rheol.* 2004; **48**: 843-862.
11. Levitt L, Macosko CW, Pearson SD. *Polym. Eng. Sci.* 1996; **36**: 1647-1655.
12. Mighri F, Ajji A, Carreau PJ. *J. Rheol.* 1997; **41**: 1183-1201.
13. Mighri F, Carreau PJ, Ajji A. *J. Rheol.* 1998; **42**: 1477-1490.
14. Mighri F, Huneault MA. *J. Rheol.* 2001; **45**: 783-797.
15. Migler KB. *J. Rheol.* 2000; **44**: 277-290.
16. Rallison JM, Acrivos A. *J. Fluid Mech.* 1978; **89**: 191-200.
17. Taylor GI. *Proc. R. Soc. London, Ser. A* 1932; **138**: 41-48.
18. Taylor GI. *Proc. R. Soc. London, Ser. A* 1934; **146**: 501-523.
19. Varanasri PP, Ryan ME, Stroeve P. *Ind Eng. Chem. Res.* 1994; **33**: 1858-1866.

TABLES**Table 1** Properties of polymers used

Polymer	Suppliers	Grade	M _w
HDPE1	Bangkok Polyethylene	1600J	68,000 ^a
HDPE2	Aldrich	Cat#42,801-9	46,000 ^a
PS1	Polyscience	—	67,000 ^b
PS2	Polyscience	Cat#18544	50,000 ^c
PS3	Polyscience	Cat#23637	800-500 ^c

^a obtained from fitting zero-shear viscosity data with a 3.4-power correlation at 190 °C ($\eta_0 = 5.8 \times 10^{-11} M_w^{3.41}$) as reported by Arnett and Thomas (1980)

^b measured by gel permeation chromatography based on polystyrene standard calibration

^c quoted by the manufacturers

Table 2 Polymer blend systems investigated

Blend system	Blend components (Droplet/Matrix)	Temperature (°C)	Viscosity ratio (η_d/η_m)
A	PS1/HDPE1	143	2.6
B	PS2/HDPE1	155	0.5
C	PS3/HDPE2	139	1.0
D	PS2/HDPE1	147	1.0

System D is System A of Cherdhirankorn *et al.* (2004).

Table 3 Experimental parameters for Figure 5, blend System A (PS1/HDPE1), at a shear rate of 0.4 s^{-1} , $W_{i,d} = 0.75$, and $Ca = 5, 8$, and 11 obtained by varying the initial droplet size: $d_0 \approx 52, 85$, and $125 \mu\text{m}$; and for Figure 6: blend System A (PS1/HDPE1), $Ca \approx 8$, $W_{i,d} = 0.48, 0.75$ and 0.99 obtained by varying the shear rate, $\dot{\gamma} = 0.17, 0.40$ to 0.63 s^{-1} .

Shear rate (s^{-1})	0.17	0.40	0.63
Data			
Temperature ($^{\circ}\text{C}$)	143	143	143
η_d : Viscosity of the droplet phase (Pa.s)	7,620	6,880	6,340
η_m : Viscosity of the matrix phase (Pa.s)	2,870	2,580	2,440
η_r : Viscosity ratio	2.6	2.6	2.6
Γ : Interfacial tension (mN m^{-1})	5.84	5.84	5.84
$N_{1,d}$: First normal stress difference of the droplet phase (Pa)	620	2,080	3,950
$N_{1,m}$: First normal stress difference of the matrix phase (Pa)	208	733	1,230
$N_{1,r}$: First normal stress difference ratio	2.97	2.84	3.21
Ca : Capillary number	$\approx 8^a$	$\approx 5, 8, 11^a$	$\approx 8^a$
D_0 : Initial droplet size (μm)	177	52, 85, 125	56
Wi_d : Weissenberg number of the dispersed phase	0.48 ^b	0.75 ^b	0.99 ^b
Wi_m : Weissenberg number of the matrix phase	0.43 ^c	0.71 ^c	0.80 ^c

^a $Ca = D_0 \dot{\gamma} \eta_m$

21

^b $Wi_d = N_{1,d}/(\eta_d \dot{\gamma})$

^c $Wi_m = N_{1,m}/(\eta_m \dot{\gamma})$

Table 4 Experimental parameters for Figures 6 and 8

Blend system(drop/matrix)	System A (PS1/HDPE1)	System B (PS2/HDPE1)	System C (PS3/HDPE2)	System D (PS2/HDPE1)
Data				
Temperature (°C)	143	155	139	147
Shear rate (s ⁻¹)	0.10	0.63	0.40	0.50
η_d : Viscosity of the droplet phase (Pa.s)	7,996	964	630	2,323
η_m : Viscosity of the matrix phase (Pa.s)	3,026	2,013	595	2,331
η_r : Viscosity ratio	2.6	0.5	1.0	1.0
Γ : Interfacial tension (mN/m)	5.84	5.60	5.92	5.79
$N_{1,d}$: First normal stress difference of the droplet phase (Pa)	276	168	-	-
$N_{1,m}$: First normal stress difference of the matrix phase (Pa)	78.3	920	-	834
$N_{1,r}$: First normal stress difference ratio	3.53	0.18	-	-
G'_d : Storage modulus of the droplet phase (Pa)	-	-	≈ 1.3	179
G'_m : Storage modulus of the matrix phase (Pa)	-	-	≈ 1.3	248
G'_r : Storage modulus ratio	-	-	1.0	0.72
Wi_d : Weissenberg number of the dispersed phase	0.35	0.28	≈ 0.01	0.31
Wi_m : Weissenberg number of the matrix phase	0.26	0.73	≈ 0.01	0.43

FIGURE CAPTIONS

Figure 1 Viscosity as a function of shear rate of the polymers at the temperatures in which the experiments were carried out: (a) matrix phases; (b) dispersed phases.

Figure 2 The first normal stress difference, N_1 , vs. shear rate and the storage modulus, G' , vs. frequency for the polymers at the temperatures in which the experiments were carried out: (a) matrix phases; (b) dispersed phases.

Figure 3 Schematic drawing of a single drop observed from the side and top views of the optical microscope; a and b are the long and short axes of the droplet in the flow-radial plane, a^* , the "apparent axis" is the droplet length projected into the flow direction, and c is the principal axis in the radial direction.

Figure 4 Sequence of images of deforming isolated droplets after startup of a steady shear at fixed $Ca \approx 8$ and $Wi_d \approx 0.30$: (a) System A, $\eta_r = 2.6$, a shear rate of 0.1 s^{-1} , and $D_0 = 86 \mu\text{m}$; (b) System B, $\eta_r = 0.5$, a shear rate of 0.63 s^{-1} , and $D_0 = 72 \mu\text{m}$.

Figure 5 Transient deformation of isolated droplets of System A vs. strain at a shear rate of 0.4 s^{-1} , $Wi_d = 0.75$, and at various Ca values: $Ca \approx 5$, with initial droplet diameter $D_0 = 52 \mu\text{m}$ (□); $Ca \approx 8$, $D_0 = 85 \mu\text{m}$ (○); $Ca \approx 11$, $D_0 = 125 \mu\text{m}$ (▽). (a) Def^* vs. strain; (b) a^*/D_0 vs. strain; and (c) c/D_0 vs. strain.

Figure 6 Transient deformation of isolated droplets of System A vs. strain at fixed $Ca \approx 8$, at various shear rates: $\dot{\gamma} = 0.63 \text{ s}^{-1}$, $Wi_d = 0.99$ with $D_0 = 57 \mu\text{m}$ (●) and $56 \mu\text{m}$ (○); $\dot{\gamma} = 0.4 \text{ s}^{-1}$, $Wi_d = 0.75$ with $D_0 = 85 \mu\text{m}$ (▲); $\dot{\gamma} = 0.17 \text{ s}^{-1}$, $Wi_d = 0.48$, $D_0 = 177 \mu\text{m}$ (□). (a) Def^* vs. strain; (b) a^*/D_0 vs. strain; and (c) c/D_0 vs. strain.

Figure 7 Transient deformation of isolated droplets of Systems A, B and D vs. strain at fixed $Ca \approx 8$ and $Wi_d \approx 0.30$: $\eta_r = 0.5$, $\dot{\gamma} = 0.63 \text{ s}^{-1}$, (○); $\eta_r = 1.0$, $\dot{\gamma} = 0.50 \text{ s}^{-1}$, (●); $\eta_r = 2.6$, $\dot{\gamma} = 0.40 \text{ s}^{-1}$, (△). (a) Def^* vs. strain; (b) a^*/D_0 vs. strain; and (c) c/D_0 vs. strain.

Figure 8 Steady-state deformation parameters vs. capillary number. For $Wi_d \approx 0.30$, System A with $\eta_r = 2.6$ at a shear rate of 0.1 s^{-1} (△); System D of Cherdhirankorn *et al.* (2004) with $\eta_r = 1.0$ at a shear rate of 0.5 s^{-1} (○); and System B with $\eta_r = 0.5$ at a shear rate of 0.63 s^{-1} (□). For $Wi_d \approx 0.01$, System C, with $\eta_r = 1.0$, and a shear rate of 0.4 s^{-1} (▽). Arrows indicate Ca_{crit} of Systems A, B, and D.

Figure 9 Sequence of images of droplet breakup for System A: a shear rate of 0.40 s^{-1} , $D_0 = 125 (\pm 7) \mu\text{m}$, $Wi_d = 0.75$, $\eta_r = 2.6$, and $Ca = 11$.

Figure 10 Sequence of images of droplet breakup for System B: a shear rate of 0.63 s^{-1} , $D_0 = 82 \mu\text{m}$, $Wi_d = 0.28$ for $\eta_r = 0.5$, and $Ca = 9.5$.

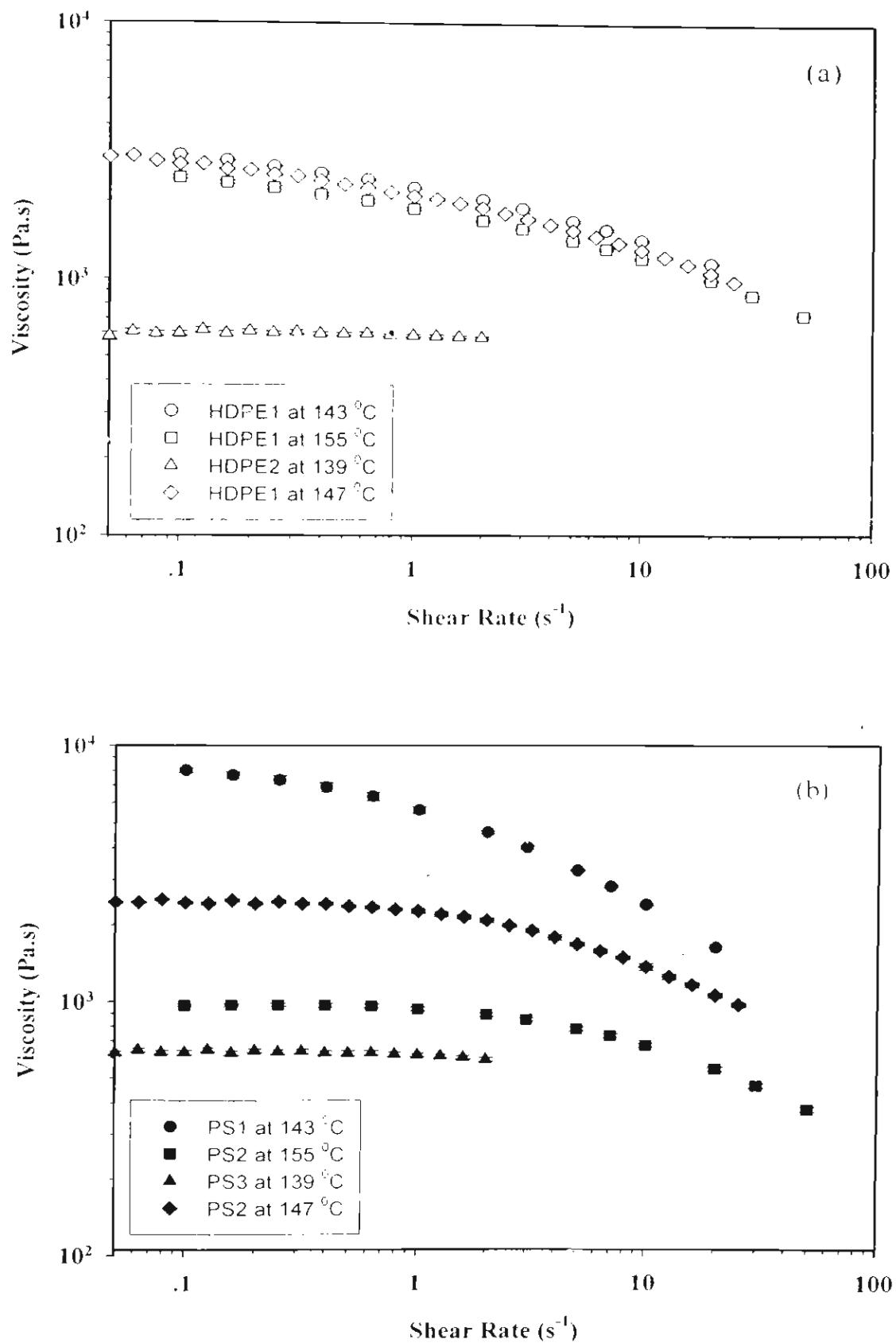


Figure 1

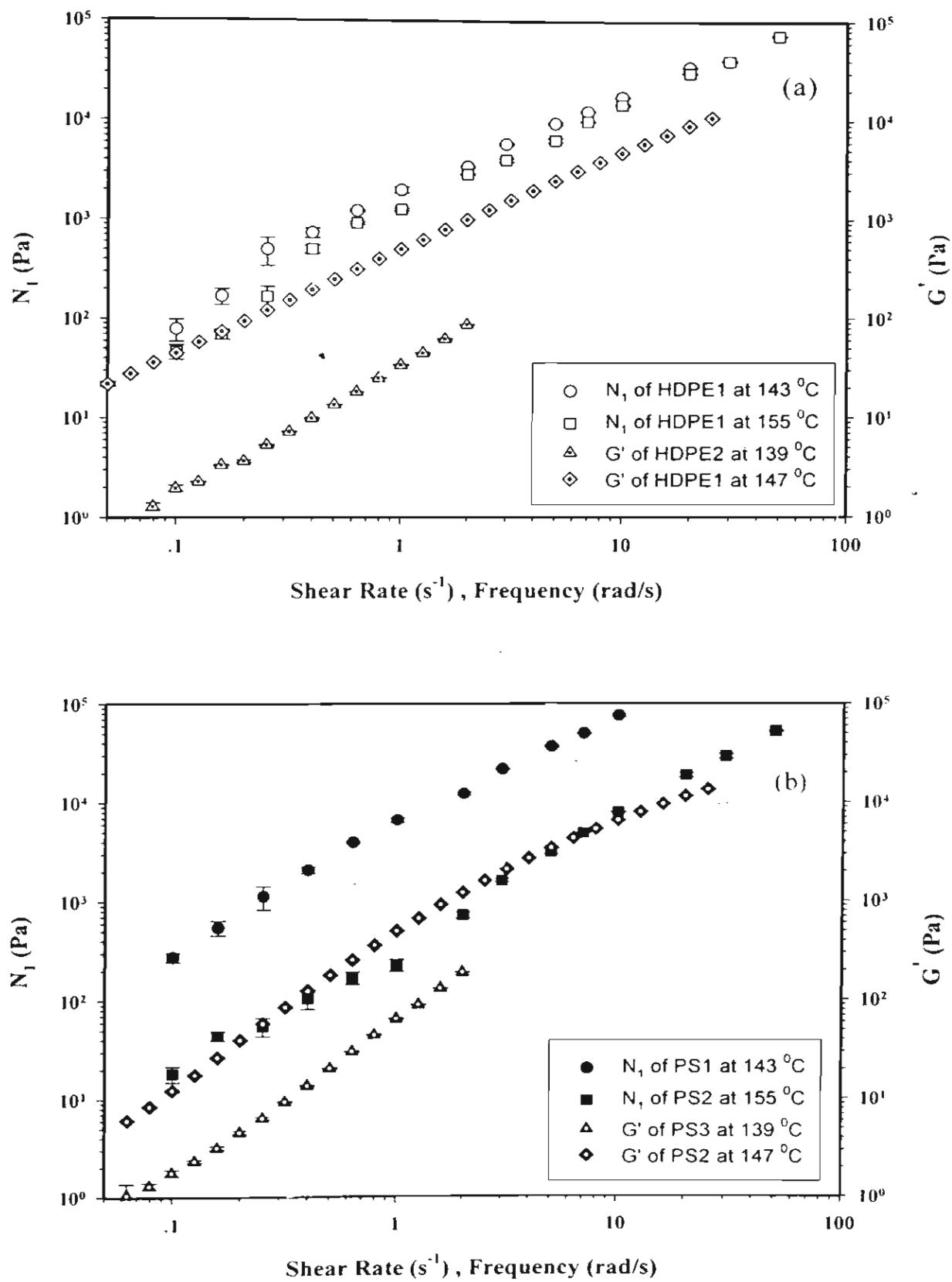


Figure 2

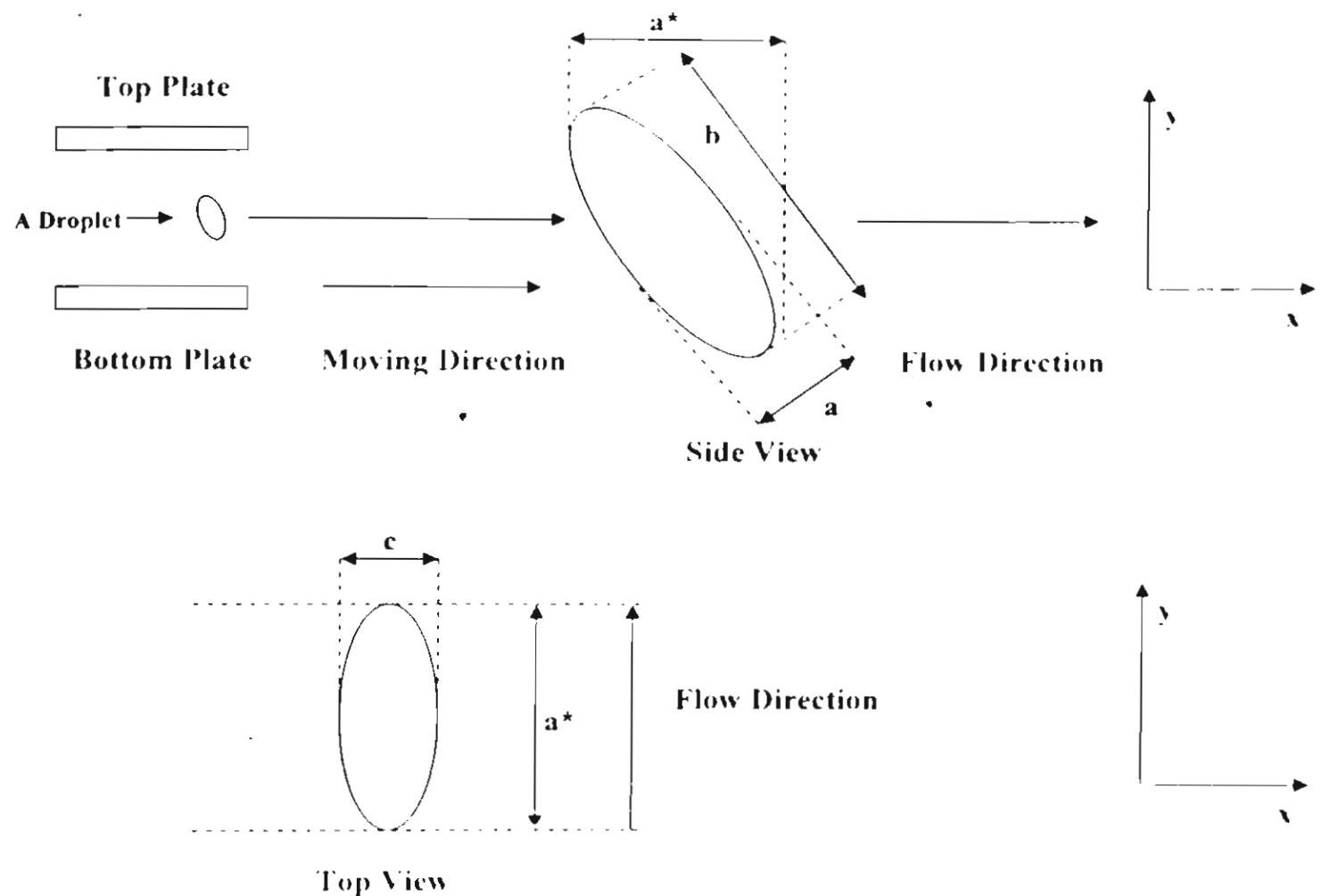


Figure 3

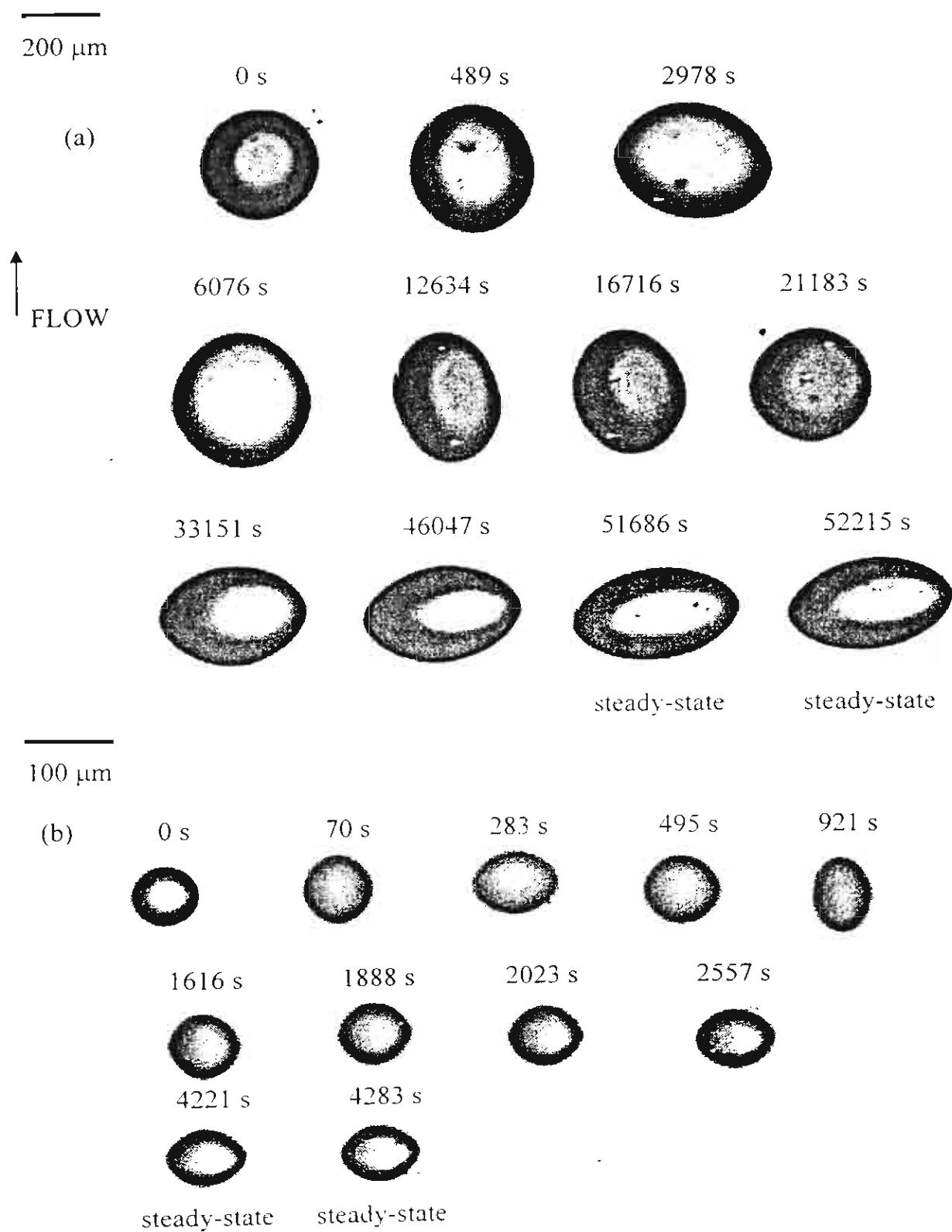


Figure 4

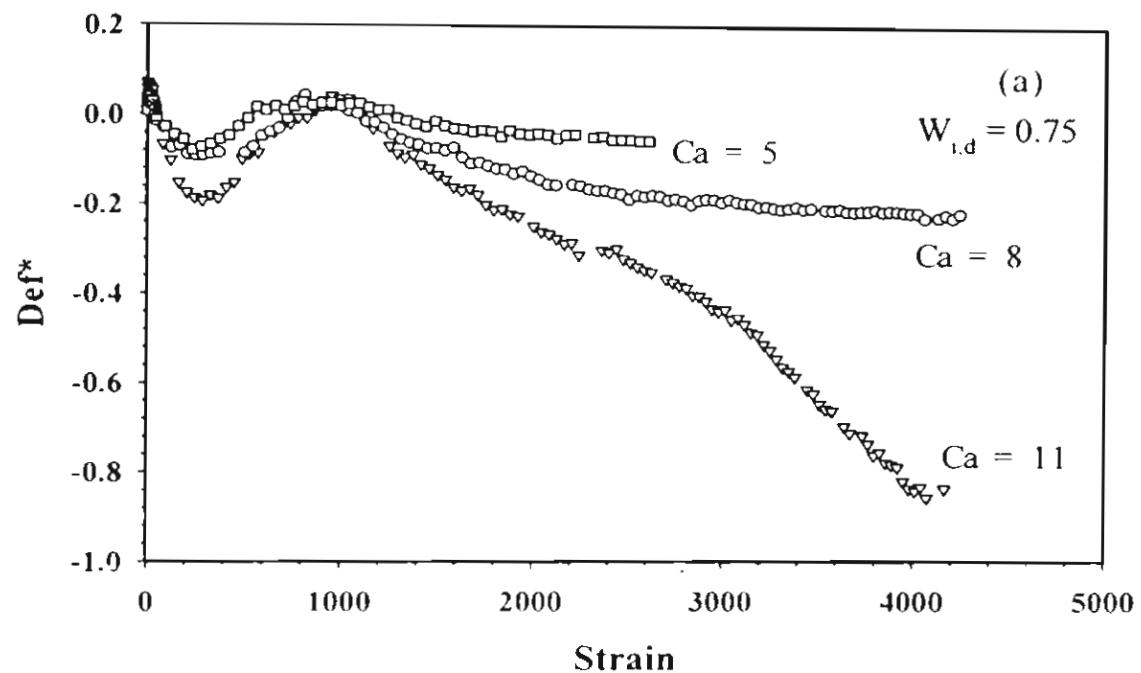


Figure 5a

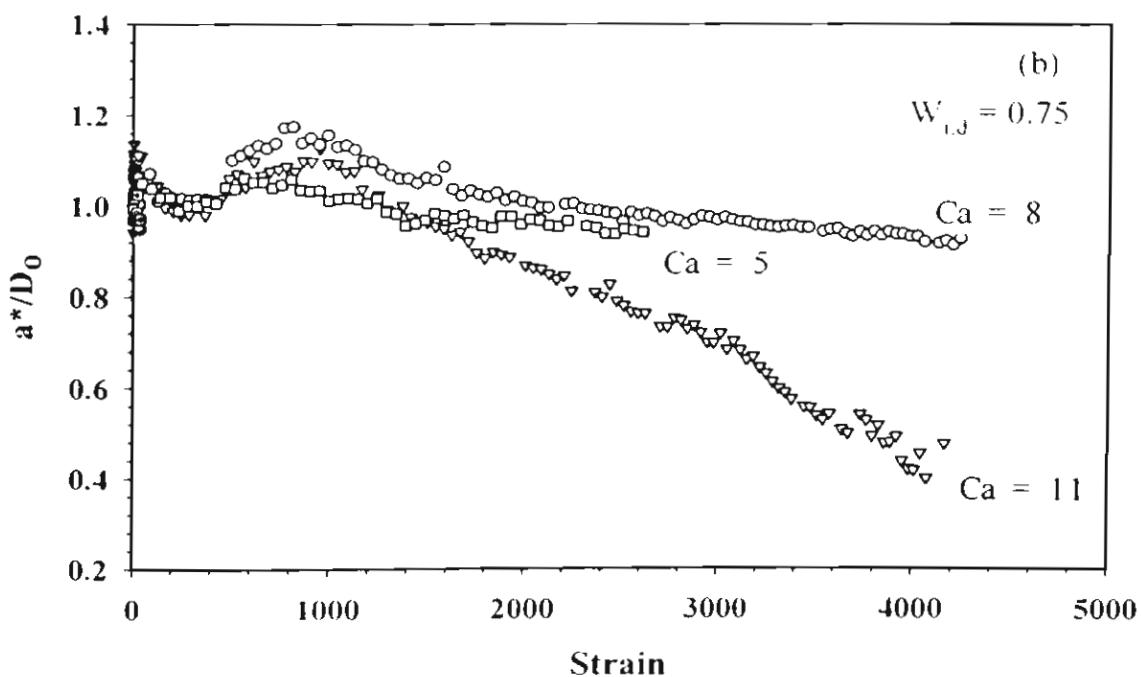


Figure 5b

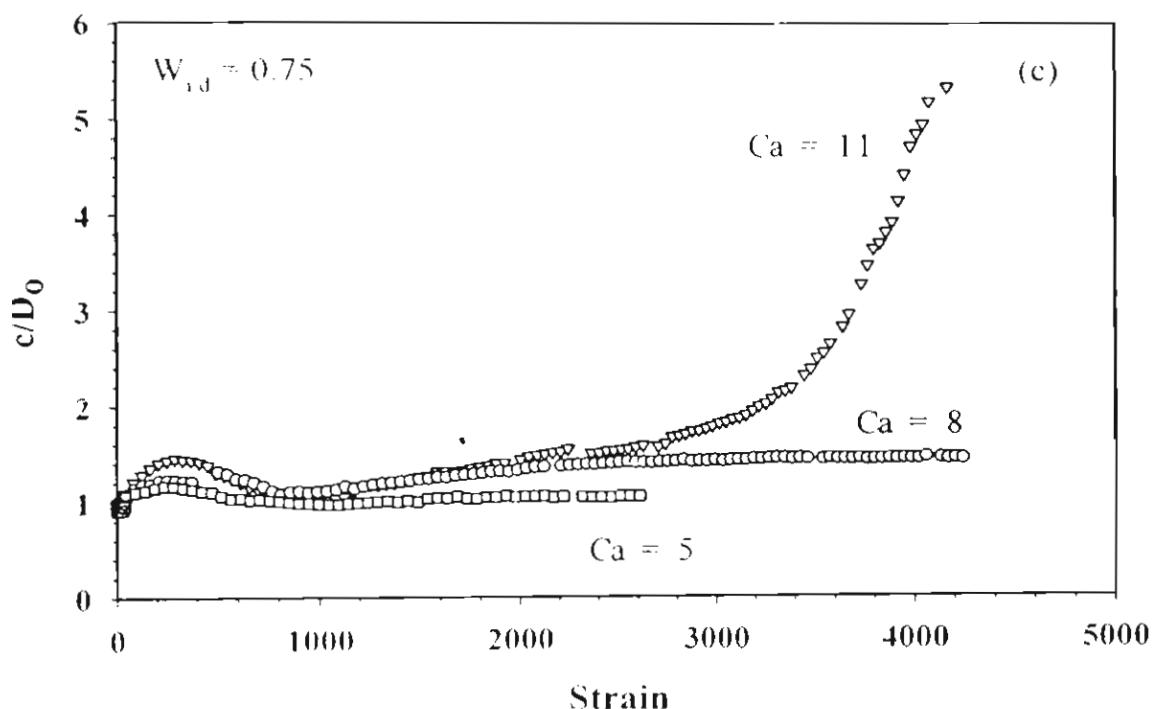


Figure 5c

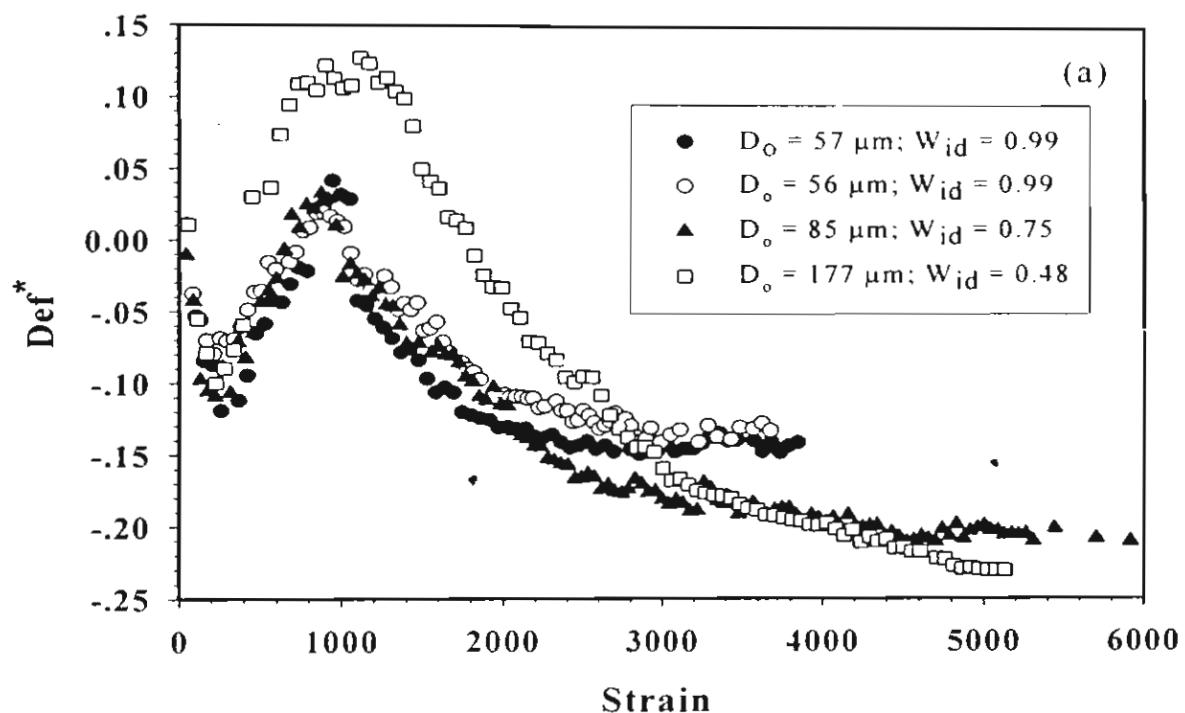


Figure 6a

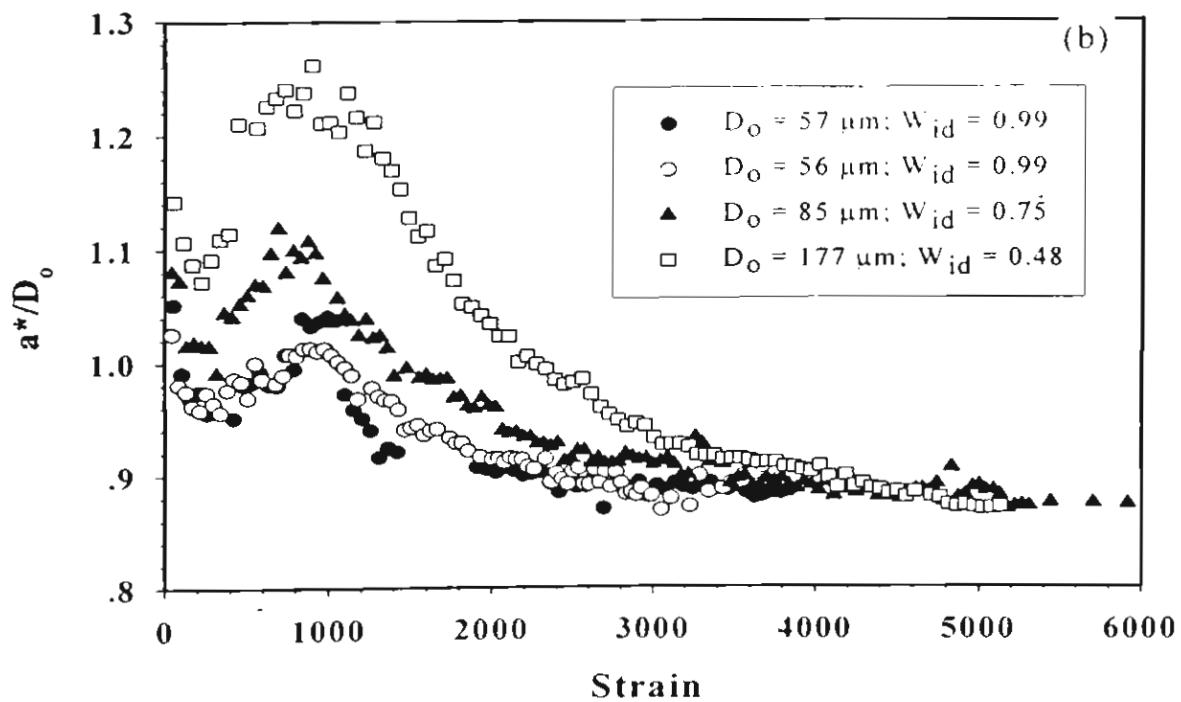


Figure 6b

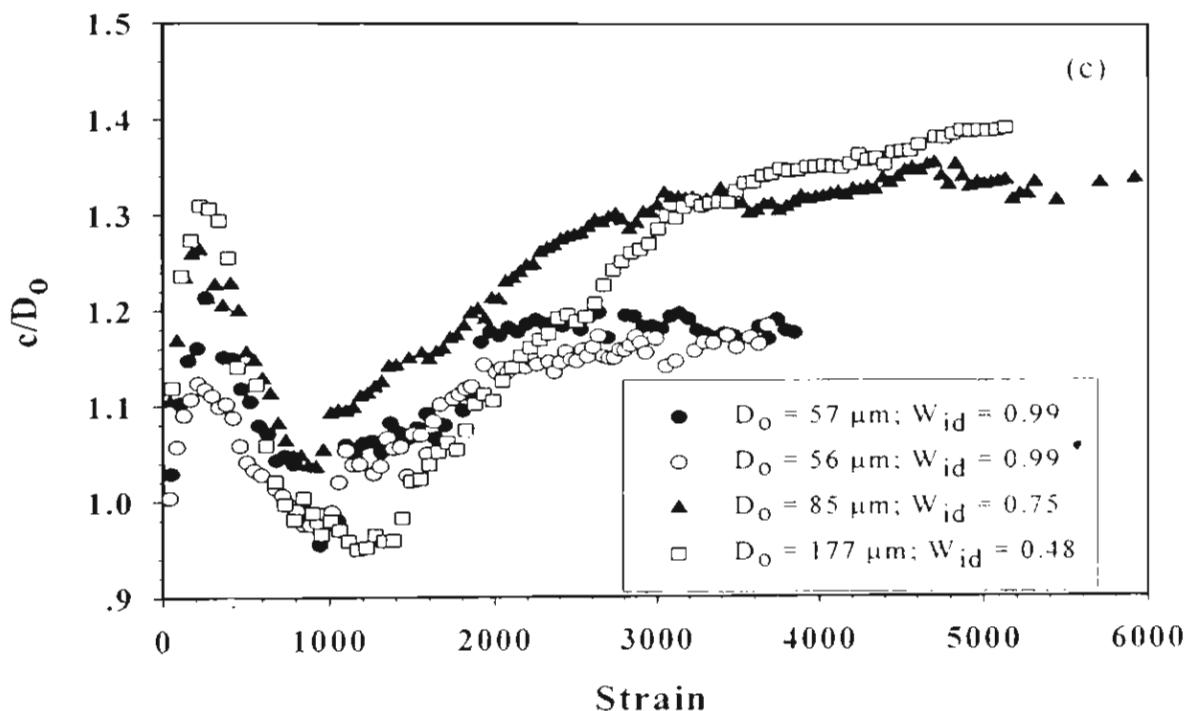


Figure 6c

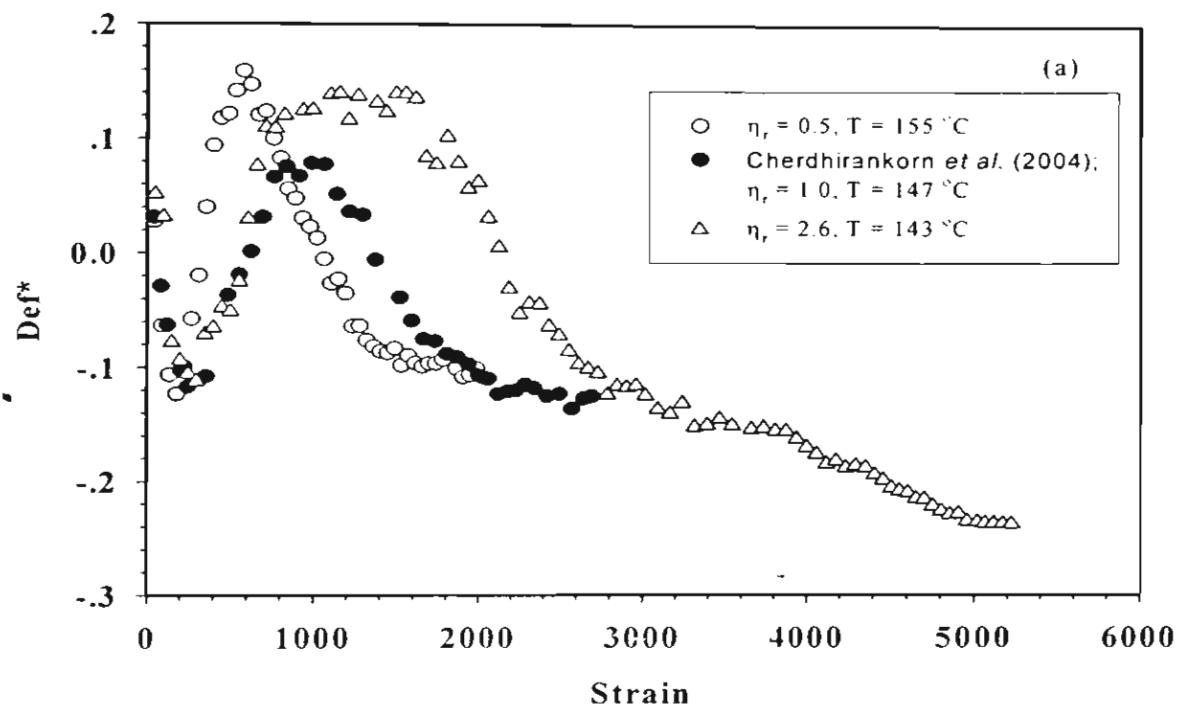


Figure 7a

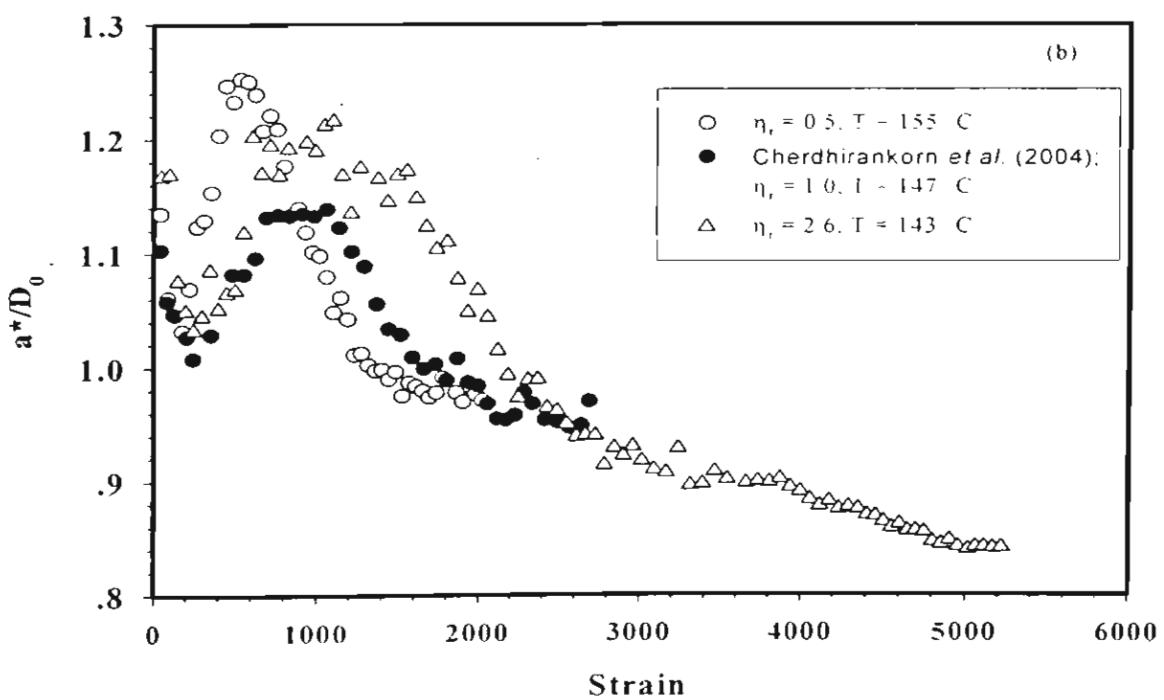


Figure 7b

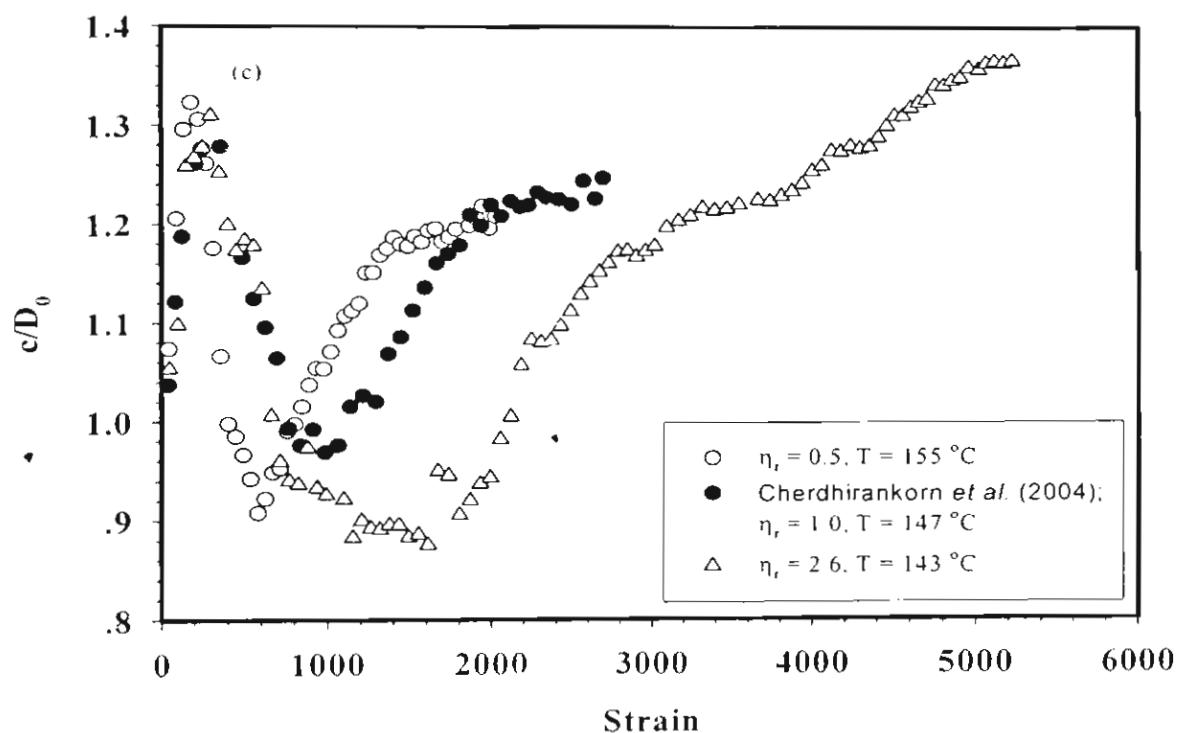


Figure 7c

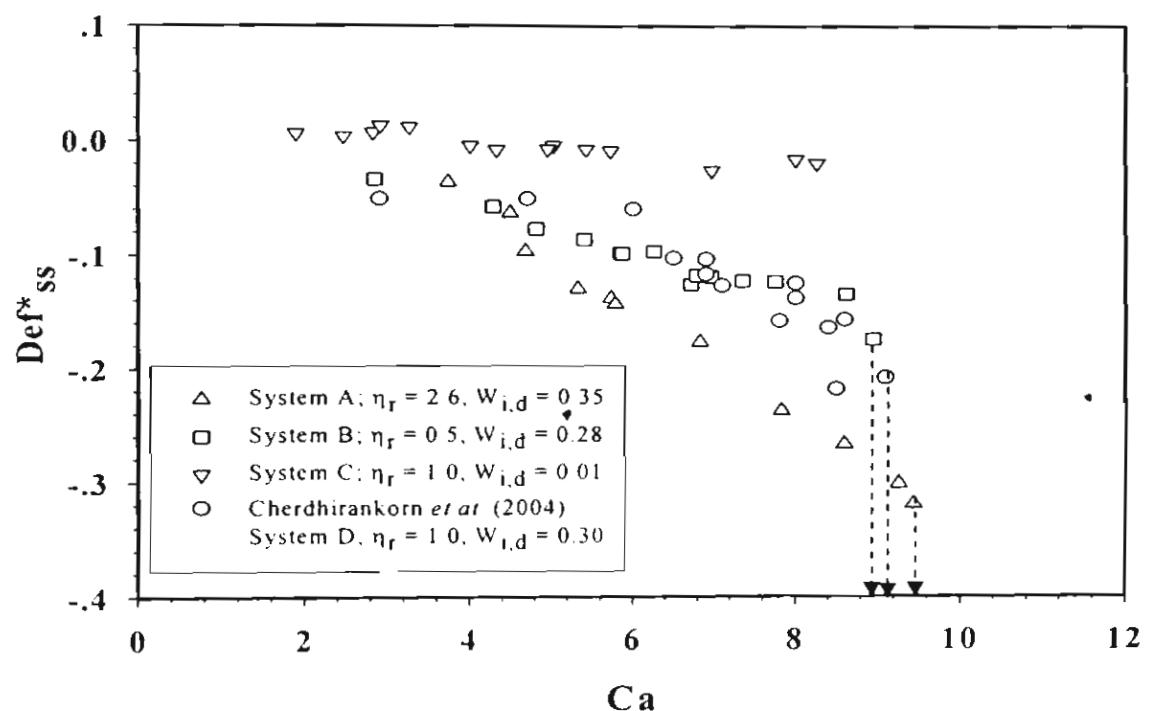


Figure 8

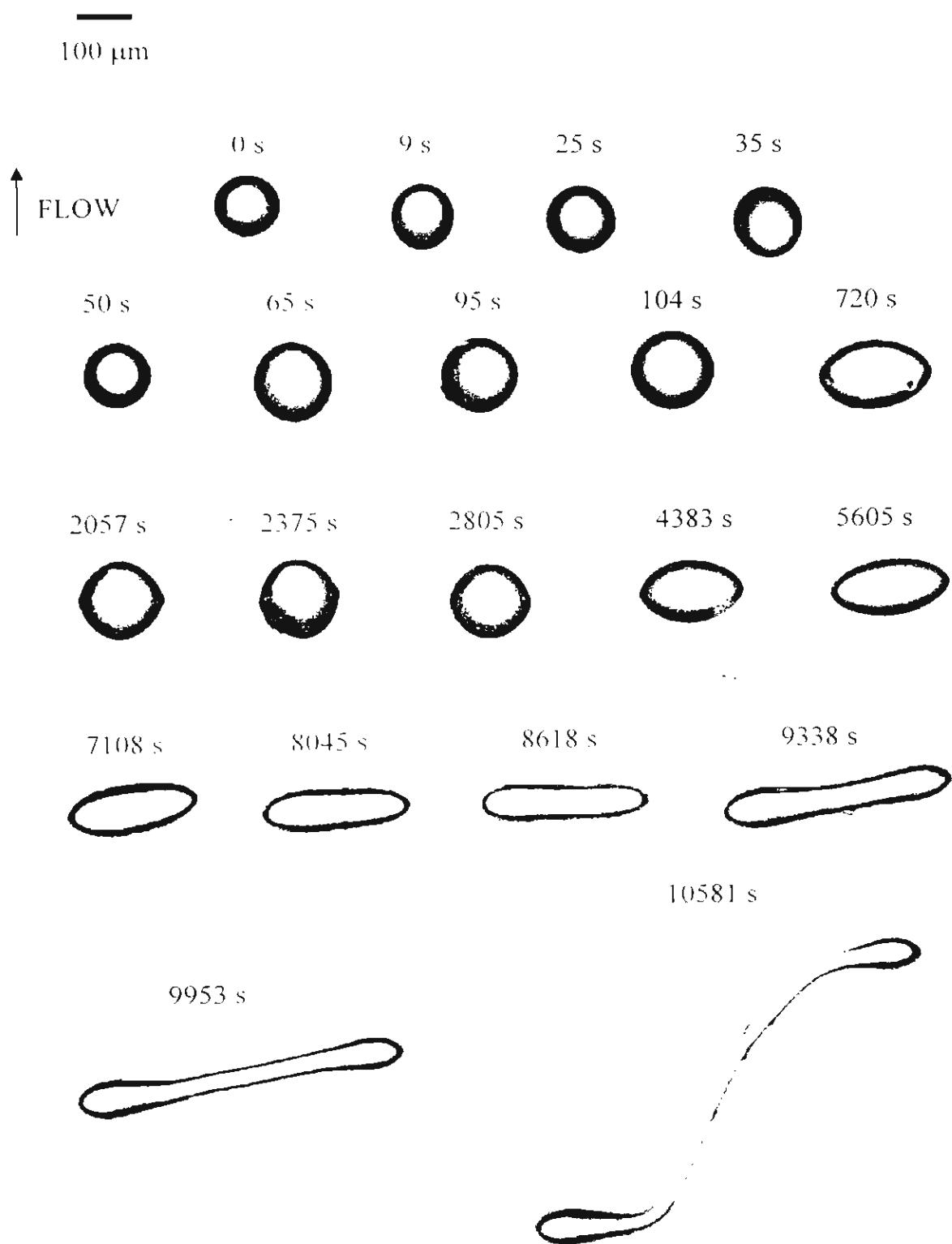


Figure 9

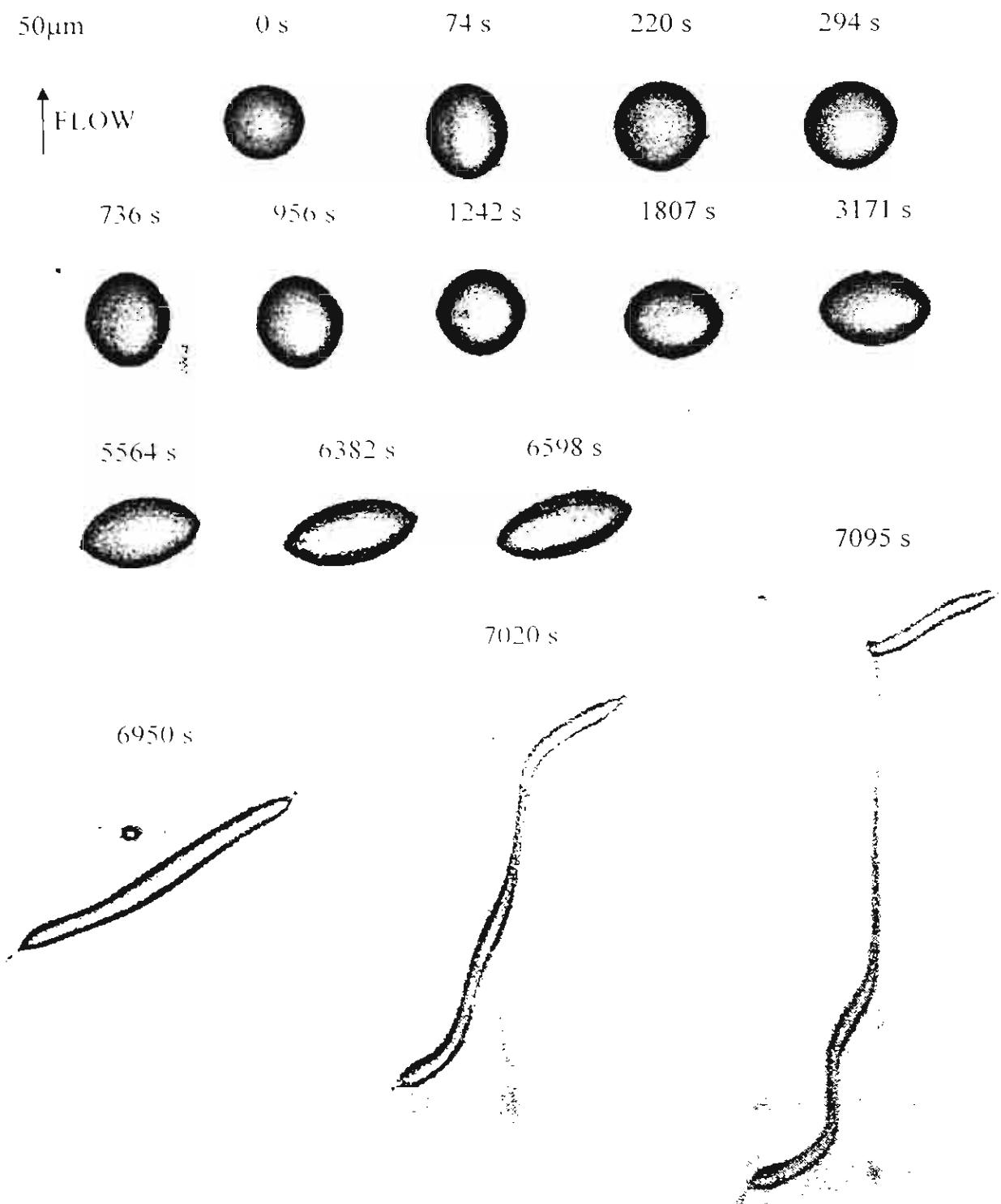


Figure 10

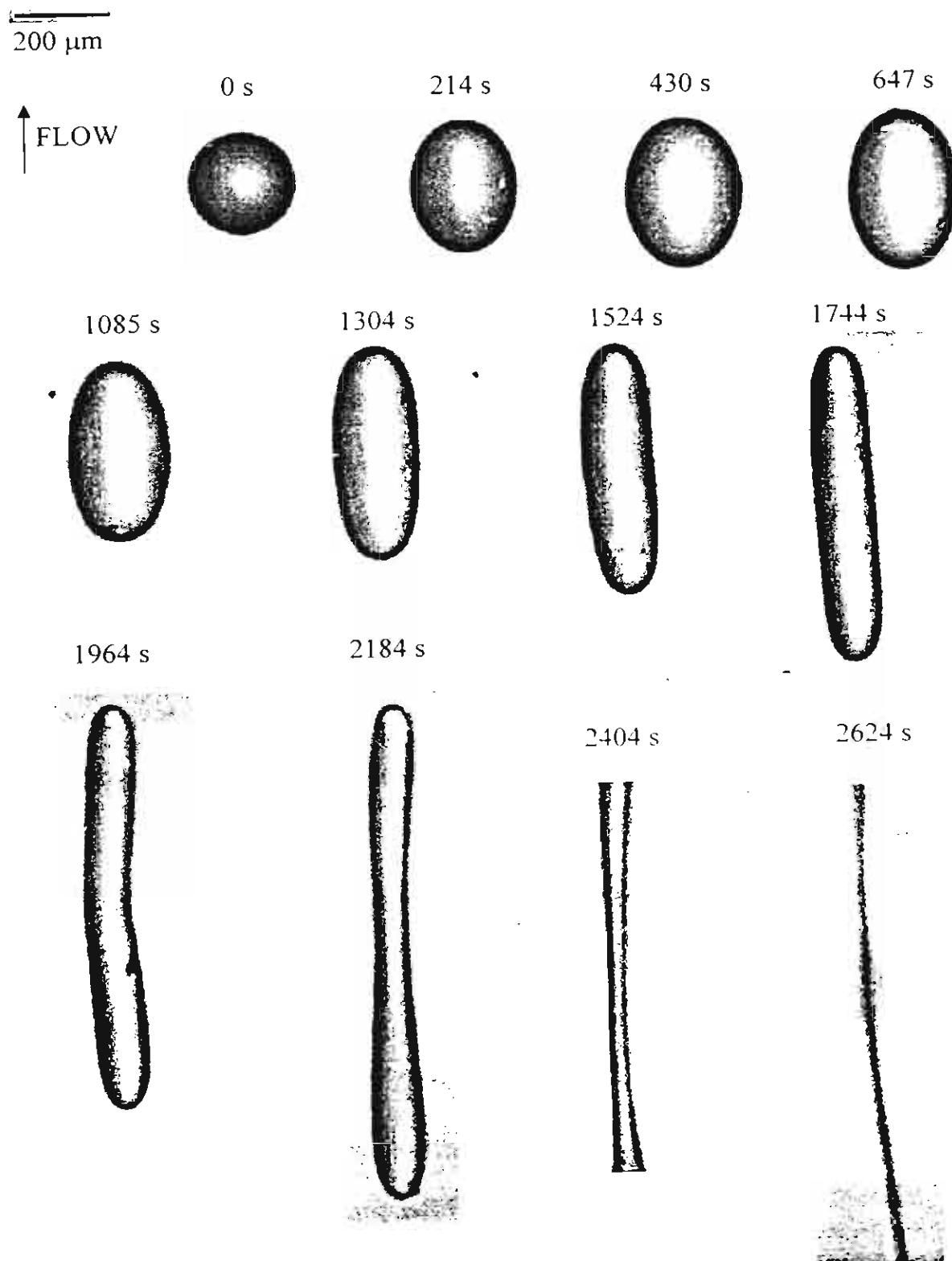


Figure 11

Chapter 5: Influence of Dispersed-phased Elasticity on Steady-state Deformation and Breakup of Droplets in Simple Shearing Flow of Immiscible Polymer Blends

Wanchai Lerdwijitjarud ^a, Anuvat Sirivat ^b, and Ronald G. Larson ^{c,*}

^a Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

^b Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand

^c Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA

* Corresponding Author

Influence of Dispersed-phased Elasticity on Steady-state Deformation and Breakup of Droplets in Simple Shearing Flow of Immiscible Polymer Blends

Abstract

The effect of dispersed-phase elasticity on steady-state deformation and breakup of isolated droplets for polybutadiene/poly(dimethyl siloxane) blends in simple shearing flow is investigated systematically for values of the dispersed-phase Weissenberg number (Wi_d) ranging up to around 3, where the Weissenberg number is defined as the ratio of the first normal stress difference to twice the shear stress at the imposed shear rate. The dependence on droplet elasticity of steady-state morphology for 10%-dispersed phase blends is also studied. The polybutadiene droplet phase is an elastic “Boger” fluid prepared by dissolving a high-molecular-weight polybutadiene into low-molecular-weight Newtonian polybutadiene. To isolate the contribution of droplet elasticity, all experiments were done on a fixed viscosity ratio of around unity, achieved by adjusting the temperature appropriately for each blend. When the droplet elasticity increases, the steady-state deformation of isolated droplets decreases for fixed capillary number. The critical capillary number for breakup (Ca_{crit}) increases linearly with the Weissenberg number of the droplet phase (Wi_d) up to a value of Wi_d of around unity. When Wi_d is greater than unity, Ca_{crit} seems to approach an asymptotic value of 0.95 for high values of Wi_d . For 10%-dispersed phase blends, the steady-state capillary number (Ca_{ss}) calculated from a volume-averaged droplet diameter is less than the Ca_{crit} for isolated droplets for the same blend. Ca_{ss} increases monotonically with the first normal stress difference of the droplet phase (N_{1d}). Droplet widening in the vorticity direction is not observed even at droplet

Weissenberg numbers much in excess of those for which widening is observed in blends of melts, suggesting that widening is strongly influenced by factors other than the first normal stress difference, such as shear thinning or second normal stress differences.

Keywords: immiscible blend, droplet elasticity, droplet deformation, Capillary number, Weissenberg number

INTRODUCTION

The dispersal of one fluid in another immiscible fluid phase is important in industrial processes, such as emulsion formulation, polymer blending, and also to create interface for heat transfer, mass transfer, and chemical reactions. The size and size distribution of droplets in the matrix phase are crucial for controlling the reactivity of these processes and/or the properties of the final products. For example, the impact strength of a polymer blend is significantly improved when the size of rubbery dispersed-phase inclusions is smaller than a critical value [Wu (1985)]. The droplet size distribution is controlled by deformation, relaxation, breakup, and coalescence of droplets during mixing.

The investigation of deformation and breakup of an isolated Newtonian droplet in an immiscible Newtonian matrix was pioneered by Taylor (1932, 1934). He observed that droplet deformation and breakup of isolated droplets in a Newtonian blend under quasi-steady conditions (i.e., gradually increasing deformation rate) are controlled by two dimensionless parameters, namely the capillary number (Ca), which is the ratio of matrix viscous stress to interfacial stress, and the viscosity ratio (η_r), of the dispersed (η_d) to the matrix phase (η_m). For viscosity ratios near unity, the steady-state three-dimensional shape of an isolated deformed Newtonian droplet sheared in a Newtonian matrix can be represented by an ellipsoid having three different principal axes, the longest of which orients at an angle θ with respect to the flow direction. (Guido and Villone 1998). When the matrix viscous stress ($\eta_m \dot{\gamma}$ where $\dot{\gamma}$ is the applied shear rate) overcomes the interfacial stress (Γ/r_0 , where Γ and r_0 are the interfacial tension and the undeformed droplet radius, respectively), the droplet will break. This occurs when the ratio of the viscous to the interfacial stress, which is the

capillary number $Ca \equiv \eta_m \dot{\gamma} r_0 / \Gamma$, exceeds a critical value, Ca_{crit} . Ca_{crit} is a minimum when η_r is around unity [Grace (1982); De Bruijn (1989)]. The flow type (shear vs. extensional flow) was also found to effect the correlation between Ca_{crit} and η_r [Rallison and Acrivos (1978), Bentley and Leal (1986)].

For polymer blends, non-Newtonian behavior, including elasticity and shear-thinning, is expected to influence the deformation and breakup of droplets. Wu (1987) studied the steady-state average droplet size in extruded viscoelastic polymer blends containing 15% of dispersed phase and compared the results with those of Newtonian blends. Like the Newtonian blend, the minimum in Ca for these polymer blends was found at a viscosity ratio of around unity; however the value of Ca at $\eta_r = 1$ for Wu's polymer blends was around ten times greater than that of a Newtonian system. Many experimental results on immiscible viscoelastic blends when either one phase or the other is viscoelastic have been reported in the literature [Flumerfelt (1972); Elmendorp and Maalcke (1985); Milliken and Leal (1991); Tretheway and Leal (2001)]. An unusual phenomenon, transient and steady-state droplet widening along the vorticity axis [Levitt *et al.* (1996); Hobbie and Migler (1999); Migler (2000); Mighri and Huneault (2001)], was observed for a viscoelastic droplet sheared in a viscoelastic matrix.

Most of the experimental evidence shows that elasticity of the droplet fluid inhibits droplet deformation, causing the droplet to break at a higher capillary number, while elasticity of matrix phase tends to destabilize the droplet, making it break at a lower capillary number. However, quantitative correlations between Ca and elasticity of droplet or matrix phase are rare. Varanasi *et al.* (1994) studied the breakup of isolated viscoelastic droplets sheared in purely viscous Newtonian fluids in a cone-and-plate device and found a linear relationship between Ca_{crit} and the first normal

stress difference of the dispersed phase fluid at a fixed viscosity ratio. However, for any fixed viscosity ratio there was a critical value of the shear rate, $\dot{\gamma}^*$, below which the breakup of a viscoelastic droplet was easier than that of Newtonian droplet. The reasons for these results are still unclear. Mighri *et al.* (1998) investigated the deformation and breakup of isolated droplets under a simple shear flow for a blend prepared from "Boger" fluids (in which each blend component is a dilute polymer in a Newtonian matrix) and also constructed a correlation between Ca_{crit} and elasticity contrast, as measured by the ratio λ_d/λ_m of the relaxation time of the droplet phase ($\lambda_d \equiv N_{1d}/2\eta_d \dot{\gamma}^2$) to that of matrix phase ($\lambda_m \equiv N_{1m}/2\eta_m \dot{\gamma}^2$), where N_{1d} and N_{1m} are the first normal stress differences of dispersed and matrix phase, respectively. The correlation between Ca_{crit} and λ_d/λ_m was found to be nonlinear, in which Ca_{crit} sharply increased with increasing λ_d/λ_m when $\lambda_d/\lambda_m < 4$, but for $\lambda_d/\lambda_m > 4$, Ca_{crit} reached an asymptotic value of Ca_{crit} around 0.9.

In most previous work, both droplet elasticity and viscosity ratio were varied simultaneously. However, the study of droplet behavior when droplet elasticity is the sole manipulated valuable has been recently reported [Lerdwijitjarud *et al.* (2003)]. In that work, the deformation and breakup of isolated droplets of weakly elastic fluid ($Wi_d \leq 0.02$, $Wi_d \equiv (\Psi_{1,d}/2\eta_d) \dot{\gamma}_c$; where $\Psi_{1,d}$ is the first normal stress difference coefficient of dispersed phase), sheared in a Newtonian matrix, were microscopically investigated at a fixed viscosity ratio of unity. Elasticity of the droplet produced a reduction in the degree of deformation at any given imposed Ca , and correspondingly resulted in greater value of Ca_{crit} for droplet breakup compared with a Newtonian droplet. The breakup mechanism appeared to be similar to that in a Newtonian fluid; i.e., the droplet deformed increasingly in the flow direction as the shear rate was

gradually increased, until breakup occurred. A quantitative relationship linking Wi_d to Ca_{crit} was established. Ca_{crit} increased linearly with increasing Wi_d , but a downward deviation from linearity was found for the blends with highest Wi_d , i.e., for $Wi_d \approx 0.02$.

This paper is devoted to finding a quantitative relationship between the critical capillary number for breakup, Ca_{crit} , and elasticity of dispersed phase, as measured by Weissenberg number, Wi_d , for the blend systems with a fixed viscosity ratio of unity and a much higher degree of droplet phase elasticity than in our previous work [Lerdwijitjarud *et al.* (2003)], in order to move toward more realistic commercial high-molecular-weight polymer blends with high elasticity.

EXPERIMENTAL METHODS

A. Materials

The materials used as the matrix and dispersed phases of the blends in this study were polydimethylsiloxane (PDMS) (Viscasil 100M donated by General Electric) and low-molecular-weight, Newtonian, polybutadiene (PBd) (Sartomer R150 donated by Sartomer Inc.), respectively. The properties of both fluids are listed in Table I. A high-molecular-weight polybutadiene ($M_w = 1.43 \times 10^6$, $M_w/M_n \sim 1.13$) was also used as a flexible polymer component added to the low-molecular-weight PBd to make "Boger" fluids with elasticity but low shear thinning [Boger and Binnington (1977)].

B. Blend Preparation and Characterization

To remove all volatile components, both PDMS and PBd were placed in a vacuum oven at 50 °C until no further weight change was observed. The polybutadiene "Boger" fluids were prepared by thoroughly dissolving high-molecular-weight polybutadiene into methylene chloride. The solution was gently mixed with low-molecular-weight PBd by the rolling-bottle technique at ambient conditions for at least 7 days to ensure that a homogeneous solution was achieved. The mixture was then vacuum dried at 50 °C to eliminate the methylene chloride and other volatile materials until the weight loss ceased. The weight percentages of high-molecular-weight flexible polymer in the polybutadiene "Boger" fluid for this work are 0.1, 0.2, 0.5, and 1.0. The steady-state viscosities and first normal stress differences, N_1 , of all fluids were measured by a cone-and-plate rheometer with 25-mm. plate diameter and cone angle of 0.1 rad. (Rheometrics Scientific, ARES). The

temperature at which both PDMS and low-molecular-weight PBd have the same viscosity is 18.3 °C. At this equiviscosity temperature of these two fluids, the PBd shows Newtonian behavior at shear rates of 0.1-10 s⁻¹, whereas weak shear thinning and a small value of N_t at high shear rates are observed for PDMS (see Figure 3a). Figure 1 depicts the dependence of steady-state viscosity and N_t of all PBd "Boger" fluids on shear rate at a temperature of 18.3 °C. The zero-shear viscosities, η_0 , and also the elasticities, as measured by the N_t values, of the "Boger" fluids increase with increasing concentration of high-molecular-weight polymer component in the solution. Unfortunately, shear thinning also increases with increasing concentration of long-chain species, which is especially evident in the "Boger" fluids containing the high-molecular-weight PBd at concentrations of 0.5% and 1.0%. The dependence of η_0 on weight percent of long-chain polymer in PBd "Boger" fluid is shown in Figure 2. For the "Boger" fluids containing 0.1% and 0.2% of long-chain polymer, the solutions are believed to be dilute in high-molecular-weight PBd because we observe an approximately linear relation between the concentration of high-molecular-weight polymer and the increment in zero-shear viscosity over that of low-molecular-weight PBd. However, the linear relation is no longer valid for the solutions containing 0.5%, and 1.0% of high-molecular-weight polymer, evidently because of the onset of entanglements at these higher concentrations.

The blends used in this study are presented in Table II. To clearly isolate the contribution of elasticity, the viscosity ratios of the blends were fixed at around unity. The testing temperature, therefore, was varied from blend to blend to compensate for the effect of long-chain polymer on the viscosity of PBd dispersed phase. For A0, A1, and A2 blends, the viscosity ratios could be set to around unity using only a single value of temperature for each blend (see Figure 3). Due to the shear-thinning

characteristics of the 0.5% and 1.0% high-molecular-weight PBd solutions, however, different testing temperatures were used for these blends over different ranges of shear rate to better satisfy the equiviscosity condition (see Figures 4 and 5). The steady-state viscosities and the first normal stress differences of the PDMS matrix and the PBd dispersed phase at the temperature at which both phases have the same viscosity are shown for all blends in Figures 3, 4, and 5. The viscosity ratios of all blends were well controlled to be unity \pm 5% at the testing conditions, whereas the elasticity of the dispersed phase monotonically increases with concentration of high molecular weight PBd in blends A6, A1, A5, A10, as indicated by the increasing values of N_1 of the droplet fluid.

C. Experiments on Isolated Droplets

1. Instruments and sample loading

An optical flow cell (Linkam CSS450, Linkam Scientific Instruments Inc.), consisting of two parallel quartz disks, i.e. a rotatable lower one and a fixed upper one, mounted on an optical microscope (Leica DMRXP, Leica Imaging Systems Inc.) was used to conduct the experiments. The temperature of the flow cell was controlled by the cell-heating elements and circulating water from a water bath. Images were captured by a CCD camera (Cohu 4910, Cohu Inc.) in the flow-vorticity plane and transferred to a PC computer via a frame-grabber card (LG3-128, Scion Corporation Inc.). The images were analyzed by the Scion Image software.

The PDMS matrix phase was loaded into the flow cell, and the fluid was allowed to level. Several PBd droplets were then immersed into the matrix using a small needle. The upper plate of the flow cell was gradually lowered until the quartz

disk touched the sample and the desired gap was reached. For the experiments on isolated droplets, the total amount of dispersed phase in the blend was less than 0.2%.

II. Optical microscopy of an isolated droplet

Droplets located near the center of the gap and separated from their neighboring droplets by a distance more than three times the diameter of the biggest neighboring droplet were considered to be isolated droplets and were chosen for observation and measurement. Since hydrodynamic interactions with the solid surfaces disappear if the distance between the closest surface and the droplet center is more than five times the droplet radius [Kennedy *et al.* (1994); Uijttewaal and Nijhof (1995)], the gap in all our experiments was at least ten times larger than the diameter of the chosen droplet. Since the images of the deformed droplet were taken only in the flow-vorticity plane, which is the plane perpendicular to the shear gradient direction, the lengths of all three principle axes of the ellipsoidal droplet could not be obtained unless the orientation angle (θ), the angle between the major axis of deformed droplet in the flow-flow gradient plane, was known. This orientation angle can be predicted from either the affine deformation model for step strains or the Chaffey and Brenner relation for steady-state shearing [Chaffey and Brenner (1967)], and these formulas will be used here to obtain the orientation angle, which then allows the lengths of all three droplet axes to be determined. For a step-strain or startup flow experiment, if the imposed Ca is at least three times higher than Ca_{crit} , the orientation angle predicted from the affine deformation model has been found to be close to the experimental value obtained from microscopy for both Newtonian and viscoelastic blends in experiments that imaged the droplet from two different directions [Yamane *et al.* (1998); Okamoto *et al.* (1999)]. For $Ca \leq Ca_{crit}$, Chaffey

and Brenner (1967) found that for isolated Newtonian droplet sheared in immiscible Newtonian matrix, the orientation angle of the steady-state deformed droplet depended on the applied Ca and the viscosity ratio of the system. Guido and Villone (1998) compared the predictions of the Chaffey and Brenner relation with the experimental results obtained from microscopy for polydimethylsiloxane droplets sheared in polyisobutylene at η_r of 1.4 and 2, and found good agreement between the two.

III. Interfacial tension determination

The interfacial tensions of all blend systems studied were determined by the deformed-droplet retraction technique [Luciani *et al.* (1997); Guido and Villone (1999); Mo *et al.* (2000); Xing *et al.* (2000)]. The shape evolution of a deformed isolated droplet during relaxation from an ellipsoidal back to a spherical shape was recorded. The characteristic relaxation time for an isolated droplet, τ , can be obtained from the slope, $-1/\tau$, of a straight line fit to the data in the linear relaxation regime of semilogarithmic plots of the deformation parameter, Def (Def $\equiv (a-b)/(a+b)$, where a is the major axis of the ellipsoid oriented at a particular angle (θ) within a flow-gradient plane, b is the minor axis in the shear-gradient direction), versus relaxation time. The interfacial tension, Γ , can be calculated from the Palierne Model [Palierne (1990); Graebling *et al.* (1993)] in the limit of zero volume fraction of the dispersed phase:

$$\tau = \frac{(3 + 2\eta_{r,0})(16 + 19\eta_{r,0})r_0\eta_{m,0}}{40(1 + \eta_{r,0})\Gamma}$$

where $\eta_{r,0} \equiv \eta_{d,0}/\eta_{m,0}$ is the ratio of zero-shear viscosities of dispersed to matrix phase, and r_0 is the radius of the spherical drop. For viscoelastic systems, the

contribution of both droplet and matrix elasticity to the relaxation of the droplet shape may lead to errors if this equation is used. However, the relation can still be used to determine the interfacial tension of viscoelastic materials if the relaxation of the nonNewtonian elastic stress of the blend constituents is relatively fast compared with the droplet shape relaxation and the droplet retraction rate is sufficiently slow to ensure that the materials behave as Newtonian during the droplet shape relaxation [Luciani *et al.* (1997), Xing *et al.* (2000)]. For large enough droplets, relaxation should become slow enough that viscoelastic stresses relax too quickly to influence droplet shape relaxation and hence the rate of relaxation is then governed by the interfacial tension alone. In this study, the interfacial tension values obtained using the Palierne formula applied to experiments on 180- μm and 100- μm droplets are the same within an experimental error for all blend systems, which implies that the true interfacial tension was obtained. The interfacial tension of all blends is presented in **Table II**.

IV. Steady-state deformation and breakup of isolated droplet

For steady-state deformation experiments, a suitable isolated droplet with desirable size was selected. The chosen droplet was then driven out of the field of view by applying a relatively small shear rate until the desired magnitude of the strain to be subsequently imposed strain was reached. The shear flow was stopped to allow the droplet to completely relax into a spherical shape. The same strain in the opposite direction was then applied at the desired shear rate, thus deforming the droplet and simultaneously bringing it back into viewing window. The droplet images were recorded by using a CCD camera at the maximum capturing speed (25 frames/second). The capturing process was begun before the sheared droplet moved into the

viewing window and continued until the shear flow was stopped and the deformed droplet started to relax. To ensure that a steady-state deformation had been established, the strain required to reach a steady-state droplet shape was determined. This was done by finding a strain high enough that an increase of this strain by at least 20 strain units did not change the droplet shape. After determining the steady-state shape at a fixed shear rate, the applied shear rate was gradually increased from low to high in small incremental steps until the critical shear rate required for breaking the droplet was reached.

D. Experiments on Concentrated Blends

The concentrated blend compositions are 10% by weight PBd dispersed phase and 90% by weight PDMS matrix phase. The blend constituent components were weighed and mixed together with a spatula for around 20 min. resulting in a white-creamy product. The sample was placed in the vacuum oven at room temperature for about 1 hr to remove all bubble generated during the mixing step. The bubble-free sample was loaded into the flow cell. The upper plate of the flow cell was gradually reduced until the gap reached 500 microns. The testing temperature was set to a value at which both the matrix and dispersed phases had the same viscosity. After the loading process, the sample was pre-conditioned by shearing at a shear rate of 0.3 s^{-1} for a strain of 20,000 units. During this step, coalescence dominated, leading to a relatively coarse morphology.

After the pre-conditioning process, the shear rate was stepped up to 0.5 s^{-1} . A strain of 20,000 units was used to ensure that the steady-state morphology at this shear rate was reached. The flow was then stopped to allow the deformed droplets to relax back into spherical shapes. Due to the high viscosity of the matrix fluid and low

temperature of our blend systems, the diffusion coefficient associated with Brownian motion of the droplets is small ($\sim 10^{-6} \mu\text{m}^2/\text{s}$ for droplets with diameter of $5 \mu\text{m}$ at 20°C). Thus, the coalescence effect should be negligible in quiescent blends since the time waiting for droplet relaxation is less than 30 s. The blend images were then captured. The shear rate was subsequently increased in small steps, i.e. 0.7, 1.0, 2.0, 3.0 and 5.0 s^{-1} , from the previous steady-state shear rate. For each shear rate, a strain of 20,000 was allowed to attain a steady-state morphology before capturing images.

The blend images were transferred to a Photoshop program (Adobe Systems, Inc) to outline the droplets. The images were brought back to the Scion-Image software to determine the droplet diameter. From the droplet size distributions, the volume-average droplet diameter, D_v , was calculated by using the following equation:

$$D_v = \sum_i \Phi_i D_i$$

where Φ_i is the volume fraction of the droplets with diameter D_i relative to the total volume of the droplets. Typically, data from 400-600 droplets were used to calculate D_v .

RESULTS AND DISCUSSION

A. Steady-State Deformation and Breakup of Isolated Droplet

Newtonian Blend

When a steady shear flow is applied to an isolated spherical droplet, the droplet simultaneously moves and deforms. If the imposed shear rate is less than the critical shear rate for droplet breakup, a steady-state deformed droplet shape is eventually obtained after sufficient strain. The strain required to reach a steady-state deformation shape increases with increasing applied shear rate and droplet size. For Newtonian droplets sheared in Newtonian matrix at viscosity ratios near unity, Guido and Villone (1998) verified that the steady-state deformed shape of the droplet can be approximated as an ellipsoid having three different principle axes, i.e. a is the major axis of the ellipsoid oriented at a particular angle (θ) within a flow-gradient plane, b is the minor axis in the shear-gradient direction, and c is the minor axis in the vorticity direction.

Figure 6a shows the dependence of the steady-state shape of the droplet in terms of deformation parameter, $\text{Def} \equiv (a-b)/(a+b)$, on the imposed capillary number for blend A0 (low-molecular-weight PBd/PDMS blend), for various droplet sizes, i.e. $180 \mu\text{m} \pm 10\%$, $100 \mu\text{m} \pm 10\%$, $50 \mu\text{m} \pm 10\%$, and $20 \mu\text{m} \pm 10\%$ in diameter. As depicted in Figure 6a, the curves for all droplet sizes coincide well with each other, and are also close to Taylor's prediction ($\text{Def} = \text{Ca} [(19\eta_r + 16)/(16\eta_r + 16)]$). The last data point in each curve can be estimated to be the critical point above which the steady-state deformed shape no longer exists and droplet breakup finally occurs. The critical capillary number, Ca_{crit} , for droplet breakup for blend A0 is equal to 0.50 for

droplets with diameter of $180\mu\text{m} \pm 10\%$, 0.52 for diameter $100\mu\text{m} \pm 10\%$, 0.51 for diameter $50\mu\text{m} \pm 10\%$, and 0.54 for diameter $20\mu\text{m} \pm 10\%$. The value of Ca_{crit} obtained from Taylor's prediction is 0.5, which is similar to these results. The good agreement of our results on blend A0 with Taylor's prediction is obtained in both the dependence of Def on the imposed Ca , and in the value of Ca_{crit} for droplet breakup.

Elastic Droplet

As in the A0 blend containing Newtonian components, for the A1 blend containing isolated slightly elastic droplets, the dependence of the deformation parameter on capillary number was the same for various droplet sizes, as shown in Figure 6b, although the capillary number at which breakup occurred monotonically increased with decreasing droplet size. For the A5 blend, however, as shown in Figure 6c, the droplet diameter influences both the capillary number at breakup and the deformation before the breakup condition is reached. As shown in Figures 6b, and 6c, Ca_{crit} monotonically increases with decreasing droplet size for blends A1 and A5. In order to obtain the same value of Ca for a given blend, the applied shear rate has to be higher for a smaller droplet and the degree of elasticity also increases with increasing shear rate. Thus, at the same Ca , the smaller droplet has a higher elasticity, leading to a higher shear rate required for breakup.

To better characterize this elastic effect, the correlation between Def and the imposed Ca for different blends having comparable droplet sizes is plotted on the same graph in Figure 7. For each droplet size, the more elastic droplet deforms less and Ca_{crit} for droplet breakup increases with increasing droplet elasticity. The degree of elasticity of the fluid can be represented by a Weissenberg number (Wi), a ratio of elastic stress to viscous stress. Therefore, we try to determine a quantitative

correlation between the Weissenberg number of the droplet fluid, $Wi_d(\dot{\gamma}) = [\Psi_{1d}(\dot{\gamma})/2\eta_d(\dot{\gamma})].\dot{\gamma}$, and Ca_{crit} for droplet breakup. We obtain the values of the first normal stress difference coefficient, Ψ_1 , directly from the measured N_1 or from extrapolated values, if breakup occurred at a shear rate too low to accurately measure the value of N_1 . The relationship between Wi_d and Ca_{crit} obtained in this way is shown in Figure 8a, where the closed symbols represent the data obtained from the directly measured N_1 value and the open symbols represent data from extrapolated N_1 values. It should be noted that the shear rate inside the droplet is in general different from the imposed shear rate; it is not uniform and depends on the shape of deformed droplet. The N_1 value inside the droplet, thus, will not be uniform and will be a complex function of shear rate and droplet size. However, for simplicity, we used the nominal N_1 values at the imposed shear rate to calculate Wi_d . As shown in Figure 8a, Ca_{crit} increases linearly with Wi_d up to a value of Wi_d of around 1.0. Interestingly, the Ca_{crit} value of 0.5 is obtained from the extrapolation of the linear regression line to Wi_d equal to zero, which recovers the droplet breakup condition from Taylor's prediction for Newtonian blend. When Wi_d is greater than unity, a downward curvature from linearity is observed, and the Ca_{crit} seems to reach a constant value of 0.95 for a high value of Wi_d . Surprisingly, the asymptotic value of Ca_{crit} of our results is close to the asymptotic value of Ca_{crit} around 0.9 (or 1.8 in the plot of $\eta_m \dot{\gamma}_{crit} D/\Gamma$ versus λ_d/λ_m) reported by Mighri *et al.* (1998). The general conclusion drawn from Figure 8a is that the elasticity of the droplet resists its deformation; however the effect seems to saturate at a value of Ca_{crit} around 0.95 for high values of Wi_d . However, another possible reason for saturation in Ca_{crit} is the shear-thinning behavior of the dispersed phase fluids because all the data at Wi_d above unity are obtained from blend

systems A5 and A10, in both of which the dispersed phase is shear-thinning (see Figures 4, and 5).

Fig. 8a also includes data from our earlier study (Lerdwijitjarud *et al.* 2003), which was limited to a droplet Weissenberg number no higher than 0.02, because of the lower molecular weight of the high-molecular-weight Pbd component in the Boger fluid used in that study. Fig. 8b shows the same data with a logarithmic x axis.

We note that although our blends contained elastic droplets with Wi_d up to around 3, all droplets stretched and broke in the flow direction, as the case with Newtonian droplets. Steady-state droplet vorticity widening (or “vorticity stretching”) was not observed in our experiments. Table III shows the rheological data for blend systems in this study compared with those data taken from literature that reported steady-state vorticity stretching of droplets. From Table III, it seems that we need Wi_d greater than 20 to get steady-state droplet widening in the vorticity direction for blends of “Boger” fluids, which is beyond the range of Wi_d studied here. For blends of high-molecular weight polymer *melts*, however, droplet widening has been detected at Wi_d somewhat lower than unity. Since all of the “Boger” fluid blends have matrix fluids that are Newtonian or only weakly elastic, an alternative explanation may be that the highly elastic matrix fluid boosts up droplet widening. Another relevant point is that the minimum capillary number for which widening occurs has been reported is around 7, which is much greater than the critical capillary number for droplet breakup of the blends studied here. We also point out that the viscosity ratio has been found to play an important role in droplet widening [Jackson and Tucker (2003)], and this parameter was often not well controlled in previous experiments.

B. Steady-State Droplet Size of 10%-dispersed Phase Blend

When the 10%- dispersed phase blends were sheared to a sufficiently high strain, a steady-state morphology was obtained, representing a dynamic equilibrium between droplet breakup and coalescence. From images of the steady-state morphology of concentrated blends containing 10% by weight of the dispersed phase, the steady-state volume-averaged droplet diameter (D_v) and steady-state capillary number (Ca_{ss}) calculated from D_v were determined. Figure 9 shows that Ca_{ss} increases monotonically with increasing elasticity of the dispersed phase for blends A0, A1, A2, A5, and A10. Figure 9 also shows that Ca_{ss} depends on shear rate, even for a nearly Newtonian blend (A0 blend). Possible reasons may include the effect of weak elasticity of the PDMS matrix fluid, or a dependence on shear rate of the critical thickness of the lubricating layer between droplets at which coalescence occurs.

It is also interesting to note that Ca_{ss} obtained from a 10%-dispersed phase blend is smaller than Ca_{crit} obtained from an isolated droplet for the same blend system; that is, the average droplet size in the blend is smaller than the critical size for breakup of an isolated droplet at the same shear rate. This result is initially surprising, since coalescence can occur in the 10% blend, but not for an isolated droplet, and this would tend to make the average droplets bigger in the blends, not smaller, as is actually seen in the experiments. This phenomenon, i.e., droplets in a blend that are smaller on average than the droplet size at which breakup occurs for an isolated droplet at the same shear rate, was previously found when comparing Ca_{ss} of a 20%-dispersed phase blend with Ca_{crit} for an isolated droplet, where both fluids were Newtonian [Lerdwijitjarud *et al.* (2003)]. Jansen *et al.* (2001) used a small concentration of dye-containing droplets added to a blend of the same droplet phase in an immiscible matrix, and observed that the critical capillary number Ca_{crit} for

breakup decreases with increasing concentration of dispersed phase. One possible reason for this phenomenon is that the flow in the blend is locally highly nonuniform and non-steady due to the presence of many other droplets in the vicinity of any one droplet, and this can lead to droplet breakup at a lower average shear rate than occurs for an isolated droplet [Lerdwijitjarud *et al.* (2003)].

We also tried to find a relationship between the degree of droplet elasticity and Ca_{ss} for the blend systems containing 10%-dispersed phase. Since the matrix phase used for all blends is the same pure PDMS, which shows only a very weakly elastic behavior even at high shear rates and its rheological properties do not change much with temperature, the $N_1(\dot{\gamma})$ value of the dispersed phase was chosen to be the index of blend elasticity. Figure 10 depicts the correlation between the steady-state capillary number (Ca_{ss}) and N_1 of dispersed phase ($N_{1d}(\dot{\gamma})$) as a semi-logarithmic plot. This plot shows that Ca_{ss} increases monotonically with N_{1d} , which implies that the elasticity of the dispersed phase resists droplet breakup. However, the maximum value of Ca_{ss} achieved in these experiments is only around 0.6, much less than the value of around five or so observed in experiments with polymer melts [Wu (1985); Cherdhirankorn *et al.* (2003); Lerdwijitjarud *et al.* (2002)], possibly because related to absence of droplet widening which can forestall the breakup process. The scatter in Figure 10 indicates that Ca_{ss} may be affected by factors other than N_{1d} , even though all data were obtained at a viscosity ratio of unity. Other factors that might affect Ca_{ss} might include shear thinning, the second normal stress differences of either phase, or the time-dependent elasticity, as well as interactions of these phenomena with coalescence or breakup. While Figure 10 does provide a clearer correlation of average droplet size with droplet elasticity under better controlled conditions than has heretofore been achieved, more experiments, and especially numerical simulations of

droplet breakup and coalescence for fluids modeled by well defined constitutive equations, will be needed to provide further clarification and more precise correlations.

Conclusions

We studied the contribution of droplet elasticity to steady-state deformation and breakup of isolated polybutadiene (PBd) droplets in a sheared poly(dimethyl siloxane) (PDMS) matrix fluid and on steady-state droplet size in blends of 10%-dispersed PBd in PDMS under conditions at which both matrix and droplet fluid has the same viscosity. The steady-state deformation of isolated droplets decreases with increasing dispersed phase elasticity for the same imposed capillary number. A linear relationship between critical capillary number for droplet breakup (Ca_{crit}) and dispersed-phase Weissenberg number (Wi_d) holds up to a value of Wi_d around unity, with a saturation of Ca_{crit} at around $Ca_{crit} = 0.95$ for high Wi_d . The steady-state capillary number (Ca_{ss}) obtained from the average steady-state droplet size in blends containing 10% by weight of dispersed phase is less than the value of Ca_{crit} obtained for an isolated droplet of the same fluid in the same matrix fluid used in the blend. Ca_{ss} increases monotonically with the first normal stress difference of dispersed phase (N_{1d}).

TABLES

Table I: Properties of materials

Materials	Molecular Weight (M_n) (g/mol)	Density at 25 $^{\circ}\text{C}$
PDMS	139 000	0.97
PBd	3 900	0.89

Table II: Blend systems studied

Blend	Blend Components (matrix : dispersed)	Testing Temp. ($^{\circ}\text{C}$)	Γ (mN/m)
A0	PDMS : low-MW PBd	18.3	2.89 ± 0.19
A1	PDMS : 0.1% high-MW PBd solution	19.5	2.80 ± 0.19
A2	PDMS : 0.2% high-MW PBd solution	20.7	2.72 ± 0.22
A5	PDMS : 0.5% high-MW PBd solution	22.0 – 28.0	2.81 ± 0.17 – 2.66 ± 0.28
A10	PDMS : 1.0% high-MW PBd solution	26.0 – 40.0	3.68 ± 0.42 – 2.74 ± 0.13

Table III: The rheological data of blend systems in this studied compared to that from literature.

System	Shear Rate (s ⁻¹)	Matrix				Droplet				η_r	N ₁ ratio (N _{1r})	G' ratio (G' _r)	Ca ₁ [‡]	Ca ₂ [§]	Ref.
		η^*	N ₁ [†]	G'	W ₁	η	N ₁	G'	W ₁						
“Boger” Fluids															
A0	1.4	108.1	< 2 [¶]	-	~ 0	108.4	< 1 [¶]	-	~ 0	1.00	-	-	Droplet widening or vorticity stretching is not observed.	Lerdvijjarud <i>et. al.</i> (present work)	
A1	1.8	105.3	< 2 [¶]	-	~ 0	104.7	149	-	0.39	0.99	-	-			
A2	1.8	102.6	< 2 [¶]	-	~ 0	100.6	226	-	0.62	0.98	-	-			
A5	2.2	96.4	< 2 [¶]	-	~ 0	92.5	545	-	1.35	0.96	-	-			
A10	3.9	90.9	< 2 [¶]	-	~ 0	86.4	1943	-	3.14	0.95	-	-			
PIB/PDMS	5	29.7	5.5	-	0.04	17.8	1200	-	13.5	0.60	185	-	-	-	Migler (2000)
	20	29.7	63	-	0.11	17	19200	-	56.5	0.57	305	-	-	7	
	80	27.3	664	-	0.3	16	307200 [§]	-	240	0.59	462	-	-	7	
D1/M1	4.6	10	Newtonian		-	13	700	-	11.7	1.3	-	-	5.5	-	Mighri an Huneault (2001)
	9	10			-	13	2350 [¶]	-	20.1	1.3	-	-	-	12	
D2/M2	6.4	30	Newtonian		-	10	74490 [¶]	-	1162	0.33	-	-	5.5	-	
	7.7	30			-	10	100000 [§]	-	1300	0.33	-	-	-	6.5	
D2/M1	48.2	10	Newtonian		-	2	500000 [¶]	-	5185	0.2	-	-	9	-	
Polymer Melts															
PS1/PE2	280	175	288000 [¶]	-	5.88	303	460000 [¶]	-	5.42	1.73	1.60	-	53	-	Hobrie and Migler (1999)
	320	170	300000 [¶]	-	5.51	278	560000 [¶]	-	6.29	1.64	1.87	-	-	60	
PS1/PE1	290	22	41780	-	6.55	288	14497	-	0.17	13	0.35	-	13	-	
	700	14.5	57288	-	5.64	207	31041	-	0.21	14	0.54	-	-	31	
A	0.28	2524	403	135	0.38	2370	205	70	0.21	0.94	0.51	0.52	-	-	Cherdbrankorn <i>et. al.</i> submitted to <i>Rheologica acta</i>
	0.3	2505	435	145	0.39	2360	226	78	0.22	0.94	0.52	0.54	-	-	
	0.5	2340	772	250	0.43	2270	468	181	0.32	0.97	0.61	0.72	-	-	
	0.8	2170	1310	410	0.47	2133	912	395	0.46	0.98	0.70	0.96	-	-	
B	1.0	603	-	34.2	0.11	619	-	64.7	0.21	1.03	-	1.89	-	28	

^{*} η [=] Pa.s[†] N₁, G' [=] Pa[‡] Ca at which droplet first contracts in the flow direction after having stretched in the flow direction.[§] Ca at which droplet reorients to the vorticity alignment[¶] Extrapolated values

FIGURE CAPTIONS

Figure 1. The dependence on shear rate of steady-state viscosity (open symbols) and of the first normal stress difference (closed symbols) for low-molecular-weight PBd and PBd “Boger” fluids at 18.3 °C.

Figure 2. The dependence of zero-shear viscosity on the weight percentage of high-molecular-weight PBd added to low molecular-weight Pbd. The filled symbols are in the range where the viscosity depends linearly on concentration.

Figure 3. The shear-rate dependence of the viscosity of PDMS (O) and of low-molecular-weight PBd or PBd “Boger” fluids(!) as well as the shear-rate dependence of the first normal stress difference of PDMS (1), and of PBd “Boger” fluids (+) for (a) blends A0, (b) A1, and (c) A2 at temperatures chosen such that the PDMS and Pbd fluids have nearly the same viscosity.

Figure 4. The shear-rate dependence of the viscosity of PDMS (O), and of PBd “Boger” fluids (!), and the shear-rate dependence of the first normal stress difference of PDMS (1), and of PBd “Boger” fluid (+) for blend A5 at a series of temperatures.

Figure 5. The same as Figure 4, except for blend A10.

Figure 6. The dependence of the deformation parameter on capillary number for blends (a) A0, (b) A1, and (c) A5 for various droplet sizes.

Figure 7. The dependence of deformation parameter on capillary number for blends A0, A1, A2, A5, and A10 for droplet diameters of (a) $180\mu\text{m} \pm 10\%$, (b) $100\mu\text{m} \pm 10\%$, (c) $50\mu\text{m} \pm 10\%$, and (d) $20\mu\text{m} \pm 10\%$.

Figure 8. The dependence of critical capillary number for droplet breakup (Ca_{crit}) on Weissenberg number of the dispersed phase (Wi_d) (a) linear plot, and (b) semi-log plot. The closed symbols represent the data obtained from the measured N_1 values and the open symbols from extrapolated N_1 values. Data from earlier work (Lerdwijitjarud, et al. 2003) are also included.

Figure 9. The shear-rate dependence of steady-state capillary number (Ca_{ss}) for all 10%-dispersed phase blends studied.

Figure 10. The dependence of the steady-state capillary number (Ca_{ss}) on the first normal stress difference of dispersed phase (N_{1d}) for blends A1, A2, A5, and A10.

REFERENCES

1. Bentley, B.J., and L. G. Leal, "An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows," *J. Fluid Mech.*, **167**, 241-283 (1986).
2. Boger, D. V. and R. J. Binnington, "Separation of elastic and shear thinning effects in the capillary rheometer", *Trans. Soc. Rheol.* **21**, 515-534 (1977).
3. Chaffey, C. E. and H. Brenner, "A second-order theory for shear deformation of drops", *J. Colloid Interface Sci.* **24**, 258-269 (1967).
4. Cherdhirankorn T., W. Lerdwijitjarud, A. Sirivat, and R. G. Larson, "Dynamics of Vorticity Stretching and Breakup of Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix" submitted to *Rheologica Acta* (2003).
5. De Bruijn, R. A., "Deformation and breakup of drops in simple shear flow", Ph.D.Thesis, Eindhoven University of Technology, 1989.
6. Elmendorp, J. J. and R. J. Maalcke, "A study on polymer blending microrheology: Part 1", *Polym Eng. Sci.* **25**, 1041-1047 (1985).
7. Flumerfelt, R. W. "Drop breakup in simple shear fields of viscoelastic fluids", *Ind. Eng. Chem. Fundam.*, **11**, 312-318 (1972).
8. Grace, H. P., "Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems", *Chem. Eng. Commun.* **14**, 225-277 (1982).
9. Graebling, D., R. Muller, and J. F. Palierne, "Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids", *Macromolecules* **26**, 320-329 (1993).

10. Guido, S., and M. Villone, "Three-dimensional shape of a drop under simple shear flow", *J. Rheol.* **42**, 395-415 (1998).
11. Guido, S., and M. Villone, "Measurement of interfacial tension by drop retraction analysis", *J. Colloid and Interface Science*, **209**, 247-250 (1999).
12. Hobbie, E. K. and K. B. Migler, "Vorticity elongation in polymeric emulsions," *Phys. Rev. Lett.* **82**, 5393-5396 (1999).
13. Jackson, N. E. and C. L. Tucker III, "A model for large deformation of an ellipsoidal droplet with interfacial tension", *J. Rheol.* **47**, 659-682 (2003).
14. Jansen, K. M. B., W. G. M. Agterof, and J. Mellema, "Droplet breakup in concentrated emulsions", *J. Rheol.* **45**, 227-236 (2001).
15. Kennedy, M. R., C. Pozrikidis, and R. Skalak, "Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow", *Comput. Fluids* **23**, 251-278 (1994).
16. Lerdwijitjarud, W., A. Sirivat, and R. G. Larson, "Influence of elasticity on dispersed-phase droplet size in immiscible polymer blends in simple shearing flow", *Polym. Eng. Sci.* **42**, 798-809 (2002).
17. Lerdwijitjarud, W., R. G. Larson, and A. Sirivat, "Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/Poly(dimethylsiloxane) blends," *J. Rheol.* **47**, 37-57 (2003).
18. Levitt, L., C. W. Macosko and S. D. Pearson, "Influence of normal stress difference on polymer drop deformation", *Polym. Eng. Sci.* **36**, 1647-1655 (1996).
19. Luciani, A., M. F. Champagne, L. A. Utracki, "Interfacial tension coefficient from the retraction of ellipsoidal drops", *J. Polym. Sci. Pol. Phys.* **35**, 1393-1403 (1997).

20. Mighri, F., P. J. Carreau, and A. Ajji, "Influence of elastic properties on drop deformation and breakup in shear flow" *J. Rheol.* **42**, 1477-1490 (1998).
21. Mighri, F. and M. A. Huneault, "Dispersion visualization of model fluids in a transparent Couette flow cell," *J. Rheol.* **45**, 783-797 (2001).
22. Migler, K. B., "Droplet vorticity alignment on model polymer blends," *J. Rheol.* **44**, 277-290 (2000).
23. Milliken, W. J., and L. G. Leal, "Deformation and breakup of viscoelastic drops in planar extensional flows", *J. Non-Newtonian Fluid Mech.*, **40**, 355-379 (1991).
24. Mo, H., C. Zhou, and W. Yu, "A new method to determine interfacial tension from the retraction of ellipsoidal drops", *J. Non-Newtonian Fluid Mech.* **91**, 221-232 (2000).
25. Okamoto, K., M. Takahashi, H. Yamane, H. Kashiwara, H. Watanabe and T. Masuda, "Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene/polycarbonate blend melt", *J. Rheol.* **43**, 951-965 (1999).
26. Palierne, J. F., "Linear rheology of viscoelastic emulsions with interfacial tension", *Rheol. Acta* **29**, 204-214 (1990).
27. Rallison J. M., and A. Acrivos, "numerical study of deformation and burst of a viscous drop in an extensional flow", *J. Fluid Mech.*, **89**, 191-200 (1978).
28. Taylor, G. I., "The viscosity of a fluid containing small drops of another fluid", *Proc. R. Soc. London, Ser. A* **138**, 41-48 (1932).
29. Taylor, G. I., "The formation of emulsions in definable fields of flow", *Proc. R. Soc. London, Ser. A* **146**, 501-523 (1934).

30. Tretheway D. C., and L. G. Leal, "Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid" *J. Non-Newtonian Fluid Mech.* **99**, 81-108 (2001).

31. Uijittewaal, W. S. J. and E. J. Nijhof, "The motion of a droplet subjected to linear shear flow including the presence of a plane wall", *J. Fluid Mech.* **302**, 45-63 (1995).

32. Varanasri, P. P., M. E. Ryan, and P. Stroeve, "Experimental study on the breakup of Model viscoelastic drops in uniform shear flow", *Ind. Eng. Chem. Res.* **33**, 1858-1866 (1994)

33. Wu, S., "Phase structure and adhesion in polymer blends: A criterion for rubber toughening", *Polymer* **26**, 1855-1863 (1985).

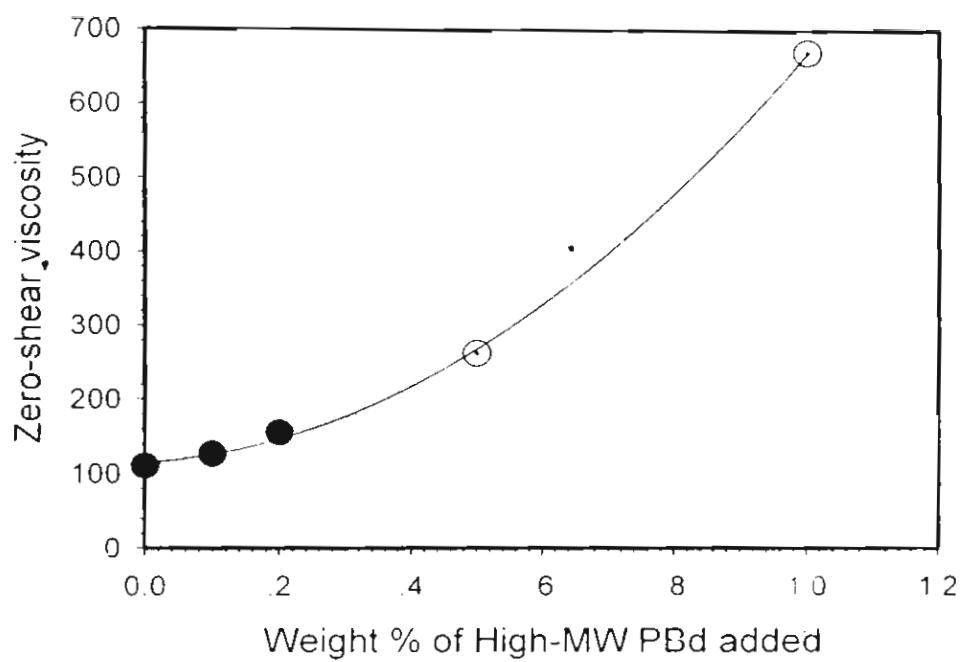
34. Wu, S., "Formation of Dispersed phase in incompatible polymer blends-interfacial and rheological effects." *Polym. Eng. Sci.* **27**, 335-343 (1987).

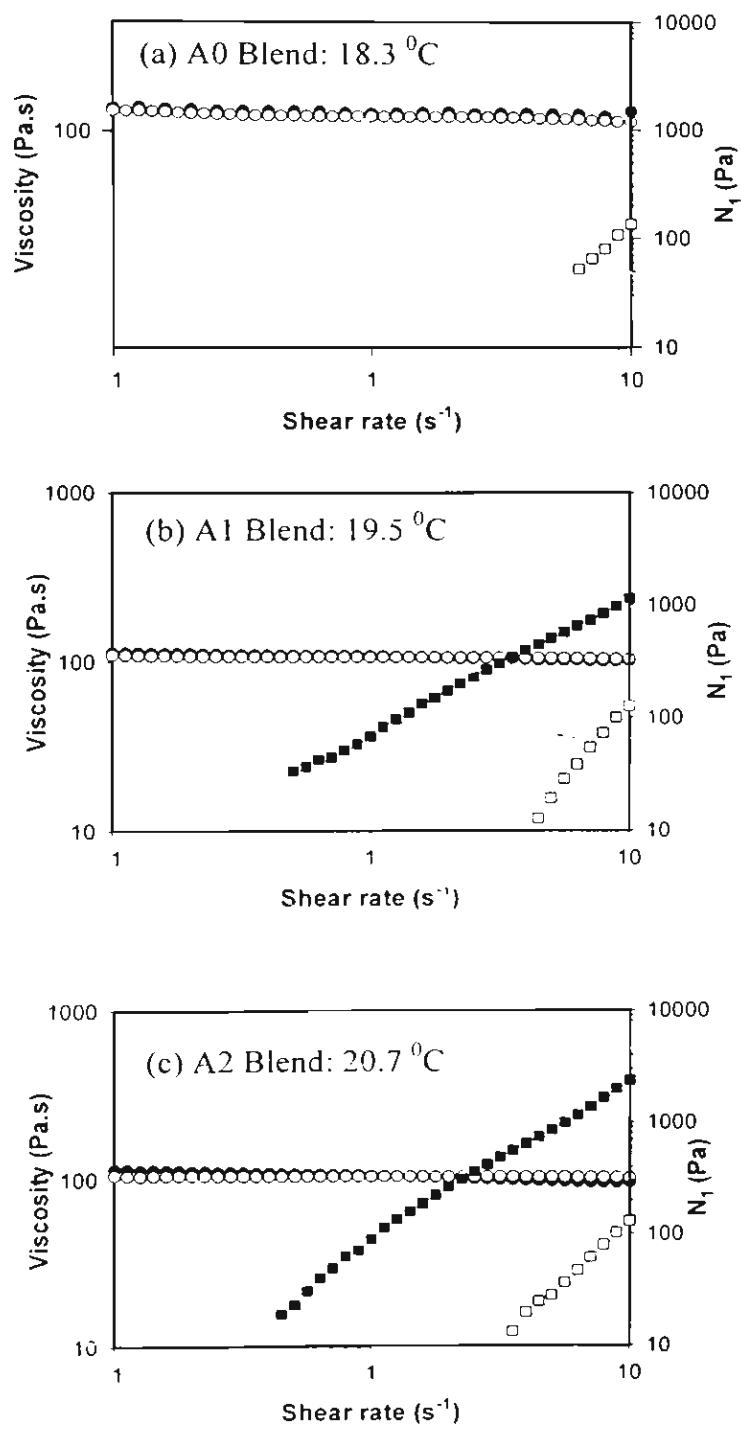
35. Xing, P., M. Bousmina, and D. Rodrigue, "Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6", *Macromolecules* **33**, 8020-8034 (2000).

36. Yamane, H., M. Takahashi, R. Hayashi, K. Okamoto, H. Kashihara and T. Masuda, "Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain", *J. Rheol.* **42**, 567-580 (1998).

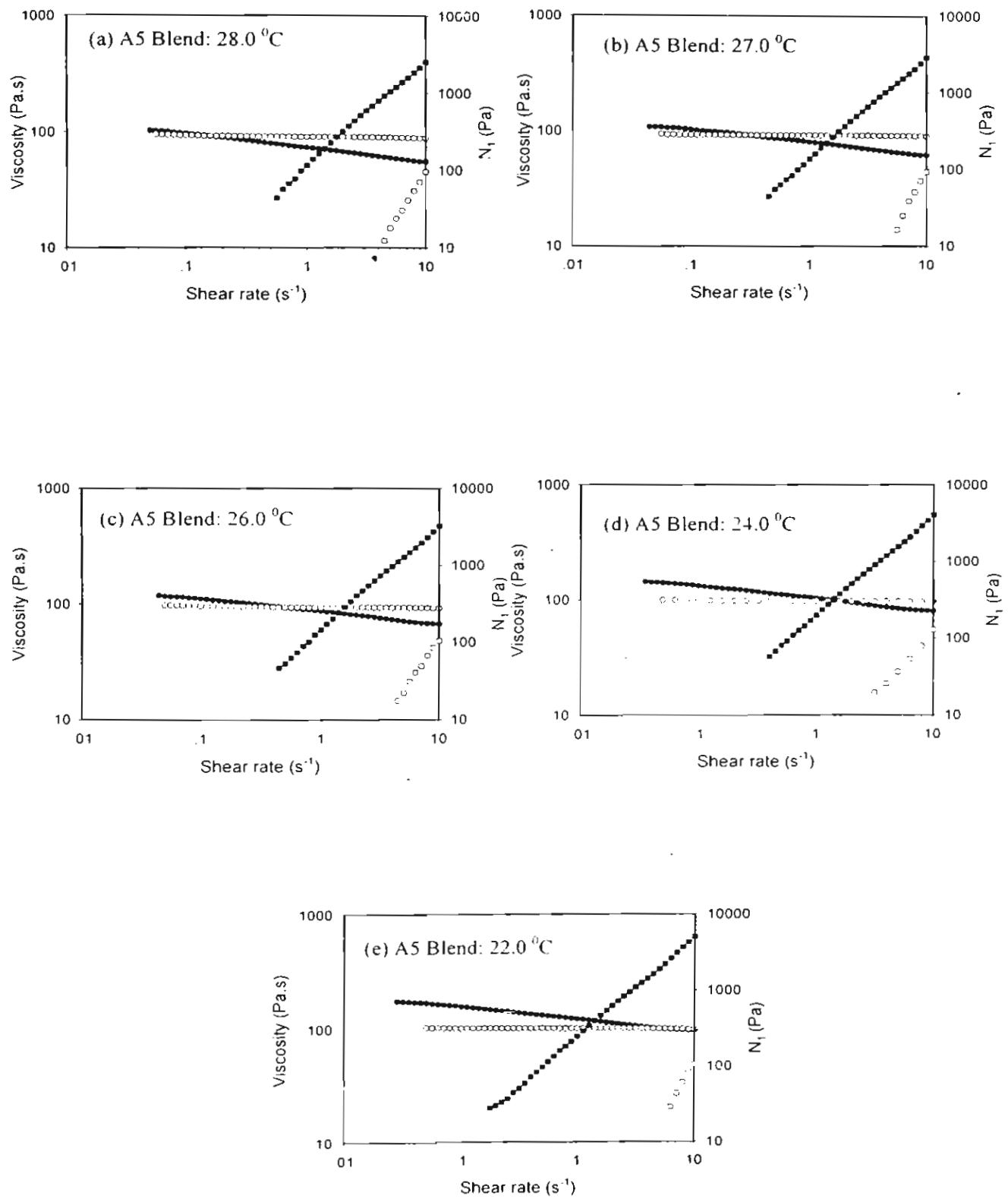


Lerdwijitjarud *et al.*, Figure 1

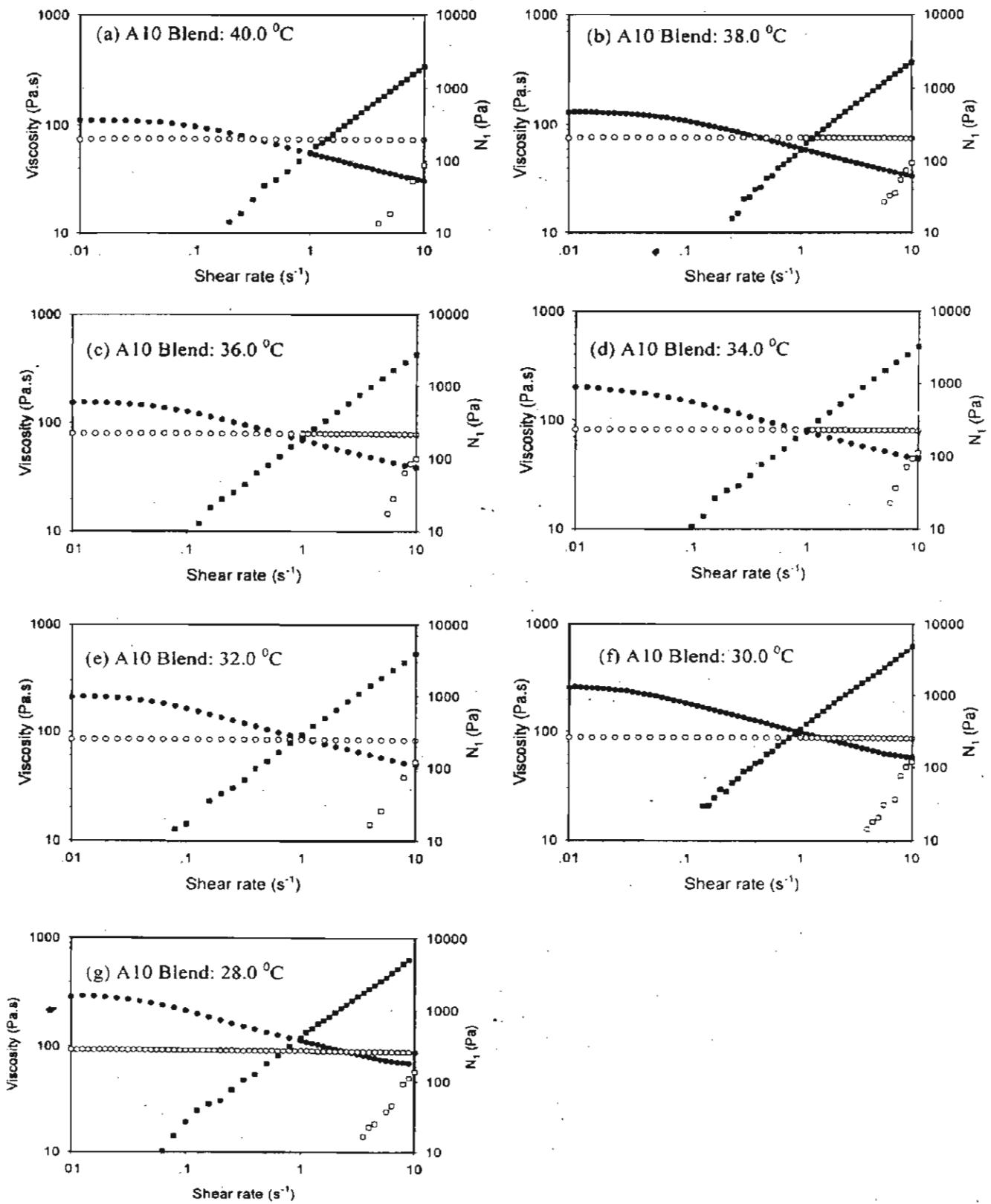




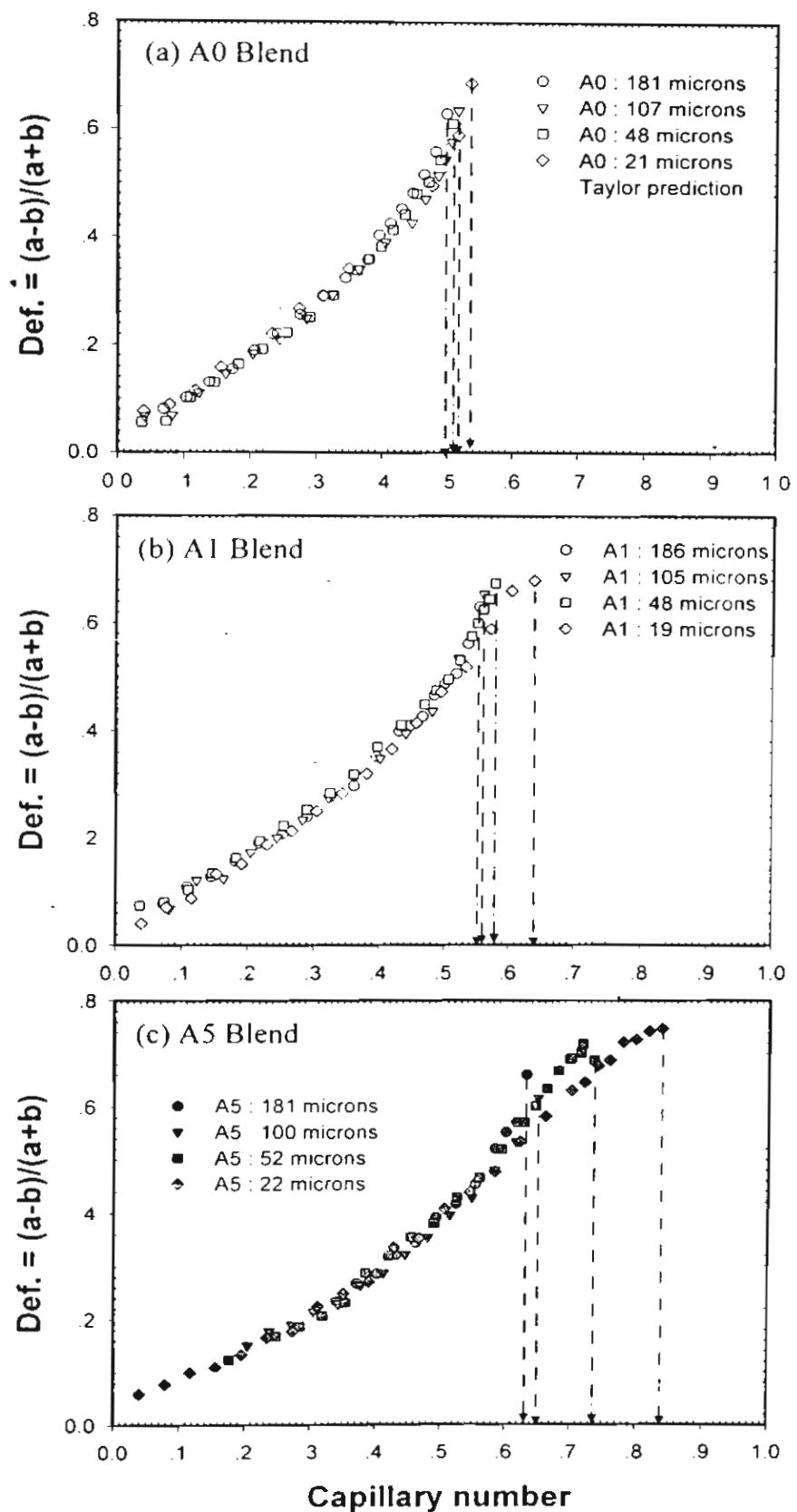
Lerdwijitjarud *et al.*, Figure 3(a), 3(b), and 3(c)



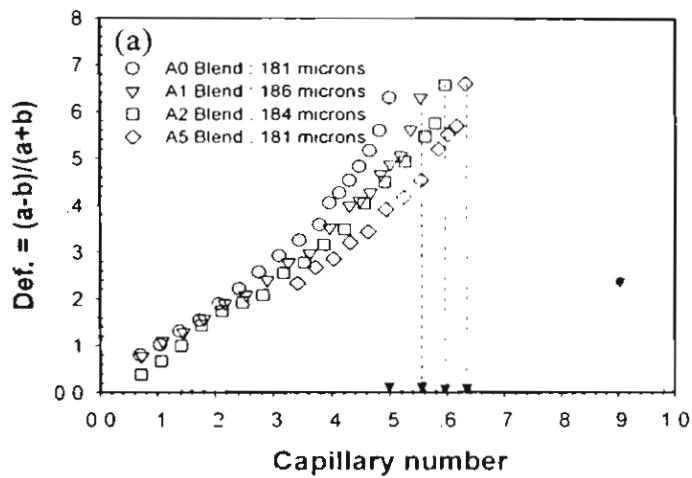
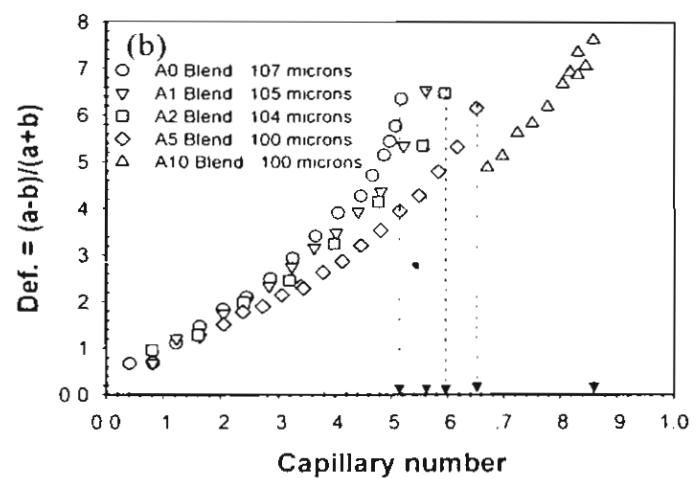
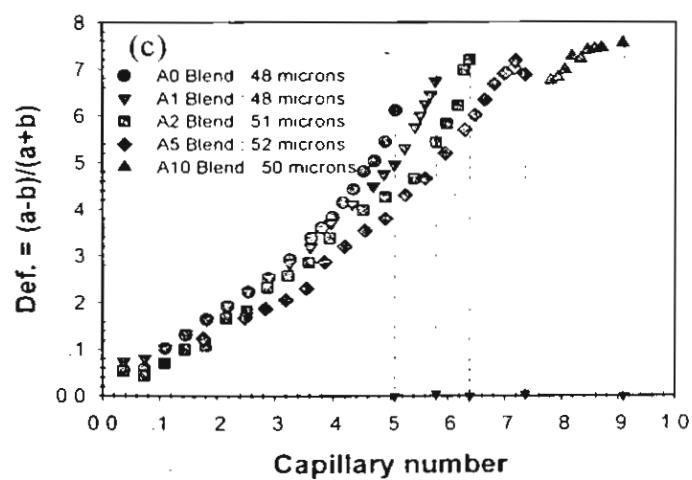
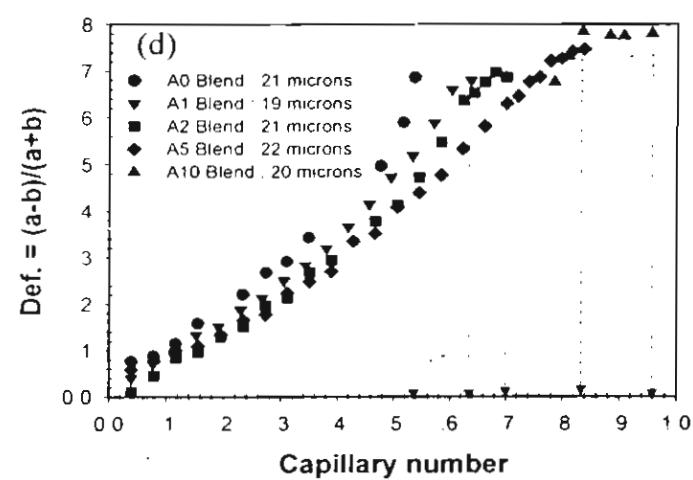
Lerdwijitjarud *et al.*, Figure 4(a), 4(b), 4(c), 4(d), and 4(e)



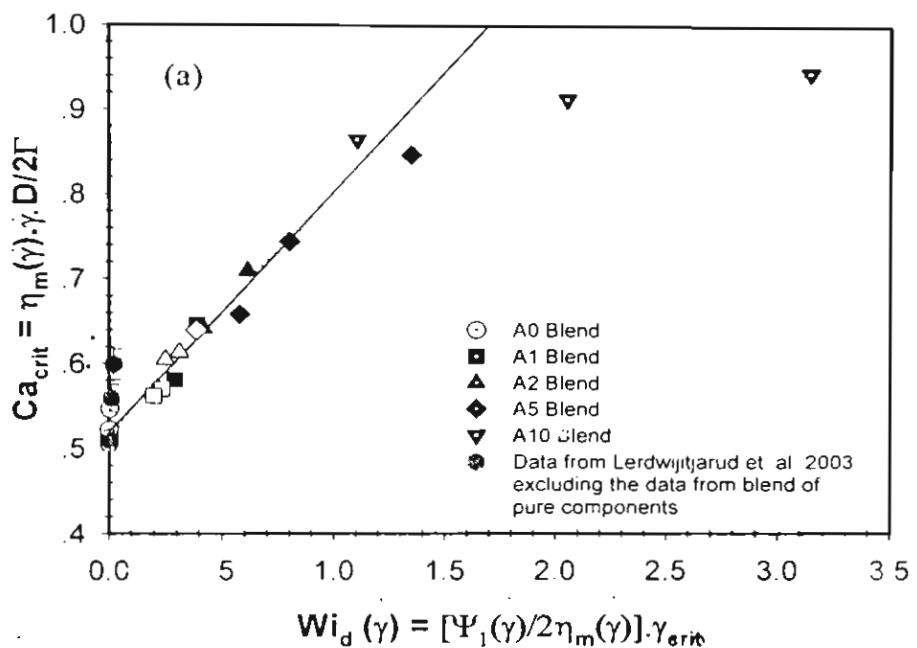
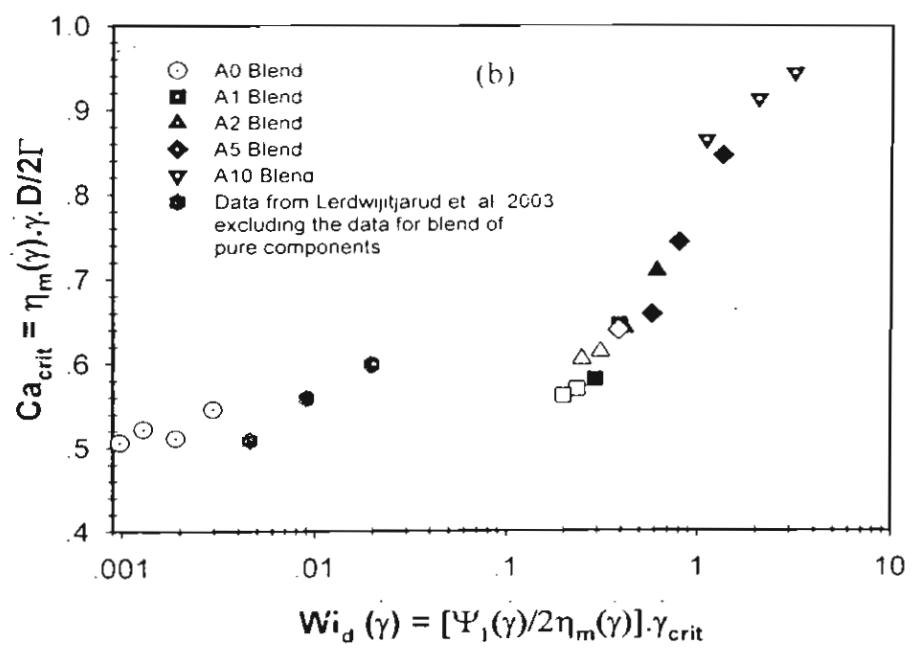
Lerdwijitjarud *et al.*, Figure 5(a), 5(b), 5(c), 5(d), 5(e), 5(f), and 5(g)



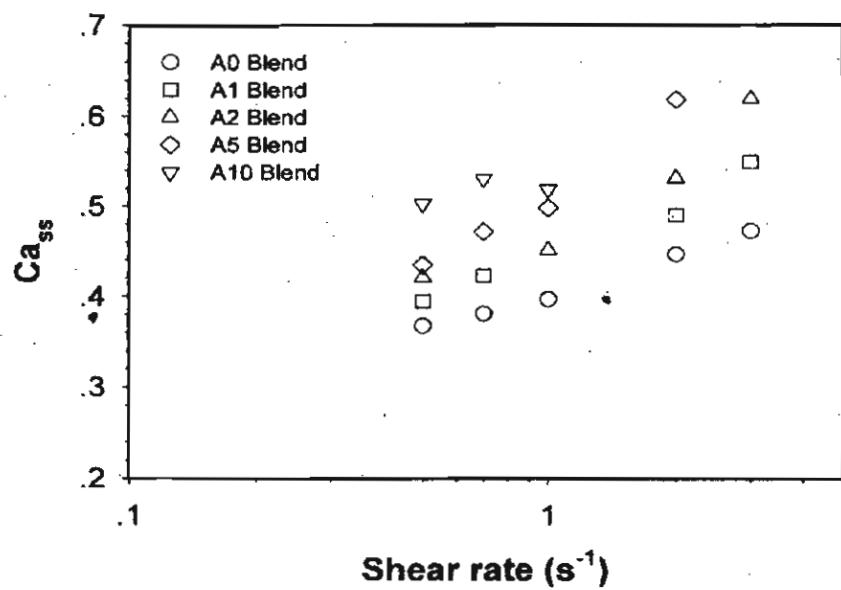
Lerdwijitjarud *et al.*, Figure 6(a), 6(b), and 6(c)



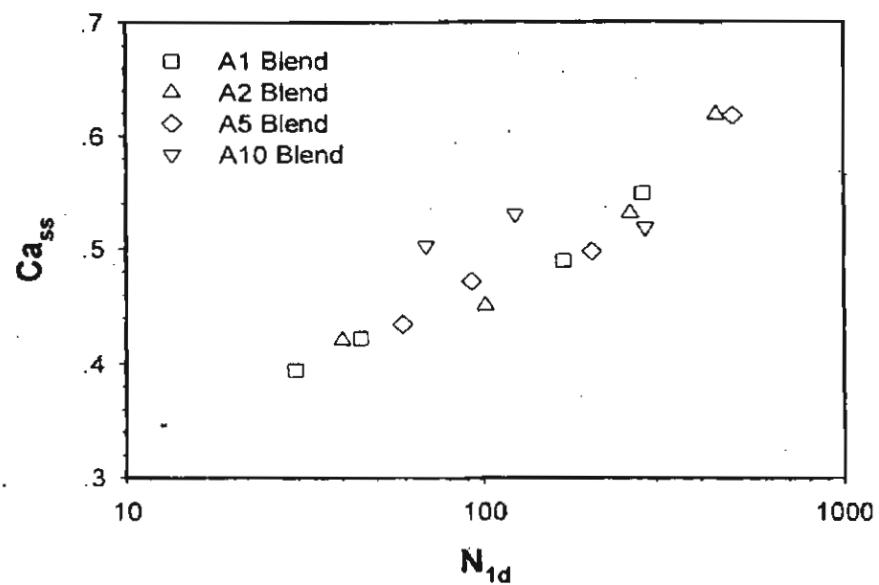
Lerdwijitjarud *et al.*, Figure 7(a), 7(b), 7(c), and 7(d)



Lerdwijitjarud *et al.*, Figure 8(a), and 8(b)



Lerdwijitjarud *et al.*, Figure 9



Lerdwijitjarud *et al.*, Figure 10