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Abstract

Burkholderia pseudomallei 1s the causative agent of melioidosis. Our study on the
B. pseudomallei rpoS mutant was shown to be more sensitive to carbon starvation,
hydrogen peroxide and methyl viologen than the wild type. Analysis of »poS gene
expression by transcription fusion with beta-galactosidase activity assay indicated that
rpoS was activated when entry into stationary phase and related to quorum sensing
expression by negatively regulation. Moreover, when the bacteria exposed to hydrogen
peroxide in the stationary phase, the rpoS was also activated. In an oxidative stress
condition, the study of catalase activities were indicated that B. pseudomallei has 2 types
of catalases, cataiase I encoded by karG and catalase II encoded by katE, respectively.
Our results revealed that katE is directly controlled by the RpoS and is not induced by
hvdrogen peroxide. However, the RpoS was shown to regulate katG, dpsA and oxyR
operon under hydrogen peroxide treatment. Qur finding is novel and first illustrate the
regulation network between RpoS, OxyR, KatG and DpsA expression under hydrogen
peroxide induction. In order to identity other genes expressions under RpoS regulation, 2-
dimensional gel electrophoresis and MADI-TOF techniques were applied. We have
constructed a proteomic reference map of a wild type B. pseudomallei 844 strain and used
for comparative identification of differential protein expressions in the rpoS mutant strain.
A superoxide dismutase, one of an identified product from the proteomic profile, was
shown to be under RpoS regulation. We also demonstrated that the B. pseudomaliei RpoS
involved in regulation of virulent factors such as an induction of multinucleated giant cell

formation and of nitric oxide synthase of the host cells.

Key words:  Burkholderia pseudomallei, Sigma S factor (rpoS), oxidative stress, 2-

dimensional gel electrophoresis, virulent factors
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119191 3. Globat analysis of the Burkholderia pseudomaliei RpoS regulon by proteomics

Spnt paitern No. of spots % of total spots
“otal number of spots 475 100

Spots unirjue in wild-type 26 55

Spols unique 1. Arpus 16 34

Spois upregulated in wid-type 155 326

Spots uprequlaied in ArpoS 37 7.8

a. Spois of wild-type pius spots that are exclusively present in the rpoS mutant.
The piotein spol pattern of the wild-type was compared with that of the rpoS mutant. The wild-type spot pattern
was used as refeience for protein matching by using the PDQuest software version 7.2 {(Bio-rad). Only spots

that differed in intunsities by at least 3.0 fold were considered.
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The Burkholderia pseudomallei rpeS gene was identified, and an rpeS null mutant was constructed. The
mutant wus shown to have an increased sensitivity to carbon starvation and oxidative stress. By using rpoS-lacZ
fusieas, transcription of rpoS§ way shown to be prowth phuse regulated, reaching a peak spon entry into

stationary phase.

Burkitolderia psendomalflet is the causative agent of melioid-
osis. a disease endemic in Southeast Asia and Australia (7). 8.
pyeudomallel can survive insude phagocytes (14, 20) and adapt
to many environments (21, 36). Recently, nonpathogenic
strains of B. pseudomaller were reassigned as 8. rhuilundensis
{(5}. In gram-negative bacteria, the sigma factor RpoS (r¥)
activates expression of genes required in response o vanious
stresses including acid, hear shock. UV light, osmotic. oxidative

stresses. and carbon starvation (4, L5, 33, 35). o* also controls

expression of extracellular virulence factors and is important
for pathogenicity in members of the Enrerobuacteriaceae and
Pyeudomonadaceae (9. 19, 35).

Expression of virulence factors is alsn correlated with entry
into stationary phase and nutdent limitaticen in the intracellu-
lar pathogen Legivnelle preemaphila (3). In Escherichia coli. o®
is regulated by franscription, translation and proteolysis, and
different stress conditions differentially affect these levels of
control (15, 24). However, expression of rpeS in pseudo-
monads is predominantly controlled at the transcriptional level
(38). In this study, we isolated the rpoS gene from B
pseudomallel and present evidence that o is involved in the
response 1o several environmental stresses. Expression exper-
iments with transiational and transcriptional fusions were per-
formed to examine the regulation of rpeS in relation o growth
phase.

Isolation of the rpoS gene from B. pseudomallei. Recently,
the complete genome sequence of B. pseudomallei has beea
determined  (httpi/fwww.sanger.ac.uk/Projects/B_pseudomal-
lei}. Using the rpoS sequence from P. aeruginosa PAQOT (34} as
the query in a TBLASTX search. an opea reading frame of
1.080) bp encading the predicted o pratein of 359 amino acids
was identificd. The B. pseudomaliei rpoS genc was amplificd

* Curresponding author. Mailing address: Degartment of Pathotogy,
Faculty of Medicine-Ramathibodi Hospital, Mahidol University, 270
Rama VI Road, Bangkok 10400, Thailand. Phone: 662-644-5325. Fax:
662-246-4281, E-mail; ramkn(@mahidol.ac.th.
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from PP844 (Table 1) genomic DNA with Vent DNA poly-
merase (New England Biolabs, Beverly, Mass.} and primers
RPOSF und RPOSR (Fig. 1, Table 2). PCR was performed for
30 cycles at 94°C for 1 min.. 68°C and 72°C for 45 s cach cycle.
The amplified rpoS DNA was cloned into the Smal site of
pUCIY to generate pUCBS2 (Tuble 1) and the nuclegtide
sequence was determined  (GenBank accession  number
AY1383467). '

The deduced amino acid sequence exhibits 935 amino acid
identity to o of Burkholderia cepucia, 67% w Ralstonia so-
lunacearum o, 46% 10 Preudomonay aeruginnsa @ and 43% 10
E. coli o, Similar to the situation in R solanaccanun, P. aerugi-
acsa. and E. coli, mpoS in B. pseudomalied is located dowa-
stream of alpl (Fig. 1). [n several gram-negative bacteral
species mpoS transeription is directed from promaters located
within and upsircam of afpD (12, 22, 25, 50). Only LI bp
separate the alpD coding sequence from spod, suggesting that
transcription of rpoS in B. psendomallei also initiates withio or
upstream of alpD. Perusal of the B. psewdomallel nipD
sequence reveals two sequences which could serve as promot-
ers far transcription of rpeS. Nineteen base pairs upstream
of the nipD translation initiation codon is the sequence
TTGATC(N,,)TAAAAT, which probably serves as the pro-
moter tor nipD und possibiy ulso for mpoS. Located 131 bp
upstream  of the nlpD stop codon is the sequence
TGCACA(N ;)TAAAAG, which could also serve as 4 pro-
moter for rpo§ transcription.

Role of Rpu$S in response to environmental stresses. An
mpeS knockout mutant, KNL0O (Table 1), was created with
pKBS1 according 1o a previcusly described procedure (26).
The plasmid pUCBS1 was constructed by blunt-ead ligation of
a 632-bp internal fragment of rpaS. generated by PCR with
primers SBKF and SBKR, into the Smal site of pUC19. pKBS51
was constructed by transferring the 632-bp Kpni-Xbu! trag-
ment from pUCBS1 into the mobilizable suicide vector
pKNQCK-Tc (2). The effects of mpoS inactivation on celf sur-
vival during prolonged carbon starvation as well us other func-
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TABLE 1. Bacterial strains and plasmids

NOTES 7009

Struin or plusmid Genotype or relevant characteristics hauree or
reference
B. psewdomallei
PPR44 Prototroph, blood culture isolate lrom 2 paticnt at Khan kacn University Hospiral 37
KNTOO PPR44/pKBS1 This study
PPE44(pBBS1) PPH#44 containing pBBST This study
KN100(pBBS1) PP844/pKBS1 containing pBBS| This study
Z2BS1 PP844/pZ2BS1 containing singic copy of rpoS-facZ transcriptional {usion This study
Z31BS1 PP844/pZ3BS1 containing single copy of poS-facZ translational fusion This study
S.#nicrica serovar Typhimurium
BSSTLU0 Clinical isolate from a patienr at Royal Hallamshire Haspital This study
L. coli
DH5a F $BOdIncZ AM I S8 (lacZY -argFYUT 69 reed ] endAl hsdR1I7 (1.~ my ") supldd 15
N thi-1 reld ! gyrA96
CC118xpir Mara, lew)7697 araD139 AlacX74 galE galK phoAZ0 thi-1 psE 1poB (RI7) 17
: argF(Am) reedl Apir® '
iMa3as £~ am A(lac-proAB) rpsL{Sm"} $80diacZAMIS 39
"SMI0Apir RP4-ZrerMu-1 (Km') thi-1 thr ieu tonA lacY supE recA 32
S17-2hpir RPd-2-tet:Mu-1 kan:To7 (Tp* Sm") thi proA hsdR recA 32
Y. enlerocolitica
08081c Inv™ 29
Plasmids
pUCBSI pUC19 containing 2 600-bp internal segment of B. pseudomaller rpoS This study
puCBS2 pUCI9 containing the full-length rpas This study
pKNOCK-Tc Mabilizable suicide vector far construction of gene knockouts in Gram-negative 2
bacteria
pKBS1 pKMNQCK-Tc containing 1 600-bp internal segment of 8. pseudomailei rpoS This srudy
pBBRIMCS Broad-host-range cloning vector, Cin’ it
pBBS1 pBBRIMCS containing the full-length 8. pscudomalici rpeS genc Thus study
pZINTZ Mobilizable integrative vector for construction of single-copy fucZ ranseriptional 27
fusions :
pZINT3 Mabilizable integrative vector for construction of single-copy lueZ translational This study
fusions :
pZ2BSI pZINT2 containing the 5 region of afpD and 3' region of rped Tused 1o lacd This study
pZ3BS] pZINTJ containing the 5 region of AlpD and 3' region of rpoS fused to lacZ This study
pER97 Plasmid vector for construction of fecZ transtational fusions 3t

vons were analyzed with this mutant. To confirm that all
changes in phenorypes were caused by the disruption of /poS
and were not due to polar effects on downstream genes. a
plasmid (pBBS1) containing the complete /poS coding se-
quence under control of the fucZ and car gene promoters was
consiructed and sransferred into B. pseudomadlel wild-rype and
mutant strains for complementation analysis.

To examine the ability of 8. pseudomallei to survive during

1 500

1000 1,500

EO

prolonged carbon starvation, overnight cultures were diluted
100-fold into glucose minimal medium and grown at 37°C with
aeration. After the cells entered the statiomary phuase of
growth, incubation was continued for several days. during
which time cell viability was determined by measuring-CFUL
Seventy-two hours after entry into the stationary phase. a 100-
fold decrease in the number of viable cells was nbserved for the
moS mutant compared to the wild type. This finding suggests

0.6 kb

2,000 bp

nipD

rpoS

FIG. 1. Arrangement of the aipD-rpoS penes in the genome of 8. pseudomatler. Acrows indicate the location and vrientation of primers used
W construct zpoS plasmids in this study: 1, SBKF; 2, SBKR; 3, RPOSF; 4; RFOSR; 5, PNSF: 6, PNSR: and 7, PNSFR9T.
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TABLE X PCR primers

Primer Sequenec Restnetiun site”
SBKF 5"-GACGACTTCCGGGCGCTTCT-3'
SBKR 5'-ATCGTCGGGCAGCAGATCGAG-Y
RPQOSF 5"-CCTGTCGATCCGCTGAAGTATT-Y
RPOSR 5"-CCAGAATCGGTGTCATTGATGAA-Y
PNSF 5'-GCCCOCATGCCGCTTTATCGGATCGCGCTCG-3 Spi
PNSR 3’-GCCCGTCTAGAAGAAGCGCCCGGAAGTCGTC 3 Xhal
PNSFRY7 3-GCCCTCTAGAAAGCGCCCGGAAGTCGTCCAG-3! Nbai

* Uinderlioed in the sequence.

that the rpeS mutant is more sensitive to carbon starvation
than the wild type. This result is in accordance with previgus
findings, which have demonstrated a general function for o as
a growth phase-dependent regulator of metabolism under con-
ditions of nutnent limitation (10, 16, 35). Introduction of plas-
mid pBBSI, containing the full-length poS gene, completely
restored starvation tolerance to the wild-type level in the mu-
tant, indicating that the loss of viability of the mutant was
specifically caused by inactivation of the rpoS gene (Fig. 2A).

The effect of rpoS inactivation on sensitivity to H.O, and the
redox-cycling agent methyl viclogen was also examined. Sen-
sitivity to hydrogen peroxide was measured on cells grown to
mid-logarithmic phase (optical density at 600 nm = 0.4). H,O.
was added to the cells at the indicated concentrations. und the
cells were incubated for 20 min at 37°C. Catalase was added
(400 units/ml), and cell viability was measured as descrnibed
above. After a 20-min incubation in 50 mM H,O., the number
of viable cells for the mutant was approximately 80-fold lower
than in the wild rype (Fig. 2B). The sensitivity of the mutant to
methyl viologen was also examined by exposing mid-logarith-
mic-phase cells 10 40 mM methy! viclogen. Growth of the
witd-type cells was not significantly affected by the presence of
40 mM methyl viologen. whereas the mutant showed a 50-fold
reducticn in wviability after exposure for 16 h (Fig. 2C). The
sensitivity of the mutant to H.O, and methyl viologen suggests
a role for o® in oxidative stress resistance. This is consistent
with the role of meS in resistance to oxidative stress in 8.
cepacta and P. aeruginosa (1, 35). On the other hand, inactiva-
tion of the rpo§ promoter in R solanacearum did not result in
increased sensitivity to H,O, (10).

The ability of ceils to survive in pH 3.0 was measured fol-
lowing an adaptation step at pH 4.0 (L1). Bacterial ceils were
grown in Luria-Bertani (LB} (pH 7.0} to stationary phase over-
night, washed, and suspended in LB adjusted to pH 4.0. Incu-
barion was continued for 4 h befare the cells were resuspended
in medium adjusted to pH 3.0. Cell viability was then deter-
mined at different time intervais. Figure 2D shows that the
sensitivity of the poS mutant was not significantly different
from that of the wild type after exposure to acid pH 3.0 for up
to 60 min. However, at 9¢ min the mutani demonstrated a
10-fold decrcase in survival compared to the wild type. Acid
tolerance in several gram-negative bacteria has also been
shown to be mediated by o (10, 11, 30). N

To measure the ability of cells to survive extreme heat shock,
cells were grown Lo stationary phase, whereupon they were
washed and diluted in minimal medium to a density of approx-
imately 7,000 CFU/ml. One miliiliter of the diluted culture was
placed in a prewarmed tube at 53°C, and vizbility was deter-

mined after different time intervals. To measure sensitivity to
osmotic stress, celis were grown to stationary phase, washed.
and resuspended in minimal medium containing 4.0 M NaCl.
The resuspended cells were incubated at 37°C with aeration,
during which time cell viability was determined. Our results
showed that there is no significant difference between the wild
type and the mutant in their sensitivity (o heat shock or os-
motic stress (Fig. 2E and 2F). In contrast, a B. cepacia rpoS
knockout mutant exhibited hypersensitivity to high tempera-
ture but, like 8. pseudomallei, showed a wild-type hyperosmiotic
response (1).

Role of rpoS in invasion of epithelinl and macrophuge cell
lines, Invasion assays were performed as previously described
with slight maodifications (8). HEp-2 cells and the Abelson
murine leukemia virus-induced tumor cell line RAWIGET
were seeded in 24-well plates at § x 10° cells per well. Cells
were grown overnight at 37°C with 5% CO. in Eagle's minimal
essential medium {(EMEM) and Duibecco's modified Eagle's
medium (DMEM) supplemented with 0% fetal calf serum
(Gibco BRL) for HEp-2 and RAW?264.7, respectively. The cell
monolayers were washed and incubated with 1 ml of the same
medium containing 4% bovine serum albumin for 30 min at
37°C with 5% CO.. After incubation, the monolayers were
washed with fresh medium. A log-phase culture of bacteria’ was
resuspended in I ml of EMEM medium for HEp-2 cells and
DMEM medium for RAW264.7 celis, and 25 pl of the suspen-
sion was added to cell monolayers and incubated for 2 h at
37°C with 5% CO,. Cells were washed with phosphate-butf-
ered saline and medium and then incubated with 1.3 mt of
medium containing karamycin for an additional 2 h e climi-
nate extracellular bacteria. Cell monolayers were then lysed
with 1% saponin {Sigma) to release the intracellular bacteria.

The inocula and intracellulac bacteria were quantified by
plating serial dilutions. For owvernight invasion assays, the
monolayers were washed with phosphate-buffered saline and
incubated overnight with 1.5 ml of medium containing kana-
mycin. Table 3 shows that both the wild type and rpo§ mutant
demonstrated an equal ability to invade RAW2643 cells and
HEp-2 cells, although at an order of magnitude less efficiently
than Safmonella enterica serovar Typhimurium and Yersinia
enteracolitica. This indicates that rpo$ is not required for sur-
vival within the intracellular compartment and suggests thut 8.
pseudomallei is not exposed 1o or is able to circumvent carben
starvation and oxidative stress inside the host cell, Similar
observativns were made with Y. enterocoiitica, in which inacti-
vation of rpoS had no significant etfecrs an virulence in mice or
on the expression of the inv or aif genes, which ure involved in
celt invasion (4). [n contrast, expression of the rpoS gene in 5.
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A, Survival during carbon starvation B. Sensitivity to hydrogen peroxide
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FIG. 2. Effect vl pes mutation on sieess responses. 8, pseudomallei parcnt strain PPR44 (M), B. psendontafici rpoS mulant (&), B. psewdomailei
parent strain harboring pBBST ( &), and B. pseudvmallei rpo§ mutant harhoring pBBS1 for camplementartion (@), (A) Survival during carbon
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To construct the rpoS-facZ translational fusion piasmid
pZ3BS1, a 0.92-kb PCR product obtained with primers PNSF
and PNSRY7 was ligated as an Sphl-Xbal fragment into
pZINT3. pZ2BS! and pZ3BS1 were integrated in single copy
at the rpo§ tocus of B. psendomallei PP844 by homolagous
recombination. resulting in strains Z2BS1 and Z3BS1, respec-
tively. Cultures were grown in LB broth, and B-galactosidase
assays (28), normalized to culture density (optical density at
600 nm), were performed at various time points.

The strain harbaring the translational fusion (Z3BS1)
showed an increase in B-galactosidase activity starting from the
cxponcntial phase and reaching a peak an entry into stationary
phase (Fig. 3A). This result showed that RpoS production is
growth phase regulated. As the B-galactosidase activities for
the translational fusion represent the sum of transcriptional
and translational control, the transeriptional fusion was used to
see whether this regulation is exerted at the transcriptional or
transiational level. The B-galactosidase activity of the strain
harboring the transcriptional fusion followed a similar pattern
(Fig. 3B). In both fusion strains. the activity on entry into
stationary phase was approximately fivefold higher than in the
carly logarithmic phase. The results indicate that B. pseudoma-
ller rpoS is regulated according to growth phase at the tran-
scriptionat level, However, the possibility that rpoS is subject to
cel! density-dependent regulation cannot be ruled out.

In conclusion, we have shown thar RpoS is likely to play an
important role in the response of 5. psewdomallei to carbon
starvation and oxidative stress. Furthermore, our results show
that the rpo§ gene in this organism is likely to be regulated
according to the growth phase.
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Abstract

Burkholderia pseudomalier is the cuusidive ugent of melividosis. This bacterium can invade and survive inside the phugocyuc and
nonphagocytic cells. After internalization. the bacteria cun escupe from the membrane-bound phagoseme into the cytoplusm. [nternalised
8. pseudomatlei can also induce @ cell-to-cell fusion, resuiting in a multinucleated giant cell (MNGC) formation. {n the present study. we
Jemonstrated that 8. psendomeliei rpo§ aull mutant was similar o its wild type parent in its ability 10 survive and multiply inside the mouse
macrophages. but it faled to stimulate MNGC formation. The rpoS mutant was also unuble o activate inducible Nitric Oxide Synthase (iNOS)
in resting mouse macrophages but in gumma interferon (IFN-y)-activated macrophages, the mutant was able to induce significantly higher
levels of INOS und NO when compared with its wild-type counterpart. resulting in u significantly lower number of bacteria inside the infected

host cells.
© 2006 Elsevier Lid. All nghis reserved.

Rewswords: Burkholdera psendomalles: Meitcidosn: RpoS: Mulunuclieated siant cell formaton: iNO3

1. Introduction

Burkholderia pseudwmmallei is the causative agent of
melioidosis, a disease of man and animals in southeast Asia
and northern Australia {1.2]. The ciinical features of
melioidosis vary greatly from acute fatal sepsis (o localised
chronic infections [1]. Systemic infeclions are associated with
high mortality rate and high rate of relapse despite prolonged
treatment {1,2]. At a cellular level, this gram-negative
bacterium can survive and multiply in both phagocytic and
non-phagocytic cells [3]. After internalisation, it can readily
" escape from the membrane bound phagosome into the
cytoplasm [3]. The internalised B. bxeudomat!ei can also
induce a cell-to-cell fusion, resuiting in a multinucleated giant
cell (MNGC) formation and cell death [4,5]. The MNGC has
also been observed in the tissues of patients with melicidosis
[6). It was hypothesised that this unique phenomenon, which

* Comresponding author. Tel.: +66 2 201 5954; fax. +66 2 201 5950.
E-mail address: scput@mahidol.ac.th (P. Ulaisincharpen).

0882-4010/% - see (ront mavier © 2006 Elsevier Lid. All rights reserved.
doi: 10,1016/ micpath.2006.01.002

has never been observed in any other bacteria, may facilitate
the spreading of the bacterium from one cell o another (5],
The mechanism by which B. pseudomallel is able 10'escape
host defense is not [fully undersiood. However, we have
demonstrated previously that the macrophages infected with
this microorganism faited to activate inducible nitric oxide
synthase (INOSY [7]. The faiture to stimutate iNOS expression
may facilitate this bicterium to survive and multiply inside the
macrophages [7.8]. However, preactivation of the macro-

- phages with exogenous IFN-v qr [FN-f could enhance iINCS

expression and facilitate intracellular kilting of 8. pseudomal-
lei |7-9].

RpoS is a globa! regulatory factor known o contrel the
expression of a large number of chromosomali genes involved
in resistance to stress conditions and prolonged nutrient
deprivation [10,11]. [t has also been reported 1o regulate
virulence gene expression in a number of pathogenic bacteria.
[n Salmonella enterica serovar Typhimurium, the RpoS
controls the expression of Salmonella plasmid virulence (spv)
genes. required to initiate systemic spread [12-14]. The
S. typhimurium rpoS mulant was significantly less lethal for
mice, thus suggesting its role in disease-producing potential
[14,151. However, the ability of the mutant to survive inside the
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macrophages was unaitered [14]. Although the possible
involvements of RpoS in the pathogenesis of melioidosis
have never been investigated, our group demonstrated
previously that the B. pseudomallei rpoS null mutant of this
bacterium exhibited an increased sensitivily to oxidative stress
{16}, In this communication, we extend our [irding (o
demonstrate the involvement of rpoS nuli mutant in modulat-
ing the host cell response, particularly with regard to the
macrophage antimicrobial capacity to control the intraceilular
fate of B. pseudomallei tself.

2. Resuits

2.t nternalisation und intracellular muliiplication of rpo§
knockout mutant in mouse macrophage cell line (RAW 264.7)

[n order to evaluate a possible involvement of RpoS in
internalisation and intracellular multiplication of B. pseudo-
mallei, mouse macrophage cell monolayers were infected with
rpoS mutant and wild type 8. pseudomadlei at MOl of 2:1 and
the number of intracellular bucteria was then analysed by
standard angibiotic protection assay. The results presented in
Fig. | showed that 7poS§ mutant appeared (o have significantly
lower invasive potential comparing with wild-type, judging
from the number of intracellular bacteria 3 h after the infection
was initiated. In contrast, once internalised. both rpeS and
wild-type B. pseudomallei could simijurly survive and multiply
intracellularly inside the macrophages. The deoubling time of
the rpoS mutant and the wild-type calculated was 45 and
47 mun, respectively, suggesting that the rate of replication of
the rpeS muiant inside the macrophages was similar to that of
the wild-type (data not shown). These results are consistent
with the possibility that RpoS plays a role in cellular invasion
but aot in controlling the rate of replication inside the
macrophages.

°
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Fig. I. Intermalisation of rpeS mutant. Mouse macrophage cell line, (RAW
264.7)-was infected with either the rpo§ mutant or the wild type 8.
pseudomatlel at MOL of 2:1 for 1h, Internafisation of the bacteria was
determined after 2 more hours of incubation. The number of viable intracellular
bacteria was determined by standard antibiotic protection assay as described in
Matersuly and Methods, Daw showo represent means and standard errors of
3 separate experiinents, cach carried out in duplicate. *P < 0.0 by Students's
{-test,

2.2. RpoS in!érferea' with MNGC formation in mouse
macrophuge cell line (RAW 264.7}

Mouse macrophages were infected with either the rpoS
mutant or the wild-type 8. pseudomallei at MOI of 2:1 for a
total of 8§ h before the host cell morphological changes were
analysed under a microscope. As is to be expected from our
previous reports [5,9,17), the wild-type B. pseudomaltlei conld
readily induce cell fusion and MNGC formation (arrows in
Fig. 2A). The rpoS mutant, on the other hand, fasled to iniuate
these changes. These results suggested that the RpoS of
8. pseudomaliel is invoived in this process. This prediction is
supported by the results showing that in the presence of
chloramphenicol, the MNGC formation induced by the wild-
type was inhibited. In this experiment, the macrophages were
infected with the wild-type bacteria for | h before the
chleramphenicol was added at a concentration known to
irhibit bacterial protein synthesis. In the presence of this
inhibitor, no MNGC formation could be observed, suggesting
that the process leading to MNGC formation in the wild type-
infected macrophages was initiated after bacterial internalis-
ation (Fig. 2A). It should be mentioned that the concentration
of chloramphenicol used in these experiments was able o -
significantly inhibit bacterial growth (data not shown). The
number of MNGC induced by the bacteria was also enumerated
by Giemsa staining. Results presented in Fig. 2B showed that
the percentage of MNGC induced by rpe§ mutant and the
chioramphenicol-treated wild-type infection was less than 3%
while that of the wild-type infection in the absence of the
inhibitor was 17%.

2.3, Involvement of RpoS in iNOS expression
und nitric oxide production ' .

To mnvestigale the possible association of RpoS with iNOS
activation, the mouse macrophages were infected with rpo§
mutant and wild-type 5. pseudomalilei or Saimonella enterica
serovar Typhi (used as positive control) at MOI 2:1. Eight
hours after the infection was initiated, the iINOS expression of
infected macrophages was determined by immunoblotting. .
Unlike the Sulmonelia control, both rpoS mutant and wild-type
B. pseudomailei failed to stimulate INOS expression. We
previously demonstrated that [FNZy could emhance iNOS
expression and killing capacity of the macrophages if it was
2dded to the cell culture prior to the time of infection {7,9]. In
the present study, a similar experiment using rpeS mutant-
infected macrophages was performed. Bricfly, the macro-
phages were preactivated overnight with IFN-y prior to
B. pseudvmallei exposure and at 4, 6 and 8 h post-infection,
the expression of INOS was determined by immunoblotting.
The results showed that although the IFN-y could enhance
INOS expression of the macrophages, the level of INOS
expression in the cells infected with rpoS mutant was
noticeably higher than in those infected with the wild type
(Fig. 3B). Consistent with this observation, the levet of NO,
determined by Griess reaction, in the IFN-y activated
macrophages infected with the rpo§ mutant was also
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Fig. 2. [nabilily of rpaS mutant o induce MNGC lormation. Mouse macrophage cell line (RAW 264.7) was intected with either the rpoS mutam or the wild type 8.
pseudomaltei at MOT of 2:1 for | h. The infected cells were subseguently cultured in the medium with or without chloramphenicol added (100 pg/ml). The MNGC
formation (arrows} atter 8 h of infection was observed by microscopic examination (100x) (A). To enumerate MNGC formation, the infected cells were fixed,
statned with Giemsa and the number of MNGC was determined under microscope (400x) (B). Dawa shown represenl means und standard emors of 3 separate

experiments, each carried out in duplicate. *F<0.01 by Students’s i-test.

significantly higher than that of the wild-type control (Fig. 3C).
These results suggested the involvement of RpoS in regulating
antimicrobial activity of the IFN-y activated macrophages.

2.4, Bacterial RpoS modulutes intracefiular killing
capacity of IFN-y activated mucrophages

[t was shown previously that the expression of INOS in
macrophages infected with the wild type B, psewdomaliei
directly torrelated with the macrophage ability to kill
intracellular bacteria [7-9]. To determine whether or not a
similar phenomenon would be observed with the macrophages
infected with the rpoS mutant, the number of viable
intracellular bacteria in the IFN-y activated macrophages
was analysed 8 h post infection. The resulls presented in Fig. 4

clearly demonstrated that although IFN-y could enhance the
macrophage ability to suppress the intraceliular growth of both
wild-type B. pseudomallei and rpoS mutant, the level of
suppression was higher in the rpo§ mutant-infected macro-
phages {(a decrease by 2 orders of magnitude for the rpoS
mutant compared with a-decrease of only | order of magnitude
for the wild-type).

3. Discussion and conclusion

RpoS is recognized as a global stationary-phase sigma
factor that controls the expression of several genes including
those enceding for virulence factors [12-14,18,19]. The
S. ryphimurium rpoS mutant was shown to be less virulent
than its wild-type counterpart [20.21], even though it could still
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survive and multiply inside the roacrophages [18]. The
medulation of human activity by S. (yphi rpo§ mutant had
also been investigated. For instance, the mutant exhibited
lower degree of cytoxicity for human macrophages, judging
from a decreased ability to induce host cell death compared
with the wild type counterpart (22]. As with the rpoS mutant of
Salmonella, rouS deficiem B. pseudomallei in the present study
could also survive and muitiply inside the mouse macrophages
in a similar way to the wild type parent (Fig. 1),

Orie of the unique characteristics of B. pseudomallel is their
ability to induce a cell-to-cell fusion, resulting in MNGC
formation which may facilitate the bacteria to spread from one
celt (o the others (4,5]. The mechanism of B. psendomallei-
induced celi-to-cel) fusion is yer to be determined. However,
we demonstrated in this communication that the wild-type
8. pseudomallei failed o induce MNGC when the bacterial
protein synthesis was inhibited after the bacteria had been
internalised (Fig. 2). suggesting that it is the bacterial factor(s)
expressed after being internalised that plays a role in the
induction of MNGC formation. This conciusion is based on the
data that in the presence of chloramphenicol, no MNGC
formation was observed in the macrophages that were infected
with the wild-type B. pseudomallei even at a very high MOI1
ratio of 100:1 (data not shown). In contrast to the wild-lype, the
B. pseudomallei lacking rpo§ at the same MOI could not

5
oF
=
“wild 1ype rpe§ mutant
IFN-v (10W/m}) - = - -

Fig. 4. Effects of [FN-y ir suppression of intracellular bacteriu in the infected-
macrophages. Mouse macrophage cell line {RAW 264.7) was preactivated with
or without 1EN-y (10 U/ml} overnigit before being infected with either rpaS
mutant or wild ype 8. pseudomallei at MOL of 2:1. Eight hours alter the
infection, the numbes of intracellular viable bacteria was determined by
standard antibiotic protection assay as described in Materals and Methods. A
highiy significant reduction was noted with the rpoS mulant, Data shown
represent means and standard errors of 3 separate experiments, each carried out
in duplicate, *# <.0.0§ by Students’s r-test.
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induce MNGC formation, suggesting a possible invelvement of
RpoS in the induction of MNGC formation (Fig. 2).

Activation of iNOS and NO production in macrophages is
known to play an essential role in inhibiting growth and killing
of intracellular bacteria including B. pseudomallei [7-9).
Previously we demonstrated that 8. pseudomallei could
interfere with iNOS expression, thus allowing it lo survive
macrophage killing [7.3]. However, exogenous [FN-y or IFN-p
added w0 resting macrophage could enhance and restore ils
ability to kill intracellular B. pseudomaliei by activating iNOS
expression [7-9]. [n the present study, we demonstrated that by
-itself the rpo§ mutant, like its wild-type counterpart, also failed
10 activate iNOS expression (Fig. 3). However, in the presence
of TFN-y, the Jevel of iNOS in the rpoS mutant-infected
macrophages was markedly clevated compared with its wild-
type conirol. The increase of tNOS expression and NO
production leve! also correlated to the decrease of intracellular
survive of the bacteria (Fig. 4). However, it could also be
argued that the lower number of intracellular rpeS mutant may
be due to inherently higher susceptibility of the mutant to
killing by reaclive nitrogen intermediate than the wild-type.
This problem is now under investigaition by our group.

RpoS is known to play an important rofe i response of
bacteria to a number of environmental stresses. Escherichiiu
coli produces KatE (hydroperoxidase I) which has both
catalase and peroxidase activity, allowing it to overcome the
antimicrobial activity of hydrogen peroxide produced by the
host [23]. This enzyme is also krown 1o be under the controt of
RpoS (24]. In the host tissue. RpoS coidld also regulate
virulence gene cxpression, such as the spv of S, ryphimurium
1251. In our study. we demonstrated that RpoS of 8.
pseudomaliei could regulate not only the expression of a
putative bacterial factor(s) which may be involved in MNGC
formation, but also of the iNOS. However, the virulence factors
of B. pseudomallel that are regulated by RpoS§ have never been
identified but needed (o be investigated if we are to more fully
vnderstand the pathogenesis of melioidosis and lo develop
novel approaches for the management of the disease.

4. Materials and Methods
4.1 Cell line and culture condition

Mouse macrophage cell line (RAW 264.7) was obtained
from American Type Culture Collection (ATCC, Rockyville,
MD). If not indicated otherwise, the cells were cultured in
Dulbecco's modified Eagles’ medium (DMEM) {Gibce Labs.
Grand Island, NY) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (HyClone, Logan, UT) at 37 °C under
a 5% CO. atmosphere.

4.2, Bucteriol yirains

B. pseudomallei strain 844 used in this study was originally
isolated rrom a patient admitted to Srinagarind Hospital in the
melioidosts endemic Khon Kaen province of Thailand as
previously described [7-9]. Sulmonella enterica serovar Typhi-
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(Salmonella) used for comparison throughout this study was
originally isolated from a patient at Ramathibodi Hospital
(Mahidol University, Bangkok, Thailand).

rpoS mutant of 8. pseudomallei was constructed and had
been characterized as previously described [16]. It should be
mentioned that the mutant was still reactive with polyclonat
anti-B. pseudomallei and monoclonal antibodies agaunsi the
lipopoiysaccharide and exopolysaccharide components of
8. pseudomallei [26].

4.3, Infection of mouse macrophage cell line (RAW 264.7)

An overnight culture of mouse macrophages (1 X 10° cells)
in a six-well plate was co-cultured with bacteria at a
mualtiplicity of infection (MOI) of 2:1 for | h. To remove
extracellular bacteria, (he celts were washed three limes with
2 ml of PBS and residual bacteria were killed by incubating in
DMEM containing 250 pg/m! kanamycin (Gibco Labs) for 2 h,
Thereafter. the infection was allowed to continue in the
medium containing 20 pg/ml ol kanamycin untul the
experiment was termirated [5.8]. To determine intracellular
survival and multiplication of the bacteriz. a standard antibiotic
protection assay was performed as previously described [3].
The number of intracellular bacteria expressed as colony
torming unit (CFU) was determined by bacterial colony
counting

4.4, Immunoblotting

iMouse macrophage preparations were lysed in buffer
contaiming 20 mM Tris, 100 mM NaCl and 1% NP40. The «
lysates containing 30 ug of protein were electrophoresed on
10% SDS-PAGE and then electrotransferred o nitrocellulose
membrane (Schleicher&Schuell, Dassel, Germany). The
membrane was blocked with 5% skim milk for | h before
incubating overnight with appropriate specific polyclonal
rabbit anubodies to mouse iINOS (Sapta Cruz, Santa Cruz,
CA). The blots were thea allowed © react with horseradish
peroxidase-conjugaled swine anti-rabbit [gG (Pierce. Rock-
ford, IL). Protein bands were detectzd by enhanced chemilu-

minescence as recommended by the manufacturer {Roche

Diagnostics. Mannheim, Germany).

4.5, Enumeration of multinucteaied giant cells (MNGCy)
in B. pseudomallei-infected macrophagpes

In order to guantitate the degree of MNGC formation, Lhe
macrophages {l X 105 were first cultured overnight on a
coverslip as previously described [5]. For the chloramphenicol
experiment, the drug (100 pg/ml) was added mlio the culiure
medium after the bacteria were internalised for | h. Eight hours
after the infection, the coverslips were washed with PBS, fixed
for 15 min with 1% paraformaldehyde and then washed
sequentially with 50 and 90% cthanol for 5 min each. The
coverslips were air dried before staining with Giemsa [5]. For
enumeration of the MNGC formation, at feast 1000 nuclei per
coverslip were counted using light microscope at
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a magnificatton of 40 and the percentage of multinucleated
cells was calculated |51, The MNGC was defined as the cell
possessing more than one nuclei within the same cell boundary.

4.6. NO ussay

The production of NO in the forrn of nitrite in the
supernatant was determined by the Griess reaction {27]. The
nitrite was used as standard ranged from 0 to 40 pM.

4.7. Stariyticad Analysiy

If not otherwise indicated. all experiments in this study were
conducted at least three times, Experimental values were
expressed as means ¥ standard errors. Statistical sigrificance of
differences between the (wo means was evaluated by Student’s
¢ test, and P value <0.01 was considered significant.
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Summary

Burkholderia pseudomallei is the causative agent of melioidosis, a fatal human tropical
disease. The non-specific DNA-binding protein, DpsA plays a key role in protecting B.
pacudomallei from oxidative stress mediated, for example, by organic hydroperoxides. The
regulation of dpsA expression is poorly understood but one possibility is that it is regulated in
2 cell population density-dependent manner via A-acythomoserine lactone (AHL)-dependent
guoruin sensing (QS) since we have located a fux-box motif within the dps4 promoter region.
Usmg ligutd chromatography and tandem mass spectrometry (LC MS/MS), we first
established that B pseudomallei strain PP844 synthesizes AHLs. These were identified as N-
octanoyl-homoserine lactone (C8-HSL}Y; N-(3-oxooctanoyl)homoserine lactone (3-oxc-C8-
HS1L); N-(3-hydroxyoctanoyl)-homoserine lactone {3-hydroxy-C8-HSL), N-
decanoythomoserine lactone (C10-HSL), N-(3-hydroxydecanoyl) homoserine lactone (3-
hydroxy-C10-HSL) and N-(3-hydroxydodecanoyl)homaoserine lactone (3-hydroxy-C12-HSL).
Mutaiion of the genes coding for the Lux] homologue, Bpsl or the LuxR homologue, BpsR
resu.lt_ed in the loss of C8-HSL and 3-oxo-C8-HSL synthesis demonstrating that Bpsl was
respeasible for directing the synthesis of these AHLs only and that bps/ expression and hence
Co-HSL and 3-0x0-C8-HSL production depends on BpsR. In bpsl, bpsR and bpsiR mutants,
dpsA  expression was substantially down-regulated. Furthermore, when expressed in
Lscaerichia coli, dpsA expression required both BpsR and C8-HSL. bps/R-deficient mutants
¢ inbited hypersensitivity to the organic hydroperoxide, fert-butyl hydroperoxide (-BOOH).
by displaying a reduction in cell viability which was restored by provision of exogenous C8-
FISL {bps! mutant only) or by complementation with the bps/R genes or by overexpression of
dps4. These data indicate that in B. pseudomallei, QS regulates the response to oxidative

stress al least in part via the BpsR/C8-HSL dependent regulation of DpsA.
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INTRODUCTION

Buikholderia pseudomallei is the causative agent of melioidosis, a fatal tropical discase
endumic in areas ~f Southeast Asia and Australia (Wuthiekanun er al., 1995). The organism
ca. e isolated from soil and water. Human infections occur mainly through skin abrasions
and inhalation of contaminated aerosols. Frequent relapse has been observed after apparent
cure and serological studies have shown that a significant proportion of individuals in
endemic arcas can be infected asymptomatically (Cheng & Currie, 2005). /n vitro studies
kave demonstrated that B. pseudomallei can survive and multiply inside phagocytes (Jones er
al.. 1996). To survive inside the phagolysosome, the organism has to endure both acid and
oxidative stress. DNA-binding protein from starved cellis (Dps) is an abundant protein in
stationary phase Escherichia coli cells (Almiron et al., 1992). Although Dps was originally
lescribed as a non-specific DNA binding protein involved in resistance to oxidative stress, it
i actuatly a bacterioferritin and there are examples of Dps proteins which both bind DNA and
sequester iron {Martinez & Kolter, 1997; Stillman ef «/. 2005). These are thought to protect
DNA froin damage both as a physical shield and by inhibiting Fenton reaction-catalyzed
oxyredical formation. Recently, the crystal structures of two Dps proteins (DpsA and DpsB)

fror Lactococcus lactis have been described where both proteins were demonstrated to bind

NINA via an N-terminal o-helix (Stillman et al. 2005)

I B preudomaliei, DpsA has been shown to protect DNA from damage by both acid and
oxisative stress (Loprasert et al., 2004). The dps4 gene in the B. pseudomallei genome is
iccaled downstream of katG which codes for a bifunctional enzyme with both catalase and
peroxidase activities. Although the mechanism by which DpsA is regulated is not well

undeistihod. it is known that expression increases in response to oxidative stress through
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increased transcription of the katG (catalase peroxidase) promoter, which is OxyR-dependent
(Loprasert ef al., 2004). Furthermore, dpsA can also be transcribed from its own promoter in

an OayR-independent manner (Loprasert e al., 2004).

Quorum sensing (QS) is a term used to describe the phenomenon where bacteria coordinate
e production oF a diverse array of phenotypic behaviours in accordance with their cell
nupulation size via production of diffusible cell-to-cell signal molecules (Swift et a/.. 2001;
Camara ef af., 2002). Once a threshold concentration has been reached, a response is triggered
that icads to changes in gene expression and consequently the phenotype of the cells. In
Gram-negative bacteria, the most intensively studied quorum-sensing systems rely upon the
interaction of N-acylhomoserine lactone (AHL) signal molecules, synthesised via LuxI-type
AHL synthases, with LuxR-type transcriptional regulator proteins. Together, the LuxR-type
pretein and its cognate AHL then activate the expression of specific target genes (Swift ef al.,
2001y, Many Gram-negative bacteria possess more than one LuxR and/or LuxI gene and
oroduce multiple AHLs. For example, the opportunistic pathogen Pseudomonas aeruginosa
coraitis two LuxRI1 systems which operate tn a hierarchical manner to regulate an arsenal of

virulence determinants and secondary metabolites (Cdmara ef «f., 2002; Lazdunski et «l,

20043

in i pseadomalled, a LuxRI AHL-dependent QS system termed BpsR1 was first described in
2002 by Lumyjiaklase, e al., (GenBank accession no. AF501236). Subsequently, Valade er af
u04) reported that the Pmll-PmIR QS system is required for full virulence in B
pucwdomaliei strain 008 as a pmll mutant was significantly less virulent than the parental
stre’a i 4 murine infection model. The Pmll protein exhibits 98% sequence identity to Bpsl

Valade et al.. 2004). In B. pseudomallei strain KHW, a LuxRI pair closely related to Bpsl-
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BpsR was described by Song er al. (2005) who reported that it positively regulated
phospholipase C but negatively regulated siderophore production. Both bps/ and bpsR
mutants were attenuated in a Caenorhabditis elegans virulence assay (Song et al. 2005).
Lsing HPLC and bioassays of B. pseudomallei spent culture supernatants, Valade er af.,
(2004, lentatively identified C10-HSL which they attributed to Pmil although they did not
cxamine the supernatant of the pmif mutant or express pmif in £. coli to establish whether
Pmll was indeed responsible for C10-HSL synthesis. Song et al., (2003) expressed bpslin £
coll and, oy HPLC tentatively identified C8-HSL but did not examine the AHL profile of a 8.
pacu fumaliel bpsi mutant. Recently, three LuxR1 pairs together with two additional LuxR
homologues have been identified in B. pseudomaliei DD503 (Ulrich ef «f., 2004a). DDS503
was reported to produce at least five AHLs, including A-octanoyl-homoserine lactone {C8-
FiS1),  AN-decanoyl-homoserine lactone (CI0-HSL), MN-(3-hydroxyoctancyl) homoserine
Yactone (3-hydroxy-C8-HSL}, N-3-hydroxydecanoy! homoserine lactone (3-hydroxy-CI10-
HsL) and N-3-oxotetradecanoyl homoserine lactone (3-oxo-C14-HSL). Mutation of
individual B. pseudomallei lux! homologues was reported to have no effect on.the AHL

profite (Ulrich er al., 2004a).

T regulation of dpsA expression in Burkholderia is poorly understood but one possibility is
that it is regulated via AHL-dependent QS since there is a fux box motif located within its
promoter region. Here we define the nature of the AHLs synthesized by B. pseudomallei
PP34 4 and show that dpsA4 expression and resistance to oxidative stress is dependent on QS

via 3pslR and C8-HSL.
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METHODS

Bacteriai strains, plasmids and media. Bacterial strains and plasmids used are shown in
Table I. Unless otherwise stated, bacteria were cultured using Luria Bertani (LB) broth or
agar with appropriate antibiotics at 37°C. In cases of mixed cultures, e.g. conjugations,
incubations were at 30°C. Pseudomonas agar base supplemented with SR 103E (cetrimide,
“uzidin and cephaloridine) from Oxoid was used, after conjugation, as a selective medium to
inhibit growth of E. coli. M9 minimal medium with 2% w/v glucose was used for /3
galactosidase activity assays. Antibiotics were used at the following concentrations when
required: ampiciltin 100 g ml”', trimethoprim 200 pg mi™ for B. pseudomailei and 100 ug
ml™ for E. coli, spectinomycin 800 ug ml”" for B. pseudomallei and 200 ug mi™ for E. coli.

tetracycline 60 ug ml™ and chloramphenicol 40 pgml™,

Amptification and cloning of bpsI and bpsR genes. Using the cep/ and cepR genes of
Burkholderiu cepacia as a template for the BLAST program
thttp://www.ncbi.nib.gov/BLAST/), homologues of this AHL synthase and its cognate
transcriptional  activator were identified in B pseudomallei genome database

(hitp/iwww sar:zor.ac.uk/Projects/B pseudomallei/) and  designated bps/ and  bpsR

re spectively. A PCR product of 663 bp containing the full length bpsi was amplified from 5.
psendomallei  strain - PP844  genomic  DNA  using  primers  BPSIF  (5'-
ctg cagelectigaatgacgaacgge -3') and BPSIR (5'- aagettcatgegaactttegticatgg -3} and cloned
into the Hindlll and Psil sites of pUCI9 to create pUCI. A PCR product of 2.5 kbp
contaming both bpsi and bpsR (bpsIR) was amplified using primers BPSIF and BPSRR (5'-
ctpeaggaaccgtigatggagtgage -3) and cloned into pBBR-Sp by blunt ended ligation to create

pBBR-IR3. The 2.5 kbp PCR product was cut by EcoRl to obtain a 1288 bp DNA fragment



r

7 P. Lumjiaktase et al./ Microbiology (2006) Manuscript

con.aining full length bpsR gene which was cloned into pB‘BR-Sp to create pBBR-R2. The
sequences of bps/ and bpsR from B. pseudomallei strain PP844 were deposited in the

Jenbank (accession number AF501236).

Coustruction of B. pseudomallei bpsf and bpsR knockout and complemented mutants.
bpsi (PK13), bpsR (PKR7) and bpsiR (KBIRS) mutants were constructed in B. pseudomalles
sirain PPs44. Briefly, A 298 bp fragment of the bps/ gene was amplified from PP844 using
primers BIPF (5'- gtcacgccgatcagttgett -3') and BIPR (5'- agtacgatcgegacgatace -3°). The
blus.t ended product was ligated into the suicide vector pKNOCK-TC to create pKBI, which
was then mobilized from E. coli S17-1 Apir into PP844 by conjugation. Singie-crossover
irsertion mutaats were selected on pseudomonas base agar containing 60 ug ml™" tetracycline.
A blunt ended 323 bp fragment of the bpsR gene was amplified using primers BRPF (5'-
cyavacctatccgaacgget -3') and BRPR (5'- aacggctcatcagegagtge -3'). The resulting fragment
was ligatea into pKNOCK-CM to create pKBR. After conjugation into PP844, mutants were
sefected on pseudomonas base agar containing 40 pg ml' chioramphenicol. Finally, the
double bpsiR mutant KBIRS was created by conjugating pKBR into the PKIS mutant and
selecting on pseudomonas base agar containing 60 pg ml™ tetracycline and 40 ug ml”!
chlorainphenicol. For complementation of the knockout strain, pBBR-R2 was conjugated into
PY.R7 o create PKR7+R which was selected on pseudomonas base agar containing 800 pg
m)™" spectinomycin and 40 pg ml™ chloramphenicol. Plasmid pBBR-[R3 was conjugated into
KB'RS5 w create KBIRS+IR which was selected on pseudomonas base agar containing 800 g

™ spectinomycin, 60 ug ml™" tetracycline and 40 pg ml” chloramphenicol.

Consiruction of dpsA::lacZ transcriptional fusion strains. TnpD is a mini-transposon

s ctor containing the dpsA promoter fused to /acZ and maintained in E.co/i CC118 (CpUT) as



[ae]

K

11

1?2

14

8 P. Lumjiakiase et al./ Microbiology (2006) Manuscript

described in previous studies (Loprasert ef al., 2004). Integration of the dps4 promoter::/lacZ
transcriptional fusion into the chromosome of B. psewdomaliei PP844, the QS mutants PKIS,
PKR7 and KBIRS and their corresponding complemented strains was achieved by
corjugation of TnpD on plates containing trimethoprim (200 ug ml™). In order to express the
LipsA protein in KBIRS, pDps (Loprasert ef al., 2004) was transformed into this mutant to
wreae KBIRS+dpsA. To determine whether BpsR regulated dps4 directly, pBBR-R2 was
introduced into E. coli CpUT to generate £. coli CpUT+R. The bactcria_ were selected on agar

ccmaining rimethoprim (100 pg mi™') and spectinomycin (200 pg ml).

Assay for S-galactosidase activity. Cell lysates taken from different phases of growth from
3. pseudomaltlei strains grown in MMO9 medium with 0.5 uM NaCl and with or without C8-
HSL {200 nM) at 37°C were prepared using bacterial protein extraction reagent (Pierce) and
1.ayed for fgalactosidase activity in Miller units using o—nitrophenyl‘-ﬂ-D-galactoside as a
substrate (Miller, 1972). Similar assays were undertaken for £. coli CpUT and CpUT+R
grown in the absence or presence of C8-HSL, 3-ox0C8-HSL, 3-hydroxy-C8-HSL, C10-HSL,

3-hydrox: -C10-HSL and 3-hydroxy-C12-HSL (100 nM).

Growth on oxidant agar plates. Bacterial cultures were grown overnight in M9 low glucose
medium and adjusted to ODgny 1.0 and 10-fold serially diluted. Ten microliters of each
dilutivn was spotted onto LB agar containing 150 uM tert-butyl hydroperoxide (.-BOCH) and

the extent of growth was observed after 24 h of incubation at 37°C (Loprasert ef al., 2004).

Growth inhibition zone assay. Bacterial cultures grown overnight in M9 low glucose

medium vere adjusted to ODgep 1.0 and added to 3 ml of warm top LB agar. The mixtures
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were overlaid onto LB agar plates. Paper discs containing r-BOOH (250 uM) were placed on
the cell lawn. Zone diameters of growth inhibition were measured afier 24 h incubation

(Loprasert e al., 2004).

Oxidative stress assay. Overnight stationary phase cultures of wild type, KBIRS and
KBIRS+dpsA mutants cells were incubated at 37°C with shaking at 250 rpm in the presence
and absence of -BOOH at concentrations up to 150 uM. After the addition of -BOOH
iwhich becomes time zero in the experiment), viable-cell counts every 30 min were

perodically determined.

Synthesis of AHLs. A range of AHLs with acyl side chains from C4 to C14 in length with or
without 3-oxo or 3-hydroxy substituents were synthesised as previously described by Chhabra

ctal {19935 2003).

ARL extraction and LC MS/MS analysis B. pseudomallei strains were grown to an
ODguyy 1.6 in 2 1 tryptic soy broth at 37°C with shaking at 250 rpm. Cells were removed by
cenfrifugation and the supernatant was extracted twice with equal volumes of acidified ethyl

accate (10 pl of glacial acetic acid per liter of ethyl acetate) and concentrated by rotary

evaporation at 40-45°C. The residue was resuspended in 50 pl of methanol prior to liguid
ciromatography tandem mass spectrometry {(LC-MS/MS). AHLs were separated by reverse
phasc chromatography (RP-HPLC) using an Exsil Pure C18 MS 5u column (250 x 2.1 mmy;
Allic i Associales, [nc.) coupled to a tandem mass spectrometer (Applied Biosystems 4000
C TRAP) and eluted with a 35-70% w/v acetonitrile/water gradient as described before
(Yates ¢f af., 2002). Enhanced product trap experiments (EPI) were triggered by precursor ion

(m = 102) scanning for between the m/z range 150-350. The precursor ion m/z 102 is



-

19

20

10 P. Lumjiaktase et al./ Microbiology (2006) Manuscript

characterisitic of the homoserine lactone ring moeity. EPI spectra (m/z range 80-400)
containing an ion at #/z 102 ion were compared with the product mass spectra of the

corresponding synthetic AHL standard.

RESULTS

B. pseudomaliei strain PP844 produces multiple AHLs

Spent staiionary phase culture supernatants prepared from B. psendomallei strain PP844 were
extracted with ethyl acetate and subjected to LC MS/MS. The data obtained are summarized
in [able 2. Six AHLs were unequivocally identified by comparison of their retention times,
molecular and principal fragment ions with synthetic standards. These are C8-HSL, 3-oxo-

~8-H 5L, 3-hydroxy-C8-HSL, C10-HSL, 3-hydroxy-C10-HSL and 3-hydroxy-C12-HSL.

C8-HSL and 3-0x0-C8-HSL production is dependent on épsi and bpsR

'he gere coding for the Luxl homologue bps/ was cloned from the B. pseudomailei PP844
chromosome and sequenced. Bpsl is 97% and 98% identical with the corresponding genes
from B. pseudomalier strains K96243 and KHW respectively (data not shown).  Since the
ideatity ol the AHL(s) synthesized via Bpsl have not been unequivocally chemically
idenufied, the bpsi gene was expressed in £ coli EBPL.  Ethyl acetate extracts of EBPI
cubiure supernatants were subjected to LC MS/MS and a molecule with an m/z 228 was

identified with fragmentation ions of m/z 127 and 102, characteristic of C8-HSL (Table 2).
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To evaluate the impact of dpsi and bpsR mutations on the AHL profile of B. pseudomallei
PP844, we constructed bps! (PK15) and bpsR (PKR7) mutants. Table 2 compares the AHL
profiles derived rrom LC MS/MS analysis of the corresponding spent culture supernatants. In
botn mutants, the only compounds absent are C8-HSL and 3-oxo0-C8-HSL a finding which
ind.cates that Aps/ is responsible for their synthesis in B. pseudomallei PP844 and that the
BpsIR system does not impact on the expression of the other AHL synthases present in this
organism. Table 2 also shows that bps/ is regulated by BpsR since mutation of bpsR results in

the lv. s of C8-HSL and 3-ox0-C8-HSL synthesis.

Expression of dpsA in B. pseudomallei is BpsIR/C8-HSL-dependent

n the promoter region (-74 to -55) of dpsA, we identified a 20 base pair sequence
(GCATCCCGeATCGGGeATGC) as a fux box motif characteristic of genes which are
regulated via LuxRIJAHL—dependent QS. This motif matches the consensus sequence for the
V' fischert fux/ lux box at 11 out of 21 positions as well as the P. geruginosa rhlfl lux box
(1220 bases). To assess whether QS is involved in regulating the response of 5.
e wlomallel to oxidative stress. we first introduced a dpsd:ilacZ transcriptional fusion via
'npl) onto the chromosome of B. pseudomallei PP844, the isogenic bps!{ (PKIS), bpsR
(PKR7) mutants and bpsiR double mutant (KBIR5) as well as the corresponding

complemented strains.,

Fig. ! shows that dps4 expression is induced in late logarithmic phase of growth (6 h post
meculation). The bpsl, bpsR and bps/R mutants all exhibited substantially reduced levels of
[alactosidase activity throughout growth when compared to the PP844 wild type indicating

that dpsd is regulated via bps[R.  Provision of exogenous, synthetic C8-HSL for the bps/
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mutant (PKI3) o.r genetic complementation of the bpsR (PKR7) and bps/R (KBIRS) mutants
wompletely restored dpsA expression (Fig. 1) suggesting that the dpsA gene is directly or
indirectly regulated by the bpsiR QS system. Fig. | also demonstrates that mutations in the
bpsIR QS system have no adverse effects on the growth of B. pseudomallei under these
sulture conditions and that exogenous synthetic C8-HSL is unable to overcome the growth

shase-dependency of dpsA expression.

B. pseudomallei bpsIR QS mutants show increased sensitivity to oxidative stress due to

reduction of dpsA expression

Muiation or overexpression of dpsA in B. pseudomalles confers hypersensitivity or increased
125 siance respectively to the organic oxidants such as the organic hydroperoxide +-BOCH
{Loprasert ¢t «l, 2004). To determine the sensitivity of the bpsi, bpsR and bpsIR mutants to
naidative stress, each strain was grown on oxidant agar plates containing 150 uM -BOOH.
Fach of the mutants was more sensitive to (-BOOH than the wild type or the corresponding
cumplemented strains (Fig. 2a). The wild type and complemented strains grew when diluted
ta 107107 ¢fu ml™ however in contrast, the QS mutants only grew when diluted to 107210
crfu mi”. This suggests that PKI5, PKR7, and KBIRS are between 1,000 - 10,000 times more

~ensitive (0 hydroperoxide stress.

I+ ovaluate whethey the increased sensitivity of the QS mutants was a consequence of
rotuced dpsd expression, we analyzed the response of the wild type PP844, hps/R mutant
KBIRS and KBIRS carrying pDps (KBIRS+dpsA). pDps is a plasmid borne copy of dpsA
previvusly shown to enhance the resistance of B. pseudomallei to -BOOH (Loprasert ef al.,

2094). Fig. 2b shows that the wild type grew to the dilution of to 107 ¢fu mI™" and KBIRS to
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107 ¢fu mI”', whereas KBIR5+dpsA grew to 10° cfu ml”. Taken together, these results
demonstrate that bps/ and bpsR QS mutants are more sensitive to oxidative stress and this is
likely to be due to a reduction in dpsA expression and hence DpsA production. The growth
inhibition zone assay (Fig. 2¢) further confirmed that both wild type and complemented B.
pseudamallei strains were more resistant to (-BOOH than were the S mutants on LB agar.

The dpsA complimented strain aiso showed more resistant to --BOOH as expected.
BpsR and C8-HSL are required for maximum expression of dpsA4 in E. coli

To determine whether BpsR directly regulated the expression of dpsd in the presence or
absence of AHLs, we used £ cofi CpUT habouring the dpsA . :lacZ transcriptional fusion
plasmid, TnpD, together with pPBBR-R2 to give E. coli strain CpUT+R. Fig. 3 shows that
dpsA promoler activity in E. coli CpUT is ~800 J-galactosidase units mt” and remains
unchanged on introducing bpsR (E. coli CpUT+R). Exogenous provision of C8-HSL to E.
coli CpUT+R but not E coli CpUT increased dpsA expression approximately 3-fold (to

-2 200 Bygalactosidase units ml™). None of the other AHLs produced by B. pseudomallei

strain PP844 enhanced dpsA4 expression.

DISCUSSION

n common with Gram negative bacteria such as P. aeruginosa (Winson et al., 1995),
Rhizobium leguminosarum (Lithgow el al., 2000) and Yersinia pseudotuberculosis (Atkinson
ef al.. 1999), B. pseudomallei possesses several Luxl homologues and produces multiple AHL

CS signal molecules. B. pseudomallei PP844 is an extremely virulent strain isolated from a
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patient who died from the most severe clinical manifestation of melioidosis (Utaisincharoen er
al., 2001). PP844 produces six AHLs with C8, C10 and C12 acyl side chains with or without
C3 position substituents. Of these, 3-0x0-C8-HSL and 3-hydroxy-C12-HSL have not
previously been identified in B. pseudomallei while C8-HSL, 3-hydroxy-C8-HSL, C10-HSL,
end --hydroxy-C10-HSL were previously reported by Ulrich er al. (2004a) in B. pseudomaliei
strain DDO03. This strain also made 3-oxo-C[4-HSL, an AHL which was not present in B.
pseudomallei PP844 culture supernatants. In bacteria which possess multiple LuxRI
homologues, these QS systems are usually interdependent. In B. pseudomallei DDO3,
mutation of any of the three individual AHL synthase genes had no effect on the AHL profile
apart from the pmil! mutant which did not produce 3-hydroxy-C14-HSL. These data do not
twwever define which AHLs are synthesized by which LuxI homologue and suggest that
ther: is substantial redundancy in the system. Here we have shown that mutation of bps/
results in the specific loss of two AHLs, C8-HSL and 3-ox0-C8-HSL from the AHL profile of
the parental PP844 strain. To confirm these data, hpsi/ was expressed in E. coli. However,
only C8-HSL was synthesized suggesting either that £. coli is unable to synthesize 3-oxo0-C8§-
HS1. via Bps! or that 3-0x0-C8-HSL is produced via a different AHL synthase, the expression
of whiich depends on the presence of C8-HSL. When expressed in a heterologous host, Luxl
homologues do not always generate the same AHL profile as in the original bacterium
(Atkinson er «l., 1999) and this is the most likely explanation for our observation. Our
inequivocal demonstration that Bpsl directs the synthesis of C8-HSL is consistent with the
HPLC and bioassay data reported by Song et af (2005) for B. pseudomaliei strain KHW.
However, it is not possible to conclude that C10-HSL is the main AHL produced via Pmli
(the equivalent gone to bpsly in B. pseudomallei strain 088 since the authors only examined
cuiiure supernatants from the parent strain (Valade ef af., 2004) which produces multiple

AHLs.



10

17

12

14

15

16

17

21

22

23

25

15 P. Lumyjiaktase et al./ Microbiology (2006) Marnuscrips

In F. pseudomallei and the closely related obligate animal pathogen Burkholderia mallei, QS
mutanis are highly attenuated in experimental animal infection models (Ulrich ef al., 2004a;
2004b). Although B. mallei appears to possess only two Jux/ homologues, nevertheless it also
produces C8-HSL.,, 3-hydroxy-C8-HSL, CI10-HSL and 3-hydroxy-CI10-HSL (Ulrich et af.
~004b} whereas the non-pathogenic Burkholderia thailandensis does not produce any of the
3-hydroxy or 3-oxo0- compounds although it does synthesize C6-HSL, C8-HSL and C10-HSL
fUlrich er af., 2004c¢). It is therefore possible that the QS systems employing the substituted

AHLs are more closely associated with the regulation of virulence.

Mutation of psR in PP844 also resulted in the loss of C8-HSL and 3-oxo0-C8-HSL synthesis
indicating that BpsR is required for the synthesis of these two AHLs presumably by
contielling bps! expression. Indeed, Song et af (2005) have shown that C8-HSL is required to
activate transcription of both bpsi and hpsR. Our data also indicate that the bpsIR system
does not control the expression of the two other /ux/ homologues systems present in B.
pseudmmullei although it remains possible that the other LuxR proteins and AHLs may

influence dpsiR expression.

The organic hydroperoxide -BOOH has been shown to cause DNA damage in mammalian
cells because it reacts with metals to generate rers-butoxyl radicals (Altman er al., 1994).
DpsA type proteins have previously been demonstrated to prevent iron-dependent hydroxy
rad.cal formation (Yamamoto e/ al., 2002) and in B. pseudomaliei, DpsA conferred protection
against £-BOOH (Loprasert el al., 2004). As bps/ and bpsR mutants exhibit reduced
expression of dpsd, we thought it likely that they would show increased sensitivity to (-

BOOH. This was indeed the case with both mutants being more sensitive to ~-BOOH. This
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defect could be complemented by provision of C8-HSL to the hps/ mutant or by genetic
complementation of the bpsR and dpsRI mutants. In addition, the viability of the QS mutants
was reduced in the presence of -BOOH when compared with the parent strain cultured under
similar conditions. Protection against t-BOO! could also be achieved in the bpsRI mutants
by increasing the expression of dpsA. The data suggest that the increased sensitivity to ¢
BOOH observed in the bpsRI mutants is due specifically to a reduction in dpsA expression.
Thus the response of the B. pseudomaller wild type to oxidative stress is partially controlled in
& cell population density manner through QS as demonstrated in this study perhaps reflecting
the need to protect DNA from oxidative damage in high density “overcrowded” stationary
phase cultures. in P. aeruginosa, the response to oxidative stress imposed by hydrogen
percude and the Op generating agent phenazine methosulphate is also QS controlled since

sod 1, sodB and katA are regulated by both the /as and rAi QS-systems (Hassett ef al., 1999).

B pseudumallei can resist phagoceytic intracellular killing (Egan & Gordon, 1996) and remain
dormant within a host for many years {Nathan es a/., 2005). It has evolved a variety of
mechanisms to protect its DNA from oxidative damage from either cellular metabolism or the
envisonment, and under such conditions will produce high levels of the non-specific DNA-
binding proteir. 2usA which effectively protects DNA against oxidants (Almiron er al., 1992;
Leorasert et al., 2004). In B. pseudomallei (and also B. cenocepacia strain, J2315) dpsA s
located adjacent to karG. In the former, both genes are co-transcribed during oxidative stress
but under conditions where katG is not highly induced, dps4 is transcribed from a second
promoter within the katG-dpsA intergenic region (Loprasert ef al., 2003). This region also
conrtains a /ux box motif and here we have shown that dgpsA expression is positively controlled
by the BpsR1 QS system. In Burkholderia cepacia strain ATCC25416, Aguilar et al. (2003)

igentified a genomic clone (P80) that was activated in an £. coli strain carrying CepR when
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supplied with C8-HSL. Although they were unable to identify the target gene(s) regulated by
Cept in ATCC25416 , from the sequence data obtained they noted that a DpsA homologue
was present 200 bp downstream of the identified sequence in B. cenocepacia strain (J2315), a
strain whose genome has been sequenced. Although no direct evidence was presented, it is
poussible that the response of B cepucia complex to oxidative stress may also be quorum

sensing controlled.

In B. pseudomallei, dpsA expression is not completely dependent on dpsRI since ~450 3-
galactosidase u mi™ are observed in the QS mutants (Fig. 1). It is therefore likely that dpsA
expression is also subject to control by a number of regulatory systems where QS provides the
p(')pulation deriiy signal required to trigger dpsd expression in combination with other
enviconmental signals. This is a characteristic of many AHL-dependent QS systems (Withers
el ., 2001). Furthermore, it s noteworthy that dpsAd expression was not advanced in 8.
pscudomallet by provision of exogenous C8-HSL and remains population and growth phase-
dependent, This phenomenon has also been noted in P. ageruginosa where provision of
eaogenous AHLs at the start of growth does not induce early induction of QS-dependent

virulence determinants (Diggle et ai., 2002; 2003).

In conclusion, we show that (&) B. pseudomallei PP844 synthesizes six AHLs two of which
(3-ox0-C8-HSL and 3-hydroxy-Cl12-HSL) have not previously been identified in A
pxeuelomulier, (b) Bpsl directs the synthesis of C8-HSL and 3-ox0-C8-HSL: (¢) BpsR, in
conjunction with C8-HSL, contributes to the oxidative stress response by positively

regulating clpsA expression.
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Strain or plasmid

B. pseudomallei strains

Relevant genotype or characteristic(s)*

Source or reference

TI'KE Wild-type, virulent clinical isolate Loprasert et al 204y |
PKIS N PP844 containing pKNOCK :6psip, Te This study |
PKK7 PP844 containing phNUCK :6psRp, Co' This study .
KDIRS PP844 containing pKNOCK::bpsRp, pknock:bpslp, Tc' | This study

Cm’
i'-lglc-_'EE: B ; TPKR7 contaming pBHR-RZ, Cm' 5p This study

'II_I._I]U 13 KBIRS containing pBBR-IR3, Te' Cm' §p' This study

RBIR S+ KBIRS containing pDps, Te' Cm' Sp' This study

E. coli strains

I DH3e Fo80diacZ AMISA(lacZYA-argl) U169 recAl hsdRI7 (rk’ | Hanahan et al, 1983
| k") supE4d A-thi-l reldl gyr 496
L S1T-Lapr RP4-2-tet::Mu-1 kan. . Tn7 (Ip' Sm") thi prod hsdR recA Simon et al. 1983
CUng E. coli strain used as a host for conjugation of transposable | De Lorenzo et al. 1990
element pUT-miri-TnSCm
CpUT CCI118 containing TnpD vector, Tp' Loprasert et al. 2004
CpUT+i CpUT containing pBBR-R2, Tp' Sp' This study
ERPY DHSe containing plICL. Amp This study
Plasmids
i p_Lf 1 pUCLY containimg the rﬁlrliEnglh B. psendomallei bps! | This study
zene, Amp"
' PKNOCK-T¢ Mobilizable suicide wvector for construction of gene | Alexeyev et al. 1999

knockouts in_Gram-ncgative bacteria, Tc'

Mobihizable suicide vector for construction of gene
knockouts in_Gram-negative bacteria, Cm'

Loprasert et al, 2004

Alexeyev et al, 1999

gene

E_BBR-SP Broad-host-range cllnning veclor, Sp’
pKBI pKNOCK containing a 298-bp internal segment of 8. | This study
- pseudomaliei bps!
r pKBR pKNGCK containing a 323-bp internal segmiznit of B | This study
| - _ | pseudomailei bpsR
 pHBR-RK2 pBBR-Sp containing the full-length 5. pseudomatfei bpsR This study
pBISR-IRE pBBR-Sp containing the full-length 8. pseudomatiei bpsi® | This study

pDps

i ﬁﬁpU

pBBR-Sp containing the full-length B. pseudomallei dpsA
gene

Loprasert et al. 2004

400 bp of upstream dpsd sequence inserted upstream of

facZ in pUT-TnSlacZ], Ty

A 654 bp fragment contmming the 5 end i)_f-_a’p.r.‘f and |

Loprasert et al. 2004

* Amp' . ampicillin resistant: Te' . Tetracyctine resistant: Cm' . Chiloramphenicol resistant; Sp° . Spectinomycin resistant; Tp"

trimethoprim resistant.




26

P. Lumjiakiase et al./ Microbiology (2006) Manuscript

1 Table 2. LC MS/MS analysis of the spent culture supernatants of B. pseudomallei PP844, its

2 corresponding quorum sensing mutants, and an E. coli strain harbouring bps/, showing the

3 profiles of AHL molecules synthesized by these strains.

4
5
| AHL T o | m/z | Reten | Principal | PP844 | PKIS | PKR7 | EBPI
tion fragment (wild | (bpsk-) | (bpsR-) | (E. coli+
time ions type) bpsi)
| \I_ o (min)
cgHSL | : ﬁo 228 | 59 228, 127, 102 + : : +
Foxo-C8 |~ f . 242 | 48 | 242,141,102 m : - —
HSL NG
e ' 8] — —_
3-hydroxy- | a8 244 4.6 244,226, 125, - + + =
C8-HSL { P ﬁ/%\o 102
C10-HSi, I“ I [ 256 | 85 | 256,155, 102 n ¥ 4
» WAy
.;In_ya'roxy-’f i \/\/\)Oiji ~ | 272 | 54 272,254, 153, + - ¥ -
CI0-H. 1L |-~ oy’ 102
| I —— R —_— O - —_— —
$-hydioxy- ol /g_) 300 | 79 300, 282, 181, v v :
19, - T
| C12-HSl. |7 N ‘ B 102

¥

3
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Expression of dps4 promoter during growth of B. pseudomallei. Average -
valactosidase activities (patterns) from triplicate experiments in crude extracts of the
dpsA-tacZ transcription fusion integrated into B. pseudomallei parent strain PP844,
bps! knockout mutant (PK15), bps/ knockout mutant supplied with 200 nM of
exogenous C8-HSL (PKIS+C8), bpsR mutant (PKR7), bpsR knockout mutant
complemented with bpsR plasmid pBBR-R2 (PKR7+R), bpsiR double knockout
mutant {KBIRS) and bps/R double knockout mutant complemented with the dpsiR
plasmid pBBR-IR3 (KBIRS5+IR) were shown by bar graphs and their range were
shown by error bars. The negative control used was the PP844 parent strain without

the dpsA-lacZ transcriptional fusion. The growth (Aggg) was shown (line with symbol).
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Fig. 2. Sensitivity of B. pseudomallei quorum sensing mutants to --BOOH.
Determination of the [evels of resistance to B. pseudomaliei t-BOOH killing in the parent
strain PP844, PKIS, PKI35 with exogenous C8-HSL (PKI5+C8), PKR7, PKR7+R,
KbIR>. KBIRS+HIR, and KBIRS+dpsA. (a, b) Growth on oxidant agar plates assay. Serial
[0-fold dilutions of cultures were spotted. (¢) Growth inhibition zone assay. Average
growth inhibitory zone diameters were shown. The assay was dore in triplicate and

ranges were shown as error bars.
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3 Fig. 3. Expression of dpsA in E. coli in the presence and absence of bpsR and AHLs (100

4 nM). The fgalactosidase activities were determined for £. cofi carrying the
5 dpsA:lacZ fusion without (£. cali CpUT) or with spsR (E. coli CpUT+RY) in the
6 * absence or presence of the AHLs produced by B. pseudomallei PP844 where C8 is

=

C38-HSL, C8=0 is 3-0x0-C8-HSL, C10 s C10-HSL, C12-OH is 3-hydroxy-C12-HSL;
8 C8-OH is 3-hydroxy-C8-HSL and C10-OH is 3-hydroxy-C10-HSL. Data are given as
B means of triplicate experiments.
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Abstract

Burkholderia pseudomallei is a bacterial pathogen causing the melioidosis disease, which is
predominar iy found in tropical areas of Southeast Asia and Northern Australia. Burkholderia
rhailandensis (s a closely related species to B. pseudomallei but it is non-pathogenic species. In this
study, we have constructed a protecme reference map of B. pseudomallei at the stationary phase of
growth by using two-dimensional gel electrophoresis with a pH 4-7 immobilized pH gradient
combined with matrix-assisted laser desorption ionization fime of flight mass spectrometry.
Approxsimatety 550 spots could be detected by Coomassie brilliant blue G-250 staining, and §8 spots
representing 77 unique proteins were identified. Eleven of the gene products were found in multiple
spots indizating as isoforms. In attempt to detect distinctive expressed proteins between a virulent
arid a non-virulent species, the use of comparative proteomic profiles under the same condition were
performed. We could identify more than twenty different spots. Twelve out of fourteen spots are
detected in B. pseudomallei and six proteins have been identified and indicated that they are
invalved in virulent characters of bacteria. Two hypothetical proteins were expressed and found only
in B. pseudomaliei. These proteins are potential markers to distinguish between these two species.
Our study also provides a useful information of global intracellular protein expression and is a

valuable starting point for analyzing a proteomic pathogenicity of the bacterial pathogen.

Keywords: Surkliolderia pseudomaliei 7 Melioidosis / Pathogenicity / Prateome / Buvkhalderia
thailandensiy



Iutroduction

Burkholderia pseudomallei 1s a Gram-negative rod shaped bacteria. it is the causative agent
of melioidosis, an infectious disease that is an important cause of acute pneumonia.and septicaemia
in tropical regions of India, Southeast Asia and Northern Australia and is of worldwide cancern.
Burkholueria thailandensis is a closely related to B. pseudomallei. Although, the bicchemical
profiles of both organisms are in similar, an ability to assimilate L-arabinose and its non-virulent
character are distinct [1]. The recent determination of B. pseudomallei and B. thailandesis genome
sequence [2] provides a new framework for the elucidation of the genomic and physiological roles of
these bacteria by using transcriptomics and proteomics [3]. However, proteomics can provide more
reliable protein markers in a specific condition than transcriptomics that could be applied in term of
the function of genes [4-6].

Many reports on B. pseudomallel and its induced diseases have been published, but a study
of large scale expressed proteins from the whole genome of B. pseudomailei have been started to be
carried out [3]. No proteome reference map of B. pseudomailei intracellular expressed proteins at the
stationary phase of growth has been performed. In this study, we provide a global analysis of the
intracenfar expressed proteins and construct an initial proteome reference map of total proteins of
8. psewdomallel grown in the stationary phase using 2D-GE and matrix-assisted laser desorption
iomization time of flight mass spectrometry (MALDI-TOF MS). We also illustrate a useful
information of the protcome reference map to a study of potential virulent factors and differentiation

of the protein markers of B. pseudomallei by comparing with B. thailandensis.



Materials and methods

Bacteria, growth condition and protein extraction

The clinically isolated Burkholderia pseudomallei strain 844 [7] and 8. thailandensis E257
was grown (o stationary phase (ODggp of 9.6} in a 100 mL Luria Bertani (LB) medium under
vigorous agitation at 37°C and 250 rpm. One mL of the culture was harvested by centrifugation at 10
000 » g for 1 min at 4°C into a microcentrifuge tube. The protein was extracted using ReadyPrep
total protein extraction kit { BioRad, Hercules, CA. USA) or lysis buffer (7 M urea, 2 M thiourea. 1%
whv ASEB-14 detergent. 40 mM Tris-base. 2 mM TBP and 0.001% bromaphenc! blue). Immobilized
pH-gradient (1IPG) buffer pH 4-7 (Amersham Biosciences, Upsala, Sweden) and protease cocktail
inhib'tor set 11 {CalBiochem, La Jolta, CA, USA) were added into the lysis buffer with a final
concentration of 1% v/v. The prepared lysis buffer of about 500 puL was added into the cell pellet.
Cell lysi: was performed on ice by sonication, and the cell debris was removed by centrifugation at
13 000 x g for 30 min at 20°C. The supernatant was transferred into a clean tube. The protein
conicentration was determined by RC DC protein assay (BioRad). One, two and three pL aliquots of
the protein solution were mixed with the assay reagents in microcentrifuge tubes. Two hundred pl.
of the nixed solutions were transferred into a 96-wells plate and the absorbance were measured at
620 nim by Multiskan EX (ThermoLabsystems). Protein concentration was calculated using BSA as
a standard.
vwo-dimensional gel electrophoresis (2D-GE), gel scanning, and image analysis

t-or the first dimension, a 1 mg protein sample was added with the rehydration buffer (8 M
urea, 2% w/v CHAPS, 20 mM DTT and 1% v/v IPG buffer pH 4-7) to a total volume 0of 350 pL. The

isoelectric focusing gel was performed using 1 8-cm precast Immobiline DryStrip with a linear pH 4-



7 and m IPGphor system (Amersham Biosciences) as described elsewhere [8]. Briefly, the strip was
rehydrated for 12 h at 20°C following with the voltage profiles: (i) linear increase from 0 to 500 V
for 1000 Vh; (ii) linear increase from 500 to 1000 V for 2000 Vh; (ii1) inear increase from 1000 to
8000 V for 65 000 vh as the final phase. All profiles were controlled at the current of 50 pA/strip.
The 1PG-atrip was then equilibrated for 1S min in 10 mL of equilibration buffer [ (6 M urea, 30%
wiv glyceval, 2% wiv SDS, 0.05 M Tris/HC 1 buffer pH 8.8 and [% DTT) followed by 20 min in 10
mL of eyuilibration buffer 11 (6 M urea, 30% w/v glycerol, 2% w/v SDS, 0.05 M Tris/fHCl buffer pH
8.8 and 4% iodoacetamide). After the equilibration, the strip was transferred to 20 cm x 20 cm
[2.5% Swb-PAGE gel for the second dimension. Electrophoresis was performed at 4°C in an Owl
separation system (Fisher Scientific) at 10 mA for 20 min, and 20 mA for approximately 18 h. After
¢lectroplioresis. proteins were visualized by Coomassie brilliant blue G-250 staining as described
elsewhere [9]. The number of proteins expressed on 2D-GE was analysed using PDQuest software
versior, 7.2 (BioRad).
Tryptic 1n-gel digestion of 2-DE spots

Protein spots were excised and transferred into 1.5 mL microcentrifuge tubes and subjected
o in-gel digestion which was performed by an Eftan Spot Handling workstation {Amersham
Bioscierces). The digestion was performed as described elsewhere [10] with minor modifications.
The gel pieces were washed three times in 1 mL deionized water followed by 1 mL washing solution
{50% wv/v methanol) for three times. The gel pieces were dehydrated by addition of 200 pL
acelonadile and complete drying in a vacuum centrifuge. The proteins were reduced by addition of
50 gl 10 mM DT and alkylated by addition of 50 ul 100 mM iodoacetamide for both 30 min at

room lemperature. To exchange the buffer, the gel pieces were dehydrated in 200 uL acetonitrile,



hydrated in 200 uL of 100 mM ammonium bicarbonate and dehydrated again with 200 uL
acetonitrile. The dehydrated gel pieces were then dried completely in a vacuum centrifuge and
rehydrael in 50 pL of 20 ng/uL ice-cold, sequencing-grade trypsin (Amersham Biosciences) for
5 min on ice. Any excess trypsin solution was removed and the digestion was carried out for
avernight at 37°C. The peptides produced after digestion, were collected by successive extractions
with 3G pL of 50 mM ammonium bicarbonate and 56 ul of 50% acetonitrile with 5% formic acid. A
total extract was concentrated in a vacuum ceutrifuge to 20 pL for further analysis.
MALDI-TOF MS

Peptide mass fingerprinting (PMF) were obtained by BioService Unit (BSU), National
Science and Technotogy Development Agency, Pathumthani, Thailand, using an Autoflex MALDI-
TOF mass specrrometer (Bruker Daltonik Bremen, Germany), with delayed extraction and reflection
[11]. The matrix solution, a-cyano-4-hydroxycinnamic acid (Bruker) was prepared by dissclving to
saturation in 70% acetronitrile/water with 0.1% trifluoroacetic acid. The digested peptide of
approximately 1 pL was mixed with 5-10 plb of matrix solution. The mixture was spotted onto a
stainless steel target and left to dry at room temperature. The mixture was then irradiated with a 337
nm N, laser, accelerated with 20 kV accelerating voltage in a two-stage gridless pulsed-ion
extraction source. The instrument was operated in the positive, reflectron mode. Typical mass
accuracy was better than 200 ppm with external calibration. The protein calibration standard 1
(Brukee Liasonik, USA)Y was used as an external calibrant that was applied to a target well separated

{from the sampies. The cafibrant consists of {our proteins which are insulin, ubiquitin 1, cytochrome



C and myogiobin with the covered mass approximately range between 3000 o 25000 Dalton The
resulted PMF were visualized by flexAnalysis software version 2.0 (Bruker Daltonik).
Database searches for protein identification

PMF were used for protein identification from tryptic fragment sizes by using MASCOT
search ergine (www.matrixscience.com) based on the entire NCBInr protein database using the
assumption that peptides are monoisotopic, oxidized at methionine residues and
carban.doimethylated at cysteine residues [12]. Up to two-missed trypsin cleavages was allowed,
although most matches did not contain any missed cleavages.
PCR amplification of a gene marker BPSL1958 in B. pseudomaliei and B. thailandensis

The presence and absence of BPSLI958 encoding a hypothetical protein in proteomic
profiles and in genome of B. pseudomaller and B. thailandensis, respectively, were confirmed by
PCR method. The fragment of BPSL1958 was amplified by specific primers based on a B
pyévudomaliei K96243 sequence for sense strand primer, 5’-GGCAAAATTAGCAGCTTCAAATC-
37 and for antisense strand primer, 5’-CCCAGGCAACGCGTAGTG-3°. Amplification condition
started with denaturation at 100° C for 10 minutes and 30 cycles of 94°C for 1 min, 62°C for | min,
72°C for | min then ended up with extension at 72°C for 5 min with DNA Thermal Cycler 480

{Applied Biosystems, USA). PCR praducts of about 872 bp were analyzed by electrophoresis on 1%

agarose pel.



Results
Two-dimensional gel electrophoresis of B. pseudomailei and B. thailandensis proteins

For an overview of pretein expression of B. pseudomaltlei 844 and B. pseudomallei E257,
2D-GL: ge! of total intracellular protein extracted from cells of the bacteria grown under the
stationary phase was performed using an 11 cm, pH 3-10 linear IPG strip. Approximately 500 spots
could be detected by silver staining. The region with the greatest protein expression was between pl
4-7 (data not shown) which was similar to that found in other bacterial species [5, 6, 13, 14, 15].
This result led us to choose a pH 4-7 IPG strip that allows for a better separation of proteins.

The separation by 21)-GE of | mg of B. pseudomaliei total proteins stained with Coomassie
brilliant bive G-250. which is compatible with mass spectrometry, permitted the detection of
approxin ately 550 spots using an [8 cm, pH 4-7 linear IPG strip, Most spots were located between
pl 4.5-7 and molzcular weight of 20-75 kDa (Fig. 1). B. pseudomallei protein spots having abundant
expression were selected and cut out for subsequent identification by MALDI-TOF MS.
Identification of B. pseudomallei proteins by MALDI-TOF MS

In order to create a proteome reference map for B. psewdeomallei, 88 of the most abundant
spots of various isoelectric points and molecular weights were cut out. In-gel digestion of protein
spows 0y trypsin was performed to cleave proteins at arginine and lysine residues. Peptide mass
fingerprints {PMF) were obtained from MALDI-TOF mass spectrometry. A resull of spol number 31
il pepalide nass fingerprinting is shown in Fig.2. The PMF was identified as 60 kDa chaperonin
using the MASCO|T seurch engine to query the NCBlnr protein database allowing up to Lwo misscd
cleavages, but most matches did not contain any missed cleavages. Seventy-seven unique proteins

were identified from 88 spots presented on the gel. Most of these spots were lacated between pl 4.5-



5.5. According to their relative functions, several groups of B. pseudomatiei protein were classified,
which are listed in Table 1. The groups of proteins include cell surface, energy metabolism, cellular
processes, regulatory functions, replication, transcription, translation, stress responses, phage-related

proteins, proteins with unknown function and hypothetical proteins.

A group of cell surface proteins appeared with small abundance in B. pseudomallei. This is
because the extraction method used in this study was performed by total protein extraction, but not
by cell surface protein extraction, which allows for solubilization and analysis of the cellular
compartment [4]. In addition, membrane proteins are generally low-copy-number proteins, so they
were not very abundant [13]. In contrast, a group of proteins related with energy metabolism shared
with the greatest number of the protein so far identified.

Many regulatory proteins were also identified. Protein spots with high expression and similar
to those were found in other bacterial species [5, 6, 12, 13, 14] were 60 kDa chaperonin. GroEL,
chaperonin GroEL, 10 kDa chaperonin (GroES), enolase (Eno), heat shock protein (GrpE),
oxidoreductase { AhpC), superoxide dismutase (SodA), hydroperoxide reductase and thiol peroxidase
{Tpx). This indicates that these proteins had high expression level in many growth conditions,
including minimal {5, 12, 14] or enriched mediums [6, 13] and the patterns of their expression were
similar in many bacterial species. Moregver. the existence post-translational modifications were

identizied. Inthis study. we found 17 spots of isolorms from the 6 genes as summarized in Table, 2.



Identification of B. pseudomaliei potential virulent factors and protein markers

In attlempt to study porential virulent factars and protein markers found in B. psewdomailei
compared with B thailandensis, we therefore hypothesized that the differences of protein
expressions found in B. pseudomaliei but absent in B, thailandensis, were suspected to play a role as
poten.ial virulent factors or potential protein markers. The proteomic profiles of B. thailandensis and
B. pseudomullei were then compared and the different spots were identified as shown in fgure 3.
The resuits shuwed significant different protein expressions in more than twenty spots. Fourteen
spots showed significant different levels of protein expression in B. pseudomaller compared with B
thailandensis, Twelve out of fourteen spots were found in B. pseudomallei but were absent or at low
levels of protein expression in B thailandensis, These proteins were analyzed using B. pseudomalier
reference map and found to be cell surface proteins, energy metabolic proteins, cellular processes,
siress response and also hypothetical proteins as summarized in Table 3. In order to verify the
different tevel of protein expressions found in proteomic profiles, the PCR amplification of a gene, a
hypothetical protein BPSL1958, was performed with 3 isolates of both A psendomaliei and B,
thatlaad: (s (data not shown). The results were corresponding to the level of the protein

expressions and theirs genome databases as shown in figure 4.



Discussion

Since B. pseudomallei has a complete genome database [2], the function of open reading
frames (ORF) of this bacteria can be easily characterized. However, overall ORF are not yet
characterized. To support the functional genomics, proteomics s a powerful technique to study the
global protein expression. We have constructed the first proteome reference map for intracellular
protein expression under the stationary phase of B. pseudomallei, which can be used for study of
protein expression of this bacteria. The analysis of B. pseudomaliei began with the analysis of
protein profile using a pH 3-10 IPG strip, which demonstrated clearly that the greatest number of
proteins were located between pl 4-7. Therefore, a pH 4-7 IPG strip was chosen for construction of a
B pseudomaltlei proteome reference map.

Approximately 550 spots were detected on the Coomassie brilliant blue G-250 stained gel on
18 cny, pH 4-7 IPG strip. The result of the 2D-GE pattern from total protein of B. pseudomallei
showed highly resolved protein spots. The moest abundant proteins were present in great numbers
within the range of pH 4.5-7 and 20-75 kDa. The differences in coding capacities and visualized
protuins may be explained by some of the following possibilities [8]: (i) some proteins were not in
the experimental window; (ii) certain proteins were insoluble in the PG buffer; (iii} Coomassie blue
staining was less sensitive; (iv) some proteins were not expressed under the growth condition; and
(v) membrane proteins are penerally low-copy-number proteins so they were not very abundant.

Evaluation and processing of the 2D-Gi of B. pseudomallei samples were conducted by
comparing :he observed peptide mass fingerprints (PMF) to the NCBInr database using MASCOT
scarch engine (www.matrixscience.com). There are three protein databascs used by the MASCOT

et are MSDB. NCBlor and SwissProt. However, the identification of 8. psewdamatlei proteins



could only be performed by using the NCBInr database, (his is due to the presence ot its protein
sequences derived from the senomic DNA scquence in the NCBInr but not the other two databases.
The PMF were widely successful when searched against the fully sequenced genome. We
identified 77 unique total proteins by PMF which were expressed in 88 forms on 2D-GE. Most of
these proteins were metabolic-related enzymes, heat shock proteins, and cell surface proteins. Some
of these proteins such as heat shock-response proteins and oxidative stress-response proteins were
expressed at high level similar to those found in other bacterial species [5, 6, 12, 13, 14]. The
existence post-translational modifications were identified from the six gene products since we found
the presence of isoforms (17 spots) as shown in Table 2. Post-translational medificatiors are known
to play a major role in eukaryotes but less is known about their role in bacterial physiology. The
migraied products of the same gene to several distinet spots indicate that the different properties of
the proteins, due to either mistranslation or post-translational events [6]. The 2D-GE is a more
powerful technique to identify their existence of isoforms compared to DNA microarray.
Interestingiy, we found six isoforms of 60 kDa chaperonin and GroEL, since all of these proteins are
the saine type of 60 kDa heat shock protein suggesting that post-translational modifications occurred
with 60 kDa chaperonin and GroEL in this growth condition. Qur finding is novel since there have
not been reports of post-translational modifications in B, pseudomallei. Study of their mechanism
may provide an insight into pathogenicity, which may be related to post-translational modifications.
We also applied the usefulness of the reference map to identify the potential virulent factors
aid protemn markers of the organism by comparing the proteomic profiles of the virulent with the
non-virglent species under the same conditions. More than twenty different spols were detected.

Fourteen spots were significantly found in different levels of protein expression between B



pseudomaller, a virulent species, and B. thailandensis, a non-virulent species. Twelve out of fourteen
spols were present 0: inghly expressed in B. psendomallei. Although, these proteins were also found
in their coding genes in the genome of B. thailandensis using BLAST search, six out of twelve
proteins have been studied and indicated that they are involved in virulent characters of bacteria.
Phosphatidyl ethanolamine, a composition in membrane, and LysM were highly expressed in 8
pseudomaller which have been identified as a potential virulent factor and involved in biofilm
formatior., respectively [16]. Eventhough in metabolic proteins that play the major functions
involving in energy for surviving, it have been suggested the role of phosphoglucomutase in
virulence [17]. The study of phosphoglucomutase mutant which could not change glucose-6-
phosphate tv glucose- 1-phosphate resulting in gluconucleotide and product derived from UDP-Gilu
including LPS were insufficient. The cellular processes proteins, GroEL and GroES are importance
for proper folding and function of proteins. A virulent property of GroEL has been proposed [18].
However, an appearance of isoform structure of the protein was interesting, particularly an isoform
that tound highly expression in the virulent species. The stress response proteins, oxidoreductase and
suneroxide dismutase, were alse invelved in virulence of bacteria [19, 20]. Interestingly, there are
four unkriown function proteins, hypothetical proteins, to be identified in virulent organism. Two of
the hypothetical proteins are not found in the genome database of B. thailandensis. Thus, the two
genes coding for the hypothetical proteins were considered to be the specific markers, not only for
protein markers but also for gene markers using PCR identification as shown in figure 4. Obviously,
these proteins should be investigated further in order to know their functions.

In summary, the first proteome reference map for B. pseudomaliei was constructed. A total of

intracellular B pseudomallei protein fractions at a stationary phase were analyzed and identified.



Establishing for B. pseudomallei is essential before starting further proteomic studies and is a
valuable starting point for analyzing the proteomic pathogenicity of this bacterial pathogen. In
addition, cosparative proteomes for identification of the potential protein markers between the two

closely related species, B. pseudomalier and B. rhailandensis, are applicable.
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Figure Legends

Figure 1. Proteome reference map of total protein extraction of Burkholderia pseudomaliei 844
obtained from stationary phase of growth. Identification of proteins was performed by 2D-GE
followed by MALDI-TOF MS. [soelectric focusing was performed with 1 mg of bacterial proteins
for 68 kVh using a 4-7 pH-strip. SDS-PAGE was performed on a 12.5% gel and stained with

Coomassie blue G-250. The numbers refer to the spot identity used in the table and text.

Figure 2. MALDI-TOF muass spectrometry analysis of spot number 31. (A} IHlustration of an
example of peptide mass fingerprint that is typical {for the mass spectra of 60 kDa chaperonin. (B)
Peptide mass fingerprint of the observed mass was performed using the MASCOT search engine.
Obscrved masses (17 ol total 40 masses) were matched to the theoritical masses of 60 kDa
chaperonin with dess than 380-ppm window ol error and 0 missed cleavage. The matched masses
were converted o aming acid sequences along variable residuc sites and covered 43% of the protein

sequence. Peplides that caused oxidation al methionine residue were shown.

Figure 3. Proteomic profiles of Burkholderia pseudomallei 844 (left) and Burkholderia
thatlandensiy 257 (right) obtained from the stationary phase of growth running in the same 2D-GE
conditions and staining with Coomassie blue G-250. The circles represent the different levels of
protein expressions between the two species. The numbers refer to the protein spots are detected in
B. psendomuliel 844 & reference map but absent or lower express in B thailandensis E257, except

nurnber 16 and 61 are higher expression in B. thailandensis E257 than in B. pseudomaliei 844.



Figure 4. PCR identification of a BPSL1958 gene coding for a hypothetical protein BPSL1958 of
Burkholdoria pseudomallei 844 (lane 3) compared with Burkholderia thailandensis E257 (lane 4).

Lane 1 is a standard size marker and lane 2 is a negative control.

Table 1. ldentification of Burkholderia pseudomaliei proteins in non-redundant sequence databases

(National Center for Biotechnology) using Mascot search engine and data from MALDI-TOF mass

spectrometry

Table 2. Summary of the proteins which have isoforms

Table 3. Sununarize an analysis of the proteins are significantly present or higher expression found
between Burkholderia pseudomallei and Burkholderia thailandensis. The arrows represent the
present or the higher levels of protein expressions and asterisks represent the hypothetical proteins

are not found in Burkholderia thailandensis genome database.



‘igure

B. pseudomallei B. thailandensis

Figure 2. Proteomic profiles of Burkholderia psevdomallei 844 (leff) and
Burkholderis thailandensis E257 (right) obtained from the stationary phase of growth
rinning in the same 2-DE conditions and stained with Coomassie blue G-250. The
circles represent the different levels of protein expressions between the two species.
The numbers refer to the protein spots are detected in B. psendomallei 844 but absent
or lower express in B. thailandensis E257, except number 4 and 9 are higher

expression in B. thailandensis E257 than in B. pseudomallei 844,

25



“igure

Figure 3. PCR amplification of a BPSL1958 gene coding for a hypothetical protein
BPSL1958 of Burkholderia pseudomaliei 844 (lane 3) compared with Burkholderia

thaifancensis B257 (lane 4). Lane | 15 a standard size marker and lane 2 is a negative

control.
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Tabhle 2. Summary of the proteins which have isoforms

Fretein name

Spot number

Modification

63 :.Da chaperonin

CroEL

50S ribosomnal protein L7/L12
Phusin-like protein {PhaZ)
Hydroperoxide reductase
Hyptthetical protein BPSL1549

30-32
33-35
53-54
61-65
67-68
79-80

Charge and mass differences
Charge and mass differences
Charge and mass differences
Charge and mass differences
Charge diference

Charge and mass differences

30
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