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Abstract

A set S ¢ V(G) is a (vertex) dominating set for G if every vertex of G either
belongs to § or is adjacent to a vertex of S. The minimum cardinality of a vertex
dominating set for G is called the domination number of G and is denoted by Y(G). A
dominating set S for G is a connected dominating set if it induces a connected subgraph
of G. The minimum cardinality of a connected dominating set for G is called the
connected domination number of G and is denoted by y.(G). A graph G is said to be y—
vertex—critical if (G — v) < y(G), for every vertex v in G. Graph G is said to be k—y—
critical if y(G ) = kbut y(G +e) <k for each edge e ¢ E(G). Similarly, G is said to be k-
Ye-critical if y(G ) = kbut y(G + e) <k for each edge e ¢ E(G).

For positive integers £, ¢ with ¢ > 2, we say that G is k—(y, f)—critical if (G ) = k
and for every pair of non-adjacent vertices w and v of G with d(u, v) <1, y(G + e) <k
Similarly, G is said to be k—(y,, t)}—critical if y.(G ) = k& and for every pair of non—adjacent
vertices ¥ and v of G with d(u, v) <1, 7.(G + e} <k.

A graph G of order p is k—factor—critical , where p and k are positive integers with
the same parity, if the deletion of any set of k£ vertices results in a graph with a perfect
matching. G is called maximal non—k—factor—critical if G 1s not k—factor—critical but G +
e is k—factor—critical for every missing edge e ¢ £(G).

In this report, we establish sufficient conditions for 3—vertex—critical graphs to
contain a perfect matching and a near perfect matching. We also present sufficient
conditions for 3—vertex—critical graphs to be i—factor—critical for 1 < &£ < 3. For k -y~
critical graphs, we investigate these graphs with cutvertices. It turns out that 3 —y—critical
graphs can contain at most one cutvertex which leads to a characterization of 3 —y—
critical graphs with a cutvertex. We also establish sufficient conditions for 3 —y.—critical
graphs to be &-factor—critical for 1 < & < 3. Most of the results about 3—(y, f)—critical and
3—(y, t)—~critical graphs concern their diameter and the relationship between these graphs
and 3—y—critical and 3—y—critical graphs respectively. We conclude our report with a
characterization of maximal non—4—factor—critical graphs.
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Chapter 1

Results on 3-Vertex-Critical Graphs

1.1 Introduction

All graphs considered in this report are finite, connected, loopless and have
no multiple edges. For the most part our notation and terminology follows that
of Bondy and Murty [BM]. Thus G is a graph with vertex set V{G), edge set
E(G) and minimum degree §{G). For V' C V(G), G[V'] denotes the subgraph
induced by V'. Similarly, G[E'] denotes the subgraph induced by the edge
set E' of G. A matching M in G is a subset of E(G) in which no two edges
have a vertex in common. A vertex v is saturated by M if some edge of
M is incident to v; otherwise v is said to be unsaturated. A matching G is
perfect if it saturates every vertex of G and is near perfect if it saturates all
but exactly one of the vertices of G. If |V(G)| = k( mod 2), graph G is said
to be k-factor-critical if G — S has a perfect matching for every S C V(G)
with |S| = k. (The special cases when k = 1 and 2, respectively, have received
the most attention in the literature and in these cases the graphs are called
factor-critical and bicritical respectively.) If G is any graph and S C V(G),
then denote by ¢(G — ) (respectively ¢,(G — S)) the number of components
(respectively odd components) of G - S.

A set S C V(G) is a (vertex) dominating set for G if every vertex of G
either belongs to S or is adjacent to a vertex of §. The minimum cardinality of
a vertex dominating set in graph ( is called the (vertez) domination number
(or simply the domination number) of G and is denoted by v(G). Graph G is
said to be y-vertez-critical if v(G —v) < y(G), for every vertex in G. (Clearly,
then, v(G — v) = v(G) — 1, for every vertex v in G.) The structure of such
graphs remains relatively unexplored, even in the case v = 3.

The concept of y-vertex-critical graphs seems to have been first introduced
by Sumner [S1]. Clearly, the only 1-vertex-critical graph is K (a single vertex).
Sumner pointed out that the 2-vertex-critical graphs are precisely the family of
graphs obtained from the complete graphs K, by deleting a perfect matching.
For + > 2, however, an understanding of the structure of ~-vertex-critical
graphs is far from complete.

The related, yet different, concept of edge criticality with respect to domi-
nation number has received more attention. A graph G is called vy-edge-critical
if v(G + €) < v(G) for every edge e = wv ¢ E(G) and u,v € V(G). (Here
again it is clear that in this case y(G + e) = v(G) — 1.) It should be imme-
diately pointed out, however, that the two concepts of domination criticality
are independent in that there are graphs which are -y-edge-critical, but not
v-vertex-critical, graphs which are 7-vertex-critical, but not vy-edge-critical,
graphs which are critical in neither sense and graphs which are critical in both
senses. On the other hand, it should also be noted that one can always add

1



edges, if necessary, to a y-vertex-critical graph so as to produce a graph which
is both ~y-edge-critical and vy-vertex-critical.

For results about y-edge-critical graphs, the reader is directed to [S1,SB,
HHS, M,B,G] and to the further references that they contain. In particular,
in [S1, SB] it is shown that any connected 3-edge-critical graph of even order
must contain a perfect matching and this result was the motivation for the
present paper. In contrast to their result, we show, by exhibiting an infinite
class of examples, that a connected 3-vertex-critical graph of even order need
not contain a perfect matching.

For a general reference on matchings in graphs, see [LP].

In [BCD1, BCD2, F, FHM, HHS|, the first structural properties of 3-
vertex-critical graphs are presented. We now list several of these which shall
prove useful to us. We denote by N{v) the neighborhood of vertex v (i.e., the
set of all vertices adjacent to v) and by N[v] the closed neighborhood of vertex
v; 1.e., the set N(v)U {v}. If S C V(G), then Ng(v) denotes the set N{(v)NS.

Lemma 1.1.1: [F3] Ifvisa vertex in graph G and if all vertices in N[v]
are critical, then there is no vertex v’ € V(G), v’ # v, such that N[v'] C N[v].

In the next two lemmas, we shall take the phrase "vertex-critical” to mean
~-vertex-critical for some value of +.

Lemma 1.1.2: [BCD1, BCD2] A graph G is vertex-critical if and only
if each block of G is vertex-critical.

Lemma 1.1.3: [BCD1, BCD2] If G is vertex-critical with blocks G,
..., Gy, then

In addition to the above results, we shall also make use of the following.

Lemma 1.1.4: If G is 3-vertex-critical and of even order, then G is
2-connected.

Proof: If ¢ is disconnected, then either G consists of two components,
one of which is 2-critical and the other 1-critical or else G consists of three
components each of which is 1-critical. But in the former case, G must be
consist of one component isomorphic to a Ko, with a perfect matching deleted
and the other component K, while in the latter case G must consist of three
isolated vertices. Hence in either case, G has odd order, a contradiction.
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Thus assume that G is connected, but with cutvertices. Let the blocks of
G be Gy,...,Gy, where n > 2. Then by Lemma 1.1.3 we have 3 = v(G) =
[, (@)~ 1.

Moreover, by Lemma 1.1.2, each block G; is vertex-critical and since G
is not isomorphic to K, no block of G can be a single vertex. So y(G;) > 2,
for each block G;. Thus n = 1 or 2. But we have assumed that n > 2 and
son = 2 and y(Gy) = 2, for « = 1,2. That is, ¢ must consist of two blocks
G and Gy sharing a single cutvertex v. Since v(G — v) = 2, it follows that
Y(G1 —v) =v(Gy—v)=1 But then G; —v =2 Gy —v 2 K; and |V(G)| = 3,
contradicting the fact that G has even order.

If v € V(G) we shall denote by G, the graph G --v and by D,, a minimum
dominating set of G —v. The following remarks about D, are trivial to verify,
but as we will appeal to them repeatedly, we list them separately.

Remarks: If G is 3-vertex-critical, then the following hold:
1. For every vertex of G, |D,| = 2.
2. If D, = {z,y}, then z and y are not adjacent to v.

3. For every pair of distinct vertices v and w, D, # D,,.

1.2 A Result on Perfect Matchings

Tutte’s classical theorem on perfect matchings says that if a graph G has
no perfect matching, then there is a set S C V(&) such that the number of
components of G — S having odd order is greater than the size of 5. We shall
call any such set S for which G — § has more than | S| odd components a Tutte
set. (An alternate name is antifactor set; see Sumner [S2].) We shall denote by
co(G — S) the number of components of G — S having odd order. A graph will
be called K s-free if it has no induced subgraph isomorphic to the complete
bipartite graph K 5.

Our main result will be the culmination of the next three lemmas.

Lemma 1.2.1: Suppose G is 3-vertex-critical of even order and K s-
free, but suppose that G contains no perfect matching. Then if S is any
Tutte set in G with |S| > 5, for every vertex v € V(G), if D, is a minimum
dominating set for G —v, D, C §.

Furthermore, if v € §, then |[Ng(v)| > 2.

Proof: Let C1,...,C; denote the odd components of G— 5. Since |5] > 5,
and G is of even order, ¢,{G — §) > 7. Suppose to the contrary that there is
a vertex r € V(G) such that D, € S. Clearly, D, € U:_,V(C;), since t > 7
and |D,| = 2. Suppose D, = {y, z}. Then without loss of generality, we may
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supposc that y € S and z ¢ S. It follows that y must dominate at least |S| > 5
odd components which contradicts the fact that G is K s-free. This completes
the proof of the first part of the lemma.

The second part of the lemma follows immediately from the fact that
Dy, C S, for all v € V(G) and the fact that v is not adjacent to any vertex of
D,.

Lemma 1.2.2: Suppose G is 3-vertex-critical of even order and is K 5-
free, but suppose G contains no perfect matching. Then if S is any Tutte set
inG,2<|8 <4,

Proof: The fact that |S| > 2 follows immediately from Lemma 1.1.4.

Suppose to the contrary that S is a Tutte set with |S| = &k > 5. We first
show that k = 6 and each component of G — S is a singleton.

Since for each z € V(G), D, € S by Lemma 1.2.1, it follows that for
every £ € V(G) there is a pair of vertices in § — {z}, a and b say, such that
D, = {a,b}. Since there are at most (5) = k(k — 1)/2 pairs of vertices of S
and at least k + (k + 2) = 2k + 2 vertices in G, by Remark 3 it follows that
2k +2 < k(k —1)/2 and hence & > 6.

On the other hand, k + 2 < ¢,(G — 5) < 8 because G is K, s-free and
D, C S for each z € V(). Hence k = 6 and ¢,(G — S) = 8.

Thus there are exactly (g) = 15 pairs of vertices in S and hence G has at
most 15 vertices. This implies that G — S has no even components and every
odd component of G — S must be a singleton as required since there are exactly
8 odd components. So G has exactly 14 vertices and thus at least 14 pairs of
vertices in § are realized as a D, for each x € V(G).

Let C be the set of vertices which together comprise the eight singleton
odd components of G — 5. Denote the set of odd components of G — S5 which
are adjacent to v € § by C,. Clearly, C, € C. Now let H be a simple graph
with V(H) = S and E(H) = {zy|D, = {z,y}}. For zy € E(H), we have that
C:UC, = C. So, since G is K; s-free, |Cz| = |Cy| = 4 and {C, Cy} partitions
C. It follows that H must be bipartite with |V(H)| = |E(H)| = 6. Then H
must contain a path of length 3 say, uy,v1, u2,v2, as a subgraph. Therefore,
Cy, = Cy, and C,,, = C,,. Then {u;,us} and {v;,ve} cannot be realized as a
D, for any v € V{(G). Hence, there are at most 13 pairs of vertices in S which
can be realized as a D, for some v € V(G). Since G has exactly 14 vertices,
D, = D, for some x # y. But this contradicts Remark 3 and hence completes
the proof of our lemma.

Lemma 1.2.3: Suppose G is K s-free 3-vertex-critical of even order,
but suppose G contains no perfect matching. Then if S is any Tutte set in G,
|S| = 4.



Proof: Suppose, by way of contradiction, that |S| # 4. Let S be any
Tutte set in G. By Lemma 1.2.2, we may suppose that {S| =2 or |S]| = 3.

Claim. If v € S, and D, is a minimum dominating set for G — v, then
D, CS.

Suppose to the contrary that D, € S for some v € S, Let D, = {a,b}.
Then a and b are not adjacent to v by Remark 2. Since ¢,(G — ) > 4,
{a,b} NS # @. Let the components of G — S be denoted C,...,C,. Without
loss of generality, then, we may suppose that a € V(Cy) and b € S. Then
b must be adjacent to every vertex of Co U --- U C;. Since G is K s5-free, it
follows that ¢ < 5. We distinguish two cases according to |S]|.

Case 1. First suppose that |S| = 2.

Thus t = 4. Consider Gy. Dp must be of the form {v,a’} where o’ is
not adjacent to b. Then o’ € V(C;). So v is adjacent to every vertex of
V(Ca) UV({C3) U V(Cy). Choose ¢ € V(C5) and consider G.. Since both v
and b are adjacent to ¢, we must have D.N{v,b} = 0, a contradiction for then
there is at least one of the C; which D, cannot dominate. This completes the
proof in Case 1.

Case 2. So suppose that |S| = 3.

Thus £ = 5. Furthermore, by Case 1, we may also suppose that S is a
minimal Tutte set. Now G is K1 s-free, so b is adjacent to no vertex of .
Thus a dominates all vertices of component C.

Now let ¢ denote the third vertex in S. Since S is a minimal Tutte set,
vertices v and ¢ are adjacent to at least two components C;, 1 < ¢ < 5. Let
u € V(C)UV(C3)UV(C)UV (Cs) be a vertex adjacent to ¢. Now Dy, = {v,v'}.
Since av € F(G), v' € V{C1). Thus v must dominate each vertex of at least 3
components among Co, -+, Cs. Now let w € V(Co) UV (C3) U V(Cy) UV (Cs)
be a vertex adjacent to v. Thus w is adjacent to both v and &. Now D,, =
{c,c'}, where ¢/ ¢ S. This means that ¢ dominates each vertex of at least
2 components among Cs,---,Cs. So there is at least one component among
Cs,--+,Cs such that v,b and ¢ dominate all of its vertices. Let z be a vertex
in such a component. Then D, NS = ¢, a contradiction for then D, fails to
dominate at least two of the C;’s. This completes the proof in Case 2 and
hence the Claim is proved.

It follows immediately from the Claim that |S] = 3. Let § = {a,b,c}.
Then for each vertex v ¢ S, |[Ng(v)| > 2 because if v is not adjacent to say, a
and b, then D, = {a,b} would not dominate v. In fact, |[Ns(v)| = 2 because
if INg(v)| = 3, then D, N § = ¢ and thus D, would not dominate some C;.
This observation together with the fact that each vertex of S is adjacent to
at most 4 odd components of G — § implies that G — S has exactly 5 odd
components. For each vertex x of S, there exists a vertex v ¢ S not adjacent
to z but v dominates § — {z}. So D, NS = {z} and z dominates at least
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3 odd components of G — §. If every vertex of S dominates exactly 3 odd
components of G — 5, then there must exist an odd component of G — § the
vertices of which are adjacent to at most one vertex of S, a contradiction of
Lemma 1.1.4. Hence there is a vertex of 5, say ¢ which dominates exactly 4
odd components of G — S. Let C1,Cs, -+, Cs be the odd components of G — 5.
Without any loss of generality, we may assume that @ dominates Cy, Cy, Cy,
b dominates C,C4,Cs and ¢ dominates C2,C3,Cy and Cs. Now for each
v e V(Cy), Dy = {c,c'}. Suppose ¢ ¢ V(Cy). Then |V{(Cy)| = 1. But then
{v,c} dominates G, a contradiction. Hence, ¢’ € V(C}).

Now if v(C;) = 1, {v, ¢} dominates G, a contradiction. So 4(C}) > 2. But
then C) is 2-vertex-critical, and hence of even order by [2,3], a contradiction.
Therefore, | S| = 4 as required and hence the lemma is proved.

We are now prepared to state and prove our main result.

Theorem 1.2.4: If G is 3-vertex-critical of even order and K, s-free,
then G has a perfect matching.

Proof: Suppose to the contrary that G contains no perfect matching and
that S is a Tutte set in (.

First we claim that if |[S| > 4, then for allv € S, D, C S.

If |S| = 5, then the claim is true by Lemma 1.2.1. So suppose [S| = 4.
Suppose, to the contrary, that for some vertex v € S, D, = {a, b}, wherea € S
and b € V(G) — 5. Since ¢,(G — §) > 6, vertex a must dominate at least five
of the odd components and hence G contains an induced K 5, a contradiction.
This completes the proof of the claim.

Next we claim that, in fact, |S| # 4.

Suppose to the contrary that |S| = 4. Choose z € S. Then D, C S.
Suppose D, = {y, z}. Without loss of generality, we may then suppose that if
w is the fourth vertex of S, then w is adjacent to z. Then D,, must be {z,y}
and so w is adjacent to neither z nor y. Also since z is not adjacent to z, y
must be adjacent to z. But then D, N {y,w} = 0. So D, consists of vertex
z € S and a second vertex in G — S. But this contradicts the claim verified at
the beginning of this proof.

So |S| # 4 and this contradicts L.emma 1.2.3.

1.3 A New Family of 3-Vertex-Critical Graphs

In the first paper on the subject of 3-vertex-critical graphs [BCD2], the
authors present a family of graphs which they denote by {G» n} and claim
that these graphs are n-vertex-critical. However, in the case of n = 3, this is
true only when m is even.



In this section, we present a construction which yields an infinite family
of new 3-vertex-critical graphs.

Let k& be any positive integer with & > 5. We proceed to outline the
construction of a graph which we will call H ko (K) k- The vertex set will consist

of two disjoint subsets of vertices called central and peripheral, respectively.
Let {v1,...,vr} denote the set of central vertices. The subgraph induced by
these central vertices will be the complete graph K with the Hamiltonian
cycle vivg - - - vpvy deleted. The peripheral vertices will be (’;) — k in number
and will be denoted by the symbol ~ {i,j} where the (unordered) pair {¢,7}
(i # 5) ranges over all the (£) — k subsets of size 2 of the set 1,...,k, except
those having j = ¢ + 2 where 7 + 2 is read modulo k. The neighbor set of
peripheral vertex ~ {4, 7} will be precisely the set of all central vertices, except
1 and j. There are no edges joining pairs of peripheral vertices.

Figure 1.3.1 shows as an example the graph Hgg.

~{1.4}

~{3a4}

~{4.5}

Figure 1.3.1

Each graph H, (5)-k can, in turn, be used to create a large number of
N2

additional 3-vertex-critical graphs as follows. Partition the set of peripheral
vertices into r > 3 subsets Py, Py, P3,..., P and add e; edges to P; for each
i=1,...,7. Here e; can be any integer such that 0 < e; < (“;"). All such
resulting graphs will be 3-vertex-critical.
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It should be noted that Sumner proved the following theorem.

Theorem 1.3.1: [S2] If n > 1 and G is an n-connected K ,;-free
graph of even order, then G contains a perfect matching.

However, there are many 3-vertex-critical K, s-free graphs of even order
that are not 4-connected. We show two examples in Figure 1.3.2.

Figure 1.3.2

Sumner and Blitch [S1, SB| showed that every connected 3-edge-critical
graph of even order contains a perfect matching. In contrast, it is not true
that a connected 3-vertex-critical graph of even order must contain a perfect
matching. For each of the infinitely many values of k& > 8 such that (5) is even,
the graph H 6 (5) -k defined above is such a 3-vertex-critical graph.

The reader will note that we have made considerable use of the additional
hypothesis that G be K s-free in several of our proofs in Section 1.2. Indeed,
it would be interesting to know if this extra hypothesis can be weakened. For
example, we know of no counterexample to the following.

Conjecture. If G isa 3-vertex-critical graph of even order and K 7-free,
then G contains a perfect matching.

1.4 A Result on Near-perfect Matchings

Lemma 1.4.1: Suppose G is a 3-vertex-critical graph which is discon-
nected. Then either G is isomorphic to three independent vertices or else G is
isomorphic to the disjoint union of an even complete graph K3, with a perfect
matching removed and one isolated vertex.

Proof: Since v(G) = 3, either G consists of three components each having
v = 1 or else of two components, one of which has v = 2 and the other has
v = 1. But in the former case, each of the three components must be K;, since
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each is l-vertex-critical and in the second case, one component must be 2-
vertex-critical and the other 1-vertex-critical. But by an observation first found
in [BCDI1, BCD2], the 2-vertex-critical component must be an even complete
graph with a perfect matching removed and the 1-vertex-critical component
must be K.

|
Corollary 1.4.2: If G is a 3-vertex-critical graph with minimum degree
greater than 0, then G is connected. ]

Lemma 1.4.3: If G is 3-vertex-critical and § is a Tutte set in (7 such
that ¢,(G — S) > 4, then each vertex of G — S is not adjacent to at least one
vertex of S.

Proof: Suppose w € V(G) — S such that w is adjacent to every vertex of
S. Then D, NS =0 and so D,, € V(G) - S. But this is impossible since the
set Dy, has size 2 and it must dominate at least three odd components.

Lemma 1.4.4: Suppose G is a K 5-free 3-vertex-critical graph of odd
order with 6(G) > 0. Further, suppose that S is a Tutte set for G with
co{G — 5) > |S| + 3. Then |S| > 3.

Proof: By Corollary 1.4.2, G is connected and hence |§| > 1.

Suppose first that |S| = 1. Say, § = {u}. Let Ci,...,C; be the odd
components of G —u. So t > 4. Now u is adjacent to vertices in each C;
since G is connected. So since G is K s-free, t = 4 and there are no even
components of G — 5. But v(G - u) = 2 implies that ¢ < 2, a contradiction.

Next, suppose |S| = 2. Let S = {u,v}. Then ¢,(G — S) > 5. Consider
Gy. Clearly, v € D, and so D, is composed of the vertex v together with one
other vertex, say w, from V(G —S). By Remark 2, vu ¢ E(G) and wu ¢ E(G).
Furthermore, since G is K s5-free, w must lie in one of the odd components
of G — S. Suppose, without loss of generality, that w € V(C}). Then vertex
v must be adjacent to all vertices of C; U --- U Cy and to all vertices in even
components of G — 5. But again by the fact that G is K 5-free, £ = 5 and
there are no even components of G — S. Moreover, by Lemma 1.4.3, none of
the vertices of Cp U - - U Cy is adjacent to u. But v is not adjacent to any
vertex of ) since G is K s-free, and so G is disconnected, a contradiction of
Corollary 1.4.2.

|

Lemma 1.4.5: Suppose G is a K s-free 3-vertex-critical graph of odd
order at least 11 with 6(G) > 0. Suppose further that S is a Tutte set in &
such that ¢,(G — §) > |S| + 3. Then for every vertex v € V(G), D, C S.

Proof: Suppose by way of contradiction that there is a vertex v such that
D, € S. Since |S| > 3 by Lemma 1.4.4, ¢,(G — S) > 6. Hence D, NS # @. So
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we may suppose that D, = {v,w}, withu € §and w € V(G- S5). If w were in
an even component of G — S, then u would have to be adjacent to all vertices
in the odd components of G — S and thus v would have to be the center of a
K; 5 in G, a contradiction. So w must lie in some odd component of G — S,
say, without loss of generality, that w € V{Cy). Then u must be adjacent to
each vertex of at least four odd components of G — §. Thus we may assume
that there are exactly six odd components of G — S, that {v} = V(C3), that
u is adjacent to each vertex of C3 U -.- U Cy and that each of Cy,...,Cps is a
complete graph. Moreover, then |S| = 3 and G has no even components.

By Lemma 1.4.3 there must exist a vertex y € § — {u} and two vertices
lying in two different odd components among Cj,...,Cs such that y is not
adjacent to either of these two vertices. More specificly, we may suppose that
there are vertices c3 € V(C3) and ¢4 € V(Cy) such that y is adjacent to neither
ez nor ¢q. Since |S| =3, let S = {u,y, z}.

Claim 1: Vertex z is adjacent to no vertex of Cg U Cs.

Suppose to the contrary that z is adjacent to ¢5 € V(C5). Consider G, .
Clearly, D., NS # @, but D, N ({z,u} UV(C5)} = 0. Soy € D, and
|D., NV(G -8} =1.

Let D., = {y,w'}. Since y is not adjacent to cs or c4, w’ is adjacent
to both ¢3 and ¢4. But this is impossible since ¢z and ¢4 lie in different odd
components. This proves that z is not adjacent to vertex of Cs. By a similar
argument, z is not adjacent to vertex of Cg. This proves Claim 1.

Claim 2: Vertex y is adjacent to no vertex of Cs.

Suppose to the contrary that y is adjacent to ¢ € V(Cs). Consider G,.
Clearly, D, NS # 0, but D, N ({u,y} UV (Cs)) = 0, since Cs is complete.
So D, = {z,x}, where z € V(Cg) by Claim 1. Thus z is adjacent to every
vertex of C; U ---UCyq and V(Cs) = {a} by Claim 1. Hence, C; is complete
for 1 <i<4.

Now consider G.,. Clearly, D., NS # 0 but D, N ({u, 2} UV(C3)) = B
since Cy is complete and c¢3 is adjacent to both u and z. Thusy € D.,. Because
y is not adjacent to cq, Do, = {y,¥'} where y € V(Cy). Consequently, y is
adjacent to every vertex of C; U Co U Cs U Cg and V(C3) = {c3}.

By a similar argument as above, |V(C4)| = 1 and |V(Cs)| = 1. Since
V(G)| > 11, [V(Ch)] = 3. Let ¢; € V(C1). Now consider G.,. Clearly,
D, NS #0, but D, N ({y,z} UV(CL)) = @ since C; is complete and ¢; is
adjacent to both y and z. Thus u € D, and |D,, NV(G — S)| = 1. Let
D., = {u,u'} where v’ € V(G — 5). Since G is K, s-free, u is not adjacent
to any vertex of C; U C> and hence u' is adjacent to v and every vertex of
V{(Cy) — {c1}. But this is impossible since v € V(C3}. This proves Claim 2.

Now consider G,. Clearly, D, N (US_,V(C;)) = 0 since u is adjacent to
every vertex of US_,V(C;). Thus D, C {y, 2z} UV(C1) U V(Cs3). But then, by
Claims 1 and 2, no vertex of I, is adjacent to any vertex of Cs, a contradiction.
This completes the proof of our lemma.
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Theorem 1.4.6: Suppose G is a K s-free 3-vertex-critical graph of odd
order at least 11 with §(G) > 0. Then G contains a near-perfect matching.

Proof: Suppose G does not contain a near-perfect matching. Form a
new graph G’ from G by adding a new vertex z such that every vertex of
G is adjacent to x. Then G’ does not contain a perfect matching. So by
Tutte’s 1-factor theorem and parity, there is a Tutte set 8’ in G’ such that
co(G' = 5') > |S'| + 2. Since z is adjacent to every vertex of G, it follows that
z €S8 Let § =5 —{z}. Then ¢,(G ~ 8) =¢,(G' = 5" > |S'| +2 = |S| + 3.
So by Lemma 1.4.5, D, C 5, for all v € V(G).

Now let |S| = k. There are (5) different pairs of vertices of S and at least

k+ 34 k =2k + 3 vertices in G. So by Remark 3, 2k +3 < (g) and so k > 6.
On the other hand, choose any vertex w € S. Then D,, € S by Lemma
1.4.5. But then, since G is K s-free, ¢,(G — S) < 8. So we have k + 3 <
co{G — 8) <8, or k <5, a contradiction.
|
Note that the assumption that |V(G)| > 11 is necessary in both Lemma
1.4.5 and Theorem 1.4.6, for the graph G shown in Figure 1.4.1 has odd order
9 and §(G) > 0, is K 5-free and 3-vertex-critical, but, if we let § = {u,y, z},
then D, € S, for i =1,...,6 and G has no near-perfect matching.

u

2

Figure 1.4.1

1.5. A Factor-critical Result

Lemma 1.5.1: Suppose G is a K 4-free 3-vertex-critical graph of odd
order with minimum degree at least 3. If G, has no perfect matching for some
v € V(G) and S, € V(G,) is a Tutte set for G, with c,(G, — Sy) = |5y ] + 2,
then |S,| > 2.
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Proof: First, note that G is connected by Corollary 1.4.2. Suppose that
v € V(G),S, C V(G) and ¢,(G, — Sy) > |Su| +2. Let S be S, U {v}.
Then c,(G — 5) = co(Gy — S} = |Su| +2=|S| + 1. Let Cy,Cs, ...,C, be odd
components of G — 5. We first show that S, # 0. Suppose to the contradiction
that S, = @. Thus v is a cut vertex of G and S = {v}. Since G is connected,
it follows that v is adjacent to at least one vertex of each component of G — §.
Hence, 2 < ¢,(G'—S) < 4 because of K 4-freedom of G. Clearly, ¢,(G—5) # 3
since G has odd order. Then ¢,(G—S) = 2. Since §(G) is at least 3, |V (C;}| > 3
for : = 1,2. Hence, D, NV(C;)} # @ for i = 1,2. Let D, = {a1,as} where
a; € V(C;) for ¢ = 1,2. Then qg; is adjacent to every vertex of V(C;), but a;
is not adjacent to v. Since v is a cut vertex of G and G is connected, there
exist vertices by of Cy and by of Cs say, such that bjv € E(G) and byv € E(G).
Clearly, b; # a; for i = 1,2. Now consider G,. Then Dy, N {v,a;} = 0. Thus
Dy, nV(Cy) # 0 for i =1,2. Let Dy, = {e1,c2}, where ¢; € V(C;) fori = 1,2.
Note that b1c; ¢ E(G). Now ¢; is adjacent to every vertex of V(C1) — {b}
and cp is adjacent to every vertex of V(C3). If cov € E(G), then {cz.ay}
dominates G. This contradicts the fact that 4(G) = 3. Thus cyv ¢ E(G) and
then civ € E(G).

Now consider Gy,. Clearly, Dy, N {v,a2} = 0. Then Dy, N V(C;) # @
for i = 1,2. Let Dy, = {d),do} where d; € V(C;) for i = 1,2. Note that
bads ¢ E(G). Then dy # az and dy # ¢a. Now d; is adjacent to every vertex
of V(Cy) and d3 is adjacent to every vertex of V(Cy) — {b2}. If dov € E(G),
then G[{v;b;,¢1,bs,d2}] becomes a K1 4 centered at v, a contradiction. Hence
dov ¢ E(G) and so dyv € E(G). But now {di,ce} dominates G, again a
contradiction. Therefore, S, # .

So |Sy| > L. Suppose |S,| = 1. Let S, = {u}. Then § = S, U{v} = {u,v}.
Since G is K 4-free and connected, 2 < ¢,(G — §) < 6. In fact, c,(G—S) =3
or ¢o{G — 5) = 5 because of the odd order of G. Suppose ¢,(G — 5) = 5. Now
consider G,,. Clearly, v € D, and |D, NV(C;}| = 1 for some 7,1 < 1 < 5.
Then v becomes the center of a K 4, a contradiction. Hence, ¢,(G — S) # 5.
Therefore, ¢,(G — S) = 3. Since ¥(G) = 3 and |S| = 2, it follows that there
is a vertex of Uf’=1 V(Ci), x say, such that z,u ¢ E(G) and z1v ¢ E(G).
Without loss of generality, we may assume that z; € V(C,). Since §(G) > 3,
[V(C1)| = 5 and |V(C;)| > 3 for i = 2,3. Let y3 € V(C1) — {z1}. Now
consider Gy,. Clearly, G,, # {u,v}, since z;u ¢ E(G) and v ¢ E(G).
However, D,, N {u,v} # 0 since ¢,(G — §) = 3 and |[V(C)) — {1 }| = 4
Without loss of generality, we may assume that v € D,,. Thus v ¢ D, . Since
r1u ¢ E(G), Dy, — {u} C V(Cy) — {y1}. Thus u is adjacent to every vertex of
V(Cy) UV(C3).

Now consider G,. Since ¢,(G-S} = 3,v € D,,. Because ryv ¢ E(G), Dy —
{v} € V(Ci). Thus v is adjacent to every vertex of V(Cy) U V(C3). Let
zp € V(Cq). Note that zou € E(G) and zov € E(G). Then D,, N {u,v} = 0.
Thus D,, C U?:l V(C;). Since |Dy,| = 2, Dy, NV(C;) = B for some i=1,
2, 3. But this contradicts to the fact that D,, is a dominating set of G,
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since |V(C;)| > 3 for all 4,1 < ¢ < 3. Hence, |S,| # 1. Therefore |S,| > 2 as
required.

Theorem 1.5.2: Suppose G is a K 4-free 3-vertex-critical graph of odd
order with minimum degree at least 3. Further, suppose that &, has no perfect
matching for some v € V() and 5, is a Tutte set of V(G, ) with ¢,(G, - S,) >
|Sy! + 2. Then for every vertex z of V(G), D, C S, U {v}.

Proof: Let S = 5, U {v}. Thus, by Lemma 1.5.1, |S| > 3. Further,
ColG —8) = co(Gy — Sy) 2 [Sul +2= S|+ 12>4. Nowlet ¢},C4,...,C; be
the odd components of G — 5 and let Ey, Fs, ..., E, be the even components
of G — 5. Suppose to the contrary that there is a vertex = of V(G) such
that Dy € 5. However, D, NS # @ since co(G — S) > 4 and |D,| = 2. Let
D.NS = {u}and D; —S = {y}. Thatis D; = {u,y}. Clearly, ur ¢ E(G) and
yz € E(G). Suppose G — S has an even component E; and suppose y € V(F]).
Then t =4, or else u is the center of an induced K 4. So |S| = 3. Now vertex
u is adjacent to all the vertices in at least three of the C;’s, say, without loss of
generality, that u is adjacent to all vertices of V(Co)UV(C3)UV(Cy). Then u
is adjacent to no vertex of (], again because u is not the center of any induced
Ky 4. But then {z} = V(C}) and deg (z) < 2, a contradiction.

Thus y € Uf;:l V(C;). Without loss of generality, we may assume that
y € V(C1). Since G is K, 4-free, the number of components of G — § is at
most 5 as otherwise u becomes a center of K 4. Thus 3 < |S| < 4. Further,
if |S] = 4, G — S has no even components and if |S| = 3, then G — § has at
most one even component.

Claim 1: Each vertex of G — S is not adjacent to at least one vertex of

Suppose to the contrary that there exists a vertex w of G — § such that
w is adjacent to every vertex of S. Now consider G,,. Clearly, D, N5 = 0.
Thus D,, C V(G — S). But this is not possible since D,, is a dominating set
of G, of size 2 and ¢,(G — §) > 4. Hence, our claim is proved.

Now we distinguish three cases according to the location of z.
Case 1: Suppose z € V(C1).

Since y € V(C,), u is adjacent to every vertex of U:=2 V(C;) and every
vertex of [, V(E;). Tt follows that ¢ = 4 and G — S has no even components
because of K 4-freedom in G. Thus |S| = 3. Further, for 2 < ¢ < 4, C; is
complete and u is not adjacent to any vertex of V(C1), again by K 4-freedom
in G. Then y is adjacent to every vertex of V(Cy) — {z}. It follows from Claim
1 that there is a vertex of S — {u}, say w, such that w is not adjacent to at
least two vertices of G — S lying in two different components of Cs U C3 U Cy.
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Without loss of generality, we may assume that w is not adjacent to c¢; and
c3, where cp € V(C3) and c3 € V(C3), respectively. Let z € § — {u,w}. Then
S ={u,w, z}.

We first show that z is not adjacent to any vertex of V(Cy). Suppose
to the contradiction that z¢4, € E(G) for some ¢4 € V(C4). Now consider
Ge,. Clearly, D, NS # @, but D., N ({z,u} UV(Cy)) = 0. Thus w € D,,
and |D,, NV(G —8)| =1. Let D,, NnV(G — 8) = {w'}. Since wey ¢ E(G)
and wez ¢ E(G), it follows that w'c; € E(G) and w'cg € E(G). But this is
impossible since w’ can be in only one odd component of G—S. Hence, z is not
adjacent to any vertex of V/(Cy). Consequently, |V(C4)| > 3 since 6(G) > 3.

We next show that w is not adjacent to any vertex of V(C4}. Suppose by
way of contradiction that wa € E(G) for some a € V(Cy). Now consider G,.
Clearly, D, NS # @, but Dy N ({u,w} UV (Cyq)) =0 Thus z € D, N S. Since
|[V(Cy)—{a}| > 2 and z is not adjacent to any vertex of V(Cy), it follows that
D, —{z} C V(C4). But this is impossible since D, NV (Cy) = @. Hence, w is
not adjacent to any vertex of V{Cy).

Now let b € V(C4) and consider Gy. Since Cy is complete and ub € E(G),
it follows that D, i ({u} UV (C4)) = @. Then Dy C (S — {u}) U U‘?:l V(Cy).
Since z and w are not adjacent to any vertex of V(C4), no vertex of Dy is
adjacent to any vertex of V(Cy) — {b}. This contradicts the fact that D, is a
dominating set of Gy since |V(Cy) — {b}| > 2. Hence, x ¢ V(Cy).

Case 2: Next, suppose x € V(G — S) — V(C}).

If = belongs to some even component F; of G — S, then V(Ey) - {z} # &
say z € V(Ey) — {z}. But then u is adjacent to z and to every vertex in
V(Cy)UV{(C3)UV(Cy). It then follows that u is the center of an induced K 4
and we have a contradiction.

Hence, without loss of generality, we may assume that z € V(Cy). We
distinguish two cases according to |S|.

Case 2.1: Suppose |S| = 3. Since G is K s4-free, ¢,(G — §) < 5. Thus
co(G —8) = 4 since G has odd order. Since uz ¢ E(G) and 6(G) > 3, it follows
that |V(C2)| > 3. Then u is adjacent to every vertex of U?:z V(C;) — {z}.
Since G is K 4-free, G — S has no even components and Cy — z, C3 and Cy
are complete.

Let z € § — {u}. We next show that z is not adjacent to any vertex
of V(Cy). Suppose to the contrary that zas € E(G) for some ag € V(Cy).
Then D,, N ({u, 2z} UV(Cy)) = @ since u is adjacent to every vertex of V{Cy)
and V(Cy) is complete. Let S — {u,z} = {w}. Clearly, w € D,,. Then
way ¢ E(G) and w dominates V(C4) — {ag}. Now |[V(Cy)] > 3 because
6(G) > 3. Let by € V(Cq) — {as}. Then byu € E(G) and byw € E(G).
Consequently, Dy, N ({u,w} UV (C4)) = 0.

Since ¢o(G — 8) = 4,z € Dy,. So zby ¢ E(G), but z dominates V(Cy) —
{bs}. Now if ¢4 € V(Cyq) — {as,ba}, cs is adjacent to every vertex of S. This
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contradicts Claim 1. Hence, z is not adjacent to any vertex of V(Cy) for every
z €85 — {u}.

Because §(G) > 3, |V(Cy)| > 3. Suppose ¢ € V(Cy). Since u is adjacent
to every vertex of V(Cy), cu € E(G). Thus D. N ({u} UV (Cy)) = 0 since
Cy is complete. Then D, C (S — {u}) UU?=1 V(C;). Since V(Cy) — {c} # 0,
every vertex of V(Cys) — {c} is adjacent to at least one vertex of D.. But this
is impossible since D, C ((S — {u}) UJS_, V(C:)) and none of the vertices of
(S — {u}) UL, V(C) is adjacent to any vertex of V(Cy). This complete the
proof of Case 2.1.

Case 2.2: Suppose |S| = 4. Thus ¢,(G — S) = 5 and G — S has no
even components. If V(Cy) — {z} # @, then u dominates Uf':z V(C;) — {z}.
This contradicts the fact that G is K 4-free. Thus V(Cy) — {z} = 0. Since
ux ¢ E(G)and 6(G) > 3, it follows that z is adjacent to every vertex of S—{u}.
Because G i1s K| 4-free and u dominates U?=3 V(C;), each odd component C;
is complete for all 4, 3 < i <5,

Claim 2: Foreacha€ S, |D,NS|=2.

Clearly, D, NS # 0 since ¢,(G — S) = 5. If |[D,N S| =1, then G contains
a K 4 centered at the vertex of D, NS, a contradiction. Hence, Claim 2 is
proved.

As a consequence of Claim 2 and Remark 2, |[Ng(e) N (S — {a})] < 1 for
each a € S. Now let S - {u} = {w, z,v}. Without any loss of generality, we
may assume that uvw ¢ E(G) and uz ¢ E(G). Since D, = {u,y}, ¥ is adjacent
to both w and z. Now consider ID,,. We next show that v € D,. Suppose
to contrary that v ¢ D,. By Claim 2, D, = {w,z}. Since wy € F(G) and
wz € E(G), it follows that w can dominate vertices in at most one component
among C3,Cy4 and Cs because of K 4-freedom of G. Without any loss of
generality, then, we may assume that w is adjacent to no vertex in Cy U Cs.
Then z must dominate Cy U Cs. But then z becomes a center of K, 4 since
zy € F(G) and 2z € FE{G). This contradiction proves that v € D,. Hence,
vu € E(G). Because D, = {u,y}, it follows that yv € E(G). Now every vertex
of § — {u} is adjacent to both z and y. Since G is K, 4-free, v can dominate
vertices in at most one component of C3UCyUCs. Thus the vertex of D, —{v}
must be in S by Claim 2 and hence must be a center of an induced K 4, again
a contradiction. This completes the proof of Case 2.2.

Case 3: So suppose z € S.

Clearly, since G is K 4-free, ¢,(G—§) = 4 and |S| = 3. Then u dominates
U?:g V(C;). Thus C; is complete for 2 < i < 4. By an argument similar to
that used in the proof in Case 2.1, each vertex of S— {u} is not adjacent to any
vertex of V(Cys). Further, for ¢ € V(Cy), D. € (S — {u}) U 2, V(C:). But
this is also impossible since no vertex of (§ — {u}) U U?:l V(C;) is adjacent to
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any vertex of V(). This completes the proof of Case 3 and hence the proof
of our theorem.

Theorem 1.5.3: If G is a K 4-free 3-vertex-critical graph of odd order
with minimum degree at least 3, then G is factor-critical.

Proof: Suppose to the contrary that G is not factor-critical. Then there
is a vertex v of G such that G — v = G, has no perfect matching. By Tutte’s
1-factor theorem and the fact that G, has even order, there exists a Tutte set
Sy € V(G,) such that ¢,{Gy — Sy) = |Sy|+2. Then, by Lemma 1.5.1, |S,| > 2.
Let S be S, U {v}. Then S is a Tutte set in G and ¢,(G — 8) > |S|+1 > 4.
Now let |S| = k. Since for each z € V(G), D, C S by Theorem 1.5.2, it follows
that for every vertex x of G there is a pair of vertices in § — {z}, say a and

b, such that D, = {a,b}. Since there are (g) = ik;—l) pairs of vertices of S

and at least k + (k + 1) = 2k + 1 vertices in G, by Remark 3 it follows that
2k+1< k(}‘T—l) and hence k& > 6.

On the other hand, k + 1 < ¢,(G —~ S) < 6 because G is K 4-free and
D, C S for each z € V(G). Hence, k < 5, a contradiction. This completes the
proof our theorem.

Qur bound on the minimum degree in Theorem 1.5.3 is best possible since
the graph G in Figure 1.5.1 is K 4-free 3-vertex-critical connected of odd order
with minimum degree 2, but is not factor-critical since G — v has no perfect
matching.

Figure 1.5.1

Note that there are infinitely many 3-vertex-critical connected graphs of
odd order containing K 4, for the graphs shown in Figure 1.5.2 all belong to
this family.
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1(2[1 - a perfect matching

Figure 1.5.2

Moreover, there are also infinitely many K 4-free 3-vertex-critical con-
nected graphs of odd order with minimum degree at least 3. The graph G 3
for any positive integer %, introduced by Brigham, Chin and Dutton [BCDI,
BCD2], is such a graph where V(Gar3) = {vo,v1,.... vak+2} and E{Goy 3) =
{viv11 < (i — 7) mod (4k + 3) < k}. Figure 1.5.3 shows Gg 3 and Gg 3.

Figure 1.5.3

Theorem 1.2.4 states that if G is a K, s-free 3-vertex-critical connected
graph of even order, then G has a perfect matching. One might expect that the
hypothesis that the graph be K 4-free in Theorem 1.5.3 can also be weakened
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to say that the graph be K s-free. But this is not the case since the graphs in
Figure 1.5.4 (with r,s > 3) are K s-free 3-vertex-critical connected graphs of
odd order with minimum degree at least 3, (in fact, with minimum degree at
least 4), but are not factor-critical.

K, - a perfect matching K _ - aperfect matching

2r 23

Figure 1.5.4

Note that G — v has no perfect matching. Further, G contains K, 4 as
a subgraph. If we increase the connectivity of the graphs involved, however,
we believe that one can relax the property of K s-free to K s-free. So we
conclude this section with the following conjecture.

Conjecture: If G is a K, 5-free 3-vertex-critical 2-connected graph of
odd order with minimum degree at least 3, then G is factor-critical.
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Chapter 2
Results on 3-Vertex-Critical Claw-Free Graphs

2.1 Introduction

A graph is called claw-free if it has no induced subgraph isomorphic to the
bipartite graph K 3. In this chapter, three new theorems about the connectiv-
ity of 3-vertex-critical graphs which are also claw-free are presented, together
with three corollaries about their k-factor-criticality.

Recall that (7, denotes the graph G — v, D, any minimum dominating set
of the graph G — v. Further, N(v) denotes the set of all vertices adjacent to
vertex v and N[v] the closed neighborhood of v.

The following remarks about D, are easily verified, but since we will
appeal to them repeatedly, we list them separately.

Remarks: If GG is 3-vertex-critical, then the following hold:
1. For every vertex v of G, |D,| = 2.
2. If D, = {z,y}, then z and y are not adjacent to v.

3. For every pair of distinct vertices v and w, D, # D,,.
We shall need the following four lemmas in establishing our results.

Lemma 2.1.1: ([BCD1]) A connected graph G is 2-vertex-critical if and
only if G is isomorphic to Ky, with a perfect matching removed.

Lemma 2.1.2: ([FHM; Theorem 2]) The diameter d of a y—vertex-
critical graph G satisfies d < 2(-y ~ 1) for v > 2.
|
Lemma 2.1.3: ([FHM; Theorem 6]) A connected graph G with diameter
4 is 3-vertex-critical if and only if it has two blocks each of which is 2-vertex-
critical.

Lemma 2.1.4: ([FHM; Lemma 5]) If there exist vertices u and v such
that Ng|u] € Ng[v], then G is not v-vertex-critical for any .
i

We now present a construction which yields a new infinite family of claw-
free 3-vertex-critical graphs.

For positive integers ¢, » and s, we construct the graph G(t,r, s} as
follows. Let X = {z1,z2,...,z¢}, ¥ = {y1,¥2,....%-}, T = {wr,uz,...,u,
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v1,V2, ... Ur} and S = {z1, 29, ..., 25, W1, Wa, ..., Ws }. Then set V(G(t,r, )} =
XUY UTuSU{a}, thus yielding a set of 2t +2r+2s+1 distinct vertices. Join
vertex a to each vertex of S. Form complete graphs on each of X, ¥ and T and
form a complete graph on S, except for the perfect matching {z;w;[1 < i < s}.
Finally, join each z; to each vertex of (T' — {u;}) U {21, 22,..., 25} and join
each vy, to each vertex of (T — {v;}) U {wy,wa,...,ws}. It is not difficult to
show that G(t,7,s) is a claw-free 3-vertex-critical graph. Figure 2.1.1 shows
the graphs G{1,2,1) and G(1,2,2). Note that these graphs are 2-connected
and 3-connected, respectively. Our theorems in the next section guarantee
certain connectivity for claw-free 3-vertex-critical graphs, given sufficient min-
imum degree. The graphs G(1,2,1) and G(1,2,2) show these assumptions on
minimum degree to be best possible.

G(L1,2,1)

G(1,2,2)
Figure 2.1.1

Lemma 2.1.5: If G is a claw-free 3-vertex-critical connected graph, then
G has diameter at most 3.

Proof: Let d be the diameter of G. Then, by Lemma 2.1.2, d < 4.
Suppose, to the contrary, that d = 4. Then, by Lemma 2.1.3, G has two
blocks, each of which is 2-vertex-critical. Then each block of G must be a
complete graph of even order without one perfect matching by Lemma 2.1.1.
Since (7 is connected, each of these blocks has at least four vertices. Further,
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these two blocks must overlap in one vertex, u say. But then u becomes a
center of K 3, a contradiction. This completes the proof of the lemma.

To see that the above upper bound on the diameter is best possible, the
reader is again directed to the infinite family described after Lemma 2.1.4
above.

We shall also make use of the following theorem on factor-critical graphs.
(See [IFFR, LY].)

Theorem 2.1.6: If G is (k + 1)-connected, claw-free and of order n, and
if n — k is even, then G is k-factor-critical.

Finally, the next two lemmas will be used repeatedly to obtain our main
results.

Lemma 2.1.7: Let G be a k-connected claw-free graph and suppose
k > 1. Suppose S is cutset of V(G) with |§| = k. Then

1. For any component C of G — 5, Ng(z)NC # @ for every z € S,
2. G — 5 has exactly two components.

Proof: Part (1) follows immediately from the fact that S is a minimum
cutset. Part (2) then follows by claw-freedom.

Lemma 2.1.8: Suppose GG and S are defined as in Lemma 2.1.7. In addi-
tion, suppose G is also 3-vertex-critical. Let C; and C5 be the two components
of G — S. Further, let A =V(Cy)— |J Ng(z) and B = V(C2) — {J Ng(z).

TeS i

TES
Then
1. For each i = 1, 2, G[Ng,(z)] is complete for every z € S,
2. A=0 or B=0; further, if k =2, then A# @ or B £,

3. if A=0 and [V(C1)| = 2, then [ Ng,(z) =0.

zES

Proof: Statement (1) follows immediately from Lemma 2.1.7(1) and the
fact that G is claw-free.

(2) If A # 0 and B # @, then the diameter of G must be at least 4. This
contradicts Lemma. 2.1.5. Hence, A = @ or B = 8. Now suppose k = 2 and
suppose further that A = @ and B = @. Then (G) = 2, a contradiction.
Hence, A # @ or B # 0. This proves (2).
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(3) Suppose A =0, but () Ng, (z) # 0. Let w € [ Ng,(z). It follows
zeS zeS
by (1), and the fact that A = @, that w must be adjacent to every vertex of

V(Cy) —{w}. Thus Ngw] = V(C,)US. Since |V (C;) — {w}| > 1, there exists
a vertex z € V(C)) — {w}. Clearly, Ng[z] C Nglw]. But this contradicts
Lemma 2.1.4 and completes the proof of our lemma.

2.2 Main Results

Theorem 2.2.1: Let G be a connected claw-free 3-vertex-critical graph.
Then G is 2-connected.

Proof: Suppose that & is not 2-connected. Then there exists a cutvertex
v € V(G). Moreover, G — v contains exactly two components by claw-freedom.
Let these two components be C) and C;. Let A and B be as given in Lemma
2.1.8 and suppose A = . Then v dominates V{(C)). Thus N[u]l C N|v] for
each vertex v in V(C}). But this contradicts Lemma 2.1.4 and completes the
proof of our theorem.

Theorem 2.2.2: Let G be a connected claw-free 3-vertex-critical graph.
Then if G is of even order or if §(G) > 3, then G is 3-connected.

Proof: Suppose, to the contrary, that G is not 3-connected. By Theorem
2.2.1, G is 2-connected, so G must have a (minimum) cutset S = {u,v}. By
Lemma 2.1.7(2), there must be exactly two components in G — S§. Denote
these components by C; and C5. Let A and B be as given in Lemma 2.1.8. By
Lemma 2.1.8(2), we may suppose that A =}, but B # 0. We now distinguish
three cases according to |V (Cy)|.

Case 1: |V(C)| = 1L

Let {z} = V(Ci). Then z is adjacent to both u and v. Thus §(G) = 2
and hence G is of even order by our hypothesis. By Lemma 2.1.4, uwv ¢ E(G)
otherwise Ng[z] C Ng[u].

Claim: For each w € V(C3} — B, D,, = {z,w'} where v’ € B.

Suppose without any loss of generality that w € Ng,(uv). Then Dy, N
(Ng, (u)u{u}) = @ by claw-freedom in G. We first show that z € D,,. Suppose
to the contrary that z ¢ D,,. Clearly, v € D,,. Since uv ¢ E(G), the single
vertex - call it a - of Dy, — {v} must be adjacent to every vertex of B U {u}.
This implies that vertex a is in Ng,(u), a contradiction. Hence, z € D,,.

Since B # 0, D,,—{z} C V(C,). Let D,,—{z} = {w'}. Then v’ dominates
V(Cs) — {w}. If w' € Ng,(v), then {u,w'} dominates G, a contradiction.
Hence, w’ ¢ N¢,(v). Since Dy, N (Ng(u) U {u}) =0, w’ € B. This proves our
claim.
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Now let V(C3) — B = {w;,ws,...,wy} where t > 1. By Claim 1, there
exists a set of vertices {wy,w5,..., wy} C B such that D,,, = {z,w!} for 1 <
¢ < t. Clearly, w{ # wj} for i # j by Remark 3. Therefore, |V(C,) — B| < |B].
Further, |B| > 2 because of connectedness of Cy. Since z € V(C;), for each
i, w; dominates V(Cs) — {w;}. Remark 2 together with the fact that |B| > 2
implies that w; € D,,,. Then w; dominates B — {w!}. Thus B is complete by
claw-freedom of G and the fact that w! dominates V(C,) — {w;}.

Suppose |B| > t+ 1. Choose b € B — {w{,w},...,w;}. Then b dominates
V(C%). Thus {b, z} dominates GG, a contradiction. Hence, |B| = ¢. This implies
that |V(G)| = 2t + 3 contradicting the fact that G is of even order. This proves
Case 1.

Case 2: |V(C))| = 2.

Let V(Cy) = {z,y}. Clearly, zy € E(G). By Lemma 2.1.8(3}, we may
suppose that u is adjacent to z, but not to y, and v is adjacent to ¥, but not
to z. Thus deg x = deg y = 2. But then by hypothesis, G is of even order.
Now consider G,. Clearly, D, N (Ng(v) U {v}) = &. Suppose v € D,. Since
wy ¢ E(G), x € D,. Then v dominates V(C3). But this is impossible since
B # 0. Hence, v ¢ D,. Thus |D, NV (Cy)| =1 and |D, NV (C3)| = 1.

Let {w} = D, N V(Cs). Then w dominates V(Cs). If w € V(Cy) — B,
then Ng[b] C Ng[w] for every vertex b € B, a contradiction. Hence, w € B.
If there is a vertex z € B — {w}, then N[z] C N|w], again a contradiction,
and so B — {w} = @. Thus B = {w}. Now let a € Ng,(u). Consider G,.
Since Ng,(u) is complete by Lemma 2.1.8(1), D, N (Ng, (uw) U {u,w}) = B.
But D, N V(Cy) # 0 because B # . Thus v ¢ D, otherwise no vertex
of D, is adjacent to z. Hence, D, N V(C1) # 0. Let {a'} = D, N V(Cs).
Clearly, o’ € N¢,(v) and o’ dominates V(C3) — {a}. Similarly, a € D, and a
dominates V(Cz) — {a’}. Hence, V(C5) — B is isomorphic to a complete graph
of even order 2t with a perfect matching deleted. Therefore, |V (G)| = 2t + 5,
contradicting the fact that G is of even order. This completes the proof of
Case 2.

Case 3: |[V(C))| = 3.

Then by Lemma 2.1.8(3), sets N¢, (u) and Ng, (v) must partition V(C1),
since A = §. So, without loss of generality, we may suppose |N¢, (u)| > 2.

Let x € N¢,(u). Consider G,. Clearly, |D,| = 2 and D,.N(N¢, {(u)U{u}) =
0. {Note that Ng, (u) is complete by Lemma 2.1.8(1).) Since [N, (u)—{z}| > 1
and v is not adjacent to any vertex of N¢, (u) by Lemma 2.1.8(3), it follows
that D, N Ng, (v) # 0. Let D, = {y,w} where y € N, (v). Again, by Lemma
2.1.8(3), yu ¢ E(G). Thus wu € E(G). Since y is not adjacent to any vertex
of V(C3) and B # 0, it follows that w € Ng,{u). Further, w dominates
V(C2)U{u}. Because B # 0, there is a vertex z € B. Clearly, Ng[z] € Ng|w].
This contradicts Lemma 2.1.4 and completes the proof of the theorem.

Theorem 2.2.3: Let GG be a connected claw-free 3-vertex-critical graph.
Then if §(G) > 5, G is 4-connected.
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Proof: Suppose to the contrary that G is not 4-connected. By Theorem
2.2.2, G is 3-connected, so there exists a cutset consisting of three vertices
in G, say § = {u,v,w}. By Lemma 2.1.7(2), G — S consists of exactly two
components, C; and C; say. Let A = V(C}) — (Ng(u) U Ng{v) U Ng(w)) and
B =V(C2) — (Ng(u) U Ng(v) U Ng(w)). Then by Lemma 2.1.7(1), Ng(z) N
V(C;) # 0 for every z € {u,v,w} and for i = 1,2. By Lemma 2.1.8(2), A =0
or B = (. Without loss of generality, we may assume that A = (. Note that
since 6(G) > 5 ,|V(Cy)| > 4 by Lemma 2.1.8(3). Further, |V(C2)| > 3.

Let z € N¢,(u). Consider G;. Clearly, |D,| = 2 and D,N{N¢, (v)U{u}) =
@, since N¢,(u) is complete by Lemma 2.1.8(1). We distinguish two cases
according to D,.

Case 1: D,Nn{v,w} =0

Since |[V(C1)| > 4 and |V(C2)| > 3, it follows that D, N V(C;) # @ and
D, NV(Cp) # 0. Put D, = {y,z} where y € V(C1) and z € V(C2). Then
y dominates V(C}) and z dominates V(C3) — {x}. Clearly, yz ¢ E(G) and
zz ¢ E(G). By Lemma 2.1.7(1) and the claw-freedom of G, zu ¢ E(G).
Thus yu € E(G) since D, = {y, z}. Since |V(C1)| > 4 and A = 0, it follows by
Lemma 2.1.8(3) that y is not adjacent to at least one vertex of {v, w}. Without
loss of generality, we may assume that yv ¢ E(G). Then zv € E(G). It follows
from Lemma 2.1.7(1) and the claw-freedom of G that vz ¢ E(G). We now
distinguish two cases according to yw.

Case 1.1: yw € E(G).

Note that y dominates V(Ci) U {u,w}. Choose a € V(Cy) — {y}. If
av ¢ E(G), then Ng|a] € Ng|y] contradicting Lemma, 2.1.4. Thus av € E(G)
for every a € V(C1)—{y}. Hence, N¢, (v) = V(C1)—{y}. By Lemma 2.1.8(1),
G[V(Cy) — {y}] is complete. Since y dominates V(Ci) U {u,w}, GIV(Cy)] is
complete. We next show that Ng, (u) = {y}.

Suppose to the contrary that there is a vertex y; € V(C1) — {y} such that
y1u € E(G). Consider Gy,. Clearly, Dy, N (V(C1)U {v,u}) = 0. Then D,, C
{w} U V(Cy). Since |V(C1)| > 4, w € Dy,. Then w dominates V(C1) — {y1}.
Next, choose y2 € V(Ci) — {y,v1}. Consider G,,. Clearly, Dy, N (V(C;) U
{v,w}) = 0. Then Dy, C {u} UV(Cs3). Since {V(C1)| > 4, u € Dy,. Then u
dominates V(C1) — {y2}. Now, if y3 € V(C1) — {y, ¥1,¥2}, then y3 is adjacent
to v, w and w. But this contradicts Lemma 2.1.8(3). Hence, N¢, (u) = {y}.
By applying a similar argument, we have N¢, (w) = {y}.

Now if a,b € V(C)) — {y}, then Ngla] = V(C:) U {v} = Ng[b]. But this
contradicts L.emma 2.1.4 and hence completes the proof in this case.

Case 1.2: yw ¢ E(G).

Since D, = {y, 2}, 2w € E(G). Now z dominates (V(Cz) — {z}) U {v, w}.
By Lemma 2.1.7(1) and the claw-freedom of G, wz ¢ E(G). Consider G..
Clearly, D, N ((V(Ca) — {z}) U {v,w}) = 0. Then D, C {u,z} UV(C1). Since
V(C2)| > 3, D, N {u,z} # 0. If D, = {u,z}, then uw € E(G) since zw
¢ E(G). But then Glu;w,x,y] becomes a claw centered at u, a contradiction.
Hence, D, # {u,r}. Now we show that u ¢ D,. Suppose to the contrary that
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uw € D,. Then z ¢ D,. Thus u dominates V{(C3) — {z}. By Lemma 2.1.8(1),
G[V(C3) — {=}] is complete. Since z dominates V(Cs) — {z}, G[V(C,)] is
complete except for the edge zz. Let z, € V(C32) — {z,z}. Then V(C3) U
{u} € Nglz1]. Consider G.,. Clearly, D,, N (V(Cy) U {u}) = @. Thus
D., € {v.w}UV(C)). But then no vertex of D,, is adjacent to = since
z € V(Cy) and v and w are not adjacent to z. This contradiction proves that
uw¢ D,. Thenx € D,. Let {y,} = D, — {z}. Since z € V(C3) and y, # u,
y1 € V(C1). Because z is not adjacent to any vertex of V(Ch)U{v, w}, y; must
dominate V(Cy)U{v,w}. Thus y; # y. By Lemma 2.1.8(3), y1u ¢ E(G). Now
consider Gy,. Clearly, Dy, N (V(C1)U {v,w}) =9. Thus D, C {u} U V(Cy).
Since |V(C1)| = 4, v € D,,. Then u dominates V{(C;) — {y1}. By Lemma
2.1.8(1), GIV(Ci1) — {wn}] is complete. Since y; dominates V(Cy) U {v,w},
G|V (C1)] is complete. Let yo € V(C1) — {y,y1}. Then V(C1)U {u} C Nglya].
Consider Gy,. Clearly, Dy, n(V(C;)U{u}) = 0. Then D, C {v,w}UV(Cs).
But then no vertex of D,, is adjacent to y since y € V(C1) and v and w are
not adjacent to y, a contradiction. This completes the proof in Case 1.2 and
hence in Case 1.

Case 2. D,n{v,w} #0.

Without any loss of generality, we may assume that v € D,. We distin-
guish three cases according to D, — {v}.

Case 2.1: D, — {v} € V(Cs).

Then v dominates V(C)) and thus G[V(C})] is complete by Lemma 2.1.8
(1). Let y1 € Ng,(u). Then V(C1) U {u,v} C N¢{y1]. Consider Gy,. Clearly,
Dy, N (V(C1) U {u,v}) = 0. Thus Dy, C {w}UV(Cy). Since |V(C1)| > 4,
w € D,,,. Then w dominates V(C1) — {y1}. Next suppose y2 € V(C1) — {1}
Then V(C1)U{v,w} C Ng(yz]. Consider Gy,. By a similar argument, we have
u € Dy, and u dominates V(C1) — {y2}. Now suppose yz € V(C1) — {y1, 92}
Clearly, ys is adjacent to v,w and u. This contradicts Lemma 2.1.8(3) and
completes the proof in this case.

Case 2.2: D, — {v} = {w}. .

Then vz ¢ E(G) and wz ¢ E(G). Further, V(Ci) = Ng, (v} U N, (w)
and vu € E(G) or wu € E(G). Without any loss of generality, we may assume
that vu € E(G).

Claim 2.2.1: Ng,(v) N Ng,(w) = 0.

Suppose to the contrary that Ng (v} N Ne (w) # 0. Let a3 € Neg,(v) N
Ng, (w). Then a; is adjacent to every vertex of V{(C;) — {a1} by Lemma
2.1.8(1). By Lemma 2.1.8(3), ayu ¢ E(G). Consider G,,. Clearly, D, N
(V(Cy) U {v,w}) =0. Thus D,, C {u} UV(C3). Since |V(C1)| > 4, u € Dq,.
Then u dominates V(C;) — {a1}. By Lemma 2.1.8(1), G[V(C1) — {a1}] is
complete. Since a; is adjacent to every vertex of V(Cy) — {a1}, G[V(C1)] is
complete. Suppose ay € V(C1)—{a1}. Since V(Ci) = Ng, (v)UNg, (w), asv €
E(G) or ayw € E(G). Suppose azv € E(G). Now V(C;)U{u,v} C Nglaz). By
Lemma 2.1.8(3), asw ¢ E(G). Consider G,,. By a similar argument, we have
w € D, and w dominates V(Cy) —{az}. Now every vertex of V(C1) —{a1, as}
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is adjacent to both u and w. Therefore, by Lemma 2.1.8(3), none is adjacent to
v. Let ag € V(Cy)—{a1,az}. Consider G,,. Clearly, D,, N(V(Cy)U{u,w}) =
0. Thus Dy, C {v} U V(C:). But then no vertex of D,, is adjacent to a4 for
as € V(Cy) — {a1,a2,a3}, a contradiction. Hence, apv ¢ E(G). By a similar
argument, asw ¢ E(G). Thus as € Ng, (v) U Ng, (w). But this contradicts the
fact that V{(C1) = N¢,(v) U N¢, {(w). Hence, our claim is proved.

Claim 2.2.2: N¢, (u) € Ng, (v).

Suppose to the contrary that there is a vertex b € Ng, (u) such that
b ¢ Ng, (v). Since uz € E(G) and uv € E(G), but vz ¢ E(G), it follows that
Glu; v, b, z] is a claw centered at u. This contradiction proves that b € Ng, (v)
for every b € N, (u). Hence, N, (u) C Ng, (v) as claimed.

Now consider G,,. Clearly, D, N(Ng(v)U{u,v}} =0. Since |Ng, (v}] = 1,
D, N Ne(w) # @ by Claim 2.2.1. Thus D, — Ng, (w) # {w} since wz ¢
E(G) and no vertex of N¢, (w) is adjacent to z. Now let D, = {y, z} where
y € Ng,(w). Clearly, z € V(C;). Thus y dominates V(C;). By Claim 2.2.2,
yu ¢ E(G). Hence, z dominates V(C2) U {u}. Now consider G,. Clearly,
D, n{V(Cy)U{u}) =0. Thus D, C {v,w} UV (Ci). But then no vertex of
D, is adjacent to x since € V((;) and v and w are not adjacent to z. This
completes the proof in Case 2.2.

Case 2.3: D, — {v} € V((C1).

Then v dominates V(C3)—{z} and B = §. By Lemma 2.1.8(1), G|V (C2)—
{z}] is complete. Since vz ¢ E(G) and 6(G) > 5, |V(Cy)| > 4.

Claim 2.3.1: Ng,(u) = {z}.

Suppose to the contrary that u is adjacent to some vertex of V(C3) —
{z}, r; say. Then zz; € F(G) by Lemma 2.1.8(1). Now V(C3) U {u,v} C
Nglz,]. Consider G,. Clearly, D, N(V{(Cy)U{u,v}) = 0. Then D, C {w}U
V(C)). Since |V(C3)| > 4, w € Dy,. Further, w dominates V(Ca) — {z1}. By
Lemma 2.1.8(1), G[V(C,) — {z1}] is complete. Consequently, G[V(C2)] is
complete since xz; € E(G) and G[V{(C3) — {z}] is complete. Next suppose
zo € V(Cy) — {z,z1}. Then V(Cy) U {v,w} C Ng|zz]. Consider G;,. Clearly,
D., N (V(C2) U {v,w}) = 0. Then D,, € {u} UV (C1). Since |[V(C3)| > 4,
u € D,,. Further, v dominates V(C;) — {x2}. Now for every z € V(C3) —
{z,z1, 72}, Nglz] = V(Ca) U {u,v,w}. Then Ng[r] € Ng[z]. This contradicts
Lemma 2.1.4. Hence, Ng, (u) = {z}.

Claim 2.3.2: Ng,{w) = {z}.

Suppose to the contrary that w is adjacent to some vertex of V(Cy) —{z},
y say. Note that (V(C3) — {z}) U {v,w} € Ngly]. Consider G,. Clearly,
D, N(V(C2) —{z})U{v,w} = 0. Then Dy C {u,z} UV (C)). Since N¢,(u) =
{x} and |V (C2)| = 4, it follows that x € Dy,. Further, x dominates V(C2)—{y}-
Since G[V(C2)—{z} is complete, G[V(C?3)] is complete except for the edge zy.
By Lemma 2.1.7(1) and the fact that wy € E(G) and zy ¢ E(G), it follows
that wr ¢ E(G) as otherwise w becomes a center of claw. Next suppose
Y1 € V(Cy) — {z,y}. Then V(C3) U {v} € Ngly]. Consider Gy,. Clearly,
Dy, N (V(Cy) U {v}) = 0. Then Dy, C {u,w}UV(Cy). Since Ng,(u) = {z}
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and |V(C3)| > 4, it follows that w € Dy, . Further, w dominates V(Cs) —
{z,y1}. Now let yo € V(C2) — {z,y,5n}. Then V(Cs) U {v,w} C Neglyal.
Consider Gy,. Clearly, Dy, N (V(Cs) U{v,w}) =8. Then D,, C {u} UV (C}).
But then no vertex of D,, is adjacent to any vertex of V(C2) — {z,42}, a
contradiction. Hence, Ng,{w) N (V(C>) — {z}) = @. It follows by Lemma
2.1.7(1) that N¢,(w) = {z} as claimed.

Now let z € V(C3)—{xz} such that zz € E(G). Then Ng(z] = V(Ca)U{v}.
Consider G,. Clearly, D,N(V(C2)U{v}) = 0. Then D, C {u,w}U V(C}). But
then no vertex of D, is adjacent to any vertex of V(Cq)—{z, 2}, a contradiction.
This completes the proof of Case 2.3 and hence the theorem is proved.

We now have the following corollary the proof of which is immediate by
Theorems 2.1.6, 2.2.1, 2.2.2 and 2.2.3.

Corollary 2.2.4: 1. Let G be a connected claw-free 3-vertex-critical
graph of odd order. Then G is factor-critical.

2. Let G be a connected claw-free 3-vertex-critical graph of even
order. Then & is bicritical.

3. Let G be a connected claw-free 3-vertex-critical graph of odd order.
Then if §(G) > 5, G is 3-factor-critical.
|

Note that the members of the infinite family shown in Figure 2.1.1 also
satisfy the hypotheses of Corollary 2.2.4(1).

It is known that every 3-factor-critical graph must be 3-connected. (See
|[F1; Theorem 2.5].) On the other hand, clearly the graph G(1,2,2) shown in
Section 2.1 is 3-connected and has minimum degree 4, but is not 3-factor-
critical. Thus the bound on minimum degree in Corollary 2.2.4(3) is best
possible. Note also that each G(t,r,s) for t + r > 4 and s > 3 satisfies the
hypotheses of Corollary 2.2.4(3).
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Chapter 3

Results on Connected Domination Critical Graphs

3.1 Introduction

Recall that a set S C V(G) is a (vertex) dominating set for G if every vertex of
G either belongs to S or is adjacent to a vertex of S and the minimum cardinality
of a dominating set for GG is called the domination number of G and is denoted
by 4(G). We say that a dominating set S for G is a connected dominating set
if G[5] is connected. The minimum cardinality of a connected dominating set
for G is called the connected domination number of G and is denoted by ~.(G).
Observe that v(G) < v.(G) and if ¥(G) = 1, then ¥{(G) = v.(G). Further, a
graph containing a connected dominating set is connected.

Graph G is said to be k& — y—critical if ¥(G) = k but v(G + ¢) < k for each
edge e ¢ E(G). (Clearly, then (G + €) = k — 1, for every edge e ¢ E(G)).
The study of k — y—critical graphs was begun by Sumner and Blitch [SB] in
1983. Clearly, the only 1 — y—critical graphs are K, for n > 1. Sumner and
Blitch showed that a graph G is 2 — y—critical if and only if G = |J_, K1, for
n; > 1 and r > 1. Since 1980 k — ~y—critical graphs have attracted considerable
attention with many authors contributing results. For summaries of most known
results, see [HHS; Chapter 16] as well as [FTWZ} and the references that they
contain. Most of these results concern 3 — y—critical graphs. The structure of
k — ~v—critical graphs for k > 4 is far from completely understood.

The similar concept of edge criticality with respect to the connected domi-
nation number just has received attention only recently. Graph G is said to be
k — v.—critical if 7.(G) = k but (G + e) < k for each edge e ¢ E(G). Clearly,
the only 1 —~.—critical graphs are K, for n > 1. Chen et.al. [CSM] were the first
to study k — y.—critical graphs. They pointed out that for each edge e ¢ F(G),
“Y(G) — 2 € 7{(G + e) € 7.(G) — 1. Observe that v.(C,) = n — 2. Clearly,
Y.(Cs + €) = 2 for any edge e ¢ E(Cs) but 4.(Cs +uv) = 4 if © and v are vertices
of Cy at distance 4.

If S is a connected dominating set for G, we shall denote by § >, G. Fur-
ther, if v and v are non-adjacent vertices of G and {u} U S, >, G — v for
some S C V(G)\{u,v}, we will follow previously accepted notation and write
[, S1] —cv. If S1 = {2}, then we write [u, 2] —, v instead of [u, {z}] —. v.
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Figure 3.1.1

Chen et.al.[CSM] established the following theorems:

_ Theorem 3.1.1: A connected graph G is 2 — ~y.—critical if and only if
G=Ui; Kin forn; > land r > 2. [ |

Theorem 3.1.2: Let &G be a connected 3 — ~.—critical graph and S an in-
dependent set with s > 3 vertices. Then the vertices in § may be ordered as
ay,Qg, ... a, in such a way that there exists a path xy,zs,...,7z,-1 in G — S with
la;,z;] —ca;y fori=1,2,...,s—1. [ |

Theorem 3.1.3: Let GG be a connected 3 — ~,—critical graph.

1. If S is a cutset of G, then ¢(G — S) < |S|+ 1.

2. If G has even order, then GG contains a perfect matching,.

3. The diameter of G is at most 3. [ |

Observe that Theorem 3.1.1 is similar to a characterization of 2 — v—critical
graphs mentioned above except for the lower bound on r. Further, Theorems
3.1.2 and 3.1.3 are true for 3 — y—critical graphs. One might expect that all
results on 3 — y—critical graphs are also valid for 3 — «.—critical graphs. But this
is not the case if we consider 3 — ~.—critical graphs with cutvertices. Ananchuen
and Plummer [AP3] showed that a connected 3 — y—critical graph may contain
more than one cutvertex. The graph in Figure 3.1.1 is as an example. They also
characterized connected 3 — y—critical graphs with more than one cutvertex.

In this chapter, we show that a 3 — ~.—critical graph can contain at most
one cutvertex. A characterization of 3 — «.—critical graphs with a cutvertex is
given in Section 3.3. Section 3.2 contains results for k — y.—critical graphs with
cutvertices for & > 3. We conclude this chapter with the results about matchings
in 3 — «y,—critical graphs in Section 3.4.

The following remarks are trivial to verify, but as we will appeal to them
repeatedly, we list them separately.

Remark: If G is a 3 —~,—critical graph and « and v are non-adjacent vertices
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of GG, then the following hold:
L. 7(G + uv) = 2,

2. If Nglu] U Ng[v] # V(G), then there exists a vertex z € V(G)\{u, v} such
that [u,2] —. v or [v,z] —, u. Further, if [u,z] —, v, then uz € E(G)
but v ¢ Ng(u) U Ng(z) and if [v,2] —, u, then vz € E(G) but u ¢
NG('U) U N(;(Z). ,

3.2. k& — v.— Critical Graphs with Cutvertices.

Lemma 3.2.1: For & > 3, let G be a k — ~y.—critical graph with a cutvertex
z. Then

1. G — z contains exactly two components,

2. If Cy and Cj are the components of G — z, then G [Ng, (z)] and G [Ng,(z)]
are complete.

Proof: Let Cy, Cy, - -+, C, t > 2, be the components of G — z.

(1) Suppose to the contrary that ¢t > 3. Let ¢; € Ng,(z) and ¢ € Ng,(z).
Consider G + ¢;cy. Since G is k — . —critical, v.(G + ¢1¢2) < k. Let S be a min-.
imum connected dominating set for G + ¢;¢;. Then |S| < &k — 1. Since ¢t > 3 and
G|[S] is connected, it follows that z € S. Then S is also a connected dominating
set for G because {¢;,c2} C Ng(z). But this contradicts the fact that v.(G) = k
since |S| < k — 1. Hence, ¢ = 2 as required. This proves (1).

(2) Suppose to the contrary that G[Ng, (2)] is not complete. Then there exist
non-adjacent vertices a and b of N¢,(z). Consider G+ ab. By a similar argument
as in the proof of (1), a minimum connected dominating set Sy for G + ab of size
at most & — 1 is also a connected dominating set for G. This contradicts the fact
that v.(G) = k. Hence, G[N¢, ()] is complete. Similarly, G[Ng,(z)] is complete.
This proves (2) and completes the proof of our lemma. [ |

Lemma 3.2.2: For k£ > 3, let G be a k — ,—critical graph with a cutvertex
z and let ¢ and C; be the components of G — z. Suppose S is a minimum
connected dominating set for . Then

1. z €8,
2. Fori=1,2; v.(C;) <k -1,

3. If C is a non-singleton component of G — z with v.(C) = k — 1, then C is
(k —1) — y.—critical.
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Figure 3.2.1

Proof: (1) follows immediately by the fact that G[S] is connected.

(2) is obvious if 4.(C;) < 2 since £ > 3. So we may suppose 7.(C;} > 3.
If SNV(C)) = 0, then, since z € S, V(C;} C Ng(z). By Lemma 3.2.1(2),
Y(C1) = 1, a contradiction. Hence, SN V{C;) # 0. Similarly, S N V{(Cy) # 0.
Because G[S] is connected and z € S, it follows that SN Ng,(z) # 0 fori = 1, 2.
By Lemma 3.2.1(2), SN V(C;) ». Ci. Hence, 7.(C;) < |SNV (C)] <k -1

(3) Let a and b be non-adjacent vertices of C. By Lemma 3.2.1(2), {a, b} € Ne(z).
Consider G' = G + ab. Since G is k — 4.—critical, there exists a connected dom-
inating set Sy of size at most k — 1 for G'. Since G'[S}] is connected, z € 5.
By a similar argument as in the proof of (2}, S N V(C) =, C + ab. Hence,
Y (C + ab) < k — 2. Therefore, C is (k — 1) ~ q.—critical as required. This
completes the proof of our lemma. n

Remark: Suppose v.(C) =t < k — 1 where C is defined as in Lemma 3.2.2.
Then C need not be ¢t —~.—critical. The graph G, in Figure 3.2.1, is 3—y.—critical
with a cutvertex z. Clearly, C' = G—{z,y} is a non-singleton component of G —x
with v.(C') =1 and is not 1 — 7. —critical.

Theorem 3.2.3 : For k > 3, let G be a k—~.—critical graph with a cutvertex
z. Suppose C; and Cs are the components of G — z. Let A = G[V(Cy) U {z}]
and B = G[V(Cy) U {z}] .Then

L. k-1 S’YC(A)+FYC(B) Sk

2. v.(A) + v.(B) = k if and only if exactly one of Cy and C; is singelton.

Proof: Let S be a minimum connected dominating set for G. By Lemma
322(1),zeS.

(1) We distinguish two cases.

Case 1: SNV(Cy) =@ or SNV(Cy) = 0.

Suppose without any loss of generality that SN V(C;) = 0. Then V() C
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Ne(z) and thus .(A) = 1. Since 7.(G) > 3, V(Cy)\Ng(z) # 0. Since G|S]
1s connected, there exists a vertex z; € Ng,(z) N.S. Then, by Lemma 3.2.1(2),
S — {z} ». B. Hence, v.(B) < k — 1. If there exists a connected dominating set
Sy of size at most k — 2 for B, then S; U{z} becomes a connected dominating
set of size at most k — 1 for GG, a contradiction. Hence, v.(B) = k — 1. Therefore,

YelA) + 7 (B) = k.

Case 2: SNV(Cy) # 0 and SNV(Cy) # 0.

Because z € S, [SNV(C)| + |SNV(Cy)] = k — 1. Since G[S] is connected,
there exists y;, € SN Ng,(z) for ¢ = 1,2. By Lemma 3.2.1(2), SN V(C;) ».
V(C:) U {z}. Hence, 7.(V(Cy) U {z}) < |SNV(C;)]. We next show that
for i = 1,2, 7(V(Cy) U {z}) = |SNV(C;)]. Suppose to the contrary that
T(V(Cr)U{a}) < |SNV{(Cy)| —1. Let S’ be a minimum connected dominating
set for V(Cy)U{z}. Then S'NNg, (z) # 0. Thus S'U{z}U(SNV(Cy)) >, G. But
this contradicts the fact that 7.(G) = k since [S"U{z} L (SNV(Cy)| < {SNV(C))]
~14 1+ |SNV(Cy)| = k — 1. This proves that v.(V(C)) U {z}) = [SNV(C})|.
Similarly, v.(V(C2) U {z}) = |S N V(C:)|. Therefore, v.(A) + 7.(B) = k — 1.
Hermnce, (1) is proved.

(2) The sufficiency is immediate. So we need only prove the necessity. Let
Ye(A)+7v(B) = k. fSNV(C)) # § and SNV (C,) # B, then, by the proof of Case
2, v(A)+v.(B) = k—1, a contradiction. Hence, SNV (Cy) = 0 or SNV (Cy) = 0.
Suppose without any loss of generality, we may assume that SN V(C;) = 0.
Then V(C;) € Ng(z). Since 7.(G) > 3, it follows that V(C3)\Ng(z) # 0 and
SNV(Cy) # 0. We next show that [V(C1)] = 1.

Suppose to the contrary that |[V(C)}| > 2. Let a; € V(C}) N Ng(z) and a; €
V(Ca) N Ng(x). Consider G + ajaz. Then there exists a set 53 € V(G)\{a1,a2}
of size at most k — 2 such that {a;,a:} U S ». G + a1a2 or [a1,51] = a2
or |as,S1] =. a1. Suppose {aj,a:} US, . G + a1as. Then |5 < k& — 3.
Thus (Sl M V(CQ)) U {ag} . Cy. Then (Sl M V(Cz)) U {ag,iﬂ} . G. But this
contradicts the fact that v.(G) = k since |[S; N V(Cs)| + |{az, z}| < k — 1. Hence,
{a1,a2} U S) does not dominate G + a,a;. We next suppose that [a;, 1] >, as.
Thus |51] < k& — 2 and S; N Ng(ap) = 0. Thus z ¢ 5. Since G[S1 U {a1}]
is connected, Sy € V(C)). But then no vertex of S; U {a:1} is adjacent to a
vertex of V(Cy)\{az}, a contradiction. Hence, {a;} U S, does not dominate
G — ay. Therefore. [as, Sy = a;. By an argument similar to that above, z ¢ 5
and S; C V(C3). But then no vertex of S; U {as} is adjacent to a vertex of
V(C1)\{a1}, a contradiction. Hence, |V(C})| = 1 as claimed. Therefore, C} is
singleton. This completes the proof of our theorem. |
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3.3 A Characterization of 3 —~.— Critical Graphs with a Cutvertex.

Our first theorem improves Theorem 3.1.3(1) established by Chen et.al.[CSM]
when a cutset is not singleton.

Theorem 3.3.1: Let & be a 3 — v.—critical graph and S a cutset of G with
S| =5 > 2. Then ¢(G — S) < |S|. Further, the upper bound on the number of
components is best possible.

Proof: Suppose to the contrary that ¢(G — S) > |S| +1 =s+1 > 3. By
Theorem 3.1.3(1), ¢(G — 5) = s+ 1. Let Ci, Cs,..., Cs;1 be the components of
G-—8. Forl<i<s+1,let ¢ € V(C;). Then A = {cy, o, .., Cs41} is indepen-
dent. By Theorem 3.1.2, the vertices in A may be ordered as a;, as,..., @54y Il
such a way that there exists a path z;, 72,..., z, in G — A with [a;, z;] —¢ @i
for 1 <1 < s. Note that a;z; € E(G) but z;a;,4; ¢ E(G). Further, z; € S. Thus
S = {z, 22, .., s} and a; is adjacent to every vertex of S. Observe that

{al, LEQ} 9] (jL:J: V(Cl)\{ag}) g NG(Z'I),

5+1

{0 25} U (t_l;Jl V(CO\ (V(C) U {am})) C No(za),

and for 2 < 3 <s—1,

{251, T4} U CQV(CI')\ (V(C;) U {aj+1})) C Ng(z;).

Now consider G + a;a,41. Then, by Remark (2) of Section 3.1, there exists a
vertex z such that [a;, z] —¢ as41 OF [@s11, 2] —¢ a1 In either case, z € S. Then
{as:1, 2} does not dominate G—ay since a, is adjacent to every vertex of S. Hence,

la1, 2] —¢ agy1. Since [a;, ;] —¢ @41 for 1 <4 < s and za.y) ¢ E(G), it follows
s+1

that z = z,. Then z, dominates UV(C;‘)\{GHI}- If s = 2, then {z;, 22} >, G,

a contradiction. Hence, s > 3. For1 21 < k < s-—1, consider G + aras;;. Then, by
Remark (2), there exists a vertex z; such that [ax, ;] ¢ agp1 oOF [as41, 23] —¢ k.
We show that in either case z,2,y € E(G). Suppose [ax, z1] —. as11. Then
z21 = T, Since axTx_y € E(G), z,24-1 € E(G) as claimed. Now suppose [ag, 1,
z1] —¢ ax. Then z; = z4_,. Since asp1zs ¢ E(G), 2417, € E(G) as claimed.
Hence, z,z; € E(G), for 1 < i < s —1 since z,.yz, € E(G). Because |as,
T2] — a3 and s > 3, it follows that zsa,., € E(G). But then {z,, z,} is a con-
nected dominating set for GG, a contradiction. Hence, ¢(G —8) < |S| as claimed. B

We next show that the upper bound on the number of components in The-
orem 3.3.1 is best possible. For an integer n > 3, we construct a graph G, as
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G

Figure 3.3.1

follows. Let X = {zi, z2,..., Zo—1} and Y = {1, ¥2,--+, Yn-1}. Then set
V{(G) = X UY U {a, b}, thus yielding a set of 2n distinct vertices. Form a com-
plete graph on X. Join each z; to each vertex of (Y\{y}) U {a} and finally
join b to each vertex of (Y\{y,-1}) U {a}. It is not difficult to show that G,, is
3 — 7y.—critical. Note that |X U {b}} = n and G, — (X U {b}) contains exactly n
components. Figure 3.3.1 shows the graphs G35 and Gj.

Corollary 3.3.2: Let G be a 3 — v.—critical graph with a cutvertex z. Sup-
pose C, and C; are the components of G — z. Then exactly one of C; and C, is
a singleton.

Proof: Clearly, at most one of C; or C; is a singleton. If V(C1)\Ng(z) # 0
and V(Cy)\Ng(z) # 0, then the distance from u to v is at least 4 for u €
V(C1)\Ng(z) and v € V(C2)\Ng{z). This contradicts Theorem 3.1.3(3). Hence,
V(Ci\Ng(z) = 0 or V(Co)\Ng(z) = 0. Since v.(G) = 3, it follows that
V(Ci)\Ng(z) # 0 or V(C2)\Ng(z) # 0. We may assume without any loss of
generality that V{Cy)\Ng(z) = 8 but V(C1)\Ng(z) # 0. Thus 1.(G[V(Cy) U
{z}]) = 1. By Theorem 3.2.3(1), 7.(G[V(C1) U {z}]) = 1 or 2. Suppose first
that . (G[V(Cy) U {z}]}) = 1. Let {a} be a minimum connected dominating set
for G[V(Cy) U {z}]. Clearly, a # z but az € E(G). But then {a,z} >. G , a
contradiction. Hence, v.(G[V(Cy)U {z}]) = 2. By Theorem 3.2.3(2), exactly one
of C) and C; is singleton. Because v.(G) = 3,|V(Cy)| = 2. Thus C; is singleton.
This completes the proof of our corollary. n

Corollary 3.3.2 need not be true for £ > 4. The graphs G; and G in Fig-
ure 3.3.2 are 4 — vy, —critical and 5 — .—critical, respectively. Note that none of

components of G; — z is singleton.

The following corollary follows immediately from Theorem 3.2.3(2) and Lemma
3.3.2.
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Corollary 3.3.3: Let G be a 3 — ~.—critical graph with a cutvertex z.
Suppose Cy and Cj are the components of G — z with C; is singleton. Then
Y(GIV(CH U {z}])) =2. n

Our next result establishes the number of cutvertices in 3 —~,—critical graphs.

Theorem 3.3.4: If G is a 3 — v.—critical graph, then G contains at most
one cutvertex.

Proof: Suppose to the contrary that r; and z; are distinct cutvertices of G.
By Lemma 3.2.1(1) and Corollary 3.3.2, G— z; contains exactly 2 components,
say Cy and Cy, where C is singleton. Let {y} = V(C3). Clearly, Ng(y) = {z1}.
Now consider (G— z,. Again, by Lemma 3.2.1 and Corollary 3.3.2, G— z3 con-
tains exactly 2 components, one of which is a singleton. Let {w} be the vertex set
of the singleton component of G- x3. Then w # y and Ng(w) = {z2}. Clearly,
{w,z2} C V(C)). Since v.(G) = 3, |V(C1)| = 3. Thus G — {ml,xg} contains at
least 3 components contradicting Theorem 3.3.1. This proves our theorern. W

We now present a construction which yields two infinite families of 3 — ~.—
critical graphs with a cutvertex. For positive integers n; and r with r > 2, let
T

H= Uf‘\’]‘ni. For 1 < j <, let ¢; be the center of K, in H and w{, wg ey
=1

wﬁ;j the end vertices of K, ,, in H. We now construct the graphs G, and G,
as follows. Set V(G,,) = V(H)U {z,y} and E(G,,) = E(H) U {zy} U {zw] |
1 <i<n;and 1 <j <7} Nextset V(Gy,) = V(H)U{z,y} UU where |U]
>1land E(G,) = E(H)U{zy} U{zw! | 1<i<n;jand 1 <j<r}uiuz|
w € Uand z € V(H)U (U\{u})}. Note that E(G,,) = E(G,)U{uz |ue U
and z € V(H)U (U\{u})}. It is not difficult to show that G, and G, are both
3 — v.—critical with the single cutvertex z. Note that v.(G., — {z,y}) = 2 but
Ye(Gep, — {@,¥}) = 1. Figure 3.3.3 shows as examples the graphs G, and G., of
order 7 and 8, respectively.
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Figure 3.3.3

Theorem 3.3.5: G is a 3 — v.—critical graph with a cutvertex if and only if
G e {G.,. Ge,}-

Proof: The sufficiency follows from our construction. So we only prove the
necessity. Let z be a cutvertex of G. By Lemma 3.2.1(1) and Corollary 3.3.2,
G — z contains exactly two components, one of them is singleton. Let C; and C5
be the components of G — z with V(C,) = {y}. Clearly, Ng(y) = {z}. By Corol-
lary 3.3.3, %.(G[V(C;) U {z}]) = 2. Let Sbea minimum connected dominating
set for GV (Cy) U {z}].

Claim: z ¢ S.

Suppose to the contrary that z € S. Let {1} = S\{z}. Since G[5] is con-
nected, zx; € E{G). Because Ng(y) = {z}, {z, z;} >. G, a contradiction. This
proves our claim.

It follows by our claim that S =, Cy and thus v.(C|) < 2. We distinguish two
cases.

Case 1: () = 2.
By Lemma 3.2.2(3), C} is 2 — vy.—critical. Thus C] = UKI,n‘. for n; > 1 and

i=1 _ _
r > 2 by Theorem 3.1.1. Let ¢; be the center of Kin; in C} and wi, wh,. .. wf the

end vertices of K, ,,, in C;. We need to show that Ng,(z) = LJ{wJ | 1 <i<m}

Claim 1.1: For n; > 1, if z is adjacent to ¢;, then z is not adjacent to any
vertex of {wy.wy,.. ., w) }.

This claim follows directly from Lemma 3.2.1(2) and the fact that c;w! ¢ E(G)
for 1 S 1 S .

Claim 1.2: If n; > 2, then z is not adjacent to c;.
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Suppose to the contrary that z is adjacent to ¢; for some j with n; > 2.
Then, by Claim 1.1, z is not adjacent to any vertex of {w?!,w),... ,wj_}. Con-

sider G + c;w]. Since y ¢ Nglc,] U Ngfuw?], by Remark (2), there exists a ver-
tex z € V(G)\{c;,w]} such that [c;, 2] —. w] or [w?,z] —. ¢;. In either case,

z € {z.y} since Ng(y) = {z}. Because {c;,w],y} is independent, z # y. Hence,
z =x. If [¢;, 2] —. w], then no vertex of {c;, z} is adjacent to w3, a contradiction,
Hence. {c;, z} does not dominate G — w]. Therefore, [w], ] -+, ¢;. But this con-
tradicts the connectedness of G[{w], z}] since zw] ¢ E(G). This proves our claim.

Claim 1.3: For n; > 2, z is adjacent to every vertex of {wf|1 <i<nyl

Suppose to the contrary that there exists a vertex wl, for some 1 < t < n;
and for some j, such that zw] ¢ E(G). By Claim 1.2, z¢; ¢ E(G). Consider
G + zw]. Since z and w] are not adjacent to ¢;, by Remark (2), there exists
a vertex z € V(G)\{z,w]} such that [z, 2] —. w! or [w}, 2] —. . If [wl,
z] —. z, then z # y since zy € E(G). But then no vertex of {w{, z} is adja-
cent to y since Ng(y) = {z}, a contradiction. Hence, {w] ,z} does not dominate
G — z. Therefore, [z, 2] —, w! . Then zz € E(G) and 2w! ¢ E(G). Since Ng(w!
) =V(GN\{z.y.¢;} and z¢; ¢ E(G), it follows that z = y. But then no vertex of
{z, z} is adjacent to ¢;, a contradiction. This proves our claim.

Claim 1.4: For n; = 1, z is adjacent to exactly one of {c;,wj}.

Suppose to the contrary that z is adjacent to neither c¢; nor wl. Consider
G + ¢cjw]. By Remark (2), there exists a vertex z € V(G)\{¢;, w]} such that lc,,
z] —re w1 or [wl, 2] —. ¢;. Suppose [¢;, 2] —. wl. Since G[{cJ,z}] is connected,
z ¢ {LL y} because (NG( JU Ngly)) N {c;} = 8. But then no vertex of {cj, z}is
adjacent to y. a contradiction. Hence, {c;, 2z} does not dominate G — ujq. By a
similar argument, {w], z} does not dominate G —¢;. Thus (G + cwl) > 2, a
contradiction. Hence, z is adjacent to ¢; or wj. By Claim 1.1, z is adjacent to
exactly one of {c;, wi}.

Without any loss of generality, we may assume that zw)] € E(G) for each j

with n; = 1. Now Ng(z) = {y} U LJ{*w;L1 | 1 <4 < n;}. Hence, G = G, as
=1
required.

Case 2: v.(Cy) = 1.

Let u be a vertex of Cy with {u} >, Cy. If u € N, (z), then {u,z} ». G, a
contradiction. Hence, u ¢ N¢,(z) and Nglu] = V(C1). Let U = {u | {u} . C1}.
Clearly, [U| > 1. C)\U # @ and ~.(C, — U) > 2. Further, Ng (2} NU = 0.

Claim 2.1: If @ and b are non-adjacent vertices of €}, then az € E(G) but
br ¢ E(G) or bz € E(G) but ax ¢ E(G). Further, if az € E(G) , then a domi-
nates V(C))\{b}. Similarly, if bz € E(G}, then b dominates V(Ci)\{a}.
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Consider G + ab. Since a and b are not adjacent to y, by Remark (2), there
exists a vertex z € V(G)\{a,b} such that [a, 2] —. b or [b, z] —. a. In either
case, z = x since Ng(y) = {z}. Suppose [a, z] —. b. Then az € F(G) but
bz ¢ E(G). Further, a dominates V(C))\(Ng,(z) U {b}). By Lemma 3.2.1(2), a
dominates V(C})\{b}. By a similar argument, if {b, z] —. a, then bx € F(G) but
ax ¢ E(G). Further, b dominates V(C1)\{a} as required.

Claim 2.2: ¢} — U is 2 — ~.—critical.

Since v.(C1 — U) > 2, there exist non-adjacent vertices a and b of V(C) — U).
By Claim 2.1, we may suppose that ax € E(G) but bz ¢ E(G). Since diameter
of G is at most 3 by Theorem 3.1.3(3), bV’ € E(G) for some ¥ € Ng (z)\{a}
as otherwise the distance from b to y is at least 4. Thus & ¢ U. But then
{a,b'} . V(Ci — U) since a dominates V(Cy)\{b}. Hence, 7.(C: — U) = 2.
Again, by Claim 2.1, if u and v are non-adjacent vertices of Cy — U, then {u} or
{v} is a connected dominating set for (C; — U) + uv. This proves our claim.

Then &Y - U = I\JIKLﬂi for r > 2 by Theorem 3.1.1. Let c¢; be the center of
1=1

Kin, in C, — U and wl, w2, o the end vertlces of Kln inC,—U. Bya

similar argument as in the proof of Case 1, Ng(z) = {y} U LJ{wJ [1 <7<l

Hence, G = G,,. This completes the proof of our theorem [ ]

3.4 Matchings in 3 — v.,— Critical Graphs

Our purpose here is to prove several new theorems which say that under cer-
tain assumptions on connectivity and minimum degree. a 3 - ~y.—critical graph &
either is factor-critical (when [V(G)| is odd), bicritical (when |V(G)| is even) or
3-factor-critical (again when |V(G)| is odd). We start with a result concerning a
perfect matching and a near perfect matching.

Lemma 3.4.1. Let G be a 3 — y.—critical graph. Then

(i) if |[V(G}| is even, G contains a perfect matching. while

(ii) if |[V(G)| is odd, G contains a near-perfect matching,.
Proof: Part (i) is proved in [CSM]. We prove only part (ii). Suppose G is a
3 - ~.—critical graph with an odd number of vertices and suppose G does not
contain a near-perfect matching. Consider the Gallai-Edmonds decomposition of

G. (See [LP].) That is, let D(G) denote the set of all vertices v € V() such that
some maximum matching of G does not cover v. Let A(G) denote the set of all
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neighbors of vertices of D(G) which are not themselves in D(G) and finally, let
C(G) = V(G)—(D(G)UA(G)). Since G contains no near-perfect matching, then
by Tutte’s Theorem and parity, the number of odd components of D(G) is at least
two larger than |A(G)|. If A(G) = @, then G is disconnected, a contradiction.
So A(G) #£ 0 and hence is a vertex cutset of G. But ¢(G — A(G)) > |A(G)| + 2
which contradicts Theorem 3.1.3. ||

Our first main result shows that if the connectivity and minimum degree are
sufficiently high in a 3 — v.—critical graph of even order, then the graph must be
bicritical.

Theorem 3.4.2. If ¢ is a 3-connected 3 — «y,—critical graph of order at least
2n > 8. Then if §(G) > n — 1, G is bicritical.

Proof: Suppose, to the contrary, that G is not bicritical. Then there exist
vertices * and y in V(G) such that G’ = G — z — y has no perfect matching. By
Tutte’s Theorem, there is a subset S’ C V(G’) such that ¢, (G’ — 5’) > |S’). By
parity, ¢o{G' — S') > |8 + 2. Set S = 5" U {z,y}. Since G contains a perfect
matching by Lemma 3.4.1(i) above, we have

co(G' = 8) = co(G = §) < |S| =15 + 2.

Thus ¢,(G — S) = |S].

For 1 < ¢ < |51, let C; denote an odd component of G — S. Set s = |5].
Clearly. s > 3. For 1 <i < s, choose y; € V(C;). Then T = {y1,¥a,...,ys} is an
independent set of size s > 3. By Theorem 3.1.2, the vertices in T may be ordered
as ai, as, - . ., Qs in such a way that there exists a path ;25 - -2, in G —T such
that [a;. z;) —¢ a;41. for 1 < ¢ < s — 1. Clearly then, z; € § and a;z; € E(G),
but a;1z; € E(G) for 1 < i < s— 1. Moreover, for 1 < j <5 -1, ayz; € E(G)
and a;7, € B(G) for2<i<sand j#1i-1 Let {z;} =8 — {x1,22,. ... 251}

7

Claim 1: s > n — 1.

Since §(G) >n—1, |V{(C;)| 2n—s+1for2 <i<sand |V(C’1)| >n—s. 50
271>|SH—Z1 V(G Zs+(n—s)+(s—1)(n—s+1)=—-s*+ns+25— 1.
Thus s — (n+2)s+ (2n+ 1) > 0. It then follows that s > (n+ 2+ v/n? — 4n)/2
or s < (n+2—+vn?—dn)/2.

Forn=4, (n+2++vn?2—-4n)/2 =(n+2—-vn?>—-4n)/2=3. Thus s =3 =
n— 1.

Forn>5ifs<(n+2—-vn?—4dn)/2,then3 <s< (n+2—+vn?—4dn)/2 <
(n+2—+/n? —8n + 16)/2 = 3, a contradiction. Hencesz (n+2++v/n?-—-4n)/2.
But then since (n + 2+ vn?2 —4n}/2 > (n + 2+ vVn? —8n+16)/2 = n — 1,

s> n — 1, as claimed.

Since G has 2n vertices and |5} = s = ¢,(G — 5), it follows that s < n. Hence
n—1<s<n.
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We distinguish two cases.

Case 1: Suppose s = n.

Then each component of G - S is a singleton and G — S has no even compo-
nents. Thus let us set V(C;) = {y},1 <i<s.

Since §(G) > n — 1, aiz; € E(G) for 2 < i < 5. If ayz, € E(G), then
{a1,zs} . G, a contradiction. Hence ayz, ¢ E(G).

Claim 2: For 2 <i{ < s=n, z; 1z, € E(G).

Consider G + aya;. Since G — S contains exactly n > 4 components, {a,, a;}
is not a connected dominating set for G + a;a;. Since G is 3 — . —critical, there
exists a vertex z € V(G) — {a1, a;} such that either [a1, 2] —. a; or [a;, 2] —. a;.
Suppose first that [a;, z] —. a;,. Then z € S and za; ¢ E(G). Thus z = z,_;.
Since a1z ¢ E(G) and [a1,z; 1] —. a;, it follows that z;,_,z, € E(G).

Now consider the case when [a;, 2] — a;. Then z € § and za, ¢ E(G). Thus
z = z5. Since a;,z;_y ¢ E(G) and [ai, z5] =, a1, it follows that z; 1z, € E(G).
Hence in either case, x; 1z, € E(G) for 2 <1 < s = n as claimed.

Note that Ng(zs] = SU{a2,as,...,as}. Hence {z1, 2} >, G, a contradiction.
This proves that s # n.

Case 2: Suppose s =n — 1.
Since ¢,(G — 8) = s = n—1 and G is of order 2n, it follows that G — §
contains either n — 2 singleton components and exactly one odd component of

order 3 or n — 1 singleton components and exactly one even component of order
f)

N

Suppose first that ¢ — S contains n — 2 singleton components and exactly
one odd component of order 3. Without loss of generality, we may assume that
Ch,Cs, ..., Cs_1 are singletons and C; is the odd component of order 3. Then
set V(Ci) = {y:} for 1 < ¢ < s— 1. Also set V(Cs) = {ys wi,we}. Since
{y1,92....,ys} = {a1,a9,...,as}, either az # y, or ag # y;. Then dg(az) < n—2
or dg(az} < n — 2. But this contradicts the minimum degree assumption.

Hence G -~ S must contain n — 1 singleton components and exactly one even
component of order 2. By a similar argument, GG contains a vertex of degree less
than n — 1, again a contradiction. Hence G must be bicritical as claimed. n

Remark 1: It is not difficult to show directly that there is no 3 — ~y.—critical
graph on six or fewer vertices which is also bicritical.

Remark 2: Let us now consider the sharpness of the above result. For integers
k> 1 and s > 2, we construct a graph Hy ; as follows. Let X = {&1,z2,..., 2x}
and Y = {y1,y2,...,ys}. Set V(Hy,) = XUY U{a,b}, aset of k+ s+ 2 distinct
vertices. Form complete graphs on X and on Y. Join a to each vertex of X U{y}
and join b to each vertex of X U (Y — ).
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Hj‘j:

Figure 3.4.1

Hs,q,t,zi

Figure 3.4.2

It is not difficult to show that the graph Hy ; is 3—~.—critical and 2-connected.
Clearly, the graph Hs, . 2,41 is not bicritical for any choice of positive integers r
and s. Note that the graph Ha, 41 2s+1 shows that the bound on connectivity in
Theorem 3.4.2 is best possible.

(Figure 3.4.1 displays the graph H3s.)

Remark 3: We can “inflate” the graph Hy ; to a graph Hy -, as follows. Replace
the vertices e and b with complete graphs K(a) and K(b) on r > 1 and t > 1
vertices respectively and join each vertex of K(a) to every neighbor of @ and every
vertex of K (b) to every neighbor of b. It is easy to check that the resulting graph
Hi grp o0 k+5+r+t vertices is also 3-—-~.—critical. Note that for n > 4, the graph
H, 2n-1121s a graph on 2n > 8 vertices which is 3 —v.—critical, 3-connected and
has minimum degree n — 1. Hence the graph f,, .2 ,_112 is bicritical by Theorem
3.4.2. (Figure 3.4.2 shows the graph H3412.)

Remark 4: One might expect that the bound on minimum degree in Theorem
3.4.2 can be lowered if the connectivity is increased, but this is not the case. For
each integer n > 3, let X = {z1,29,...,&Tn1} and Y = {y1, 32, ..., ¥a}. Now
set V(G,) = X UY U {a,b}, thus yielding a set of 2n distinct vertices. Form a
complete graph on X. Join each z; to each vertex of (Y — ) U {a} and join b
to each vertex of (Y — y,_1) U {a}. Note that G, is 3 — y.—critical and (n — 2)-
connected with minimum degree n—2. But G, is not bicritical since G — {z}, 22}
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G4Z

Figure 3.4.3

has no perfect matching. (Figure 3.4.3 shows graph G,.)

We would point out the rather dramatic difference in the required minimum
degree in Theorem 3.4.2 where it is n — 1 and the corresponding Theorem 3.4.2
in [AP] where one requires only minimum degree 4 to guarantee bicriticality in
the case of ordinary domination.

In the case when the 3 — ~.—critical even graph is claw-free, however, we can
dispense with any minimum degree condition.

Theorem 3.4.3. Let G be a 3-connected 3 — ~,-—critical claw-free graph of order
2n > 8. Then G is bicritical.

Proof: Suppose, to the contrary, that G is not bicritical. By applying an argu-
ment similar to that at the beginning of the proof of Theorem 3.4.2, again we
have that G contains a subset S of s vertices where ¢,(G — S) = |S| = s. Since
G is 3-connected, s > 3.

Suppose first that s = 3. Then S is a minimum cutset and therefore each
vertex of S is adjacent to some vertex in each component of G —.S. Therefore
contains a claw, a contradiction. Hence s > 4.

For 1 <7 < s, choose y; € V(C;) where again we denote the odd components
of G~ Sby C1,Cy,...,Cs. Then T = {41,¥2,-..,¥s} is independent. Thus by
Theorem 3.1.2, the vertices in T may be ordered as a;, as, . . ., a, in such a way that
there exists a path z1z; - - z,_ in G — T where [a;, z;] —; a4, for 1 <i<s—1.
Clearly z,a; € B(G) for t = 1,2,...,s — 1. But then G[{z:;a1,a3,a4}] is a claw
centered at vertex z;. This contradiction completes the proof.

|

As an infinite family of graphs satisfying the hypotheses of Theorem 3.4.3, we
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offer the infinite family {Ha,_g222|n > 4} already defined above in Remark 3.
Note that the minimum degree of the graph Hy, 225 is 3 for any n > 4.

In the case of odd graphs, the minimum degree requirement necessary to
guarantee factor-criticality is much weaker than the minimum degree require-
ment given in Theorem 3.4.2.

Theorem 3.4.4. Suppose n > 2 and G is a 3 — y,—critical graph of order 2n+ 1.
Then if 6(G) > 2, G is factor-critical.

Proof: Suppose to the contrary that G is not factor-critical. Then there exists
a vertex z in V(G) such that G’ = G — z has no perfect matching. By Tutte’s
Theorem, there is a subset S* C V(G’) such that ¢,(G' — §') > |S']. Set S =
S"U{z}. By Theorem 3.1.3 and parity,

1S +2 < co{G' = §') =c,(G-8) < |S]|+1=|F]+2

Thus ¢,(G — S) = |S| + 1. By Theorem 3.3.1, |S]| = 1. It follows from Theorem
3.3.5 that G must contain exactly one vertex of degree one. But this contradicts
our minimum degree hypothesis and hence the theorem is proved.

|

For an infinite family of graphs satisfying the hypotheses of Theorem 3.4.4
we offer {H}9,-211|n > 2} defined in Remark 3. We also point out that the
hypothesis in Theorem 3.4.4 stating that §(G) > 2 is a necessary one, for every
factor-critical graph trivially has minimum degree at least 2.We conclude with a

result concerning 3-factor-criticality.

Theorem 3.4.5. Suppose G is a 3 — v.—critical 4-connected K 4-free graph of
odd order. Then G is 3-factor-critical.

Proof: Suppose to the contrary that (& is not 3-factor-critical. Then there exist
vertices x,y, w in V{G) such that G' = G — {x,y, w} has no perfect matching.
By Tutte’s Theorem, there is a subset §’ € V(G') such that ¢,(G' - S") > ||
Set S = 5" U {z,y,w} and |S| = s. By Theorem 3.4.4 and parity,

S| —1=|S'|+2< (G —~8)=co(G—S8)<|S|—1.

Thus ¢,(G—S) = s—1. Since G is 4-connected, s > 4. Thus, ¢,(G—S5) = s—1 > 3.
For 1 <7< s—1, let C; denote an odd component of G — 5. For 1 <i<s—1,
choose y; € V(C;). Then T = {y1,y2,...,¥s-1} is an independent set of size
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s—1 > 3. By Theorem 3.1.2, the vertices in 7" may be ordered as a1, a3, ..., a,_; in
such a way that there exists a path 175 - - - 7,_2 in G—T such that (@i, 3] —c Qg1
for 1 <i < s—2. Clearly then, z, € § and a;z; € E(G), but a;,7; ¢ E(G) for
1 <7< s~ 2 Moreover, for 1 < j <s-2 az;, € E(G) and a;z; € E(G) for
2<i<s—1land j#4i—1 Let {u,v} =8 —{r1,22,...,2:_2}. Without any
loss of generality, we may renumber the odd components of G — S in such a way
that a; € V(C;).

Claim 1: |S| = 4.

Clearly, |S| < 5 as otherwise G[{z1;a;,as,a4,0a5}] is K14 centered at z;.
Suppose to the contrary that [S| = 5. Since [a;, 2] —¢ ai41 and G is K 4-free,
it follows that |V(C>)| = |V (Cs)| = |V(C4)| = 1. Because G is 4-connected and
for 2 <: <4, a;x; .4 ¢ E((G), it follows that each a;, 7 = 2,3, 4, must be adjacent
to both v and v. Then u and v are not adjacent to a; since G is K 4-free.
Because [a;, 71] —. a2, 71 is adjacent to both w and v. But then {z,z;} =, G,
a contradiction. This proves our claim.

By Claim 1 and the fact that asxy; ¢ E(G) and aszy ¢ E(G), it follows that
|[V(Cs)| > 3 and |V (Cj3)| > 3 since G is 4-connected. Hence, G — S has no even
components otherwise G contains K; 4 as a subgraph.

Claim 2: If @, is adjacent to both u and v, then for each ¢ € V(Cy) U V(Cs),
there exists a vertex z € S such that [a,, 2] —, ¢ but {c, 2z} does not dominate
V(G) — Q.

Consider G + ajc. Clearly, {a;,c} is not a connected dominating set for
G + ayc. Since G is 3 — y.—critical, there exists a vertex z € V(G) — {ay, ¢} such
that either [a1, 2] —. ¢ or [¢, 2] — a;. In either case, z € S since G — S has three
odd components and |V (C;)} > 3 for 2 < ¢ < 3. Suppose first that [c, 2] —. a1.
Then z ¢ Nga;]. Thus z ¢ S since S C Ng(ai), a contradiction. Hence, {c, z}
does not dominate V(G) — ay. Therefore, {a;, z] —, ¢. This settles the claim.

Claim 3: q; is adjacent to exactly one of {u,v}.

Suppose to the contrary that a; is not adjacent to any vertex of {u, v} or a; is
adjacent to both u and v. Suppose first that a; is adjacent to both = and v. Let
by € V{(C3) — az. Consider G + a;bs. By Claim 2, there exists a vertex z € § such
that [a1, z] —. ba. Then z ¢ Nglby]. Thus z # z1. If 2 = z3, then no vertex of
{ay, z} is adjacent to a3, a contradiction. Hence, z # x5. Therefore, z € {u,v}.
Without loss of generality, we may assume that z = u. That is [a;,u] —. ba.
Then u dominates (V{Cy) U V(C3)) — ba. Next, let b3 € V(Cs) — a3. Consider
G + a1bs. By Claim 2, there exists a vertex z; € S such that [a;, 2] —¢ bs.
Then z; ¢ Nglbs]. Thus z; # zy and 2y # zp. Further, 2, # u otherwise no
vertex of {a;, z1} is adjacent to by. Hence, z; = v. That is [a1,v] —, b3. Then
v dominates {V{Cy) UV (C3)) — ba. Finally, let ¢y € V(Cs) — {as, bs}. Note that
S C Ng(c3). Consider G + ajc3. By Claim 2, there exists a vertex z; € S such
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that [a), 22} —. c3. Then 2z, ¢ Ng[ca). Thus z; € S, a contradiction. Hence, a,
15 not adjacent to u or v. Therefore, a; is not adjacent to any vertex of {u,v}.
Since [a1,41] —c a2, 71 is adjacent to both v and v. But then {z,,z,} >, G, a
contradiction. Thus the claim is settled.

By Claim 3, we may assume without loss of generality that a,u ¢ F{G) but
aiv € E(G). Since [ai,21] —. ag, z1 is adjacent to uw. Thus z;v ¢ E(G) and
zov ¢ E(G) otherwise {z;,z2} >, G. Since [ay, 23] —, a3z, av € E(G). Recall
that lV(CQ)' 2 3 and |V(C3)| 2 3. Let bg € V(Cg) — a9 and b3 € V(Cg) — 3.
Consider G +bgbs. Clearly, {bs, b3} is not a connected dominating set for G +babs.
Since (G is 3 — v.—critical, there exists a vertex z € V(G) — {b, b3} such that
either [by, 2] — b3 or [b3, 2] —¢ by. In either case, z € S since G — S has three odd
components and |V(C;)| > 3 for 2 < i < 3. Further, z # u otherwise no vertex of
{b;, z} is adjacent to a; for 2 < 1 < 3. Hence, z € §—u. We distinguish two cases.

Case 1: [by, z] —. bs.

Then z ¢ Ng[bs]. Thus z # z; and =z # z5. Hence, z = v. That is [by, v] —. bs.
Thus v dominates (V(Cy) U V(C3)) — bs and vby ¢ E{(G). Now consider G + agbs.
Clearly, {a2,b3} is not a connected dominating set for G + azb;. Since G is
3 — v.—critical, by a similar argument as above there exists a vertex z; € S — u
such that either [ag, 2] —, by or [bs, 21] —. az. Suppose first that [aq, z1] —, bs.
Then z; ¢ Nglbs]. Thus 2 ¢ {z;,22}. Then z; = v. But then no vertex of
{ay, 21} is adjacent to z;, a contradiction. Hence, {ag, 23} does not dominate
G + azbs. Therefore, [bs, z1] —¢ az. Then z; € Nglaz]. Thus 21 # z; and z; # v.
Hence, z; = x;. But then no vertex of {b3.z1} is adjacent to v, a contradiction.
Hence, v.(G + azb3) > 2, a contradiction. Therefore, Case 1 cannot occur.

Case 2: [bs, 2] —¢ bo.

Then z ¢ Ng[boj. Thus z # z;. Hence, z = 2 or z = v. Suppose first
that z = z5. That is [bs, 29} —. b. Then zp dominates (V(Cy) U V{Cy)) — b
and zzb, ¢ E(G). Now consider G + byas. Clearly, {bs, a3} is not a connected
dominating set for G + bgaz. Since G is 3 — y.—critical, by a similar argument
as above there exists a vertex z; € S — u such that either [by, z1] —. a3 or
[as, z1] —¢ ba. Suppose first that [as, z1] —¢ b2. Then z; ¢ Nglba]. Thus z; # 1.
Further, z; # x5 since mpa; ¢ F(G). Hence, z; = v. But then no vertex of
{as, 1} is adjacent to x,, a contradiction. Hence, {as, z1} does not dominate
V(G) — by. Therefore, [bg, z1] —c az. Then 2 ¢ Nglag]. By a similar argument,
z1 # xz,. Further, 2y # xq since z3by € F(G). Thus z; = v. But then no vertex
of {ba, 21} is adjacent to z,, a contradiction. Hence, {bs, z1} does not dominate
V(G) — az. Thus v.(G + byaz) > 2, a contradiction. Therefore, z # z,. Hence.
z = v. That is [bs,v] —. by. Then v dominates (V(Ci) U V(Cs2)) — b and
bov ¢ E(G). Now consider G + bsas. By applying a similar argument as above
and the fact that z,v ¢ E(G) and byv ¢ E(G), it follows that v.(G + beaz) > 2.
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Figure 3.4.4

G2:

Figure 3.4.5

This contradiction proves that Case 2 cannot occur. Hence, v.(G + bob3) > 2, a
contradiction. Therefore, G must be 3-factor-critical as claimed.
[ |

Remark 5: The graphs G in Figure 3.4.4 and G, in Figure 3.4.5 are both
3 — v.—critical of odd order, but neither is 3-factor-critical. Note that G, is 3-
connected and K 4-free and (G5 is 4-connected, but contains K4 as an induced
subgraph. Hence, our assumptions on connectivity and K 4-freedom in Theorem
3.4.5 are best possible,

Remark 6: For integers kK > 2 and ¢ > 1, let us construct a graph Gi,; as
follows. Let X = {zy,29,... 2%}, Y = {1, 92,.. . ue} and Z = {21, 25,..., 2.}
Set V(Gg,) = XUYUZU{a}, aset of 2k +1+1 distinct vertices. Form complete
graphs on X, Y and Z. Join a to every vertex of Z and for 1 <1 <k, join y; to
every vertex of (ZUX) — z;.

It is easy to see that G, is 3 —y.—critical and K 4-free. If £ > 4, ¢t > 4 and ¢
is even. then Gy is also 4-connected of odd order and hence is 3-factor-critical by
Theorem 3.4.5. Note also that for n > 5, the graph H,,_ , 1 1 3 defined in Remark
3 also satisfies the assumptions of Theorem 3.4.5 and hence is 3-factor-critical.
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Chapter 4
Results on Local Edge Domination Critical Graphs

4.1 Introduction

Let d(u,v) denote the distance between vertices u and v of G and diam(G)
the diameter of G. For positive integers m,n, double star S(m,n) is the graph
obtained from the disjoint union of stars K, ,, and K, , by joining the two central
vertices. Recall that a graph G is k — y—ecritical if y(G) = k but v(G +¢€) < k
for each edge e ¢ E(G). For positive integers k,¢ with t > 2, we say that G
is k — (v,t)—critical if v(G) = k and for every pair of non-adjacent vertices
© and v of G with d(u,v) < t, v(G + uv) = k — 1. Clearly, k — y--critical
graphs are k — (v,t)—critical for ¢ > 2. But the converse need not be true.
The path P on four vertices is 2 — (7, 2)—critical but not 2 — y—critical. The
only 1 — (7, t)—critical graphs for t > 2 are the complete graphs {K,|n > 1}.
A concept of k — (v, t)—critical graphs can be extended to k — (-, t)—critical
graphs. For positive integers k, ¢t with t > 2, we say that G is k — (7., t)—critical if
(@) = k and for every pair of non-adjacent vertices v and v of G with d(u,v) < t,
(G +uv) < k — 1. Clearly, k — ~.—critical graphs are k — (v, t)—critical for
t > 2. But the converse need not be true. The path P; on five vertices is
3 — (¢, 3)—critical but not 3 — .—ecritical. The only 1 — (., £)—critical graphs
for t > 2 are the complete graphs {K,|n > 1}.

The study of k& — (7, t)—critical graphs was begun by Henning et.al.[HOS]
while the study of k& — (., t)—critical graphs has not yet been studied. In their
paper, they gave an upper bound on the diameter of 3 — (v, 2)—critical and
4 — (v, 2)—critical graphs. They also characterized 3 — (v, 2)—critical graphs with
diameter 4 and 2 — (v, 2)—critical graphs. More precisely, they proved the fol-
lowing theorem.

Lemma 4.1.1: A connected graph G is 2 (ry, 2)—critical if and only if either
G=J._, K, forn; >1andr > 1or G = S(m,n) for some positive integers
m and n. [ |

In this chapter, we further study on the diameter of k — (v, t)—critical graphs
for t > 3. We characterize 2 — (v, t)—critical and 3 — (v, t)—critical graphs for
t > 3. We also study k& — (., t)—critical graphs. We give an upper bound on
the diameter of k — (7., t)—critical graphs for £ > 2 and ¢ > 2. A complete
characterization of 2 — (=, t)—critical graphs for ¢ > 2 and 3 — (9., t)—critical
graphs for ¢t > 3 are given.

4.2 On k - (,t)—Critical Graphs for ¢t > 3

By the definition of k — (=, t)—critical graphs, Lemma 4.2.1 follows immedi-
ately.
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Lemma 4.2.1: Let G be a k — (v, t)—critical graph for ¢t > 2 and let » and v
be vertices of & with d{u,v) < t. Then there exists a subset W C V(G) — {u,v}
of size k — 2 such that W U {u} dominates G — v or W U {v} dominates G — u.
Further, if WU {u} dominates G — v, then W N Ng[v] = @ and if W U {v} domi-
nates G — u, then W N Ngu] = 0. n

Lemma 4.2.2: Let G be a 2 — (v, t)—critical graph. Then diam(G) < 3 for
t =2 and diam(G) = 2 for t > 3.

Proof: The result follows immediately from Theorem 4.1.1 for t = 2. So we
need only consider t > 3. Suppose to the contrary that diam(G) > 3. Let u
and v be vertices of G with d(u,v) = 3. Further, let u = ug, uy,ug,u3 = v be a
shortest © — v path. Consider G + wgus. Since GG is 2 — (v, t)—critical for ¢ > 3,
Y(G + uoug) = 1. By Lemma 4.2.1, up or uz dominates G + uguz. But this is not
possible since ugus ¢ E(G) and uyuz ¢ E(G). Hence, diam{(G) < 2 for t > 3.
Clearly, diam(G) # 1. Therefore, diam(G) = 2 as claimed. ]

By Lemma 4.2.2 and the definitions of 2 — y—critical and 2 — (v, t)- critical
graphs, we have the following theorem.

Theorem 4.2.3: For an integer t > 3, G is 2 — (v, t)— critical if and only if
G is 2 — y—critical. ]

Theorem 4.1.1 together with Theorem 4.2.3 establishes a complete character-
ization of 2 — (v,¢)— critical graphs for ¢ > 2. Now we turn our attention to
3 — (y,t)— critical graphs for ¢ > 3.

Theorem 4.2.4: For an integer ¢ > 3, the diameter of a 3 — (v,t)— critical
graph is at most 4.

Proof: Let G be a 3 — (v,t)— critical graph with ¢ > 3. Suppose to the
contrary that GG has diameter at least 5. Let u and v be vertices of G with
d(u,v) = 5. Further, let © = ug, 11, u2, 43, 44, U5 = v be a shortest u — v path.
Consider G + ugus. Since G is 3 — (7,t)—critical for ¢ > 3, by Lemma 4.2.1,
there is a vertex y € V(G) — {ug, us} such that either {us,y} or {us,y} domi-
nates G + usus. Since us and us are not adjacent to up, ¥y dominates ug. Thus
y € Nglug]. Clearly, Nglug] M {us,us} = 0. If {uq2,y} dominates G + ugus, then
no vertex of {us,y} is adjacent to u4, a contradiction. Hence, {u,,y} does not
dominate G +ugus. Therefore, {us, y} dominates G +uous. But then no vertex of
{us,y} is adjacent to us, again a contradiction. Hence, {us, y} does not dominate
G + ugus. Thus, ¥{G + ugus) > 2. This contradicts the criticality of G. Hence,
diam(G) < 4, completing the proof of our lemma. [ |
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Theorem 4.2.5: Let G be a 3 — (v, 3)— critical graph. The diam(G) < 3

Proof: Suppose to the contrary that G has diameter at least 4. By Lemma
4.2.4, diem(G) = 4. Let u and v be vertices of G with d(u,v) = 4. Further,
let u = wo.uy,uz,u3, 44 = v be a shortest u — v path. For 1 < i < 4, let
Vi={z € V(G)|d(up, z) = t}. Clearly, u; € V; for 1 <4 < 4 and ug is adjacent
to everv vertex of V).

Now consider G + upus. Since G is 3 — {v,3)— critical, by Lemma 4.2.1,

there exists a vertex w of V(G) — {uo, u3} such that {ug, w} or {us, w} dominates
G + UpUs.

Case 1: {uy, w} dominates G + ugus.

Since up is not adjacent to ug and us, w € V3 — {uz}. Then w dominates
(VauVsuVy) — {us} and wus ¢ E(G).

Claim 1.1: G[V;] is complete.

Suppose to the contrary that G[V4] is not complete. - Then there exist non-
adjacent vertices x4 and y4 of V. Since up, w, z4 is a ug — x4 path, d(ug, z,4) = 2.
Consider G + usx4. Since G is 3 — (v, 3)—critical, by Lemma 4.2.1, there is a ver-
tex z € V(G) — {ug, x4} such that either {ug, z} or {z4, 2z} dominates G + usz4.
In either case, z must dominate ug and yy since uy and x, are not adjacent to
ug and y,. But this is not possible since d{ug, y4) = 4. Hence, our claim is proved.

Claim 1.2: G[V}] is complete.

Suppose to the contrary that G[V;] is not complete. Then there exist non-
adjacent vertices r; and y; of V1. Since G has diameter 4, d(z,,uq) < 4. It follows
that d(x;, w) < 3 since w dominates (VaUV3UV,) — {us}. Now consider G+ zw.
Since G is 3— (v, 3)—critical, by Lemma 4.2.1, there is a vertex z € V(G)—{z;, w}
such that either {zq, 2z} or {w, 2z} dominates G + z ,w. Since z; and w are not
adjacent to y;, z must dominate y,. Thus z € {ug} UViUVa. If {2, 2} dominates
(G + zyw. then no vertex of {r,z} is adjacent to {u4}, a contradiction. Hence,
{z1, 2z} does not dominate G + z1w. Therefore, {w, z} dominates G + z,w. Since
w 18 not adjacent to uz and y,, z must dominate u3 and y;,. Thus z € V,. But then
no vertex of {w, z} is adjacent to ug, again a contradiction. Hence, {w, z} does
not dominate G + ryw. Therefore, v(G + xyw) > 2, contradicting the criticality
of (G. This establishes our claim.

Claim 1.3: Each vertex of V4 is adjacent to every vertex of V,.
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Suppose to the contrary that there exist vertices z; of V; and zs of V, such
that =)z, ¢ E(G). Consider G + ugz,. Since G is 3 — (7, 3)—critical, by Lemma
4.2.1, there is a vertex z € V(G) — {up, z2} such that either {ug, 2z} or {z,, 2}
dominates G + ugzy. If {zq, 2z} dominates G + upzT,, then z must dominate z,
and uy since zo is not adjacent to z, and wy. But this is not possible since
d(z1,us) > 3. Hence, {z,, 2} does not dominate G + ugrs. Therefore, {ug, 2}
dominates G' + ugxy. Since wp is not adjacent to any vertex of Vo U V3 LUV, 2
must dominate (Vo U V3 U Vy) — {z2}. Because z, € Vj, there is a vertex y; € V;
such that y,x9 € E(G). By Claim 1.2, y; dominates Vi U {ug, z}. Hence, {y, z}
dominates G. This contradicts the fact that 4(G) = 3 and completes the proof
of our claim.

Now. by Claims 1.2 and 1.3, each vertex of V; dominates {up} U V4 U V5.

Claim 1.4: For each vertex y4 of Vi, there is a vertex y3 of V5 such that
Yaya ¢ E(G).

Suppose this is not the case. Then there exists a vertex y € Vi such that y is
adjacent to every vertex of V3. By Claims 1.1, 1.2 and 1.3, {u;,y} dominates G,
a contradiction. This settles our claim.

Since u4 € Vi, by Claim 1.4, there is a vertex z3 € V3 such that zzuy ¢ E(G).
Clearly, z3 ¢ {us, w}. Now consider G + ugz3. Since G is 3 — (v, 3)—critical and
d(ug, z3) = 3, it follows that v(G + ugz3) == 2. By Lemma 4.2.1, there is a vertex
z € V(G) — {up, z3} such that {up, z} or {z3, 2z} dominates G -+ upxs. Suppose
first that {z3, 2} dominates G -+ uprs. Since z3 is not adjacent to any vertex of
Vi U {us}, 2 must dominate V; U {u,}. But this is not possible since d{uq,z) > 3
for every vertex z € V;. Hence, {3, 2} does not dominate G + ugz3. Therefore.
{uo, z} dominates G + upzs. Clearly, zz3 ¢ E(G). Since ug is not adjacent to
any vertex of V3 U V3 UV}, z must dominate (Vo U V3 U V) — {«3}. Thus z € Vj.
Clearly, d(u;,z) = 2. Now consider G + uyz. Since G is 3 — (=, 3)—critical, by
Lemma 4.2.1, there is a vertex 2z, € V(G) — {u1, 2z} such that either {u;, 2} or
{z, 21} dominates G + uyz. Since Ngfuy] = {u} UVy U Va, if {z, 2} dominates
G +uyz, then z; ¢ {up} UV; UV, But then no vertex of {z, 21} is adjacent to uy,
a contradiction. Hence, {z, 21} does not dominate G -+ u;z. Therefore, {u;, z;}
dominates G + u,z. Clearly, z; ¢ N¢[z]. Since z dominates (Vo UV3UVy) — {z3}
and u, 1s not adjacent to any vertex of V3 UV}, it follows that z; = z3. But then
no vertex of {uy,z3} is adjacent to u,, a contradiction. Hence, {u;, z;} does not
dominate G + uyz. Thus (G + u1z) > 2, a contradiction. This proves that Case
1 cannot occur.

Case 2: {us, w} dominates G' + upua.

Since Vi = Ng(ug) and wuy is not adjacent to any vertex of V4, it follows that
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w € V5 and w dominates V;. Thus u; dominates V;.
Claim 2.1: G[V,] is complete.

Suppose to the contrary that G[Vs] is not complete. Let z3 and y, be non-
adjacent vertices of V. We first show that d{z,,7;) < 3. If w = x5, then
d(w,y2) = 2 since w dominates V;. Similarly, if w = ys, then d{w,z;) = 2. So
we may assume that w ¢ {z,,3}. If w or uz is adjacent to both z, and y,, then
d(z2,y2) = 2. So we may suppose that w is adjacent to exactly one of {za, o},
say Tz. Since yp € V5, there is a vertex y; € V4 such that y;92 € E(G). Because
w dominates Vi, T2, w, 1, Y2 is an x5 — y, path. Hence, d(z2, %) < 3.

Now consider G + z2y,. Since G is 3 — (v, 3)—critical, by Lemma 4.2.1, there
is a vertex z € V(G) — {z2, y2} such that {zs, 2} or {ys2, 2} dominates G + T4ys.
In either case, z must be adjacent to both uy and u, since x3 and y, are not adja-
cent to up and u4. But this not possible since d(ug, uq) = 4. This settles our claim.

By Claim 2.1 and the fact that w dominates Vi, V; UV, C Ng[w]. Thus
d{w,us} < 2. Consequently, d(w,uy) < 3. Consider G + vy, Since G is
3 — (v, 3)—critical, v(G + wuy) = 2. By Lemma 4.2.1, there is a vertex y €
V(G)—{w, us} such that either {uy4, y} or {w, y} dominates G+wu,. Suppose first
that {u4,y} dominates G + wus. Then y € Ngw]. Thus y € V3 U V4. Since uy is
not adjacent to any vertex of {ug fUV, UV, y must dominate ({ug}UVIUV2) —{w}.
It follows that ¥y = up and Vo = {w} = {us}. Further, u, dominates V3UV,. Con-
sequently, G[V1] is not complete otherwise {u1,u,} dominates G. Let 1,2 € ¥}
such that z,2y € E(G). Note that d(x;,u3) = 2. Now consider G + z;u3. Since
G is 3 — (v, 3)—critical, Y{G + z,u3) = 2. By Lemma 4.2.1, there is a vertex
th € V(G) — {z1,u3} such that either {z;,1y} or {us,y:} dominates G + zjus.
Suppose {z;,y; } dominates G+ u3. Since 2, is not adjacent to z; and uy, y must
dominate z; and u4. But this is not possible since d{z;,u4) > 3. Hence, {z:, 1}
does not dominates G + zyu3. Therefore, {us, 11} dominates G + zus. Since uz
is not adjacent to any vertex of {ug} UV}, y1 must dominate ({uo} UV7) — {21}
Then 1, € {up} U V4. Thus us dominates V3 U V,. Since Vo = {uz}, {uo,us}
dominates G, a contradiction. Thus ¥(G + z1u3) > 2. This contradicts the
criticality of G. Hence, {u4,y} does not dominate G + wu,. Therefore, {w,y}
dominates G + wuy. Since wug ¢ F(G), y € {uo} U Vi. Thus w dominates V3
and V3 = {us}. Recall that VUV, € Ngw|. Hence, w now dominates ViUV;U V5.

Claim 2.2: u, is adjacent to every vertex of Vs.

Suppose it is not the case. Then there is a vertex x3 of V3 such that zzu, ¢
E(G). Clearly, z3 # uj since uguy € E(G). Consider G + upzs. Since G is
3 — (7, 3)—critical, v(G + upz3z) = 2. By Lemma 4.2.1, there exists a vertex
z € V(G) = {ug, 23} such that either {uo, z} or {z3, 2} dominates G + upzx3. Sup-
pose first that {z3, 2} dominates G + upz3. Since x3 is not adjacent to u; and uy,
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z must dominate u; and us. But this is not possible since d{ui,u4) = 3. Thus
{3, z} does not dominate G+uox3. Therefore, {uy, 2} dominates G +ugzs. Since
Up is not adjacent to any vertex of V,UV3UVy, z must dominate (Vo2UV3UVy)—{z3}.
Thus z € V3 and zz3 ¢ E(G). Because uj,up, 2z is a uy — z path, d(uy, z) = 2.
Now consider G +wuy 2. Since G is 3 — (v, 3)—critical, (G +u12) = 2. By Lemma
4.2.1. there exists a vertex z; € V(G) — {u1, z} such that either {u;, 21} or {2, 2}
dominates GG 4+ uy1z. Suppose that {z, 2} dominates G + uyz. Since z is not
adjacent to up and 3, z; must dominate uy and z;. But this is not possible
since d(ug, z3) = 3. Thus {z, 2} does not dominate G + u;z. Therefore, {u,, 2}
dominates G +u,z. Clearly, z; € Ng[z]. Since Ng[z] = (VoUVaUV,) — {z3} and
wug ¢ E(G), it follows that 2; must dominate u, and thus 2, = z3. But then
no vertex of {uy, z1} is adjacent to u, since z3us ¢ E(G), a contradiction. Thus
{1, 21} does not dominate G +u,2. Hence, ¥y(G+u,2) > 2, a contradiction. This
proves that {uo, 2z} does not dominate G + uprs. Therefore, v(G + ugzs) > 2.
This contradiction settles our claim.

Claim 2.3: G[V}] is complete.

Suppose to the contrary that G{V4] 1s not complete. Then there exist vertices
zy and y; of Vi such that 2,37 € E(G). Recall that w dominaies V; UV, U V;
and Vy = {u4}. Then d(z1,z) =2 for all z € V5. Let a € V3. Consider G + za.
Since G is 3 — (v, 3)—critical, (G + z1a) = 2. By Lemma 4.2.1, there is a vertex
z € V(G)— {z1,a} such that either {z1,z} or {a, z} dominates G +z,a. Suppose
that {z, 2z} dominates G + zya. Since z; is not adjacent to y; and u4, 2 must
dominate y; and us. But this is not possible since d{yy,u4) > 3. Thus {z;, z}
does not dominate G + zya. Therefore, {a, z} dominates G + z1a. Since a is not
adjacent to any vertex of {ug} UV, z must dominate ({up} U V1) — {z1}. Then
z € {up} U Vi. Thus a dominates V3 U {us}. Since a is arbitrary vertex of Vj,
G[Va U {uq}] is complete.

If uz dominates Vs, then {up,u3} dominates G, a contradiction. Hence, us
does not dominate V,. Then there exists a vertex b € V4 such that bus ¢ E(G).
Clearly, b ¢ {us, w}. Since b,w,us,uq is a b — ug path, d(b,us) < 3. Consider
G +buy. Since G is 3—(vy, 3)—critical, v(G+buy) = 2. By Lemma 4.2.1, there is a
vertex z; € V(G) — {b, uq} such that either {b, 21} or {u4, 2,} dominates G + bu,.
Suppose that {5, z;} dominates G + bu,. Since b is not adjacent to ug and us, z;
must dominate ug and us. But this is not possible since d(up,us) = 3. Hence,
{b, z1} does not dominate G + buy. Therefore, {uy, z;} dominates G + buy. Since
u4 is not adjacent to any vertex of {ug} UV; UV, and Vo — {b} # 0, it follows
that z; € V; and z; dominates ({up} U Vi U V) — {b}. Further, z,b ¢ E(G).
Since z, 12, U3 is & z; — ug path, d{z,us) = 2. Now consider G + zyu3. Since G is
3—(y,3)—critical, by Lemma 4.2.1, there is a vertex z; € V(G)—{z1, us} such that
either {21, 22} or {us, 22} dominates G + zju;3. Suppose that {z, 2o} dominates
G + zju3. Then 2o ¢ Ng[us). Thus 2z, € VaU {ua} since V3 U {us} € Nglus). But
then no vertex of {21, 2} is adjacent to u4, a contradiction. Therefore, {us, 2}
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dominates G + zju3. Thus z3 ¢ Ngiz1] = ({ue} U V3 UV,) — {b}. But then no
vertex of {ug, 2;} is adjacent to ug, again a contradiction. Hence, y(G+2zju3) > 2.
This contradiction proves that G[V;] must be complete and settles our claim.

By a similar argument to that used in Claim 1.3, we have the following claim.
Claim 2.4: Fach vertex of V] is adjacent to every vertex of V5.

Now, By Claims 2.2, 2.3 and 2.4, {u,,us} dominates G. This contradicts the
fact that v(G) = 3. Hence, Case 2 cannot occur. Then ¥(G + wgusz) > 2. This

contradicts the criticality of . Therefore, diam(G) = 3, completing the proof of
our theorem. ' [ |

Theorem 4.2.6: For an integer ¢ > 3, G is 3 — (v, t)—critical if and only if
G is 3 — y—critical.

Proof: The sufficiency follows immediately from the definitions of 3—y—critical
and 3 - (v,t)—critical graphs. We need only prove the necessity. Let u and v
be non-adjacent vertices of G. For ¢ > 4, d(u,v) < 4 by Lemma 4.2.4 and for
t =3, d(u,v) < 3 by Theorem 4.2.5. Since G is 3 — (v, t)—critical, (G +uv) = 2.
Hence, G is 3 — y—critical. This completes the proof of our theorem. ]

Our next result gives an upper bound on the diameter of k — (v, t)—critical
graphs for £ > 4 and t > 3.

Theorem 4.2.7: For an integer kK > 4 and t > 3, the diameter of a k —
(,t)—critical graph is at most 3k — 6.

Proof: Let G be a k— (7, t)—critical graph with ¥ > 4 and ¢ > 3. Suppose to
the contrary that G has diameter d with d > 3k — 5 > 7. Let u and v be vertices
of G with d(u,v) = d. Further, let u = up, 4y, U2, ..., g = v be a shortest u — v
path. For 1 < i < d, let V; = {z € V(G)|d(uo, ) = i}. Clearly, V; # 0 since
u; € Vi for 1 < i < d. Consider G + usus. Since G is k — (y,t)—critical and
d(uz, us) = 3 < ¢, it follows that ¥{(G F ugus) = k — 1. By Lemma 4.2.1, there is
a subset W of V(G) — {us, us} with |W| = k — 2 such that either W U {us} or
W U {us} dominates G + uaus.

Suppose first that W U {us} dominates G + uaus. Since ugug ¢ E(G), there
is a vertex wy € W N ({xo} U V;) such that wy dominates ug. Further, since
uguy ¢ E(G), there is a vertex wy € W — {w, } such that ws <« WN(V3UV;UV;)
such that w, dominates us. In order to dominate vertices of G as many as possible,
wy should be in Vs~ {us}. Clearly, {us, wn, w2} cannot dominate V;UVaU...UV,.
Further, vertices of W — {w», wa} can dominate at most 3(k —4) = 3k — 12 sets of
Vi, for 7 <i < d. But thereare d—6 > 3k—5—6 = 3k—1lsetsof Vifor 7 < i < d.
Hence, W U {w;} does not dominate G -+ upus. Therefore, W U {us} dominates
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G +ugus. By a similar argument, W U {ws} does not dominate G + uqus. Hence,

¥(G + ugus) > 2. This contradicts the criticality of G and completing the proof
of our theorem. [ ]

Since k — (7, t)—critical graphs with the diameter at most ¢ are k — y—critical.
It follows by Theorem 4.2.7 that k& — (-, #)—critical graphs are k — v—critical for
t > 3k —6.

4.3 On k — (7., t)— Critical Graphs

Recall that for positive integers k and ¢ with ¢ > 2, G is k — (., t)—critical
if 7.(G) = k and for every pair of non-adjacent vertices u and v of G with
d(u,v) < t, 7.(G + uv) < k — 1. By the definition of & — (., t)—critical graphs,
we have following remarks.

Remarks:
1. If G is k — (., t}—critical for ¢ > 3, then G is k — (v,,t — 1)—critical.

2. Suppose G is k — (7., t)—critical with diam(G) = d. If d < ¢, then G is
k — y.—critical.

Lemma 4.3.1: For an integer £ > 2, a path Py 5 on k 4+ 2 vertices is
k — (7., k)—critical graph.

Proof: Let Piio = ug,uy, Uz, ..., Uk, Uks1. Clearly, v.(Prt2) = k. Let z
and y be vertices of P o with 2 < d(z,y) = r < k. We may assume with-
out any loss of generality that z = u; and y = u; where 0 < i < j < k+ 1.
Note that 7 = i+rand 0 < i < k—r + 1. Now consider Piios + zy. Let
G = (Piy2 + zy) — {us, %iy1, - -, Uiqr . Clearly, [V(G)]=k—r+1land Gisa
path or a disjoint union of two paths. We first suppose that G is a path. Without
loss of generality, we may assume that G = ug,%y,..., Uk~ Theni=k—r+1
and j = k+ 1. Clearly, {u;,u2,...,Ug-r, Ukert1,-- - Uk—1} i & connected domi-
‘nating set for Py o + xy of size k — 1.

Now suppose that (G is a disjoint union of two paths. Then 1 < ¢ < k—2. Thus

{ur, ug, . . ., U, Uigo, Uirs, - - -, Uk} 1S & connected deminating set for Pryg + zy of
size k — 1. Hence, in either case, V(P2 + zy) < k — 1. Therefore, Piis is
k — (., k)—critical as claimed. This completes the proof of our lemma. ||

Jur next result establishes an upper bound on diameter of k — (., t)—critical
graphs.

Lemma 4.3.2: For integers k > 2 and t > 2, if G is a k — (7, t)—critical
graph, then diam(G) < k+ 1.
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Proof: Suppose to the contrary that diam(G) = d > k+ 2. Let z and y
be vertices of G with d(z,y) = d. Suppose x = wug,u;,...,us = ¥ is a shortest
r —y path. For 1 <i <d, let V; = {& € V(G)|d{ug,z) = i}. Clearly, u; € V; for
1 <i < d. Consider G+upuy. Since G is k— (7., t)—critical, v.(G+ugus) < k—1.
Let S be a minimum connected dominating set for G +ugu,. Since S is connected,
SNV, #0for2<i<d-1 Then |S| >d—2 > k. But this contradicts the
criticality of G. Hence, diam({(G) < k + 1, completing the proof of our lemma. H

Note that the upper bound on the diameter of G in Lemma 4.3.2 is best
possible since diam(FPy2) = k + 1. Our next result establishes the diameter of
2 — (Y., t)—critical graphs for ¢ > 3.

Lemma 4.3.3: For an integer ¢t > 3, if G is a 2 — («,, t)—critical graph, then
diam(G) = 2.

Proof: Clearly, diam(G) > 2. Suppose to the contrary that diam(G) > 2.
By Lemma 4.3.2, diam(G) = 3. Let u and v be non-adjacent vertices of G with
d{u,v) = 3. Further, let u = g, 41, us, u3 = v be a shortest v — v path. Since G
is 2 — (., t)—critical for t > 3, 4.(G + uwpuz) = 1. Then uy or us must dominate
G + upus. But this is not possible since ugus ¢ E(G) and uyuz ¢ E(G). Hence,
diam(G) = 2 as claimed. - |

We now give a characterization of 2 — (-, t)—critical graphs for ¢t > 2.

Theorem 4.3.4: Let ¢ be a positive integer. Then
1. Fort > 3, G is a 2 — (7, t)—critical graph if and only if G is 2 —~,—critical.

2. G is a 2 — (7, 2)~critical graph if and only if G\ Kip forn; > 1
and r > 2 or G = S(m, n) for some positive integers m and n.

Proof: (1) follows immediately from Lemma 4.3.3 and the definitions of
k — (., t}—critical and k — v.—critical graphs.

(2) The sufliciency is obvious. So we need only prove the necessity. By Lemma
4.3.2, diam(G) < 3. Clearly, if diam(G) = 2, then G is 2 — 7. —critical and thus
G = |J_, Kin, for n; > 1 and r > 2 by Theorem 3.1.1. So we now suppose that
diam(G) = 3. By following the same argument as in the proof of Theorem 1 in
[HOS], G = S(m, n) for some positive integers m and n. [

Now we turn our attention to 3 — (7, t)—critical graphs for ¢t > 2. In what is
to follow, we shall make-frequent use of the following easy result.
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Theorem 4.3.5: Suppose G is a 3— (4., t)—critical graph for t > 2 and z and
y are non-adjacent vertices of G with d(z,y) < t. Let S be a minimum connected
dominating set for G + zy. Then

1. |S]=2and SN {z,y}#0
2. If Nglz] U Ngly] # V(G) — {z,y}, then |SN {z,y}| = 1. [

Theorem 4.3.6: G is 3 — (7., 2)—critical graph with diam(G) = 4 if and only
G =K, VK, VK,VK,,V K, for some positive integers n;,1 <1 < 3.

Proof: The sufficiency is obvious. Now we prove the necessity. Let u and
v be vertices of G with d{u,v) = 4. Further, let u = wug, w1, s, us3, s = v be a
shortest u — v path and for 1 < i < 4, let V; = {z € V(G}|d(ug, z) = 1}. Clearly,
u; € V; for 1 <14 <4 and uy is adjacent to every vertex of V.

Claim 1: G[V;] is complete.

Suppose to the contrary that G[V;] is not complete. Then there exist non-
adjacent vertices a; and b; of V;. Clearly, d(a;,b) = 2. Consider G + a;b,. Since
G is 3— (., 2)—critical, y.(G+a,b;) = 2. Let S be a minimum connected dominat-
ing set for G+ a1b1. Since no vertex of {ay, b1} is adjacent to uy, [SN{a:1, i} =1
by Lemma 4.3.5. Without loss of generality, we may assume that a; € §. Put
{z} = 8§ — {a1}. Since G[{ai1, z}] is connected, z € {up} VU V; U V,. But then no
vertex of {ay, z} is adjacent to u4, a contradiction. Hence, v.(G +a1b;) > 2. This
contradicts the criticality of G and proves our claim.

Claim 2: Each vertex of V; is adjacent to every vertex of V5.

Suppose to the contrary that there exist non-adjacent vertices a1 € V5 and
as € Vo Since ay € V,, there is a vertex by € V) such that ba, € E(G).
By Claim 1, d{a1,a2) = 2. Consider G + aja. Since G is 3 — (7., 2)—ecritical,
(G + a1az) = 2. Let S be a minimum connected dominating set for G + aqa,.
Since no vertex of {a;,ay} is adjacent to w4, |S N {a1,a2}| =1 by Lemma 4.3.5.
Let {z} =5 — {a1,a2}. If z € {up} U V1 UV, then no vertex of S is adjacent to
u4 since a; € V4 and ay € V5. Hence, z ¢ {ug} U Vj U V4. Therefore, z € VU Vy.
Since S is connected, it follows that z € V3 and thus S = {as, z}. But then no
vertex of {as, z} is adjacent to ug, a contradiction. Hence, v.(G +aiaz) > 2. This
contradicts the criticality of G and proves our claim.

Claim 3: G[V,l is complete.
Suppose to the contrary that G[V,] is not complete. Then there exist non-

adjacent vertices ay and by of V,. Clearly, d(as, by) = 2 by Claim 2. By a similar
argument to that used in Claim 1, we reach the same contradiction. Hence, G{V5]
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is complete as claimed.

By a similar argument to that used in Claims 1, 2 and 3, Claims 4, 5 and 6
follows.

Claim 4: Each verter of V, is adjacent to every vertex of Vj.
Claim 5: G[V5] is complete.

Claim 6: Each vertex of V; is adjacent to every vertex of Vj.
Claim 7: |V| = 1.

Suppose to the contrary that |Vy| > 2. Let z € V4. By Claims 4 and 6,
d(ug, ) = 2. Consider G + uzz. Since G i8 3 — (7., 2)—critical, v.(G + upz) = 2.
Let S be a minimum connected dominating set for G + uzx. Since no vertex of
{u2, x} is adjacent to ug, |SN{us, z}| = 1 by Lemma 4.3.5. Let {z} = S—{us, z}.
If z € VLUV UV, then no vertex of S is adjacent to ug since us € V5 and = € V;.
Hence, z ¢ V5 U V3 U V,. Therefore, z € {ug} U V5. Since S is connected, it
follows that 2 € V; and S = {u», z}. But then no vertex of {us, z} is adjacent to
a vertex of Vy — {z}, a contradiction. Hence, v.(G + uzz) > 2. This contradicts
the criticality of G and proves our claim.

By Claims 1 - 7, it follows that G = K, V K, V K,, V K,,; V K; where
n; = |V;|,1 < i € 3. This completes the proof of our theorem. ||

The foliowing theorem establishes a characterization of 3 — (7., t)—critical
graphs for £ > 3.

Theorem 4.3.7: Let ¢t be a positive integer. Then

1. Gis3—{~,,t)—critical fort > 4 or G is 3— (7., 3)—critical with diam(G) < 3
if and only if G is 3 — . —critical.

2. G is 3 = (¥, 3)—critical with diam(G) =4 ifandonly f G = K3 VK, V
K,, V K,, V K, for some positive integers n;,1 <1¢ < 3. ’

Proof: (1) foliows immediately from Lemma 4.3.2, Theorem 3.1.3(3) and the
definitions of k — (-y,,t)—critical and k — ~y.—critical graphs.

(2) The sufficiency is obvious. The necessity follows from Remark (1) and
Theorem 4.3.6. ]
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Chapter 5

A Characterization of Maximal Non—k— Factor—Critical Graphs

5.1. Introduction

Recall that a graph G of order p is k-factor-critical, where p and k are positive
integers with the same parity, if the deletion of any set of k vertices results in a
graph with a perfect matching. A graph G is called mazimal non-k-factor-critical
if G is not k-factor-critical but G + ¢ is k-factor-critical for every missing edge
e € E(G). The concept of k-factor-critical is a generalization of the concepts of
factor critical and bicritical. k-factor critical graphs are studied for examples by
Favaron [F1, F2] Favaron and Shi [FS1, FS2] and Favaron et. al. [FFR].

A closely related concept to k-factor-critical is that of k-extendable. For 1 <
k < n—1, aconnected graph G of order 2n with a perfect matching is k-extendable
if for every matching M of size k in G there is a perfect matching in G containing
all edges of M. For convenience, a graph G with a perfect matching is said to be
0-extendable. G is called mazimal non-k-extendable if G is not k-extendable but
G + e is k-extendable for every missing edge e ¢ E(G). A connected bipartite
graph G with a bipartitioning set (X,Y) such that |X| = |Y| = n is mazimal
non-k-extendable bipartite if G is not k-extendable but &G + zy is k-extendable
for any edge zy ¢ FE(G) with z € X and y € Y. Extendable graphs have
been studied by many authors including Plummer [P1}, Ananchuen and Caccetta
[AC], Kawarabashi et. al. [KOS], Ryjdcek [R] and Yu [Y1]. Excellent surveys
are the papers of Plummer [P2, P3]. In this chapter, we introduce the concepts
of maximal non-k-factor-critical, maximal non k-extendable and maximal non
k-extendable bipartite graphs.

A 2k-factor-critical graph is obviously k-extendable but the converse need
not be true since a complete bipartite graph K, , is k-extendable for 0 < k <
n — 1 but is not 2k-factor-critical. Further, the graph & formed by ioining two
Koi’s with a perfect matching is k-extendable non-bipartite but is not 2k-factor-
critical. On the other hand, the graphs G; and G, shown in Figure 5.1.1, are
both maximal non-2-extendable graphs and maximal non-4-factor-critical graphs
whilst the graphs G3 and G4, shown in Figure 5.1.2, are both maximal non-
2-extendable bipartite graphs since the edge uj v; together with the edge usvy
cannot extend to a perfect matching in each G; for 1 < 7 < 4. Note that these
graphs are 1-extendable. This is no coincidence but it is true in general which we
establish it later on. However, the definitions of maximal non-k-factor-critical,
maximal-non-k-extendable and maximal-non-k-extendable bipartite graphs give
no suggestion of this property.

Further, the above examples suggest that there may be a relationship between
maximal non-k-factor-critical graphs and maximal non-k-extendable graphs. We,
in fact, establish the strong connection between these two classes of graphs. More
precisely, we establish that for a connected graph G on 2n vertices with a perfect
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Figure 5.1.2

matching, G is maximal non-k-extendable if and only if G is maximal non-2k-
factor-critical for 1 € k£ < n — 1. We also provide a characterization of maximal
non-k-factor-critical graphs, maximal non-k-extendable graphs and maximal non-
k-extendable bipartite graphs.

We shall denote by Ng(u) the non-neighbors of u. Note that Ng(u) =
V(GI\(Ng(u)U{u}). The join GV H of disjoint graphs & and H is the graph ob-
tained from G'U H by joining each vertex of G to each vertex of H. For simplicity
we let V(M) denote the vertex set of the subgraph G[{M] induced by M.

5.2. Maximal Non-k-Factor-Critical Graphs

In this section, we establish a characterization of maximal non-k-factor-critical
graphs. We begin with the following lemma.

Lemma 5.2.1: For positive integers p and k& having the same parity, and
542

non-negative integers s,ty,%z,...,ts42 with 0 < s < I(p — k) —1 and Y t; =
i=1

%(p—k)_s—]w -

s+2
G = Kk+s v U Kzt.—+1

i=1
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is maximal non—k—factor-critical of order p .

s+2
Proof: Let H = Ky and G; = Ky, for1 <¢ <s+2 ThenG = HV|JG:.
i=1
542

Let T be a subset of V(H) with |T'| = k. Clearly, G — T = K,V |JG; has no
i=1

perfect matching. Thus G is not k-factor-critical.
We next show that G is maximal. Let v and v be non-adjacent vertices in

G and let us consider G' = G + wv. Clearly, u and v are vertices of G; and G,
for some ¢ # j, respectively. Let 7" be a subset of V(G’) with |T7| = k and let
r=|V(H)NnT|

Case 1: r = k.

Clearly, G' — T" has a perfect matching containing the edge uv.

Case 2: r =k — 1.

Then at most s 4+ 1 of the subgraphs G; — 7" have odd order. Since H — T’
has order s + 1, G’ — T” has a perfect matching.

Case 3: r< k-2

Suppose exactly t of the subgraphs G; — 7" have odd order. Then t and the
order of H—T" have the same parity. Also theorder of H—T" is k+s—7 > s+2 > 1.
Hence G’ — T" has a perfect matching.

Therefore, G' = G + uv is k-factor-critical and hence G is maximal non-k-
factor-critical. [

Now we are ready for our main theorem in this section.

Theorem 5.2.2: Let G be a connected graph on p vertices and k a positive
integer having the same parity with p. G is maximal non—k—factor-critical if
and only if

s+2
G = Kiys V U Koty
i=1

1=

s+2
where s and t, are non-negative integers with 0 < s < 1(p — k) — 1 and .Zti =

sp—k)y—s—1

Proof: The sufficiency follows from Lemma 5.2.1. Now we prove the necessity.
Since (G is maximal non-k-factor-critical, there is a subset T of V(G) of size k
such that G' = G — T has no perfect matching. Then, by Tutte’s Theorem, there
is a subset S’ of V(G') such that ¢,(G' — S') > |S’|. Put s = |5’|. Because G’ is
of even order, it follows that s and ¢,(G' — S’) must have the same parity. Thus
(G — §') > s+ 2.

Let Cy, Cy, ..., C; be odd components of G' — 5’. We first show that r = s+ 2.
Suppose to the contrary that r > s+ 3. Then r > s +4. Let ¢; € V() for
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t = 1,2 and let us consider G+cycy. Clearly, (G+c¢ cp)—(TUS’) contains at least .
5+ 2 odd components. Thus G + ¢;c; is not k-factor-critical. This contradicts
the fact that G is maximal non-k-factor-critical. Hence, r = s + 2 as required.

We next show that G’ — 5" has no even components. Suppose to the contrary
that G’ — &’ contains D as an even component. Let d € D and ¢, € V(C,).
Now consider G + dec;. Clearly, (G + de;) — (T'U S) contains exactly s + 2 odd
components since the components D and C) together with the edge de, forms an
odd component of G + dcy. Thus G + de; is not k-factor-critical, a contradiction.
This proves that G’ — 5’ has no even components.

Now we claim that G[T U S’} is complete. Suppose it is not the case. Then
there exist vertices  and y in TUS’ such that zy ¢ E(G). Now consider G + zy.
Since (G + zy) — (T'U §’) contains exactly s + 2 odd components, G + zy is
not k-factor-critical. This contradiction proves that G[T'U §'] is complete. By a
similar argument, it is easy to establish that each C; is complete for 1 <i < s+2.
Further, for 1 <1 < s+ 2, each vertex of C; is adjacent to every vertex of TU S’.

Now, for 1 <14 < s+ 2, let |[V(C;)| = 2¢; + 1 for some non-negative integer ¢;.
! s+2 5+2
Then p = |[V(G)| =k+s+ X |V(C)l=k+25+2+2>t; > k+ 25+ 2. Hence,
R g==] i=1
542

;ti =4(p—k)—s—land0<s< 3(p — k) — 1 as required. This completes

the proof of our theorem. [ |

As a corollary we have:

Corollary 5.2.3: If G is a maximal non-k-factor-critical graph on p vertices
where k is a positive integer greater than 1 having the same parity with p , then
G is (k — 2)—factor-critical. [

5.3. Maximal Non-k-Extendable Graphs

In this section, we characterize maximal non-~-extendable graphs and show
that they are closely related to maximal non-k-factor-critical graphs.

Theorem 5.3.1: Let G be a connected graph with a perfect matching on 2n
vertices. For 1 < k <n — 1, G is maximal non—k—extendable if and only if

s5+2
G = Kyys V U Ko

i=1

5+2
where s and #; are non-negative integers with 0 < s < n—%k —1and Y} #; =

i=1
n—k—s5—1.

Proof: The sufficiency follows from Lemma 5.2.1 and the definitions of factor-
critical graphs and k-extendable graphs. For the necessity, the proof is almost
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identical with the proof in Theorem 5.2.2 so we omit it. [ |

As a corollary we have:

Corollary 5.3.2: Let G be a maximal non—k— extendable graph on 2n
vertices for 1 <k <n — 1. Then G is (k — 1)—extendable. =

Corollary 5.3.3: Let G be a maximal non—k— extendable graph on 2n
vertices for l <k <n—1. If £ C E(Ky)\E(G) with |E’| > 1, then G+ F' is
k—extendable.

Proof: The result follows by applying a similar argument as in the proof of
Lemma 5.2.1 to the graph G + F'. [ |

Remark 1: (1) A connected graph with a perfect matching which is not
k-extendable need not be (k¥ — 1)-extendable. For example, a cycle on 2n > 8
vertices is not 3-extandabie and it is not 2-extendable. In the case of a maximal
non-k-extendable graph G, G is not k-extendable but it is (k — 1)-extendable.
Although one can prove from the definition straight forward that a maximal
non-k-extendable graph is (k — 1)-extendable but it is not obvious.

(2) In [Y1] Yu proved that if G is a k-extendable graph on 2n vertices with
1 <k <n-1,then G+ eis (k — 1)-extendable for any edge e ¢ E(G). Hence,
adding a new edge into a k-extendable graph G might destroy the k-extendability
property of . But for a maximal non-k-extendable graph, it is no matter how
many edges which are in E(K5,)\E(G) are added into G. The resulting graph is
still k-extendable providing that the number of edges is at least 1.

By Theorems 5.2.2 and 5.3.1, we have immediately theorem.

Theorem 5.3.3: Let G be a connected graph on 2n vertices with a perfect
matching. For 1 < k < n — 1, G is maximal non—k—extendable if and only if G
is maximal non—2k—factor-critical. . |

Remark 2: As we mention in the Introduction that k-extendable graphs need
not be 2k-factor-critical but for a maximal non k-extendable graph G, G + e is
both k-extendable and 2k-factor-critical for any edge e ¢ E(G).

Remark 3: A variation of k-extendability is that of induced matching ex-
tendability or IM-extendability for short —hich was introduced by Yuan [Y2]. A
matching M of G is induced if E([V(M)]}) = M. A graph G is IM-extendable if
every induced matching of G is included in a perfect matching of G. Notice that
an IM-extendable graph is 1-extendable. Further, a k-extendable graph with no
induced matching of size greater than k is IM-extendable. Wang and Yuan [WY]
introduced a concept of maximal IM-unextendable graphs. A graph G is called
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maximal IM-unextendable if it is not IM-extendable but G+ zy is IM-extendable
for every two non-adjacent vertices z and y of G. They established that the only
maximal IM-unextendable graph is My V (K, V (K, U K., U ... UK, ,,)) where
M is an induced matching of size ¥ > 1,s is a non-negative integer and each
n; is odd. Observe that the class of maximal IM-unextendable graphs coincides
with the class of maximal non-f-extendable graphs only for & = 1.

5.4. Maximal Non-k-Extendable Bipartite Graphs

In this section, we extend our idea on maximal non-k-extendable graphs to the
case of bipartite as follows. Let G be a connected bipartite graph on 2n vertices
with a bipartitioning set (X,Y’) such that |X| = |Y| = n. For non-negative
integers k£ and n with 0 < k < n — 1, G is marimal non-k-extendable bipartite
if G is not k-extendable but G + e is k-extendable for any edge e = zy ¢ E(G)
where x € X,y € Y. Thus we are interested in adding a missing edge e ¢ E(G)
which such edge has one of its end vertices in X and another in Y. We also
establish a characterization of maximal non-k-extendable bipartite graphs. We
first recall Hall’s Theorem.

Theorem 5.4.1: Hall’s Theorem (see Bondy and Murty {BM] p.72)

Let G be a bipartite graph with bipartitioning (X,Y). Then G contains a
matching that saturates every vertex in X if and only if [N(S)} > |S| for all
SCX. [

Lemma 5.4.2: For any non-negative integers n,k and s with 1 < s<n -1
and 2 < k+s < n,let (X,Y) be a bipartitioning set of K, , andlet SC X, T CY
with |S| =sand |[T|=n—k— s+ 1. Then

G=K,,~{zy|lze S yeT}

is a maximal non-k-extendable bipartite graph on 2n vertices.

Proof: The result is obvious for & = 0. We have to consider only for k > 1. Let
M be a matching of size k in G consisting of edges e; = u;v; € M, u; € X\S,v; €
Y\T for 1 <i < k. Then S C X\V(M) with |[Ne_vpn(S) =s—1<s=|5|
Thus G — V(M) has no perfect matching by Hall’s Theorem. Hence, G is not
k-extendable.

Now we establish that G is maximal. Let e = zy ¢ E(G) where z € X and
y €Y. Clearly, z€ Sand y € T

Consider G' = G + zy. Let M’ be a matching of size k in G’ and

ky = [(X\S)nV (M), ky = SNV (M),
ks = [Y\T)NV(MY)|  and k= |TAV(M).

Then ky + ks = k = ks + ks, [ X\N(SUV(M')| =n—k; — s and [Y\(TUV(M')| =
k+ s — 1 — k;. We distinguish two cases according to k.
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Case 1: k; = k.

Clearly, k; = 0 and |S\V (M)} = s.

Subcase 1.1. k; = 0. Then k3 = k and zy € E(G' — V(M’)). There is a
matching M of G’ — V(M') of size s -~ 1 joining vertices of S\{z} to vertices of
Y\(TUV(M’)) and a matching M, of G' — V(M') of size n —k — s joining vertices
of T\{y} to vertices of X\(SUV(M")). Now G’ —V (M') contains M]uUMU{zy}
as a perfect matching as required.

Subcase 1.2. k; > 1. Then ka < k—1. Thus s < k+s—1— k;. Now
let M be a matching of G’ ~ V(M") of size s joining vertices of S to vertices
of Y\(T'U V(M")). Further, let M} be a matching of G' — V(M’) of size n —
k — s+ 1 - k4 joining vertices of T\V(M’} to vertices of X\(SU V{(M’)). Now
G-V(MuM!UM])= K,,,,, where m = k4 — 1, contains a perfect matching
M7 . Hence, M{' U M} U M{ forms a perfect matching of G' — V{M’).

Case 2: ky <k-—1.

Then k; > 1. Further,n—k—s+1 < n—k;—sand s—ky < 5—1 < k—k3z+5-—1.
Now let M7” be a matching of G'—V (M’) of size s—k; joining vertices of S\V {M’)
to vertices of Y\(T U V{(M")). Further, let M}” be a matching of G’ — V(M’) of
size n — k — s+ 1 — k4 joining vertices of T\V (M’) to vertices of X\(SUV(M')).
Now G — V(M UM UMY) = K., m, where m = ky + k4 — 1, contains a perfect
matching M3". Hence, M{" U M}’ U M}’ is a perfect matching of G’ — V(M’).
Therefore, G' = G + zy is k-cxtendable as required. This completes the proof of
our lemma. [

Now we establish the main result of this section.

Theorem 5.4.3: Let GG be a connected bipartite graph on 2n vertices with a
bipartitioning set (X,Y) such that |X| = |Y|. For 0 €< k£ < n —1, G is maximal
non—k—extendable bipartite if and only if there are subsets § C X, T C Y with
|S| = s and |T| =n— k — s+ 1 such that

G Kppn—{zy|zeSyeT}

for an integer s with 1 <s<n—1land2<k+s<n.

Proof: The sufficiency follows from Lemma 5.4.2. So we need only prove the
necessity. Since G is maximal non-k-extendable bipartite, there is a matching M
of size k in G such that G — V(M) has no perfect matching. Let (X',Y’) be a
bipartitioning set of G’ = G—V(M). Clearly, X’ = X\V(M)and Y’ = Y\V(}).
Further, |X’| = n — k = |Y’|. Since ' has no perfect matching, by Halis
Theorem, there is a subset S C X’ such that s = |S| > |Ng/(S)|+1 = 1. Clearly,
s < n—k. We next show that s = |Ng:(S)|+1. Suppose to the contradiction that
§ > |Ng:(S)| + 2. Then |[Y'\Ng(S)|=n—k—|Ng(S)|2n—k—s+22>2. Let
z € S and y € Y'\Ng/(S). Clearly, zy ¢ E(G). But (G+zy) — V(M) =G+ zy
contains S as a subset of X’ with s = |S]| > (s —2)+1 > |[Ng(S)|+1 =
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|Ngt42y(S)|. Thus (G + zy) — V(M) has no perfect matching. Hence, G + zy is
not k-extendable. This contradicts the fact that G is maximal non-k-extendable
bipartite. Therefore, s = |Na:(S)| + 1.

We next show that each vertex of S is adjacent to every vertex of (V (M) N
Y) U N (S). Suppose this is not the case. Then there are vertices a € .S and
be (V(M)NY)UNg (S) such that ab ¢ E(G). Clearly, (G+ab)—1{M) contains
S as a subset of X' with s = |S| = |[Ne/(S)| + 1 = |Ngrary-van(S)} + 1. Thus
(G + ab) — V{M) has no perfect matching. Hence, G + ab is not k-extendable.
This contradicts the fact that G is maximal non-k-extendable bipartite and proves
that each vertex of S is adjacent to every vertex of (V(M)NY)U N (S). By a
similar argument, one can establish that each vertex of X\ S is adjacent to every
vertex of Y. Consequently, each vertex of (V(M)NY) U Ng/(S) is adjacent to
every vertex of X and each vertex of T = Y\(V(M) U Ng/(S)) = Ng(S)NY is
adjacent to every vertex of X\S. Note that

V(M) X] - X\S| = k+ (n—k~5)=n—s,
|V(M)ﬂY|+|N(;f(S:|‘ =k+s5—-1
and IT| = |Ng(S)NY|=n—(k+s—-1)=n—k—s+1.

Hence, G = K,, —{zy |z € S,y € T}. Clearly,if k+s=1o0rn—s =0,
then G is disconnected, contradicting the connectedness of G. Hence, k + 5 > 2
and n — s > 1. This completes the proof of our theorem. |

Remark: Note that the maximal non-k-extendable bipartite graph GG in The-
orem 5.4.3 is isomorphic to the graph

?‘g vV ?’c-’-s—l A T(—n—s Vv I_{n—k—s-i-l-
As a corollary we have:

Corollary 5.4.4: Let G be a maximal non—k— extendable bipartite graph
on 2n vertices, 1 < k <n —1. Then G is (k — 1)—extendable. |
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Asubset of vertices D of a graph G is a dominating set for
G if every vertex of G not in D is adjacent to one in D. The
cardinality of any smallest dominating setin G is denoted
by y(G) and called the domination number of G. Graph G
is said to be y-vertex-critical if y(G — v) < y(G), for every
v vertex in G. Comparatively little is known to date about
the structure of y-vertex-critical graphs, even in the case
when y = 3. In the present article, we begin the study
of matchings in 3-vertex-critical graphs. In particular, we
show that any 3-vertex-critical graph on an even number
‘of vertices, which has no induced subgraph isomorphic
to the bipartite graph K, s much have a perfect matching,
whereas 3-vertex-critical even graphs in general need
not contain such a matching. We close with a conjecture.
€ 2005 Wiley Periodicals, Inc. NETWORKS, Vol. 45{4), 210-213
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1. INTRODUCTION

Let G denote a finite simple graph with vertex set V{G) and
edge set E(G). A set § € V(G) is a (vertex) dominating set
for G if every vertex of G either belongs to S cris adjacentto a
vertex of S. The minimum cardinality of a vertex dominating
set in graph G is called the (vertex} domination number of
G and is denoted by y (). Graph G is said to be y-vertex-
eritical if y (G —v) < y(G), forevery vertex vin G. (Clearly,
then, ¥ (G — v) = v (G) — |, for every vertex v in G.) The

~ structure of such graphs remains relatively unexplored, even
inihe case y = 3.

The study of y-vertex-critical graphs was begun b,

Brigham, et al. [2,3] and continued by Fulman, et al. {4, 5].
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Clearly, the only 1-vertex-critical graph is K (a single ver-
tex). Brigham et al. [2, 3] pointed out that the 2-vertex-critical
graphs are precisely the family of graphs obtained from
the complete graphs K, by deleting a perfect matching.
For y = 2, however, an understanding of the structure of
y-vertex-critical graphs is far from complete.

The related, yet different, concept of edge criticality with
respect {0 domination number has received more attention.
A graph G is called y-edge-critical if y (G + &) < y{(G) for
every edge e = uv ¢ E(G) and u, v € V(G). (Here, again, it
is clear that in this case y (G + ¢) = y(G) — 1.) For results
about y-edge critical graphs, the reader is directed to [1, 6,
7.9, 10, 12] and to the further references that they contain.
In particular, in [10, 12] it was shown that any connected
3-edge-critical graph of even order must contain a perfect
matching, and this result was the motivation for the present
article. In contrast to their result, we show, by exhibiting an
infinite class of examples, that a connected 3-vertex-critical
graph of even order need not contain a prefect matching. On
the other hand, we establish ihat a K 5-free 3-vertex-critical
graph of even order must contain a perfect matching. Sumner
[1t]provedthat forn > 1,and n-connected K ,4;-free graph
of even order contains a perfect matching. We point out here
that there are many K s-free 3-verniex-critical graphs of even
order that are not 4-connected. We show two examples in
Figure 1.

For a general reference on matching as well as any
additional terminology, the reader is referred to [8].

In [2--7], the first structural properties of 3-vertex-critical
graphs are presented. We now list several of these, which shall
prove useful in the present article. We denote by N(v) the
neighborhood of vertex v (i.e., the set of all vertices adjacent
to v) and by N[v] the closed neighborhood of veriex v; that
is, the set N(v) U {v}. If § € V(&), then Ns(v) denotes the
set N(v) N S,

In the next three lemmas, we shall take the phrase “vertex-
critical” to mean y -vertex-critical for some value of y.

Lemma 1.1 (4, 5). If there exist vertices u and v such that
Niu) € N[v), then G is not vertex-critical. .



FIG. |. Two 3-vertex-critical graphs.

Lemma 1.2 (2, 3). A graph G is vertex-critical {f and only
ifeach block of G is vertex-critical. .

Lemma 1.3 (2, 3).
G],. 2y G,,, then

y(G) = [Z‘y(c_‘-)} —n+1. a

i=]

If G is vertex-critical with blocks

In addition to the above results, we shall also make use of
the following,.

Lemma 1.4. [f G is 3-vertex-critical and of even order, then
G is 2-connected.

Proof. If G is disconnected, then either & consists of
wo components, one of which is 2-critical and the other
I-critical or else G consists of three components, each of
which is 1-critical. But in the former case, G must consist of
one component isomorphic to a Ky, with a perfect matching
deleted and the other component K|, while in the lattercase G
must consist of three isolated vertices. Hence, in either case,
G has odd order, a contradiction.

Thus, assume that & is connected, but with cutvertices.
Let the blocks of G be Gy,...,Gn, where n = 2. Then by
Lemma | 3wehave 3 = y(G) = [ 1, ¥(G)] —n+ 1.

Moreover, by Lemma | .2, each block G; is vertex-critical
and because G is not isomorphic to K, no block of G can
be single vertex. So y(G;) = 2, for each block G;. Thus,
a= | or 2. But we have assumed thatn > 2 andson = 2
fand ¥ (G;) = 2, for i = 1,2. That is, G must consist of two
blocks G| and G sharing a single cutvertex v. In fact, G and
(; are 2-vertex-critical so by [2, 3], they have even order, and
hence, G has odd order, a contradiction. »

If v € V(G) we shall denote by G, the graph G — v and
by D, a minimuim dominating set of G — v. The following
fremarks about D, are trivial to verify, but as we will appeal
fo them repeatedly, we list them separately.

Remarks. If Gis 3-vertex-critical, then the following hold:
(1) Forevery vertex vof G, |D,| = 2.

{2) If D, = [x,y}, then x and y are not adjacent to v.
{3) For every pair of distinct vertices v and w, D, # D,,.

2. MAIN RESULTS

Tutte’s classical theorem on perfect matchings says that
if a graph G has no perfect matching, then there is a set
S € V(G) such that the number of components of G — §
having odd order is greater than the size of S. We shall call any
such set § for which G — § has more than | 5| odd components
a Tutte set. (An alternate name is antifactor set; see Sumner
[11].) We shall denote by ¢,(G—3§) the number of components
of G — S having odd order. A graph will be called K 5-free
if it has no induced subgraph isomorphic to the complete
bipartite graph K| 5.

The next three lemmas will be used in the proof of our
main result.

Lemma 2.1. Ler G be K| 5-free 3-vertex-critical of even
order and suppose that G contains no perfect maiching. Let
S be a Tutte set in G with |S| = 5. Then for every vertex
v € V(G), every minimum dominating set of G — v is a subset
of S.

Furthermore, if v € §, then |Kltg(v)l > 2.

Proof. Iet C,...,C; denote the odd couponents of
G — §.Because |S} = 5,and Gisofevenorder, ¢, (G—5) = 7.
Suppose to the contrary that there is a vertex x ¢ V(G)
such that Dy &€ S. Because |D,| = 2,if D, € Ui_, V(C)),
then D, cannot dominate some C;, a contradiction. Hence,
Dy € Ui_ V(C}). Suppose Dy = {y, z). Then without loss of
generality, we may suppose that y € § and z ¢ S. It follows
that y must dominate at least |S| > 5 odd components, which
contradicts the fact that G is K| 5-free. This completes the
proof of the first part of the lemma.

The second part of the lemma follows immediately from
the fact that D, < &, for all v € V(G) and the fact that v is
not adjacent to any vertex of D,. .

Lemma 2.2. Suppose G is K 5-free 3-vertex-critical of
even order, but suppose G contains no perfect matching. Then
if S is any Tutic setin G,2 < {§| < 4.

Proof. The fuct that |S] > 2 follows immediately from
Lemma 1.4. .

Suppose to the contrary that § is a Tutte set with [S| = k >
5. We first show that k = 6 and each componentof G— S is
a singleton,

Because for each x € V(G), D, € S by Lemma 2.1, it
follows that for every x € V() there is a pair of vertices in
S — {x}, a and b say, such that D, = {a, b}. Because there are
at most {5) = k(k — 1)/2 pairs of vertices of § and at least
k + (k 4+ 2) = 2k + 2 vertices in G, by Remark 3 it follows
that 2k + 2 < k(k — 1}/2, and hence, k£ = 6.

On the other hand, ¥ + 2 < ¢,(G — §) < B, because G is
K| s-free and D, C § for each x € V(G). Hence k = 6 and
(G ~5)=8.

Thus, there are exactly (g) = 15 pairs of vertices in §, and
hence G has at most 15 vertices. This implies that G — § has
no even components and every odd component of G — § must
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be a singleton as required, because there are exactly eighi odd
components. So G has exactly 14 vertices, and thus at least 14
pairs of vertices in § are realized as a D, for each x € V{G).

Let C be the set of vertices, which together comprise the
eight singleton odd components of G — §. Denote the set of
odd components of G — S, which are adjacenttov € Sby C..
Clearly, C, € C.Nowlet H beasimple graphwithV(H) = §
and E(H) = {xy|D, = {x, y}}. For xy € E(H), we have that
CUC, = C. S0, because Gis K 5-free, |Cy| = |Cy| = 4 and
[Cx, Cy} partitions C. It follows that A must be bipartite with
\V(H)| = |E(H)| = 6. Then H must contain a path of length
3 say, wy, v1, uz, v2, as a subgraph. Therefore, C,, = C,, and
C., = C,,. Then {u,uz} and {v|,v2} cannot be realized as
a D, for any v € V(). Hence, there are at most 13 pairs
of vertices in S, which can be realized as a D, for some
v € V(G). Because G has exactly 14 vertices, Dy, = D,
for some x # y. But this contradicts Remark 3, and hence
completes the proof of our lemma. .

Lemma2.3. Suppose Gis K| 5-free 3-vertex-critical of even
order, but suppose G contains no perfect matching. Then if §
is any Tutte set in G, |S| = 4.

Proof. Suppose, by way of contradiction, that |§| # 4.
Let S be any Tutte set in G. By Lemma 2.2, we may suppose
that |S| = 2 or |§] = 3.

Claim. If v € §, and D, is a minimum dominating set for
G—v, then D, C S.

Suppose to the contrary that D, & § for some v € S. Let
D, = {a, b}. Then a and b are not adjacent to v by Remark 2.
Because ¢, (G — S) = 4, {a, b} NS # @. Let the components
of G — § be denoted Cy,. .., C;. Without loss of generality,
then, we may suppose thata € V(C)) and b € §. Then b
must be adjacent to every vertex of Cy U - - U ;. Because
of K| s-free. it follows that ¢ < 5. We distinguish two cases
according to |5,

CasE 1. First suppose that [§| = 2.

Thus, t = 4. Consider G,. Dy must be ¢f the form {v,a’}
where @' is not adjacent to &. Then ' € V(C|). So v is
adjacent to every vertex of V(C2) U V(C3) U V(Cs). Choose
¢ € V(C7) and consider (.. Because both v and & are adjacent
to ¢, we must have D, (M {v, b} = ¥, a contradiction for then
there is at least one of the C; which D, cannot dominate. This
completes the proof in Case 1.

CasE 2. So suppose that |§| = 3.

Thus, t = 5. Furthermore, by Case |, we may also suppose
that § is a minimal Tutte set. Now G is K s-free, so b is
adjacent Lo no vertex of C|. Thus, a dominates all vertices of
component C;.

Now let ¢ denote the third vertex in §. Because S is a
minimal Tutte set, vertices v and ¢ are adjacent to at least
two components C;, 1 <7 < 5. Letu € V(C) U V(G U
V(C4) U V(Cs) be a vertex adjacent to ¢. Now D, = {v,v'}.
Becauseav € E(G),v' € V(C)). Thus, v must dominate each
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vertex of at least three components among Ca, ..., Cs. Now
letw € V(C)UV(CHUV(Cs) U V(Cs) be a vertex adjacent
to v. Thus, w is adjacent to both v and 4. Now Dy, = (¢, ¢'},
where ¢/ € §. This means that ¢ dominates each vertex of
at least two components among (Ca2,...,Cs. So there is al
least one component among Ca, ..., Cs such that v, b, and
¢ dominate all of its vertices. Let z be a vertex in such a
component. Then D, N § = ¢, a contradiction for then D,
fails to dominate at least two of the C;’s. This completes the
proof in Case 2, and hence the Claim is proved.

It follows immediately from the Claim that [§] = 3. Let
S = {a,b,c}. Then for each vertex v & §,|Ns(v)| = 2
because if v is not adjacent to say, a and &, then D, = {a, b)
would not dominate v. In fact, |[Ns(v)] = 2 because if
[Ns(¥)| = 3, then D, NS = ¢, and thus D, would not dom-
inate some C;, This observation, together with the fact that
each vertex of § is adjacent to at most four odd components
of G — §, implies that G — § has exactly five odd compo-
nents. For each vertex x of S, there exists a vertex v € §
not adjacent to x but v dominates § — {x}. So D, NS = {x}
and x dominates at least three odd components of G — §. If
every vertex of S dominates exactly three odd components
of G — §, then there must exist an odd component of G — §
the vertices of which are adjacent to at most one vertex of
S, a contradiction of Lemma 1.4. Hence, there is a vertex of
S, say ¢, which dominates exactly four odd components of
G —S.Let Cy,Cq,...,Cs be the odd components of G — §.
Without any loss of generality, we may assume that @ dom-
inates C,, Cz, C3, b dominates Cy, C4, C5 and ¢ dominates
Ca, C3, Cq, and Cs. Now for each v € V(C)), Dy = {c,c').
Suppose ¢’ ¢ V(C)). Then |V(C))| = 1. But then {v,c}
dominates G, a contradiction. Hence, ¢’ € V(C)).

Now if ¥(C|) = 1, {v,c] dominates G, a contradiciion.
So ¥(C)) = 2. But then C) is 2-vertex-critical, and hence,
of even order by [2,3], a contradiction. Therefore, |S| = 4 as
required and hence the lernma is proved. n

We are now prepared (o state and prove our main result.

Theorem 2.4. If G is Ki5-free 3-vertex-critical of even
order, then G has a perfect matching.

E]

Proof. Supposetothecontrary ...t G contains no perfect
matching and that S is a Tutte set in G.

First, we laim thatif |S| > 4, thenforallv e §,D, C §.

If|S| = 5, then the claim is true by Lemma 2.1. So suppose
IS] = 4. Suppose, to the contrary, that for some vertex v € §,
D, = la, b}, where a € § and b ¢ V{(G) — §. Because
co{G — §) = 6, vertex g must dominate at least five of the
odd components, and hence G coniains an induced K5, a
contradiction. This completes the proof of the claim.

Next we claim that, in fact, |5| # 4.

Suppose to the contrary that |5} = 4. Choose x € §. Theu
D, C §. Suppose D, = {y, z}. Without loss of generality, we
may then suppose that if w is the fourth vertex of §, then w



adjacent to z. Then D, must be {x, ¥}, and so w is adjacent
neither x, nor y. Also, because x is not adjacent to z,y
must be adjacent to z. But then D, N {y,w) = @. S0 D,
iomsists of vertex x € § and a second vertex in & — S. But
ihis contradicts the claim verified at the beginning of this
roof.

So |$] # 4 and this contradicts Lemma 2.3. .

3. ANEW FAMILY OF 3-VERTEX-CRITICAL
APHS

Inthe first article on the subject of 3-vertex-critical graphs
3], the authors present a family of graphs that they denote
.'by {Gun) and claim that these graphs are n-vertex-critical.
However, in the case of n = 3, this is true only when m is
gven.

In this section, we present a construction that yields an
infinite family of new 3-vertex- critical graphs.

Let £ be any positive integer with £ = 5. We proceed to
gutline the construction of a graph that we will call Hk(:)_k.
The vertex set will consist of two disjoint subsets of vertices
called centrul and peripheral, respectively. Let {v, ..., v}
denote the set of central vertices. The subgraph induced by
these central vertices will be the complete graph K, with
‘the Hamiltonian cycle vyjvg - - - vy deleted. The peripheral
vertices will be (’D — k in number, and will be denoted by
the symbol ~ {i,;}, where the (unordered) pair {{,j}(i # J)
ranges over all the (‘2‘) — k subsets of size 2 of the set ,. .. &,
‘except those having j = i + 2 where { + 2 is read modulo k.

the set of all central vertices, except i andj. There are no edges
joining pairs of peripheral vertices.

Figure 2 shows as an example the graph Hg 9.
- Note that the graph Hk‘(;)_k is {k — 2)-connected, but for
k > 6 it does not contain a perf~ct matching (even when the
prder (g) is even). Further. each graph Hk,(g)-k can, inturn, be

~{1.4}

~[4.51]

~{3.6}

F1G. 2. The graph Hgs.

“The neighbor set of peripheral vertex ~ {i, j} will be precisely .

used to create a large number of additional 3-vertex-critical
graphs as follows. Partition the set of peripheral vertices
into r > 3 subsets Py, P2, P3...., P, and add e; edges to
P; foreach i = |,...,r. Here, ¢; can be any integer such
that) < ¢; < (";"). The resulting graph is 3-vertex-critical.
We denote this graph by Hk.(’;)—k(lpl |, 1P21....,|P-]) if each

P; is complete. Note that H,c'(;)_k(l, I, (‘2‘) —k—2)is K1 5-
free. Hence, for infinitely many values of & > 8 such that
(;) is even, the graph H, (vy_, (1,1, (g) — k — 2) satisfies
Theorem 2.4. '

It should also be pointed out that for k& > 6, because
Hk‘(;)‘k is at least 4-connected, clearly Hk_(;)_k(lPll,...,
|P,]) is also 4-connected, and hence, if it is K s-free (and
(g) is even), Sumner’s old result [[1] can also be applied to
guarantee the existence of a perfect matching,

The reader will note that we have made considerable use
of the additional hypothesis that G be K s-free in several of
our proofs in Section 2. Indeed, it would be interesting to
know if this extra hypothesis can be weakened. For example,
we know of no counterexample to ths following.

Conjecture. If & is a 3-vertex-critical graph of even order
and K 7-free, then G contains a perfect matching.
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Abstract

A graph 7 of order p is k-factor-critical,where p and k are positive integers with
the same parity, if the deletion of any set of k vertices results in a graph with a perfect
matching. ( is called maximal non-k-factor-critical if G is not k-factor-critical but
G + e is k-factor-critical for every missing edge ¢ ¢ E((G). A connected graph G
with a perfect matching on 2n vertices is k-extendable, for 1 < k < n -~ 1, if for
every matching M of size k in 7 there is a perfect matching in & containing all edges
of M. G is called maximal non-k-extendable if G is not k-extendable but G+ e is
k-extendable for every missing edge € ¢ E((). A connected bipartite graph G with
a bipartitioning set (X,Y) such that |X| = |Y| = n is maximal non-k-extendable
bipartite if G is not k-extendable but G + 2y is k-extendable for any edge zy ¢ E(G)
with 2 € X and ¥ € Y. A complete characterization of maximal non-k-factor-critical
graphs, maximal non-k-extendable graphs and maximal non-k-extendable bipartite
graphs is given.

Keywords: matching, k-factor-critical graphs, k-extendable graphs
1. Introduction

All graphs considered in this paper are finite, connected, loopless and have
no multiple edges. For the most part our notation and terminology follows that
of Bondy and Murty [2]. Thus G is a graph with vertex set V(G), edge set E(G)
and minimum degree §(G). For V' C V(G), G[V'] denotes the subgraph induced
by V’. Similarly, G|E’] denotes the subgraph induced by the edge set E' of G.
Ne(u) denotes the neighbour set of u in G and N¢(u) the non-neighbours of
u. Note that Ng(u) = V(G)\(Ng(u) U {u}). The join G v H of disjoint graphs
(G and H is the graph obtained from GU H by joining each vertex of G to each
vertex of H.
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2Worked supported by the Western Australian Centre of Excellence in Industrial
Optimisation (WACEIQ)
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A matching M in G is a subset of E(G) in which no two edges have a vertex
in common. A vertex v is saturated by M if some edge of M is incident to v;
otherwise v is said to be unsaturated. A matching GG is perfect if it saturates
every vertex of G. For simplicity we let V(M) denote the vertex set of the
subgraph G[M] induced by M. A graph G of order p is k-factor-critical, where
p and k are positive integers with the same parity, if the deletion of any set of k
vertices results in a graph with a perfect matching. G is called mazimal non-k-
Jactor-critical if G is not k-factor-critical but G + e is k-factor-critical for every
missing edge e ¢ E(G). The concept of k-factor-critical is a generalization of
the concepts of factor critical and bicritical. k-factor critical graphs are studied
for examples by Favaron (3, 4] Favaron and Shi [6, 7] and Favaron et. al. [5].

A closely related concept to k-factor-critical is that of k-extendable. For
1 <k < n-—1, a connected graph G of order 2n with a perfect matching is
k-extendable if for every matching M of size & in G there is a perfect matching
in G containing all edges of M. For convenience, a graph G with a perfect
matching is said to be O-extendable. G is called mazimal non-k-extendable
if G is not k-extendable but G + e is k-extendable for every missing edge ¢ ¢
E(G). A connected bipartite graph G with a bipartitioning set (X,Y) such that
|X| = Y] = n is mazimal non-k-extendable bipartite if G is not k-extendable
but G + zy is k-extendable for any edge ay ¢ E(G) with s € X and y € Y.
Extendable graphs have been studied by many authors including Plummer [9],
Ananchuen and Caccetia [1], Kawarabashi et. al. [8], Ryjdeek [12] and Yu [14].
Excellent surveys are the papers of Plummer [10, 11]. In this paper, we introduce
the concepts of maximal non-k-factor-critical, maximal non k-extendable and
maximal non k-extendable bipartite graphs.

A 2k-factor-critical graph is obviously k-extendable but the converse need
not be true since a complete bipartite graph K, , is k-extendable for 0 < k <
n — 1 but is not 2k-factor-critical. Further, the graph G formed by joining
two Kop's with a perfect matching is k-extendable non-bipartite but is not 2k-
factor-critical. On the other hand, the graphs G; and Gz, shown in Figure 1.1,
are both maximal non-2-extendable graphs and maximal non-4-factor-critical
graphs whilst the graphs G and G4, shown in Figure 1.2, are both maximal non-
2-extendable bipartite graphs since the edge u1v; together with the edge uava
cannot extend to a perfect matching in each G; for 1 < i < 4. Note that these
graphs are l-extendable. This is no coincidence but it is true in general which we
establish it later on. However, the definitions of maximal non-k-factor-critical,
maximal-non-k-extendable and maximal-non-k-extendable bipartite graphs give
no suggestion of this property.

Further, the above examples suggest that there may be a relationship be-

tween maximal non-k-factor-critical graphs and maximal non-k-extendable graphs.

In this paper, we establish the strong connection between these two classes of
graphs. More precisely, we establish that for a connected graph G on 2n vertices
with a perfect matching, G is maximal non-k-extendable if and only if G is max-
imal non-2k-factor-critical for 1 < k < n—1. We also provide a characterization
of maxirnal non-k-factor-critical graphs, maximal non-k-extendable graphs and
maximal non-k-extendable bipartite graphs.
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Figure 1.2

2. Maximal non-k-factor-critical graphs

In this section, we establish a characterization of maximal non-k-factor-
critical graphs. We begin with the following lemma.

Lemma 2.1: For positive integers p end k having the same parity, and
s+2
non-negative integers s,ty,t2,...,tapa with 0 < s < i(p -k} — 1 and 3°t; =

i=1

3(p~ k) — s — 1, the graph
s+2
G =Kiys vV U Kot 11
1=1

is mazimal non-k-factor-critical of order p.

Proof: Let H = Kiys and G; = Ko gy for 1 <4 < 542, Then G =
842 &+2
HY | G;. Let T be a subset of V(H) with |T'| = k. Clearly, G—T = K,v {J G,

i=1 iz=1
has no perfect matching. Thus G is not k-factor-critical.
We next show that G is maximal. Let u and v be non-adjacent vertices in

G and let us consider G' = G + uv. Clearly, u and v are vertices of G; and G;



for some i # j, respectively. Let T” be a subset of V(G') with |T| = & and let
r=|V(H)nT.

Case 1: r =k.

Clearly, G’ — T" has a perfect matching containing the edge uv.

Case 2: r=§k — 1.

Then at most s + 1 of the subgraphs G; — T' have odd order. Since H — T”
has order s + 1, G' — T" has a perfect matching,

Case 3: r <k -2.

Suppose exactly ¢ of the subgraphs G; — T" have odd order. Then ¢ and the
order of H — T” have the same parity. Also the order of H - T'isk+s5—1 >
s+ 2> i, Hence G — T’ has a perfact matching,

Therefore, G' = G + wv is k-factor-critical and hence G is maximal non-k-
factor-critical. O

Before we establish a characterization of maximal non-k-factor-critical graphs
we recall Tutte’s Theorem which we make use of in our proof. As usual we let
o(H) denote the number of odd components in H.

Theorem 2.2: Tutte's Theorem (see Bondy and Murty (2] p.76)
A graph G has a perfect matching if and only if o(G — §) < iS| for all
S cV(G). O

Now we are ready for our main theorem in this section.

Theorem 2.3: Let G be a connecled graph on p vertices and k a positive
integer having the same parity with p. G is mazimal non-k-factor-critical if and
only if

842
G = KuysV UKz, 1
=

?

842
where 8 and t; are non-negative integers with 0 < s < %(p— K)—1and > t; =

sp—k)—s-1.

i=1

Proof; The sufficiency follows from Lemma 2.1. Now we prove the necessity.
Since G is maximal non-k-factor-critical, there is a subset T of V(G} of size k
such that G' = G — T has no perfect matching. Then, by Tutte's Theorem,
there is a subset 5' of V(G'} such that o(G’ — 5") > |§'|. Put s = |8’|. Because
G is of even order, it follows that s and o(G’' — §’) must have the same parity.
Thus o(G' = 5') > s+ 2.

Let €y, Co, ..., Cr be odd components of G'— §’. We first show that r = s+2.
Suppose to the contrary that » > s+ 3. Then r > s + 4. Let ¢; € V() for
i = 1,2 and let us consider G + ¢1¢3. Clearly, (G + c1c2) — (T U §') contains
at least s + 2 odd components. Thus G + ¢3¢z is not k-factor-critical. This



contradicts the fact that G is maximal non-k-factor-critical. Hence, r = s + 2
as required.

‘We next show that G/ — 5’ has no even components. Suppose to the contrary
that G — S’ contains D as an even component. Let d € D and ¢; € V(Cy).
Now consider G + dey. Clearly, (G + dey) ~ (T'U S’) contains exactly s + 2
odd components since the components D and Cy together with the edge de;
forms an odd component of G + de;. Thus G + dey is not k-factor-critical, a
contradiction. This proves that G' — .9’ has no even components.

Now we claim that G[T Ut §'] is complete. Suppose it is not the case. Then
there exist vertices z and y in TUS” such that zy ¢ E(G). Now consider G+ xy.
Since (G + xy} — (T U 5’) contains exactly s + 2 odd components, G + zy is
not k-factor-critical. This contradiction proves that G[T'U S'] is complete. By a
similar argument, it is easy to establish that each C; is complete for 1 < i < 54-2.
Further, for 1 < 7 < 5+ 2, each vertex of C; is adjacent to every vertex of TUS".

Now, for 1 <1 < s+ 2, let |[V(C;)| = 2¢; + 1 for some non-negative integer
542 842

t. Thenp=|V(G} =k +s+ 3 |V(Cy)|=k+2s+2+23 6, > k+2s+2.

i=1 i

i=1
s+2
Hence, 3 t; = 3(p~ k)~ s—1and 0 < s < 4(p— k) ~ 1 as required. This
i=1

1=
completes the proof of our theorem. 0
As a corotlary we have:

Corollary 2.4: If G is a mazimal non-k-factor-critical graph on p vertices
where k is a positive integer greater than 1 having the same parity with p, then
G is (k — 2)-factor-critical, O

3. Maximal non-k-extendable graphs

In this section, we characterize maximal non-k-extendable graphs and show
that they are closely related to maximal non-k-factor-critical graphs.

Theorem 3.1: Let G be o connected graph with a perfect matching on 2n
vertices. For 1 <k <n—1, G is mazimal non-k-ertendable if and only if

542
G = Kapys V U Koty

i=1

842
where 5 and t; are non-negative integers with 0 < s <n—k~1and > . t; =

i=1
n—k~—s—1.

Proof: The sufficiency follows from Lemma 2.1 and the definitions of factor-
critical graphs and k-extendable graphs. For the necessity, the proof is almost
identical with the proof in Theorem 2.3 s¢ we omit it. O



As a corollary we have:

Corollary 3.2: Let G be a mazimal non-k-extendable graph on 2n vertices
for 1<k <n-—1. Then G is (k — 1)-eztendable. O

Corollary 3.3: Lef G be a maximal non-k-extendable graph on 2n vertices
for 1 <k <n-1 If E' C E(K:x\E(G) with |E'| > 1, then G+ E' is
k-eztendable.

Proof: The result follows by applying a similar argument as in the proof of
Lemma 2.1 to the graph &' + E'. O

Remark 3.1: (1) A connected graph with a perfect matching which is not
k-extendable need not be (£ — 1)-extendable. For example, a cycle on 2n > 8
vertices is not 3-extandable and it is not 2-extendable. In the case of a maximal
non-k-extendable graph G, G is not k-extendable but it is (k — 1)-extendable.
Although one can prove from the definition straight forward that a maximal
non-k-extendable graph is {k — 1)-extendable but it is not obvious.

(2} In [14] Yu proved that if G is a k-extendable graph on
2n vertices with 1 < k < n — 1, then G+ e is (k — 1)-extendable for any edge
e ¢ E(G). Hence, adding a new edge into a k-extendable graph G might destroy
the k-extendability property of G. But for a maximal non-k-extendable graph,
it is no matter how many edges which are in E(K,)\E(G) are added into G.
The resulting graph is still k-extendable providing that the number of edges is
at least 1.

By Theorems 2.3 and 3.1, we have immediately theorem.

Theorem 3.3: Let G be a connected graph on 2n vertices with a perfect
matching. For 1 < k <n —1, G is mazimal non-k-extendable if and only if G
is mazimal non-2k-factor-critical. O

Remark 3.2: As we mention in the Introduction that k-extendable graphs
need not be 2k-factor-critical but for a maximal non k-extendable graph G,
G + e is both k-extendable and 2k-factor-critical for any edge e € E(G).

Remark 3.3: A variation of k-extendability is that of induced matching
extendability or IM-extendability for short which was introduced by Yuan [15].
A matching M of G is induced if E([V(M)]) = M. A graph G is IM-extendable if
every induced matching of G is included in a perfect matching of G. Notice that
an IM-extendable graph is 1-extendable. Further, a k-extendable graph with no
induced matching of size greater than & is IM-extendable. Wang and Yuan {13]
introduced a concept of maximal IM-unextendable graphs. A graph & is called
maximal IM-unextendable if it is not IM-extendable but G+zy is IM-extendable
for every two non-adjacent vertices « and y of G. They established that the only
maximal IM-unextendable graph is My V (K, V (K, UK, U..UK,_,,)) where



My, is an induced matching of size k¥ > 1, 8 is a non-negative integer and each
n; is odd. Observe that the class of maximal IM-unextendable graphs coincides
with the class of maximal non-k-extendable graphs only for & = 1.

4. Maximal non-k-extendable bipartite graphs

In this section, we extend our idea on maximal non-k-extendable graphs to
the case of bipartite as foliows. Let G be a connected bipartite graph on 2n
vertices with a bipartitioning set {X,Y} such that |X| = |Y| = n. For non-
negative integers k and n with 0 < k < n — 1, G is mazimal non-k-extendable
bipartite if G is not k-extendable but G + e is k-extendable for any edge ¢ =
zy ¢ E(G) where z € X,y € ¥. Thus we are interested in adding a missing
edge e ¢ E(G) which such edge has one of its end vertices in X and another in
Y. We also establish a characterization of maximal non-k-extendable bipartite
graphs. We first recall Hall’s Theorem.

Theorem 4.1: Hall’'s Theorem (see Bondy and Murty [2] p.72)

Let G be a bipartite graph with bipartitioning (X,Y). Then G contains a
matching that saturates every vertex in X if and only if |N(S})| = |5| for all
SCX. a

Lemma 4.2: For any non-negative integers n, k and s with 1 <s<n-1
and 2 < k+ 8 < n, let (X,Y) be a bipartitioning set of Kpn and let § C
XTCY with |S|=sand |[T|=n-~k—s+1. Then

G=Koyn—f{zylze S ye T}

is & mazimal non-k-extendable bipartite graph on 2n vertices.

Proof: The result is obvious for £ = 0. We have to consider only for £ > 1.
Let M be a matching of size k£ in G consisting of edges e; = w;ty € M,u; €
X\S,v; € Y\T for 1 <4 < k. Then § C X\V(M) with |[Ng_van(S)| =
s-1<s=|8. Thus G — V(M) has no perfect matching by Hall’'s Theorem.
Hence, G is not k-extendable.

Now we establish that G is maximal. Let ¢ = zy ¢ E(G) where x € X and
yeY. Clearly, r € Sand y € T.

Consider G’ = G + zy. Let M’ be a matching of size k£ in ' and

ki = [(X\S)N V(M) k2 = [N V(M)
ks = |(Y\AT) O V(M) and ks =[TAV(M).

Then k1 + ko =k = k3 +kq, | X\(SUV(M')| =n—k; ~s and |[Y\(TUV(M'}| =
k+ s —1— ka. We distinguish two cases according to k;.

Case 1: k; = k.

Clearly, k2 = 0 and |S\V (M) = s.



Subcase 1.1. k4 = 0. Then k3 = k and zy € E(G' — V{(M")). There is
a matching M{ of G’ — V(M) of size s — 1 joining vertices of §\{z} to vertices
of Y\(TU V(M) and a matching M} of G' — V(M) of size n — k — s joining
vertices of T\{y} to vertices of X\{S U V{M")). Now G' — V(M’) contains
M U My U {zy} as a perfect matching as required.

Subcase 1.2. k4 > 1. Then k3 < k—1. Thuss < k+s—1 — ka.
Now let M{ be a matching of G' — V(M) of size s joining vertices of S to
vertices of Y\{T'U V(M")). Further, let M} be a matching of &' — V{(M') of
size n—k — s+ 1— k4 joining vertices of T\V(M') to vertices of X\(SUV{AM")).
Now G — V(M' U M{ UM}} = Ky, where m = kg — 1, contains a perfect
matching My, Hence, M{ U M3 UMY forms a perfect matching of G’ — V(M’).

Case 2: k; <k-—1.

Then ky > 1. Further, n—k—s+1 < n—kj—-sand s—ky < s—1 < k—kz+s-1.
Now let M{” be a matching of G' — V(M') of size s — ko joining vertices of
S\V(M') to vertices of Y\(T U V(M")). Further, let M}’ be a matching of
G' - V(M) of size n — k — s+ 1 — k4 joining vertices of T\V (M} to vertices of
XNSUV (M) Now G-V (M UM UM}") = Ky, where m = kg + ks — 1,
contains a perfect matching M}"”. Hence, M}"U ML’ UMY is a perfect matching
of G' — V(M’). Therefore, G' = G + zy is k-extendable as required. This
completes the proof of our lemma. O

Now we establish the main result of this section.

Theorem 4.3: Let G be a connected bipartite graph on 2n vertices with a
bipartitioning set (X,Y) such that | X|=|Y]|. For 0 <k < n—1, G is mozimal
non-k-extendable bipartite if and only if there are subsels § C X, T C Y with
(S| =s and |T|=n—k— s+ 1 such that

GEKnn—{ay|zeSyeT}

foraninteger swith 1 <s<n-laend2<k+s<n.

Proof: The sufficiency follows from Lemma 4.2. So we need only prove the
necessity. Since GG is maximal non-k-extendable bipartite, there is a matching
M of size k in G such that G — V{M) has no perfect matching. Let (X', Y")
be a bipartitioning set of G' = G — V(M). Clearly, X' = X\V(M) and Y’ =
Y\V(M). Further, |X'| =n —k = |Y"|. Since G' has no perfect matching, by
Hall’s Theorem, there is a subset § C X’ such that s = |§] 2 |Ng/(S)| +1 > 1.
Clearly, s € n — k. We next show that s = [N (S)| + 1. Suppose to the
contradiction that s > |Ng(S)| + 2. Then [Y'\Ng:(5)| = n — k - |Ng-(5)] =
n—~k—5s+22>2 Letze S and y € Y\Ng/(S). Clearly, zy ¢ E(G). But
(G + zy) — V(M) = G' + zy contains S as a subset of X’ with s = |§] >
(8—2)+1 > [Ng (S)|+1 = |Ngrtzy(S)]. Thus (G+zy)— V(M) has no perfect
matching. Hence, G + zy is not k-extendable. This contradicts the fact that G
is maximal non-k-extendable bipartite. Therefore, s = |Ng:(S)| + 1.



We next show that each vertex of § is adjacent to every vertex of (V{M) N
Y) U Ng#(5). Suppose this is not the case. Then there are vertices a € S and
be (VIMNY)UNg (S) such that ab ¢ B{G). Clearly, (G+eb)—V (M) contains
8§ as a subset of X’ with s = [S]| = [Ng(9)|+1 = | N(grany-v(an (S)| + 1. Thus
(G + ab) — V(M) has no perfect matching. Hence, G + ab is not k-extendable.
This contradicts the fact that G is maximal non-k-extendable bipartite and
proves that each vertex of S is adjacent to every vertex of (V(M)NY)UNg/(5).
By a similar argument, one can establish that each vertex of X\ S is adjacent to
every vertex of Y. Consequerntly, each vertex of (V(M)NY)UNq (S) is adjacent
to every vertex of X and each vertex of T = Y\(V(M}U Ng:(S)) = Ng(S)nY
is adjacent to every vertex of X\S. Note that

[VIMINX|+ | XN\S|=k+(n—k—8)=n—s,
[VIMINY|+ |Ng(S)|=k+s-1
and IT| = [Ng(8)NY|=n—(k+s-1)=n—k—s+1.

Hence, G = Ky — {zy |z € 8,y € T}. Clearly, ifk+s=1lorn—-s=0,
then G is disconnected, contradicting the connectedness of G. Hence, k435 > 2
and n — s > 1. This completes the proof of our theorem. O

Remark 4.1: Note that the maximal non-k-extendable bipartite graph G
in Theorem 4.3 is isomorphic to the graph

I_{-s vV Rk-}s—l A -Rn-s v I_{-n—k—erl-

As a corollary we have:

Corollary 4.4: Let G be a mazimal non-k-extendable bipartite graph on 2n
vertices, l <k <n—1. Then G is (k — 1)-extendable. [
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Abstract

A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in
D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted
by 7(G) and called the domination number of &. Graph G is said to be y-vertex-critical if
¥(G —v) < v(G), for every vertex v in G. For |V (G)| = k( mod 2), graph G is said to be
k-factor-critical if G — S has a perfect matching for every subset S C V(G) with || = k.

In two previous papers, (cf. [AP1, AP2]), the study of matchings in 3-vertex-critical
graphs was begun. In the present paper, results about connectivity and k-factor-criticality
are presented, for the case in which the 3-vertex-critical graphs are also claw-free.

1. Introduction

A subset of vertices D of a graph G is a dominating set for G if every vertex of G
not in D is adjacent to one in D. The cardinality of any smallest dominating set in G is
denoted by ¥(G) and called the domination number of G. Graph G is said to be y-vertez-
critical if v(G —v) < v(G), for every vertex v in G. A matching is perfect if it is incident
with all vertices of G. If |V(G)| = k( mod 2), graph G is said to be k-factor-critical if
G — S has a perfect matching for every S C V(G) with |S| = k. (The special cases when

* work supported by the Thailand Research Fund Grant #BRG4680019
i work supported by NSF Grant # INT-9816113
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k =1 and 2, respectively, have received the most attention in the literature and in these
cases the graphs are called factor-critical and bieritical respectively.) If G is any graph
and S C V(G), then denote by ¢,(G — 5) the number of components of G — § having odd
order.

The study of ~-vertex-critical graphs was begun by Brigham, Chinn and Dutton
[BCD1,BCD2] and continued by Fulman, Iianson and MacGillivray [FHM]. But much
remains unknown about the structure of such graphs, even in the case v = 3. In [AP1] the
study of matchings in 3-vertex-critical graphs having even order was begun and somewhat
later in [AP2] the odd order case was taken up.

A graph is called claw-free if it has no induced subgraph isomorphic to the bipartite
graph K, 3. In the present paper, three new theorems about the connectivity of 3-vertex-
critical graphs which are also claw-free are presented, together with three corollaries about
their k-factor-criticality.

We adopt the usual notation for neighborhoods in a graph; namely, if v € V(G), N{v)
denotes the set of all vertices adjacent to vertex v and is called the neighborhood of v. The
closed neighborhood of v, N[v], is defined by N[v] = N(v) U {v}.

The graph G — v will often be denoted by G,. Similarly, we shall denote by D, any
minimum dominating set of the graph G — v. The following remarks about D, are easily
verified, but since we will appeal to them repeatedly, we list them separately.

Remarks: If G is 3-vertex-critical, then the following hold:
(1) For every vertex v of G, |D,| = 2.
(2) f D, = {z,y}, then z and y are not adjacent t~ v.

{3) For every pair of distinct vertices v and w, D, # D,,.

Finally, we remind the reader that the concept of vertex criticality with respect to
domination number is quite different from the analogous concept for edges. A graph G is
said to be edge-critical with respect to domination number v if v{G + ¢) < 4(G) for every
edge e not in E(G). Edge criticality has received quite a bit more attention to date than
has vertex criticality. The reader is referred to [HHS; Chapter 16] and the references it
contains for a survey of edge criticality and for more recent papers on matchings in such
graphs, [AP3, AP4, AP5, AP6] and the references contained therein.

We shall need the following four lemmas in establishing our results.

Lemma 1.1: ([BCD1]) A connected graph G is 2-vertex-critical if and only if G is
isomorphic to Ky, with a perfect matching removed.

Lemma 1.2: ([FHM; Theorem 2]) The diameter d of a y—vertex-critical graph G
satisfles d <2(y—1) for y > 2.
|



Lemma 1.3: ([FHM; Theorem 6]) A connected graph G with diameter 4 is 3-vertex-
critical if and only if it has two blocks each of which i1s 2-vertex-critical.

Lemma 1.4: ([FHM; Lemma 5]) If there exist vertices u and v such that N¢[u] C
Ng|v), then G is not vy-vertex-critical for any .

We now present a construction which yields a new infinite family of claw-free 3-vertex-
critical graphs.

For positive integers ¢, r and s, we construct the graph G(t,r, s) as follows. Let X =
{'7-71 1 L2000y xt}a Y = {yl 1 Y25 000 yr‘}: T = {ula Uy eeny Uty V1, U2y vr} and § = {21: 22503 %3,
w1, Wz, ...,ws}. Then set V(G(t,r,5)) = X UY UT U S U {a}, thus yielding a set of
2t + 2r + 2s + 1 distinct vertices. Join vertex a to each vertex of S. Form complete graphs
on each of X, Y and T and form a complete graph on §, except for the perfect matching
{ziwi|l < i < s}. Finally, join each z; to each vertex of (T — {u;}) U {z1, 22, ..., 25} and
join each y; to each vertex of (T' — {v;}) U {w1, w2, ...,ws}. It is not difficult to show that
G(t,r,s) is a claw-free 3-vertex-critical graph. Figure 1.1 shows the graphs G(1,2,1) and
G(1,2,2). Note that these graphs are 2-connected and 3-connected, respectively. Our
.theorems in the next section guarantee certain connectivity for claw-free 3-vertex-critical
graphs, given sufficient minimum degree. The graphs G(1,2,1) and G(1,2,2) show these
assumptions on minimum degree to be best possible.



G(1,2,1)

G(1,2,2)
Figure 1.1

Lemma 1.5: If G is a claw-free 3-vertex-critical connected graph, then G has diam-
eter at most 3.

Proof: Let d be the diameter of G. Then, by Lemma 1.2, d < 4. Suppose, to the
contrary, that d = 4. Then, by Lemma 1.3, G has two blocks, each of which is 2-vertex-
critical. Then each block of G must be a complete graph of even order withont one perfect
matching by Lemma 1.1. Since G is connected, each of these blocks has at least four
vertices. Further, these two blocks must overlap in one vertex, u say. But then u becomes
a center of K; 3, a contradiction. This completes the proof of the lemma.

To see that the above upper bound on the diameter is best possible, the reader is
again directed to the infinite family described after Lemma 1.4 above.
We shall also make use of the following theorem on factor-critical graphs. (See [FFR,

LY}].)

Theorem 1.6: If G is (k + 1)-connected, claw-free and of order n, and if n — k is
even, then G is k-factor-critical.

Finally, the next two lemmas will be used repeatedly to obtain our main results.
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Lemma 1.7: Let G be a k-connected claw-free graph and suppose & > 1. Suppose
S is cutset of V(G) with |S| = &. Then

(1) For any component C of G — 5, Ng(z) N C # 0 for every z € S,
(2) G — S has exactly two components.

Proof: Part (1) follows immediately from the fact that S is a minimum cutset. Part
(2) then follows by claw-freedom.

Lemma 1.8: Suppose G and S are defined as in Lemma 1.7. In addition, suppose
G is also 3-vertex-critical. Let C; and C; be the two components of G — 5. Further, let

A=V(C)) - :cLeJS Ng(z) and B =V (Cy) — xLeJSNG(x)' Then

(1) For each i = 1, 2, G[Ng,(z)] is complete for every z € S,
(2) A =0 or B = @; further, if k = 2, then A # 0 or B # 0,

(3) if A=0 and |V(C1)| > 2, then [] N¢,(z) = 0.
res

Proof: Statement (1) follows immediately from Lemma 1.7(1) and the fact that G is
claw-free.

(2) If A # @ and B # 0, then the diameter of G must be at least 4. This contradicts
Lemma 1.5. Hence, A = ) or B = ). Now suppose k = 2 and suppose further that A =9
and B = . Then v(G) = 2, a contradiction. Hence, A # @ or B # @. This proves (2}.

{3) Suppose A = @, but [) Ng¢,(z) # 0. Let w € (] N¢,(z). It follows by (1), and
z€S z€S
the fact that 4 = 0, that w must be adjacent to every vertex of V(C;) — {w}. Thus

Nglw] = V(Cy)U S. Since |V(C}) — {w}] > 1, there exists a vertex z € V(C1) — {w}.
Clearly, Ng[z] C Ng[w]. But this contradicts Lemma 1.4 and completes the proof of our
lemnma.

2. Main Results

Theorem 2.1: Let G be a connected claw-free 3-vertex-critical graph. Then G is
2-connected.

Proof: Suppose that G is not 2-connected. Then there exists a cutvertex v € V(G).
Moreover, G — v contains exactly two components by claw-freedom. Let these two com-
ponents be C; and C,. Let A and B be as given i1 Lemma 1.8 and suppose A = ). Then
v dominates V(Cy). Thus N[u] C N[v] for each vertex u in V(C;). But this contradicts
Lemma 1.4 and completes the proof of our theorem.
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Theorem 2.2: Let G be a connected claw-free 3-vertex-critical graph. Then if G is
of even order or if mindeg (G) > 3, then G is 3-connected.

Proof: Suppose, to the contrary, that G is not 3-connected. By Theorem 2.1, GG is
2-connected, so G must have a (minimum) cutset S = {u,v}. By Lemma 1.7(2), there
must be exactly two components in G — S. Denote these components by Cy and C;. Let
A and B be as given in Lemma 1.8. By Lemma 1.8(2), we may suppose that A = @, but
B # ). We now distinguish three cases according to |V(C))|.

Case 1: |V{(C1)| = 1.

Let {z} = V(C1). Then z is adjacent to both 4 and v. Thus mindeg (G) = 2 and hence
G is of even order by our hypothesis. By Lemma 1.4, uv ¢ E(G) otherwise Ng[z] C N¢[u].

Claim: For each w € V(C3) — B, Dy, = {z,w'} where w' € B.

Suppose without any loss of generality that w € N¢,(u). Then D,,N(N¢, (u)U{u}) =0
by claw-freedom in G. We first show that z € D,,. Suppose to the contrary that z ¢ D,,.
Clearly, v € D,,. Since uv ¢ E(G), the single vertex - call it a - of D,, — {v} must be
adjacent to every vertex of BU{u}. This implies that vertex a is in N¢, (u), a contradiction.
Hence, z € D,,.

Since B # 0, D, — {2z} C V(C;). Let D, — {z} = {w’'}. Then w’ dominates
V(C;) — {w}. If w' € Ng,(v), then {u,w'} dominates G, a contradiction. Hence, w’ ¢
Ne,(v). Since Dy N (Ng(u)U{u}) =0, w’ € B. This proves our claim.

Now let V(C3) — B = {w1,wa,...,w:} where ¢ > 1. By Claim 1, there exists a set
of vertices {wy,ws,...,w;} C B such that D, = {2,w]} for 1 <i <t. Clearly, w] # w]
for i # j by Remark 3. Therefore, |V(C;) — B| < |B|. Further, |B| > 2 because of
counectedness of C,. Since z € V(C,), for each i, w! dominates V(C2) — {w;}. Remark 2
together with the fact that |B| > 2 implies that w; € D,,;. Then w; dominates B — {w]}.
Thus B is complete by claw-freedom of G and the fact that w! dominates V{C3) — {w;}.

Suppose |B| > t+1. Choose b € B—{w],w},...,w;}. Then b dominates V(C3). Thus
b, z} dominates G, a contradiction. Hence, |B| = #. This implies that {V(G)| = 2t + 3
contradicting the fact that G is of even order. This proves Case 1.

Case 2: |[V(Ch)|=2.

Let V(C1) = {z,y}. Clearly, zy € E(G). By Lemma 1.8(3), we may suppose that u is
adjacent to z, but not to y, and v is adjacent to y, but not to z. Thus deg x =degy = 2.
But then by hypothesis, G is of even order. Now consider G,. Clearly, D,N(Ng(v)U{v}) =
@. Suppose u € D,. Since uy ¢ E(G), = € D,. Then u dominates V(C3). But this is
impossible since B # 0. Hence, u ¢ D,. Thus |D, NV(C;)| =1and |D, NV(C2)| =1.

Let {w} = D, N V{C;). Then w dominates V(C3). If w € V(C>) — B, then Ng{b] C
Ng[w] for every vertex b € B, a contradiction. Hence, w € B. If there is a vertex
z € B — {w}, then N[z] C N[w], again a contradiction, and so B — {w} = @. Thus
B = {w}. Now let a € N¢,(u). Consider G,. Since N¢,(u) is complete by Lemma 1.8(1),
D, N (N, (w)U {u,w}) = 0. But D, N V(C2) # B because B # 0. Thus v ¢ D, otherwise
no vertex of D, is adjacent to z. Hence, L, N V(Cy) # 6. Let {a'} = D, N V(C2).
Clearly, a’ € N¢,(v) and o’ dominates V(C2) — {a}. Similarly, a € Dy and a dominates
V{(C;) — {a'}. Hence, V(C,) — B is isomorphic to a complete graph of even order 2t with
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a perfect matching deleted. Therefore, |V(G)| = 2t + 5, contradicting the fact that G is of
even order. This completes the proof of Case 2.

Case 3: |[V(Cy)| > 3.

Then by Lemma 1.8(3), sets N, (u) and N¢, (v) must partition V(C)), since A = 0.
So, without loss of generality, we may suppose [N¢, (u)| > 2.

Let 2 € N¢,(u). Consider G;. Clearly, [D;| = 2 and D, N (Ng,(u) U {u}) = 0.
(Note that N¢, (u) is complete by Lemma 1.8(1).) Since |N¢,(u) — {z}| > 1 and v is not
adjacent to any vertex of N¢,(u) by Lemma 1.8(3), it follows that D, N N¢,(v) # 0. Let
D; = {y,w} where y € N¢,(v). Again, by Lemma 1.8(3), yu ¢ E(G). Thus wu € E(G).
Since y is not adjacent to any vertex of V(C;) and B # 0, it follows that w € N¢,(u).
Further, w dominates V(C2) U {u}. Because B # {, there is a vertex z € B. Clearly,
Ng|z] € N¢lw]. This contradicts Lemma 1.4 and completes the proof of the theorem.

Theorem 2.3: Let G be a connected claw-free 3-vertex-critical graph. Then if
mindeg (G) > 5, G is 4-connected.

Proof: Suppose to the contrary that GG is not 4-connected. By Theorem 2.2, G is
3-connected, so there exists a cutset consisting of three vertices in G, say § = {u,v,w}.
By Lemma 1.7(2), G — S consists of exactly two components, Cy and C; say. Let A =
V(C1) — (Ng(u) U Ng(v) U Ng{w)) and B = V(C,) — (Ng(u) U Ng(v) U Ng(w)). Then
by Lemma 1.7(1), Ng(z) N V(C;) # 0 for every z € {u,v,w} and for i = 1,2. By Lemma
1.8(2), A =0 or B = . Without loss of generality, we may assume that A = . Note that
since mindeg (G) > 5 ,|V(Cy)] > 4 by Lemma 1.8(3). Further, |V(C2)| > 3.

Let z € Ng,(u). Consider G,. Clearly, |D;| =2 and D, 0 (Ng,(u) U {u}) = 0, since
Ne¢,(u) is complete by Lemma 1.8(1). We distinguish two cases according to D;.

Case 1: D;n{v,w} =70

Since |V(C1)| > 4 and |V(C3)| > 3, it follows that D,NV(C}) # @ and D NV(Cy) # .
Put D, = {y,z} where y € V(C:) and z € V(C3). Then y dominates V(C;) and z
dominates V(C;) — {z}. Clearly, yz ¢ E(G) and zz ¢ E{G). By Lemma 1.7(1) and the
claw-freedom of G, zu ¢ E(G). Thus yu € E(G) since D, = {y,z}. Since |V(C})| > 4 and
A =0, it follows by Lemma 1.8(3) that y is not adjacent to at least one vertex of {v,w}.
Without loss of generality, we may assume that yv ¢ E(G). Then zv € E(G). It follows
from Lemma 1.7(1) and the claw-freedom of G that vz ¢ E(G). We now d1st1ngulsh two
cases according to yw.

Case 1.1: yw € E(G).

Note that y dominates V(C1) U {u,w}. Choose a € V(C1) — {y}. If av ¢ E(G), then
Ngla] C Ngly] contradicting Lemma 1.4. Thus av € E(G) for every a € V{(Cy) — {y}.
Hence, N¢,(v) = V(Cy) — {y}. By Lemma 1.8(1), G[V(C}) — {y}] is complete. Since y
dominates V(C;) U {u,w}, G[V(C})] is complete. We next show that N¢, (u) = {y}.

Suppose to the contrary that there is a vertex y; € V(Ci)— {y} such that y;u € E(G).
Consider Gy,. Clearly, D,, N (V(Ci) U {v,u}) = 0. Then D,, C {w} U V(C;). Since
|[V(C1)| > 4, w € Dy,. Then w dominates V(C;)—{y1}. Next, choose y; € V(C1)—{y,v1}-
Consider Gy,. Clearly, Dy, N (V(C1) U {v,w}) = 0. Then D,, C {u} UV(C2). Since
IV(Cy)| > 4, u € Dy,. Then u dominates V(C1) — {y2}. Now, if y3 € V(C1) — {y, 41,92},

7



then y; is adjacent to v, w and u. But this contradicts Lemma 1.8(3). Hence, N¢, (u) =
{y}. By applying a similar argument, we have N¢, {w) = {y}.

Now if a,b € V(Cy) — {y}, then Ngla] = V(Cy) U {v} = Ng[b]. But this contradicts
Lemma 1.4 and hence completes the proof in this case.

Case 1.2: yw ¢ E(G).

Since D; = {y, 2}, zw € E(G). Now z dominates (V(C3) — {z})U{v,w}. By Lemma
1.7(1) and the claw-freedom of G, wz ¢ E(G). Consider G,. Clearly, D, N ((V(C,) —
{z}) U {v,w}) = 0. Then D, C {u,z} U V(Cy). Since |V(C2)| > 3, D, N {u,z} # 0.
If D, = {u,z}, then uw € E(G) since zw ¢ E(G). But then G[u;w,z,y] becomes a
claw centered at u, a contradiction. Hence, D, # {u,z}. Now we show that u ¢ D,.
Suppose to the contrary that v € D,. Then « ¢ D,. Thus u dominates V(C2) — {2}. By
Lemma 1.8(1), G[V(C3) — {z}] is complete. Since z dominates V(C3) — {z}, G[V(C,)] is
complete except for the edge zz. Let z; € V(C2) — {z,z}. Then V(C3) U {u} C Ng[z:].
Consider G;,. Clearly, D;, N (V(C2)U {u}) = @. Thus D,, C {v,w}UV(C1). But then
no vertex of D, is adjacent to z since ¢ € V(C3) and v and w are not adjacent to x. This
contradiction proves that w ¢ D,. Then =z € D,. Let {y1} = D, — {z}. Since z € V(C>)
and y1 # u, y1 € V(C}). Because z is not adjacent to any vertex of V{C1)U{v,w}, yy must
dominate V(Cy) U {v,w}. Thus 3, # y. By Lemma 1.8(3), y1u ¢ E(G). Now consider
Gy,. Clearly, D, N(V(Ci)U {v,w}) = 0. Thus D, C {u} U V(C;). Since |V(C1)| > 4,
u € Dy, . Then v dominates V(C;)—{y1}. By Lemma 1.8(1), G[V (C1)— {11 }] is complete.
Since y; dominates V(Ci) U {v,w}, G[V(C1)] is complete. Let yo € V(C1) — {y,11}-
Then V(C1) U {u} C Nglyz]. Consider Gy,. Clearly, Dy, N (V(C1) U {u}) = §. Then
Dy, C {v,w} U V(C;). But then no vertex of D,, is adjacent to y since y € V(C;) and
v and w are not adjacent to y, a contradiction. This completes the proof in Case 1.2 and
hence in Case 1.

Case 2: D, N{v,w} #0.

Without any loss of generality, we may assume that v € D,. We distinguish three
cases according to Dy — {v}.

Case 2.1: D, — {v} € V(C,).

Then v dominates V(C41) and thus G[V{C})] is compiete by Lemma 1.8(1). Let y; €
N¢, (u). Then V(Cy)U{u,v} C Ngly]. Consider Gy,. Clearly, D, N{V(C1)U{u,v}) =0.
Thus D,, C {w}UV(Cs). Since |[V(C1)| > 4, w € Dy,. Then w dominates V(Cy) — {31 }.
Next suppose y2 € V(C1) — {z1}. Then V(C:) U {v,w} C Ngfyz]. Consider Gy,. By
a similar argument, we have u € D,, and u dominates V(C,) - {y2}. Now suppose
ya € V(C1) — {y1,y2}. Clearly, y3 is adjacent to v,w and u. This contradicts Lemma
1.83(3) and completes the proof in this case.

Case 2.2: D, — {v} = {w}.

Then vz ¢ E(G) and wz ¢ E(G). Further, V(C,) = N¢,(v)UNg, (w) and vu € E(G)
or wu € E(G). Without any loss of generality, we may assume that vu € E(G).

Claim 2.2.1: N¢,(v) N Ng,(w) = 0.

Suppose to the contrary that Ng,(v) N N¢,(w) # 0. Let a3 € Ng,(v) N Ne, (w).
Then a, is adjacent to every vertex of V(C,) — {a1} by Lemma 1.8(1). By Lemma 2.8(3),
ayu ¢ E(G). Consider G,,. Clearly, D,, N (V(C1) U {v,w}) = 8. Thus D,;, C {u}U
V(C2). Since |V(C1)| > 4, v € D,,. Then u dominates V(Cy) — {a1}. By Lemma
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1.8(1), G{V(C1) — {a1}] is complete. Since a; is adjacent to every vertex of V{(C;) — {a1},
G[V(C1)] is complete. Suppose az € V(C1) — {a1}. Since V(C;) = N¢, (v) U N, (w),
asv € E(G) or aqw € E(G). Suppose ayv € E(G). Now V(Cy) U {u,v} C Nglaz]. By
Lemma 1.8(3), acw ¢ E(G). Consider G,,. By a similar argument, we have w € D,, and
w dominates V(C,) — {az}. Now every vertex of V(C1) — {a;,az2} is adjacent to both u
and w. Therefore, by Lemma 1.8(3), none is adjacent to v. Let a3 € V(Cy) — {a1,a2}.
Consider Ga,. Clearly, D,, N (V(C1) U {u,w}) = 0. Thus Dy, C {v} U V(C:). But then
no vertex of D,, is adjacent to a4 for ay € V(Cy) — {a1,a2,a3}, a contradiction. Hence,
azv ¢ E(G). By a similar argument, a,w ¢ E(G). Thus a; ¢ N¢, (v) U Ng, (w). But this
contradicts the fact that V(C}i) = N¢,(v) U N¢, (w). Hence, our claim is proved.

Claim 2.2.2: N¢,(u) € Ng, (v).

Suppose to the contrary that there is a vertex b € N¢, (u) such that b ¢ N¢, (v).
Since uz € E(G) and uv € E(G), but vz ¢ E(G), it follows that G[u;v,b,z] is a claw
centered at u. This contradiction proves that b € N¢,{») for every b € N¢, (u). Hence,
N¢,(u) C N¢, (v) as claimed.

Now consider Gp. Clearly, D, N (Ng(v) U {«,v}) = 0. Since |N¢,(v)| 2 1, D, N
N, (w) # @ by Claim 2.2.1. Thus D, — N¢,(w) # {w} since wz ¢ E(G) and no vertex
of N¢,(w) is adjacent to . Now let D, = {y,z} where y € N¢,(w). Clearly, z € V(C?>).
Thus y dominates V(C1). By Claim 2.2.2, yu ¢ E(G). Hence, z dominates V(C2) U {u}.
Now consider G;. Clearly, D, N (V(C2) U {u}) =0. Thus D, C {v,w} U V(C1). But then
no vertex of D, is adjacent to z since z € V(C2) and v and w are not adjacent to z. This
completes the proof in Case 2.2.

Case 2.3: D; — {v} e V(C}).

Then v dominates V(C3) — {z} and B = ). By Lemma 1.8(1), G[V(C:) — {z}] is
complete. Since ve ¢ E(G) and mindeg (G) > 5, |V(C2)| > 4.

Claim 2.3.1: N¢,(u) = {z}.

Suppose to the contrary that u is adjacent to some vertex of V(C2) — {z}, z; say.
Then zz; € E(G) by Lemma 1.8(1). Now V(C:) U {u,v} C Nglz:]. Consider Gg,.
Clearly, Dy, N (V(C2) U {u,v}) = @. Then D,, C {w}U V(C). Since |V(Cy}I > 4,
w € D;,. Further, w dominates V(C;) -- {z1}. By Lemma 1.3(1), G[V(C3) — {z1}] is
complete. Consequently, G[V(C2)] is complete since zz; € E(G) and G[V(C32) — {z}] is
complete. Next suppose z; € V(C2) — {z,z1}. Then V(C2) U {v,w} C Ng|z,]. Consider
Gy,. Clearly, Dy, N (V(C2) U {v,w}) = 0. Then D,, C {u}U V(C}). Since |V(C2)| > 4,
u € D,,. Further, u dominates V(C>) — {z2}. Now for every z € V(C3) — {z, 21,22},
Ng[z] = V(C2) U {u,v,w}. Then Ng[z] C Ng[z]. This contradicts Lemma 1.4. Hence,
NC:(U') = {:C}

Claim 2.3.2: Ng,(w) = {z}.

Suppose to the contrary that w is adjacent to some vertex of V(C32) - {z}, y say. Note
that (V(C2)—{z})U{v,w} C Ng[y]. Consider Gy. Clearly, D, (V{(C;)—{z}}U{v,w} = 0.
Then D, C {u,z} U V(C}). Since N¢,(u) = {z} and |V (C?)| > 4, it follows that = € D,.
Further,  dominates V(C2)—{y}. Since G[V(C2)—{z}] is complete, G[V(C3?)] is complete
except for the edge zy. By Lemma 1.7(1) and the fact that wy € E(G) and zy ¢ E(G),
it follows that wz ¢ E(G) as otherwise w becomes a center of claw. Next suppose y; €

V(C2)—{z,y}. Then V(C2)U{v} C N¢[y1]- Consider Gy,. Clearly, D, N(V(Cz)U{v}) =
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0. Then Dy, C {u,w}U V(Cy). Since N¢,(u) = {z} and |[V(C;)| > 4, it follows that
w € D,,. Further, w dominates V(C3) — {z,y1}. Now let y» € V(C2) — {z,y, 1}
Then V(C2) U{v,w} C Ng[yz]. Consider Gy,. Clearly, D,, N (V(C2}U{v,w}) = 0. Then
Dy, C {u}UV{C1). But then no vertex of Dy, is adjacent to any vertex of V(C2)—{z,y2},
a contradiction. Hence, N¢,(w) N (V(Cy) — {z}) = 8. It follows by Lemma 1.7(1) that
Ne,(w) = {z} as claimed.

Now let z € V(C2) — {«} such that zz € E(G). Then Ng{z] = V(C2)U{v}. Consider
G.. Clearly, D, N (V(C2) U {v}) = 0. Then D, C {u,w}U V(C;). But then no vertex of
D, is adjacent to any vertex of V(C3) — {z, 2z}, a contradiction. This completes the proof
of Case 2.3 and hence the theorem is proved.

We now have the following corollary the proof of which is immediate by Theorems
1.6, 2.1, 2.2 and 2.3.

Corollary 2.4: (a) Let G be a connected claw-free 3-vertex-critical graph of odd
order. Then G is factor-critical.

(b) Let G be a connected claw-free 3-vertex-critical graph of even order. Then G is
bicritical.

(c) Let G be a connected claw-free 3-vertex-critical graph of odd order. Then if
mindeg (G) > 5, G is 3-factor-critical.
| |

Note that the members of the infinite family shown in Figure 1.1 also satisfy the
hypotheses of Corollary 2.4(a).

t 1s known that every 3-factor-critical graph must be 3-connected. (See [F; Theorem
2.5].) On the other hand, clearly the graph G(1, 2, 2) shown in Section 1 is 3-connected and
has minimum degree 4, but is not 3-factor-critical. Thus the bound on minimum degree
in Corollary 2.4(c) is best possible. Note also that each G(t,r,s) fort+r >4 and s > 3
satisfies the hypotheses of Corollary 2.4(c).

Remark: The authors wish to thank the referee for a careful reading of the paper
and for suggestions that improved it considerably.
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Abstract

A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in
D 1s adjacent to one in D. The cardinality of any smallest dominating set in G is denoted
by v(G) and called the domination number of G. Graph G is said to be ~v-vertex-critical if
v(G — v) < ¥(G), for every vertex v in G. A graph G is said to be factor-critical if G — v
has a perfect matching for every choice of v € V(G).

In this paper, we present two main results about 3-vertex-critical graphs of odd order.
First we show that any such graph with positive minimum degree and at least eleven ver-
tices which has no induced subgraph isomorphic to the bipartite graph K 5 must contain
a near-perfect matching. Secondly, we show that any such graph with minimurn degree at
least three which has no induced subgraph isomorphic to the bipartite graph K; 4 must
be factor-critical. We then show that these results are best possible in several senses and
close with a conjecture.

keywords: matching, factor-critical, domination, 3-vertex-critical

1. Introduction

A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in
D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted
by 7(G) and called the domination number of G. Graph G is said to be y-vertez-critical
if ¥(G — v) < 4{G), for every vertex v in G. A matching is perfect if it is incident with

* work supported by the Thailand Research Fund Grant #BRG4680019
1 work supported by NSF Grant # INT-9816113
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every vertex of G and near-perfect if it is incident with all vertices of G except exactly
one. If G — v has a perfect matching, for every choice of v € V(G), graph G is said to
be factor-critical. For a general reference on matchings in graphs and for any terminology
not defined in the present paper see [8].

The subject of ~y-vertex-critical graphs was taken up first by Brigham, Chinn and
Dutton [3,4] and continued by Fulman, Hanson and MacGillivray [5,6]. But much remains
unknown about the structure of ~-vertex-critical graphs, even in the case when v = 3.
In [2] we began the study of matchings in 3-vertex-critical graphs of even order. In the
present paper, we do the same for those of odd order.

If v € V(G) and 5 C V(G), we shall denote by G, the graph G — v, by 5,, the set
S — {v} and by D,, a minimum dominating set of G — v. Further, let w(G — S) denote
the number of components of G — S and ¢,(G — S) denote the number of components of
G — 5 having odd order. By the well-known one-factor theorem of Tutte, if a graph G has
no perfect matching, then there is a set § C V(G) such that ¢,(G— S) > |S]. We call such
a set S a Tutte set. (An alternate name is: entifactor set; see [9].)

The following remarks about D, are trivial to verify, but as we will appeal to them
repeatedly, we list them separately.

Remarks: If G is 3-vertex-critical, then the following hold:
(1) For every vertex v of G, |D,| = 2.
(2) If D, = {z,y}, then = and y are not adjacent to v.
(3) For every pair of distinct vertices v and w, D, # D,,.

Finally, the reader is cautioned tuhat the concept of vertex criticality with respect
domination number is quite different from a similar concept for edges. A graph G is said
to be edge-critical with respect to domination number if ¥(G + e) < ¥(G) for every edge
e not in E(G). Edge criticality has received much more attention to date than vertex
criticality. The reader is directed to [7; Chapter 16] and the references it contains for a
survey of edge criticality and for a more recent paper on matchings in such graphs to [1]
and the references therein.

We shall need the following two lemmas in establishing our results.

Lemma1.1: ([3,4]) A connected graph G is 2-vertex-critical if and only if G is isomorphic
to K,, with a perfect matching removed.

Lemma 1.2: ([5,6]) If there exist vertices u and v such that Ng[u] C Ng[v], then G is
not ~y-vertex-critical for any -y.



2. A Result on Near-perfect Matchings

Lemma 2.1: Suppose G is a 3-vertex-critical graph which is disconnected. Then either
G is isomorphic to three independent vertices or else GG is isomorphic to the disjoint union
of an even complete graph Ks, with a perfect matching removed and one isolated vertex.

Proof: Since v(G) = 3, either G consists of three components each having v = 1 or else
of two components, one of which has v = 2 and the other has v+ = 1. But in the former
case, each of the three components must be K7, since each is 1-vertex-critical and in the
second case, one component must be 2-vertex-critical and the other 1-vertex-critical. But
by Lemma 1.1, the 2-vertex-critical component must be an even complete graph with a
perfect matching removed and the i-vertex-critical component must be K.

Corollary 2.2: If G is a 3-vertex-critical graph with minimum degree greater than 0, then
G is connected. |

Lemma 2.3: If G is 3-vertex-critical and S is a cutset in G such that w(G — §5) > 4 or
w(G — §) = 3, but each component has at least 2 vertices, then each vertex of G — S is
not adjacent to at least one vertex of 5.

Proof: Suppose w € V(G) — 5 such that w is adjacent to every vertex of S. Then
D,NS =0 andso D, C V(G)—S. But this is impossible since the set D,, has size 2 and
it must dominate at least three components.

Lemma 2.4: Let G be a 3-vertex-critical graph with a cutvertex ¢. Then w(G — ¢} = 2.
Further, for ¢ = 1,2, if W; is a component of G— ¢, then G{V{W;)U{c}] is 2-vertex-critical.

Proof: Since v(G — ¢) = 2, it follows immediately that w{G —¢) = 2. Let W; and
W2 be the components of ¢ — ¢. Then, for i = 1,2, D, NW; # @. Thus for 1 = 1
and 2, v(W;} = 1, but v(G[V (W) U {¢}]} = 2. Let wy € V(W;). Consider G,,,. Suppose
+H(GI(V(W1)U{e}) —{w1}]) = 2. Then Dy, N(V(W1)—{un}) # B and Dy, —V(W3) = {c}.
Thus ¢ must dominate Wz. But then {c} U (D, N V(W})) is a dominating set of size 2 of
G, a contradiction. Hence, ¥(G[(V(W1) U {c}) — {w1}]) = 1. Therefore, G[V(Wy) U {c}]
is 2-vertex-critical. Similarly, G[V(W2)U {c}] is also 2-vertex-critical. This completes the
proof of our lemma.

Lemma 2.5: Let G be a 3-vertex-critical graph. Suppose S is a cutset of size 2 in G.
Then w(G — 8) < 3. Further, if w(G — 5) = 3, then G — S must contain at least one
singleton component.

Proof: Let S = {u,v}. Suppose to the contrary that w(G — S) > 4. Let Wh, Wa,---, W,
be the components of G — S. Since v(G) = 3 and |S| = 2, it follows that there must
exist a vertex of G — S, z say, such that zu ¢ E(G) and zv ¢ E(G). Without loss of
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generality, we may assume that = € V(W;). Now consider G,. Since G — S has at least 4
components and | Dy | = 2, it follows that v € D,. Because v ¢ E(G), D, —{v} C V(Wy).
Thus v dominates V(Wa)U--- U V(W;). By a similar argument, u € D, and u dominates
V(W)U ---UV(W;). Then each vertex of V(W2)U--- UV (W,) is adjacent to both v and
v. This contradicts Lemma 2.3. Therefore, w(G —~ 5) < 3 as claimed. Again by Lemma
2.3, f w(G — §) = 3, then |V(W;)| = 1 for some i. This completes the proof of our lemma.

i

Note that the bound on the number of components in Lemma 2.5 is best possible, for
the 3-vertex-critical graph G shown in Figure 2.1 has {u,v} as a cutset and G - {u,v}
contains exactly 3 components (two of which are singletons).

Figure 2.1

Lemma 2.6: Suppose G is a K 5-free 3-vertex-critical graph of odd order at least 11 with
mindeg (G) > 0. Suppose further that S is a Tutte set in G such that ¢,(G— S) > |S[+3.
Then for every vertex v € V(G), D, C S.

Proof: Lemmas 2.4 and 2.5 together with the fact that ¢,(G — S) > |S| + 3 implies that
|S| > 3. Thus ¢,(G — S§) > 6. Suppose by way of contradiction that there is a vertex v
such that D, € S. Hence D, N S # 0. So we may suppose that D, = {u,w}, with u € S
and w € V(G — §). If w were in an even component of G — 5, then u would have to be
adjacent to all vertices in the odd components of G — S and thus u would have to be the
center of a K, 5 in G, a contradiction. So w must lie in some odd component of G ~ S,
say, without loss of generality, that w € V{(Cy). Then u must be adjacent to each vertex
of at least four odd components of G — S. Thus we may assume that there are exactly six
odd components C1,...,Cs of G — 5, that {v} = V(C3), that u is adjacent to each vertex
of C3 U ---UCs and that each of Cj,...,Cs is a complete graph. Moreover, then |S| =3
and G has no even components.

By Lemma 2.3 there must exist a vertex y € § — {u} and two vertices lying in two
different odd components among Cj,...,Cs such that y is not adjacent to either of these
two vertices. More specifically, we may suppose that there are vertices ¢3 € V{(C3) and
cs € V(C4) such that y is adjacent to neither ¢z nor ¢4. Since || =3, let S = {u,y, z}.
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Claim: Vertex z is adjacent to no vertex of C5 U Cs.

suppose to the contrary that z is adjacent to ¢s € V(Cs). Consider G.,. Clearly,
D, NS #D, but D, N({z,u} UV(Cs)) =8. Soy € Deg and |D,;, N V(G — S)| = 1. Let
D., = {y,w'}. Siuce y is not adjacent to ¢z or ¢4, w’ is adjacent to both c3 and ¢4. But
this is impossible since ¢3 and ¢4 lie in different odd components. This proves that z is not
adjacent to vertex of Cs. By a similar argument, z is not adjacent to vertex of Cs. This
proves our Claim.

Hence, for every vertex a of V(C5) U V(Cs), ay € E(G) by Lemma 1.2 as otherwise
Ngla] € Nglu]. Now let ¢5 € V(Cs). Consider G,. Clearly, D., NS # @, but D, N
({u,y} U V(Cs)) = B, since Cs is complete. So D, = {2,z}, where ¢ € V(Cs) by our
Claim. Thus z is adjacent to every vertex of C1U---UCy and V(Cs) = {c5}. Hence C; is
complete for 1 <31 < 4.

Now consider G,. Clearly, D,:8 NS #0, but Do, N ({u,2} UV(C3)) = @ since Cj is
complete and c3 is adjacent to both v and z. Thus y € D.,. Because y is not adjacent
to ca, D¢y = {y,y'} where y' € V(Cy). Consequently, y is adjacent to every vertex of
C] U Cz U C5 U CG and V(C3) = {(.‘3}.

By a similar argument as above, |V(Cy4)| = 1 and |[V(Cs)| = 1. Since |V(G)| > 11,
[V(C1)| > 3. Let ¢; € V(C1). Now consider G.,. Clearly, D, NS # @, but D, N ({y,z} U
V(C1)) = 0 since C) is complete and ¢; is adjacent to both y and z. Thus v € D,, and
|De, NV(G — 85)| = 1. Let D, = {u,u’} where v’ € V(G — S). Since G is K; 5-free, u
is not adjacent to any vertex of C7 U Cz and hence u' is adjacent to v and every vertex
of V(C1) — {c1}. But this is impossible since v € V(C2). This completes the proof of our
lemma.

Theorem 2.7 Suppose G is a K s-free 3-vertex-critical graph of odd order at least 11
with mindeg (G) > 0. Then G contains a near-perfect matching.

Proof: Suppose G does not contain a near-perfect matching. Form a new graph G’ from
G by adding a new vertex z such that every vertex of G is adjacent to z. Ther &’ does
not contain a perfect matching. So by Tutte’s 1-factor theorem and parity, there is a Tutte
set S’ in G’ such that ¢,(G' — S') > |S’| + 2. Since z is adjacent to every vertex of G, it
follows that z € S'. Let § = S' — {z}. Then ¢,(G — 5) = co(G' - 5") > |5'|+2 = |5]| +3.
So by Lemma 2.6, D, C S, for all v € V(G).

Now let |S| = k. There are ('2‘) different pairs of vertices of S and at least k+3+k =
2k + 3 vertices in G. So by Remark 3, 2k 4+ 3 < (g) and so k > 6.

On the other hand, choose any vertex w € S. Then D,, C S by Lemma 2.6. But
then, since G is K s-free, ¢,(G — 5) < 8. Sowe have k + 3 < ¢,(G—-S5) <8, ork <5, a
contradiction.

Note that the assumption that |V(G)| > 11 is necessary in both Lemma 2.6 and
Theorem 2.7, for the graph G shown in Figure 2.2 has odd order 9 and mindeg (G) > 0, is
K, s5-free and 3-vertex-critical, but, if we let S = {u,y,z}, then D, € S,fori =1,...,6
and G has no near-perfect matching.



Figure 2.2

3. A Factor-critical Result

Lemma 3.1: Suppose G is a K 4-free 3-vertex-critical graph of odd order with minimum
degree at least 3. If G, has no perfect matching for some v € V(G) and S, C V(G,) is a
Tutte set for G, with ¢,(G, — Su) > |Sy| + 2, then |S,| > 2.

Proof: Suppose to the contrary that |S,| < 1. First, note that G is connected by Corollary
2.2. Let S be 5, U{v}. Then [S| <2 and ¢,(G — S) = ¢,(Gy — Su) > |Su| +2=|5] + 1.
Since mindeg (G) is at least 3 and |\S| < 2, it follows that each odd component of G- S has
at least 3 vertices. By Lemma 2.5, 15| # 2. Then |S| = 1 and hence S, = 0. Thus v is a cut
vertex of G and S = {v}. By Lemma 2.4, G — v contains exactly two odd components say,
Cy and C,. Further, for i = 1,2, G[V(C;) U {v}] is 2-vertex-critical. Then, by Lemma 1.1,
they are both even complete graphs with a perfect matching removed. Since |V(Cj)| > 3
and v is a vertex common to both G[V(C1) U {v}] and G[V(C2) U {v}], it follows that v

must be a center of K; 4, a contradiction. Therefore, |\5,| > 2 as required.

Theorem 3.2: Suppose G is a Ky s-free 3-vertex-critical graph of oud order with min-
imum degree at least 3. Further, suppose that G, has no perfect matching for some
v € V(G) and S, is a Tutte set of V(G,) with ¢,(&y — Su) > |Sy| + 2. Then for every
vertex z of V(G), Dy C S, U {v}.

Proof: Let S = S,U{v}. Thus, by Lemma 3.1, | S| > 3. Further, c,(G—5) = ¢o(Gv—S») >
|Sv| +2 = |S|+ 1 > 4. Now let Cy,Cy,...,C; be the odd components of G — 5 and let
Ey,E,, ..., E, be the even components of G — S. Suppose to the contrary that there is
a vertex z of V(G) such that D; € S. However, D, N S # 0 since ¢,(G — S) > 4 and
|Dz| = 2. Let D, NS = {u} and D, — S = {y}. That is D, = {u,y}. Clearly, uz ¢ E(G)
and yz ¢ E(G). Suppose G — S has an even component E; and suppose y € V(FE;). Then
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t = 4, or else u is the center of an induced K; 4. So |S| = 3. Now vertex u is adjacent to all
the vertices in at least three of the C;’s, say, without loss of generality, that u is adjacent
to all vertices of V(C3) U V(C3) U V(Cs). Then u is adjacent to no vertex of C, again
because u is not the center of any induced K 4. But then {2} = V(C}) and deg 5(z) < 2,
a contradiction.

Thus y € |Ji_, V(C:). Without loss of generality, we may assume that y € V(C;).
Since G is K, 4-free, the number of components of G — S is at most 5 as otherwise u
becomes a center of Ky 4. Thus 3 < |§| < 4. Further, if |S| = 4, G — § has no even

components and if |S| = 3, then G — S has at most one even component.
Now we distinguish three cases according to the location of z.
Case 1: Suppose z € V(C).

Since y € V(C}), u is adjacent to every vertex of U:=2 V(C;) and every vertex of
Ui V(E;). It follows that ¢ = 4 and G — S has no even components because of Kj 4-
freedom in G. Thus |S| = 3. Further, for 2 < i < 4, C; is complete and u is not adjacent
to any vertex of V(C), again by K 4-freedom in G. Then y is adjacent to every vertex
of V(C1) — {z}. It follows from Lemma 2.3 that there is a vertex of § — {u}, say w, such
that w is not adjacent to at least two vertices of G — S lying in two different components
of C2 U C3 U Cy. Without loss of generality, we may assume that w is net adjacent to
c2 and ¢3, where ¢; € V(C2) and ¢3 € V(C3), respectively. Because mindeg (G} > 3,
[V(C2)| = 3 and |V(C3)| > 3. Let § — {u,w} = {z}. If 2¢; ¢ E(G), then Ng[cz] C Ng(u]
contradicting Lemma 1.2. Hence, zc; € E(G). Now consider G,,. Clearly, D.,NS # @, but
D.,N{{u,2}UV(C3)) = 0. Thus, w € D, and |D,,NV(G—-S)| = 1. Let D, NV(G—5) =
{w’}. Since wez ¢ E(G), w’ € V(C3). Then w dominates (V(C1)UV(C2)UV(Cy)) — {2}
But then Glw;z,y,a,b] becomes a Kj 4 centered at w for scme a € V{C2) — {¢2} and
b€ V(C,), a contradiction. Hence, z ¢ V(C).

Case 2: Next, suppose z € V(G - S) — V{(C1).

If z belongs to some even component E; of G — S, then V(Eq) — {z} # @; say
z € V(E1)—{z}. But then u is adjacent to z and to every vertex in V{(C2)UV (C3)UV(Cy).
It then follows that u is the center of an induced K; 4 and we have a contradiction.

Hence, without loss of generality, we may assume that z € V{C,). We distinguish two
cases according to |S|.

Case 2.,1: Suppose |S| = 3. Since G is K 4-free, ¢o(G — §) < 5. Thus ¢,(G— ) = 4
since G has odd order. Since uz ¢ E(G) and mindeg {G) > 3, it follows that |V{(C2)| > 3.
Then u is adjacent to every vertex of U?=2 V(Ci) — {z}. Since G is K 4-free, G — S has
no even components and Cs — z, C3 and C4 are complete.

Let z € S—{u}. We next show that z is not adjacent to any vertex of V(C4). Suppose
to the contrary that 2a4 € F(G) for some a4 € V(Cy). Then Dy, N ({u,2} UV (Cq)) =@
since u is adjacent to every vertex of V(Cy) and V(C4) is complete. Let S~ {u, z} = {w}.
Clearly, w € D,,. Then way ¢ E(G) and w dominates V(Cy) — {as}. Now |V(Cs)j > 3
because mindeg (&) > 3. Let by € V(Cy) — {as}. Then byu € E(G) and byw € E(G).
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Consequently, Dy, N ({u,w} U V(Cy4)) = 0. Since ¢,(G ~ S) =4,z € Dy,. So zbs ¢ E(G),
but z dominates V(Cy) —{bs}. Now if ¢4 € V(C4) —{a4, b4}, ¢4 is adjacent to every vertex
of §. This contradicts Lemma 2.3. Hence, 2z is not adjacent to any vertex of V{(Cy) for
every z € S — {u}.

Therefore, Ng[cs] C Ng[u] for every vertex ¢4 of V(Cy). This contradicts Lemnma 1.2
and hence completes the proof in Case 2.1.

Case 2.2: Suppose |S| = 4. Thus ¢,(G — S) = 5 and G — S has no even components.
If V(C3) — {z} # 0, then u dominates (JI_, V(C;) — {z}. This contradicts the fact that
G is Ky 4-free. Thus V(C2) — {z} = 0. Since uz ¢ E(G) and mindeg (G) > 3, it follows
that = is adjacent to every vertex of § — {u}. Because G is K 4-free and u dominates
U?=3 V(C;), each odd component C; is complete for all 7, 3 < ¢ < 5. Note that for each
a €5, |DyN S| =2 as otherwise G contains a K 4 centered at the vertex of D, N S.

As a consequence of this observation and Remark 2, |[Ng(a) N (S — {a})| < 1 for each
a € 5. Now let § — {u} = {w,z,v}. Without any loss of generality, we may assume that
uw ¢ E(G) and vz ¢ E(G). Since D, = {u,y}, y is adjacent to both w and z. Now
consider D,. We next show that v € D,. Suppose to contrary that v ¢ D,. By the
above observation, D, = {w, z}. Since wy € E(G) and wz € E(G), it follows that w can
dominate vertices in at most one component among C3,Cy and C5 because of K 4-freedom
of G. Without loss of generality, then, we may assume that w is adjacent to no vertex
in C4 U Cs. Then 2z must dominate C4y U Cs. But then z is the center of a K 4 since
zy € E(G) and zz € E(G). This contradiction proves that v € D,. Hence, vy ¢ E(G).
Because D, = {u,y}, it follows that yv € E(G). Now every vertex of § — {u} is adjacent
to both = and y. Since G is K, 4-free, v can dominate vertices in at most one component
of C3 U Cy U Cs. Thus the vertex of D, — {v} which is in S must be the center cf an
induced K 4, again a contradiction. This completes the proof in Case 2.2.

Case 3: So suppose £ € 5.

Clearly, since G is K 4-free, ¢,{G—S5) = 4 and |S| = 3. Then u dominates U:=z V(C)).
Thus C; is complete for 2 < 7 < 4 and G — S has no even components. By Lemma 2.3
and since mindeg (G) > 3, each C; must have at least 3 vertices. By an argument similar
to that used in the proof in Case 2.1, one reaches the same contradiction. This completes
the proof in Case 3 and hence the proof of our theorem.

Theorem 3.3: If G is a K 4-free 3-vertex-critical graph of odd order with minimum
degree at least 3, then G is factor-critical.

Proof: Suppose to the contrary that G is not factor-critical. Then there is a vertex v of
G such that G, has no perfect matching. By Tutte’s 1-factor theorem and the fact that
G, has even order, there exists a Tutte set S, C V(G,) such that ¢,(Gy — Sy) > |Sef + 2.
Then, by Lemma 3.1, |S,] > 2. Let § be §, U {v}. Then S is a Tutte set in G and
co(G —5) > |S|+ 1 > 4. Now let |S| = k. Since for each ¢ € V(G),D; C S by Theorem
3.2, it follows that for every vertex = of G there is a pair of vertices in S — {z}, say a and
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b, such that D, = {a,b}. Since there are (g) = k(k2—1) pairs of vertices of § and at least

k+ (k+1) = 2k + 1 vertices in G, by Remark 3 it follows that 2k + 1 < ¥=1) anq hence
k> 6.

On the other hand, k+ 1 < ¢,(G — 5) < 6 because G is K, 4-free and D, C § for each
z € V(G). Hence, k <&, a contradiction. This completes the proof of our theorem.

Our bound on the minimum degree in Theorem 3.3 is best possible since the graph G
in Figure 3.1 is K 4-free 3-vertex-critical connected of odd order with minimum degree 2,
but is not factor-critical since G — v has no perfect matching.

Figure 3.1

Note that there are infinitely many 3-vertex-critical connected graphs of odd order
containing K, 4, for the graphs shown in Figure 3.2 all belong to this family.

K P perfect matching

Figure 3.2

Moreover, there are also infinitely many K 4-free 3-vertex-critical connected graphs
of odd order with minimum degree at least 3. The graph Ga 3 for any positive integer
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k, introduced by Brigham, Chin and Dutton [3,4], is such a graph where V(Gar3) =
{vo, V1, ...y Vakt2} and E(Gzr,3) = {vivjil < (¢ — j) mod (4k + 3) < k}. Figure 3.3 shows
Gs,3 and Gg‘g.

Figure 3.3

In [2], it was shown that if G is a K 5-free 3-vertex-critical connected graph of even
order, then G has a perfect matching. One might expect that the hypothesis that the
graph be K 4-free in Theorem 3.3 can also be weakened to say that the graph be K, s-
free. But this is not the case since the graphs in Figure 3.4 (with r,s > 3) are K s-free
3-vertex-critical connected graphs of odd order with minimum degree at least 3, {(in fact,
with minimum degree at least 4), but are not factor-critical.

K P perfect matching K Pl perfect matching

Figure 3.4
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Note that G — v has no perfect matching. Further, G contains K 1,4 as a subgraph.
If we increase the connectivity of the graphs involved, however, we believe that one can
relax the property of K 4-free to Ky 5-free. So we conclude our paper with the following
conjecture.

Conjecture: If G is a K s-free 3-vertex-critical 2-connected graph of odd order with
minimum degree at least 3, then G is factor-critical.
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Abstract

A subset of vertices I) of a graph G is a dominating set for G if every vertex
of G not in D is adjacent to one in D. A dominating set for G is a con-
nected dominating set if it induces a connected subgraph of G. The connected
domination number of G, denoted by ~.(G), is the minimum cardinality of a
connected dominating set. Graph G is said to be k — y.—critical if v.(G) = &
but v.(G + €) < k for each edge e ¢ E(G). In this paper, we investigate the
structure of connected domination critical graphs with cutvertices. We also

establish a characterization of 3 — -y.—critical graphs with cutvertices.

Keywords: domination, connected domination, critical, cutvertex
1. Introduction

Let GG denote a finite simple graph with vertex set V (G}, edge set E{{). For
S§ C V(G), G[S] denotes the induced subgraph of G by S. We denote by Ng(v)
the neighborhood of vertex v in G and by Ng[v! the closed neighborhood of v:
i.e., the set Ng{v) U {v}. If § C V(G), then Ng{v) denotes the set Ng(v)nS.
Further, let w(G — 8) denote the number of components of a graph G — .

A set § C V(G) is a (vertex) dominating set for G if every vertex of G either
belongs to S or is adjacent to a vertex of S. A dominating set for G is a con-
nected dominating set if it induces a connected subgraph of G. The minimum
cardinality of a dominating set for G is called the domination number of G and
is denoted by +(G). Similarly, the minimum cardinality of a connected domi-

nating set for G is called the connected domination number of G and is denoted
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by 7.(G). Observe that ¥(G) < 7.(G) and if ¥(G) = 1, then v(G) = ~.(G).
Further, a graph containing a connected dominating set is connected.

Graph G is said to be & — y—critical if v(G} = k but v(G + ¢) < k for each
edge e ¢ E(G). (Clearly, then v(G + e) = k — 1, for every edge e ¢ E(G)).
The study of k — ~y—critical graphs was begun by Sumner and Blitch [5] in
1983. Clearly, the only 1 — y—critical graphs are K, for » > 1. Sumner and
Blitch showed that a graph G is 2 — vy—ecritical if and only if G = (J]_, K1 x,
for n; > 1 and r > 1. Since 1980 k — ~y—critical graphs have attracted consider-
able attention with many authors contributing results. For summaries of most
known results, see {4; Chapter 16] as well as [3] and the references that they
contain. Most of these results concern 3 — y—critical graphs. The structure of

k — ~—critical graphs for k > 4 is far from completely understood.

The similar concept of edge criticality with respect to the connected dormi-
nation number just has received attention only recently. Graph & is said to be
k — ~y—critical if v.(G) = k but v.(G +e) < k for each edge e ¢ E(G). Clearly,
the only 1 — ~y.—critical graphs are K, for n > 1. Chen et.al. [2] were the first
to study k& — v.—critical graphs. They pointed out that for each edge e ¢ E(G),
(G — 2 € (G + e) € 4.(G) — 1. Observe that +v.(Cy) = n — 2. Clearly,
Y{Cs + e) = 2 for any edge e ¢ E(Cs) but ~.(Cy + uv) = 4 if v and » are
vertices of Cy at distance 4.

If § is a connected dominating set for &, we shall denote by § >, . Fur-
ther, if @ and v are non-adjacent vertices of G and {u} U S; >, G — v for
some S1 C V(G)\{u,v}, we will follow previously accepted notation and write

[u, S1] —c v. If S = {2z}, then we write [u, 2] —. v instead of [u, {z}] —.v.
Chen et.al.[2] established the following theorems:

Theorem 1.1: A connected graph G is 2 — vy.—critical if and only if
G=)_ Kin forn;>1landr>2 [ ]

Theorem 1.2: Let G be a connected 3 — . —critical graph and 5 an in-
dependent set with s > 3 vertices. Then the vertices in S may be ordered as

ai,as,...4, in such a way that there exists a path z;,z2,..., 2,01 In G — 8



—e

Figure 1.1

with [a;, 23] —c aip1 fori=1,2,...,8 - 1. |

Theorem 1.3: Let G be a connected 3 — ~.—critical graph.

1. If S is a cutset of G, then w{(G — S) < [5| + 1.

2. If G has even order, then GG contains a perfect matching.

3. The diameter of G is at most 3. [ ]

Observe that Theorem 1.1 is similar to a characterization of 2 — y—critical
graphs mentioned above except for the lower bound on r. Further, Theorems
1.2 and 1.3 are true for 3 — y—critical graphs. One might expect that all results
on 3 — v—critical graphs are also valid for 3 — ~.—critical graphs. But this is
not the case if we consider 3 — v.—critical graphs with cutvertices. Ananchuen
and Plummer [1] showed that a connected 3 — «y—critical graph may contain
more than one cutvertex. The graph in Figure 1.1 is as an example. They also

characterized connected 3 — v—critical graphs with more than one cutvertex.

In this paper, we show that a 3 — . -critical graph can contain at most one
cutvertex. We also characterize 3 — y.—critical graphs with a cutvertex. These
results are found in Section 3. Section 2 contains results for & — ~.-critical
graphs with cutvertices for & > 3.

The following remarks are trivial to verify, but as we will appeal to them

repeatedly, we list them separately.

Remark: If G is a 3 — ~y.—critical graph and » and v are non-adjacent
vertices of G, then the following hold:
1.79(G 4+ uwv) = 2,



2.If Ng|u] U Nglv] # V(G), then there exists a vertex z € V(G)\{u, v} such
that [u,z] —. v or [v,z] —, u. Further, if [u,2] —. v, then uz € E(G) but
v & Ng(u) U Ng(z) and if [v, 2} —, u, then vz € E(G) but u ¢ Ng(v) U Ng(z).

2. k — .— critical graphs with cutvertices.

Lemma 2.1: For & = 3, let G be a k — . —critical graph with a cutvertex
z. Then

1. G — z contains exactly two components,

2. Tf ¢y and Cj are the components of G —x, then G [N, ()] and G [Ne, (7))
are complete,

Proof: Let Cy, Cy, -+, Cy, t > 2, be the components of G — z.

(1) Suppose to the contrary that t > 3. Let ¢; € Ng,(z) and ¢a € Ng, (7).
Consider G + ¢1¢2. Since G is k — y.—critical, 7.(G + c1e2) < k. Let S be
a minimum connected dominating set for G + ¢;ep. Then |S| < & — 1. Since
t > 3 and G[S5] is connected, it follows that « € §. Then § is also a connected
dominating set for & because {c1,c2} € Ne(z). But this contradicts the fact
that v.(G} = k since |S| < k& — 1. Hence, t = 2 as required. This proves (1).

(2) Suppose to the contrary that G[Ng, (z)] is not complete. Then there
exist non-adjacent vertices a and b of Ng, (z). Consider G + ab. By a similar
argument as in the proof of (1), a minimum connected dominating set &7 for
G + ab of size at most k& — 1 is also a connected dominating set for . This
contradicts the fact that «.(G} = k. Hence, G[N¢, (z)] is complete. Similarly,
G[Ng,{(x)] is complete. This proves (2) and completes the proof of our lemma.l

Lemma 2.2: For k£ > 3, let G be a k — «,—critical graph with a cutvertex
z and let ' and 5 be the components of G — z. Suppose & is a minimum
connected dominating set for G. Then

1. z€8,

2. Fori=1,2;v(C;) <k -1,

3. If C is a non-singleton component of G — z with .(C) = k — 1, then C
is (k — 1) — . —critical.



Figure 2.1

Proof: (1) follows immediately by the fact that G[S] is connected.

(2) is obvious if v.(C;) < 2 since k& > 3. So we may suppose .(C;) > 3.
If SNV{C,) = @, then, since x € §, V(C}) C Ng(z). By Lemma 2.1(2),
~(C1) = 1, a contradiction. Hence, SNV (C}) # 0. Similarly, SN V{(Cs) # 0.
Because G[S] is connected and z € S, it follows that SN N, {z) #0 fori =1,2.
By Lemma 2.1(2), SN V(C;) =, Ci. Hence, v.(C;) < [SNV (C)] <k -1

(3) Let a and b be non-adjacent vertices of C. By Lemma 2.1(2), {a,b} € N¢{x).
Consider G’ = G+ ab. Since G is k — . —critical, there exists a connected dom-
inating set S1 of size at most & — 1 for G'. Since G’[S1] is connected, = € 5.
By a similar argument as in the proof of (2), Sy N V(C) =, C + ab. Hence,
Y(C + ab) < k — 2. Therefore, C is (k — 1) — =.—critical as required. This

completes the proof of our lemma. |

Remark: Suppose v.(C) =t < k — 1 where C is defined as in Lemma 2.2.
Then C need not be t —y,—critical. The graph G, in Figure 2.1, is 3—~.—critical
with a cutvertex z. Clearly, C = G — {z,y} is a non-singleton component of

G — & with v.(C) = 1 and is not 1 — ~,—critical.

Theorem 2.3 : For k > 3, let G be a k—~.-—critical graph with a cutvertex
#. Suppose C; and C; are the components of G — z. Let A = G[V(C4y) U {z}]
and B = G[V(Cq) U {z}] .Then

L k—1<7(A)+7(B) <k



2. v(A) +~.{B) = &k if and only if exactly one of C; and C; is singelton.

Proof: Let S be a minimum connected dominating set for G. By Lemma.
22(1),z € S.

(1) We distinguish two cases.

Case 1: SNV(C)=0or SNV(Cy) =0.

Suppose without any loss of generality that SNV {C1) = @. Then V(Cy) C
Ng(r) and thus v.(A) = 1. Since 7.(G) > 3, V(C3)\Ng{z) # 0. Since G[9]
is connected, there exists a vertex z; € Ng,(x) N S. Then, by Lemma 2.1(2),
S —{z} ». B. Hence, v.(B) < k—1. If there exists a connected dominating set
81 of size at most k — 2 for B, then S; U{z} becomes a connected dominating
set of size at most k—1 for G, a contradiction. Hence, 7.(B) = k— 1. Therefore,
Ye(A) + 1e(B) = k.

Case 2: SNV{(Cy) # 0 and SNV (Cs) # 0.

Because x € 9, |SNV{(Cy)| + |SNV{Cq)}| =k — 1. Since G[S] is connected,
there exists y; € § N Ne,(z) for ¢ = 1,2. By Lemma 2.1(2), SN V(C;) >,
V(C;) U {z}. Hence, v.(V(Ci} U {z}) < |S N V(C;)|- We next show that
for i = 1,2, v(V(C:) U {z}) = |SnV(C;)|. Suppose to the contrary that
T (V{C)U{z}) < |SNV(Cy)| —1. Let §' be a minimum connected dominating
set for V(C1)U{z}. Then S'NNe, {z) # 0. Thus $'U{z}U(SNV(Cy)) ». G. But
this contradicts the fact that v.(G} = & since |[S'U{z}U(SNV(Ca)| < [SNV(C1)|
—1+ 1+ |SNV(Cs}| = k — 1. This proves that ~.(V(C1) U {z})} = |SNV(C})|.
Similarly, 7.(V(C2) U {&}) = |S N V(C3)|. Therefore, y.(A) + v{B) = k — 1.
Hence, (1) is proved.

(2) The sufficiency is immediate. So we need only prove the necessity. Let
Ye(A) + v (B) = k. If SNV(C1) # @ and SN V(C,} # B, then, by the proof
of Case 2, v.(A) + v.(B) = k — 1, a contradiction. Hence, SNV(Cy) = @
or SN V(C:) = 0. Suppose without any loss of generality, we may assume
that SN V(Cy) = 8. Then V(C;) C Ng(z). Since 7.(G) > 3, it follows that
V(Cy)\Ng(z) # ® and SNV (Cs) # 8. We next show that |V{C\)| = 1.

Suppose to the contrary that |[V(C})| > 2. Let a; € V{C1)NNg(z) and a3 €
V(C2)N Ng(x). Consider G +ajaz. Then there exists a set S C V(G)\{a1,a2}
of size at most & — 2 such that {aj,a:} US) =, G+ ar1a2 or [a1,51] ¢ a2



or {az,S1] >. a1. Suppose {ai,az} U S, >, G+ ajaz. Then |S)| < k - 3.
Thus (S; NV (Cq}) U {as} =, Cz. Then (51 NV (C2)) U {az,z} >, G. But this
contradicts the fact that v.{G) = k since |S1NV(C2)|+|{az,2}| € k—1. Hence,
{a1,a2} U S, does not dominate G + ajay. We next suppose that [a;, 51} =, az.
Thus |S1| < k — 2 and S; N Ng(az) = 0. Thus = ¢ Sy. Since G[S1 U {a1}]
is connected, S; € V(C,}. But then no vertex of S U {al}‘ is adjacent to a
vertex of V{C2)\{a2}, a contradiction. Hence, {a1} U S; does not dominate
G —ay. Therefore, |az, 51] =, a1. By an argument similar to that above, z ¢ 5
and 5; € V{C3). But then no vertex of Sy U {a2} is adjacent to a vertex of
V(C1)\{a1}, a contradiction. Hence, |V(C1)| = 1 as claimed. Therefore, C; is

singleton. This completes the proof of our theorem. [ |

3. A characterization of 3 — v.— critical graphs with a
cutvertex.

Our first theorem improves Theorem 1.3(1) established by Chen et.al.[2]

when a cutset is not singleton.

Theorem 3.1: Let G be a 3 — ~.—critical graph and S a cutset of G with
18| = s = 2. Then w(G - S) < |S|. Further, the upper bound on the number of

components is best possible.

Proof: Suppose to the contrary that w(G —S) > |S|+1l=s+1 2> 3. By
Theorem 1.3(1), w{G — 8) = s + 1. Let Cy, Ca,..., Cyy1 be the components
of G—-8 Forl<i<s+1l,lete € V(C:). Then A = {e1, ca,..., Co41} 18
independent. By Theorem 1.2, the vertices in A may be ordered as a,, as,. ..,
as41 in such a way that there exists a path z;, zs,..., z; in G — 4 with [a;,
Z;] = ap4q for 1 <4 < s. Note that e;z; € F(G) but z;a;,41 ¢ F(G). Further,
z; € §. Thus S = {z;, xa,..., £} and ¢; is adjacent to every vertex of S.
Observe that

341
{ar, z2} U (92 V(Ci)\{az}) € Ng(z1),
s+1
(wze2 U (U VN V(CH U o)) € Note)
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and for 2 < 7 <s—1,

5+1
(@30} 0 (U VG VG Ulageih) € Na(ay)

Now consider & + ajas4,. Then, by Retnark {2) of Section 1, there exists
a vertex z such that {@1, 2] —¢ @st1 OF {Gst1, 2] —¢ a1. In either case, z € §.
Then {asy1,2z} does not dominate G — a; since a; is adjacent to every ver-

tex of S. Hence, [a1, 2] —¢ asy1. Since [a;, x;] —¢ @41 for 1 € i < 5 and
s+1

20521 ¢ E(G), it follows that z = z,. Then x, dominates UV(Ci)\{asH}. If
s = 2, then {z1,22} ». G, a contradiction. Hence, s > 3.3=F10r 2<k<s~1,
consider G + axas41. Then, by Remark (2), there exists a vertex z; such that
lak, z1] —¢ as41 O (0511, 21} —c ar. We show that in either case z,x4_1 €
E(G). Suppose [ak, 21] —¢ as41. Then 21 = z,. Since arzr-1 ¢ E(G),
rs2k—1 € E(G)} as claimed. Now suppose [24y1, 21] —¢ ak. Then z; = z4_;.
Since as+1xs € E(G), zx—12s € E(G) as claimed. Hence, z,2; € E(G), for
1<i<s—1since z,_12, € E(G). Because [az, 22] —. ag and s > 3, it follows
that z2a,41 € E(G). But then {z,, 2} is a connected dominating set for GG, a
contradiction. Hence, w(G — S} < | 5| as claimed. [ |

We next show that the upper bound on the number of components in The-
orem 3.1 is best possible. For an integer n > 3, we construct a graph G, as
follows. Let X = {z1, 2, .., Tn-1} and ¥ = {y1, y2,-.-, ¥n—1}. Then set
V(G) = X UY U {a,b}, thus yielding a set of 2n distinct vertices. Form a
complete graph on X. Join each z; to each vertex of (Y\{y:}) U {a} and finally
join & to each vertex of (Y\{yn—1}) U {e}. It is not difficult to show that G, is
3 — y.—critical. Note that | X U {b}| = n and G,, — (X U {b}) contains exactly
n components. Figure 3.1 shows the graphs G5 and Gj.

Corollary 3.2: Let G be a 3 — ~.—critical graph with a cutvertex z. Sup-
pose C and C; are the components of G — z. Then exactly one of €7 and 5

is a singleton.

Proof: Clearly, at most one of Cy or Cz is a singleton. If V(Cy\Ng(x) #£



G3
G

Figure 3.1

B and V(Co)\Ng(z) # 0, then the distance from « to v is at least 4 for
u € V(Ci)\N¢g(z) and v € V(C2)\Ne(z). This contradicts Theorem 1.3(3).
Hence, V{(C1)\Ng(z) = @ or V(Ca)\Ng(z) = 0. Since v.{G) = 3, it fol-
lows that V(C1)\Ng(z) # @ or V(Ca)\Ng(z) # 0. We may assume without
any loss of generality that V{C2)\Ng(z) = 0 but V(C1)\Ng(z) # 9. Thus
Y(G[V(C2) U {z}]) = 1. By Theorem 2.3(1), v(G[V(Cy) U {z}]) = 1 or 2.
Suppose first that v.(G[V(C1) U {z}]) = 1. Let {a} be a minimum connected
dominating set for G[V(C,} U {z}]. Clearly, a # z but ax € E(G). But then
{a,z} =. & , a contradiction. Hence, v.(G[V(C1} U {z}]} = 2. By Theorem
2.3(2), exactly one of ¢ and C; is singleton. Because v.(G) = 3, |[V(C1)| = 2.
Thus C; is singleton. This completes the proof of our corollary. |

Corollary 3.2 need not be true for & > 4. The graphs G; and G5 in Figure
3.2 are 4 — v, —critical and 5 — ~,—critical, respectively. Note that none of com-

ponents of G; - z is singleton.

The following corollary follows immediately from Theorem 2.3(2) and Lemma
3.2,

Corollary 3.3: Let G be a 3 — «y.—critical graph with a cutvertex . Sup-
pose €1 and s are the components of G — ¢ with Cs is singleton. Then
Ye(GV(C1) U{z}]) = 2. n



D x I m
Gy &
Figure 3.2

Our next result establishes the number of cutvertices in 3 — ~,—critical
graphs.

Theorem 3.4: If G is a 3 — y.—critical graph, then G contains at most one

cutvertex.

Proof: Suppose to the contrary that x; and z3 are distinct cutvertices of G.
By Lemma 2.1(1) and Corollary 3.2, G— z; contains exactly 2 components, say
Ci and C3, where (3 is singleton. Let {y} = V(). Clearly, Ne(y) = {1}
Now consider G— 2. Again, by Lemma 2.1 and Corollary 3.2, G— x4 contains
exactly 2 components, one of which is a singleton. Let {w} be the vertex set of
the singleton component of G— z3. Then w # y and Ng(w) = {x2}. Clearly,
{w,z2} T V(Cy). Since 7.(G) = 3, V{Cy)| = 3. Thus G — {x,, z,} contains at

least 3 components contradicting Theorem 3.1. This proves our theorem. |

We now present a construction which yields two infinite families of 3 —

~v.—critical graphs with a cutvertex. For positive integers n; and r with » > 2,
T

let H = UKI,”i- For 1 < j <r, let ¢; be the center of K\ n; in H and wi{, w}

i=1
v w;j the end vertices of K ,,, in . We now construct the graphs G, and

G, as follows. Set V(G.,) = V(H)U{z,y} and E(G.,) = E(H) U {zy} U {zw]
| 1<i<njand1<j<r} Nextset V(Ge,)=V(H)U{z,y} UU where |U|
>1and E(Ge,) = EH ) U{zy}U{zw! | 1<i<njand 1 <j<r}uU{uz]
ue U and z € V(HYuU{U\{u})}. Note that B{G.,) = E(G,}U{uz |uelU
and z ¢ V(H) D (U\{u})}. It is not difficult to show that G., and G, are both
3 — ve—critical with the single cutvertex z. Note that v.(G;, — {z.y}) = 2 but

10



Figure 3.3

Ye(Ge, — {x.y}) = 1. Figure 3.3 shows as examples the graphs G, and G, of
order 7 and 8, respectively.

Theorem 3.5: G is a § — v.—critical graph with a cutvertex if and only if
G e {G,, G}

Proof: The sufficiency follows from our construction. So we only prove the
necessity. Let z be a cutvertex of G. By Lemma 2.1(1) and Corollary 3.2, G~z
contains exactly two components, one of them is singleton. Let €, and C3 be
the components of G — z with V(Cy) = {y}. Clearly, Ne(y) = {z}. By Corol-
lary 3.3, 7.(G[V(C1)} U {z}]) = 2. Let S be a minimum connected dominating
set for G|V (Ch) U {z}].

Claim: = ¢ 5.
Suppose to the contrary that z € S. Let {z;} = S\{z}. Since G[S] is con-
nected, xx, € E(G). Because Ng(y) = {z}, {z, =1} ». G, a contradiction.

This proves our claim.

It follows by our claim that § =, €y and thus ~v.{Cy) < 2. We distinguish

two cases.

Case 1: ~.(Cy) = 2.
By Lemma 2.2(3), C; is 2 — v —critical. Thus C; = UKl,m formy > 1
=1
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and r > 2 by Theorem 1.1. Let ¢; be the center of K ,,, in C and w{, w:j,. o
w;’i” the end vertices of K n, in C1. We need to show that Ne,(z) = U {wf [
i=1

1<i<n;}

Claim 1.1: For n; > 1, if z is adjacent to ¢;, then z is not adjacent to any
vertex of {w],w,...,wj }. .

This claim follows directly from Lemma 2.1(2) and the fact that ¢;w] ¢ E(G)
for 1 <{ < ny.

Claim 1.2: If n; > 2, then z is not adjacent to ¢;.
Suppose to the contrary that z is adjacent to ¢; for some j with n; > 2.
Then, by Claim 1.1, z is not adjacent to any vertex of {w{,wg, . w%j }. Con-

sider G + ¢;w]. Since y ¢ Ngle;] U Ng[wl], by Remark (2), there exists a

vertex z € V(G)\{¢;,w]} such that [c;,2] —. w] or [w],z] —. ¢;. In either

case, z € {x,y} since Ng(y) = {z}. Because {c;,w],y} is independent, z # y.
Hence, z = z. If [¢;,x] —, w?, then no vertex of {¢;, z} is adjacent to wj, a con-
tradiction. Hence, {¢;,x} does not dominate G — wi, Therefore, [w], 2] —. ¢;.
But this contradicts the connectedness of G[{w?,z}] since zw! ¢ E(G). This

proves our claim.

Claim 1.3: For n; > 2, z is adjacent to every vertex of {wfll <i<n}

Suppose to the contrary that there exists a vertex w{ , for some 1 < ¢ < n;
and for some j, such that zw! ¢ E(G). By Claim 1.2, xc; ¢ E(G). Consider
G + zw!. Since z and w! are not adjacent to ¢;, by Remark (2}, there ex-
ists a vertex z € V(G)\{z,w]} such that [z, 2] =, w] or [w], 2] =, z. If
[w!, 2] —. x, then z # y since xy € E(G). But then no vertex of {w!, z}
is adjacent to y since Ng(y) = {z}, a contradiction. Hence, {w/,z} does not
dominate GG — x. Therefore, [z, 2] —. w] . Then zz € E(G) and zw] ¢ E(C).
Since Ng(w] ) = V(G)\{z,y,¢;} and z¢; ¢ E(G), it follows that z = y. But

then no vertex of {, z} is adjacent to ¢;, a contradiction. This proves our claim.

Claim 1.4: For n; = 1, z is adjacent to exactly one of {c;,w]}.

Suppose to the contrary that z is adjacent to neither ¢; nor w]. Consider
G+ c;w]. By Remark (2), there exists a vertex z € V(G)\{c;, w]} such that [c;,

12



z] =, wil or [w], 2] —. ¢;. Suppose [c;, 2] = wl. Since G[{c;, 2}] is connected,
2 ¢ {z,y} because (Ng(z) U Ng(y)) N {c;} = 0. But then no vertex of {¢;,z}
is adjacent to y, a contradiction. Hence, {c;, z} does not dominate G —w}. By
a similar argument, {w?, z} does not dominate G — ¢;. Thus v.(G + cjw{) > 2,
a contradiction. Hence, x is adjacent to ¢; or w{ By Claim 1.1, = is adjacent

to exactly one of {c;, wi}.

Without any loss of generality, we may assume that zw! € E(G) for each j
T

with n; = 1. Now Ng(z) = {y} U U{wf |1 <i<n;} Hence, G =G, as
j=1
required.

Case 2: ~v.{(C;) = 1.

Let u be a vertex of € with {u} =, C1. If u € Ng, (), then {u,z} >, G,
a contradiction. Hence, v ¢ Ng,(z) and Nglu] = V(C1). Let U = {u |
{u} =, Ci}. Clearly, [U| > 1, Ct\U # 0 and v.(C; — U) > 2. Further,
Ne,(z)nU = 0.

Claim 2.1: If a and & are non-adjacent vertices of C, then ax € E{G)
but bzx ¢ E(G) or bz € E(G) but ax ¢ E(G). Further, if ax € E(G) , thena
dominates V(C1)\{b}. Similarly, if bz € E(G), then b dominates V(C1)\{a}.

Consider G + ab. Since a and b are not adjacent to y, by Remark (2), there
exists a vertex z € V(G)\{a, b} such that [a, 2] —¢ b or [b, z] —. a. In either
case, z = z since Ne(y) = {z}. Suppose [a, ] —. b. Then ax € E(G) but
bz ¢ E(G). Further, a dominates V(C1}\{Ng,(z) U {b}). By Lemma 2.1(2), a
dominates V(C1)\{b}. By a similar argument, if [b, z] —. a, then bz € E(G)
but az ¢ E(G). Further, & dominates V(C)\{a} as required.

Claim 2.2: C| — U is 2 — ~.—critical.

Since v.(Cy —U) = 2, there exist non-adjacent vertices a and b of V(C, - U).
By Claim 2.1, we may suppose that ax € E(G) but bx ¢ E(G). Since diameter
of G is at most 3 by Theorem 1.3(3), b0’ € E(G) for some & € Ng, (z)\{a}
as otherwise the distance from b to y is at least 4. Thus ¥ ¢ U. But then
{a,b'} =, V(Cy — U) since a dominates V{(Cy)\{b}. Hence, v.(C; —U) = 2.

13



Again, by Claim 2.1, if 4 and v are non-adjacent vertices of Cy — U, then {u}

or {v} is a connected dominating set for (Cy — U) + uv. This proves our claim.

Then C; — U = UK1 n; for r > 2 by Theorem 1.1. Let ¢; be the center of
i=1

Ky, inC, - U Uandwl,wz, TS theendvertlcesolen inC, —U. Bya

similar argument as in the proof of Case 1, Ng(z) = {y}uU U{w"? [1<i<ny}.
=1
Hence, G = (G.,. This completes the proof of our theorem. [ |
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Abstract

A dominating set of vertices S of a graph G is connected if the subgraph G[S] is
connected. Let ~.(G) denote the size of any smallest connected dominating set in G.
Graph G is k-y-connected-critical if v,(G) = k, but if any edge e is added to G, then
Y.(G +¢e) <k —1. This is a variation on the earlier concept of criticality of edge addition
with respect to ordinary domination where a graph G was defined to be k-critical if the
domination number of G is k, but if any edge is added to G, the domination number falls
to k— 1.

A graph G is factor-critical if G —v has a perfect matching for every vertex v € V(G),
bicritical if G—u—w has a perfect matching for every pair of distinct vertices u, v € V(G) or,
more generally, k-factor-critical if, for every set S C V(@) with |S| = k, the graph G — S
contains a perfect matching. In two previous papers [AP1, AP2] on ordinary (i.e., not
necessarily connected) domination, the first and third authors showed that under certain
assumptions regarding connectivity and minimum degree, a critical graph G with (ordi-
nary) domination number 3 will be factor-critical (if |V (G)| is odd), bicritical (if |V(G)| is

* work supported by the Thailand Research Fund Grant #BRG4380016
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even) or 3-factor-critical {again if |V (G)| is odd). Analogous theorems for connected dom-
ination are presented here. Although domination and connected domination are similar in
some ways, we will point out some interesting differences between our new results for the
case of connected domination and the results in [AP1, AP2].

Keywords: connected domination; critical edge; matching, factor-critical; bicritical;
3-factor-critical; claw-free

1. Introduction

Let G denote a finite undirected graph with vertex set V(G) and edge set E(G). A
set S C V(G) is a dominating set for G if every vertex of G either belongs to S or is
adjacent to a vertex of S. If S dominates G, we write S = . The minimum cardinality
of a dominating set in a graph G is called the domination number of G and is denoted by
¥(G). Graph G is said to be k-y-critical if ¥(G) = k, but v(G + €) = k — 1 for each edge
e ¢ E(G).

A dominating set § C V(@) is a connected dominating set if the subgraph spanned by
S is connected. If S is a connected dominating set for G we write S >, G. The minimum
cardinality of a connected dominating set in G is called the connected domination number of
G and is denoted by v.(G). (Note that since a graph must be connected to have a connected
dominating set, henceforth in this paper, when referring to connected domination, we shall
assume all graphs under consideration are connected.) Graph G is k-y-connected critical
if 7.(G)) = k, but v.(G + uv) < k — 1, for every edge uv € E(G). Note that while the
addition of an edge may reduce the ordinary domination number by at most one, edge
addition may reduce the connected domination number by at most two. (See Theorem 1
of [CSM].) In this paper, we will be concerned only with the case k¥ = 3 and will refer to a
connected-critical graph with connected domination number 3 as a 3-c¢-critical graph.

The origins of the concept of connected domination are a bit hazy, although in the
first published paper on the subject, Sampathkumar and Waliker [SW] attribute the ter-
minology to Hedetniemi. For a summary of their results, as well as a number of other
early results on connected domination, see [HHS] and [HL|. The algorithmic aspects of
both domination and connected domination were first discussed by Garey and Johnson
in their book [GJ] where it is claimed that both domination and connected domination
are NP-complete, even when the graph is planar and regular of degree 4. For an excel-
lent and more recent discussion of the computational and extremal aspects of connected
domination, see [CWY].

More recently, Chen, Sun and Ma [CSM] began the study of connected domination
critical graphs by obtaining some results most of which have previous analogs for ordinary
domination critical graphs. We will state and use several of their results below. Also
following their notation, we will adopt the following. If u,v and w are vertices of G and
{u,v} >, G — w, but neither u nor v dominates w, we write [u,v] —. w.

Following the work of Sumner and Blitch [SB] on 3-critical graphs, Chen, Sun and Ma.
[CSM] proved the following very useful result.
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Lemma 1.1. Let G be a 3-c-critical graph and let S be an independent set of n > 3
vertices in V(G).

(i) Then the vertices of S can be ordered as ay,as,...,a, in such a way that there
exists a path of distinct vertices z1,23,...,2n—1 in G — S so that [a;, z;] — as4; for
1=1,2,...,n—1, and

(ii) diam(G) < 3.

The following lemma, may be viewed as being related to toughness. Proof of part (i)
may be found in [CSM]. Part (ii) was later proved by the first author [A].

Lemma 1.2. Let G be a 3-c-critical graph. Then

(i) if T is a cutset of vertices for G, it follows that G—T has at most |T'|+1 components,
and moreover
(ii} if the cutset T has at least two vertices, G — T has at most |T'| components.

Throughout the rest of this paper, ¢(G) (respectively ¢,(G)) will denote the number
of components (respectively odd components) of graph G. Also if G is a graph and if
H C V(G), then G[H] will denote the subgraph induced by H.

A perfect (respectively, near-perfect} matching in a graph G is a matching which covers
all (respectively, all but one) of the vertices of G.

Lemma 1.3. Let G be a 3-c-critical graph. Then
(i) if |V (G)| is even, GG contains a perfect matching, while

(i) if |[V(G)| is odd, G contains a near-perfect matching.

Proof: Part (i) is proved in [CSM]. We prove only part (ii). Suppose G is a 3-c-critical
graph with an odd number of vertices and suppose G does not contain a near-perfect
matching. Consider the Gallai-Edmonds decomposition of G. (See [LP].) That is, let
D{G) denote the set of all vertices v € V(G) such that some maximum matching of G
does not cover v. Let A(G) denote the set of all neighbors of vertices of D(G) which
are not themselves in D(G) and finally, let C(G) = V(G) — (D(G) U A(G)). Since G
contains no near-perfect matching, then by Tutte’s Theorem and parity, the number of
odd components of D(G) is at least two larger than |A(G)|. If A(G) = 0, then G is
disconnected, a contradiction. So A(G) # @ and hence is a vertex cutset of G. But
c(G — A(@)) = |A(G)| + 2 which contradicts Lemma 1.2.

|

A factor-critical graph G is one for which G — v contains a perfect matching for every
vertex v € V(G) and a graph G is said to be bicritical if G — u — v contains a perfect
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matching for every choice of two distinct vertices u and v € V(G). More generally, a graph
G is k-factor-critical if, for every set S C V(G) with |S| = k, the graph G — S contains a
perfect matching. Factor-critical and bicritical graphs play important roles in a canonical
decomposition theory for arbitrary graphs in terms of their matchings. The interested
reader is referred to [LP] for much more on this subject.

Our purpose is to prove several new theorems which say that under certain assump-
tions on connectivity and minimum degree, a 3-c-critical graph G either is factor-critical
(when |V(G)| is odd), bicritical (when |V(G)| is even) or 3-factor-critical (again when
IV(G)] is odd).

2. 3-c-criticality and Bicriticality

Our first main result shows that if the connectivity and minimum degree are suffi-
ciently high in a 3-c-critical graph of even order, then the graph must be bicritical.

Theorem 2.1. If G is a 3-connected 3-c-critical graph of order at least 2n > 8. Then if
mindeg (G) > n — 1, G is bicritical.

Proof: Suppose, to the contrary, that (G is not bicritical. Then there exist vertices x and
y in V(G) such that G’ = G — x — y has no perfect matching. By Tutte’s Theorem, there
is a subset S’ C V(G') such that c,(G’ — §') > |S’|. By parity, c,(G' — 8') > |5'| + 2. Set
S =8 U{z,y}. Since G contains a perfect matching by Lemma 1.3(i) above, we have

co(G' = 8) =co(G—-8) < |S|=|5"+2.

Thus ¢,(G — ) = |S|.

For 1 < i < |8], let C; denote an odd component of G — S. Set s = |S|. Clearly,
s> 3. For 1 €4 < s, choose y; € V(C;). Then T = {y1,y2,...,¥s} is an independent
set of size s > 3. By Lemma 1.1(i), the vertices in T may be ordered as aj,az2,...,65 in
such a way that there exists a path z1x2 - x,-1 in G — T such that [a;, z;] —¢ a1, for
1 <i<s—1. Clearly then, z; € § and a;x; € E(G), but a;412; ¢ E(G) for1 <i<s—1.
Moreover, for 1 < j < s—1, a1z; € E(G) and a;z; € E(G) for 2<i<sand j #i— 1.
Let {zs} =85 — {z1.22,...,Ts 1}

Claim 1: s > n — 1.

Since mindeg (G) > n—1, [V(Cy)| > n~s+1for2 <i<sand V(C))| > n—s.
So2n > S|+ 0 VIC)| >s+(n—s)+(s—1)n-s+1) = —s* +ns + 25 — L.
Thus 52 — (n + 2)s + (2n + 1) > 0. It then follows that s > (n -+ 2 4+ v/n? —4n)/2 or
s<(n+2—+vn?—4n)/2.

Forn=4,(n+2+vn?—4n)/2=(n+2—-+vn? —4n)/2=3. Thuss=3=n-1.

Forn>5if s < (n+2—+vn2—4n)/2, then 3 < s < (n+ 2 — vVn? —4n)/2 <
(n+ 2 —+/n? —8n+16)/2 = 3, a contradiction. Hence s > (n+ 2+ vn? —4n)/2. But
then since (n + 2+ vn2 —4n)/2 > (n+2+ vn? ~8n+16)/2 =n—-1,s > n—1, as

claimed.



Since G has 2n vertices and |S| = s = ¢,(G — 8), it follows that s < n. Hence
n—1<s<n.
We distinguish two cases.

Case 1: Suppose s = n.

Then each component of G — S is a singleton and G — S has no even components.
Thus let us set V(C;) = {yi},1 <i < s

Since mindeg (G) > n — 1, az, € E(G) for 2 < i < 5. If ajz, € E(G), then
{a1,z:} =c G, a contradiction. Hence a1zs ¢ E(G).

Claim 2: For 2 <i <s=n, z,.12; € E(G).

Consider ' + a;a;. Since G — S contains exactly n > 4 components, {a1,a;} is not
a connected dominating set for G + aja;. Since G is 3-c-critical, there exists a vertex
z € V(G) — {a1,a;} such that either [a;,2] — a; or [a;,2] —. a;. Suppose first that
l[a1,2] —¢ a;. Then z € S and za; ¢ E(G). Thus z = z;_,. Since ajzs ¢ E(G) and
[a1,z;—1] —¢ a;, it follows that z;_1x, € E(G).

Now consider the case when [a;,2] —, a;. Then z € § and za, ¢ E(G). Thus
z = x,. Since a;2,—1 ¢ E(G) and [a;,z5] —, a1, it follows that z;_12, € E(G). Hence in
either case, x;_1zs € E(G) for 2 < i < s =n as claimed.

Note that Ng[z,] = SU {az,a3,...,as}. Hence {z1,25} ». G, a contradiction. This
proves that s # n.

Case 2: Suppose s =n — 1.

Since ¢,(G—85) = s =n—1 and G is of order 2n, it follows that G — S contains either
n — 2 singleton components and exactly one odd component of order 3 or n — 1 singleton
components and exactly one even component of order 2.

Suppose first that G — 5 contains n — 2 singleton components and exactly one odd
component of order 3. Without loss of generality, we may assume that Cy,Cs,...,Cy_1 are
singletons and C; is the odd component of order 3. Then set V(C;) = {y;} for1 <1 <s-1.
Also set V(Cs) = {ys, w1, wz}. Since {y1,%2,...,¥s} = {@1,a2,...,as}, either as # y, or
as # ys. Then dg(az) < n—2 or dg(az) < n — 2. But this contradicts the minimum
degree assumption.

Hence G— S must contain n— 1 singleton components and exactly one even component
of order 2. By a similar argument, G contains a vertex of degree less than n — 1, again a
contradiction. Hence G must be bicritical as claimed.

Remark 1: It is not difficult to show directly that there is no 3-c-critical graph on six or
fewer vertices which is also bicritical.

Remark 2: Let us now consider the sharpness of the above result. For integers k > 1
and s > 2, we construct a graph Hy , as follows. Let X = {z;,zs,...,2¢} and ¥ =
{y1,92,.--,Ys} Set V(Hg ) = X UY U {a,b}, a set of k + s + 2 distinct vertices, Form
complete graphs on X and on Y. Join a to each vertex of X U {y:1} and join b to each
vertex of X U (Y —y1).



It is not difficult to show that the graph Hy ¢ is 3-c-critical and 2-connected. Clearly,
the graph Hoyy1 2541 is not bicritical for any choice of positive integers + and s. Note
that the graph Hj,4; 2541 shows that the bound on connectivity in Theorem 2.1 is best
possible.

(Figure 2.1 displays the graph Hss.)

Figure 2.1.

Remark 3: We can “inflate” the graph Hy, to a graph Hg,.: as follows. Replace
the vertices @ and & with complete graphs K{(a) and K(b) on » > 1 and t > 1 vertices
respectively and join each vertex of K(a) to every neighbor of a and every vertex of K(b)
to every neighbor of b. It is easy to check that the resulting graph Hg st on k+ s+ 7+t
vertices is also 3-c-critical. Note that for n > 4, the graph H, 2 ,.1,12 is a graph on
2n > 8 vertices which is 3-c-critical, 3-connected and has minimum degree n — 1. Hence
the graph H,,_5 ,—1,1,2 is bicritical by Theorem 2.1. (Figure 2.2 shows the graph H3412.)

Figure 2.2.

Remark 4: One might expect that the bound on minimum degree in Theorem 2.1 can be
lowered if the connectivity is increased, but this is not the case. For each integer n > 3,
let X = {z),z2,...,2n—1} and Y = {y1,92,...,¥n-1}. Now set V(Gnp) =X UY U {a,b},
thus yielding a set of 2n distinct vertices. Form a complete graph on X. Join each z; to
each vertex of (Y — ;) U {a} and join b to each vertex of (Y — yn—1) U {a}. Note that G,
is 3-c-critical and {(n — 2)-connected with minimum degree n — 2. But &, is not bicritical
since G — {z1, 23} has no perfect matching. (Figure 2.3 shows graph G4.)



Figure 2.3.

We would point out the rather dramatic difference in the required minimum degree in
Theorem 2.1 where it is n—1 and the corresponding Theorem 2.1 in [AP] where one requires
only minimum degree 4 to guarantee bicriticality in the case of ordinary domination.

In the case when the 3-c-critical even graph is claw-free, however, we can dispense
with any minimum degree condition.

Theorem 2.2. Let G be a 3-connected 3-c-critical claw-free graph of order 2n > 8. Then
G is bicritical.

Proof: Suppose, to the contrary, that & is not bicritical. By applying an argument similar
to that at the beginning of the proof of Theorem 2.1, again we have that G contains a
subset S of s vertices where ¢,(G — S) = |S| = s. Since G is 3-connected, s > 3.

Suppose first that s = 3. Then § is a minimum cutset and therefore each vertex of §
is adjacent to some vertex in each component of G — §. Therefore G contains a claw, a
contradiction. Hence s > 4.

For 1 < i < s, choose y; € V(C;) where again we denote the odd components of
G- S by C,Cy,...,Cs. Then T = {y1,¥2,...,Ys} is independent. Thus by Lemma

1.1(i), the vertices in T' may be ordered as aj,az,...,as in such a way that there exists a
path z129 - zs-1 in G—T where la;, z;] —¢ a;41, for 1 <i < s—1. Clearly z;a; € E(G)
fori=1,2,...,5 — 1. But then G[{z1;a1,a3,a4}] is a claw centered at vertex z;. This

contradiction completes the proof.

As an infinite family of graphs satisfying the hypotheses of Theorem 2.2, we offer
the infinite family {Han—g6,2,2.2|n = 4} already defined above in Remark 3. Note that the
minimum degree of the graph Hy,_¢ 2242 is 3 for any n > 4.



3. 3-c-criticality and Factor criticality

In the case of odd graphs, the minimum degree requirement necessary to guarantee

factor-criticality is much weaker than the minimum degree requirement given in Theorem
2.1.

Theorem 3.1. Suppose n > 2 and G is a 3-c-critical graph of order 2n 4+ 1. Then if
mindeg (G) > 2, G is factor-critical.

Proof: Suppose to the contrary that &G is not factor-critical. Then there exists a vertex
z in V(G) such that G’ = G — z has no perfect matching. By Tutte’s Theorem, there is
a subset S” C V(G') such that ¢,(G' — S’) > |S’|. Set S = 8’ U {z}. By Lemma 1.2 and
parity,

1S +2<c(G' =8 )=co(G-85) <|S|+1=|5]+2.

Thus co(G — S) = [S| + 1. By part (ii) of Lemma 1.2, |S| = 1. In [A; Theorem 3.5), the
first author gave a characterization of all 3-c-critical graphs having a cutvertex. It follows
from that characterization that G must contain exactly one vertex of degree one. But this
contradicts our minimum degree hypothesis and hence the theorem is proved.

For an infinite family of graphs satisfying the hypotheses of Theorem 3.1 we offer
{Hi12n-21.1|n > 2} defined in Remark 3. We also point out that the hypothesis in Theorem
3.1 stating that mindeg (G} > 2 is a necessary one, for every factor-critical graph trivially
has minimum degree at least 2.

We conclude with a result concerning 3-factor-criticality.

Theorem 3.2. Suppose G is a 3-c-critical 4-connected K 4-free graph of odd order. Then
G is 3-factor-critical.

Proof: Suppose to the contrary that G is not 3-factor-critical. Then there exist vertices
z,y,w in V(G) such that G' = G—{z,y, w} has no perfect matching. By Tutte’s Theorem,
there is a subset S’ C V(G’) such that ¢,(G'—5") > |§']. Set S = S'U{x,y,w} and |§| = s.
By Theorem 3.1 and parity,

15| = 1= |§'| +2 < co(G' — §') = co(G— S) < |S| - L.

Thus ¢,(G — 9) = s — 1. Since G is 4-connected, s > 4. Thus, ¢,(G—8) =s—-1 > 3.
For 1 <i < s—1, let C; denote an odd component of G — §. For 1 < i < s — 1, choose
y; € V(C;). Then T = {y1,¥2,...,Ys—1} is an independent set of size s —1 > 3. By
Lemma 1.1(i), the vertices in T may be ordered as aj,a2,...,a5-1 in such a way that
there exists a path zyz5 - 2s_o in G — T such that [g;,z;] —¢c aj41, for 1 <1< s—2.
Clearly then, z; € S and a;z; € E(G), but a;1z; ¢ E(G) for 1 <4 < s — 2. Moreover,
for 1 <j<s—2 a1z; € E(G)and a;z; € E(G) for2<i<s-—1andj#i—1 Let
{u,v} = § — {z1,22,...,2s—2}. Without any loss of generality, we may renumber the odd
components of G — § in such a way that a; € V(C}).
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Claim 1: |S| = 4.

Clearly, |S| < 5 as otherwise G[{z1;a1,a3,a4,a5}] is K1 4 centered at x;. Suppose
to the contrary that |S| = 5. Since [a;,2;] —¢ @:41 and G is K 4-free, it follows that
[V(C2)| = |[V(C3)| = [V(C4)| = 1. Because G is 4-connected and for 2 < i < 4, a;25_1 ¢
E(G), it follows that each a;, ¢ = 2, 3,4, must be adjacent to both u and v. Then v and
v are not adjacent to ay since G is K 4-free. Because [a1,21] — . ag, x; is adjacent to
both v and v. But then {z;, 23} >. G, a contradiction. This proves our claim.

By Claim 1 and the fact that aax; ¢ E(G) and azz2 ¢ E(G), it follows that [V(C3)| >
3 and [V (Cs3)| > 3 since G is 4-connected. Hence, G — S has no even components otherwise
G contains K 4 as a subgraph.

Claim 2: If a, is adjacent to both u and v, then for each ¢ € V{C2) UV(C3), there exists
a vertex z € S such that [a;, 2] —. ¢ but {¢, 2z} does not dominate V(G) — a;.

Consider G+aye. Clearly, {a1, ¢} is not a connected dominating set for G+a;c. Since
G is 3-c-critical, there exists a vertex z € V(G) — {a1, ¢} such that either [a;,2] — . cor
[c, 2] —¢ a1. In either case, z € S since G — S has three odd components and |V (C;)| > 3
for 2 < 4 < 3. Suppose first that [¢,2] —, a;. Then z ¢ Ngla;]. Thus z ¢ S since
S C Ng(a1), a contradiction. Hence, {c, z} does not dominate V(G) — a;. Therefore,
la1, z] —. ¢. This settles the claim.

Claim 3: a; is adjacent to exactly one of {u,v}.

Suppose to the contrary that a; is not adjacent to any vertex of {u, v} or a; is adjacent
to both u and v. Suppose first that a; is adjacent to both u and v. Let by € V(Ca) — as.
Consider G + a1b;. By Claim 2, there exists a vertex z € S such that [a1, 2] —. bs.
Then z ¢ Ng[be]. Thus z # z;. If z = zo, then no vertex of {a;, 2z} is adjacent to as, a
contradiction. Hence, z # x5. Therefore, z € {u,v}. Without loss of generality, we may
assume that z = . That is [a;,u] —¢ b2. Then u dominates (V(Co)UV(Cs}) — by. Next,
let b3 € V(C3) —as. Consider G +a;b3. By Claim 2, there exists a vertex z; € S such that
[@1,21] —¢ b3. Then 2z ¢ Ngbs]. Thus z; # x; and z1 # x. Further, z; # u otherwise
no vertex of {a, 2} is adjacent to bo. Hence, z; = v. That is [a1,v] — b3. Then v
dominates (V{(Co)UV (C3)) —bs. Finally, let ¢5 € V(C3) — {as,bz}. Note that S C Ng(cs).
Consider G + ajc3. By Claim 2, there exists a vertex zz € S such that [a;, 22] —. ¢3.
Then 23 ¢ Nglez]. Thus z; ¢ 9, a contradiction. Hence, a; is not adjacent to u or v.
Therefore, a; is not adjacent to any vertex of {u,v}. Since [a;,21] —¢ a2, z1 is adjacent
to both u and v. But then {z1,22} ». G, a contradiction. Thus the claim is settled.

By Claim 3, we may assume without loss of generality that aju ¢ E(G) but a1v €
E(G). Since [a1,T1] —¢ a2, z1 is adjacent to u. Thus z1v ¢ E(G) and zov ¢ E(G)
otherwise {z1,z2} >, G. Since [ag,x2] —¢ a3, aav € E(G). Recall that |V (C2)| = 3
and |V(Cs)| > 3. Let by € V(Ca) — a2 and bs € V(C3) — az. Consider G + babz. Clearly,
{b2, b3} is not a connected dominating set for G + babz. Since G is 3-c-critical, there exists
a vertex z € V(G) ~ {by,bs} such that either [bs, 2] — b3 or [bs, 2] —. b2. In either
case, z € § since ¢ — S has three odd components and |V(C;)| > 3 for 2 < ¢ < 3. Further,
z # u otherwise no vertex of {b;, z} is adjacent to a; for 2 <4 < 3. Hence, 2z € S —u. We
distinguish two cases.



Case 1: [bg, z] — b3.

Then z ¢ Nglbs]. Thus z # z; and z # z2. Hence, z = v. That is [by,v] -—— bs.
Thus v dominates (V{(C1)UV(Cs)) — b3 and vb; & E(G). Now consider G + agb;. Clearly,
{a2,b3} is not a connected dominating set for G +asbs. Since G is 3-c-critical, by a similar
argument as above there exists a vertex z; € S — u such that either [ag, 2] —, b3 or
[b3, z1] —¢ a2. Suppose first that [az,21] —¢ b3. Then 2, ¢ Ng[bs]. Thus z; ¢ {z1,z2}.
Then z; = v. But then no vertex of {ag,z1} is adjacent to x;, a contradiction. Hence,
{az, 21} does not dominate G + agbs. Therefore, [b3, 21] —¢ a2. Then z; ¢ Ng[ag]. Thus
21 # 3 and z; # v. Hence, z; = x;. But then no vertex of {b3, 2z} is adjacent to v, a
contradiction. Hence, ~4.(G + agbs) > 2, a contradiction. Therefore, Case 1 cannot occur.

Case 2: [b3,2] — bg.

Then z ¢ N¢[bz]. Thus z # z;. Hence, z = x9 or z = v. Suppose first that z = zo.
That is [b3, z2] —¢ bz. Then z3 dominates (V(Cy) UV(C3)) — be and z2bs ¢ F(G). Now
consider G + bsagz. Clearly, {bs, a3} is not a connected dominating set for G + bgaz. Since
(G is 3-c-critical, by a similar argument as above there exists a vertex z; € S — u such
that either [bg,21] — ¢ a3 or [as, 2] —¢ b2. Suppose first that [as, z;] —¢ by. Then
z1 ¢ Nglbo]. Thus z; # z1. Further, z; # 22 since z2a3 ¢ E{G). Hence, z; = v. But then
no vertex of {as,z1} is adjacent to x4, a contradiction. Hence, {ag, 21} does not dominate
V(G) —bg. Therefore, [ba, 21] —. az. Then z; ¢ Ng[as]. By a similar argument, z; # z;.
Further, z; # g since zsby ¢ E(G). Thus 23 = v. But then no vertex of {bs, 2} is
adjacent to z2, a contradiction. Hence, {by, 21} does not dominate V(G) — az. Thus
(G +baaz) > 2, a contradiction. Therefore, z # x2. Hence, z = v. That is [b3, v] — b2.
Then v dominates (V(C1) U V(C2)) — b2 and byv ¢ E(G). Now consider G + bpaz. By
applying a similar argument as above and the fact that zev ¢ E(G) and bov ¢ E(G), it
follows that ~v.(G + baag) > 2. This contradiction proves that Case 2 cannot occur. Hence,
Y(G + babs) > 2, a contradiction. Therefore, G must be 3-factor-critical as claimed.

Remark 5: The graphs G; in Figure 3.1 and G5 in Figure 3.2 are both 3-c-critical of
odd order, but neither is 3-factor-critical. Note that G1 is 3-connected and K, 4-free and
(G4 is 4-connected, but contains K, 4 as an induced subgraph. Hence, our assumptions on
connectivity and K 4-freedom in Theorem 3.2 are best possible.

GIZ

Figure 3.1.
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Gzi

Figure 3.2.

Remark 6: For integers k¥ > 2 and t > 1, let us construct a graph Gi: as follows.
Tet X = {:El,.’ﬁg, .. .,.’L‘k}, Y = {’yl,’yg, e ,yk} and Z = {21,22, IR ,Zt}. Set V(Gk’t) =
XUYUZu{a}, aset of 2k + ¢+ 1 distinct vertices. Form complete graphs on X, Y and
Z. Join a to every vertex of Z and for 1 < i < k, join y; to every vertex of (Z U X) — x;.

It is easy to see that Gy is 3-c-critical and K 4-free. If k > 4, ¢ > 4 and ¢ is even,
then Gy ; is also 4-connected of odd order and hence is 3-factor-critical by Theorem 3.2.
Note also that for n > 5, the graph H,_2,_1, 3 defined in Remark 3 also satisfies the
assumptions of Theorem 3.2 and hence is 3-factor-critical.
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