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Abstract

A set S ¢ V(G) is a (vertex) dominating set for G if every vertex of G either
belongs to § or is adjacent to a vertex of S. The minimum cardinality of a vertex
dominating set for G is called the domination number of G and is denoted by Y(G). A
dominating set S for G is a connected dominating set if it induces a connected subgraph
of G. The minimum cardinality of a connected dominating set for G is called the
connected domination number of G and is denoted by y.(G). A graph G is said to be y—
vertex—critical if (G — v) < y(G), for every vertex v in G. Graph G is said to be k—y—
critical if y(G ) = kbut y(G +e) <k for each edge e ¢ E(G). Similarly, G is said to be k-
Ye-critical if y(G ) = kbut y(G + e) <k for each edge e ¢ E(G).

For positive integers £, ¢ with ¢ > 2, we say that G is k—(y, f)—critical if (G ) = k
and for every pair of non-adjacent vertices w and v of G with d(u, v) <1, y(G + e) <k
Similarly, G is said to be k—(y,, t)}—critical if y.(G ) = k& and for every pair of non—adjacent
vertices ¥ and v of G with d(u, v) <1, 7.(G + e} <k.

A graph G of order p is k—factor—critical , where p and k are positive integers with
the same parity, if the deletion of any set of k£ vertices results in a graph with a perfect
matching. G is called maximal non—k—factor—critical if G 1s not k—factor—critical but G +
e is k—factor—critical for every missing edge e ¢ £(G).

In this report, we establish sufficient conditions for 3—vertex—critical graphs to
contain a perfect matching and a near perfect matching. We also present sufficient
conditions for 3—vertex—critical graphs to be i—factor—critical for 1 < &£ < 3. For k -y~
critical graphs, we investigate these graphs with cutvertices. It turns out that 3 —y—critical
graphs can contain at most one cutvertex which leads to a characterization of 3 —y—
critical graphs with a cutvertex. We also establish sufficient conditions for 3 —y.—critical
graphs to be &-factor—critical for 1 < & < 3. Most of the results about 3—(y, f)—critical and
3—(y, t)—~critical graphs concern their diameter and the relationship between these graphs
and 3—y—critical and 3—y—critical graphs respectively. We conclude our report with a
characterization of maximal non—4—factor—critical graphs.
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Chapter 1

Results on 3-Vertex-Critical Graphs

1.1 Introduction

All graphs considered in this report are finite, connected, loopless and have
no multiple edges. For the most part our notation and terminology follows that
of Bondy and Murty [BM]. Thus G is a graph with vertex set V{G), edge set
E(G) and minimum degree §{G). For V' C V(G), G[V'] denotes the subgraph
induced by V'. Similarly, G[E'] denotes the subgraph induced by the edge
set E' of G. A matching M in G is a subset of E(G) in which no two edges
have a vertex in common. A vertex v is saturated by M if some edge of
M is incident to v; otherwise v is said to be unsaturated. A matching G is
perfect if it saturates every vertex of G and is near perfect if it saturates all
but exactly one of the vertices of G. If |V(G)| = k( mod 2), graph G is said
to be k-factor-critical if G — S has a perfect matching for every S C V(G)
with |S| = k. (The special cases when k = 1 and 2, respectively, have received
the most attention in the literature and in these cases the graphs are called
factor-critical and bicritical respectively.) If G is any graph and S C V(G),
then denote by ¢(G — ) (respectively ¢,(G — S)) the number of components
(respectively odd components) of G - S.

A set S C V(G) is a (vertex) dominating set for G if every vertex of G
either belongs to S or is adjacent to a vertex of §. The minimum cardinality of
a vertex dominating set in graph ( is called the (vertez) domination number
(or simply the domination number) of G and is denoted by v(G). Graph G is
said to be y-vertez-critical if v(G —v) < y(G), for every vertex in G. (Clearly,
then, v(G — v) = v(G) — 1, for every vertex v in G.) The structure of such
graphs remains relatively unexplored, even in the case v = 3.

The concept of y-vertex-critical graphs seems to have been first introduced
by Sumner [S1]. Clearly, the only 1-vertex-critical graph is K (a single vertex).
Sumner pointed out that the 2-vertex-critical graphs are precisely the family of
graphs obtained from the complete graphs K, by deleting a perfect matching.
For + > 2, however, an understanding of the structure of ~-vertex-critical
graphs is far from complete.

The related, yet different, concept of edge criticality with respect to domi-
nation number has received more attention. A graph G is called vy-edge-critical
if v(G + €) < v(G) for every edge e = wv ¢ E(G) and u,v € V(G). (Here
again it is clear that in this case y(G + e) = v(G) — 1.) It should be imme-
diately pointed out, however, that the two concepts of domination criticality
are independent in that there are graphs which are -y-edge-critical, but not
v-vertex-critical, graphs which are 7-vertex-critical, but not vy-edge-critical,
graphs which are critical in neither sense and graphs which are critical in both
senses. On the other hand, it should also be noted that one can always add

1



edges, if necessary, to a y-vertex-critical graph so as to produce a graph which
is both ~y-edge-critical and vy-vertex-critical.

For results about y-edge-critical graphs, the reader is directed to [S1,SB,
HHS, M,B,G] and to the further references that they contain. In particular,
in [S1, SB] it is shown that any connected 3-edge-critical graph of even order
must contain a perfect matching and this result was the motivation for the
present paper. In contrast to their result, we show, by exhibiting an infinite
class of examples, that a connected 3-vertex-critical graph of even order need
not contain a perfect matching.

For a general reference on matchings in graphs, see [LP].

In [BCD1, BCD2, F, FHM, HHS|, the first structural properties of 3-
vertex-critical graphs are presented. We now list several of these which shall
prove useful to us. We denote by N{v) the neighborhood of vertex v (i.e., the
set of all vertices adjacent to v) and by N[v] the closed neighborhood of vertex
v; 1.e., the set N(v)U {v}. If S C V(G), then Ng(v) denotes the set N{(v)NS.

Lemma 1.1.1: [F3] Ifvisa vertex in graph G and if all vertices in N[v]
are critical, then there is no vertex v’ € V(G), v’ # v, such that N[v'] C N[v].

In the next two lemmas, we shall take the phrase "vertex-critical” to mean
~-vertex-critical for some value of +.

Lemma 1.1.2: [BCD1, BCD2] A graph G is vertex-critical if and only
if each block of G is vertex-critical.

Lemma 1.1.3: [BCD1, BCD2] If G is vertex-critical with blocks G,
..., Gy, then

In addition to the above results, we shall also make use of the following.

Lemma 1.1.4: If G is 3-vertex-critical and of even order, then G is
2-connected.

Proof: If ¢ is disconnected, then either G consists of two components,
one of which is 2-critical and the other 1-critical or else G consists of three
components each of which is 1-critical. But in the former case, G must be
consist of one component isomorphic to a Ko, with a perfect matching deleted
and the other component K, while in the latter case G must consist of three
isolated vertices. Hence in either case, G has odd order, a contradiction.
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Thus assume that G is connected, but with cutvertices. Let the blocks of
G be Gy,...,Gy, where n > 2. Then by Lemma 1.1.3 we have 3 = v(G) =
[, (@)~ 1.

Moreover, by Lemma 1.1.2, each block G; is vertex-critical and since G
is not isomorphic to K, no block of G can be a single vertex. So y(G;) > 2,
for each block G;. Thus n = 1 or 2. But we have assumed that n > 2 and
son = 2 and y(Gy) = 2, for « = 1,2. That is, ¢ must consist of two blocks
G and Gy sharing a single cutvertex v. Since v(G — v) = 2, it follows that
Y(G1 —v) =v(Gy—v)=1 But then G; —v =2 Gy —v 2 K; and |V(G)| = 3,
contradicting the fact that G has even order.

If v € V(G) we shall denote by G, the graph G --v and by D,, a minimum
dominating set of G —v. The following remarks about D, are trivial to verify,
but as we will appeal to them repeatedly, we list them separately.

Remarks: If G is 3-vertex-critical, then the following hold:
1. For every vertex of G, |D,| = 2.
2. If D, = {z,y}, then z and y are not adjacent to v.

3. For every pair of distinct vertices v and w, D, # D,,.

1.2 A Result on Perfect Matchings

Tutte’s classical theorem on perfect matchings says that if a graph G has
no perfect matching, then there is a set S C V(&) such that the number of
components of G — S having odd order is greater than the size of 5. We shall
call any such set S for which G — § has more than | S| odd components a Tutte
set. (An alternate name is antifactor set; see Sumner [S2].) We shall denote by
co(G — S) the number of components of G — S having odd order. A graph will
be called K s-free if it has no induced subgraph isomorphic to the complete
bipartite graph K 5.

Our main result will be the culmination of the next three lemmas.

Lemma 1.2.1: Suppose G is 3-vertex-critical of even order and K s-
free, but suppose that G contains no perfect matching. Then if S is any
Tutte set in G with |S| > 5, for every vertex v € V(G), if D, is a minimum
dominating set for G —v, D, C §.

Furthermore, if v € §, then |[Ng(v)| > 2.

Proof: Let C1,...,C; denote the odd components of G— 5. Since |5] > 5,
and G is of even order, ¢,{G — §) > 7. Suppose to the contrary that there is
a vertex r € V(G) such that D, € S. Clearly, D, € U:_,V(C;), since t > 7
and |D,| = 2. Suppose D, = {y, z}. Then without loss of generality, we may
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supposc that y € S and z ¢ S. It follows that y must dominate at least |S| > 5
odd components which contradicts the fact that G is K s-free. This completes
the proof of the first part of the lemma.

The second part of the lemma follows immediately from the fact that
Dy, C S, for all v € V(G) and the fact that v is not adjacent to any vertex of
D,.

Lemma 1.2.2: Suppose G is 3-vertex-critical of even order and is K 5-
free, but suppose G contains no perfect matching. Then if S is any Tutte set
inG,2<|8 <4,

Proof: The fact that |S| > 2 follows immediately from Lemma 1.1.4.

Suppose to the contrary that S is a Tutte set with |S| = &k > 5. We first
show that k = 6 and each component of G — S is a singleton.

Since for each z € V(G), D, € S by Lemma 1.2.1, it follows that for
every £ € V(G) there is a pair of vertices in § — {z}, a and b say, such that
D, = {a,b}. Since there are at most (5) = k(k — 1)/2 pairs of vertices of S
and at least k + (k + 2) = 2k + 2 vertices in G, by Remark 3 it follows that
2k +2 < k(k —1)/2 and hence & > 6.

On the other hand, k + 2 < ¢,(G — 5) < 8 because G is K, s-free and
D, C S for each z € V(). Hence k = 6 and ¢,(G — S) = 8.

Thus there are exactly (g) = 15 pairs of vertices in S and hence G has at
most 15 vertices. This implies that G — S has no even components and every
odd component of G — S must be a singleton as required since there are exactly
8 odd components. So G has exactly 14 vertices and thus at least 14 pairs of
vertices in § are realized as a D, for each x € V(G).

Let C be the set of vertices which together comprise the eight singleton
odd components of G — 5. Denote the set of odd components of G — S5 which
are adjacent to v € § by C,. Clearly, C, € C. Now let H be a simple graph
with V(H) = S and E(H) = {zy|D, = {z,y}}. For zy € E(H), we have that
C:UC, = C. So, since G is K; s-free, |Cz| = |Cy| = 4 and {C, Cy} partitions
C. It follows that H must be bipartite with |V(H)| = |E(H)| = 6. Then H
must contain a path of length 3 say, uy,v1, u2,v2, as a subgraph. Therefore,
Cy, = Cy, and C,,, = C,,. Then {u;,us} and {v;,ve} cannot be realized as a
D, for any v € V{(G). Hence, there are at most 13 pairs of vertices in S which
can be realized as a D, for some v € V(G). Since G has exactly 14 vertices,
D, = D, for some x # y. But this contradicts Remark 3 and hence completes
the proof of our lemma.

Lemma 1.2.3: Suppose G is K s-free 3-vertex-critical of even order,
but suppose G contains no perfect matching. Then if S is any Tutte set in G,
|S| = 4.



Proof: Suppose, by way of contradiction, that |S| # 4. Let S be any
Tutte set in G. By Lemma 1.2.2, we may suppose that {S| =2 or |S]| = 3.

Claim. If v € S, and D, is a minimum dominating set for G — v, then
D, CS.

Suppose to the contrary that D, € S for some v € S, Let D, = {a,b}.
Then a and b are not adjacent to v by Remark 2. Since ¢,(G — ) > 4,
{a,b} NS # @. Let the components of G — S be denoted C,...,C,. Without
loss of generality, then, we may suppose that a € V(Cy) and b € S. Then
b must be adjacent to every vertex of Co U --- U C;. Since G is K s5-free, it
follows that ¢ < 5. We distinguish two cases according to |S]|.

Case 1. First suppose that |S| = 2.

Thus t = 4. Consider Gy. Dp must be of the form {v,a’} where o’ is
not adjacent to b. Then o’ € V(C;). So v is adjacent to every vertex of
V(Ca) UV({C3) U V(Cy). Choose ¢ € V(C5) and consider G.. Since both v
and b are adjacent to ¢, we must have D.N{v,b} = 0, a contradiction for then
there is at least one of the C; which D, cannot dominate. This completes the
proof in Case 1.

Case 2. So suppose that |S| = 3.

Thus £ = 5. Furthermore, by Case 1, we may also suppose that S is a
minimal Tutte set. Now G is K1 s-free, so b is adjacent to no vertex of .
Thus a dominates all vertices of component C.

Now let ¢ denote the third vertex in S. Since S is a minimal Tutte set,
vertices v and ¢ are adjacent to at least two components C;, 1 < ¢ < 5. Let
u € V(C)UV(C3)UV(C)UV (Cs) be a vertex adjacent to ¢. Now Dy, = {v,v'}.
Since av € F(G), v' € V{C1). Thus v must dominate each vertex of at least 3
components among Co, -+, Cs. Now let w € V(Co) UV (C3) U V(Cy) UV (Cs)
be a vertex adjacent to v. Thus w is adjacent to both v and &. Now D,, =
{c,c'}, where ¢/ ¢ S. This means that ¢ dominates each vertex of at least
2 components among Cs,---,Cs. So there is at least one component among
Cs,--+,Cs such that v,b and ¢ dominate all of its vertices. Let z be a vertex
in such a component. Then D, NS = ¢, a contradiction for then D, fails to
dominate at least two of the C;’s. This completes the proof in Case 2 and
hence the Claim is proved.

It follows immediately from the Claim that |S] = 3. Let § = {a,b,c}.
Then for each vertex v ¢ S, |[Ng(v)| > 2 because if v is not adjacent to say, a
and b, then D, = {a,b} would not dominate v. In fact, |[Ns(v)| = 2 because
if INg(v)| = 3, then D, N § = ¢ and thus D, would not dominate some C;.
This observation together with the fact that each vertex of S is adjacent to
at most 4 odd components of G — § implies that G — S has exactly 5 odd
components. For each vertex x of S, there exists a vertex v ¢ S not adjacent
to z but v dominates § — {z}. So D, NS = {z} and z dominates at least
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3 odd components of G — §. If every vertex of S dominates exactly 3 odd
components of G — 5, then there must exist an odd component of G — § the
vertices of which are adjacent to at most one vertex of S, a contradiction of
Lemma 1.1.4. Hence there is a vertex of 5, say ¢ which dominates exactly 4
odd components of G — S. Let C1,Cs, -+, Cs be the odd components of G — 5.
Without any loss of generality, we may assume that @ dominates Cy, Cy, Cy,
b dominates C,C4,Cs and ¢ dominates C2,C3,Cy and Cs. Now for each
v e V(Cy), Dy = {c,c'}. Suppose ¢ ¢ V(Cy). Then |V{(Cy)| = 1. But then
{v,c} dominates G, a contradiction. Hence, ¢’ € V(C}).

Now if v(C;) = 1, {v, ¢} dominates G, a contradiction. So 4(C}) > 2. But
then C) is 2-vertex-critical, and hence of even order by [2,3], a contradiction.
Therefore, | S| = 4 as required and hence the lemma is proved.

We are now prepared to state and prove our main result.

Theorem 1.2.4: If G is 3-vertex-critical of even order and K, s-free,
then G has a perfect matching.

Proof: Suppose to the contrary that G contains no perfect matching and
that S is a Tutte set in (.

First we claim that if |[S| > 4, then for allv € S, D, C S.

If |S| = 5, then the claim is true by Lemma 1.2.1. So suppose [S| = 4.
Suppose, to the contrary, that for some vertex v € S, D, = {a, b}, wherea € S
and b € V(G) — 5. Since ¢,(G — §) > 6, vertex a must dominate at least five
of the odd components and hence G contains an induced K 5, a contradiction.
This completes the proof of the claim.

Next we claim that, in fact, |S| # 4.

Suppose to the contrary that |S| = 4. Choose z € S. Then D, C S.
Suppose D, = {y, z}. Without loss of generality, we may then suppose that if
w is the fourth vertex of S, then w is adjacent to z. Then D,, must be {z,y}
and so w is adjacent to neither z nor y. Also since z is not adjacent to z, y
must be adjacent to z. But then D, N {y,w} = 0. So D, consists of vertex
z € S and a second vertex in G — S. But this contradicts the claim verified at
the beginning of this proof.

So |S| # 4 and this contradicts L.emma 1.2.3.

1.3 A New Family of 3-Vertex-Critical Graphs

In the first paper on the subject of 3-vertex-critical graphs [BCD2], the
authors present a family of graphs which they denote by {G» n} and claim
that these graphs are n-vertex-critical. However, in the case of n = 3, this is
true only when m is even.



In this section, we present a construction which yields an infinite family
of new 3-vertex-critical graphs.

Let k& be any positive integer with & > 5. We proceed to outline the
construction of a graph which we will call H ko (K) k- The vertex set will consist

of two disjoint subsets of vertices called central and peripheral, respectively.
Let {v1,...,vr} denote the set of central vertices. The subgraph induced by
these central vertices will be the complete graph K with the Hamiltonian
cycle vivg - - - vpvy deleted. The peripheral vertices will be (’;) — k in number
and will be denoted by the symbol ~ {i,j} where the (unordered) pair {¢,7}
(i # 5) ranges over all the (£) — k subsets of size 2 of the set 1,...,k, except
those having j = ¢ + 2 where 7 + 2 is read modulo k. The neighbor set of
peripheral vertex ~ {4, 7} will be precisely the set of all central vertices, except
1 and j. There are no edges joining pairs of peripheral vertices.

Figure 1.3.1 shows as an example the graph Hgg.

~{1.4}

~{3a4}

~{4.5}

Figure 1.3.1

Each graph H, (5)-k can, in turn, be used to create a large number of
N2

additional 3-vertex-critical graphs as follows. Partition the set of peripheral
vertices into r > 3 subsets Py, Py, P3,..., P and add e; edges to P; for each
i=1,...,7. Here e; can be any integer such that 0 < e; < (“;"). All such
resulting graphs will be 3-vertex-critical.
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It should be noted that Sumner proved the following theorem.

Theorem 1.3.1: [S2] If n > 1 and G is an n-connected K ,;-free
graph of even order, then G contains a perfect matching.

However, there are many 3-vertex-critical K, s-free graphs of even order
that are not 4-connected. We show two examples in Figure 1.3.2.

Figure 1.3.2

Sumner and Blitch [S1, SB| showed that every connected 3-edge-critical
graph of even order contains a perfect matching. In contrast, it is not true
that a connected 3-vertex-critical graph of even order must contain a perfect
matching. For each of the infinitely many values of k& > 8 such that (5) is even,
the graph H 6 (5) -k defined above is such a 3-vertex-critical graph.

The reader will note that we have made considerable use of the additional
hypothesis that G be K s-free in several of our proofs in Section 1.2. Indeed,
it would be interesting to know if this extra hypothesis can be weakened. For
example, we know of no counterexample to the following.

Conjecture. If G isa 3-vertex-critical graph of even order and K 7-free,
then G contains a perfect matching.

1.4 A Result on Near-perfect Matchings

Lemma 1.4.1: Suppose G is a 3-vertex-critical graph which is discon-
nected. Then either G is isomorphic to three independent vertices or else G is
isomorphic to the disjoint union of an even complete graph K3, with a perfect
matching removed and one isolated vertex.

Proof: Since v(G) = 3, either G consists of three components each having
v = 1 or else of two components, one of which has v = 2 and the other has
v = 1. But in the former case, each of the three components must be K;, since
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each is l-vertex-critical and in the second case, one component must be 2-
vertex-critical and the other 1-vertex-critical. But by an observation first found
in [BCDI1, BCD2], the 2-vertex-critical component must be an even complete
graph with a perfect matching removed and the 1-vertex-critical component
must be K.

|
Corollary 1.4.2: If G is a 3-vertex-critical graph with minimum degree
greater than 0, then G is connected. ]

Lemma 1.4.3: If G is 3-vertex-critical and § is a Tutte set in (7 such
that ¢,(G — S) > 4, then each vertex of G — S is not adjacent to at least one
vertex of S.

Proof: Suppose w € V(G) — S such that w is adjacent to every vertex of
S. Then D, NS =0 and so D,, € V(G) - S. But this is impossible since the
set Dy, has size 2 and it must dominate at least three odd components.

Lemma 1.4.4: Suppose G is a K 5-free 3-vertex-critical graph of odd
order with 6(G) > 0. Further, suppose that S is a Tutte set for G with
co{G — 5) > |S| + 3. Then |S| > 3.

Proof: By Corollary 1.4.2, G is connected and hence |§| > 1.

Suppose first that |S| = 1. Say, § = {u}. Let Ci,...,C; be the odd
components of G —u. So t > 4. Now u is adjacent to vertices in each C;
since G is connected. So since G is K s-free, t = 4 and there are no even
components of G — 5. But v(G - u) = 2 implies that ¢ < 2, a contradiction.

Next, suppose |S| = 2. Let S = {u,v}. Then ¢,(G — S) > 5. Consider
Gy. Clearly, v € D, and so D, is composed of the vertex v together with one
other vertex, say w, from V(G —S). By Remark 2, vu ¢ E(G) and wu ¢ E(G).
Furthermore, since G is K s5-free, w must lie in one of the odd components
of G — S. Suppose, without loss of generality, that w € V(C}). Then vertex
v must be adjacent to all vertices of C; U --- U Cy and to all vertices in even
components of G — 5. But again by the fact that G is K 5-free, £ = 5 and
there are no even components of G — S. Moreover, by Lemma 1.4.3, none of
the vertices of Cp U - - U Cy is adjacent to u. But v is not adjacent to any
vertex of ) since G is K s-free, and so G is disconnected, a contradiction of
Corollary 1.4.2.

|

Lemma 1.4.5: Suppose G is a K s-free 3-vertex-critical graph of odd
order at least 11 with 6(G) > 0. Suppose further that S is a Tutte set in &
such that ¢,(G — §) > |S| + 3. Then for every vertex v € V(G), D, C S.

Proof: Suppose by way of contradiction that there is a vertex v such that
D, € S. Since |S| > 3 by Lemma 1.4.4, ¢,(G — S) > 6. Hence D, NS # @. So
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we may suppose that D, = {v,w}, withu € §and w € V(G- S5). If w were in
an even component of G — S, then u would have to be adjacent to all vertices
in the odd components of G — S and thus v would have to be the center of a
K; 5 in G, a contradiction. So w must lie in some odd component of G — S,
say, without loss of generality, that w € V{Cy). Then u must be adjacent to
each vertex of at least four odd components of G — §. Thus we may assume
that there are exactly six odd components of G — S, that {v} = V(C3), that
u is adjacent to each vertex of C3 U -.- U Cy and that each of Cy,...,Cps is a
complete graph. Moreover, then |S| = 3 and G has no even components.

By Lemma 1.4.3 there must exist a vertex y € § — {u} and two vertices
lying in two different odd components among Cj,...,Cs such that y is not
adjacent to either of these two vertices. More specificly, we may suppose that
there are vertices c3 € V(C3) and ¢4 € V(Cy) such that y is adjacent to neither
ez nor ¢q. Since |S| =3, let S = {u,y, z}.

Claim 1: Vertex z is adjacent to no vertex of Cg U Cs.

Suppose to the contrary that z is adjacent to ¢5 € V(C5). Consider G, .
Clearly, D., NS # @, but D, N ({z,u} UV(C5)} = 0. Soy € D, and
|D., NV(G -8} =1.

Let D., = {y,w'}. Since y is not adjacent to cs or c4, w’ is adjacent
to both ¢3 and ¢4. But this is impossible since ¢z and ¢4 lie in different odd
components. This proves that z is not adjacent to vertex of Cs. By a similar
argument, z is not adjacent to vertex of Cg. This proves Claim 1.

Claim 2: Vertex y is adjacent to no vertex of Cs.

Suppose to the contrary that y is adjacent to ¢ € V(Cs). Consider G,.
Clearly, D, NS # 0, but D, N ({u,y} UV (Cs)) = 0, since Cs is complete.
So D, = {z,x}, where z € V(Cg) by Claim 1. Thus z is adjacent to every
vertex of C; U ---UCyq and V(Cs) = {a} by Claim 1. Hence, C; is complete
for 1 <i<4.

Now consider G.,. Clearly, D., NS # 0 but D, N ({u, 2} UV(C3)) = B
since Cy is complete and c¢3 is adjacent to both u and z. Thusy € D.,. Because
y is not adjacent to cq, Do, = {y,¥'} where y € V(Cy). Consequently, y is
adjacent to every vertex of C; U Co U Cs U Cg and V(C3) = {c3}.

By a similar argument as above, |V(C4)| = 1 and |V(Cs)| = 1. Since
V(G)| > 11, [V(Ch)] = 3. Let ¢; € V(C1). Now consider G.,. Clearly,
D, NS #0, but D, N ({y,z} UV(CL)) = @ since C; is complete and ¢; is
adjacent to both y and z. Thus u € D, and |D,, NV(G — S)| = 1. Let
D., = {u,u'} where v’ € V(G — 5). Since G is K, s-free, u is not adjacent
to any vertex of C; U C> and hence u' is adjacent to v and every vertex of
V{(Cy) — {c1}. But this is impossible since v € V(C3}. This proves Claim 2.

Now consider G,. Clearly, D, N (US_,V(C;)) = 0 since u is adjacent to
every vertex of US_,V(C;). Thus D, C {y, 2z} UV(C1) U V(Cs3). But then, by
Claims 1 and 2, no vertex of I, is adjacent to any vertex of Cs, a contradiction.
This completes the proof of our lemma.
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Theorem 1.4.6: Suppose G is a K s-free 3-vertex-critical graph of odd
order at least 11 with §(G) > 0. Then G contains a near-perfect matching.

Proof: Suppose G does not contain a near-perfect matching. Form a
new graph G’ from G by adding a new vertex z such that every vertex of
G is adjacent to x. Then G’ does not contain a perfect matching. So by
Tutte’s 1-factor theorem and parity, there is a Tutte set 8’ in G’ such that
co(G' = 5') > |S'| + 2. Since z is adjacent to every vertex of G, it follows that
z €S8 Let § =5 —{z}. Then ¢,(G ~ 8) =¢,(G' = 5" > |S'| +2 = |S| + 3.
So by Lemma 1.4.5, D, C 5, for all v € V(G).

Now let |S| = k. There are (5) different pairs of vertices of S and at least

k+ 34 k =2k + 3 vertices in G. So by Remark 3, 2k +3 < (g) and so k > 6.
On the other hand, choose any vertex w € S. Then D,, € S by Lemma
1.4.5. But then, since G is K s-free, ¢,(G — S) < 8. So we have k + 3 <
co{G — 8) <8, or k <5, a contradiction.
|
Note that the assumption that |V(G)| > 11 is necessary in both Lemma
1.4.5 and Theorem 1.4.6, for the graph G shown in Figure 1.4.1 has odd order
9 and §(G) > 0, is K 5-free and 3-vertex-critical, but, if we let § = {u,y, z},
then D, € S, for i =1,...,6 and G has no near-perfect matching.

u

2

Figure 1.4.1

1.5. A Factor-critical Result

Lemma 1.5.1: Suppose G is a K 4-free 3-vertex-critical graph of odd
order with minimum degree at least 3. If G, has no perfect matching for some
v € V(G) and S, € V(G,) is a Tutte set for G, with c,(G, — Sy) = |5y ] + 2,
then |S,| > 2.
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Proof: First, note that G is connected by Corollary 1.4.2. Suppose that
v € V(G),S, C V(G) and ¢,(G, — Sy) > |Su| +2. Let S be S, U {v}.
Then c,(G — 5) = co(Gy — S} = |Su| +2=|S| + 1. Let Cy,Cs, ...,C, be odd
components of G — 5. We first show that S, # 0. Suppose to the contradiction
that S, = @. Thus v is a cut vertex of G and S = {v}. Since G is connected,
it follows that v is adjacent to at least one vertex of each component of G — §.
Hence, 2 < ¢,(G'—S) < 4 because of K 4-freedom of G. Clearly, ¢,(G—5) # 3
since G has odd order. Then ¢,(G—S) = 2. Since §(G) is at least 3, |V (C;}| > 3
for : = 1,2. Hence, D, NV(C;)} # @ for i = 1,2. Let D, = {a1,as} where
a; € V(C;) for ¢ = 1,2. Then qg; is adjacent to every vertex of V(C;), but a;
is not adjacent to v. Since v is a cut vertex of G and G is connected, there
exist vertices by of Cy and by of Cs say, such that bjv € E(G) and byv € E(G).
Clearly, b; # a; for i = 1,2. Now consider G,. Then Dy, N {v,a;} = 0. Thus
Dy, nV(Cy) # 0 for i =1,2. Let Dy, = {e1,c2}, where ¢; € V(C;) fori = 1,2.
Note that b1c; ¢ E(G). Now ¢; is adjacent to every vertex of V(C1) — {b}
and cp is adjacent to every vertex of V(C3). If cov € E(G), then {cz.ay}
dominates G. This contradicts the fact that 4(G) = 3. Thus cyv ¢ E(G) and
then civ € E(G).

Now consider Gy,. Clearly, Dy, N {v,a2} = 0. Then Dy, N V(C;) # @
for i = 1,2. Let Dy, = {d),do} where d; € V(C;) for i = 1,2. Note that
bads ¢ E(G). Then dy # az and dy # ¢a. Now d; is adjacent to every vertex
of V(Cy) and d3 is adjacent to every vertex of V(Cy) — {b2}. If dov € E(G),
then G[{v;b;,¢1,bs,d2}] becomes a K1 4 centered at v, a contradiction. Hence
dov ¢ E(G) and so dyv € E(G). But now {di,ce} dominates G, again a
contradiction. Therefore, S, # .

So |Sy| > L. Suppose |S,| = 1. Let S, = {u}. Then § = S, U{v} = {u,v}.
Since G is K 4-free and connected, 2 < ¢,(G — §) < 6. In fact, c,(G—S) =3
or ¢o{G — 5) = 5 because of the odd order of G. Suppose ¢,(G — 5) = 5. Now
consider G,,. Clearly, v € D, and |D, NV(C;}| = 1 for some 7,1 < 1 < 5.
Then v becomes the center of a K 4, a contradiction. Hence, ¢,(G — S) # 5.
Therefore, ¢,(G — S) = 3. Since ¥(G) = 3 and |S| = 2, it follows that there
is a vertex of Uf’=1 V(Ci), x say, such that z,u ¢ E(G) and z1v ¢ E(G).
Without loss of generality, we may assume that z; € V(C,). Since §(G) > 3,
[V(C1)| = 5 and |V(C;)| > 3 for i = 2,3. Let y3 € V(C1) — {z1}. Now
consider Gy,. Clearly, G,, # {u,v}, since z;u ¢ E(G) and v ¢ E(G).
However, D,, N {u,v} # 0 since ¢,(G — §) = 3 and |[V(C)) — {1 }| = 4
Without loss of generality, we may assume that v € D,,. Thus v ¢ D, . Since
r1u ¢ E(G), Dy, — {u} C V(Cy) — {y1}. Thus u is adjacent to every vertex of
V(Cy) UV(C3).

Now consider G,. Since ¢,(G-S} = 3,v € D,,. Because ryv ¢ E(G), Dy —
{v} € V(Ci). Thus v is adjacent to every vertex of V(Cy) U V(C3). Let
zp € V(Cq). Note that zou € E(G) and zov € E(G). Then D,, N {u,v} = 0.
Thus D,, C U?:l V(C;). Since |Dy,| = 2, Dy, NV(C;) = B for some i=1,
2, 3. But this contradicts to the fact that D,, is a dominating set of G,
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since |V(C;)| > 3 for all 4,1 < ¢ < 3. Hence, |S,| # 1. Therefore |S,| > 2 as
required.

Theorem 1.5.2: Suppose G is a K 4-free 3-vertex-critical graph of odd
order with minimum degree at least 3. Further, suppose that &, has no perfect
matching for some v € V() and 5, is a Tutte set of V(G, ) with ¢,(G, - S,) >
|Sy! + 2. Then for every vertex z of V(G), D, C S, U {v}.

Proof: Let S = 5, U {v}. Thus, by Lemma 1.5.1, |S| > 3. Further,
ColG —8) = co(Gy — Sy) 2 [Sul +2= S|+ 12>4. Nowlet ¢},C4,...,C; be
the odd components of G — 5 and let Ey, Fs, ..., E, be the even components
of G — 5. Suppose to the contrary that there is a vertex = of V(G) such
that Dy € 5. However, D, NS # @ since co(G — S) > 4 and |D,| = 2. Let
D.NS = {u}and D; —S = {y}. Thatis D; = {u,y}. Clearly, ur ¢ E(G) and
yz € E(G). Suppose G — S has an even component E; and suppose y € V(F]).
Then t =4, or else u is the center of an induced K 4. So |S| = 3. Now vertex
u is adjacent to all the vertices in at least three of the C;’s, say, without loss of
generality, that u is adjacent to all vertices of V(Co)UV(C3)UV(Cy). Then u
is adjacent to no vertex of (], again because u is not the center of any induced
Ky 4. But then {z} = V(C}) and deg (z) < 2, a contradiction.

Thus y € Uf;:l V(C;). Without loss of generality, we may assume that
y € V(C1). Since G is K, 4-free, the number of components of G — § is at
most 5 as otherwise u becomes a center of K 4. Thus 3 < |S| < 4. Further,
if |S] = 4, G — S has no even components and if |S| = 3, then G — § has at
most one even component.

Claim 1: Each vertex of G — S is not adjacent to at least one vertex of

Suppose to the contrary that there exists a vertex w of G — § such that
w is adjacent to every vertex of S. Now consider G,,. Clearly, D, N5 = 0.
Thus D,, C V(G — S). But this is not possible since D,, is a dominating set
of G, of size 2 and ¢,(G — §) > 4. Hence, our claim is proved.

Now we distinguish three cases according to the location of z.
Case 1: Suppose z € V(C1).

Since y € V(C,), u is adjacent to every vertex of U:=2 V(C;) and every
vertex of [, V(E;). Tt follows that ¢ = 4 and G — S has no even components
because of K 4-freedom in G. Thus |S| = 3. Further, for 2 < ¢ < 4, C; is
complete and u is not adjacent to any vertex of V(C1), again by K 4-freedom
in G. Then y is adjacent to every vertex of V(Cy) — {z}. It follows from Claim
1 that there is a vertex of S — {u}, say w, such that w is not adjacent to at
least two vertices of G — S lying in two different components of Cs U C3 U Cy.
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Without loss of generality, we may assume that w is not adjacent to c¢; and
c3, where cp € V(C3) and c3 € V(C3), respectively. Let z € § — {u,w}. Then
S ={u,w, z}.

We first show that z is not adjacent to any vertex of V(Cy). Suppose
to the contradiction that z¢4, € E(G) for some ¢4 € V(C4). Now consider
Ge,. Clearly, D, NS # @, but D., N ({z,u} UV(Cy)) = 0. Thus w € D,,
and |D,, NV(G —8)| =1. Let D,, NnV(G — 8) = {w'}. Since wey ¢ E(G)
and wez ¢ E(G), it follows that w'c; € E(G) and w'cg € E(G). But this is
impossible since w’ can be in only one odd component of G—S. Hence, z is not
adjacent to any vertex of V/(Cy). Consequently, |V(C4)| > 3 since 6(G) > 3.

We next show that w is not adjacent to any vertex of V(C4}. Suppose by
way of contradiction that wa € E(G) for some a € V(Cy). Now consider G,.
Clearly, D, NS # @, but Dy N ({u,w} UV (Cyq)) =0 Thus z € D, N S. Since
|[V(Cy)—{a}| > 2 and z is not adjacent to any vertex of V(Cy), it follows that
D, —{z} C V(C4). But this is impossible since D, NV (Cy) = @. Hence, w is
not adjacent to any vertex of V{Cy).

Now let b € V(C4) and consider Gy. Since Cy is complete and ub € E(G),
it follows that D, i ({u} UV (C4)) = @. Then Dy C (S — {u}) U U‘?:l V(Cy).
Since z and w are not adjacent to any vertex of V(C4), no vertex of Dy is
adjacent to any vertex of V(Cy) — {b}. This contradicts the fact that D, is a
dominating set of Gy since |V(Cy) — {b}| > 2. Hence, x ¢ V(Cy).

Case 2: Next, suppose x € V(G — S) — V(C}).

If = belongs to some even component F; of G — S, then V(Ey) - {z} # &
say z € V(Ey) — {z}. But then u is adjacent to z and to every vertex in
V(Cy)UV{(C3)UV(Cy). It then follows that u is the center of an induced K 4
and we have a contradiction.

Hence, without loss of generality, we may assume that z € V(Cy). We
distinguish two cases according to |S|.

Case 2.1: Suppose |S| = 3. Since G is K s4-free, ¢,(G — §) < 5. Thus
co(G —8) = 4 since G has odd order. Since uz ¢ E(G) and 6(G) > 3, it follows
that |V(C2)| > 3. Then u is adjacent to every vertex of U?:z V(C;) — {z}.
Since G is K 4-free, G — S has no even components and Cy — z, C3 and Cy
are complete.

Let z € § — {u}. We next show that z is not adjacent to any vertex
of V(Cy). Suppose to the contrary that zas € E(G) for some ag € V(Cy).
Then D,, N ({u, 2z} UV(Cy)) = @ since u is adjacent to every vertex of V{Cy)
and V(Cy) is complete. Let S — {u,z} = {w}. Clearly, w € D,,. Then
way ¢ E(G) and w dominates V(C4) — {ag}. Now |[V(Cy)] > 3 because
6(G) > 3. Let by € V(Cq) — {as}. Then byu € E(G) and byw € E(G).
Consequently, Dy, N ({u,w} UV (C4)) = 0.

Since ¢o(G — 8) = 4,z € Dy,. So zby ¢ E(G), but z dominates V(Cy) —
{bs}. Now if ¢4 € V(Cyq) — {as,ba}, cs is adjacent to every vertex of S. This
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contradicts Claim 1. Hence, z is not adjacent to any vertex of V(Cy) for every
z €85 — {u}.

Because §(G) > 3, |V(Cy)| > 3. Suppose ¢ € V(Cy). Since u is adjacent
to every vertex of V(Cy), cu € E(G). Thus D. N ({u} UV (Cy)) = 0 since
Cy is complete. Then D, C (S — {u}) UU?=1 V(C;). Since V(Cy) — {c} # 0,
every vertex of V(Cys) — {c} is adjacent to at least one vertex of D.. But this
is impossible since D, C ((S — {u}) UJS_, V(C:)) and none of the vertices of
(S — {u}) UL, V(C) is adjacent to any vertex of V(Cy). This complete the
proof of Case 2.1.

Case 2.2: Suppose |S| = 4. Thus ¢,(G — S) = 5 and G — S has no
even components. If V(Cy) — {z} # @, then u dominates Uf':z V(C;) — {z}.
This contradicts the fact that G is K 4-free. Thus V(Cy) — {z} = 0. Since
ux ¢ E(G)and 6(G) > 3, it follows that z is adjacent to every vertex of S—{u}.
Because G i1s K| 4-free and u dominates U?=3 V(C;), each odd component C;
is complete for all 4, 3 < i <5,

Claim 2: Foreacha€ S, |D,NS|=2.

Clearly, D, NS # 0 since ¢,(G — S) = 5. If |[D,N S| =1, then G contains
a K 4 centered at the vertex of D, NS, a contradiction. Hence, Claim 2 is
proved.

As a consequence of Claim 2 and Remark 2, |[Ng(e) N (S — {a})] < 1 for
each a € S. Now let S - {u} = {w, z,v}. Without any loss of generality, we
may assume that uvw ¢ E(G) and uz ¢ E(G). Since D, = {u,y}, ¥ is adjacent
to both w and z. Now consider ID,,. We next show that v € D,. Suppose
to contrary that v ¢ D,. By Claim 2, D, = {w,z}. Since wy € F(G) and
wz € E(G), it follows that w can dominate vertices in at most one component
among C3,Cy4 and Cs because of K 4-freedom of G. Without any loss of
generality, then, we may assume that w is adjacent to no vertex in Cy U Cs.
Then z must dominate Cy U Cs. But then z becomes a center of K, 4 since
zy € F(G) and 2z € FE{G). This contradiction proves that v € D,. Hence,
vu € E(G). Because D, = {u,y}, it follows that yv € E(G). Now every vertex
of § — {u} is adjacent to both z and y. Since G is K, 4-free, v can dominate
vertices in at most one component of C3UCyUCs. Thus the vertex of D, —{v}
must be in S by Claim 2 and hence must be a center of an induced K 4, again
a contradiction. This completes the proof of Case 2.2.

Case 3: So suppose z € S.

Clearly, since G is K 4-free, ¢,(G—§) = 4 and |S| = 3. Then u dominates
U?:g V(C;). Thus C; is complete for 2 < i < 4. By an argument similar to
that used in the proof in Case 2.1, each vertex of S— {u} is not adjacent to any
vertex of V(Cys). Further, for ¢ € V(Cy), D. € (S — {u}) U 2, V(C:). But
this is also impossible since no vertex of (§ — {u}) U U?:l V(C;) is adjacent to
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any vertex of V(). This completes the proof of Case 3 and hence the proof
of our theorem.

Theorem 1.5.3: If G is a K 4-free 3-vertex-critical graph of odd order
with minimum degree at least 3, then G is factor-critical.

Proof: Suppose to the contrary that G is not factor-critical. Then there
is a vertex v of G such that G — v = G, has no perfect matching. By Tutte’s
1-factor theorem and the fact that G, has even order, there exists a Tutte set
Sy € V(G,) such that ¢,{Gy — Sy) = |Sy|+2. Then, by Lemma 1.5.1, |S,| > 2.
Let S be S, U {v}. Then S is a Tutte set in G and ¢,(G — 8) > |S|+1 > 4.
Now let |S| = k. Since for each z € V(G), D, C S by Theorem 1.5.2, it follows
that for every vertex x of G there is a pair of vertices in § — {z}, say a and

b, such that D, = {a,b}. Since there are (g) = ik;—l) pairs of vertices of S

and at least k + (k + 1) = 2k + 1 vertices in G, by Remark 3 it follows that
2k+1< k(}‘T—l) and hence k& > 6.

On the other hand, k + 1 < ¢,(G —~ S) < 6 because G is K 4-free and
D, C S for each z € V(G). Hence, k < 5, a contradiction. This completes the
proof our theorem.

Qur bound on the minimum degree in Theorem 1.5.3 is best possible since
the graph G in Figure 1.5.1 is K 4-free 3-vertex-critical connected of odd order
with minimum degree 2, but is not factor-critical since G — v has no perfect
matching.

Figure 1.5.1

Note that there are infinitely many 3-vertex-critical connected graphs of
odd order containing K 4, for the graphs shown in Figure 1.5.2 all belong to
this family.
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1(2[1 - a perfect matching

Figure 1.5.2

Moreover, there are also infinitely many K 4-free 3-vertex-critical con-
nected graphs of odd order with minimum degree at least 3. The graph G 3
for any positive integer %, introduced by Brigham, Chin and Dutton [BCDI,
BCD2], is such a graph where V(Gar3) = {vo,v1,.... vak+2} and E{Goy 3) =
{viv11 < (i — 7) mod (4k + 3) < k}. Figure 1.5.3 shows Gg 3 and Gg 3.

Figure 1.5.3

Theorem 1.2.4 states that if G is a K, s-free 3-vertex-critical connected
graph of even order, then G has a perfect matching. One might expect that the
hypothesis that the graph be K 4-free in Theorem 1.5.3 can also be weakened
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to say that the graph be K s-free. But this is not the case since the graphs in
Figure 1.5.4 (with r,s > 3) are K s-free 3-vertex-critical connected graphs of
odd order with minimum degree at least 3, (in fact, with minimum degree at
least 4), but are not factor-critical.

K, - a perfect matching K _ - aperfect matching

2r 23

Figure 1.5.4

Note that G — v has no perfect matching. Further, G contains K, 4 as
a subgraph. If we increase the connectivity of the graphs involved, however,
we believe that one can relax the property of K s-free to K s-free. So we
conclude this section with the following conjecture.

Conjecture: If G is a K, 5-free 3-vertex-critical 2-connected graph of
odd order with minimum degree at least 3, then G is factor-critical.
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Chapter 2
Results on 3-Vertex-Critical Claw-Free Graphs

2.1 Introduction

A graph is called claw-free if it has no induced subgraph isomorphic to the
bipartite graph K 3. In this chapter, three new theorems about the connectiv-
ity of 3-vertex-critical graphs which are also claw-free are presented, together
with three corollaries about their k-factor-criticality.

Recall that (7, denotes the graph G — v, D, any minimum dominating set
of the graph G — v. Further, N(v) denotes the set of all vertices adjacent to
vertex v and N[v] the closed neighborhood of v.

The following remarks about D, are easily verified, but since we will
appeal to them repeatedly, we list them separately.

Remarks: If GG is 3-vertex-critical, then the following hold:
1. For every vertex v of G, |D,| = 2.
2. If D, = {z,y}, then z and y are not adjacent to v.

3. For every pair of distinct vertices v and w, D, # D,,.
We shall need the following four lemmas in establishing our results.

Lemma 2.1.1: ([BCD1]) A connected graph G is 2-vertex-critical if and
only if G is isomorphic to Ky, with a perfect matching removed.

Lemma 2.1.2: ([FHM; Theorem 2]) The diameter d of a y—vertex-
critical graph G satisfies d < 2(-y ~ 1) for v > 2.
|
Lemma 2.1.3: ([FHM; Theorem 6]) A connected graph G with diameter
4 is 3-vertex-critical if and only if it has two blocks each of which is 2-vertex-
critical.

Lemma 2.1.4: ([FHM; Lemma 5]) If there exist vertices u and v such
that Ng|u] € Ng[v], then G is not v-vertex-critical for any .
i

We now present a construction which yields a new infinite family of claw-
free 3-vertex-critical graphs.

For positive integers ¢, » and s, we construct the graph G(t,r, s} as
follows. Let X = {z1,z2,...,z¢}, ¥ = {y1,¥2,....%-}, T = {wr,uz,...,u,
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v1,V2, ... Ur} and S = {z1, 29, ..., 25, W1, Wa, ..., Ws }. Then set V(G(t,r, )} =
XUY UTuSU{a}, thus yielding a set of 2t +2r+2s+1 distinct vertices. Join
vertex a to each vertex of S. Form complete graphs on each of X, ¥ and T and
form a complete graph on S, except for the perfect matching {z;w;[1 < i < s}.
Finally, join each z; to each vertex of (T' — {u;}) U {21, 22,..., 25} and join
each vy, to each vertex of (T — {v;}) U {wy,wa,...,ws}. It is not difficult to
show that G(t,7,s) is a claw-free 3-vertex-critical graph. Figure 2.1.1 shows
the graphs G{1,2,1) and G(1,2,2). Note that these graphs are 2-connected
and 3-connected, respectively. Our theorems in the next section guarantee
certain connectivity for claw-free 3-vertex-critical graphs, given sufficient min-
imum degree. The graphs G(1,2,1) and G(1,2,2) show these assumptions on
minimum degree to be best possible.

G(L1,2,1)

G(1,2,2)
Figure 2.1.1

Lemma 2.1.5: If G is a claw-free 3-vertex-critical connected graph, then
G has diameter at most 3.

Proof: Let d be the diameter of G. Then, by Lemma 2.1.2, d < 4.
Suppose, to the contrary, that d = 4. Then, by Lemma 2.1.3, G has two
blocks, each of which is 2-vertex-critical. Then each block of G must be a
complete graph of even order without one perfect matching by Lemma 2.1.1.
Since (7 is connected, each of these blocks has at least four vertices. Further,
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these two blocks must overlap in one vertex, u say. But then u becomes a
center of K 3, a contradiction. This completes the proof of the lemma.

To see that the above upper bound on the diameter is best possible, the
reader is again directed to the infinite family described after Lemma 2.1.4
above.

We shall also make use of the following theorem on factor-critical graphs.
(See [IFFR, LY].)

Theorem 2.1.6: If G is (k + 1)-connected, claw-free and of order n, and
if n — k is even, then G is k-factor-critical.

Finally, the next two lemmas will be used repeatedly to obtain our main
results.

Lemma 2.1.7: Let G be a k-connected claw-free graph and suppose
k > 1. Suppose S is cutset of V(G) with |§| = k. Then

1. For any component C of G — 5, Ng(z)NC # @ for every z € S,
2. G — 5 has exactly two components.

Proof: Part (1) follows immediately from the fact that S is a minimum
cutset. Part (2) then follows by claw-freedom.

Lemma 2.1.8: Suppose GG and S are defined as in Lemma 2.1.7. In addi-
tion, suppose G is also 3-vertex-critical. Let C; and C5 be the two components
of G — S. Further, let A =V(Cy)— |J Ng(z) and B = V(C2) — {J Ng(z).

TeS i

TES
Then
1. For each i = 1, 2, G[Ng,(z)] is complete for every z € S,
2. A=0 or B=0; further, if k =2, then A# @ or B £,

3. if A=0 and [V(C1)| = 2, then [ Ng,(z) =0.

zES

Proof: Statement (1) follows immediately from Lemma 2.1.7(1) and the
fact that G is claw-free.

(2) If A # 0 and B # @, then the diameter of G must be at least 4. This
contradicts Lemma. 2.1.5. Hence, A = @ or B = 8. Now suppose k = 2 and
suppose further that A = @ and B = @. Then (G) = 2, a contradiction.
Hence, A # @ or B # 0. This proves (2).
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(3) Suppose A =0, but () Ng, (z) # 0. Let w € [ Ng,(z). It follows
zeS zeS
by (1), and the fact that A = @, that w must be adjacent to every vertex of

V(Cy) —{w}. Thus Ngw] = V(C,)US. Since |V (C;) — {w}| > 1, there exists
a vertex z € V(C)) — {w}. Clearly, Ng[z] C Nglw]. But this contradicts
Lemma 2.1.4 and completes the proof of our lemma.

2.2 Main Results

Theorem 2.2.1: Let G be a connected claw-free 3-vertex-critical graph.
Then G is 2-connected.

Proof: Suppose that & is not 2-connected. Then there exists a cutvertex
v € V(G). Moreover, G — v contains exactly two components by claw-freedom.
Let these two components be C) and C;. Let A and B be as given in Lemma
2.1.8 and suppose A = . Then v dominates V{(C)). Thus N[u]l C N|v] for
each vertex v in V(C}). But this contradicts Lemma 2.1.4 and completes the
proof of our theorem.

Theorem 2.2.2: Let G be a connected claw-free 3-vertex-critical graph.
Then if G is of even order or if §(G) > 3, then G is 3-connected.

Proof: Suppose, to the contrary, that G is not 3-connected. By Theorem
2.2.1, G is 2-connected, so G must have a (minimum) cutset S = {u,v}. By
Lemma 2.1.7(2), there must be exactly two components in G — S§. Denote
these components by C; and C5. Let A and B be as given in Lemma 2.1.8. By
Lemma 2.1.8(2), we may suppose that A =}, but B # 0. We now distinguish
three cases according to |V (Cy)|.

Case 1: |V(C)| = 1L

Let {z} = V(Ci). Then z is adjacent to both u and v. Thus §(G) = 2
and hence G is of even order by our hypothesis. By Lemma 2.1.4, uwv ¢ E(G)
otherwise Ng[z] C Ng[u].

Claim: For each w € V(C3} — B, D,, = {z,w'} where v’ € B.

Suppose without any loss of generality that w € Ng,(uv). Then Dy, N
(Ng, (u)u{u}) = @ by claw-freedom in G. We first show that z € D,,. Suppose
to the contrary that z ¢ D,,. Clearly, v € D,,. Since uv ¢ E(G), the single
vertex - call it a - of Dy, — {v} must be adjacent to every vertex of B U {u}.
This implies that vertex a is in Ng,(u), a contradiction. Hence, z € D,,.

Since B # 0, D,,—{z} C V(C,). Let D,,—{z} = {w'}. Then v’ dominates
V(Cs) — {w}. If w' € Ng,(v), then {u,w'} dominates G, a contradiction.
Hence, w’ ¢ N¢,(v). Since Dy, N (Ng(u) U {u}) =0, w’ € B. This proves our
claim.
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Now let V(C3) — B = {w;,ws,...,wy} where t > 1. By Claim 1, there
exists a set of vertices {wy,w5,..., wy} C B such that D,,, = {z,w!} for 1 <
¢ < t. Clearly, w{ # wj} for i # j by Remark 3. Therefore, |V(C,) — B| < |B].
Further, |B| > 2 because of connectedness of Cy. Since z € V(C;), for each
i, w; dominates V(Cs) — {w;}. Remark 2 together with the fact that |B| > 2
implies that w; € D,,,. Then w; dominates B — {w!}. Thus B is complete by
claw-freedom of G and the fact that w! dominates V(C,) — {w;}.

Suppose |B| > t+ 1. Choose b € B — {w{,w},...,w;}. Then b dominates
V(C%). Thus {b, z} dominates GG, a contradiction. Hence, |B| = ¢. This implies
that |V(G)| = 2t + 3 contradicting the fact that G is of even order. This proves
Case 1.

Case 2: |V(C))| = 2.

Let V(Cy) = {z,y}. Clearly, zy € E(G). By Lemma 2.1.8(3}, we may
suppose that u is adjacent to z, but not to y, and v is adjacent to ¥, but not
to z. Thus deg x = deg y = 2. But then by hypothesis, G is of even order.
Now consider G,. Clearly, D, N (Ng(v) U {v}) = &. Suppose v € D,. Since
wy ¢ E(G), x € D,. Then v dominates V(C3). But this is impossible since
B # 0. Hence, v ¢ D,. Thus |D, NV (Cy)| =1 and |D, NV (C3)| = 1.

Let {w} = D, N V(Cs). Then w dominates V(Cs). If w € V(Cy) — B,
then Ng[b] C Ng[w] for every vertex b € B, a contradiction. Hence, w € B.
If there is a vertex z € B — {w}, then N[z] C N|w], again a contradiction,
and so B — {w} = @. Thus B = {w}. Now let a € Ng,(u). Consider G,.
Since Ng,(u) is complete by Lemma 2.1.8(1), D, N (Ng, (uw) U {u,w}) = B.
But D, N V(Cy) # 0 because B # . Thus v ¢ D, otherwise no vertex
of D, is adjacent to z. Hence, D, N V(C1) # 0. Let {a'} = D, N V(Cs).
Clearly, o’ € N¢,(v) and o’ dominates V(C3) — {a}. Similarly, a € D, and a
dominates V(Cz) — {a’}. Hence, V(C5) — B is isomorphic to a complete graph
of even order 2t with a perfect matching deleted. Therefore, |V (G)| = 2t + 5,
contradicting the fact that G is of even order. This completes the proof of
Case 2.

Case 3: |[V(C))| = 3.

Then by Lemma 2.1.8(3), sets N¢, (u) and Ng, (v) must partition V(C1),
since A = §. So, without loss of generality, we may suppose |N¢, (u)| > 2.

Let x € N¢,(u). Consider G,. Clearly, |D,| = 2 and D,.N(N¢, {(u)U{u}) =
0. {Note that Ng, (u) is complete by Lemma 2.1.8(1).) Since [N, (u)—{z}| > 1
and v is not adjacent to any vertex of N¢, (u) by Lemma 2.1.8(3), it follows
that D, N Ng, (v) # 0. Let D, = {y,w} where y € N, (v). Again, by Lemma
2.1.8(3), yu ¢ E(G). Thus wu € E(G). Since y is not adjacent to any vertex
of V(C3) and B # 0, it follows that w € Ng,{u). Further, w dominates
V(C2)U{u}. Because B # 0, there is a vertex z € B. Clearly, Ng[z] € Ng|w].
This contradicts Lemma 2.1.4 and completes the proof of the theorem.

Theorem 2.2.3: Let GG be a connected claw-free 3-vertex-critical graph.
Then if §(G) > 5, G is 4-connected.
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Proof: Suppose to the contrary that G is not 4-connected. By Theorem
2.2.2, G is 3-connected, so there exists a cutset consisting of three vertices
in G, say § = {u,v,w}. By Lemma 2.1.7(2), G — S consists of exactly two
components, C; and C; say. Let A = V(C}) — (Ng(u) U Ng{v) U Ng(w)) and
B =V(C2) — (Ng(u) U Ng(v) U Ng(w)). Then by Lemma 2.1.7(1), Ng(z) N
V(C;) # 0 for every z € {u,v,w} and for i = 1,2. By Lemma 2.1.8(2), A =0
or B = (. Without loss of generality, we may assume that A = (. Note that
since 6(G) > 5 ,|V(Cy)| > 4 by Lemma 2.1.8(3). Further, |V(C2)| > 3.

Let z € N¢,(u). Consider G;. Clearly, |D,| = 2 and D,N{N¢, (v)U{u}) =
@, since N¢,(u) is complete by Lemma 2.1.8(1). We distinguish two cases
according to D,.

Case 1: D,Nn{v,w} =0

Since |[V(C1)| > 4 and |V(C2)| > 3, it follows that D, N V(C;) # @ and
D, NV(Cp) # 0. Put D, = {y,z} where y € V(C1) and z € V(C2). Then
y dominates V(C}) and z dominates V(C3) — {x}. Clearly, yz ¢ E(G) and
zz ¢ E(G). By Lemma 2.1.7(1) and the claw-freedom of G, zu ¢ E(G).
Thus yu € E(G) since D, = {y, z}. Since |V(C1)| > 4 and A = 0, it follows by
Lemma 2.1.8(3) that y is not adjacent to at least one vertex of {v, w}. Without
loss of generality, we may assume that yv ¢ E(G). Then zv € E(G). It follows
from Lemma 2.1.7(1) and the claw-freedom of G that vz ¢ E(G). We now
distinguish two cases according to yw.

Case 1.1: yw € E(G).

Note that y dominates V(Ci) U {u,w}. Choose a € V(Cy) — {y}. If
av ¢ E(G), then Ng|a] € Ng|y] contradicting Lemma, 2.1.4. Thus av € E(G)
for every a € V(C1)—{y}. Hence, N¢, (v) = V(C1)—{y}. By Lemma 2.1.8(1),
G[V(Cy) — {y}] is complete. Since y dominates V(Ci) U {u,w}, GIV(Cy)] is
complete. We next show that Ng, (u) = {y}.

Suppose to the contrary that there is a vertex y; € V(C1) — {y} such that
y1u € E(G). Consider Gy,. Clearly, Dy, N (V(C1)U {v,u}) = 0. Then D,, C
{w} U V(Cy). Since |V(C1)| > 4, w € Dy,. Then w dominates V(C1) — {y1}.
Next, choose y2 € V(Ci) — {y,v1}. Consider G,,. Clearly, Dy, N (V(C;) U
{v,w}) = 0. Then Dy, C {u} UV(Cs3). Since {V(C1)| > 4, u € Dy,. Then u
dominates V(C1) — {y2}. Now, if y3 € V(C1) — {y, ¥1,¥2}, then y3 is adjacent
to v, w and w. But this contradicts Lemma 2.1.8(3). Hence, N¢, (u) = {y}.
By applying a similar argument, we have N¢, (w) = {y}.

Now if a,b € V(C)) — {y}, then Ngla] = V(C:) U {v} = Ng[b]. But this
contradicts L.emma 2.1.4 and hence completes the proof in this case.

Case 1.2: yw ¢ E(G).

Since D, = {y, 2}, 2w € E(G). Now z dominates (V(Cz) — {z}) U {v, w}.
By Lemma 2.1.7(1) and the claw-freedom of G, wz ¢ E(G). Consider G..
Clearly, D, N ((V(Ca) — {z}) U {v,w}) = 0. Then D, C {u,z} UV(C1). Since
V(C2)| > 3, D, N {u,z} # 0. If D, = {u,z}, then uw € E(G) since zw
¢ E(G). But then Glu;w,x,y] becomes a claw centered at u, a contradiction.
Hence, D, # {u,r}. Now we show that u ¢ D,. Suppose to the contrary that
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uw € D,. Then z ¢ D,. Thus u dominates V{(C3) — {z}. By Lemma 2.1.8(1),
G[V(C3) — {=}] is complete. Since z dominates V(Cs) — {z}, G[V(C,)] is
complete except for the edge zz. Let z, € V(C32) — {z,z}. Then V(C3) U
{u} € Nglz1]. Consider G.,. Clearly, D,, N (V(Cy) U {u}) = @. Thus
D., € {v.w}UV(C)). But then no vertex of D,, is adjacent to = since
z € V(Cy) and v and w are not adjacent to z. This contradiction proves that
uw¢ D,. Thenx € D,. Let {y,} = D, — {z}. Since z € V(C3) and y, # u,
y1 € V(C1). Because z is not adjacent to any vertex of V(Ch)U{v, w}, y; must
dominate V(Cy)U{v,w}. Thus y; # y. By Lemma 2.1.8(3), y1u ¢ E(G). Now
consider Gy,. Clearly, Dy, N (V(C1)U {v,w}) =9. Thus D, C {u} U V(Cy).
Since |V(C1)| = 4, v € D,,. Then u dominates V{(C;) — {y1}. By Lemma
2.1.8(1), GIV(Ci1) — {wn}] is complete. Since y; dominates V(Cy) U {v,w},
G|V (C1)] is complete. Let yo € V(C1) — {y,y1}. Then V(C1)U {u} C Nglya].
Consider Gy,. Clearly, Dy, n(V(C;)U{u}) = 0. Then D, C {v,w}UV(Cs).
But then no vertex of D,, is adjacent to y since y € V(C1) and v and w are
not adjacent to y, a contradiction. This completes the proof in Case 1.2 and
hence in Case 1.

Case 2. D,n{v,w} #0.

Without any loss of generality, we may assume that v € D,. We distin-
guish three cases according to D, — {v}.

Case 2.1: D, — {v} € V(Cs).

Then v dominates V(C)) and thus G[V(C})] is complete by Lemma 2.1.8
(1). Let y1 € Ng,(u). Then V(C1) U {u,v} C N¢{y1]. Consider Gy,. Clearly,
Dy, N (V(C1) U {u,v}) = 0. Thus Dy, C {w}UV(Cy). Since |V(C1)| > 4,
w € D,,,. Then w dominates V(C1) — {y1}. Next suppose y2 € V(C1) — {1}
Then V(C1)U{v,w} C Ng(yz]. Consider Gy,. By a similar argument, we have
u € Dy, and u dominates V(C1) — {y2}. Now suppose yz € V(C1) — {y1, 92}
Clearly, ys is adjacent to v,w and u. This contradicts Lemma 2.1.8(3) and
completes the proof in this case.

Case 2.2: D, — {v} = {w}. .

Then vz ¢ E(G) and wz ¢ E(G). Further, V(Ci) = Ng, (v} U N, (w)
and vu € E(G) or wu € E(G). Without any loss of generality, we may assume
that vu € E(G).

Claim 2.2.1: Ng,(v) N Ng,(w) = 0.

Suppose to the contrary that Ng (v} N Ne (w) # 0. Let a3 € Neg,(v) N
Ng, (w). Then a; is adjacent to every vertex of V{(C;) — {a1} by Lemma
2.1.8(1). By Lemma 2.1.8(3), ayu ¢ E(G). Consider G,,. Clearly, D, N
(V(Cy) U {v,w}) =0. Thus D,, C {u} UV(C3). Since |V(C1)| > 4, u € Dq,.
Then u dominates V(C;) — {a1}. By Lemma 2.1.8(1), G[V(C1) — {a1}] is
complete. Since a; is adjacent to every vertex of V(Cy) — {a1}, G[V(C1)] is
complete. Suppose ay € V(C1)—{a1}. Since V(Ci) = Ng, (v)UNg, (w), asv €
E(G) or ayw € E(G). Suppose azv € E(G). Now V(C;)U{u,v} C Nglaz). By
Lemma 2.1.8(3), asw ¢ E(G). Consider G,,. By a similar argument, we have
w € D, and w dominates V(Cy) —{az}. Now every vertex of V(C1) —{a1, as}
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is adjacent to both u and w. Therefore, by Lemma 2.1.8(3), none is adjacent to
v. Let ag € V(Cy)—{a1,az}. Consider G,,. Clearly, D,, N(V(Cy)U{u,w}) =
0. Thus Dy, C {v} U V(C:). But then no vertex of D,, is adjacent to a4 for
as € V(Cy) — {a1,a2,a3}, a contradiction. Hence, apv ¢ E(G). By a similar
argument, asw ¢ E(G). Thus as € Ng, (v) U Ng, (w). But this contradicts the
fact that V{(C1) = N¢,(v) U N¢, {(w). Hence, our claim is proved.

Claim 2.2.2: N¢, (u) € Ng, (v).

Suppose to the contrary that there is a vertex b € Ng, (u) such that
b ¢ Ng, (v). Since uz € E(G) and uv € E(G), but vz ¢ E(G), it follows that
Glu; v, b, z] is a claw centered at u. This contradiction proves that b € Ng, (v)
for every b € N, (u). Hence, N, (u) C Ng, (v) as claimed.

Now consider G,,. Clearly, D, N(Ng(v)U{u,v}} =0. Since |Ng, (v}] = 1,
D, N Ne(w) # @ by Claim 2.2.1. Thus D, — Ng, (w) # {w} since wz ¢
E(G) and no vertex of N¢, (w) is adjacent to z. Now let D, = {y, z} where
y € Ng,(w). Clearly, z € V(C;). Thus y dominates V(C;). By Claim 2.2.2,
yu ¢ E(G). Hence, z dominates V(C2) U {u}. Now consider G,. Clearly,
D, n{V(Cy)U{u}) =0. Thus D, C {v,w} UV (Ci). But then no vertex of
D, is adjacent to x since € V((;) and v and w are not adjacent to z. This
completes the proof in Case 2.2.

Case 2.3: D, — {v} € V((C1).

Then v dominates V(C3)—{z} and B = §. By Lemma 2.1.8(1), G|V (C2)—
{z}] is complete. Since vz ¢ E(G) and 6(G) > 5, |V(Cy)| > 4.

Claim 2.3.1: Ng,(u) = {z}.

Suppose to the contrary that u is adjacent to some vertex of V(C3) —
{z}, r; say. Then zz; € F(G) by Lemma 2.1.8(1). Now V(C3) U {u,v} C
Nglz,]. Consider G,. Clearly, D, N(V{(Cy)U{u,v}) = 0. Then D, C {w}U
V(C)). Since |V(C3)| > 4, w € Dy,. Further, w dominates V(Ca) — {z1}. By
Lemma 2.1.8(1), G[V(C,) — {z1}] is complete. Consequently, G[V(C2)] is
complete since xz; € E(G) and G[V{(C3) — {z}] is complete. Next suppose
zo € V(Cy) — {z,z1}. Then V(Cy) U {v,w} C Ng|zz]. Consider G;,. Clearly,
D., N (V(C2) U {v,w}) = 0. Then D,, € {u} UV (C1). Since |[V(C3)| > 4,
u € D,,. Further, v dominates V(C;) — {x2}. Now for every z € V(C3) —
{z,z1, 72}, Nglz] = V(Ca) U {u,v,w}. Then Ng[r] € Ng[z]. This contradicts
Lemma 2.1.4. Hence, Ng, (u) = {z}.

Claim 2.3.2: Ng,{w) = {z}.

Suppose to the contrary that w is adjacent to some vertex of V(Cy) —{z},
y say. Note that (V(C3) — {z}) U {v,w} € Ngly]. Consider G,. Clearly,
D, N(V(C2) —{z})U{v,w} = 0. Then Dy C {u,z} UV (C)). Since N¢,(u) =
{x} and |V (C2)| = 4, it follows that x € Dy,. Further, x dominates V(C2)—{y}-
Since G[V(C2)—{z} is complete, G[V(C?3)] is complete except for the edge zy.
By Lemma 2.1.7(1) and the fact that wy € E(G) and zy ¢ E(G), it follows
that wr ¢ E(G) as otherwise w becomes a center of claw. Next suppose
Y1 € V(Cy) — {z,y}. Then V(C3) U {v} € Ngly]. Consider Gy,. Clearly,
Dy, N (V(Cy) U {v}) = 0. Then Dy, C {u,w}UV(Cy). Since Ng,(u) = {z}
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and |V(C3)| > 4, it follows that w € Dy, . Further, w dominates V(Cs) —
{z,y1}. Now let yo € V(C2) — {z,y,5n}. Then V(Cs) U {v,w} C Neglyal.
Consider Gy,. Clearly, Dy, N (V(Cs) U{v,w}) =8. Then D,, C {u} UV (C}).
But then no vertex of D,, is adjacent to any vertex of V(C2) — {z,42}, a
contradiction. Hence, Ng,{w) N (V(C>) — {z}) = @. It follows by Lemma
2.1.7(1) that N¢,(w) = {z} as claimed.

Now let z € V(C3)—{xz} such that zz € E(G). Then Ng(z] = V(Ca)U{v}.
Consider G,. Clearly, D,N(V(C2)U{v}) = 0. Then D, C {u,w}U V(C}). But
then no vertex of D, is adjacent to any vertex of V(Cq)—{z, 2}, a contradiction.
This completes the proof of Case 2.3 and hence the theorem is proved.

We now have the following corollary the proof of which is immediate by
Theorems 2.1.6, 2.2.1, 2.2.2 and 2.2.3.

Corollary 2.2.4: 1. Let G be a connected claw-free 3-vertex-critical
graph of odd order. Then G is factor-critical.

2. Let G be a connected claw-free 3-vertex-critical graph of even
order. Then & is bicritical.

3. Let G be a connected claw-free 3-vertex-critical graph of odd order.
Then if §(G) > 5, G is 3-factor-critical.
|

Note that the members of the infinite family shown in Figure 2.1.1 also
satisfy the hypotheses of Corollary 2.2.4(1).

It is known that every 3-factor-critical graph must be 3-connected. (See
|[F1; Theorem 2.5].) On the other hand, clearly the graph G(1,2,2) shown in
Section 2.1 is 3-connected and has minimum degree 4, but is not 3-factor-
critical. Thus the bound on minimum degree in Corollary 2.2.4(3) is best
possible. Note also that each G(t,r,s) for t + r > 4 and s > 3 satisfies the
hypotheses of Corollary 2.2.4(3).
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Chapter 3

Results on Connected Domination Critical Graphs

3.1 Introduction

Recall that a set S C V(G) is a (vertex) dominating set for G if every vertex of
G either belongs to S or is adjacent to a vertex of S and the minimum cardinality
of a dominating set for GG is called the domination number of G and is denoted
by 4(G). We say that a dominating set S for G is a connected dominating set
if G[5] is connected. The minimum cardinality of a connected dominating set
for G is called the connected domination number of G and is denoted by ~.(G).
Observe that v(G) < v.(G) and if ¥(G) = 1, then ¥{(G) = v.(G). Further, a
graph containing a connected dominating set is connected.

Graph G is said to be k& — y—critical if ¥(G) = k but v(G + ¢) < k for each
edge e ¢ E(G). (Clearly, then (G + €) = k — 1, for every edge e ¢ E(G)).
The study of k — y—critical graphs was begun by Sumner and Blitch [SB] in
1983. Clearly, the only 1 — y—critical graphs are K, for n > 1. Sumner and
Blitch showed that a graph G is 2 — y—critical if and only if G = |J_, K1, for
n; > 1 and r > 1. Since 1980 k — ~y—critical graphs have attracted considerable
attention with many authors contributing results. For summaries of most known
results, see [HHS; Chapter 16] as well as [FTWZ} and the references that they
contain. Most of these results concern 3 — y—critical graphs. The structure of
k — ~v—critical graphs for k > 4 is far from completely understood.

The similar concept of edge criticality with respect to the connected domi-
nation number just has received attention only recently. Graph G is said to be
k — v.—critical if 7.(G) = k but (G + e) < k for each edge e ¢ E(G). Clearly,
the only 1 —~.—critical graphs are K, for n > 1. Chen et.al. [CSM] were the first
to study k — y.—critical graphs. They pointed out that for each edge e ¢ F(G),
“Y(G) — 2 € 7{(G + e) € 7.(G) — 1. Observe that v.(C,) = n — 2. Clearly,
Y.(Cs + €) = 2 for any edge e ¢ E(Cs) but 4.(Cs +uv) = 4 if © and v are vertices
of Cy at distance 4.

If S is a connected dominating set for G, we shall denote by § >, G. Fur-
ther, if v and v are non-adjacent vertices of G and {u} U S, >, G — v for
some S C V(G)\{u,v}, we will follow previously accepted notation and write
[, S1] —cv. If S1 = {2}, then we write [u, 2] —, v instead of [u, {z}] —. v.
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Figure 3.1.1

Chen et.al.[CSM] established the following theorems:

_ Theorem 3.1.1: A connected graph G is 2 — ~y.—critical if and only if
G=Ui; Kin forn; > land r > 2. [ |

Theorem 3.1.2: Let &G be a connected 3 — ~.—critical graph and S an in-
dependent set with s > 3 vertices. Then the vertices in § may be ordered as
ay,Qg, ... a, in such a way that there exists a path xy,zs,...,7z,-1 in G — S with
la;,z;] —ca;y fori=1,2,...,s—1. [ |

Theorem 3.1.3: Let GG be a connected 3 — ~,—critical graph.

1. If S is a cutset of G, then ¢(G — S) < |S|+ 1.

2. If G has even order, then GG contains a perfect matching,.

3. The diameter of G is at most 3. [ |

Observe that Theorem 3.1.1 is similar to a characterization of 2 — v—critical
graphs mentioned above except for the lower bound on r. Further, Theorems
3.1.2 and 3.1.3 are true for 3 — y—critical graphs. One might expect that all
results on 3 — y—critical graphs are also valid for 3 — «.—critical graphs. But this
is not the case if we consider 3 — ~.—critical graphs with cutvertices. Ananchuen
and Plummer [AP3] showed that a connected 3 — y—critical graph may contain
more than one cutvertex. The graph in Figure 3.1.1 is as an example. They also
characterized connected 3 — y—critical graphs with more than one cutvertex.

In this chapter, we show that a 3 — ~.—critical graph can contain at most
one cutvertex. A characterization of 3 — «.—critical graphs with a cutvertex is
given in Section 3.3. Section 3.2 contains results for k — y.—critical graphs with
cutvertices for & > 3. We conclude this chapter with the results about matchings
in 3 — «y,—critical graphs in Section 3.4.

The following remarks are trivial to verify, but as we will appeal to them
repeatedly, we list them separately.

Remark: If G is a 3 —~,—critical graph and « and v are non-adjacent vertices
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of GG, then the following hold:
L. 7(G + uv) = 2,

2. If Nglu] U Ng[v] # V(G), then there exists a vertex z € V(G)\{u, v} such
that [u,2] —. v or [v,z] —, u. Further, if [u,z] —, v, then uz € E(G)
but v ¢ Ng(u) U Ng(z) and if [v,2] —, u, then vz € E(G) but u ¢
NG('U) U N(;(Z). ,

3.2. k& — v.— Critical Graphs with Cutvertices.

Lemma 3.2.1: For & > 3, let G be a k — ~y.—critical graph with a cutvertex
z. Then

1. G — z contains exactly two components,

2. If Cy and Cj are the components of G — z, then G [Ng, (z)] and G [Ng,(z)]
are complete.

Proof: Let Cy, Cy, - -+, C, t > 2, be the components of G — z.

(1) Suppose to the contrary that ¢t > 3. Let ¢; € Ng,(z) and ¢ € Ng,(z).
Consider G + ¢;cy. Since G is k — . —critical, v.(G + ¢1¢2) < k. Let S be a min-.
imum connected dominating set for G + ¢;¢;. Then |S| < &k — 1. Since ¢t > 3 and
G|[S] is connected, it follows that z € S. Then S is also a connected dominating
set for G because {¢;,c2} C Ng(z). But this contradicts the fact that v.(G) = k
since |S| < k — 1. Hence, ¢ = 2 as required. This proves (1).

(2) Suppose to the contrary that G[Ng, (2)] is not complete. Then there exist
non-adjacent vertices a and b of N¢,(z). Consider G+ ab. By a similar argument
as in the proof of (1), a minimum connected dominating set Sy for G + ab of size
at most & — 1 is also a connected dominating set for G. This contradicts the fact
that v.(G) = k. Hence, G[N¢, ()] is complete. Similarly, G[Ng,(z)] is complete.
This proves (2) and completes the proof of our lemma. [ |

Lemma 3.2.2: For k£ > 3, let G be a k — ,—critical graph with a cutvertex
z and let ¢ and C; be the components of G — z. Suppose S is a minimum
connected dominating set for . Then

1. z €8,
2. Fori=1,2; v.(C;) <k -1,

3. If C is a non-singleton component of G — z with v.(C) = k — 1, then C is
(k —1) — y.—critical.
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Figure 3.2.1

Proof: (1) follows immediately by the fact that G[S] is connected.

(2) is obvious if 4.(C;) < 2 since £ > 3. So we may suppose 7.(C;} > 3.
If SNV(C)) = 0, then, since z € S, V(C;} C Ng(z). By Lemma 3.2.1(2),
Y(C1) = 1, a contradiction. Hence, SN V{C;) # 0. Similarly, S N V{(Cy) # 0.
Because G[S] is connected and z € S, it follows that SN Ng,(z) # 0 fori = 1, 2.
By Lemma 3.2.1(2), SN V(C;) ». Ci. Hence, 7.(C;) < |SNV (C)] <k -1

(3) Let a and b be non-adjacent vertices of C. By Lemma 3.2.1(2), {a, b} € Ne(z).
Consider G' = G + ab. Since G is k — 4.—critical, there exists a connected dom-
inating set Sy of size at most k — 1 for G'. Since G'[S}] is connected, z € 5.
By a similar argument as in the proof of (2}, S N V(C) =, C + ab. Hence,
Y (C + ab) < k — 2. Therefore, C is (k — 1) ~ q.—critical as required. This
completes the proof of our lemma. n

Remark: Suppose v.(C) =t < k — 1 where C is defined as in Lemma 3.2.2.
Then C need not be ¢t —~.—critical. The graph G, in Figure 3.2.1, is 3—y.—critical
with a cutvertex z. Clearly, C' = G—{z,y} is a non-singleton component of G —x
with v.(C') =1 and is not 1 — 7. —critical.

Theorem 3.2.3 : For k > 3, let G be a k—~.—critical graph with a cutvertex
z. Suppose C; and Cs are the components of G — z. Let A = G[V(Cy) U {z}]
and B = G[V(Cy) U {z}] .Then

L. k-1 S’YC(A)+FYC(B) Sk

2. v.(A) + v.(B) = k if and only if exactly one of Cy and C; is singelton.

Proof: Let S be a minimum connected dominating set for G. By Lemma
322(1),zeS.

(1) We distinguish two cases.

Case 1: SNV(Cy) =@ or SNV(Cy) = 0.

Suppose without any loss of generality that SN V(C;) = 0. Then V() C
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Ne(z) and thus .(A) = 1. Since 7.(G) > 3, V(Cy)\Ng(z) # 0. Since G|S]
1s connected, there exists a vertex z; € Ng,(z) N.S. Then, by Lemma 3.2.1(2),
S — {z} ». B. Hence, v.(B) < k — 1. If there exists a connected dominating set
Sy of size at most k — 2 for B, then S; U{z} becomes a connected dominating
set of size at most k — 1 for GG, a contradiction. Hence, v.(B) = k — 1. Therefore,

YelA) + 7 (B) = k.

Case 2: SNV(Cy) # 0 and SNV(Cy) # 0.

Because z € S, [SNV(C)| + |SNV(Cy)] = k — 1. Since G[S] is connected,
there exists y;, € SN Ng,(z) for ¢ = 1,2. By Lemma 3.2.1(2), SN V(C;) ».
V(C:) U {z}. Hence, 7.(V(Cy) U {z}) < |SNV(C;)]. We next show that
for i = 1,2, 7(V(Cy) U {z}) = |SNV(C;)]. Suppose to the contrary that
T(V(Cr)U{a}) < |SNV{(Cy)| —1. Let S’ be a minimum connected dominating
set for V(Cy)U{z}. Then S'NNg, (z) # 0. Thus S'U{z}U(SNV(Cy)) >, G. But
this contradicts the fact that 7.(G) = k since [S"U{z} L (SNV(Cy)| < {SNV(C))]
~14 1+ |SNV(Cy)| = k — 1. This proves that v.(V(C)) U {z}) = [SNV(C})|.
Similarly, v.(V(C2) U {z}) = |S N V(C:)|. Therefore, v.(A) + 7.(B) = k — 1.
Hermnce, (1) is proved.

(2) The sufficiency is immediate. So we need only prove the necessity. Let
Ye(A)+7v(B) = k. fSNV(C)) # § and SNV (C,) # B, then, by the proof of Case
2, v(A)+v.(B) = k—1, a contradiction. Hence, SNV (Cy) = 0 or SNV (Cy) = 0.
Suppose without any loss of generality, we may assume that SN V(C;) = 0.
Then V(C;) € Ng(z). Since 7.(G) > 3, it follows that V(C3)\Ng(z) # 0 and
SNV(Cy) # 0. We next show that [V(C1)] = 1.

Suppose to the contrary that |[V(C)}| > 2. Let a; € V(C}) N Ng(z) and a; €
V(Ca) N Ng(x). Consider G + ajaz. Then there exists a set 53 € V(G)\{a1,a2}
of size at most k — 2 such that {a;,a:} U S ». G + a1a2 or [a1,51] = a2
or |as,S1] =. a1. Suppose {aj,a:} US, . G + a1as. Then |5 < k& — 3.
Thus (Sl M V(CQ)) U {ag} . Cy. Then (Sl M V(Cz)) U {ag,iﬂ} . G. But this
contradicts the fact that v.(G) = k since |[S; N V(Cs)| + |{az, z}| < k — 1. Hence,
{a1,a2} U S) does not dominate G + a,a;. We next suppose that [a;, 1] >, as.
Thus |51] < k& — 2 and S; N Ng(ap) = 0. Thus z ¢ 5. Since G[S1 U {a1}]
is connected, Sy € V(C)). But then no vertex of S; U {a:1} is adjacent to a
vertex of V(Cy)\{az}, a contradiction. Hence, {a;} U S, does not dominate
G — ay. Therefore. [as, Sy = a;. By an argument similar to that above, z ¢ 5
and S; C V(C3). But then no vertex of S; U {as} is adjacent to a vertex of
V(C1)\{a1}, a contradiction. Hence, |V(C})| = 1 as claimed. Therefore, C} is
singleton. This completes the proof of our theorem. |
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3.3 A Characterization of 3 —~.— Critical Graphs with a Cutvertex.

Our first theorem improves Theorem 3.1.3(1) established by Chen et.al.[CSM]
when a cutset is not singleton.

Theorem 3.3.1: Let & be a 3 — v.—critical graph and S a cutset of G with
S| =5 > 2. Then ¢(G — S) < |S|. Further, the upper bound on the number of
components is best possible.

Proof: Suppose to the contrary that ¢(G — S) > |S| +1 =s+1 > 3. By
Theorem 3.1.3(1), ¢(G — 5) = s+ 1. Let Ci, Cs,..., Cs;1 be the components of
G-—8. Forl<i<s+1,let ¢ € V(C;). Then A = {cy, o, .., Cs41} is indepen-
dent. By Theorem 3.1.2, the vertices in A may be ordered as a;, as,..., @54y Il
such a way that there exists a path z;, 72,..., z, in G — A with [a;, z;] —¢ @i
for 1 <1 < s. Note that a;z; € E(G) but z;a;,4; ¢ E(G). Further, z; € S. Thus
S = {z, 22, .., s} and a; is adjacent to every vertex of S. Observe that

{al, LEQ} 9] (jL:J: V(Cl)\{ag}) g NG(Z'I),

5+1

{0 25} U (t_l;Jl V(CO\ (V(C) U {am})) C No(za),

and for 2 < 3 <s—1,

{251, T4} U CQV(CI')\ (V(C;) U {aj+1})) C Ng(z;).

Now consider G + a;a,41. Then, by Remark (2) of Section 3.1, there exists a
vertex z such that [a;, z] —¢ as41 OF [@s11, 2] —¢ a1 In either case, z € S. Then
{as:1, 2} does not dominate G—ay since a, is adjacent to every vertex of S. Hence,

la1, 2] —¢ agy1. Since [a;, ;] —¢ @41 for 1 <4 < s and za.y) ¢ E(G), it follows
s+1

that z = z,. Then z, dominates UV(C;‘)\{GHI}- If s = 2, then {z;, 22} >, G,

a contradiction. Hence, s > 3. For1 21 < k < s-—1, consider G + aras;;. Then, by
Remark (2), there exists a vertex z; such that [ax, ;] ¢ agp1 oOF [as41, 23] —¢ k.
We show that in either case z,2,y € E(G). Suppose [ax, z1] —. as11. Then
z21 = T, Since axTx_y € E(G), z,24-1 € E(G) as claimed. Now suppose [ag, 1,
z1] —¢ ax. Then z; = z4_,. Since asp1zs ¢ E(G), 2417, € E(G) as claimed.
Hence, z,z; € E(G), for 1 < i < s —1 since z,.yz, € E(G). Because |as,
T2] — a3 and s > 3, it follows that zsa,., € E(G). But then {z,, z,} is a con-
nected dominating set for GG, a contradiction. Hence, ¢(G —8) < |S| as claimed. B

We next show that the upper bound on the number of components in The-
orem 3.3.1 is best possible. For an integer n > 3, we construct a graph G, as
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G

Figure 3.3.1

follows. Let X = {zi, z2,..., Zo—1} and Y = {1, ¥2,--+, Yn-1}. Then set
V{(G) = X UY U {a, b}, thus yielding a set of 2n distinct vertices. Form a com-
plete graph on X. Join each z; to each vertex of (Y\{y}) U {a} and finally
join b to each vertex of (Y\{y,-1}) U {a}. It is not difficult to show that G,, is
3 — 7y.—critical. Note that |X U {b}} = n and G, — (X U {b}) contains exactly n
components. Figure 3.3.1 shows the graphs G35 and Gj.

Corollary 3.3.2: Let G be a 3 — v.—critical graph with a cutvertex z. Sup-
pose C, and C; are the components of G — z. Then exactly one of C; and C, is
a singleton.

Proof: Clearly, at most one of C; or C; is a singleton. If V(C1)\Ng(z) # 0
and V(Cy)\Ng(z) # 0, then the distance from u to v is at least 4 for u €
V(C1)\Ng(z) and v € V(C2)\Ng{z). This contradicts Theorem 3.1.3(3). Hence,
V(Ci\Ng(z) = 0 or V(Co)\Ng(z) = 0. Since v.(G) = 3, it follows that
V(Ci)\Ng(z) # 0 or V(C2)\Ng(z) # 0. We may assume without any loss of
generality that V{Cy)\Ng(z) = 8 but V(C1)\Ng(z) # 0. Thus 1.(G[V(Cy) U
{z}]) = 1. By Theorem 3.2.3(1), 7.(G[V(C1) U {z}]) = 1 or 2. Suppose first
that . (G[V(Cy) U {z}]}) = 1. Let {a} be a minimum connected dominating set
for G[V(Cy) U {z}]. Clearly, a # z but az € E(G). But then {a,z} >. G , a
contradiction. Hence, v.(G[V(Cy)U {z}]) = 2. By Theorem 3.2.3(2), exactly one
of C) and C; is singleton. Because v.(G) = 3,|V(Cy)| = 2. Thus C; is singleton.
This completes the proof of our corollary. n

Corollary 3.3.2 need not be true for £ > 4. The graphs G; and G in Fig-
ure 3.3.2 are 4 — vy, —critical and 5 — .—critical, respectively. Note that none of

components of G; — z is singleton.

The following corollary follows immediately from Theorem 3.2.3(2) and Lemma
3.3.2.
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Corollary 3.3.3: Let G be a 3 — ~.—critical graph with a cutvertex z.
Suppose Cy and Cj are the components of G — z with C; is singleton. Then
Y(GIV(CH U {z}])) =2. n

Our next result establishes the number of cutvertices in 3 —~,—critical graphs.

Theorem 3.3.4: If G is a 3 — v.—critical graph, then G contains at most
one cutvertex.

Proof: Suppose to the contrary that r; and z; are distinct cutvertices of G.
By Lemma 3.2.1(1) and Corollary 3.3.2, G— z; contains exactly 2 components,
say Cy and Cy, where C is singleton. Let {y} = V(C3). Clearly, Ng(y) = {z1}.
Now consider (G— z,. Again, by Lemma 3.2.1 and Corollary 3.3.2, G— z3 con-
tains exactly 2 components, one of which is a singleton. Let {w} be the vertex set
of the singleton component of G- x3. Then w # y and Ng(w) = {z2}. Clearly,
{w,z2} C V(C)). Since v.(G) = 3, |V(C1)| = 3. Thus G — {ml,xg} contains at
least 3 components contradicting Theorem 3.3.1. This proves our theorern. W

We now present a construction which yields two infinite families of 3 — ~.—
critical graphs with a cutvertex. For positive integers n; and r with r > 2, let
T

H= Uf‘\’]‘ni. For 1 < j <, let ¢; be the center of K, in H and w{, wg ey
=1

wﬁ;j the end vertices of K, ,, in H. We now construct the graphs G, and G,
as follows. Set V(G,,) = V(H)U {z,y} and E(G,,) = E(H) U {zy} U {zw] |
1 <i<n;and 1 <j <7} Nextset V(Gy,) = V(H)U{z,y} UU where |U]
>1land E(G,) = E(H)U{zy} U{zw! | 1<i<n;jand 1 <j<r}uiuz|
w € Uand z € V(H)U (U\{u})}. Note that E(G,,) = E(G,)U{uz |ue U
and z € V(H)U (U\{u})}. It is not difficult to show that G, and G, are both
3 — v.—critical with the single cutvertex z. Note that v.(G., — {z,y}) = 2 but
Ye(Gep, — {@,¥}) = 1. Figure 3.3.3 shows as examples the graphs G, and G., of
order 7 and 8, respectively.
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Figure 3.3.3

Theorem 3.3.5: G is a 3 — v.—critical graph with a cutvertex if and only if
G e {G.,. Ge,}-

Proof: The sufficiency follows from our construction. So we only prove the
necessity. Let z be a cutvertex of G. By Lemma 3.2.1(1) and Corollary 3.3.2,
G — z contains exactly two components, one of them is singleton. Let C; and C5
be the components of G — z with V(C,) = {y}. Clearly, Ng(y) = {z}. By Corol-
lary 3.3.3, %.(G[V(C;) U {z}]) = 2. Let Sbea minimum connected dominating
set for GV (Cy) U {z}].

Claim: z ¢ S.

Suppose to the contrary that z € S. Let {1} = S\{z}. Since G[5] is con-
nected, zx; € E{G). Because Ng(y) = {z}, {z, z;} >. G, a contradiction. This
proves our claim.

It follows by our claim that S =, Cy and thus v.(C|) < 2. We distinguish two
cases.

Case 1: () = 2.
By Lemma 3.2.2(3), C} is 2 — vy.—critical. Thus C] = UKI,n‘. for n; > 1 and

i=1 _ _
r > 2 by Theorem 3.1.1. Let ¢; be the center of Kin; in C} and wi, wh,. .. wf the

end vertices of K, ,,, in C;. We need to show that Ng,(z) = LJ{wJ | 1 <i<m}

Claim 1.1: For n; > 1, if z is adjacent to ¢;, then z is not adjacent to any
vertex of {wy.wy,.. ., w) }.

This claim follows directly from Lemma 3.2.1(2) and the fact that c;w! ¢ E(G)
for 1 S 1 S .

Claim 1.2: If n; > 2, then z is not adjacent to c;.
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Suppose to the contrary that z is adjacent to ¢; for some j with n; > 2.
Then, by Claim 1.1, z is not adjacent to any vertex of {w?!,w),... ,wj_}. Con-

sider G + c;w]. Since y ¢ Nglc,] U Ngfuw?], by Remark (2), there exists a ver-
tex z € V(G)\{c;,w]} such that [c;, 2] —. w] or [w?,z] —. ¢;. In either case,

z € {z.y} since Ng(y) = {z}. Because {c;,w],y} is independent, z # y. Hence,
z =x. If [¢;, 2] —. w], then no vertex of {c;, z} is adjacent to w3, a contradiction,
Hence. {c;, z} does not dominate G — w]. Therefore, [w], ] -+, ¢;. But this con-
tradicts the connectedness of G[{w], z}] since zw] ¢ E(G). This proves our claim.

Claim 1.3: For n; > 2, z is adjacent to every vertex of {wf|1 <i<nyl

Suppose to the contrary that there exists a vertex wl, for some 1 < t < n;
and for some j, such that zw] ¢ E(G). By Claim 1.2, z¢; ¢ E(G). Consider
G + zw]. Since z and w] are not adjacent to ¢;, by Remark (2), there exists
a vertex z € V(G)\{z,w]} such that [z, 2] —. w! or [w}, 2] —. . If [wl,
z] —. z, then z # y since zy € E(G). But then no vertex of {w{, z} is adja-
cent to y since Ng(y) = {z}, a contradiction. Hence, {w] ,z} does not dominate
G — z. Therefore, [z, 2] —, w! . Then zz € E(G) and 2w! ¢ E(G). Since Ng(w!
) =V(GN\{z.y.¢;} and z¢; ¢ E(G), it follows that z = y. But then no vertex of
{z, z} is adjacent to ¢;, a contradiction. This proves our claim.

Claim 1.4: For n; = 1, z is adjacent to exactly one of {c;,wj}.

Suppose to the contrary that z is adjacent to neither c¢; nor wl. Consider
G + ¢cjw]. By Remark (2), there exists a vertex z € V(G)\{¢;, w]} such that lc,,
z] —re w1 or [wl, 2] —. ¢;. Suppose [¢;, 2] —. wl. Since G[{cJ,z}] is connected,
z ¢ {LL y} because (NG( JU Ngly)) N {c;} = 8. But then no vertex of {cj, z}is
adjacent to y. a contradiction. Hence, {c;, 2z} does not dominate G — ujq. By a
similar argument, {w], z} does not dominate G —¢;. Thus (G + cwl) > 2, a
contradiction. Hence, z is adjacent to ¢; or wj. By Claim 1.1, z is adjacent to
exactly one of {c;, wi}.

Without any loss of generality, we may assume that zw)] € E(G) for each j

with n; = 1. Now Ng(z) = {y} U LJ{*w;L1 | 1 <4 < n;}. Hence, G = G, as
=1
required.

Case 2: v.(Cy) = 1.

Let u be a vertex of Cy with {u} >, Cy. If u € N, (z), then {u,z} ». G, a
contradiction. Hence, u ¢ N¢,(z) and Nglu] = V(C1). Let U = {u | {u} . C1}.
Clearly, [U| > 1. C)\U # @ and ~.(C, — U) > 2. Further, Ng (2} NU = 0.

Claim 2.1: If @ and b are non-adjacent vertices of €}, then az € E(G) but
br ¢ E(G) or bz € E(G) but ax ¢ E(G). Further, if az € E(G) , then a domi-
nates V(C))\{b}. Similarly, if bz € E(G}, then b dominates V(Ci)\{a}.
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