บทคัดย่อ

ประชากรกว่า 3 พันล้านคนอาศัยอยู่ในพื้นที่ซึ่งเสี่ยงต่อการติดเชื้อไวรัสไข้เลือดออก แต่ละปีใน จำนวนดังกล่าวมีการติดเชื้อมากถึง 100 ล้านคน การติดเชื้อไข้เลือดออกในคนเกิดจากโดนยุงที่มีเชื้อไวรัสกัด ซึ่งการติดเชื้อนี้อาจเกิดขึ้นโดยไม่แสดงอาการจนถึงมีอาการรุนแรง ส่วนในยุงนั้นการติดเชื้อเกิดจากการที่ยุง กินเลือดจากคนที่มีเชื้อไวรัสไข้เลือดออกอยู่ในกระแสเลือดเข้าไป

ไวรัสไข้เลือดออกสามารถเข้าสู่เซลล์และแบ่งตัว จากนั้นจึงผลิตไวรัสใหม่จากทั้งเซลล์ของสัตว์เลี้ยง ลูกด้วยนมและยุง ขั้นตอนแรกเป็นขั้นตอนที่สำคัญที่สุดคือการเกิดปฏิสัมพันธ์ระหว่างไวรัสไข้เลือดออกกับ โปรตีนตัวตอบรับบนผิวเซลล์ แม้ว่ามีการค้นพบโปรตีนตัวตอบรับของไวรัสไข้เลือดออกบนผิวเซลล์ของสัตว์ เลี้ยงลูกด้วยนม อาทิ DC-SIGN และ BiP แต่ข้อมูลของโมเลกุลซึ่งทำหน้าที่เป็นสื่อกลางในการจับและเข้าสู่ เซลล์ยุงของไวรัสไข้เลือดออกยังมีน้อย

เซลล์ตับคน (HepG2) และเซลล์ยุง C6/36 ถูกเพาะเลี้ยงเพื่อศึกษาโปรตีนตัวตอบรับที่ไวรัสใช้ใน การเข้าเซลล์สัตว์เลี้ยงลูกด้วยนมและเซลล์ยุง การศึกษาการจับของไวรัสไข้เลือดออกทำได้โดยการใช้เทคนิค virus overlay protein binding assay (VOPBA) และการวิเคราะห์โดยวิธี mass spectroscopy จากนั้นจะ พิสูจน์หน้าที่ของโปรตีนดังกล่าวในการจับและเข้าเซลล์ของไวรัสด้วยวิธี inhibition assay ซึ่งใช้ทั้ง natural ligand และแอนติบอดีจำเพาะต่อโปรตีนนั้น

ไวรัสไข้เลือดออกทั้งสี่สายพันธุ์มีการจับที่จำเพาะบนผิวเซลล์ตับคน โปรตีนตัวตอบรับของสายพันธุ์ ที่ 1 บนผิวเซลล์ตับนี้คือ 37/67kDa high affinity laminin receptor โปรตีนบนผิวเซลล์ยุงจากเซลล์ C6/36 แสดงรูปแบบการจับของไวรัสไข้เลือดออกที่จำกัด และผลจาก VOPBA แสดงว่าโปรตีนขนาด 53 kDa เป็น โปรตีนที่ไวรัสไข้เลือดออกสายพันธุ์ 2, 3 และ 4 ใช้จับบนผิวเซลล์ ทั้งนี้ผลการทดลองดังกล่าวยังคงต้องทำ การวิเคราะห์ด้วย mass spectroscopy เพื่อค้นหาโปรตีนนี้ต่อไป

คำสำคัญ: Aedes, ไวรัสไข้เลือดออก, ยุง, laminin, ตับ, ตัวตอบรับ

Abstract

It has been estimated that some 3 billion people live in areas at the risk of infection with the dengue virus, and that up to 100 million infections occur each year, making dengue the most common arthropod-borne viral disease. Humans become infected following the bite of an infected mosquito, and infection can either be essentially without symptoms, or can result in severe, life-threatening manifestations, while insects (primarily Aedes mosquitoes) become infected when they feed on a viraemic individual.

As with other arthropod borne viruses, the dengue virus is able to enter into, replicate within and be produced from cells of both a mammalian and an insect origin. The first, and most critical, step in this process in both types of cells is the initial interaction between the dengue virus and its cognate binding/receptor protein. While several mammalian dengue virus receptors have been identified, including DC-SIGN and BiP, little is known of the molecules mediating the binding and entry of the dengue virus into insect cells.

To investigate the receptor proteins used by mammalian and insect cells, two cell culture systems were employed, HepG2 liver cells for human cells and C6/36 cells for insect cells. Dengue virus binding was investigated by the virus overlay protein binding assay technique (VOPBA) and dengue virus binding proteins analyzed by mass spectroscopy. Where candidate proteins were identified, inhibition assays were undertaken using either the natural ligand or antibodies directed against the candidate receptor protein.

The four dengue serotypes displayed considerable serotype specific heterogeneity when binding to human liver cell membranes. One dengue virus serotype 1 receptor protein, the 37/67kDa high affinity laminin receptor was conclusively identified. Insect cell membrane proteins from C6/36 showed a more restricted pattern of dengue virus binding, and one 53kDa binding proten was identified from VOPBA analysis as binding dengue virus serotype 2, 3 and 4. Mass spectroscopy analysis was unable to identify this protein however.

Key words: Aedes, dengue, insect, laminin, liver, receptor,