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Introduction

Problem Statements

Polymers that are recycled usually do not mix because of the unfavorable enthalpic
interaction. During mixing of 2 major and a minor phases into a single blend, the
blend is subject 1o usually complex shearing forces which result in the deformation,
relaxation, breaking, and coalescence of the minor phase droplets. The resultant size
distribution, and its various moments, control mechanical properties of the final solid
state blend. Therefore, it is important to know key factors and/or conditions which -
influence the individual physical processes (deformation, relaxation, breakup. and
coalescence) which lead to the final size distribution in the immiscivle blend.

Droplet morphology of immiscible polymer blends depends on many factors:
thermodynamic variables, rheological properties of individual polymers, and
processing conditions. The understanding of the correlations between the blend
morphology and the rheological properties in the past was based on Newtonian
theories and are therefore inadequate to predict final blend physical/mechanical
properties. The effects of viscoelastic properties. shearing conditions, interfacial
tension, minor phase concentration on morphology of immiscible polymer blends
subject to a simple oscillatory shear flow have not been previously addressed or
understood. The oscillatory shear flow is a shear flow in which the applied stress or
strain varies sinusoidally; it is a mode -of shearing employed in many mixing devices.

Objectives

Our objective is to understand the relations between resultant blend morphology and
its thermodynamic variables. rheological properties and processing conditions. If the
proposed relations are available, then for a given polymer pairs in which we know the
rheological properties and the processing conditions to be used, we can predict droplet
size (mean value). The mean droplet size then can be used to predict several
mechanical properties of the final solid state blend. Specifically, we will investigate
the unexplored oscillutory flow mode on the deformation, relaxation, breakup, and
coalescence processes.

Tasks Accomplished

We carried out various experiments to investigate the effect of unsteady shear flow on
droplet deformation, relaxation, and breakup. In the first part (Chapters 1 and 2), we
investigated the effects of frequency and amplitude of sinusoidal imposed shear strain
on the droplet behaviors. We employed the polydimethyylsiloxan/polybutadiene
material systems as the Newtonian blends and weakly elastic blends; both systems
possess a small shear thinning behavior in the shear strain range studied.



Subsequently, we studied the same effect of frequency and amplitude on the droplet
behavior of polyethylene/polystyrene material systems as the models of highly
viscoelastic blends. In the second part (Chapters 3 and 4), we turned our attention to
the transient droplet behaviors of highly viscoelastic blends of
polyethylene/polystyrene material systems in which we observed for the first time the
transient droplet deformation under steady stae shear flow. In the third part, we
studied the effect of elasticity on the steady state droplet deformation in the steady
state shear flow.

Outputs of TRF-BRG 4680015

Refereed Publications v

i) Lerdwijitjarud, W., Sirivat, A., Larson, R.G. (2004) Influence of dispersed-phased
elasticity on steady -state deformation and breakup of droplets in simple shearing flow
of immiscible polymer blends. J. Rheology. v. 48(4), pp. 843-862.

(2004 1Si Impact Factor: 2.525)

2) Cherdhirankorn, T., Lerdwijitjarud, W., Sirtvat, A., Larson, R. (2004) Dynamics
of vorticity stretching and breakup of isolated viscoelastic droplets in an immiscible
blends. Rheol. Acta. 43, pp. 246-256.

(2004 1S1 Impact Factor: 1.558)

3) Tanpaiboonkul, T., Lerdwijitjarud, W., Sirivat, A., Larson. R. (2006)Transient
and steady state deformations of dispersed —phase droplets of immiscible polymer

blends in steady state shear flow. Submitted to Polymer.
(2004 ISI Impact Factor: 2.433)

4) Chanpaen, V., Lerdwijitjarud, W., Sirivat, A., (2006) Droplet deformation and
breakup in Newtonian immiscible blends under oscillatory shear flow: effect of weak
elasticity. Submitted to J. Rheology

(2004 IS1 Impact Factor: 2.525)

5) Sirivat, A., Patako, S., Lerwijitjarud, W. (2006) Droplet deformation and breakup
in viscoelatic immiscible blends under oscillatory shear flow. Submitted to Rheol.
Acta.

(2004 ISI Impact Factor: 1.558)

Conference Proceedings

1} Lerdwijitjarud, W., Sirivat, A. Cheerdhirankorn, T. Solomon, M.J. (2003) Effect of

chspersed phase elasticity on droplet deformation and breakup of immiscible polymer
blends. 8" Pacific Polymer Conference, Bangkok, 24-27 November 2003,



Oral Presentations

1) Lerdwiiyjarud, W., Sirivat, A., Larson, R. (2003) Non-Newtonian effect on
morphology of immiscible polymer blends. RGJ-PhD Congress IV, Cholburi, 25-27
April 2003. Selected as the best oral presentation in the Polymer Science and
Engineering Session.

2) Cherdhirankorn, T., Lerdwijitjarud, W., Sirivat, A., Larson, A. Dynamics of
vorticity alignment and breakup of of viscoelastic droplets in an immiscible
viscoelastic matnix under shear. AIChE Annual Meeting 2003, San Francisco, CA,
16-21*November 2003. (/nvited Talk Presented by Ronald Larson)

3) Sirivat, A., Cherdhirankorn, T., Lerdwijitjarud, W., Larson, A. Droplet deformation
relaxation and breakup in immiscible polymer blends. TRF “New Researchers Meet
Senior Maethee Research Scholars”. Petchaburi, 13-15 October 2005.

(Invited spearker by A. Sirivat).

Poster Presentations

1) Lerdwijitjarud, W., Larson, A., Sirivat, A. (2003)

Deformation and breakup of droplet in shearing flows of immiscible polymer blends:
effect of constituent-component elasticity. Advances in Petrochemicals and Polymer
in the New Millenium, Bangkok, 23-25 July 2003.

2) Sirivat, A., Cherdhirankorn, T., Lerdwijitjarud, W., Larson, R. (2003)
Transient deformation and breakup of isolated viscoelastic droplets in a viscoelastic
matrix. AIChE Annual Meeting 2003, San Francisco, CA, 16-21 November 2G03.

MS Graduates

1) Cherdhirankorn, T. (2003) Dynamics of Vorticity Stretching and Breakup of
Isolated Viscoelastic Droplets in an Immiscible Viscoelastic Matrix. M.S. Thesis,
Polymer Science, the Petroleum and Petrochemical College.

2) Tanpaiboobkul, P. (2004) Transient and Steady State Deformation of Dispersed-
Phase Droplets in Immiscible Polymer blends in Steady State Shear Flow.
M.S. Thesis, Polymer Science, the Petroleum and Petrochemical College.

3) Janpaen, V. (2005) Oscillatory Shear Induced Droplet Deformation and
Breakup in Immiscible Polymer Blends. MS thesis, Polymer Science, the
Petroleum and Petrochemical College.



Chapter 1: Oscillatory Shear Induced Droplet Deformation And Breakup in

Immiscible Polymer Blends

Vitsarut Janpaen ®, Wanchai Lerdwijitjarud ®, and Anuvat Sirivat ",

® Petroleum and Petrochemical College. Chulalongkorn University. Bangkok 10330,

Thailand

° Department of Materials Science and Engineering, Faculty of Engineering and

Industrial Technology, Silpakorn University, Nakhon Pathom 73000,-Thailrand

* Corresponding author: anuvat.s{@chula.ac.th

Tel: 662 218 4131, Fax: 662 611 7221



OSCILLATORY SHEAR INDUCED DROPLET DEFORMATION AND

BREAKUP IN IMMISCIBLE POLYMER BLENDS

Synopsis . .

Deformation and breakup of droplets in polybutadiene/polydimethylsiloxane
blends subject to oscillatory shear flow were investigated experimentally using an
optical shear flow cell. The apparent major axis (a*), the minor axis {c) in the vorticity
direction of the droplets were measured as functions of time. From the time series of the

. deformation parameters, (a* - c)/(a* + c), we can define the deformation amplitudes as
one halves the differences between the maximum and minimum values. The
deformation parameters generally decreased with increasing viscosity ratio, time scale
ratio and droplet elasticity. The dependence of the deformation parameters on capillary
number is generally linear up to a certain value for Newtonian droplets, regardless of
viscosity ratio and time scale ratio. The dependence becomes totally nonlinear with
increasing droplet elasticity. Droplet viscosity and elast.icity generally impede breakup
under oscillatory shear. Critical capillary number for breakup, the number of resultant
daughter droplets, and the number of cycle required for breakup to occur increase with
time scale ratio. The apparent breakup pattern changes from the dumbbell type to the

end-pinching type as time scale ratio increases.



1. INTRODUCTION

Droplet size, shape and their distributions as obtained from blending immiscible
polymers are important factors which influence physical and mechanical properties of
the blends. The resultant morphology is controlled by the physical, chemiéal, and
rheoiogical properties of individual polymers, as well as the processing conditions. The
deformation and breakup of a suspended immiscible Newtonian droplet in another
Newtonian matrix m a steady state shear flow was first investigated and studied by
Taylor (1932, 1934). He suggested that the droplet deformation is controlled by two
diinensionless numbers: the viscosity ratio, n. which is' the ratiq between viscosity of
droplet (dispersed phase) (ng) and viscosity of matrix (ny), and the Capillary number

(Ca) or Taylor number, defined by the viscous force to the interfacial surface force:

Ca= (h

where y is the shear rate, D, is initial droplet diameter and I' is interfacial tension. For

small deformations, the shape of droplet is ellipsoidal and its deformation is described

by the parameter Def, given by:



- 1 16
a b_C On, +

Def = =Ca
a+b 16N, +16

(2)

where a and b are the lengths of the major and minor axes of the deformed droplet
(ellipsoidal shape), respectively. Taylor predicted that the gritical point at which the
.

viscous force overcomes the interfacial force leading to droplet breakup occurs at Ca.
(critical capillary number for droplet breakup) =~0.5 and Def; (critical deformation)=0.5
for a steady simple shearing flow (or quasi-steady), if the flow rate is verv slowly
increased with a viscosity ratio of around unity. These basic predictions have been later
confirmed by several experiments [Rumscheid and Mason (1961); Grace (1982);
Bentley and Leal (1986); Guido and Villone (1998)]. These results show that for
Newtonian fluids, droplet deformation and breakup are strongly influenced by viscosity
ratio. In simple shearing flow, no breakup occurs when the viscosity ratio is higher than
four [Grace (1982)]. For steady state shearing of an isolated Newtonian droplet in a
Newtonian matrix, the critical capillary number at which breakup occurs is minimized
when the viscosity ratio is around unity [Grace (1982)].

In typical polymer blends, the viscoelasticity and the shear-thinning effect of
individual components are expected to affect the droplet deformation and breakup.
Droplet deformation and breakup in immiscible blend systems when either one or both
phase is viscoelastic fluid have been studied by several workers [Flumerfelt (1972);
Elmendrop and Maalcke (1985); Wu (1987); Milliken and Leal (1991); Varanasri ef ai.
(1994); Leviut er al. (1996); Mighri et al. (1997, 1998); Hobbie and Migler (1999);

Migler (2000); Mighri and Huneauit (2001); Tretheway and Leal (2001); Lerdwijitjarud



et al. (2003, 2004); Cherdhirankorn et al. (2004)]. There is a thorough review of the
literature on the influence of elasticity on droplet deformation and breakup reported in
the earlier works [Cherdhirankorn er al. (2004)]. The main finding is that droplet
elasticity suppresses droplet deformation and breakup, and can cause droplet widening,
possibly due to the existing normal stresses.

Nearly all experimental work on droplet deformation and breakup reported in the
literature has been carried out on droplets in st:eady simple shearing flow. The
deformation and breakup of droplets in oscillatory shear are rare. Wannaborworn and
Mackley (2002) was the first pioneering work to observe and investigate the
deformation and breakup of immiscible Newtonian drops with a viscosity ratio of unity
under oscillatory shear. For moderate strains, the drop deformation parameters varied
sinusoidally between the maximum and the non-zero minimum values. At large strains,
t}_ua drops breakup occurred through the pattern of end-pinching.

In the present work, we carried out further a systematic investigation of the
droplet deformation and breakup in oscillatory shear ﬁows. The immiscible bolymer
blends used were Newtonian fluids and the Boger fluids without shear thinning. In
particular, we are interested in the influence of the viscosity ratio; it may be expected
that a lower viscosity ratio value would favor larger droplet deformation and subsequent
breakup, whereas a very large value would lead to a droplet solid body translation. The
influence of time scale ratio, the droplet relaxation in the blend over the imposed
oscillatory time scale, should also be important factor to investigate. In the limit of

small time scale ratio, the droplet is expected to be deformed in a quasi-equilibrium
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state; on the other hand, the limit of large time scale ratio would lead to a droplet solid
body translation, irrespective of viscosity ratio. Lastly, the effect of droplet elasticity is
expected to suppress droplet deformation and breakup, for given viscosity and time scale
ratios. One of our objectives is to obs.erve droplet deformation versus Capsllary number
in both linear and nonlinear regimes under the influences of the three factors mentioned.
Another objective is to observe various possible breakup patterns, and the factors that
control the number of resultant daughter droplets. The last finding may serve as relevant

and useful knowledge for the emulsion or immiscible polymer processing.
II. EXPERIMENTS

A. Materials

The materials used in this study were polydimethylsiloxanes, PDMS, with
viscosity value of 30,000 centiStoke (Viscasil 30M) (donated by General Electric
lntemaﬁonal Operations Company, Inc.) as the matrix pl;ases and a polybutadiene, PBd,
(Ricon 150, donated by Chemical Innovation) as the dispersed phase. The properties of
the blend components are listed in Table I. High-molecular-weight polybutadiene (M,,
~841,000 , My/Mg ~1.20 purchased from Fluka Chemical Corp.) was used as the high
molecular weight polyr-n.er component additive for the Ricon 150 to make a “Boger”
fluid [Boger and Binnington (1977)] with significantly higher elasticity but a slight shear

thinning behavior. The polymer blend systems investigated are listed in Tables I, I,

and 1V,
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B. Sample Preparation

PDMS’s were used as received. Because of possible volatile components in
PBd as received, it was vacuum dried at 50 °C until the volatile components were driven
off and the weight loss discontinued. The elastic dispersed phases (for the blend systems
Bl and B2 in Table IV) were prepared by completely dissolving a high molecular
weight PBd into chloromethane. The solutions were mixe;l with small amounts of low
molecular weight PBd at room temperature to obtain “Boger™ fluids. The mixtures were
left for five days to obtain homogenous solutions. The chioromethane and other volatile

components were subsequently removed by vacuum drying at 50 °C.

C. Rheological Characterization

" The storage modulus (G') and loss modulus (G") of each blend component
were measured by a cone and plate rheometer (Rheometrics Scientific, model ARES),
with 25-mm plate diameter with cone angle of 0.04 rad. and a gap of 0.051 mm.
Because of the difference in temperature dependences of the viscosities of PBd and
PDMS., a proper choice of operating temperature permits a blend of equal viscosity
value, or a desired viscosity ratio between the two components (or equivalently a desired
ratio between the values of G’” at the frequency of interest). From the rheological
properties of pure polymers at various temperatures, the desired pairs of polymers and

operating temperatures were selected for further study. The rheological properties are



15

shown in Figures 1, 2, and 3. In our study, we chose blend systems Al, A2, and A3 at
G" ratios equal 10 0.16, | and 3 at temperatures of 67, 33 and 20 °C, respectively. Since
G" >> (' at all frequencies and temperatures investigated, both components of the blend

systems A1-A3 can be considered to be pure viscous fluids with nearly zero elasticiy.
L

D. Observation of an Isolated Droplet in an Oscillatory Shearing Flow

1. Shearing Apparatus

To observe the droplets in an oscillatory shear flow, we used a flow céll
(Linkam CSS 450, Linkam Scientific Instruments Ltd.) consisting of two transparent
quartz parallel disks mounted on an optical microscope (Leica DMRPX, Leica Imaging
Systems LTd.). and connected to a CCD camera (Cohu 4910, Cohu Inc.). The
observation window is located at 68 mm from the center. The images taken were
analyzed on a computer using the Seion image software (www.scioncorp.com). To
obtain isolated droplets, the PDMS matrix phase was first loaded into the flow cell. The

PBd dispersed phase was added at low concentrations, i.e less than 1% in order to form
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isolated droplets, into the matrix phase by using a microsyringe. To avoid wall-induced

migration effects, only droplets near the center of the gap were chosen.

2. Droplet Skape Relaxation Time

The samples were loaded into the flow cell, and the tempe_erature was adjusted
to obtain a preselected G" ratio. We selected a droplet with an initial diameter of 200 (%
10%) um. We imposed step strains on the sample with magnitude 0.5-20% and shear
rates of 1, 2 and 3 rad/s. The deformation of the isolated droplet after a step strain was
recorded.

Using the optical microscope, the droplet images were captured only from the
top view; the true lengths of the principle axes .éannot be directly measured as the
droplet was tipped in a direction normal to the viewing plane. However, the lengths of
these axes can be determined by assuming an affine angle of rotation of the droplet in
plane containing the flow and shear-gradient directions together with the condition of
volume preservation, D,’ = abc (Almusallam et al. (2000)). Although the lengths of the
principle axes can be appropriated by using the method mentioned above, we adopt to
use the apparent lengths of the observable axes (i.e.. projected into the observation
plane) to describe the behavior of each droplet. We thus define a modified deformation

parameter Def* as:

Def * = (3)



where a* and ¢ are major and minor axis of droplet images obtained from the top view.
A time series of the retracting droplet deformation parameter Def* vs. time was

computed, which has been found to decay exponentially as [Lucinia et al. (1997)]:

Def = Def, exp{— —toj (4)
T

The characteristic relaxation time for a single isolated droplet (t) can be
derived from a semi-logarithmic plot of droplet deformation parameter versus relaxation
time. The slope of the straight iine was fitted to the data in the linear relaxation regime
[Luciani er al (1997), Mo et al. (2000), Xing er al (2000)]. By equating this
characteristic relaxation time to that predicted by the Palierne model (Eq.3) [Palierne
(1990) and Graebling er al. (1993)], the interfacial tension was then ca_lcu]ated from the

following relation:

(3+2nrxl6+19nr)ronmo
. ,
40(1+n )

(3)

where 1,=Ng/Mm is the ratio between the dispersed phase viscosity and the matrix phase
viscosity, I is the interfacial tension and r, is the radius of the spherical drop. Two
hundred to three hundred images were typically recorded (ten to twenty frames per
second) while the droplet relaxed from the deformed shape to its original spherical

shape.

3. Oscillatory Deformation



As before,-a sample was loaded and the operating temperature and the size of
the droplet were chosen. The shearing mode was sinusoidal oscillatory. The Linkkam
device, which has one stationary and one moving plate, typically causes the droplet to
move back and forth., Before we started each experiment, the drop was allowed for relax
until it retained a spherical shape. Appropriate strain and frequency were then chosen
and applied.

We define the characteristic time scale ratio (1,) as the characteristic relaxation
time scale (t,;) divided by the oscillatory time (tosc = 1/f, with f in Hertz), and we use it
to describe the ability of droplet to relax its shape under an oscillatory shear flow at
various frequencies. For the system A2, with a viscosity ratio equal to one, we
_considered 1, values of 0.15, 0.45, and 0.79, corresponding to oscillating frequencies of f
= 0.1, 0.3, and 0.52 Hz, respectively. For a given frequency, we increased the strain
amplitude until we could no longer capture all images during a droplet deformation
cycle. In each experiment, 600-700 images were recorded; for each period of
deformation the number of captured images was equal t-o or greater than 32 in order to

track the deformation time series in detail.
111. RESULTS AND DISCUSSION

A. Rheological Characterization

Figures | and 2 show the storage modulus (G') and the loss modulus (G") of

blend components, respectively. The data indicate that the rheological responses of the
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two polymers are in the terminal zone over the frequency range studied (up to 100 s
since the slepe of G' is approximately equal to two and the slope of G" is approximately
equal to one on the log-log plots. Polydimethylsiloxane has a lower temperature-
dependent viscosity than does polybutadiene, allowing us to c:btain the desired ratios of
G' or G" values for one component relative to the other by adjusting the operating
temperature.  Alternatively, we can vary the G' and G" ratios by using different
m<;lecular weights without changing the temperature. However, this later method is
more time consuming and it is difficult to obtain the desired ratios and thus it was not
employed in our work. The values of the G' and G" ratios used are shown in Figure 3.

In most of our experiments, the working fluids were highly viscous so G" ratio
is more relevant than the G' ratio. In the experiment on the effect of viscosity ratio, G"
ratio was equal to 0.16, 1 and 3 at 67°C, 33°C and 20°C (Table II). For the 0.02% high

Mw PBd sol” and the 0.05% high Mw PBd sol”, G" ratio was equal to 1 at 27 °C and

25°C respectively, at all frequencies examined (Table [V).

B. Relaxation Experiment

The relaxation time scale of each blend studied was obtained from a step strain
experiment. The values of interfacial tension values obtained were 3.85x107 N/m,
3.90x10 N/m, and 3.94x107 N/m, with the cl;;aracteristic relaxation times equal to 0.5
sec., 1.5 sec. and 3.6 sec. for G", ratio equal to 0.16, I and 3, corresponding to

temperatures of 67 °C, 33 °C, and 20 °C, respectively. For the 0.02% high Mw PBd sol”

and the 0.05% high Mw PBd sol®, the interfacial tension values were equal to 3.94x107
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N/m and 4.09x10°* N/m with the characteristic relaxation times equal to 1.8 and 1.7 sec,

respectively.

C. Oscillatory Shear Experiment

In oscillatory shear, there are several parameters that can be grouped into
dimensionless groups; namely the Capillary Number (Cay), Reynolds number (Reqs). _

the time scale ratio (1,). and the Weissenberg number. Ca, and Re are defined as:

Ca, = Ga'(®)rd (6)
r
2 2
Re,, =2e@ " 7
G, " (o)

where y is the strain amplitude imposed on the blends, d is the diameter of the droplet,
Gn'"(w) is the loss modulus of the matrix phase, G4"(w) is the loss modulus of the
dispersed phase, pq is the density of t‘h.e dispersed phase, and I is the interfacial tension
between two polymers. In all experiments here, the Reynolds number is very small, less
than 107, and so inertial force is negligible. The time scale ratio is defined as:

Tr = Trei/ Tose (8)
where 1, is the relaxation time obtained from the relaxation experiment. T is the
period of oscillation, Tt = 1/f, where f is the oscillation frequency used.

The Weissenberg number, which is a dimensionless number used in the study

in viscoelastic flows, is defined here as the ratio between the dispersed phase elasticity

and the matrix phase shear stress at a particular shear rate:
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Wi, =2G', (w)/G", (w)y 9

The values of the Weissenberg number of our blend sysitems investigated are

shown in Tables 11, 11, and IV: system Al (G", = 0.16, 1, = 0. 17), Wigq = 0.0006-0.006;
system A2 (G", = 1, 1, = 0.15), Wiy = 0.0034-0.034; system A2 (G", = 1,1, = 0.45),

Wig = 0.0045-0.045; system A2 (G", = 1, 1, = 0.79), Wiq = 0.0057-0.057; system A3

il

(G", = 3.0, t, = "N.14), Wiy = 0.0092-0.092; system B1 (0.02%high M,, PBd sol”, G", =

1, T, = 0.18), Wiy = 0.U06-0.068; and system B2 (0.05%high M., PBd sol”, G", =1, 1, =
0.15), Wiz = 0.018-0.186.

We divide our experimental work into 3 parts: the éffectﬁ of the viscosity ratio,
of Deborah number (or time scale ratio). and of elasticity ratio.

Figure 4 shows optical micrographs of a droplet under 6scillatory deformation:
G", =1, Ca, =0.6, Regsc = 2 x 108, and 1, = 0.15. The drop size was 200 um. The
droplet can be seen to stretch along the flow direction, to retract to its original value, to
stretch again, and finally to retract back when the cycle is complete. We may note that
droplet deformation in an oscillatory shear is distinct from that in steady shear due to the
combination of the cyclic droplet rotation and the periodic changes in shear direction
and amplitude.

Figure 5 shows the deformation amplitudes, a*, ¢, and Def* vs time for the
droplet of Figure 4. We can see clearly that there is a period of an initial transient

deformation, lasting about 8 seconds, prior to attainment of the final steady state

oscillatory deformation. In the final steady state, we can define the deformation
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amplitudes da*, 6c, and 8Def* as one half of the differences between the maximum and
the minimum values of the corresponding deformation parameters: a*, c, and Def*,
respectively.

. Figures 6a, 6b, and 6¢c show the steady state deformation amplitudes da*, dc,

and 8Def* vs. Ca,, of the three blend systems Al, A2, and A3: G", = 0.16, 1.0 and 3.0.
In these experiments, the oscillatory frequencies were chosen to be 0.35 Hz, 0.1 Hz, and
0.04 Hz, respectively, so that the corresponding time scale ratios are nearly the same
value, i.e. 0.14 - 0.17. Ca,, was varied by varying strain amplitude up to the value in
which all images in a cycle can be taken. Droplet sizes were ~ 200 um. We can see that,
for a given Ca,, Def* is greater for a droplet with a smaller G" ratio (or viscosity ratio).
This implies that droplet viscosity resists droplet oscillatory aéformation, a similar
finding to that of the steady state shear flow. In Figure 6¢c, we may note that the relation
between Def* and Ca, is linear when the G" ratio (or viscosity ratio) is 0.16 or 1.0. This
may stem from the fact that for these two blends variations in Ca,, were small, below
1.2. On the other hand, for the blend of G" ratio equal to 3.0, the relation between Def*
and Ca,, is nonlinear. We also note that the deformation frequency, fyy, the inverse of
the period of 8a*, dc, or dDef* of these blends, are nearly the same as the excitation
frequency, fos, for the ranges of Ca,, examined. The departure from linearity occurs
through the amplitudes first.

Figure 7a, 7b and 7c show the deformation amplitudes 8a*, 8c, and 8Def* vs.
Can of the blend system A2 at various time scale ratios: 1, = 0.15, 0.45, and 0.79. The

corresponding G"; was fixed and equal to one. We can see that, for a given Can, Def* is
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greater for a droplet with a smaller time scale ratio 1,. A smaller time scale ratio means
that droplet relaxes very fast relative to the deformation time scale so the dioplet tends to
be close to its equilibrium shape of a particular shear strain rate at any instants of time.
On the other hand, when the time scale ratio is much greater than unity, the droplet
cannot adjust its shape fast enough to attain the equilibrium shapes. In the limit of 1,
approaches infinity, we‘would expect Def* to attain its asymptotically low value in
which Def* becomes independent of Cay, and a ‘frustrated’ deformation state is attained.

Figures 8a, 8b and 8c show the amplitudes of the deformation parameters da*,
éc, a;ld dDef* vs. Cap, of three systems (Table 1V): no elasticity, system A2; 0.02% high
M, PBd sol”, system B1; and 0.05% high M,, PBd sol®, system Bé. G", were fixed at
1.0, and the variation in time scale ratios was relatively small, i.e. 0.15 — 0.18. The
corresp-(.)nding oscillatory frequencies were then 0.1 Hz for the zero-elasticity system,
0.099 Hz for the 0.02% high M,, PBd sol”, and 0.087 Hz for the 0.05% high M,, PBd
sol”. We can observe from these figures that at sr_nall'values of Cap, below 0.4, the
amplitudes of the deformation parameters of the three systems are nearly the same. At
Ca,> 0.4, the non-elastic droplet deforms more than do the more elastic droplets at the
same Can,. This implies that droplet elasticity resists droplet deformation.

Figures 9 and 10 show photographs of droplet breakup undt_:r oscillatory shear
for system Al (Table I, G’ = 0.16) at oscillatory frequencies of 0.05 Hz and 0.3 Hz,
and the corresponding time scale ratios of 0.019 and 0.114, respectively for the chosen
droplet size of ~150 pm. In Figure 9, at an oscillatory frequency equal to 0.05 Hz and

time scale raiio of 0.019, the drop was observed to stretch along the flow direction. As
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the amplitude of oscillation was increased further, the drop progressively deformed
further and at the critical condition, the usual dumbbell shape leading to breakup was
observed. The drop broke into two nearly equal parts, as shown in Fig. 9. This is a
droplet breakup pattern presumably under its quasi-equilibrium state. In Figure 10, for a
droplet of system Al (Table I, G’” = 0.16) with oscillatory frequency of 0.30 Hz and
time scale ratio of 0.114, the breakup pattern now assumes the end-pinching type. The
obvious quantitative difference is that now there are four daughter droplets resulting
from the breakup. The number of daughter droplets appears to increase with the time
scale ratin. We also note that the numbers of cycle required for breakup to occur are
approximately 1 and 48 for droplets of system Al with time scale ratios of 0.019 and
0.114, respectively. Our results should be compared with those of Wannaborwarmn er al.
[2000] in which they observed droplet breakup pattern to be end-pinching type along
with many daughter drops for their system with G” equal to one. Our experimental data
of droplet breakup of system A2 (G’ equal to one) also confirm their findings; we found
end-pinching patterns, and tn addition, along with more-daughter droplets as time scale
ratio increases.

Figure 11 shows the critical capillary number vs. time scale ratio for system Al,
with G"; = 0.16. The droplet size was ~ 150 um. We can see that the critical Ca,,
incre.ases linearly with the time scale ratio: its intercept value at zero time scale ratio is
approximately one. Finally, we may note that we were unable to observe drop breakup

for system B2 with our present apparatus and experimental conditions allowed.
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IV. CONCLUSIONS

From experimental measurements of droplet deformation in oscillatory shear,
we have investigated the effects of viscosity ratio, time scale ratio, and elasticity on the
Newtontan and Boger droplet deformation and breakup. The oscillatory amplitudes
decrease with viscosity ratio, time scale ratio and the droplet elasticity. Droplet
viscosity and elasticity impede oscillatory deformation. At low time scale ratio, droplet
deformation varies with time under quasi-equilibrium ctate; for large time scale ratio, the
visually apparent deformation can be referred to be in a frustrated siate. The number of
resultant daughter drops and the number of cycle required for breakup to occur increase
with time scale ratio. The crnitical Ca,, increases linearly with time scale ratio. The

breakup pattern changes from the dumbbell type to end-pinching with increasing time

scale ratjo.
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TABLES

Table 1 Polymers used

31

. Specific
Polymers Suppiers M,
gravity
General Electric International
Low M,, PBd 3,900 0.89
Operations Company Inc.
High M,, PBd | Aldrich Chemical Company, Inc. 702,000 1.2
PDMS .. | Chemical Innovation 91,700 0.976
Table II Effect of viscosity ratio
Time
Blend Blend T I f Trel Tosc | Scale
Gllr
systems | components | (°C) | (mN/m) (Hz) | (sec) | (sec) | ratio
(tr)
Al PBd/PDMS 67 3.85 0.16 | 0.0006-0.006 | 0.35 05 | 286 | 0.17
A2 PBd/PDMS 33 3.80 1.0 [ 0.0034-0.034 0.1 1.5 10.0 | 0.15
A3 PBd/PDMS 20 3.94 3.0 | 0.0092-0.092 | 0.04 | 36 | 250 | 0.14




Table IIl Effect of time scale ratio (T, = Trel/Tosc)

32

Time
Blend T f Trel Tosc
G", W4 scale ratio
systers (°C) | (mN/m) (Hz) (sec) | (sec)
()
A2 33 3.90 1.0 0.0024-0.034 0.10 1.5 10.0 0.15
A2 33 390 1.0 0.0045-0.045 0.30 1.5 3.33 0.45
A2 33 3.90 1.0 0.0057-0.057 0.52 1.5 1.90 0.79
Table IV Effect of elasticity ratio
Time
Blend Blend T I f Trel Tosc
G"y Wiy scale
system | Components | (°C) | {(mN/m) (Hz) | (sec) | (sec)
ratio (t;)
PBd
A2 33 3.90 1.0 | 0.0034-0.034 0.r [.5 0.0 0.15
/PDMS
0.02% High
Bl PBd Sol® 27 3.94 1.0 0.006-0.068 [ 0.099| 1.8 10.1 0.18
/PDMS
0.05% High
B2 PBd Sol® 25 4.09 1.0 0.018-0.186 | 0.087 | 1.7 11.5 0.15
/PDMS
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FIGURE CAPTIONS

Figure 1 G'vs. freguency at various temperatures:

(a) dispersed phases (pure PBd, 0.02% high M,, PBd sol” and 0.05% high M,, PBd sol%)
strain = 80% at frequency 0.1-1 rad/s, strain =20 % at frequency 1-100 rad/s; (b)
matrix phases (PDMS 30M) strain = 80% at frequency 0.1-1 rad/s, strain; 20 % at

frequency 1-100 rad/s.

Figure 2 G" vs. frequency at various temperatures:

(a) dispersed phases (pure PBd, 0.02% high M., PBd sol® and 0.05% high M,, PBd sol®)
strain = 80% at frequency 0.1-1 rad/s, strain = 20 % at frequency 1-100 rad/s ;(b) matrix
phases (PDMS 30M) strain = 80% at frequency 0.1-1 rad/s, strain =20 % at frequency

1-100 rad/s.
Figure 3 (a) G'; at various temperatures. (b} G"; at various temperatures.
Figure 4 Droplet deformation of blend system A2 at various times in one cycle at

strain = 70 %, frequency = 0.1 Hz, G", = 1, 1, = 0.15, T = 33 °C, Wiy = 0.0238. d, ~ 200

pum and gap 2,200 pm.
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Figure S Deformation parameters vs. time of blend system A2 at strain = 70%,
frequency = 0.1 Bz, v, = 0.15. G", = 1, d, = 200 pm, gap = 2200 um: a) a* vs. time:

b) ¢ vs. ime; ¢) Def* vs. time.

Figure 6 Amplitude of deformation parameters vs. Can, at d, ~ 200 pm, gap = 2,200
pm : system Al t,= 0.17. T = 67 °C. G", = 0.16. G, = 0.12, Rey = 7.36* 10 system
A2.t=015.T=33°C.G",=10.G,=1.0. Reo, = 6.081*10% system A3. 1,=0.14. T
=20°C, G", = 3.0. G, = 3.0, Re.. =2.65*10"'°, distance of drop from the center of

plate ~ 6.8 mm. a) 8a* vs. Cap: b) &¢ vs. Can: ©) SDef® vs. Can.

Figure 7 Amplitudes of deformation parameters vs. Ca,, of system A2 at T =33 °C. d,
= 200 pm, gap = 2.200 pum: frequency = 0.1 Hz, v, = 0.15: frequency = 0.3 Hz. t, =
0.45; frequency = 0.5 Hz, t, = 0.79, distance of drop from the center of plate ~ 6.8 mm.

a) 8a* vs. Can; b) 8¢ vs. Cay,; ¢) 6Def* vs. Cap,.

Figure 8 Amplitudes of deformation parameters vs. Ca,, at G", = 1, d, ~ 200 um, gap =
2200 pm: system A2 (PBd/PDMS), 1, = 0.15, T = 33 °C, frequency = 0.1 Hz; system
B1( 0.02 % high Mw PBd sol®/PDMS), t, = 0.18, T = 27 °C, trequency = 0.099 Hz; and
system B2 (0.05% high Mw PBd sol?/PDMS), 1, = 0.15, T= 25 °C, frequency = 0.1 Hz.

a) da* vs. Cay,; b) 8¢ vs. Cay,; ¢) 8Def* vs. Ca,,.
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Figure 9 Droplet breakup of system Al, G", = 0.16, at strain amplitude of 558 %, Ca.

= |.5, frequency = 0.05 Hz, 1, = 0.019, T =67 °C, d, ~ 150 um and gap 2,200 pm.

Figure 10 Droplet breakup of system Al, G" = 0.16, at strain amplitude of 490 %,
Ca. =4.1, frequency =030 Hz, t,=0.114, T =67 °C. d, ~ 150 um and gap 2.200 um.
Figure 11 Critical capillary number vs. t, of system Al (PBd/PDMS)at T =67 °C. G",

=0.16d, = 150 pm, gap = 2,200 pm.
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Drop Deformation and Breakup in PS/HDFE Blends under Oscillatory Shear Flow

Abstract

Drop deformation and breakup in PS/HDPE viscoelastic melt blends were
investigated under the effects of viscosity ratio, the time scale ratio and droplet elasticity
under oscillatory shear flow using an optical flow cell. The deformation was studied in
term of deformation parameters, Def* = a*-c /a*+c where a* and ¢ are the apparent
drop principal axes and the minor axes of the droplets as measured from the time series
of images. Amplitudes of deformation parameters are defined as the difference between
the maximum and minimum values divided by two. The amplitudes increased linearly at
small capillary number and nonlinearly at large capillary number, where the capillary is
defined as the ratio between the matrix viscous force and the interfacial tension force.
The deformation amplitude parameters decreased with .increasing viscosity ratio, time
scale ratio, and elasticity at any fixed capillary number. Drop breakup patterns observed
were the non symmetric one-end tearing pattern for the system with a lower viscosity
ratio, and the two-ends stretching and twisting for the system with a highe: viscosity
ratio. The critical capillary number increas;d with viscosity ratio but varied slightly with

the time scale ratio.
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I. INTRODUCTION

The investigation of deformation and breakup of an isolated Newtonian droplet
in an immiscible Newtonian matrix was first pioneered by Taylor (1932, 1934). He
observed that droplet deformation and breakup of isolated droplets in a Newtonian blend
under quasi-steady conditions (i.e., gradually increasing deformation rate) are controtled
by two dimensionless parameters. The first parameter is the viscosity ratio (1), which is

the ratio between the viscosity of the disperscd phase (ny) to that of the matrix phase

(Mm):
N =Ny / Mim (l)
The second parameter is the capillary number (Ca), which is the ratio of matrix viscous

stress to interfacial stress:

(2)

where yn,_ is the viscous shear stress, with y is the shear rate and n_ the matrix

viscosity. D, is initial droplet diameter, and I is the interfacial tension.

Taylor predicted that the deformation parameter, Def, depending on Ca and 7.

is given by



- 19 16
Def =9 =2 _c0m *
a+b 1677, +16

(3)

where a and b are lengths of the major and minor axes of the deformed droplet,
respectively. Taylor also predicted that the critical point at which the viscous force
.
overcomes the interfacial force leading to droplet breakup occurs at Ca, =0.5 and
Def.~0.55 for a steady (or quasi-steady, if the flow rate is veryv slowly increased) simple
sheariné flow with a viscosity ratio of around unity. Ca. is a minimum when n, is
around unity [Grace (1982); De Bruijn (1989)]. For viscosity ratios near unity, the
steady-state three-dimensional shape of an isolated.deformed Newtonian droplet sheared
in a Newtonian matrix can be represented by an ellipsoid having three different principal
axes, in which the steady-state length of the minor axis of the ellipsoid in the varticity
direction was larger than that in the shear-gradient direction. The major axis of deformed

droplet orients at an angle 8 with respect to the flow direction, (Guido and Villone

1998).

The breakup condition for extensional flows differs from that for shearing flows;
for general two dimensional incompressible flows droplet breakup is also controlled by
the flow-type parameter, a, which is zero for shearing flow and unity for planar
extensional flow [Rallison and Acrivos (1978), Bentley and Leal (1986)).

Elasticity of the droplet and/or matrix phase in binary blend of viscoelastic fluids
should be an important factor influencing the droplet deformation and breakup. The
behaviors of droplet under a flow field for immiscible viscoelastic blends have been

investigated [Flumerfelt (1972); Elmendrop and Maalcke (1985); Wu (1987); Milliken
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Capillary number over finite ranges. Droplet viscosity and elasticity generally impeded
breakup under oscillatory shear. Critical capillary number for breakup, the number of
resultant daughter droplets, and the number of cycle required for breakup to occur
increased with the time scale raticc The apparent breakup pattern changed from the

dumbbell type to the end-pinching type as time scale ratio increased.

In our work reported below, we take a further step towards understanding the
behaviors of commercial biends by using highly elastic polymer meits for both the
dropliet phase and the matrix phase. The oscillatory droplet deformation and the breakup
were studied. The effect of the viscosity ratio (0.58, 0.12. and 0.06), the effect of time
scale ratios (4.0, 16.6, 33.2 and 63.8), and the effect of the elasticity were investigated
by using a flow cell mounted on an optical microscope where the deformation and

various distinct breakup patterns of isolated droplets in oscillatory shear were first

observed.
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II. EXPERIMENTS

A. Materials

The materials used in this study were high-density polyethylene (HDPE) as the
matrix phase and polystyrenes (PS) as the droplet phases, respectively (suppliers and
grades are tabulated in Table 1). Polystyrene grades were obtained from the
manufacturers in t;1e form of flake; they were crushed and size-selected by passing the
flakes through a 425 pm sieve. To eliminate any possible volatile components, all
polymers were heated at around 80°C under vacuum for 12 hours. The polymer blend
systems and their experimental conditions are listed in Tables Il - I1V. The interfacial

tension values for the polymer blend systems used in this work were taken from the

literature [Brandrup and Immergut (1989)].

B. Rheological Characterization

Each polymer was molded into a disk; 25 mm i.n diameter and 1 mm thick by
using a compression mold (Wabash, model V50H-18-CX) at 145°C for HDPEI, and at
135°C for PS1, PS2, and PS3. We used a cone-and-plate rheometer (Rheometrics
Scientific: Model ARES, 25-mm plate diameter with cone angle 0.1 rad) to measure the
dynamic storage modulus (G’) and the dynamic loss modulus (é”) of each polymer. The
rheologtcal properties were obtained at frequencies between 0.1 and 100 rad/s using the
dynamic frequency sweep test mode (strain control). From the rheological properties of

pure polymers at various temperatures, the desired pairs of polymers and operating
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temperatures were selected for further study. The rheological properties are shown in

Fig. 1. In this study, we investigated the effect of viscosity ratio at G" ratios equal to

0.58, 0.12 and 0.06 (systems Al, A2, A3) at a fixed time scale ratio equal to 32. We

investigated system A4 at a fixed G” ratio of unity at time scale ratios equal to 4, 16.6,
.

33.2 and 63.8; the time scale ratio was varied by varying frequencies. Different grades of

PS were used to study the effect of droplet elasticity; they are tabulated in Table 1V.

C. Observations of an Isolated Droplet in Shearing Flow

1. Oscillating Shear Apparatus

To generate oscillatory shear and to observe droplet deformations, we used a =
flow cell device (Linkam CSS 450, Linkam Scientific Instruments Ltd., UK) consisting
of two transparent quartz parallel disks mounted on an optical microscope (Leica
DMRPX, Leica Imaging Systems LTd., Cambridge, Enéland), and connected to a CCD
camera (Cohu 4910, Cohu Inc., CA). The images were recorded by a CCD camera, and

they were analyzed on a computer using the Scion Image software.

2. Sample Preparation
HDPE used as the matrix polymer was molded into a disk 25 mm in diameter
and 0.5-1 mm thick by compression molding. Various PS droplets were introduced into

the matrix by using a pin to insert a small amount of PS powder on a HDPE disk, and it
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was covered with another HDPE disk to form a sandwich. The sandwich was placed on
the bottom quartz disk, which was then covered with the top quartz disk. The sample

was held at the temperature until complete melting occurred.

3. Determination of Relaxation Time

The sample was inserted between the two quartz disks of the flow cell. The
sample was heated to the temperature chosen for the measurement. A desired strain was
imposed onto a selected drop. The drop then was allowed to relax into a spherical shape.
Deformation of the ellipsoidal droplet was observed using an optical microscope with 5
— 10 frames/second for a total of 300 images.

Using the optical microscope, the droplet images were captured only from the
top view, i.e., a view containing the flow and vorticity directions. Since only a projection
of the droplet onto the flow-vorticity plane can be imaged from this view, this view
cannot determine the true lengths of the principal axes (a, b, and ¢: figure 1), because
two of them, a and ¢ (those in the flow and the shear-gra&ient di-rections), are not parallel
to the flow and shear gradient directions. However, the lengths of these axes can be
determined by using the affine angle of rotaticn of the droplet in the plane containing the
flow and shear-gradient directions together with the condition of volume preservation,
D.’ = abe [Almusallam et al. (2000)]. Although the lengths of the principal axe.s. can be
approximated by using the method mentioned above, we adopted to use the lengths of

the observable axes, as shown in Figure 1, to describe the behavior of each droplet.

Thus, we define a modified deformation parameter Def* as:
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a*—c

Def* =2 )

where the asterisk denotes that the deformation parameter is an apparent one obtained

from the droplet image projected onto the flow-vorticity plane, as shown in Figure 1.
[

The deformation parameter, Def*, of a retracting droplet vs. time was measured; it is

known to decay exponentially [Lucinia et al. (1997)] in the form of the following

equation:

Def* = Def* exp[-UT;ei] (5)

The siope of Def*/Def*, vs. t on a semi-log plot is simply the characteristic relaxation
time for a single isolated drop. To ensure the characteristic relaxation time of single drop
studied from the small deformation did not depend on the strain, the relaxation time
experiments were carried out at various strain units (1%, 2%, 5% and 10%) at the same
shear rate of 1.0 s”'. The characteristic time scale ratio was calculated from the ratio of

the relaxation time and the oscillation time (T, = t.e1/ Tosc)-

4. Oscillatory Shear Deformation

This experiment is similar to the relaxation experiment, where the HDPE
matrix phase was loaded into the flow cell and various PS droplets were subsequently
inserted into the matrix by using a pin to put a smail amount of PS powder on a HDPE

disk. The sample was heated to a desired temperature and gap. Before we started each
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experiment, the drop was allowed for relax until it retained a spherical shape.
Appropriate strain and frequency were then applied. Since the shearing mode was
sinusoidal oscillatory the Linkham device, which has one stationary and one moving
plate, inevitably caused the droplet move back and forth. For a given frequency, we
increased the strain in order to vary Cap up to a strain in which we could no longer
capture all drop images during a deformation cycle. In a given droplet deformation
experiment, six hundred to seven hundred images were recorded; for each period of
deformation the number of captured images was equal to or above 32 in order to track
the deformation time series in details. The droplet deformation parameters, i.e. the --
major and minor axes, were measured as functions of time, frequency, strain, G" ratio,

and G’ ratio.

III. RESULTS AND DISCUSSION

A. Rheological Characterization

The rheological property of the blend components was obtained from the melt
rheometer (ARES, Rheometrics Scietific, Ltd.). Figures 2 and 3 show the storage
modulus (G") and the loss modulus (G"), respectively. The data indicate that the two
polymers behave as Maxwell fluids since the slope of G' is approximately equal to two,
and the slope of G" is approximately equal to one. G' and G" both vary with
temperature; both functions decrease with increasing temperature. Polystyrene has a

higher temperature-dependent viscosity than that of high-density polyethylene, allowing
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us to obtain the destred G' and G" values by adjusting the operating temperature. The

values of the G' and G" ratios of all blend systems studied are shown in Figure 4.

B. Relaxation Experiment . .

The relaxation time scale of each blend studied was obtained from a step strain
experiments performed at various shear rates and drop sizes. The characteristic
relaxation time scales were then determined and obtained only from the ranges of shear
rates and drop size in which the time scales were nearly constant. The characteristic
relaxation times were 290 sec, 220 sec, 180 sec and 332 sec, for PS2/HDPE1 blends
with G", equal to 0.58, 0.12, 0.06 and 1, respectively (Tables 11 and II). The

characteristic relaxation times are 670 sec and 105 sec for PS3/HDPE1 and PS1/HDPE1

blends, respectively, when G”; is equal to 0.12 (Table [V).

C. Oscillatory Shear Experiment

In this study, there are many parameters involved, we grouped them into

dimensionless pi groups; they are Capillary Number (Can)., Reynolds number (Re),

time scale ratio (), and Weissenberg number (Wig). Ca,, and Re are defined as:

o, = Oa"l@)rd ©

232
Re=P1® < d

= 7
G,"(w) 7
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where v is the imposed strain on the matrix, d is the diameter of droplet, G,,"(®) is the
loss modulus of the matrix phase, G4"(w) is the loss modulus of the disperse phase, pq4 is
the density of the disperse phase, and I' is the interfacial tension between two polymers.
The time scale ratio is defined as:

Tr = Tyl Tosc (8)
where 1 15 the relaxation time scale obtained from the rela_xation experiment, Tos IS
the period of oscillation, te = 1/f. where fis the imposed oscillation frequency.

The Weissenberg number (Wiy), a dimensionless number, is formally the ratio
of the first normal stress difference to twice the shear stress at the imposed shear rate. It
is defined in our oscillatory shear flow as

Wi, =2G', (w)/G",_ (w)y (9)
The values of the Weissenberg number for t;lend systems are shown in Tables Il, Il and
1V : system Al (G", = 0.58), Wiq = 0.012 - 0.084; system A2 (G", = 0.12), Wiy =
0.0052 - 0.031; system A3 (G", = 0.06), Wig = 0.0051 - 0.031; system A4 (G", = 1, 1,
=4,16.6, 33.2 and 63.8), Wig = 1.66 — 11.35; system B1 (G", = 0.12), Wiy = 0.0014 -
0.0083; system C1 (G", = 0.12), Wiq = 0.378 - 2.26 .We divide our work on droplet
deformation into 3 parts: the effect of viscosity ratio, the effect of time scale ratio. and
the effect of droplet elasticity. Finally, we investigated drop breakup patterns and
determined the critical capillary numbers.

Figure 5 shows optical photographs of a droplet under sinusoidal oscillatory
shear deformation: system A3, G", = 0.06, Ca,, = 35, t, = 32 The nominal spherical

drop size was 180 um. The droplet can be seen to stretch along the flow direction, to
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retract to its original value, to stretch again, and finally to retract back when the cycle is
ccmplete, or when the observation time over the oscillatory time scale ratio is unity. No
breakup was observed for this droplet even though G’’, was quite low. Ca values
applied to the matrix and the disperse phase are 35 ':md 2.10, respectively. These values.
are well above the critical Ca,, values of Newtonian droplets in Newtonian matrices or
viscoelastic droplets in viscoelastic matrices in steady state shear which vary between
0.5 and 1.0, depending on Wiy [Lerdwijitjarud et al. (2003,2004)]. The large time scale
ratio of 32 implies that the droplet did not have time to relax to attain equilibrium
deformation at any particular instant. The apparent deformation observed probably
comes from accumuliated contributions from the previous stress history in a cycle. We
may also note that the apparent droplet deformation in oscillatory shear as seen does not
reflect the true deformation occurring, similar to but more complicated than that in
steady shear, due to the combination of the droplet rotation and the periodic change in
shear direction.

Figure 6 shows the deformation parameters, a;’, ¢, and Def* vs. time for the
droplet of system Cl. In the steady state oscillatory shear deformation, we define the
deformation amplitudes as the one halves of the differences between the maximum and
the minimum vales of the corresponding deformation parameters: a*, ¢, and Def*,
respectively. There 1s an initial tra;l-sient period, of about 2-3 cycles, in which the
deformaticn parameters (a*, ¢, and Def*) fluctuate but do not yet attain the final steady
state oscillations. Beyond this initial period, we determined the steady state deformation

amplitudes from the time series of the captured images.
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Figures 7a, 7b, and 7¢ show the deformation amplitudes da*, &c, and dDef* as
functions of Ca,, for the three blend systems studied: system A1,G"; = 0.58; sysiem A2,
G", = 0.12; and system A3, G", = 0.06. The corresponding relaxation time scales of
these systems ara 290 sec, 220 sec, and 180 sec, respectively. [n these experiments, the
oscillatory shear frequency was chosen to be 0.11 Hz, 0.15 Hz, and 0.18 Hz,
respectively so that the corresponding time scale ratios are all identical and equal to 32
(Table Il). We can see that, for a given Ca,, Def* is greater for a droplet with a smaller
viscosity ratio. This suggests that droplet viscosity resists the droplet oscillatory
deformation, a similar finding to that of the steady state shear flow. For the blends
systems Al1-A3 studied, a*, c, and Def* appear to vary nonlinearly with Ca, above
certain values of Ca,,. Since a* and Def* are only apparent deformation parameters, due
to the a* projection and the periodic droplet rotation, we adopt to identify the extent of
linear oscillatory deformation from ¢, the minor axis observed. In Fig 7b, we can see
that nontinear deformation appears at Can, equal to 43 and 47 for the systems with G”,
equal to 0.06 and 0.12, respectively. The correspondir;g products of Can, and G”, are
2.58 and 5.64, respectively. The product of Can, and G, can be identified as simply the
ratio of the droplet viscous shear force over its interfacial tension. For the blend with
G™, equal to 0.06, we were unable to observe the nonlinearity. Thus, a lower droplet
viscosity leads to larger deformation amplitudes as well as it allows the droplet to
deform nonlinearly at a lower applied shear force at a given time scale ratio.

Figures 8a, 8b and 8c show the deformation amplitudes da*, ¢, and 8Def* vs.

Can, for system 4 at four different time scale ratios: 1, = 4, 16.6, 33.2 and 63.8, as also
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tabulated in Table III. ]n order to study the effect of time scale ratio on droplet
oscillatory deformation, system A4 was chosen so that G”, was fixed at unity and its
relaxation time scale was 332 sec. The time scale ratio was varied by varying the
imposed frequency: 0.12 Hz, 0.05 Hz, 0.10 Hz, and ?.192 Hz, respectively. The
corresponding periods of oscillation are 83.3 sec, 20.0 sec, 10.0 sec, and 5.2 sec,
respectively. For a given time scale ratio, capillary number was varied by varying strain,
according to Eq. (6). The droplet sizes chosen were between 185-200 pm.
Consequently, Wiy also varied with strain (Eq. 9). But the variations of Wig4 with strain
or Ca,, are nearly within the same ranges for the four time scale ratio experiments (Table
111): the range of Wiy is between 1.6 and 11.4. Therefore, the results of the four
experiments (Table [11) can be ccmpared and used to determine the effect of time scale
ratio. In Fig. 8b, we see that &c varies linearly with Ca, up to certain values; the
departure from deformation linearity occurs at Can, equal to 35, 26, and 15 for
corresponding 1, equal to 63.8, 33.2, and 16.6, respective_:ly. This finding is opposite to
our expectation where we expect that a smaller relaxation time scale, or a lower time
scale ratio, would favor the affine deformation and linearity would be extended to high
Ca,, values. However, we may refer to data in Table IIl that the variations of Wig in

these experiments are quite large, and the droplet elasticity may have played a role.

Figures 9a, 9b and 9¢ show the amplitudes of the deferination parameters Sa*,

dc, and 8Def* vs. Can, for three systems: the low elasticity systems A2 and B1, and the

high elasticity system C1 {Table IV). The corresponding G’, is equal to 0.002, 0.0-1, and
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0.55, respectively. G", for the three systems is equal to 0.12, as chosen and adjusted by
the operating temperatures. Since the time scale ratio was fixed at 32, the oscillatory
frequency was chosen to be 0.048 Hz, 0.15 Hz, and 0.33 Hz for systems Bl, A2, and
Cl1, respectively. The carresponding relaxation time scales are 670 sec, 220, and 105
sec, respectively. As shown in these figures, at any given Ca, the amplitudes of the
deformation parameters generally decrease with increasing elasticity; this implies that
the droplet elasticity also resists oscillatory shear deformation. We can observe that the
amplitudes of the deformation parameters of the low elasticity systems A2 and Bl
increase linearly with Capillary number up to about 20. For the highly elastic system
Cl1, the deformation amplitude parameter c, as shown in Fig 9b, increases less than
linearly at all Ca,, investigated up to about 200. In Fig 9b, it may be noted that the
relation 8¢ vs. Ca,, would intercept the x axis at a finite value of Capn, equal to 20, in the
limit of 8¢ approaching zere. This intercept can be interpreted as the osciilatory yield
stress required to deform this highly elastic droplet.

Figures 10 and 11 show optical micrographs of drop breakups under oscillatory
deformation of systems Al and A3 whose G”, are 0.58 and 0.06 (Tables Il and Il1),
respectively. For both systems, we applied an oscillatory frequency of 0.20 Hz; the
corresponding time scale ratios were 58 and 36, respectively.. The original drop sizes
were 167 for system Al, and 173 pum for system A3. Wig numbers were of order 107,
and hence elasticity was negligible. The main difference is therefore the viscosity ratio:
0.58 for system Al, and 0.06 for system A3. In these two breakup experiments, drops

were subjected to many cycles before breakups were observed. For system Al of higher
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viscosity ratio, the breakup occurred through the non-symmetric one-end tearing pattern
which resulted in many daughter drops, as can be seen in Figure 10. For system A3
whose viscosity ratio was lower, the breakup occurred through a diamond shape
formation, two-ends stretching and twisting which ultimately resulted in ontly few
satellite drops at each end (Figure 11). The critical Capiilry numbers, Ca., were 102 and
93, respectively. We may presume that the twisting at both ends is presumably a result
of low viscosity ratio. Other breakup patterns of system Al and A3 at other time scale
ratios were also observed which are similar to the two patterns shown in Figures 10 and
1. -

Figures 12, 13 and 14 show the critical capillary number, the critical
Weisenberg number, and the number of cycles requirad for drop breakups to occur as
functions of the time scale ratio of the two systems Al and A3. From Figure 12, we
may note that the system of higher viscosity, Al, has a higher critical capillary number.
Therefore, a larger shear force exerted by the matrix is required to break a drop with a
higher viscos.ity. On the other hand, the critical capillary number varied slightly with the
time scale ratio; notably it is higher as the time scale ratio approaches zero. This finding
suggests that a larger shear force is required for a drop to breakup when it is closer to the
equilibrium deformation state. Figure 13 shows that the corresponding Weisenberg
number increases linearly v;lith the time scale ratio; the dependence changes to a
noilinear one at large time scale ratio. This may be interpreted as follows; a drop whose
deformation state is far away from its equilibrium deformation state requires a smaller

shearing force from the matrix for a drop to breakup at a given droplet elasticity. Finally,
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Figure 14 shows that the number of cycles required for drop breakup; it increases with
the viscosity ratio and the time scale ratio. The first dependence seems obvious. On the

other hand. the explanation for the second dependence is less clear.

1V. CONCLUSIONS

We observed the oscillatory deformations of droplets in PS/HDPE blends. In
particular, we investigated three effects on droplet oscillatory deformation: the effect of
viscosity ratio, the effect of time scale ratio, and the effect of droplet elasticity

At a given capillary number, amplitudes of deformation parameters decreased
with increasing viscosity ratio. time scale ratto and elasticity. The dependences of the
amplitudes on capillary number were linear at small values. whereas the dependences
became nonlincar at large capillary number. Droplet viscosity and elasticity tend to
disrupt the affine oscillatory deformation, whereas a higher time scale ratio promotes the
affine deformation.

The deformed droplet with little relaxation appears to be easier to break. The
drop breakup patterns were the non symmetric one-end tearing and breaking pattern for
the high viscosity ratio system, and the two-ends stretching and twisting pattern for the
lower viscosity ratio system. The critical capillary number increased with viscosity ratio

but varied slightly with the time scale ratio.
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TABLES

Table I Polymers used

71

- Specitic
Polymers Suppliers M., * _
. gravi'y
HDPEI1 | Bangkok Polyethyiene (Public) Limited (HDPE 1600}) 68,000 0.96
PS1 Aldrich Chemical Company, Inc. 162,000 1.04
PS2 Polyscience (Cat#18544) 50,000 1.05
PS3 Polyscience(Cat#23637) 800 - 5,000 1.05
* reported by the manufacturer
Table II Effect of viscosity ratio
Time
Blend Blend T r f Trel Tosc | Scale
: G"r Wiy
system | components (°C) | (mN/m) (Hz) | (sec) | (sec) | ratio
(t)
Al PS2/HDPE?1 150 5.70 0.58 | 0.012-0.084 | 0.11 290 | 9.09 | 32
A2 PS2/HDPE1 | 155.5| 5.6l 0.12 | 0.0052-0.031| 0.15 220 | 6.67 | 32
A3 PS2/HDPE]I 158 5.54 0.06 | 0.0051 —0.031| 0.18 180 | 5.56 | 32
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Table 111 Effect of time scale ratio (t, = tyei/tosc)

Time

Blend Blend T r f Trel Tosc | Scale
) G", Wig

system | components | (°C) | (mN/m) (Hz) | (sec) | (sec) | ratio

(e}

A4 ?S2/HDPEI 147 5.76 1.0 1.66 —10.15 | 0.012 | 332 | 83.33 4
A4 PS2/HDPE1 147 5.76 1.0 1.71 - 1030 | 0.05 | 332 20 16.6
A4 PS2/HDPE] 147 5.76 1.0 | 1.72-1032 | 0.10 | 332 10 33.2

A4 PS2/HDPE! 147 5.76 1.0 1.89—11.35 | 0.192 | 332 52 | 638

Table IV Effect of droplet elasticity

Time

Blend Blend T r f Trel Tosc scale
G", Wiy

system | Components | (°C) | (mN/m) (Hz) | (sec) | (sec) ratio

(o)

Bl PS3/HDPEI 148 5.76 0.12 10.0014-0.008 | 0.048 | 670 | 2094 32
A2 PS2/HDPEI | 155.5 5.61 0.12 1 0.0052-0.031 | 0.15 220 | 6.67 32

Cl PS1/HDPE! | 232 4.89 0.12 | 0.378-2.26 0.33 105 3.03 32
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FIGURE CAPTIONS

Figure 1 Schematic drawing of a single drop observed from the “side™ and “top™ views
by optical microscopy, a and t* the long and short axes of the droplet in the flow-
gradient plane, a* : the a axis projected into the flow direction and c: the principal axis

in the radial direction.

Figure 2 G' vs. frequency at different temperatures: (a) disperscd phases (PS|1, PS2,
PS3) using strain = 80% at frequency ©.1-1 rad/s, and strain = 10 % at frequency [-100
rad/s; (b) matrix phases (HDPE1) using strain = 50% at frequency 0.1-1 rad/s, and

strain = 10 % at frequency 1-100 rad/s.

Figure 3 G" vs. frequency at different temperatures: (a) dispersed phases (PS1, PS2.
PS3) using strain = 80% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100
rad/s; (b) matrix phases (HDPE1 1600J}) using strain = 50% at frequency 0.1-1 rad/s, and

strain = 10 % at frequency 1-100 rad/s.

Figure 4 (a) G', at different temperatures, (b) G", at different temperatures.
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Figure 5 Droplet deformation under shear at strain = 60 %, frequency = 0.18 Hz, G", =
0.06, Wi=4.17 x 102, 1, =32. T = 158 °C, do ~ 180 um and gap 2,000 um, at
magnification 40X at various times in one cycle.

’
Figure 6 Deformation parameters vs. time of system C| at strain 60%, frequency 0.33
Hz, 1, =32.G". = 0.12,d, = 170 pm - 195 pm. gap = 2,000 um: a) a* vs. time; b) ¢ vs.

time and c) Def* vs. tiine.

Figure 7 Amplitudes of the deformation parameters vs. Ca,, of system Al, A2, and A3
at t,= 32, d, = 190 pm - 205 um, gap = 2.000 pm : T =150 °C, G" , = 0.58, G, = 0.032;
T=1555°C,G",=0.12.G,=0.009; T = 158 °C. G" , = 0.06, G', = 0.0046: distance of

drop from the center of plate ~ 6.8 mm: a) da* vs. Cap,; b) dc vs. Can; ¢) 8Def* vs. Cay,.

Figure 8 Amplitudes of deformation parameters vs. Car, of system A4 at T = 147 °C,
do = 185 pm - 200 pm, gap = 2,000 um: frequency = 0.012 Hz, G" , = 1. Regee = 1.45 x
10""'; frequency = 0.05 Hz, G" , = 1, Reose = 9.64 x 10™""; frequency =0.10 Hz, G , = 1,
Regse =2.37 x 1079 frequency = 0.192 Hz, G" ; = 1, Regse = 5.91 x 10°'°: distance of
rop from the center of plate ~ 6.8 mm : a) da* vs. Cap; b) 8¢ vs. Can, and <) 6Def* vs.

Ca,.
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Figure 9 Amplitudes of deformation parameters vs. Ca,, of system A2, B, and C1 at
G", =0.12, 1, =32, do = 170 pm - 190 pm, gap = 2000 pm: of PS3/HDPE1, T = 148°C,
frequency = 0.048 Hz; PS2/HDPEILl, T = 1555 °C, frequency = 0.15 Hz and
PSI/HDPEI, 232°C, frequency = 0.33 Hz: a) 8a* vs. Can; b) 8¢ vs. Cap; c) 8Def* vs.

Cap,.

Figure 10 Droplet breakup under oscillatory shear of system Al where Ca. = 102.13,
Wiy = 2.48 x 102, strain = 178, frequency = 0.2 Hz, G”, = 0.58, G’, = 0.03, time scale

ratio = 58, T= 150 °C, d, = 167 um, gap = 2006 pm, and magnification 40x.

Figure 11 Droplet breakup under oscillatory shear of system A3 where Ca. = 92.93, Wiy
=26x IO'3, strain = 160, frequency = 0.2 Hz, G”, = 0.06, G’; = 0.0045, time scale ratio

Y

=36, T=158 °C, do = 173 um, gap = 2000 um, and magnification 40x.

Figure 12 Critical capillary number vs. 1, of: a) system Al at T = 150 °C, G", = 0.58, d,

~ 165 um - 175 um; b) system A3 T = 158°C, G”, = 0.06, d, = 170 um, gap = 2,000 um.

Fignure 13 Critical Weisenberg number (Wi.) vs. 1, of : a) system Al at T = 15C °C. G",
=0.58,d, = 165 um - 175 um; b) system A3 T = 158°C, G, = 0.06, d, = 165 pm - 175

um, gap = 2,000 um.



Figure 14 Number of cycles required for drop breakup vs. t, of : a) system Al at T
150 °C, G", = 0.58, d, = 165 um - 175 um; b) system A3 T = 158°C, G, = 0.06, d,

165 pm - 175 pm, gap = 2,000 pum.
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e .7 ] Flow direction
TOP VIEW ¢ l©
- Def® = (a®* -c)y (a® +¢)

Figure 1 Schematic drawing of a <single drop observed from the “side” and “top™ views
by optical microscopy, a and b: the tong and short axes of the droplet in the How-
gradient plane, ¢ * : the a axis projected into the flow direction and ¢ the principal axis

in the radial direction.
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PS3) using strain = 80% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100

rad/s; (b) matrix phases (HDPE 1600J) using strain = 50% at frequency 0.1-1 rad/s, and

strain = 10 % at frequency 1-100 rad/s.
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Figure 3 G" vs. frequency at different temperatures:

(a) dispersed phases (PS1, PS2, PS3) using strain = 80% at frequency 0.1-1 rad/s, and
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strain = 10 % at frequency 1-100 rad/s; (b) matrix phases (HDPE1 1600}) using strain =

50% at frequency 0.1-1 rad/s, and strain = 10 % at frequency 1-100 rad/s.
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Figure 5 Droplet deformation of system A3 under shear at strain = 60 %, frequency =
0.18 Hz, G",=0.06, Wi=4.17x 107, 1, =32, T= 158 °C. d, ~ 180 um and gap 2,000

pm, at magnification 40X at various times in one cycle.
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(c)

Figure 6 Deformation parameters vs. time of system C1 at strain 60%, frequency 0.33

2.000 um: a) a* vs. time: b) ¢ vs.

170 pm - 195 um, gap

o~
=

"o =0.12.d,

32.G

time; and c¢) Def*

Hz, =,

vs. time.
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Figure 7 Amplitudes of the deformation parameters vs. Ca, of systems Al, A2, and

A3 at 1= 32, dy, = 190 pm - 205 pm, gap = 2,000 pm: T = 150 °C, G" . = 0.58, G, =
0.032; T=1555°C,G",=0.12, G, =0.009; T = 158 °C, G" , = 0.06, G, = 0.0046:

distance of drop from the center of plate ~ 6.8 mm: a) 8a* vs. Cay,: b) 8¢ vs. Cay,; ¢)

6Def* vs. Caq,.
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Figure 8 Amplitudes of deformation parameters vs. Ca, of system A4 a1t T = 147 °C,
do = 185 um - 200 um, gap = 2,000 um: frequency = 0.012 Hz. G" , = |, Re, = 1 .45 x
10" frequency = 0.05 Hz, G" ; = |, Rewc = 9.64 x 10”""; frequency = 0.10 Hz. G", = |,
Reox = 2.37 x 107'%; frequency = 0.192 Hz, G" . = |. Reox = 5.91 x 10"'°: distance of
drop from the center of plate ~ 6.8 mm: a) 8a* vs. Ca,,; b) 8¢ vs. Cap,: and ¢) 8Def® vs.
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Figure 9 Amplitudes of deformation parameters vs. Ca,, of systems A2, B1, and CI at
G =0.12,r, =32, do = 170 pm - 190 um, gap = 2000 um: system Bl, T = 148°C,
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= 232°C, frequency = 0.33 H7- 2) 8a* vs. Cap; b) 6¢ vs. Can; ¢} SDef* vs. Cay,.



86

O O G Q@
1/ |
. i
', ‘
. &
t (sec) 10 60 371 684 874
t/1, 2 12 74 136 174
¢ v o 9 |9
v ) -
i ! ' . -
.J (.‘;i !U cu ‘ '
' " 2
o | n ) ¢ N )
t (sec) 956 1014 1035 1050 1065 1140
VT, 191 202 207 210 213 228

Figure 10 Droplet breakup under oscillatory shear of system Al where Ca. = 102.13,
Wig =248 x 10'3, strain = 178, frequency = 0.2 Hz, G”, = 0.58, G’; = 0.03, time scale
ratio = 58, T = 150 °C, d, = 167 um, gap = 2000 um, and magnification 40x.
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Figure 11 Droplet breakup under oscillatory shear of system A3 where Ca. = 92.93, Wiy
: =2.6 x 10, strain = 160, frequency = 0.2 Hz, G, = 0.06, G’, = 0.0045, time scale ratio
‘ =36, T= 158 °C, d, = 173 pm, gap = 2000 um, and magnification 40x.
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Figure 13 Critical Weisenbcrg number (Wic) vs. 1, of: a) system Al at T = 150 °C, G",
=0.58,d, =~ 165 um - 175 pm; b) system A3 T = 158°C, G”, = 0.06, d, = 165 um - 175
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Chapter 3: Dynamics of Vorticity Siretching and Breakup of Isolated

Viscoelastic Droplets in an Immiscible Viscoelastic Matrix
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Abstract

The effect of drogplet elasticity on transient deformation of isolated droplets In
immiscible polymer blends of equal viscosity was tnvestigated. In terms of the
deformation parameter, Def* = g*- ¢/ a*+ ¢ where a* and ¢ are apparent drop
principal axes, it undergoes two cycles of positive oscillations before reaching a
negative value, followed by one cycle of oscillation before attaining a steady state
negative value. This behavior was observed when Capillary number, Ca, was varied
between 3 and 9 at a fixed Weissenber number, Wi, of 0.31, and when Ca number
was held fixed at 8 and Wi number was varied between 0.21 and 0.40. In another
blend of relatively lower Wi number of 0.21, one cycle of oscillation in Def* was
observed before reaching steady state negative values when Ca number was varied
between 3 and 14. The steady state Def* varies inversely with Ca number, with a
stronger dependence for the blend with higher Wi number. The magnitude of
oscillation increases with increasing Ca and Wi numbers. The critical Ca was found
to be 12 and 14 for the two blends studied; these values are about 30 times greater

than that of Newtonian blends.

# Corresponding author Email: anuvat.s@chula.ac.th




INTRODUCTION

For Newtonian polymer blends in a simple shear flow, the morphology of
the minor (or droplet) phase is governed mainly by two dimensionless parameters:
the viscosity ratio. i.e., the ratio of droplet viscosity to matrix viscosity; and the
capillary number, the ratio of viscous to interfacial forces (Taylor 1932,1934):

. Ca:m (1)
2r

where yn_ is the viscous shear stress, with y is the shear rate and 1, the matnx

viscosity, D, 1s initial droplet diameter, and I is the interfacial tension.
A steady applied shearing flow that is not so fast as to lead to droplet

rupture will eventually stretch a droplet into a roughly ellipsoidal steady-state shape,
and the steady-state degree of deformation, defined as the deformation parameter
Def. is approximately linearly related-to the capillary number as (Taylor 1932,1934)
a-b . 197, +16

Def = =C
a+b - 1677, +16

(2)

where a and b are the lengths of the major and minor axis of the deformed dropiet,
respectively. Taylor (1934) predicted that the critical point at which the viscous
force overcomes the interfacial force leading to droplet breakup occurs at Ca. =0.5
and Def.=0.5 for a steady (or quasi-steady, if the flow rate 1s very slowly increased)
simple shearing flow with a viscosity ratio of around unity. Here, the subscript “c”
stands for the critical condition for breakup. These basic predictions have been
confirmed and refined in a number of detailed single-droplet experiments
(Rumscheid and Mason 1961; Grace 1982; Bentley and Leal 1986; Guido and
Villone 1997). However, when the viscosity ratio is higher than four, no breakup can
be observed (Grace 1982). These results show that for Newtonian fluids, droplet
deformation and breakup is strongly influenced by viscosity ratio, a result that
emphasizes the importance of controlling this parameter carefully in any attempt to

study the effects of other factors, such as viscoelasticity, on droplet deformation and

breakup.
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The above results were obtained for Newtonian droplets and matrix fluids;
however, most polymers are viscoelastic under normal processing conditions, and so
elasticity of the droplet and matrix phases should be an important factor affecting the
behavior of droplets under a flow field. It has long been noticed, for example, that in
blends of viscoelastic polymer melts, the steady-state average droplet size that results
from breakup and coalescence of droplets under shear corresponds to a much higher
capillary number than is seen in blends of Newtonian liquids at comparable viscosity
ratios. Wu (1987) observed, for example, that the steady-state droplet size i,
extruded viscoelastic polymer blends at a viscosity ratio of unity is around ten times
higher than would be obtained for Newtonian components at the same viscoéity and
at the same shear rate. Lerdwijitjarud et al. (2002) found that in blends of 20%
polystyrene in polyethylene sheared in a rhecmeter, the steady-state droplet size
corresponded to a capillary number ranging from 2 to 30, depending on the relative
magnitudes of the normal stress differences in the droplet and matrix phases and on
the viscosity ratio. These capillary numbers are from 4 to 80 times higher than the
critical capillary number for breakup of a Newtonian droplet in a Newtonian matrix.
While it might be thought that this large increase in droplet“size and hence capillary
number could be due in part to coalescence effects present in blends, Lerdwijitjarud
et al. (2003) showed recént]y that in a 20% blend of a Newtonian liquid in a
Newtonian matrix the steady-state capillary number is actually lower than the critical
capillary number for breakup of an isolated droplet; i.e., the disturbances to the flow
produced by the presence of the other droplets enhances breakup of a given droplet
to an extent that more than offsets any increase in droplet size due to coalescence.
Thus, the high steady-state capillary numbers observed in blends of viscoelastic
polymers must be attributed to the roie of viscoelasticity.

Elasticity in the droplet or matrix phase can be quantified by the
Weissenberg number Wi, a ratio of elastic to viscous forces, which we here will
estimate using either the first normal stress difference N, or elastic modulus G’ as a
measure of the elastic forces and the shear stress as a measure of the viscous forces.
Like the capillary number, the Weissenberg number increases with increasing shear
rate, since elastic forces generally increase with shear rate more rapidly than do

viscous forces. For a given droplet size, Wi and Ca are qualitatively proportional to
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each other; however, since Ca depends on droplet diameter and Wi does not, these
two dimensionless numbers can be varied independently by varying both the shear
rate and the droplet size for a given pair of viscoelastic fluids. Since both phases can
be elastic, there are two Weissenberg numbers, the droplet Weissenberg number Wig
and the matrix Weissenberg number Wi, Since the elastic stresses in the droplet
depend on the strength of the flow in the droplet, which is, in turn dependent on the
viscosity ratio (more viscous droplets have weaker internal flows), it is clear that n
general there is a coupling between the viscosity ratio and the strength of the elastic
forces in the droplet. To minimize this influence, in what follows, we will work with
fluids having viscosity ratios near unity, and use the macroscopic shear rate to
characterize the flow inside the droplet. That is, following the work of Lerdwijitjarud
et al. (2002), we will not attempt to use the actual flow in the droplet to estimate the
droplet Weissenberg number, but will characterize the elasticity of.the droplet using
Wiy defined by the droplet fluid properties at the macroscopic shear rate measured on
the pure droplet fluid in a rheometer.

Recently, single viscoelastic droplets in Newtonian or viscoelastic matrices
have been observed microscopically in simple shearing flows. Lerdwijitjarud et al.
(2003) observed deformation and breakup of isolated droplets of weakly elastic fluid
(Wig< 0.02) in a Newtonian matrix, and found that droplet elasticity produces a slight
(up to around 20%) increase in Ca, the critical capillary number for droplet breakup.
The breakup mechanism appeared to be similar to that in a Newtonian fluid; i.e., the
droplet deformed increasingly in the flow direction as the shear rate was gradually
increased, until breakup occurred. Elasticity of the droplet produced a reduction in
the degree of deformation at any given shear rate and a greater critical deformation at
breakup, resulting in a higher Ca.. However, at the highest Weissenbe_:rg number, this
effect appeared to be saturating, leading to only a modest increase in Ca,.

Mighri et al. (1998) investigated the influence of elastic properties on
droplet deformation and on the critical shear rate, or critical capillary number Ca. for
breakup. The deformed elastic droplet was roughly spheroidal with slightly
sharpened edges while a Newtonian droplet retained smooth curved ends. Mighri et
al. (1998) reported that the degree of droplet deformation, the critical shear rate for

breakup, and the breakup time after startup of shearing increased with increasing
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elasticity ratio between the droplet and the matrix fluids. They defined the elasticity

ratio, k’, as the ratio of the Maxwell relaxation time {)) of the droplet phase to that of

the matrix phase, where A= N;;/2n y 2 where N;; 1s the first normal stress difference.

Breakup occurred by an unsteady deformation of the droplet into a thin and long
thfead, followed by end pinching, and undulations along the droplet surface, finally
resulting in a series of alternating large and smai (or “satellite”) droplets. Moreover,
they found that for a low or modest elasticity ratio, k< 4, the critical capillary
number Ca, for droplet breakup in steady shearing flow increased with increasing k’,
reaching Ca; = 1.75 at high elasticity ratio, k’=4, compared to Ca. = 0.5 for
Newtonian droplets. Thus, droplet resistance to deformation and breakup increases
with increasing elasticity ratio of droplet to matrix phase. While the elasticities of the

droplets studied by Mighri er al. (1998) were higher than those studied by

h Lerwijitjarud et al. (2003), the droplets in both studies def;)rmed in the flow

direction, and the increase in critical capillary number produced by elasticity
saturated at a relatively madest values near unity, far below the steady-state values
observed in highly viscoelastic polymer blends. These studies, and those described-
below, suggest that large increases in Ca; result from a new mode of droplet
deformation and breakup for highly elastic droplets.

A new, viscoelastic, mode of droplet deformation, that of droplet extension
in the vorticity direction {perpendicular to both t};e shear and shear gradient
directions) was apparently first reported for an elastic polymer droplet in a polymer
matrix by Bartram et al. (1975). An apparently related phenomenon of widening of
an extended viscoelastic droplet in a highly viscoelastic matrix was later observed by

Levitt and Macosko (1996), whc suggested that there is a relationship between the

“secoid noimai stress difference of droplet and matrix phase and the degree of

widening. Hobbie and Migler (1999) studied dilute emulsions of viscoelastic droplets
in viscoelastic matrices at high shear raie and also observed elongation of the droplet
in the vorticity direction at , ~ 280 s™' for viscosity ratio n, = 1.8. By extrapolating
data at high shear rates to lower rates, they obtained critical capillary numbers for
droplet vorticity alignment of around 53, 13, and 11 for viscosity ratios, n,, of 1.8,

22, and 240, respectively. The increase in critical capillary number for vorticity
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alighment with viscosity ratio is consistent with a mechanism involving droplet
elasticity, since a higher droplet viscosity would require a higher external flow rate to
attain the same internal flow rate within the droplet, which would be needed to
maintain a high elasticity of the droplet fluid.

Migler (2000) observed the deformation of highly elastic droplets in a
polymenic matrix under a shear flow. The viscosity ratio was near unity, but the
elasticiiy ratio of the droplet to the matrix was higher than 100; that is, the matrix
phase was nearly Newtonian under the conditions of the experiments. In a weak
shear and for small droplets [Ca < 5], the droplet orientation was found to be along
the flow direction, whereas in a strong shear z;nd for large droplets [Ca > 5], the
orientation was along the vorticity axis with a broad distribution of aspect ratios.

Mighri and Huneault (2001) studied the deformation and breakup of a single
droplet of wviscoelastic Boger fluid in a Newtonian matrix. sheared in a transparent
Couette flow cell. At low shear rate, they found that the steady-state deformation
increased with shear rate as expected, but above a crnitical shear rate [Ca ~ 5] the
deformed drop beéan contracting in the flow direction and changed its orientation to
the vorticity axis. With further increases in shear rate, this elongation in the vorticity
_ direction increased until breakup finally occurred at a capillary number no higher
than Ca~35. They proposed that the critical shear stress for reorientation of the
droplet in the vorticity direction was probably related- to the values of the first and
second normal stress differences and therr dependencies on shear rate. They also
suggested that this reorientation occurred because of a the flow-induced circulatory
flow in the droplet that produced an elastic circular hoop stress in the plane
containing the shear and the shear gradient directions that squeezed fluid out along
the axis perpendicular to this plane, that is, along the vorticity axis (Hobbie and
Migler 1999; Migler 2000). They surmised that in a startup of a steady shearing flow,
the deforming viscous stress rapidly reached steady state, but the normal stresses
generated by the dispersed phase required a longer time, which caused a gradual
increase in droplet elongation along vorticity axis until either a steady-state
deformation was reached or breakup occurred. When a droplet was highly streiched
in the vorticity direction, they observed small rocking instabilities in the velocity

gradient direction causing the two ends of the droplet to sample significantly
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different velocities periodically, which ultimately tore apart the droplet into two or
more smaller drops.

In our work reported below, we take a further step towards understanding
the behavior of commercial blends by using elastic polymer melts for both the
droplet phase and the matrix phase. To neutralize any effect of variations in the
viscosity ratio, we choose pairs of commercial polymers whose viscosity ratios
remain relatively constant near unity when shear rate is Varied. Using a flow cell
mounted on an optical microscope, we observe the transient deformations of isolated
droplets after startup of steady shear flow between parallel disks. By varying droplet
size and shear rate, the effects of capillary number and elasticity (or droplet
Weissenberg number) are isolated and investigated at fixed viscosity ratio very near
unity. Our findings confirm those of Mighri and Huneault, who used nearly
Newtonian matrix fluids, but, in addition, we find that when both the droplet fluid
and the matrix fluid are highly elastic, droplet deformations during start-up of steady

shearing show large oscillations before reaching steady state.
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EXPERIMENTS
A. Materials

High density polyethylene and polystyrene (suppliers and grades given in
Table 1) were used as matrix and droplet phases, respectively. Both polystyrene
grades were obtained from the manufacturers in the form of flake; they were crushed
and size-selected by passing the flakes through a 425-mm sieve. To eliminate volatile
components, all polymers were heated to around 80°§ under vacuum for 12 hours.

The polymer blend systems and their experimental temperatures are listed in Table 2.

B. Rheological Characterization

Each polymer was molded into a disk, 25 mm in diameter and ! mm thick
by using a compression mold (Wabash, model V50H-18-CX) at 145°C for HDPEI
and PS1, and at 135°C for HDPE2 and PS2 under a force of 10 tons. We used a cone-
and-plate rheometer (Rheometrics Scientific: Mode-I ARES, 25-mm plate diameter
with cone angle 0.1 rad) to obtain viscosities and first normal stress differences of the
pure polymers. From the rheological properties of pure polyiﬁers at various
temperatures, the desired pairs of polymers and operating temperatures were selected
for further study; and their steady-;tate viscosities and first normal stress differences
as functions of shear rate are shown in Fig. 1 (2) and (b). At low shear rates, the ratio
of droplet-to-matrix first normal stress differences N,, of system B could not be
precisely determined due to the force-measurement limitations of the rheometer.

However, in the low-shear-rate and low-frequency regimes, N; () is approximately
equal to twice G’ (») at y =, thus Ny, can be estimated by the corresponding ratio

of storage moduli, G’,. The Weissenberg number (Wi) of both matrix and dispersed
phases at testing conditions is also given in Table 3. The viscosity ratios and G’
ratios of the two polymer systems are shown in Fig. 2. In addition, the stabilities of
all polymers to thermal degradation were tested at their experimental temperatures by
measuring the viscosity at a constant shear rate, 0.5 s, for 4 hours; in all cases the
viscosity values remain unchanged, allowing us to conduct blend experiments on

each system for peniods as long as four hours.
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C. Observations of an Isolated Droplet in Shearing Flow
1. Shearing Apparatus

To observe the droplet behaviors in simple shearing flow, we used a flow
cell (Linkam CSS 450, Linkam Scientific Instruments Ltd., UK) consisting of two
transparent quartz parallel disks mounted on an optical microscope (Leica DMRPX,
Leica Imaging Systems LTd., Cambndge, England), and connected to a CCD camera
(Cohu 4910, Cohu Inc., CA). In addition, the images were analyzed on a computet

using the Scion image software.
2. Sample Preparation -

HDPE used as the matrix polymer was molded into a disk 25 mm in
diameter and 0.5-1 mm thick by compression molding at 145°C for HDPE1 and
135°C for HDPE2. Various PS droplets were introduced into the rriétrix.by using a
pin to put a small amount of PS powder on a HDPE disk. and then covering this with
another HDPE disk to form a sandwich. The sample was then placed between the top
and the bottom disks of the flow cell, both of which were brought into contact with

the sample, which was then heated to the testing temperature.

3. Droplet Shape Relaxation Time

We attempted to determine the interfacial tensions by measuring the
deformation parameter Def (cf. Eq. 2) of a retracting droplet vs. time, which is

known to decay exponentially [Lucinia ef al. (1997)]:
Def = Def exp(- LJ 3)
r ..

so that the slope of Def vs. t on a semi-log plot can be related the characteristic
relaxation time for a single drop, 1. By equating this characteristic relaxation time to
that predicted by the Palierne model (Eq.4) [Palierne (1990) and Graebling et al.
(1993)], the apparent interfacial tension was then calculated from the following

relation
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To obtain images of the relaxing droplet after a large strain, the desired
strain was imposed onto a selected drop in the field of view of the microscope which
moved the droplet out of the field of view, then the dronlet was left to relax at least
40-50 min (which is equal to or greater than the droplet relaxation time) to ensure
that the drop had returned to the spherical shape, and then the droplet was moved
back into the field of view by imposing the same strain in the reverse direction. A
hundred to 200 images were then recorded (10-20 seconds per frame) while the
droplet relaxed its shape. For both systems, the droplet size was varied from around a
hundred micron up to 400 pm or thereabouts. For system A, with initial drop size of
96 pm shear rate 0.2 1/sec 1, equal to 0.79 and 7, equal to 31350 Pas, the relaxation
time of Eq. 3 was 362 sec and the corresponding I" was 1.66 mN/m. Fig. 3 (a) and (b)
shows that the apparent interfacial tension values inferred from Eq. 4 increases with
the droplet size. This dependence of apparent interfacial tension on droplet size is
likely caused by the contribution of droplet elasuicity to the relaxation of the droplet
shape. For large enough droplets, relaxation should become slow enough that
viscoelastic stresses relax too quickly to influence droplet shape relaxation and hence
the rate of relaxation is governed by interfacial tension alone. Thus, the interfacial
tension value obtained for large droplets is expected to be the most accurate.
Unfortunately, because of the limitation in the ratio of a gap width to an initial
droplet size, which was kept at greater than 5, we cannot attain a regime in which the
apparent interfacial tension becomes independent of droplet size; see Fig. 3.
Therefore, the values cf the interfacial tension for the polymer blend systems used in
this work were taken from the literature [Brandrup and Immergut (1989}], which are
5.79 mN/m for system A at 147°C, and 5.92 mN/m for system B at 139°C.

From the optical microscope, the droplet images were captured only from
the top view, i.e., a view containing the flow and vorticity directions. Since only a
projection of the droplet onto the vorticity plane can be imaged from this view, this

view cannot determine the true lengths of the principal axes, because two of them
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(those in the flow and the shear-gradient directions) are not parallel to the vorticity
plane. However, the lengths of these axes can be determined by using the affine
angle of rotation of the droplet in the plane containing the flow and shear-gradient
directions (Larson 1988) together with the condition of volume preservation, D, =
abc (Almusallam et al. 2000).

Although the lengths of the principal axes can be approximated by using the
method mentioned above, for convenience we use the lengths of the observable axes,
shown in Fig. 4, to describe the behavior of each droplet. Thus, we define a

modified deformation parameter Def* as:

Def* = (5)

where the asterisk denotes that the deformation parameter is an apparent one

obtained from the droplet image projected onto the flow-vorticity plane; see Fig. 4.

4. Transient Deformation

The deformed shapes were observed as a function of time from initial to
steady-state shapes. Because the Linkham device has one stationary and one moving
plate, a single droplet cannot be viewed continuously from startup of shearing to
attainment of steady-state shape, since this droplet will pass out of the viewing plane
after imposition of around 10 strain units. However, since the behavior of a given
isolated droplet is highly reproducible, the strain dependence of the deformation can
be determined by combining the results of several experiments. In experiments of
type 1, we first move the droplet out of the viewing window by imposing a shearing
strain of less than 40 strain units. After allowing the droplet to relax its shape for at
least 40 minutes, an observed shear rate was imposed at the same strain but in
opposite direction, eventually bringing the droplet back into the viewing window,
where it can be observed during deformation. However, the droplet could not be
subjected to a large strain in this type of experiment, since this would move the
droplet again out of the viewing window. So, to obtain droplet deformation at large
strains, we performed experiments of type 2, in which we sheared continuously, and

imaged the droplet each time it passed through the viewing window in its orbit
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around the axis of the rotation of the rotating plate. Typically, one orbit would
require around 40 strain units. To get a clear image of the droplet without a high-
speed camera, we stopped the flow briefly each time the droplet reached the center of
the viewing image and video recorded its shape over a period of around 1 second,
which is a time much too short for the droplet to relax its shape significantly. Then
the flow was resumed again until the droplet again reached the viewing window. By
repeating the experiment on droplets of simiiar size, which were stopped at diff;.rent
times, we could assemble a consistent curve from multiple droplets of the droplet
deformation versus time at a given shear rate. In the following, the results from
different droplets will be presented using different symbols, showing the consistency
of results combined from multiple droplets. In each experiment, the time for one
revolution of a droplet was recorded with a stopwatch along with the time shown on
the Linksys program. To avoid interactions with the plates, the ratio of the gap width
to the initial diameter of a selected drop was kept higher than 10, and only droplets
near the center of the gap were observed. The experiment was repeated with more
than 10 droplets with initial diarﬁeters around 75 (+10%) um. were used, and the
imposed shear rate was 0.5 s”'. Similar experiments (only type 2) were carried out
using other droplet sizes, 52, 110 and 120 pum, but the same shear rate of 0.5 st To
separate the effect of shear rate from that of elasticity, another set of experiments
were carried out on droplets of different sizes [135, 75; and 46 um] but in which the
shear rate varied inversely with droplet size from 0.28, to 0.5, to 0.8 s™', In this way
we could vary the viscoelastic forces, which increase with increasing shear rate,
while holding the capillary number fixed at around 8 by varying the droplet size

inversely with the shear rate.
5. Steady-State Deformation and Breakup

From the transient experiments, the required strain to reach steady state can
be determined and was found to be around 2500 strain units. To determine the
steady-state droplet shape as a function of capillary number, we carried out

experiments up to high strains at two different shear rates and for different droplet
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sizes. The selected shear rates were 0.3 and 0.5 s for system A, and 1 s”! for system
B, which are high enough that the needed strain could be achieved within an
acceptable time, but not so high that the steady-state droplet shapes are too small to
be imaged clearly. In addition to using these two shear rates, different droplet sizes
were chosen to vary the capillary number at fixed elasticity. After loading a sample,
droplets were allowed to relax to spherical shapes for a period of at least 50 minutes,
a bit longer than for the transient experiments described earlier, since some of the
droplets used were larger and so needed somewhat longer to relax. A constant shear
rate was then applied until a strain exceeding 2500 strain units had accumulated.
When a selected droplet passed through the viewing window, the motor was stopped
for less than a second and a video movie (speed 25-fps) was then recorded, as
described earlier in the description of the experiments measuring transient droplet
shapes. To ensure that the steady state deformation had indeed been attained, we
repeated imaging the same droplet for several more passes of the droplet through the
viewing window over a period of 5 to 10 min. In addition, after turning off the flow
the droplet shape relaxation was recorded at a video recording speed of 10-20
seconds per frame for approximately 1 hour. |

When the droplet size was varied at fixed shearing rate, we found a critical
droplet size above whiél; no steady state-shape was obtained. For these droplets, the
unstable shape of the droplet was recorded with time, by imaging the droplet each
time it passed through the viewing window (as in the experiments discussed earlier),

until the droplet broke.
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RESULTS AND DISCUSSION

A. Deformation in Steady Shear Flow

1. Observations of Droplet Deformation

We first consider system A, in which both matrix and droplet phases are
highly elastic with a G* ratio of 0.7 at @ = 0.5 rad/s. A shear rate of 0.5 s™ and a
droplet size of 75 (+10%) um were selected for study at a well-controlled
temperalare (147°C). We observed that the shape of the deformed drop, Def*, under
steady shear flow oscillates before attaining a steady state shape, as shown in Figs. §
and 6. We divide the transient deformation into 5 regimes. In the first regime, a*, the
principle axis projected in the flow direction, shown in Fig. 5 (c), oscillates with a
penodicity of around 10 sec, while ¢, the length of the principle axis in the vorticity
direction, shown in Fig. 5 (d), does not change from its initial value until near the end
of regime 1. From the absence of a variation in ¢, we infer that this oscillation may
arise from a droplet tilting or rotation around the vorticity (z) axis as shown
schematically in Fig. 7. Eventually, near the end of regime 1, while it 1s still tilting or
rotating, the droplet begins to contract in the z-6 plane, and the ¢ axis increases
slowly. In the second regime, the drop gradually elongates in the vorticity direction,
and after around 500 sec (or 250 sﬁain units) elongation in the vorticity direction
reaches its maximum at the end of this regime. At the maximum |[Def*| between the
regime 2 and 3, as shown in Fig. 5 (a), the ¢ axis is much larger than its initial value
so that ¢/D, ~ 1.35, while the a axis returns to a length nearly equal to its initial value
[Fig. 5 (¢)]. From volume conservation, this implies that the droplet is flattened in the
z direction, as shown in Fig. 8. However, the deformed drop is not stable at this point
because in regime 3, the droplet rapidly contracts in the vorticity direction; see Fig. 5
(d). While contracting in the vorticity direction and stretching occur along the flow
direction, cusps emerge out of each side of the droplet along the vorticity axis, as can
be seen in Figs. 6 (k) and (1). After 1000 strain units have been imposed, the droplet
stretches in the vorticity direction again (regime 4) until a steady-state shape is

attained at around 2000 strain units in the fifth regime, as shown in Fig. 5 (b).
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These phenomena do not occur in system B, whose droplet and matrix phase
elasticities are both lower than in system A, but whose elasticity ratio of droplet to
matrix phase is higher than in system A, as shown in Table 3 and Figs. 1 and 2.
When a constant shear rate of 0.4 s is applied to system B, the deformation
parameter rises rapidly from zero to around 0.09, and then slowly and roughly
exponentially decreases with time until attaining a steady-state value shown in Fig. 9.
This fihding is similar to that of Mighn an:i Huneault (2001) who reported that under
a strong shearing flow, an elastic droplet in a Newtonian matrix rapidly stretches
along the flow direction, and then gradually contracts in this direction after the first
normal stress difference in the droplet has developed sufficiently. Our Fig. 9 1s very
similar to Fig. 7a of Mighri and Huneault, except that in the latter, the droplet
eventually becomes aligned in the vorticity rather than in the shear direction; i.e., the
deformation parameter becomes negative. We also obtain negative steady-state
values of Def* for system B at higher values of Ca (as will be presented below). The
similarity between our results for system B in a torsional plate-plate flow and the
results of Mighri and Huneault in a circular Couette flow impliés that the unusual
oscillatory droplet deformation we observe for system A is not an artifact 6f our
system geometry. We speculate that the oscillations arise only in blends for which
both phases are highly elastic, and occur because the different growth periods for the
first normal stress differences of the two phases produce time-delayed imbalances in

the normal stress conditions on the droplet surface.

2. Effect of Ca on Droplet Deformation.

In this section, the elasticity of the droplet and matrix phases are held
constant by holding the shear rate fixed at 0.5 s'. At this shear rate, where the G’
ratio for blend A at @ = 0.5 rad/s is 0.7, we selected various initial droplet sizes to
vary the capillary number at a fixed droplet/matrix elasticity ratio. The deformation
parameter Def* vs. time from the 2™ 1o 5™ regimes of the 52, 79,110 and 120 pm-
drops is shown in Fig. 10 (a). It can be seen in Fig. 10 (b) that between the second

and the fourth regimes, droplets with higher Ca show a greater deformation in the
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flow direction (larger a*/D,). However, for all Ca values in these experiments, nearly
the same value of ¢/D, is reached at its minimum point at the boundary between
regimes 3 and 4, as shown in Fig. 10 (c). For Ca values of 5 and 8, steady shapes are
attained at strains around 1300 and 20C0 (times of 2600 and 4000 secs), respectively,
with larger droplet deformations (more negative Def*) occurring with increasing
capillary number. The larger droplets with diameters of 110 and 120 pm ¢higher
capillary numbers of 11 and 12), do not attain steady-state shapes. For these droplets,
the vorticity axis, ¢, rapidly increases for a long period and the axis in the flow

direction (a*) slightly decreases until the drops eventually break [Fig. 10 (b) and (c)].
3. Effect of Elasticity on Droplet Deformation

To investigate the effect of elasticity in system A, the capillary number was
kept constant at 8 and the shear rate and drop size were varied inversely with respect
to each other. Shear rates of 0.28, 0.5, and 0.8 s™' were chosen and the droplet sizes
used for these shear rates were 135 (2 runs), 70-79 (repeated experiments), and 45
pm, respectii}ely. Fig. 11 (a) shows that there is a significant decrease in the
maximum value of Def  vs. t (at a strain of around 900) as the shear rate (and hence
the elasticity) increases. As shown in Figs. 11 (b) and (c), this decrease results
mainly from a decrease in a*/D,, rather than an increase in ¢/D,. The steady-state

value of Def* in regime five is nearly the same for all shear rates.
B. Steady-State Deformation and Droplet Breakup Mechanism

The strains required to attain steady state at each shear rate were determined
at shear rates of 0.3 and 0.5 s™' for system A, and at | s”' for system B. By increasing
the droplet size, the capillary number was varied. As shown in Fig. 12, when Ca
increases, the steady-state deformation in the vorticity direction increases; i.e., Def
becomes more negative. This contrasts with the behavior of a Newtonian system
where the steady-state deformation in the flow direction increascs monotonically
with Ca [Taylor (1934), Tsakalos ef al. (1998), Guido and Villone (1998)]. Fig. 12

shows that a droplet in both systems starts to stretch in the vorticity direction at Ca
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around 3. Whereas Mighri and Huneault (2001), using less viscous liquids, found
that at Ca less than 10, an elastic droplet in a Newtonian matrix deforms along the
flow direction with steady-state deformation increasing with increasing Ca, until Ca
reaches roughly 5, above which the droplet starts contracting in the flow direction. At
each value of Ca a droplet in our system B deforms less in the vorticity direction than
one in system A (lower |Def*|; see Fig. 12). This might be the result of the generally
lower elasticity of system I5. At the shear rate of 0.5 s! in sy‘stem A, for droplets
larger than 92 pm do not attain a steady shape, but the droplet eventually breaks up
(see Section part A2 above); this size corresponds to a critical value of Ca for
breakup of around 9, where the corresponding value of Def*; is around -0.27. In
addition, the critical capillary number of system A is somewhat comparable to the
steady state critical Ca, which was around 6, in Lerdwijitjarud et al. (2002). Their
system, PS(drop)/HDPE(matrix), like ours, had a viscosity ratio of unity and an N
ratio of around 0.7. A droplet in system B breaks at a higher value of Ca (~ 14) than
for system A (~ 9). At the viscosity ratio of unity and N, ratio of 2, the steady state
critical Ca was found to be around 12 in Lerdwijitjarud (2002). This is slightly less
than Ca. of system B. As shown in Fig. 2, the elasticity ratio (G’, at the selected
shear rate) of system B is 3-4 times higher than that of system- A, which might
account for the difference in critical capillary numbers for systems A and B. An
alternative explanation might be that the weaker elasticity of system B produces less
deformation in the vorticity direction than that of system A at the same capillary
number, and hence a greater shear rate is required to stretch droplets in system B to
produce rupture. If this latter explanation is correct, then droplets with intermediate
elasticity, high enough io avoid elongation in the flow direction, but low enough to
avoid large elongations in the vorticity direction, will be most resistant to rupture and
will break at the highest capillary number.

In our more elastic blend A. when a constant shear rate above Ca, is applied,
a spherical drop deforms non-monotonically until regime five is reached and the
droplet then elongates continuously in the vorticity direction until breakup occurs as
shown in Figs. 10 (a), (b), and (c). The droplet breaks when its two ends are quite far

apart and no longer located on nearby streamlines, as shown in Fig. 13. Mighri and
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Huneault (2001) found that in a counter-rotating circular Couette cell, a viscoelastic
droplet breaks when its two ends separated along the vorticity direction develop
unstable motions because of large velocity differences between the two moving
layers. A similar instability may occur in our flow.
We note that we could find no clear correlation in the literature or in our
data between droplet Weissenberg number and re-orientation or break-up. The effect
" of elasticity may involve a complicated interplay of the first and second normal stress
differences of both phases, and may couple to viscosity ratio, shear thinning, and
capillary number. Careful experiments in which all these quantities are carefully
controlled, along with numerical simulations of viscoelastic droplet deformation and
breakup will be needed to obtain a more quantitative picture of these fascinating

phenomena.
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CONCLUSIONS

We measured the dynamics of deformation of an elastic droplet in an elastic
matrix by selecting two blend systems with viscosity ratio near unity. but of different
elasticities of both droplet and matrix phases with the Weissenberg number of matrix
phase around 0.1-0.5 and of droplet phase around 0.2-0.5. In start up of a steady
shear flow, the different elasticities in the pglymer blends produce qualitative®
differences 1n the droplet deformations that occur before the droplet attains its
steady-state shape. In system A with higher elasticity, the deformation oscillates
several times before reaching its steady-state shape. In system B with lower
elasticity, the droplet first deforms in the shear direction, and thereafter continuously
contacts in the flow direction until it reaches its steady-statc shape. When the
capillary number is increased at fixed shear rate (and hence fixed elasticity) by
increasing the droplet size in system A and B, the steady-state droplet shape becomes
increasingly elongated in the vorticity direction and develops cusps along the
vorticity axis. In this system A, at still higher capiliary number. droplet breakup
occurs when two ends of a drop elongated in the vorticity direction are situated on

streamlines of different velocity which pull the droplet ends apart, leading to rupture.
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TABLE

Table | Propertics of polymer blend components

Polymer Suppliers Grade M.,* Melt Flow Index*
(g/10min)
PS1 Polyscience Cat#18544 50,000 -
Ps2 Polyscience Cat#23637 800-5,000 -
HDPEI1 Bangkok Polyethylene 1600J - 14
HDPE2 Aldrich Cat#42.801-9 - 42
* Quoted by the manufacturers -
Table 2 Polymer blend systems
Blend system "Blend components Temperature (°C) I
(Drop/Matrix) (mN/m)
A PS1/HDPFE1 147 5.79
B PS2/HDPLE2 139 5.92
Table 3 The rheological data of blend systems
Blend | Shear Rate Matrix Droplet
System | (") "IN G (W NG| w
0.28 2524 | 403 | 135 | 0.38 2426 - 70 .21
0.3 2505 | 435 | 145 | 0.39 2425 79 0.22
A 0.5 2340 | 772 | 247 | 042 2340 - 179 031
08 2175 | 1359 | 400 | 0.46 2272 936 359 040
B 10 6i2 342 1011 619 - 64.7 0.21

" not measurable
* 1 unit is Pa.s

' Ni. G’ unitis Pa

" The Weisenberg number was calculated from the relation Wi = (2G") / [n( y ). ;']
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FIGURE CAPTIONS

Figure 1 Viscosity n, storage modulus G’, and first normal stress difference N, as
functions of shear rate and frequency for each pure polymer at the temperatures at
which the blend experiments were carried out: (a) matrix phase HDPE! at l47°é, n
(@), G’ (0), and N, (0), HDPE2 at 139°C, n (m) and G’(0O); and (b) droplet phase
PS1 at 147°C, n (A), G" (&), and N& ), PS2 at 139°C: 1) (#) and G’(©).

Figure 2 Values of droplet to matrix ratios of viscosity 1 (e), storage modulus G’
(0). and first normal stress ditference Ny (a) for (a) system A PS1/HDPEI1 at 147°C;
and (b) system B, PS2/HDPE2 at 139°C.

Figure 3 Dependence of apparent interfacial tension value on droplet size for: (a)

system A: and (b) system B. as inferred from the Palierne formula. Eq. 4.

Figure 4 Schematic drawing of a single drop observed from the “side™ and “top”
views by optical microscopy. a and b: the long and short axes of the droplet in the
flow-gradient plane, a* : the a axis projected into the flow direction and c: the

principal axis in the radial direction.

Figure 5 The time-dependent deformation of 75 (+10%) um-drops after startup of
steady shear at a rate, 0.5 s", for system A. (a) Def* vs. time on a log time scale. (b)
Def* vs. time on a linear time scale, (¢) a*/D, vs. time on a log time scale, and (d)
¢/D, vs. time on a log time scale. [initial droplet sizes (um): 76 (@), 68 (12)), 74 ('¥),
69 (7), 71 (m), 85(@). 76 (#), 75 (). 74 (A), 70 (A), and 79 (®)] i



114

Figure 6 Sequence of images of deformed droplets of initial radius 75 (+ 10%) pm-
after startup of a steady shear at a rate of 0.5 s™! for system A; (a)-(f) images of
different droplets with lens magnification of 20x [D, = 69, 69, 71, 76, 75, and 74 pum,
respectively]; (g)-(p) images of a single droplet with the lens magnification of 4x

[Do = 79 um)].

Figure 7 Schematic drawin.g of droplet rotation in the flow-gradient plane.
Figure 8 Sketch of a steady-state deformed droplet.

Figure 9 Time-dependent deformation of a 204 pm-droplet under constant shear rate,

0.4 s, for system B.

Figure 10 Time-dependent droplet deformation at different values of Ca, controlled
by changing the droplet diameter D, [D, = 52 um: Ca =5 (®). D, =79 pm; Ca=§
(0), Do =110 pum: Ca=11 (¥}, D, =120 pm: Ca = 12 (V)] at the same shear rate 0.5
s (and therefore the same elasticity) for system A: (a) Def*, {b) a*/D,, and (c) ¢/D,.

Figure 11 Time-dependent droplet deformation at different shear rates (and therefore
different elasticities), at a capillary number Ca of 8, held fixed by varying the initial

droplet diameter inversely with the shear rate for system A: (a) Def* vs time, (b)

a*/D, vs time, and (c) ¢/D, vs time. Three different shear rates were used. (l):; =

0.28 s”', with D, = 135 pum ( A) and a repeat run at this shear rate with the same
droplet size, Dy, = 135 um (). (2): y =055 D,=70 pm {e)}, and a repeat run

with a slightly larger droplet, D, = 79 um (o). (3)}: =0.85", Dy =45 pm (m)].

Figure 12 Dependence of steady-state deformation parameter on Ca for system A:

shear rate 0.3 s”' (O), shear rate 0.5 s'(a), and for system B: shear rate | s™' (O)].
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Figure 13 Sequence of images during droplet breakup in system A, D,= 120 um, ata
shear rate of 0.5 s' (Ca=12). The flow direction is horizontal, and the vorticity

direction vertical.
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Transient and Steady State Deformations and Breakup of Dispersed—Phase

Droplets of Immiscible Polymer Blends in Steady Shear Flow

Abstract

Transient and steady-state deformations and breakup of viscoelastic
polystyrene droplets dispersed in viscoelastic high density polyethylene matrices were
observed in a si‘mple steady shear flow between two transparent parallel disks. By
separately varying the elasticities of the individual blend components, the matrix
shear viscosity, and the viscosity ratio, their effects on the transiént deformation,
steady-state droplet size, and the breakup sequence were determined. After the startup
of a steady shear flow, the viscoelastic droplet initially exhibits oscillations of its
length in the flow direction, bult eventually stretches preferentially in the vorticity
direction. We find that at fixed capillary ‘number, the oscillation amplitude decreases
with, increasing droplet elasticity. while the oscillation period depends primarily on.
and increases with, the viscosity ratio. At steady-state, the droplet length along the
vorticity direction iﬁcreases with increasing capillary number, viscosity ratio, and
droplet elasticity. Remarkably at a viscosity ratio of unity, the droplets remain in a
nearly undeformed state as the capillary number is varied between 2 to 8, apparently
because under these conditions a tendency for the droplets to widen in the vorticity
direction counteracts their tendency to stretch in the flow direction. When a critical
capillary number, Ca., is exceeded, the droplet finally stretches in the vorticity
direction and forms a string which becomes thinner and finally breaks up, provided
that the droplet elasticity is sufficiently high. For a fixed matrix shear stress and
droplet elasticity, the steady-state deformation along the vorticity direction and the

critical capillary number for breakup both increase with increasing viscosity ratio.
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L INTRODUCTION

Because of its importance in polymer processing, there has been considerable
woik on low Reynolds numbers shear-induced droplet deformation and breakup in
blends of immiscible liquids, including blends of polymeric liquids. Taylor (1932,
1934) predicted that for an isolated Newtonian droplet in steady simple shearing flow
of a surrounding mmmiscible Newtonian fluid in the small-deformation limit, two
dimensionless parameters control the droplet deformation behavior.  The first
parameter is the viscosity ratio between the two phases;

N = Ma/ Nim (1)

where ng and 1, are the viscosities of the droplet phase and the matrix phase.

respectively. The second dimensionless parameter is a capillary number. Ca:

Ca=nuym (2)

I

where y is the applied shear rate. ro is the undeformed droplet radius, and I' is the

interfacial tension between dispersed and matrnix fluids. Taylor also predicted that the

deformation parameter, Def. depends on Ca and n, according to

-b
Def = 4 =Ca —"——— (3)
a +b- lon +16

where a and b are lengths of the major and minor axes of the deformed droplet.

respectively. The capillary number is the ratio of the matrix viscous force (nm}.f) to

the interfacial stress (I'/rp). Correspondingly, for a given droplet and matrix fluid pair.

there exists a critical capillary number, Ca. at which the droplet ruptures in a flow
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field. For simple shear flow, the shape of the curve Ca, vs. 1, is well known; at n, = |
Ca s minimumized at Ca; = 0.5, while Ca, becomes infinite at 1, > 4 so that droplets
are stable at all capillary numbers [Taylor (1932,1934); Grace (1982); De Bruijn
(1989)]. Other correlations between Cac, and 1, have also been reported [Rallison
and Acrivos (1978); Bentley and Leal (1986)).

The non-Newtontan viscoelastic behavior of common high-molecular-weight
polymer blends 1s expected to influence the droplet deformation and breakup.
Working out a quantitative relationship between viscoelasticity and droplet
deformation and breakup is a complicated task. however, because viscoelas{icity 1S
manifested in various ways. including first and second normal stress differences for
both matrix and droplet fluids. and shear thinning in viscous and elastic properties of
both fluids. Most experimental studies of droplet deformation and breakup with
viscoelastic droplet and matrix tluids have been carried out with little or no systematic
control that might allow the intluence of one aspect of viscoelasticity to be assessed
with others held fixed. However, from many experimental studies one can infer the
general behavior that the elasticity of the droplet fluid inhibits droplet deformation
causing the droplet to break at a higher capillary numbér, while elasticity of the
matrix phase tends to destabilize the droplet causing 1t to break at a lower capillary
number [De Bruijn (1989). Elmendrop and Maalcke (1985). Varanasri er al. (1994):
Mighri er af (1997. 1998): Lerdwijitjarud et af. (2004)].

In an effort to better control the contributions of fluid viscoelasticity. some
studies have chosen only one of the fluids (either matrix or droplet fluid) to be
viscoelastic, with the other being Newtonian. Further control can be exerted by
choosing for the viscoelastic fluid a so-called “Boger fluid,” which is a weakly elastic

dilute polymer solution in a Newtonian matrix. Boger fluids have the virtue of
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possessing little or no shear thinning in the shear viscosity, and ideally also in the first
normal stress coefficient. Studying a blend of a Boger fluid as the droplet phase in a
Newtonian matrix fluid at a viscosity ratio of unity, Lerdwijitjarud et al. (2004) found
that Ca. increased linearly with Wiy up to a value of Wiy of around unity. and

thereafter approached an asymptotic value of around unity for high values of Wiq.

Here the dispersed phase Weissenberg number. Wiq, is defined as Wig(y) =

[Wis( ) 2n4a( ¥)]. ¥, where ‘W14( 7} is the first normal stress difference coefficient of

the dispersed phase at an imposed sheai rate y .

Studies with Boger fluids have generally only revealed rather modest effects
of viscoelasticity on the deformation and breakup of droplets, relative to what is seen
in Newtonian fluids. Namely one can observe a modest change (a factor of two or s0)
in Ca., but the droplets deform in the flow direction to a simitar degree as in blends of
Newtontan droplet and matrix tluids. For highly elastic melts. very large increases are
observed (more than a decade) in the capillary number required for droplet breakup.
Moreover, for some melts. a new mode of droplet deformation, namely transient and
steady-state droplet widening or elongation along the vorticrty axis, has been observed
for viscoelastic droplets sheared in viscoelastic matrices [Levitt er al. (1996); Hobbie
and Migler (1999); Migler (2000); Mighri and Huneauit (2001); Cherdhirankom er al.
(2004)].  Experimental work showing this widening phenomenon was reviewed
earlier [Cherdhirankorn ef «f (2004)]. Here it suffrees to noic that droplet widening
has only been observed in blends containing viscoelastic melts, with one exception.
Mighri and Huneault (2001) studied the deformation and breakup mechanisms of
droplets composed of viscoelastic Boger fluid in a Newtoman matrix (PDMS). At

low shear rates. they found that the dispersed drop was onented along the flow field
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and drop detormation icrcased with shear rate, as expected.  Towever., when a
cntical shear rate was reached [€Ca, = 5.5]0 the deformed drop began to contract in the
flow direction.  After ncreasing the shear rate above this critical value, drop
contraction occurred. followed by clongaton perpendicular to the flow direction.
Fhis cloncation mereased with shear rate until breakup occurred. In our studies with
polyvbutadiene Boger Tuids o erdwinitjarud e af 20040 we did not observe droplet
widening over the range of \\'c.iswmbcrg numbers and capillary numbers we were able
to access, despite usig veny high molecular weight polvbutadienes (M, above one
o at concentratons hich enough (16 to produce signiticant shear thinning.

[ an cHort tooaceess mere siemficant ettects of elasucity than could be
obtained using Bogcer Nuids, Cherdhirankormn of aof - (2004), studied blends of shear-
thinning polyvmer melis with properiies and cemperatures chosen o maintain the
viscosity ratio near s at the shear rates wsed. Vaiscocliustic modes ot transient
droplet detarmation and dioplet extension i the vortrary doection were reported tor
isolated droplets in twes imnnscible polvimer blends (PS HDPE ) of equal viscosity in a
simple shearing low  In the hlend wath high elasticiy of matnx and dispersed
phases. the droplets initially detormed in the tlow direction after startup of a steady
shear but then beean reverting o o spherical shape. and eventually deformed in the
vorticity direction. In the sccond. low-clasticity system. the droplets first deformed in
the shear direction. and thereatter continuously contracted in the tlow direction until
they  reached  therr steady-state shapes. I'he droplets eventually  deformed
preferentially ulong the vorticity direction with increasing capillary number. Above a
critical capillary number. breakup occurred whose mechanisms critically depended on

the droplet elasticity.
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The new work reported here extends the previous study of Cherdhirankorn et
al. by considering the effect of the viscosity ratio, as well as capillary number and
droplet elasticity on isolated droplet deformation and breakup. In addition, we seek to
determine if a blend system exists in which droplet deformation does not occur over a
certain range of capillary number. Our earlier work [Cherdhirankorn er a/. (2004)]
suggested that such behavior might be exhibited under Vc-:onditions in which the
tendency of the droplet to stretch in the flow direction due to viscous forces is
balanced by a tendency to deform in the vorticity direction due to elasticity, leading to
a state of alinost no deformation over a range of shear rates. Such a condition of
shearing flow with no droplet deformation or breakup might be useful if spherical, or
unusually large, droplets are desirable under a shearing flow, or might be a condition

to avoid if the opposite is true.
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II. EXPERIMENTS

A. Materials

The matenals used in this srudy are two grades of high-density polyethylene
(HDPE1 and HDPE2) as the matrices. Three grades of polystyrene (PS1 PS2, and
PS3) are used as the dispersed phases. The properties of all polymers are tabulated in
Table 1. Polystyrene resins were ;)repared by crushing them into small pieces and

their sizes were selected by passing the flakes though a 425 um sieve. All polymers

were neated at 80°C under vacuum for 12 hours to eliminate any volatile substances.

B. Rheological Characterization

The steadv-state shear viscosity and the firsi normal stress difference of each
polymer were measured by a cone-and-plate rheometer (ARES. Rheometric
Scientific) using a 25-mm diameter plate and a cone angle ot 0.1 rad. Figures | and 2
show rheological properties of the polymers chosen in our study. Four pairs of
polymers and operating temperatures were chosen in our study. Table 2 lists the
polymers and the four blend systems (A.B.C. and D) investi.gated in this work. chosen
to have viscosity ratios of somewhat greater than unity (2.6). less than unity (0.5). and
unity. The interfacial tension values for the polymer blend systems were taken from
the handbook [Brandrup and Imergut (1989)]: 5.84 mN/m for System A at 143°C.

5.60 mN/m for System B at 155 °C, 592 mN/m for System C at 139 °C, and 5.79

mN/m for System D at 147 C.
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C. Observation of an Lsolated Droplet in Shearing Flow

[ Nhearimye Adpparatie

Forcenerate o sinple shear flow and o observe droplet hehaviors, we used a
commerctal tlow cell deviee ob bk €SS 4500 T imkam Scientilic instruments Lid..
UKy swath two quarty parallel disky ntached o an opucal microscope ([eica DMRPX.
Lewca Imaging Systems Tod o The mmages were recorded by a CCD camera (Cohu
910 Cohudne LU S v The ebinned mmaces were analyvzed on g computer using the

SCION HNare seflvware CHETD s scieicorpieoin b

3 i L :
2o Nampde oo e

PUOE weaes e ldbcd e ek 2y o o draecter and 00516 mime an
thickness by compression meldime ar 140 C 0 Ta Joad PN droplets into the THDPE
matrix. we used o pimn o put a small amount ot PS posder onte the HDPE disk. and
then covered this swith another THRPE dish to torm o sundwich. The sandwich was
then placed onto the bottoan disk and convered with the top disk ot the tlow cell. The

sample was held at the testie wemperature untl complete melting oceurred.

3 Optical Microscopy of Isolated Dropleis

Droplet deformation and subscquent relaxation trom its deformed ellipsoidal

shape were observed using an optical microscope at a magnification that depended on
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the droplet size. Around 100 to 200 droplet images were recorded (10-20 seconds per
frame).

Since the images of the detformed droplet were captured only in the plane
perpendicular to the shear gradient direction. the true length of the major principle
axes of the ellipsodal droplet could not be determined directly. The lengths of all
three principle axes can, however. be calculated from a planar image using the known
dropiet voluma provided that we know ll;e orentation angle (0), i.e.. the angle
between the major axis and the tflow direction. [.acking this orientation angle, we
followed our carbier work |Cherdhirankorn e¢r @/ (2004)] and used the apparent

observable lengths ot the prninciple axes to describe the behavior of each droplet by

defining a moditied deformation parameter Det™:

Def* = (a*-c)/ (a*+c) (6)

where the asterisk indicates that the deformation parameter is an apparent one

obtained from the droplet image projected into the tlow-vorticity plane (see Figure 3).

4. Transient Deformution

Due to the himitation of the tlow cell. a single droplet can not be observed
continuously from startup unul it attains a steady-state shape. since this droplet will
move out of the viewing plane after imposing a given strain. Since the behavior of a
given isolated droplet is assumed to be reproducible, the complete transient
deformation history of an isolated droplet of a particular size was determined. as

before [Cherdhirankormn ef al. (2004)]. by combining the results of several
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experiments with the droplets of nearly equal sizes. In the experiment of type 1. the
droplet was moved out of the viewing window by imposing a strain. typically less
than 40 strain units (= | orbit). The droplet was then left to relax for at least 60
minutes. Then the isolated droplet was deformed at the required strain rate for the
same strain but in the opposite direction until it moved back into the viewing window
where we could image its detormation.  In experiments of type 2. the droplet was
deformed continuously at a fixed shear rate and images of the droplet were taken'
whenever the droplet passed through the viewing window. To obtain clear droplet
images, we stopped the tlow cach time the droplet appeared within the viewing
window tor a period of less than 1 second and an image was taken. This time interval
was sufticiently small enough to avoid droplet relaxauon; the lypica‘l transient time
scale for droplet relaxation 1n our experiments was ot order 10% seconds. Then. the
flow was then initiated avamn until the droplet passed through the viewing window
again. By repeating this procedure. we could assemble a hisiory of detormation from
the initial time to the time at which the droplet attained 1ts steady-state shape. The
imposed values of capillary number, Ca. were chosen to be 3. 8. and 11 by using
droplets of various sizes at a fixed shear rate of 0.4 s'. To separate the effects of
viscous forces from those of clasticity, some experiments were carried out with the

capillary number. Ca, held tixed. The elastic force was varied by changing the shear

rate. y . from 0.10. to 0.17. to 0.40. 10 .63 s and the corresponding droplet size. 2r,.

was varied inversely with the shear rate from 290, to 177. to 85, to 56 um.

respectively, so that Ca = nm y 1o/l was fixed at 8.
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3 Steadv-State Detormation: and Breakuy

Hlere. we desenbe the procedure used to obtain the steady-state shapes of
isolated droplets beloss the eritical capitlary number tor breakup. Generally. the strain
required to readh a sready-state droplet shape incr;ases with the droplet size. From
several transient experiments. the required strain to reach steady-state droplet shape
was found to be approsimately 4000 stramn units at Ca = 8 and Dy = 85 £ Sum.
Fherelore a constant shear rate svas apphied unul a stram exceeding 4.000 strain units
was attained. o ensure that the steady -state detormation had indeed been attained.
when a selected droplet passed through the viewime windew. the droplet was imaged
many tmes over a peeiod of 3o 10 mm and Det™ was measured and determined until
its value became constant - Subsequentlys the Tosw was stepped and the droplet shape
relaxation was recorded with the COD camera at speeds ot 10-20 second per trame tor
approximately 90 minutes.

The critical capillany number was determined by I‘lhding the smallest droplet
size at which  drop breakup swas observed at a tixed shearing rate at 0.4 s for
Systems A and C. and at 0.63 5" for System B,

For droplets tor which no steady-state shape was obtained. the unstable shapes
of the droplets were recorded until the droplets broke.  The breakup process for
Systen A was studied at a fixed capillary number Ca cqual to 11 using a shear rate of
0.40 s”': and for System B. we sclected Ca value of 9.5 with shear rates of 0.20 and
0.63 s These shear rates or capillary numbers were shightly above the minimum

values needed to achieve breakup tor these systems.
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Our experiments were carried out at shear rates at which the viscosities and
first normal stress coefhicients were mildly shear thinning, so the capillary number
and Weissenberg number were calculated using the actual viscosity and first normal

stress difference at which the experients were performed.
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III. RESULTS AND DISCUSSION

Figure 4a shows a sequence of optical images during the transient droplet
deformation for blend System A, with n, = 2.6, Ca = 8 and Wiy =~ 0.30. Here, the drop
stretches at first along the flow direction. and later along the vorticity direction. It
nearly recovers its spherical shape at a time of around 60(;0 s before 1t stretches again

along the tlow direction. Finally. 1t attains its steady state shape by contracting along

the flow direction and stretching along the vorticity direction.

A. Transient Deformation in Steady Shear Flow

! Effect of Imposed Capillary Number on Droplet Detormation

Here we describe the effect of imposed capillary number, Ca, on the transient
droplet deformation, over a strain period between 40 and 4000 for blend System A.
The conditions of the experiment are: a fixed shear rate of 0.4 s7', a fixed Weissenberg
number, Wiy, of 0.75, a fixed viscosity ratio of 2.6, and imposed capillary numbers,
Ca, of 5, 8. and 11 obtained by choosing droplets of sizes equal to 52 (£5), 85 (25),
and 125 (27) um, respectively. The parameters of these experiments are tabulated in
Table 3.

Figure 5a displays the transient deformation parameter Def* vs. strain
between 40 and 4000 at three capillary numbers: 5, 8, and 11. In these experiments,

we can divide the deformation evolution into three regimes. Def* initially decreases
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towards a local negative minimum at a strain of around 300. in which its amplitude
depends on Ca. In the second regime, 300 < strain < 900, Def* increases towards a
local maximum whose value is close to zero, or the state of no deformation, at a strain
of approximately 900. For strains > 900, Def* decreases and becomes negative until
attaining its steady state negative value which depends on Ca: Def*,; = -0.065 and -
0.205 for Ca = 5 and 8, respectively. [n the experiment with Ca =~ 11, Def* eventually
decreases to a value of -0.8 before breakup occurs, and therefore Def* ; does not exist
at or above this capillary number. Qualitatively similar oscillations in droplet
deformation were reported in our earlier work [Cherdhirankom et al. (2004)].

Figures 5b and 5c¢ show the corresponding evolution of a*/D, and ¢/D, vs.
strain between 40 and 4000. In the first regime, in which 40 < strain < 300, a*_/Do
ﬁrst- increases above unity and then decreases towards a local minimum of less than
unity at a strain of 300. In this regime, there is an initial weak flow elongation
followed by a shrinkage of the major principle axis to a value below its initial value.
In the second regime with 300 < stramn < 900. a*/I), increases again towards a local
maximum whose amplitude depends on Ca at strain 900. In the third regime. where
strain > 900, a*/D, decreases towards its steady state value équal to 0.96 for both Ca =
5 and 8, or towards its final value of 0.4 before drop breakup at Ca = 11. In the first
regime, the deformation c¢/D, along the vorticity axis initially rises to a local
maximum whose amplitude depends on Ca at a strain of 300. The stretching along
the vorticity direction in this regime coincides with the tnitial period in which tl;e
major principle axis goes through an overshoot and shrinks. In the second regime,
c/D, decreases slightly and then monotonically rises towards its steady state values of
1.09 and 1.34 for Ca = 5 and 8. respectively. For Ca = 11. the final value of ¢/D,

before breakup is equal to 5.2 at the strain of 4073. In summary. at a value of the
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dispersed-phase Weissenberg number, Wiy, equal to 0.75 and a viscosity ratio of 2.6.
the evolution of the droplet deformation with time can be divided into three regimes.
In the first regime. there is a weak flow elongation followed by a complete recovery
along with a slight stretching in the vorticity direction. In the second regime, a flow
elongation reappears along with a slight contraction in the vorticity direction. In the
third regime. a contraction occurs in the flow direction along with continuous
stretching along the vorticily direction until the droplet attains a: steady state condition

in which Def* 1s less than zero. The critical capillary number for System A is

approximately equal to 11.

2. Effect of Elasticity on Droplet Deformation

Nc‘.ft we investigate the influence of the droplet elasticity on the ciroplel
transient deformation. for System A. whose viscosity ratio was 2.6. the capillary
number Ca was hxed at around 8.0. and the shear rate was vaned to be 0.17. 0.40., and
0.63 s comesponding to droplet Weissenberg numbers of 0.48, 0.75 and 0.99,
respectively. In order to keep Ca tixed at around 8.0. the droplet sizes subject to these
shear rates were chosen to be 177, 85, and 56 (+2) um, respectively.

Figure 6a shows the evolution of Def* vs. strain of droplets subject to three
Weissenberg numbers: 0.48. 0.75. and 0.99. Table 3 summarizes the experimental
parameters of this experiment. Similar to the results of Figure 5a, there also exist
three regimes of the transient deformation when Wiy is varied with Ca held fixed.
The local maxima at a strain of around 900 and the steady state Def* value depends
on Wigq. The negative minimum Def* values at the end of the first regime are equal to
-0.10. The positive maximum Def* values at the end of the second regime are 0.109.

0.032 and 0.019, respectively, for Wiy equal to 0.48, 0.75, and 0.99. The
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corresponding steady state negative Def* values are -0.230, -0.205 and, -0.142
respectively. Therefore. it appears that the steady state Def* becomes less negative
with increasing droplet elasticity, while the amplitude of the positive maximum Def*
decreases with increasing droplet elasticity. Figure 6b shows the corresponding
evolution of a*/D, vs. strain. The amplitude of the local maximum decreases with
increasing Wiy, but the final steady state value of a*/D, is about 0.88, independent of
Wi This behavior should be contrasted with the evolution of ¢/D, in figure 6c,
where the amplitudes of the local maximum and the steady state value of ¢/D,

decrease with increasing Wiy.
3. Effect of Viscosity Ratio on Droplet Deformation

To investigate the eftfect of viscosity ratio on the droplet transient
deformation, ex"pcriments were carried out with the capillary number, Ca, fixed at 8.0
and the Weissenberg number, Wig. fixed at 0.30. The Sysiems A, B and D were
investigated whose experimental conditions and rheological properties are tabulated
in Table 4.

Figure 7a compares the evolution of Def* of Systems B, D, and A whose
viscosity ratios are 0.5 and 1.0, and 2.6 respectively. The magnitudes of the local
minima of Def* for the three experiments appear to be nearly the same at -0.12, and
all minima occurred at the strain of 300. However, the locations of the local maxima
are at strains of 600, 900, and 1.400, respectively and the corresponding maxima of
Def* are 0.16, 0.08, and 0.14, respectively. At first, it may seem surprising that the
maxima and their locations are not the same for all three systems, given the fact that

the capillary number, Ca, was held fixed at 8.0 and the Weissenberg number, Wig,
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was also fixed at 0.30. The likely explanation may not lie with the viscosity ratio
itself; rather the deformation is controlled by the competition between the matrix
shear force which tends to deform the drops. in particular along the flow direction.
and the drop elasticity which generally resists droplet deformation and induces a
retarded complex flow within droplet. These two competing types of force vary with
time presumably at different rates after the startup of shearing. We also tind that the
steady state Def*y value appedrs to depend somewhat on the vi‘scosity ratio; the
Def* values are -0.1, -0.12. and -0.22, respectively for Systems B, D, and A, which
are listed in order of increasing viscosity ratio. Figures 7b and 7c¢ show the
corresponding evolution of a*/D, and ¢/D,. We tind that the locations for the local
maxima in a*/D, and the local minima in ¢/D, comcide with those of the local
maxima in Def”‘_t‘or the three viscosity ratios shown in Figure 7a. Finally. figure 4b
shows a sequence of optical images of the transient drop deformation ot System B
with viscosity ratio equal to 0.5, We may state tha: a qualitatively similar
deformation pattern occurs for both viscosity ratios of 0.5 and 1.0: the only ditference

appears to be that it takes a shorter time or a smaller strain to reach a steady state for

the System B which has a lower viscosity ratio.

B. Steady-State Deformation

The steady-state detormation refers to the tinal shape of droplets atter
transient behavior has ceased. Figure 8§ shows Def* vs. Ca for Systems A. B. and
and D. corresponding to viscosity ratios of 2.6, 0.5, 1.0, and 1.0, respectively. In
these systems, the droplet Weissenberg number. Wiy, was fixed at 0.35. 0.28. 0.01,

and 0.3 respectively. The capillary number of the droplets investigated was varied by
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using droplets of various sizes. and thus Wiy was fixed in each system studied. To
determine the steady-state droplet shape as a function of capillary number, a strain
sufficient to obtain a steady state shape was imposed. On comparing results for
Systems. A. B. and D in Figure 8. it is evident that Def*  becomes increasingly
negative with increasing Ca and becomes more negative, at a given Ca, with
increasing viscosity ratio, .. On the other hand. for Systems C and D with the same
viscosity ratio equal to 1. we find that Def* . becomes more negative with increasing
Wiy. Therefore, droplet elasticity appears to be necessary for droplets to stretch along
the vorticity direction, but the viscosity ratio also plays a role in determining the
magnitude of the stretching in the vorticity direction. Finally. it is interesting to note
that the steady-state values of Def* for System C are quite close to zero and vary
slightly as Ca iAncrc:lscs trom 2 to 8. Thus, it is possible to choose a matenal system
with a fixed viscosity ratio with a corresponding low Wiy (0.01) value such that
droplets do not deform at steady sheuar rates over a range ob values of Ca. For
Newtonian fluids (for which Wiy = Wi, = 0). for n, = | Def*_; rises with Ca to a value
of around 0.5 at Ca = 0.5, after which breakup occurs. Thus. even for Wiy as low as
0.01. droplet deformation in these melts deviates considerab.ly from that in Newtonian

fluids.

C. The Criticalt Capillary Number

The critical capillary number for drop breakup was determined for Systems
A, B, and D, corresponding to the viscosity ratios of 2.6, 0.5, and 1.0, respectively.

The corresponding tixed Wiy values are 0.35, 0.28, and 0.30, respectively. !n each
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system. the shear rate was fixed and drops of various sizes were chosen in order to
vary the capillary number.

he erntieal capillars numbers for droplet breakup, Cagpe. are 10.18. 9,10, and
893 tor Systems AL D and B orespectively, which have viscosity ratios. 1,. of 2.6, 1.0,
and 0.5 The corresponding droplet sizes are 115,92, and 79 pim. and critical Def*.
values are -0300 -0 27 und ~008 Thus, tor comparable Wiy, Cag, Increases with

L]
- - - . . . .. - . - .

viscostty ratio over this viscosity ratios, For Newtontan fluids, experimental Cagy
values are 115 JGrace (19823 whereas the predicted Cag,r values are 044, 0.46. and
047 respectively [ Tavlor (1932 1030 We were unable to observe the breakup of
Svstem C. presumably because the steady state detormation ot this system s very

small at the shear rates we could aecess

D. Droplet Breakup Mechanism

Flere, we mvestieate the dropiet brechup sequences of Systems A and B.oas

N , : R
shown in Figures Y and 10 LThe shear rate apphed to System A was 04057, Ca = 11
. PR R ) -1
(slightly above Ca,,) and Wiy = 0.75 For System B. the shear rate used was 0.63 57

Ca

i

9.5 (shehtly above Cagpband Wiy 028 We can seo that i both systems, with
M = 2.6 and 0.5 under these experimental conditions, the droplets follow oscillation
patterns described previonshy. and eventually break up along the vorticitiy direction.
An S shape appears ;1; the final droplet shape betore breakup. This S shape
presumably ariscs fram the velocity gradient along the radial dircction. A minor
difference between the breakup patterns of Systems A and B 1s that. for System B

whose viscosity ravio is smaller (n, = 0.5). there Is a more pronounced stretching along

the flow direction
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IV. CONCLUSIONS AND PERSPECTIVE

We reported the transient droplet deformation, under startup of a steady shear
flow. for viscoelastic melt blend systems whose viscosity ratios are 0.5, 1.0 and 2.6.
The evolution of droplet deformation, Def*. with time can be divided into three
regimes: an inital tlow clongation followed by contraction, a secondary flow
elor‘lgation. and a final stretching along the vorticity direction. The magnitudes of the
transient maxima and minima of Def* depend on Ca and Wiy: but the period depends
mostly on 1, For the clastic melt components studied here. the steady-state
deformation parameter. Def* . becomes more negative with increasing Ca; it also
becomes more negative with increasing Wiy and n, at fixed Ca. For n, fixed at unity.
we were able to find suitable experiment conditions. with Wiy = 0.01. at which
droplets do not deform at steady state. for Ca values ranging up to to 8. Droplets

break up along the vortucits direction if Wiy is sufticiently high,

We also note that the critical value of the capillary number for breakup in the
vorticity direction is high. around 8 in our experiments on elastic melt Componentg.
As noted in the introduction. for Newtoman fluids, the critical capillary number for
breakup in the flow direction is around 0.5. and for weakly elastic droplet fluids with
viscosity ratio of unity, this critical capillary number increases to around unity as the
dispersed phase Weissenberg number increases to unity. For our melts. and those of
Hobbie and Migler (1999). and the solutions of Migler (2000). and Mighri and
Huneault (2001), droplet deformation in the vorticity direction is observed and
breakup occurs at a much higher critical capillary number, around five or higher.

Thus, it appears that viscoelasticity of the droplet phase impedes deformation and
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breakup in the flow direction. Elasticity of the droplet and/or matrix phase, if strong
enough. can completely block breakup in the flow direction by inducing deformation
in the vorticity direction. In this case, breakup can be deferred to much higher
capillary numbers. around live or higher.

The conditions required to produce droplet elongation in the vorticity
direction are sull unclear. For some droplet fluids consisting of dilute or semi-dilute
solutions of polymers in a Newtonian ‘matrix (i.e.. “Boger fluids™). d;oplet
Weissenberg numbers as high as unity can be reached with no droplet widening. while
for the melts studied here. droplet widening is evident for Weissenberg numbers as
low as 0.5, and droplet deformation in the flow direction is impeded for one system
with a droplet Weissenberg number as low as .01, Thus. 1t seems clear that the
droplet Weissenherg number is not the only, or even the most important. vanable
controlling droplet vorticity stretching. Our studies indicate that the viscosity ratio
plavs a role. and there have been suggestions in the hiteratures [Levitt e al. (1996):
Hobbie and Migler (1999); Migler (2000). Mighr and Huneault (2001)] that the
difference in first normal stress difference between the droplet and matrix fluids is
important , as are the second normal stress differences of matrix and droplet fluids.
To resolve this issue. fluids must be formulated with controlled first and second
normal stress differences. Simulation of droplet deformation for viscoelastic droplet
and matrix fluids would also help resolve this puzzle. Eventvally. correlations of
droplet vorticity stretching and breakup with the viscoelastic properties of the fluids

are needed so that blends with desired droplet deformation and breakup characteristics

can be designed.
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TABLES

Table 1 Propertics of polyvmers used

Polymer
HDPE?2
PSi
PS2

PS3

"S_hppl ers

Bangkok Polvethylene

Aldrich
Polyscience
PPolvscience

Polvscience

Girade M.,
©1600) 68.000°
Cat#42.801-9 |  46.000°

_ 67.000°"
Cat#18544 50.000 ©
Cat#23637 800-500°

* obtained from fitting zero-shear viscosity data with a 3.4-power correlation at

190°C (e = 3.8310""M ) s reported by Amett and Thomas (1980)

b

calibration

“ quoted by the manufacturers

measured by gel permeation chromatography based on polyvstyrene standard

156



Table 2 Polymer blend systems investigated

157

Blend system Blend components

Temperature (°C)

Viscosity ratio

{Droplet/Matrix) (Ma/Mm)
A PS1/HDPE1 143 2.6
B PS2/HDPL:1 i55 ° 0.5
C PS3/HDPE2 139 1.0
D PS2/HDPE] 147 1.0

System D is System A of Cherdhirankomn er al. (2004).
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Table 3 Fxperimental parameters for Figure 3. blend Svystern A (PS1/HDPE!1). at a

shear ratc ol 0.4 <" Wiog- 075 and Ca =

"
'J»

droplet size: d, 2085 and 125 pmg

I

(PSTHDPLET), Ca = 8.

y o= 017,040 0063 !

5.8 and 1 obtained by varving the initial
and for Figure 6: blend System A

Wiy - 048075 and 0.99 obtained by varying the shear rate.

Shear rate (s7) 0.17 0.40 0.63
" bata
Temperature (° ) ) ) 143 143 143
Na: Viscosity of the Jruplcl plm,\c Pas) - 7.620 | T 6.880 | 6340
Mm: Viscosity of the matris phase (Pa ) C [ 2870 2580 a0
ne: Viscosit\' rato - 26 I 26 | 26
[ Interfactal tension {mN M) - 5.84 \l 5.84 5.84
Ny g: First normal stress difterence of the droplet phase 630 2080 3.930
{Pa) | j
N m: First normal stress difterence of the n Uris 1]11::- i o8 733 " 1.230 |
(Pa) \ }
[—— First normal stress diflerence ratio 297 284 #_JT.EI
| Ca: Capillary number _—;___:8” S NIE = 8% |
Dy : lnl[lalﬁtﬁlro[;lztﬂxlfug (L) B _ YL 32.85. 125 56
Wig: Weissenberg number of the dispersed phase 0487 0.75° 0.99°
Wi Weissenbgrgﬁiimhér of the matrix phase B 0.43" 0.71° 0.80°¢ |

Ca - D(I nm
2
b - -
Wig = Nig/(nay)
cWi[“:NLm/(nfﬂfy)




Table 4 Experimental parameters for Figures 6 and 8

159

the matrix phase

Blend system(drop/matrix) Systern A System B System C System D
(PS1/HDPET) | (PS2/HDPEL) | (PS3/HDPE2) | (PS2/HDPEL)
Data

Temperature (°C) 143 155 139 147

Shear rate (s™) 0.10 0.63 0.40 0.50
' na: Viscosity of the droplet 7.996 964 630 2,323

phase (Pa.s) ’

Nm: Viscosity of the matrix 3.026 2,013 595 2331

phase (Pa.s)

1, Viscosity ratio 2.6 0.5 1.0 1.0

I': Interfacial tension {mN/m) 5.84 5.60 5.92 5.79

N g: First normal stress 276 168 - -

difference of the droplet

phase (Pa)

N._m:_First normal stress 78.3 920 - 834

difference of the matnx phase

(Pa)

N\ First normal stress 3.53 0.18 - -

difference ratio

G’4: Storage modulus of the - - ~ 1.3 179

droplet phase (Pa)

G’ m: Storage modulus of the - - = 1.3 248

matrix phase (Pa)

G’.: Storage modulus ratio - - 1.0 0.72

Wiyg: Weissenberg number of 0.35 0.28 =~ 0.01 0.31

the dispersed phase

Win: Weissenberg number of 0.26 0.73 = 0.01 0.43
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FIGURE CAPTIONS

Figure 1 Viscosity as a function ¢t shear rate of the polymers at the temperatures in

which the experiments were carried out: (a) matrix phases: (b) dispersed phases.

Figure 2 The first normal stress difference. Ny. vs. shear rate and the storage modulus.
G’. vs. frequency for the polymers at the temperatures in which the experiments were
carried out: (a) matrix phases: (b) Cispersed phases.

Figure 3 Schematic drawing of a single drop observed from the side and top views of
the optical microscope: ¢ and b are the long and short axes of the droplet in the low-
radial plane. «* the “apparent axis™ is the droplet length projected into the flow

direction. and ¢ is the principal axis in the radial direction.

Figure 4 Sequence ot images ot detormmy isotated droplets atter startup ot a steady
- : . 2 Qo - : - 1
shear at fixed Ca = 8§ and Wiy = 0.30: () Syvstem AL n, = 2.6, ashear ratec ot 0.1 57,

and Dy = 86 pum: (b) System B. n, = (.5, a shear rate 0ot 0.63 s and Dy = 72 pm.

Figure 5 Transient deformation of isolated droplets of System A vs. strain at a shear
rate of 0.4 s, Wiy = 0.73. and at various Ca values: Ca = 3. with initial droplet
diameter Dy = 32 pum ((: Ca = 80D 83 um (O Cao= TR 125 jm (57 (a)

Def* vs. strain: (b).a*/D, vs. strain; and (¢) ¢’ Dy vs. stram.
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Figure 6 Transient deformation of isolated droplets of System A vs. strain at fixed Ca
=~ &, at various shear rates: y =0.63s", Wig = 0.99 with Dp = 57 um (@) and 56 um

(O} y =04 5", Wiy =0.75 with Dy = 85 pm (A); , =0.17 s, Wiy = 0.48. Dy =

177 pm (0). (a) Def* vs. strain; (b) a*/Dy vs. strain; and (¢) ¢/Dy vs. strain.

Figure 7 Transient deformation of isolated droplets of Systems A, B and D vs. strain

at fixed Ca ~8and W,y ~0.30: 1, = 0.5, y =063 s (O): 1, = 1.0, y = 0.50 5™,

(@), M, =2.6. vy =040 (A, (a) Det* vs. strain; (b) a*/Dy vs. strain; and (¢) ¢/Dy

vs. strain.

Figure 8 Steady-state deformaton parameters vs. capillary number. For Wig = 0.30,
System A with 1, = 2.6 at a shear rate of 0.1 s (A): System D of Cherdhirankorn et
al. (2004) with n, = 1.0 at a shear rate 01 0.5 ' (O): and System B withn, = 0.5 ata
shear rate of 0.63 s (). For Wiy = 0.01, System C, with n, = 1.0. and a shear rate

of 0.4 5! (V). Arrows indicate Cag, of Systems A, B.and D.

Figure 9 Sequence of images of droplet breakup for Sysiem A: a shear rate of 0.40 s

' Do =125 (£7) um, Wiy = 0.75.n, = 2.6, and Ca = 11.

Figure 10 Sequence of images of droplet breakup for System B: a shear rate of 0.63

s, Dy =82 pum, Wig = 0.28 for n, = 0.5, and Ca = 9.5.
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Influence of Dispersed-phased Elasticity on Steady-state Deformation and

Breakup of Droplets in Simple Shearing Flow of Immiscible Polymer Blends

Abstract

The effect of dispersed-phase elasticity on steady-state deformation and breakup of
isolated c‘lroplets tor polybutadiene/poly(dimethyl siloxane) blends in simple shearing
flow is investigated systematically for values of the dispersed-phase Weissenberg
number (W1y) ranging up to around 3, where the Weissenberg number 1s defined as
the ratio of the first normal stress difference to twice the shear stress at the imposed
shear rate. The dependence on droplet elasticity of steady-state morphology for 10%-
dispersed phase blends ié also studied. The polybutadiene droplet phase is an elastic
“Boger” fluid prepared by dissqlving a high-molecular-weight polybutadiene into
low-molecular-weight Newtonian polybutadiene.  To 1solate the contribution of
droplet elasticity, all experiments were done on a fixed viscosity ratio of around unity,
achieved by'adjusling the temperature appropriately for each blend. When the droplet
elasticity increases. the steady-state deformation of isolated droplets decreases for
fixed capillary number. The critical capillary number for breakup (Ca.r;) increases
linearly with the Weissenberg number of the droplet phase (Wig) up to a value of Wiq
of around unity. When Wiy is greater than unity, Ca., seems to approach an
asymptotic value of 0.95 for high values of Wig. For 10%-dispersed phase blends. the
steady-state capillary number (Cas) calculated from a volume-averaged droplet
diameter is less than the Cag., for isolated droplets for the same blend. Cag increases
monotonically with the first normal stress difference of the droplet phase (Ng4).

Droplet widening in the vorticity direction is not observed even at droplet
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Weissenberg numbers much in excess of those for which widening is observed in
" blends of melts, suggesting that widening is strongly influenced by factors other than

the first normal stress difference, such as shear thinning or second normal stress
differences.
Keywords: immiscible blend, droplet elasticity, droplet deformation, Capillary

number, Wéissenberg number
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INTRODUCTION

The dispersal of one tluid in another immiscible fluid phase is important in
industrial processes. such as emulsion formulation, polymer blending. and also to
create interface for heat transter. mass transler, and chemical reactions. The size and
size distnbution of droplets in the matrix phase are crucial for controlling the

.
reactivity of these processes and/or the propcrticg of the final products. For example,
the impact strenpth of a polymer blend 1s significantly improved when the size of
rubbery dispersed-phuase tnclusions ts smaller than a cidcal value [Wu (19835)]. The
droplet size distribution s controlled by deformation, relaxation. breakup, and
coalescence ol droplets during mixing.

The investizatton of deformation and  breakup ot an selated Newtonian
droplet in an immascible Newtoman matrix was pionecred by Favlor (19320 1934).
He obsersed that droplet detormation and breakup of solared droplets in a Newtonian
blend under quasi-steady conditions (e gradually mcreasing deformation rate) are
controlled by two dimensionless parameters, namely the capillary number (Ca). which
is the ratio of matrix viscous stress to interfacial stress. and the viscosity ratio (n,). of
the dispersed (1) to the matrix phase (). For viscosity ratios near unity. the steady-
state three-dimensional shape of an isoluted deformed Newtonian droplet sheared in a
Newtonian matrix can be represented by an cllipsoid having three different principal

axes. the longest of which orients at an angle 0 with respect to the flow direction.
(Guido and Villone 1998). When the matrix viscous stress (nm y where y is the

applied shear rate) overcomes the interfacial stress (I'/ro. where ' and ry are the
interfacial tension and the undeformed droplet radius, respectively), the droplet will

break. This occurs when the ratio of the viscous to the interfacial stress. which is the
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capillary number Ca = n,,, ¥ 1o/T". exceeds a critical value, Ca.;. Cacy is a minimum

when 7, is around unity [Grace (1982): De Bruijn (1989)]. The flow type (shear vs.

extensional flow) was also found to effect the correlation between Cagy and m,
[Rallison and Acrivos (1978), Bentley and Leal (1986)].

For polymer blends, non-Newtonian behavior, including elasticity and shear-
thinning, is expected to influence the deformation and breakup of droplets. Wu
(1987) studied the steady-state average droplet size in extruded viscoelastic po]ymer.
blends containing 15% of dispersed phase and compared the results with those of

Newtontan blends. Like the Newtonian blend, the minimum in Ca for these polymer
blends was found at a viscosity ratio of around unity; however the value of Ca at v, =
1 for Wu’'s polymer blends was around ten times greater than that of a Newtonian
system. Many experimental results on immiscible viscoelastic blends when either one
- phase or the other is viscoelastic have been reported in the literature [Flumerfelt
(1972); Elmendrop and Maalcke (1985): Milliken and Leat (1991): Tretheway and
Leal (2001)]. An unusual phenomenon, transient and steady-state droplet widening
along the vorticity axis {Levitt et al. (1996); Hobbie and Migler (1999); Migler
(2000); Mighri and Huneault (2001)]. was observed for a viscoelastic droplet sheared
in a viscoelastic matrix.

Most of the experimental evidence shows that elasticity of the droplet fluid
inhibits droplet deformation. causing the droplet to break at a higher ca;?illary number,
while elasticity of matrix phase tends to destabilize the droplet. making it break at a
lower capillary number. However, quantitative correlations between Ca and elasticity
of droplet or matrix phase are rare. Varanasri ef al. (1994) studied the breakup of
isolated viscoelastic droplets sheared in purely viscous Newtontan fluids in a cone-

and-plate device and found a linear relationship between Ca; and the first normal
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stress difference of the dispersed phase fluid at a fixed viscosity ratio. However, for

any fixed viscosity ratio there was a critical value of the shear rate. 3. below which

the breakup of a viscoelastic droplet was easier than that of Newtonian droplet. The
reasons for these results are still unclear. Mighri e al (1998) investigated the
deformation and breakup of isolated droplets under a simple shear flow for a blend
prepared from “Boger™ fluids (in which each blend component is a dilute polymer in a
Newtonian matrix) and also constructed a correlation between Cagyy and elasticity

contrast. as measured by the ratio Ag/An, of the relaxation time of the droplet phase (A4

= Nya/2n4 j/:) to that of matrix phase (Ay, = Nln,/Qnm)'/z ), where Ny and N, are the
first normal stress differences of dispersed and matrix phase. respectively.  The
corretation between Cagyy and 24/Aq, was tound to be nonlinear, in which Cagy, sharply
increased with increasing rg/in, when ag/ag, < 4. but for Ag/An > 4. Cagy reached an
asymptotic value of Cag, around 029_

In most previous work. both droplet elasticity and viscosity ratio were varied
simultaneousl_v.. However. the study of droplet behavior when droplet elasticity is the

sole manipulated valuable has been recently reported [Lerdwijigarud er al. (2003)].

In that work. the deformation and breakup of 1solated droplets of weakly elastic fluid
(Wig < 0.02. Wiy =(V,4/2n0).y. 1 where W14 is the first normal stress difference

coefficient of dispersed phase}, sheared in a Newtonian matrix. were microscopically
investigated at a fixed viscosity ratio of unity. Elasticity of the droplet produced a
reduction in the degree of deformation at any given imposed Ca. and correspondingly
resulted in greater value of Ca, for droplet breakup compared with a Newtonian
droplet. The breakup mechanism appeared to be similar to that in a Newtonian fluid;

i.e.. the droplet deformed increasingly in the flow direction as the shear rate was
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gradually increased, until breakup occurred. A quantitative relationship linking Wiy
to Ca.; was establishgd. Cagrit inérca;ed linearly with _increasiﬂg Wig, but. a
‘downward deviation from linearity was found for the blcndé with highest Wiy, i.e., for
Wig = 0.02. |

This paper is devoted to finding a quantitative relationship between the
critical capillary numbef for breakup, Ca.in, and elasticity of dispersed phase, as
measured by Weissenberg number, Wiy, for the bI;nd systems with a fixed viscosity
ratio of unity and a much highef degree of droplet pﬂase elasticity than in our

previous work: [Lerdwijitjarud ef af. (2003)], in order to move toward more realistic

commercial high-molecular-weight polymer blends with high elasticity.
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EXPERIMENTAL METHODS

A. Materials

The materials used as the matrix and dispersed phases of the blends in this
study were polydimethylsiloxane (PDMS) (Viscasil 100M donated by General
Electric) and low-molecular-weight, Newtonian, polybutadiene (PBd) (Sartomer
R150 donated by Sartomer Inc.), resp«.:ctively.' The properties of both fluids are listed
in Table I. A high-molecular-weight polybutédiene (M. = 1.43 x 10°, MW/M, ~ l.13)‘
was also used as a flexible polyrne:r__compon-e:nt~ added to the low-molecular-weight
.PBd to make “Boger” fluids with elasticity but low shear thinning [Boger and

Binnington (1977)].

| B. Blend Preparalti'on and Characterizatiqn

To remove all volatile ;::'omponents, both PDMS and PBd were placed in a
. vacuum oven at 50 °C until no further weight change was observed. The
i polybutadiene “Boger” | fluids were prepared by thoroughly dissolving high-
molecular;weight polyb'utadiene into methylene chloride. The sollution was gently
mixed with low-molecular-weight PBd by the rolling-bottle technique at ambient
. conditions for at least 7 days to ensure that a homogeneous solution was achieved.
The mixture was then vacuum dried at 50 °C to eliminéte the methylene c_hloride and
other volatile materials umil‘ the weight loss ceased. The weight percentages of high-
| molecular-weight flexible polymer in the polybutadiene .“Boger” fluid for this work
are 0.1, 0.2, 0.5, and 10 The steady-state viscosities and first normal stress
differences, N, of all fluids were measured by é cone;and-plate rheometer with 25-

mm. plate diameter and cone angle of 0.1 rad. (Rheometrics Scientific, ARES). The
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temperature at which both PDMS and low-molcecular-weight PBd have the same
viscosity is 183 "C. At this cquaviscosity temperature of these two tluids, the PBd
shows Newtonian behavior at shear rates of 0.1-10 s, whereas weak shear thinning
and a small value of Ny at high shear rates are observed for PDMS (see Figure 3a).
Figure 1 depicts the dependence of steadyv-state viscosity and Ny of all PBd “Boger™
fluids on shear rate at a temperature of 183 "C The zero-shear viscosities. no. and
also the elasticities, as measored by the Ny values, ot the “iiogcr" fluids increase with
increasing  concentration  of  high-molecular-weight polymer component in  the
solution.  Unfortunately . shear thinming also increases with increasing concentration
of long-cham speaies, which s espedially evident in the “Boger™ fluids contamning the
high-molecular-weight PR at concentrations of §.53% and 1.0%. he dependence of
no on wereht percent of lone-cham polvimer in PHd "Boger™ tTuid s shown in Figure
2. For the “Boper” fluids contaminy U 1% and 0.2% ot long-chin polymer. the
solutions are believed o be dilute in high-molecular-wereht PBdA because we observe
an approximately hinear relation between the concentration of hich-molecular-weight
polymer and the increment i zero-shear viscosity over that of tosw-molecular-weight
PBd. However. the lincar relation is no longer vahd for the solutions containing
0.5%. and 1 0% of high-moleculuar-weight polymer. evidently because of the onset of
entanglements at these higher concentrattons.

The blends used in this study are presented in Table 11 To clearly isolate the
contribution of elasticity, the viscosity ratios of the blends were fixed at around unity.
The testing temperature, therefore, was variced from blend to blend to compensate for
the effect of long-chain polymer on the viscosity of PBd dispersed phase. For A0,
Al, and A2 blends, the viscosity ratios could be set to around unity using only a

single value of temperature for cach blend (see Figure 3). Due to the shear-thinning
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characteristics of the 0.5% and 1.0% high-molecular-weight PBd solutions, however,
different testing temperatures were used for these blends over different ranges of
shear rate to better satisty the equiviscosity condition (see Figures 4 and 5). The
steady-state viscosities and the first normal stress differences of the PDMS matrix and
the PBd dispersed phase at the temperature at which both phases have the same
viscosity are shown for all blends in Figures 3, 4, and 5. The viscosity ratios of éll
blends were well controlled to be unity + 5% at the testing conditions, whereas the
elasticity of the dispersed phase monotonically increases with concentration of high
molecular weight Pbd in blends AC. Al. A5, Al0, as indicated by the increasing

values of N, of the droplet tluid.

—C. Experiments on Isolated Droplets
I Instruments and sample loading

An optical flow cell (Linkam CSS430. Linkam Scientific Instruments Inc.),
consisting of two parallel quartz disks. tr.e. a rotatable lower one and a fixed upper
one, mounted on an optical microscope (Leica DMRXP, Leica Imaging Systems Inc.)
was used to conduct the experiments. The temperature of the flow cell was controlled
by the cell-heating elements and circulating water from a water bath. Images were
captured by a CCD camera (Cohu 4910, Cohu Inc.) in the flow-vorticity plane and
transferred to a PC computer via a frame-grabber card (LG3-128, Scion Corporation
Inc.). The images were analyzed by the Scion Image software.

The PDMS matrix phase was loaded into the flow cell. and the fluid was
allowed to level. Several PBd droplets were then immersed into the matrix using a

small needle. The upper plate of the flow cell was gradually lowered until the quartz



187

disk touched the sample and the desired gap was reached. For the experiments on

isolated droplets. the total amount ot dispersed phase in the blend was less than 0.2%.

11 Optical microscopy of an isoluted droplet

Droplets located near the center of the gap and separated from their
neighboring droplets by a distunce more than three times the diameter of the biggest
neighboring *droplet were considered to be isolated droplets and were chosen for
observation and measurement.  Since hyvdrodynamic interactions with the solid
surfaces disappear if the distance between the closest surface and the droplet center is
more than five times the droplet radius [Kennedy er ¢l (1994); Uijittewaal and Nijhof
(1995)]. the gap in all our experiments was at least ten times larger than the diameter
of the chosen droplet. Since the images of the deformed droplet were taken only 1in
the flow-vorticity plane. which 1s the plane perpendicular to the shear gradient
direction, the lengths of all three principle axes of the ellipsoiand droplét could not be
obtained unless the orientation angle (0). the angle between the major axis of
deformed droplet in the flow-tlow gradient plane, \;-as known. This orientation angle
can be predicted from cither the affine deformation model for step strains or the
Chaffey and Brenner relation for steady-state shearing [Chatfey and Brenner (1967)).
and these formulas will be used here to obtain the onentation angle, which then
allows the lengths of all three dropiet axes to be determined. For a step-strain or
startup tlow experiment. if the imposed Ca is at least three times higher than Cagy. the
orientation angle predicted from the affine deformation model has been found to be
close to the experimental value obtained from microscopy for both Newtonian and
viscoelastic blends in experiments that imaged the droplet from twe different

directions [Yamane et al. (1998); Okamoto er al. (1999)]. For Ca < Cagr, Chaftey
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and Brenner (1967) found that for isolated Newtonian droplet sheared in immiscible
Newtonian matrix, the orientation angle of the steady-state deformed droplet
depended on the applied Ca and the viscosity ratio of the system. Guido and Villone
(1998) compared the predictions of the Chaffey and Brenner relation with the
experimental results obtained from microscopy for polydimethylsiloxane droplets
sheared in polyisobutylene at 1, of 1.4 and 2, and found good agreement between the

two.

I Interfacial tension determination

The interfacial tensions of all blend systems studied were determined by the
deformed-droplet retraction technique [Luciani et «l (1997); Guido and Villone
(1999); Mo et al. (2000): Xing er al (2000)}]. The shape evol.L;tion of a deformed
isolated droplet during relaxation from an ellipsoidal back to a spherical shape was
recorded. The characteristic relaxation time for an isolated droplet. T, can be obtained
from the slope, -1/1, of a straight line fit to the data in the linear relaxation regime of
semilogarithemic plots of the deformation parameter, Def (Def = (a-b)/(a+b), where a
is the major axis of the ellipsoid oriented at a barticular arllgle (0) within a flow-
gradient plane, 4 is the minor axis in the shear-gradient direction), versus relaxation
time. The interfacial tension. I', can be calculated from the Palierne Model [Palierne
(1990); Graebling er ¢/ (1993)] in the limit of zero volume fraction of the dispersed

phase:

= (3+2n,,)16 +191,, Jron .,
20(1+n,)r

where 1,0 = Tnjgo/ Nmo is the ratio of zero-shear viscosities of dispersed to matrix

phase, and ry is the radius of the spherical drop. For wviscoelastic systems. the
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contribution of both droplet and matrix elasticity to the relaxation of the droplet shape
may lead to errors if this equation is used. However, the relation can still be used to
determine the interfacial tension of viscoelastic materials if the relaxation of the
nonNewtonian elastic stress of the blend constituents is relatively fast compared with
the droplet shape relaxation and the droplet retraction rate is sufficiently slow to
ensure that the materials behave as Newtonian during the drople-t shape relaxation
[Luciani et al. (1997)., Xing et ul. (2000)]. For large enough droplets, retaxation
should become slow enough that viscoelastic stresses relax too quickly to influence
droplet shape relax-tion and hence the rate of relaxation is then governed by the
interfacial tension alone. In this study, the interfacial tension values obtained using
the Palierne formula applied to experiments on 180-pm and 100-um droplets are the
same within an experimental error for all blend systems, xvhi;h implies that the true
interfacial tension was obtained. The interfacial tension of all blends is presented in

Table II.

V. Steady-state deformation and breakup of isolated droplet

For steady-state deformation experiments, a suitable isolated droplet with
desirable size was selected. The chosen droplet was then driven out of the field of
view by applying a relatively small shear rate until the desired magnitude of the strain
to be subsequently imposed strain was reached. The shear flow was stopped to allow
the droplet to completely relax into a spherical shape. The same strain in the opposite
direction was then applied at the desired shear rate, thus deforming the droplet and
simultaneously bringing it back into viewing window. The droplet images were
recorded by using a CCD camera at the maximum capturing speed (25 frames/

second). The capturing process was begun before the sheared droplet moved into the
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viewing window and continued until the shear flow was stopped and the deformed
droplet started to relax. To ensure that a steady-state deformation had been
established. the strain required to reach a steady-state droplet shape was determined.
This was done by finding a strain high enough that an increase of this strain by at least
20 strain units did not change the droplet shape. After determining the steady-state
shape at a fixed shear rate, the applied shear rate was gradually increased from low to
high in small incremental steps until the critical shear rate required for breaking the

droplet was reached.

D. Experiments on Concentrated Blends

The concentrated blend compositions are 10% by weight PBd dispersed phase
and 90% by weight PDMS matrix phase. The blend constituent components were
weighed and mixed together with a spatula for around 20 min. resulting in a white-
creamy product. The sample was placed in the vacuum -oven at room temperature for
about 1 hr to remove all bubble generated during the mixing step. The bubble-free
sample was loaded into the tlow celi. The upper plate of the flow cell was gradually
reduced until the gap reached 500 microns. The testing temperature was set to a value
at which both the matrix and dispersed phases had the same viscosity. After the
loading process, the sample was pre-conditioned by shearing at a shear rate of 0.3 5™
for a strain of 20,006 units. During this step, coalescence dominated. leading to a
relatively coarse morphology.

After the pre-conditioning process, the shear rate was stepped up to 0.5 sTA
strain of 20,000 units was used to ensure that the steady-state morpheology at this
shear rate was reached. The flow was then stopped to allow the deformed droplets to

relax back into spherical shapes. Due to the high viscosity of the matrix fluid and low
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temperature of our blend systems, the diffusion coefficient associated with Brownian
motion of the droplets ts small (~10° pm2/s for droplets with diameter of 5 pm at 20
°C). Thus, the coalescence effect should be negligible in quiescent blends since the
time waiting for droplet relaxation is less than 30 s. The blend images were then
captured. The shear rate was subsequently increased in small steps, i.e. 0.7, 1.0, 2.0,
3.0 and 5.0 s, from the previous steady-state shear raté. For each shear rate, a strain
of 20,000 was allowed to attain a steady-state morphology before Capturing images.
The blend images were transferred to a Photoshop program (Adobe Systems,
Inc) to vutline the droplets. The images were brought back to the Scion-Image
software to determine the droplet diameter. From the droplet size distributions, the
volume-average droplet diameter, D,. was calculated by using the following equation:
D,=2X® .b-.
where @; is the volume fraction of the droplets with diameter D, relative to the total
volume of the droplets. Typically, data from 400-600 droplets were used to calculate

Dy.
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RESULTS AND DISCUSSION

A. Steady-State Deformation and Breakup of Isolated Droplet

Newtonian Blend

When a steady shear flow is applied to an isolated spherical droplet, the
droplet simultaneo‘usly moves and deforms. If the imposed shear rate is less than the
critical shear rate for droplet breakup, a steady-state deformed droplet shape is
eventually obtained after sufficient strain. The strain required to reach.a steady-state
deformation shape increases with increasing applicd shear rate and droplet size. For
Newtonian droplets sheared in Newtonian matrix at viscosity ratios necar unity, Guido
and Villone (1998} verified that the steady-state deformed shape of the droplet can be
approximated as an ellipsoid having three different principle axes, i.e. ¢ is the major
axis of the ellipsoid oriented at a particulér angle (0) within a flow-gradient plane. & is
the minor axis in the shear-gradient direction. and ¢ is the minor axis in the vorticity
direction.

Figure 6a shows the dependence of the steady-state shape of the droplet in
terms of deformation parameter, Def = (a-b)/(a+h). on the imposed capillary number
for blend A0 (low-molecular-weight PBd/PDMS blend). for various droplet sizes, i.e.
180 um + 10%. 100 um + 10%. 50 um *+ 10%. and 20 um * 10% in diameter. As
depicted in Figure 6a, the curves for all droplet sizes coincide well with each other,
and are also close to Taylor’s prediction (Def = Ca [(191,+16)/(16n,+16)]). The last
data point in each curve can be estimated to be the critical point above which the
steady-state deformed shape no longer exists and droplet breakup finally occurs. The

critical capillary number, Cacni, for droplet breakup for blend AO is equal to 0.50 for
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droplets with diameter of 180um + 10%, 0.52 for diameter 100pm + 10%. 0.51 for

diameter 50um * 10%, and 0.54 for diameter 20um + 10%. The value of Cacpu
obtained from Taylor’s prediction is 0.5. which is similar to these results. The good
agreement of our results on blend A0 with Taylor’s prediction is obtained in both the

dependence of Def on the imposed Ca, and in the value of Ca,; for droplet breakup.

Elastic Droplet

As 1n the AO blend containing Newtonian components, for the Al blend
containing 1solated slightly elastic droplets, the dependence of the deformation
parameter on capillary number was the same for various droplet sizes, as shown in
Figure 6b, although the capillary number at which breakup occurred monotonically
tncreased with decreasing drc;plet size. For the A5 blend. however. as shown in
Figure 6¢c, the droplet diameter inﬂuences both the capillary number at breakup and
the deformation before the breakup condition is reached. As shown in Figures 6b, and
6¢c, Caciy monotonically increases with decreasing droplet size for blends Al and AS.
In order to obtain the same value of Ca for a given blend. the applied shear rate has to
be higher for a smaller droplet and the degree of elasticity also increases with
increasing shear rate. Thus. at the same Ca. the smaller droplet has a higher elasticity,
leading to a higher shear rate required for breakup.

To better characterize this elastic effect. the correlation between Def and the
imposed Ca for different blends having comparable droplet sizes is plotted on the
same graph in Figure 7. For each droplet size, the more elastic droplet deforms less
and Ca,,;, for droplet breakup increases with increasing droplet elasticity. The degree
of elasticity of the fluid can be represented by a Weissenberg number (W1), a ratio of

elastic stress to viscous stress. Therefore, we try to determine a quantitative
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correlation between the Weissenberg number of the droplet fluid, Wig(y) =

[WWia( ¥ )24 ¥)]. ¥, and Cagyy for droplet breakup. We obtain the values of the first

normal stress difference coefficient, W, directly from the measured N; or from
extrapolated values, if breakup occurred at a shear rate too low to accurately measure
the value of Ny. The relationship between Wiy and Cag; obtained in this way is
shown in Figure 8a, where the closed symbols represent the data obtained from the
directly measured N; value and the open symbols represent data from extrapolated N,
values. It should be noted that the shear rate inside the droplet is in general different
from the imposed shear rate; it i1s not uniform and dt;pends on the shape of deformed
droplet. The N, value inside the droplet, thus. will not be uniform and will be a
complex function of shear rate and droplet size. However, for simplicity. we used the
nominal N, values at the imposed shear rate to calculate Wi4g. As shown in Figure 8a.
Ca.ry increases linearly. with Wig up to a value of Wiy of around 1.0. Interestingly. the
Cag value of 0.5 is obtained trom the extrapolation of the linear regression line to
Wiy equal to zero. which recovers the droplet breakup conditton from Taylor’s
prediction for Newtonian blend. When Wiy is greater than unity. a downward
curvature from linearity is observed, and the Ca.;; seems to reach a constant value of

0.95 for a high value of Wiy. Surprisingly. the asymptotic value of Ca.,, of our results
1s close to the asymptotic value of Cagr, around 0.9 (or 1.8 in the plot of nm}'/m,[)/F

versus Ag/Aqy) reported by Mighri er ol (1998). The general conclusion drawn from
Figure 8a is thai the elasticity of the droplet resists its deformation; however the effect
seems to saturate at a value of Cagy around 0.95 for high values of Wi3. However,
another possible reason for saturation in Cagy is the shear-thinning behavior of the

dispersed phase fluids because all the data at Wiq above unity are obtained from blend



systems A5 and Al0, in both of which the dispersed phase is shear-thinning (see
Figures 4, and 5).

Fig. 8a also includes data from our earlier study (Lerdwijitjarud et al. 2003),
which was limited to a droplet Weissenberg number no higher than 0.02, because of
the lower molecular weight of the high-molecular-weight Pbd component in the
Boger fluid used in that study. Fig. 8b shows the same data with a logarithmic x axis.

We note that althcugh our blends contained elastic d;oplets with Wiy4 up to
around 3, all droplets stretched and broke in the flow direction, as the case with
Newtonian droplets. Steady-state droplet vorticity widening (or “vorticity
stretching”) was not observed in our experiments. Table [H shows the rheological data
for blend systems in this studied compared with those data taken from literature that
reported stéédy-étate vorticity stretching of droplets. From Table 11, it seems that we
need Wiy greater than 20 to get steady-state droplet widening in the vorticity direction
for blends of “Boger™ fluids. which is beyond the range ot Wiy studied here. For»
blends of high-molecular weight polymer melts, however. droplet widening has been
detected at Wiy somewhat lower than unity. Since all of the “Eoger“ fluid blends
have matrix fluids that are Newtonian or only weakly elastic, an alternative
explanation may be that the highly elastic matrix fluid boosts up droplet widening.
Another relevant point is that the minimum capillary number for which widening
occurs has been reporied is around 7, which is much greater than the critical capillary
number for Wdroplei neanup of the blends studied here. We also point out that the
viscosity ratio has been found to play an important role in droplet widening [Jackson
and Tucker (2003)], and this parameter was often not well controlled in previous

experiments.
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B. Steady-State Droplet Size of 10%-dispersed Phase Blend

When the 10%- dispersed phase blends were sheared to a sufficiently high
strain, a steady-state morphology was obtained, representing a dynamic equilibrium
between droplet breakup and coalescence. From images of the steady-state
morphology of concentrated blends containing 10% by weight of the dispersed phase,
the steady-state volume-averaged droplet diameter (D,) and steady-state capillary
number (Cag) calculated from D, were determined. Figure 9 shows that Ca,.
increases monotonically with increasing elasticity of the dispersed phase for blends
A0, Al. A2, A5, and A10. Figare 9 also shows that Cay depends on shear rate, even
for a nearly Newtonian blend (A0 blend). Possible reasons may include the effect of
weak elasticity of the PDMS matrix fluid, or a dependence on shear rate of the critical
thickness of the lubricating layer between droplets at which coalescence o-écurs.

[t is also interesting to note that Cag obtained from a 10%-dispersed phase
b-Iend 1s smaller than Ca., obtamned from an isolated droplet tor the same blend
system; that is, the average droplet size in the blend is smaller than the critical size for
breakup of an isolated droplet at the same shear rate. This result is imtially surprising,
since coalescence can occur in the 10% blend, but not for an isolated droplet, and this
would tend to make the average droplets bigger in the blends. not smaller. as is
actually seen in the experiments. This phenomenon, 1.e.. droplets in a blend that are
smaller on average than the droplet size at which breakup occurs for an isolated
droplet at the same shear rate. was previously found when comparing Cay of'a Z0%0-
dispersed phase blend with Cag, for an isolated droplet, where both fluids were
Newtonian [Lerdwijitjarud er «f (2003)]. Jansen et ol (2001) used a small
concentration of dye-containing droplets added to a blend of the same droplet phase in

an immiscible matrix. and observed that the critical capillary number Cag; for
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breakup decreases with increasing concentration of dispersed phase. One possible
reason for this phenomenon is that the flow in the blend is locally highly nonuniform
and non-steady due to the presence of many other droplets in the vicinity of any one
droplet, and this can lead to droplet breakup at a lower average shear rate than occurs
for an isolated droplet [Lerdwijitjarud er al. (2003)}.

We also tried to find a relationship between the degree of droplet elasticity and
Cag sor the blend systems containing ]O'%—dispersed phase. Since the matrix phase
used for all blends is the same pure PDMS, which shows only a very weakly elastic
behavior even at high shear rates and its rheological properties do not change much
with temperature, the N;( y) value of the dispersed phase was chosen to be the index
of blend elasticity. Figure 10 depicts the correlation between the steady-state
capillary number (Cay) and Ny of dispersed phase (Ni@ 7)) as a semi-logarithmic
plot. This plot shows that Ca,, increases monotonically with Nj4. which implies that
the elasticity of the dispersed phase resists droplet breakup. However. the maximum
value of Ca, achieved in these experiments is only around 0.6. much less than the
value of around five or so observed in experiments with polymer melts [Wu (1985):
Cherdhirankorn et al. (2003); Lerdwijitjarud ef al. (2002)}, po-ssibly because related to
absence of droplet widening which can forestall the breakup process. The scatter in
Figure 10 indicates that Ca,, may be affected by factors other than N4, even though
all data were obtained at a viscosity ratio of unity. Other factors that might affect Cay
might include shear thinning. the second normal stress differences of either phase, or
the time-dependent elasticity. as well as interactions of these phenomena with
coalescence or breakup. While Figure 10 does provide a clearer correlation of average
droplet size with droplet elasticity under better controlled conditions than has

heretofore been achieved, more experiments, and especially numerical simulations of
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- droplet breakup and coalescence for fluids modeled by well defined constitutive
equations, will be needed to provide further clarification and more precise

correlations.
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Conclusions

We studied the contribution of droplet elasticity to steady-state deformation
and breakup of isolated polybutadiene (PBd) droplets in a sheared poly(dimethy!
siloxane) (PDMS) matrix fluidd and on steady-state droplet size in blends of 10%-
dispersed Pbd in PDMS under conditions at which both matrix and droplet fluid has
the same viscosity. = The steady-state deformation of isolated droplets decreases with
increasing dispersed phase elasticity for the same imposed capillary number. A linear
relationship between critical capillary number for droplet breakup. (Ca.y,) and
dispersed-phase Weissenberg number (Wiy) holds up to a value of Wiy around unity,
with a saturation of Ca,,, at around Cagy = 0.95 for high Wiy. The steady-state
capillary number (Ca,,) obtained from the average steady-state droplet size in blends
containing 10% by weight of dispersed phase is less than the value of Ca. obtained
for an isolated droplet of the same fluid i;l the same matrix fluid used in the blend.

Ca,, increases monotonically with the first normal stress difference of dispersed phase

(Nld)-
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TABLES

Table [: Properties of materials

| Materials Molecular Weight (Mn) Density at 25 °C
| (e/moh)
PDMS 139000 0.97
PBd 2 900 089

Table 11: Blend systems studied -

i Blend Blend Cémponents Testing T
(matrix : dispersed) Temp. (OCV) (mN/m)
A0 | PDMS : low-MW PBd 183 2.89£0.19
Al | PDMS : 0.1% high-MW PBd solution 19.5 2.80+0.19
A2 | PDMS : 0.2% high-MW PBd solution 207 .| 2.72 £ 0.22
AS | PDMS : 0.5% high-MW PBd solution 22.0-28.0 | 2.81+0.17-2.66+028
A10 | PDMS : 1.0% high-MW PBd solution 26.0-40.0 | 3.68+0.42-27420.13




Table I1I: The rheological data of blend systems in this studied compared to that from
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literature.
Shear Matrix Droplet ’ N, G ‘
System Ralte n, |ratio ratio |Ca* Ca,®| Ref.
(%) n NG W, | N, G| w, (Ni) | (G
“Boger” Fluids
1
AO 14 | 1081 <2 - =004l <1V | - 0 |100]| - -
1 Droplet
Al 1.8 |1053] <2 “ |7 001047] 149 | © 039|099 | - " |widening or sextyna
g vorticity et. al.
A2 1.8 [1026] <2 | ~O%li006] 226 | - |062|098| - " |sretching is| (present
AS <21l - -0 - . . not WOrk)
22 | 964 : 925 | 545 1.35 | 0.96 observed.
A0 | 39 | 9p9 | <2 - =0 0864 1943 | - 314|095 | - -
s | 207 | 55 - loo0al178] 1200 | - |[135] 060 | 185 | - . .

PIB/ . Migler
poms | 20 | 297 63 - loat] 17 | 19200 | - |56.5| 057 305 | - - 7 | (2000)
80 | 273 | 664 - 03| 16 |307200% - | 240 | 059 | 462 | - - 7
46 | 10 - 113 700 - 17 s . - |55 -

D1/M1 Newtonian
9 10 - 13 ] 2350" | - 200 13 - - - 12
Mighri an
6.4 30 - 10 | 744907 | - [1162| 0.33 - - 5.5 Huneault
D2/M2 Newtontan (2001)
7.7 30 - 10 | 100000%] - |1300! 033 - - - | 653
D2MI | 482 | 10 | Newtonian | - | 2 |500000%| - |5185| 0.2 - - 9
[ e e S — E—
Polymer Melts
280 | 175 |288000% - |5.88| 303 |460000%| - [S42| 173|160 - | 53
PSI/PE2 - Hobbie
320 | 170 |3000007| - |5.51| 278 | 560000 - |6.29 | 1.64 | 1.87 | - - | 60 obb
PSIPEL| 290 | 22 | 41780 | - |6.55 288 | 14497 | - |0.17! 13 |035| - | 13 Migler
(1999)
700 | 145 | 57288 | - |S5.64| 207 | 31041 | - 021 ] 14 | o054 | - -3
038 | 2524 | 403 | 135!038|2370] 205 | 70 |021] 094 051|052 - -
Cherdhsrankom
03 | 2505 | 435 |145/039|2360| 226 | 78 |0.22]0.94 | 0.52 | 0.54 | eral
A .
05 | 2340 | 772 | 2501043|2270| 468 |181]032| 097|061 | 5.72 S”brt"c,'“ed
08 | 2170 | 1310 |410l047|2133| 912 |[395 046|098 | 070|096 | - ; R"‘::C""f“’a
B 10 | 603 - 1342011 619 - lea7lo21 103 - |189| - | 28
"7 [=] Pas
"N1,G' [=] Pa

* Ca at which droplet first contracts in the flow direction after having stretched in the

flow direction.

S Ca at which droplet reorients to the vorticity alignment

1 Extrapolated values
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FIGURE CAPTIONS

Figure 1. The dependence on shear rate of steady-state viscosity (open symbols) and
of the first normal stress difference (closed symbols) for low-molecular-weight PBd

and PBd “Boger™ fluids at 18.3 °C.

Figure 2. The dependence of zero-shear viscosity on the weight percentage of high-
’

molecular-weight PBd added to low molecular-weight Pbd. The filled symbols are in

the range where the viscosity depends linearly on concentration.

Figure 3. The shear-rate dependence of the viscosity of PDMS (O) and of low-

molecular-weight PBd or PBd "Boger™ fluids( !) as well as the shear-rate dependence

of the first normal stress difference of PDMS (1). and of PBd “Boger” fluids (+) for

(a) blends AOQ. (b) A1. and (¢) A2 at temperatures chosen such that the PDMS and Pbd

fluids have nearly the same viscosity.

Figure 4. The shear-rate dependence of the viscosity of PDMS (O). and of PBd

“Boger” fluids (!), and the shear-rate dependence of the first normal stress difference

of PDMS (1). and of PBd “Boger™ fluid (+) for blend A5 at a series of temperatures.

Figure 5. The same as Figure 4, except for blend A10.

Figure 6. The dependence of the deformation parameter on capillary number for

blends (a) AO. (b) A1, and (c) A5 for various droplet sizes.
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Figure 7. The dependence of deformation parameter on capillary number for blends
A0, Al, A2, A5, and A0 for droplet diameters of (a) 180um + 10%, (b) 100um +

10%, {c) 50um * 10%. and (d) 20pum *+ 10%.

Figure 8. The dependence of critical capillary number for droplet breakup (Ca{r,;) on
Weissenberg number of the dispersed phase (Wiy) (a) linear plot, and (b) semi-log
plot. The closed symbols represent the data obtained from the measured N; vaiues
and the open symbols from extrapolated N; values. Data from earlier work

(Lerdwijitjarud, et al. 2003) are also included.

Figure 9. The shear-rate dependence of steady-state capillary number (Cay,) for all

10%-dispersed phase blends studied.

Figure 10. The dependence of the steady-state capillary number (Cag) on the first

normal stress difference of dispersed phase (N,¢) for blends A1, A2, A5, and A10.
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