

บทคัดย่อ

รหัสโครงการ:	BRG4780002
ชื่อโครงการ:	การพัฒนาและการประยุกต์ใช้ระบบต่อเนื่องสำหรับการศึกษาการคุณชีมไได้ของ แร่ธาตุและโลหะหนัก
หัวนักวิจัย:	ศ.ดร. ยุวadi เจริญวัฒนา ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล
Email Address:	scysw@mahidol.ac.th
ระยะเวลาโครงการ:	1 พฤษภาคม 2547 – 30 เมษายน 2550

การวิเคราะห์ปริมาณทั้งหมดของโลหะหนักหรือแร่ธาตุในตัวอย่างมีประโยชน์จำกัด เพราะธาตุต่างๆ อาจดำรงอยู่ได้ในรูปฟอร์มที่ต่างกันซึ่งมีความสามารถในการเคลื่อนตัว การคุณชีมหรือการนำไปใช้ได้ของโลหะหนักหรือแร่ธาตุนั้นๆ ที่แตกต่างกัน ทำให้มีผลกระทบของธาตุต่างๆ ต่อสิ่งแวดล้อมและชีวิตของมนุษย์ที่ต่างกันด้วย งานวิจัยนี้ได้ประยุกต์ใช้วิธีใหม่ในการประเมินผลกระทบของการปนเปื้อนของโลหะหนักจากกิจกรรมอุตสาหกรรมหลอมโลหะและอุตสาหกรรมการถลุงแร่ โดยใช้ระบบการสกัดเป็นลักษณะขั้นแบบไหลต่อเนื่องที่พัฒนาขึ้นใหม่ ทั้งนี้ได้เลือกศึกษาการณ์การปนเปื้อนจากโรงงานที่น่าจะมีปัญหานำไปในประเทศไทย คือปัญหาจากการหลอมโลหะตะกั่วจากแบบเตอร์เร่ก้า และปัญหาจากการถลุงโลหะสังกะสีที่ทำให้เกิดการปนเปื้อนของแคนดเมียม โดยได้ศึกษาถึงความสามารถในการเคลื่อนตัวของตะกั่วและแคนดเมียมที่ปนเปื้อนอยู่ในดิน ดินตะกอนและอากาศในบริเวณใกล้ๆ กับโรงงานดังกล่าว นอกเหนือจากนั้น ได้ศึกษาถึงรูปฟอร์มของตะกรันเหล็กที่เก่าอยู่ในท่อนำส่งแก๊สธรรมชาติ สำหรับงานวิจัยอีกส่วนหนึ่ง ได้ทำการพัฒนาวิธีวิเคราะห์แบบไหลต่อเนื่องเพื่อศึกษาการคุณชีมหรือการนำไปใช้ได้ของแร่ธาตุในอาหาร ระบบที่พัฒนา ขึ้นนี้เป็นการจำลองหลอดแก้วให้เสมือนเป็นระบบการย่อยในกระเพาะอาหารและการคุณชีมสารอาหารในลำไส้เล็ก โดยอาศัยวิธีแบบบทชี้ในการจำลองการย่อยในกระเพาะอาหาร และใช้ระบบการซึมผ่าน เยื่อบางแบบไหลต่อเนื่อง (continuous-flow dialysis, CFD) ในการจำลองการคุณชีมสารอาหารในลำไส้เล็ก ด้วยระบบ CFD ทำให้สามารถเก็บสารละลายตัวอย่างที่ซึมผ่านเยื่อบางของอุกมาเพื่อการวิเคราะห์ปริมาณแร่ธาตุ โดยใช้หน่วยตรวจวัดประเภทต่างๆ ได้ เช่น การวัดการคุณลักษณะโดยอาศัยไฟและความร้อน การวัดการคายแสลงของธาตุ โดยอาศัยพลาสม่าเป็นแหล่งพลังงาน ซึ่งได้ทำการศึกษาถึงวิธีการเชื่อมต่อระบบ CFD ที่พัฒนาขึ้นกับหน่วยตรวจวัดประเภทต่างๆ ทำการประเมินวิธีที่พัฒนาขึ้นใหม่เปรียบเทียบกับวิธีแบบบทชี้ที่ใช้กันอยู่เดิม ในด้านความแม่นยำ ความถูกต้อง และประสิทธิภาพ เพื่อประยุกต์ใช้ในการประเมินค่าการคุณชีมได้ของแร่ธาตุในอาหาร และศึกษาปัจจัยที่มีผลต่อค่าการคุณชีมได้

คำหลัก: ระบบแบบไหลต่อเนื่อง การสกัดลักษณะขั้น การซึมผ่านเยื่อบาง

ABSTRACT

Project Code:	BRG4780002
Project Title:	Development and Applications of Continuous Systems for Study of Bioavailability of Minerals and Heavy Metals
Investigator:	Juwadee Shiowatana
	Department of Chemistry, Faculty of Science, Mahidol University
Email Address:	scysw@mahidol.ac.th
Project Period:	May 1, 2004 – April 30, 2007

The determination of information on total concentration of heavy metals or minerals in samples has limited use because elements can exist in different chemical forms with varying mobility and availability to living organisms and thus can have varying impacts on environment and human life. Chemical speciation is therefore necessary. In this research, a newly developed continuous-flow sequential extraction was applied to assess the impact of heavy metals contamination caused by metal smelting and mining activities. Two major case studies were investigated including lead contamination in soil and air collected from the area nearby lead smelting industry and cadmium contamination in soil and sediment collected from the area in the vicinity of zinc mining industry. In addition, iron speciation in the natural gas pipe line was examined. Further to a different topic, a novel method for the determination of *in vitro* mineral bioavailability, or mineral bioaccessibility, was developed based on a simulated gastric digestion in a batch system followed by a continuous-flow intestinal digestion. The simulated intestinal digestion was performed in a dialysis bag placed inside a channel in a flowing stream of dialyzing solution. The continuous flow dialysis in the intestinal digestion step enables dialysable components to be continuously removed for element detection by various detection methods, including flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), and inductively coupled plasma optical emission spectrometry (ICP-OES). The interfacing between the continuous-flow dialysis system and the detection method was carefully optimized. The precision, accuracy and efficiency of the developed method were compared with the conventional batch analysis. The developed system was applied to examine factors affecting dialyzability, or the mineral bioavailability of food.

Keywords: continuous-flow, sequential extraction, dialysis