

รายงานวิจัยฉบับสมบูรณ์

โครงการวิจัยเอนไซม์ของวิถีการสังเคราะห์เบสไพริมิดีนเป็นตำแหน่ง เป้าหมายของการพัฒนายาในเชื้อมาลาเรียของคน

Pyrimidine Biosynthetic Enzymes as Drug Target in Human Malaria Parasite

โดย

ศาสตราจารย์ ดร. จิระพันธ์ กรึงไกร ภาควิชาชีวเคมี คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

กรกฎาคม 2551

สัญญาเลขที่ BRG4880006

รายงานวิจัยฉบับสมบูรณ์

โครงการวิจัยเอนไซม์ของวิถีการสังเคราะห์เบสไพริมิดีนเป็นตำแหน่ง เป้าหมายของการพัฒนายาในเชื้อมาลาเรียของคน

Pyrimidine Biosynthetic Enzymes as Drug Target in Human Malaria Parasite

โดย

ศาสตราจารย์ ดร. จิระพันธ์ กรึงไกร ภาควิชาชีวเคมี คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และคณะ

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง "เอนไซม์ของวิถีการสังเคราะห์เบสไพริมิดีนเป็นตำแหน่งเป้าหมาย ของการพัฒนายาในเชื้อมาลาเรียของคน (Pyrimidine Biosynthetic Enzymes as Drug Target in Human Malaria Parasite)" ได้รับทุนสนับสนุนจากสำนักงาน กองทุนสนับสนุนการวิจัย ตามสัญญาเลขที่ BRG4880006 ระยะเวลาดำเนินการ 3 ปี ตั้งแต่ 28 กรกฎาคม 2548 ถึง 27 กรกฎาคม 2551 ผู้รับทุนขอกราบขอบพระคุณสำนักงานฯ ที่ ให้การสนับสนุนอย่างเด็มที่ทำให้โครงการวิจัยสำเร็จลุล่วงไปด้วย และขอขอบคุณบุคคลต่อไป นี้ที่มีส่วนสำคัญให้โครงการสำเร็จ ได้แก่ ผู้ร่วมวิจัยชาวไทย 2 ท่านคือ อ.ดร.สุดารัตน์ กรึงไกร (คณะวิทยาศาสตร์ มหาวิทยาลัยรังสิต) ผศ.ดร.พิสิฏฐ์ ประพันธ์วัฒนะ (คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย) นักศึกษา คือ น.ส.สวิราศจี พงศบุตร นายปานันท์ กาญจนภูมิ ผู้ ร่วมวิจัยชาวต่างชาติ 2 ท่าน คือ Prof. Toshihiro Horii และ Tsuyoshi Inoue (Osaka University, Japan) เลขานุการ คือ น.ส.กาญจนา เคาวสุต รวมทั้ง ภาควิชาชีวเคมี คณะ แพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในฐานะสถาบันตันสังกัดที่ให้ความสนับสนุนและ อำนวยความสะดวกในโครงการวิจัยอย่างดียิ่ง

สารบัญ

	หน้า
กิตติกรรมประกาศ	3
สารบัญ	4
บทคัดย่อ	5
Abstract	8
Executive Summary	12
Project Description	16
1. Rationale and Objectives	16
2. Methods, Results and Discussion	19
Outputs	37
Appendix (ภาคผนวก)	39
1. บทความสำหรับการเผยแพร่	39
2. Reprints	43

บทคัดย่อ

รหัสโครงการ: BRG4880006

ชื่อโครงการ: เอนไซม์ของวิถีการสังเคราะห์เบสไพริมิดีนเป็นตำแหน่งเป้าหมายของการ

พัฒนายาในเชื้อมาลาเรียของคน

ชื่อนักวิจัย: ศาสตราจารย์ ดร. จิระพันธ์ กรึงไกร

ภาควิชาชีวเคมี คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail address: fmedjkk@md.chual.ac.th.,jerapan.k@gmail.com.

ระยะเวลาโครงการ: 28 กรกฎาคม 2548 - 27 กรกฎาคม 2551

โครงการวิจัย:

โครงการวิจัยนี้ต้องการสร้างองค์ความรู้เกี่ยวกับวิถีการสังเคราะห์เบสไพริมิดีนในเชื้อ มาลาเรียของคนให้มีความเข้าใจอย่างถ่องแท้ และใช้เป็นตำแหน่งเป้าหมายของการพัฒนายา รักษาต่อไป จากผลงานวิจัยที่ผ่านมาแสดงว่าการสังเคราะห์เบสไพริมิดีนซึ่งเป็นสารตั้งต้นใน กระบวนการสังเคราะห์สารพันธุกรรมมีความแตกต่างระหว่างเชื้อมาลาเรียและของคน ดังนั้น ถ้ายับยั้งการทำงานของวิถีการสังเคราะห์เบสไพริมิดีนในเชื้อมาลาเรียได้ จะต้านการเจริญ เติบโตของเชื้อมาลาเรีย สามารถนำสารยับยั้งดังกล่าวมาสู่การพัฒนายารักษามาลาเรียชนิด ใหม่ได้อย่างมีประสิทธิภาพ

โครงการวิจัยนี้จึงมีวัตถุประสงค์ดังนี้ (1)ใด้สร้างความรู้เกี่ยวกับชีวเคมีและอณู ชีววิทยา ของคุณลักษณะวิถีการสังเคราะห์เบสไพริมิดีนในเชื้อมาลาเรียของคน ที่เกี่ยวกับใด ใฮโดรออโรเทท (DHO) เอนไซม์ตัวที่สามของวิถี และ (2) มีความเข้าใจอย่างถ่องแท้ถึง โครงสร้างเอนไซม์ 2 ชนิดคือ ออโรเทท ฟอสโฟไรโบสีลทรานซ์เฟอเรส (OPRT) และ ออ โรทิไดเลท ดีคาร์บอกซีลเลส (OMPDC) เอนไซม์ตัวที่ห้าและหกของวิถีการสังเคราะห์ เบสไพริมิดีนในเชื้อมาลาเรีย โดยมีเป้าหมายในการได้มาซึ่งโครงสร้างสามมิติของเอนไซม์ที่ ศึกษาอยู่เป็นตำแหน่งเป้าหมายใหม่ในการออกแบบและพัฒนายารักษามาลาเรีย

ผลการวิจัยที่ได้จากโครงการในระยะเวลา 3 ปีที่ผ่านนี้ โดยครอบคลุมวัตถุประสงค์ ข้าง ต้น สรุปได้ดังนี้

1. ได้ทำการแยกเอนไซม์ DHO ซึ่งเร่งปฏิกิริยาการเปลี่ยน carbamoyl aspartate ไปเป็น dihydrorotate ได้อย่างบริสุทธิ์จากเชื้อมาลาเรียของคนที่เพาะเลี้ยงได้มากพอใน ห้อง ทดลอง และได้ทำการโคลนยืน DHO ซึ่งพบว่าอยู่บนโครโมโซมคู่ที่ 14 แล้วนำไป แสดงออกของยืนนี้ในแบคทีเรียอีโคไล ทำการแยกเอนไซม์รีคอมบิแนนท์ให้บริสุทธิ์และมีการ ทำงานได้ประสิทธิภาพสูง เอนไซม์ที่เตรียมได้ทั้งจากเชื้อมาลาเรียและรีคอมบิแนนท์ข้างต้น แสดงคุณสมบัติการเร่งปฏิกิริยาแบบโมเลกุลเชิงเดี่ยวได้เหมือนกับคุณสมบัติของเอนไซม์ แบบที่ 2 ที่มีผู้ศึกษามาก่อน และยังแสดงคุณสมบัติทั้งในแง่จลนศาสตร์และผลการใช้สาร

ยับยั้งเอนไซม์ เช่น orotate และอนุพันธ์ของมันเหมือนกับคุณสมบัติของเอนไซม์แบบที่ 1 ที่พบได้ในเอนไซม์ของสิ่งมีชีวิตชั้นสูงรวมทั้งของคนด้วย ผลการวิจัยนี้ได้รับการตีพิมพ์และ เก็บข้อมูลยืนไว้ในฐาน ข้อมูลสากล

- 2. ได้ทำการโคลนยีนส์ OPRT และ OMPDC จากเชื้อมาลาเรียของคน ซึ่ง OPRT เร่งปฏิกิริยาการเปลี่ยน orotate และ 5-phosphoribosyl-1-pyrophosphate ไปเป็น orotidine 5'-monophosphate (OMP) และ OMPDC เร่งปฏิกิริยาการ เปลี่ยน OMP ไปเป็น uridine 5'-monophosphate (UMP) แล้วนำไปแสดงออก ของยีนส์ทั้งสองในแบคทีเรียอีโคไล ทำการแยกเอนไซม์รีคอมบิแนนท์ทั้งสองให้บริสุทธิ์ เอนไซม์ที่ได้ทำงานมีประสิทธิภาพสูง ได้ศึกษาเปรียบเทียบกับเอนไซม์ของคนที่มีการศึกษา ไว้ก่อนหน้านี้แล้วพบ ว่ามีคุณสมบัติแตกต่างกันระหว่างเอนไซม์นี้ในเชื้อมาลาเรียและในคน อย่างสิ้นเชิง จากนั้นนำเอนไซม์รีคอมบิแนนท์ PfOMPDC ที่บริสุทธิ์สูงและมีปริมาณมาก พอ ไปทำให้เกิดผลึกโดยอาศัยสาร polyethylene glycol เป็นตัวตกผลึก นำผลึกที่ได้ไป ทำให้เกิดการหักเหของ X-ray โดยใช้เครื่อง synchrotron ที่กำลังขยาย 2.7 อังสตรอม สมมาตรของผลึกเป็น trigonal และ R3 space group ผลการวิจัยนี้มีการร่วมมือกับ Professor T. Horii และคณะ แห่ง Osaka University และได้รับการตีพิมพ์
- 3. ได้ทำการวิเคราะห์โครงสร้างสามมิติของเอนไซม์ PfOMPDC ในรูปแบบของ เอนไซม์อิสระ ของเอนไซม์ที่มี substrate OMP จับอยู่ และของเอนไซม์ที่มี product UMP จับอยู่แทน OMP โดยการนำผลึกของเอนไซม์ทั้ง 3 รูปแบบข้างต้นที่ได้ ไปใช้ เครื่อง synchrotron ที่ Spring-8 Japan ที่กำลังขยายขนาด 2.7, 2.65 และ 2.6 อังสตรอมตามลำดับ โครงสร้างสามมิติของเอนไซม์ที่ได้ ทำให้ทราบกลไกการเร่งปฏิกิริยา เริ่มตั้งแต่การที่ substrate OMP จับกับ active site มีการจัดเรียงใหม่ของ hydrogen network มีการเปลี่ยนแปลงของโครงสร้างสามมิติของเอนไซม์ และการกำจัดหมู่คาร์บอกซี ลออกจาก OMP ให้ได้ UMP ในที่สุด โครงสร้างสามมิติของเอนไซม์ที่ได้นำไปเป็น ตำแหน่งเป้าหมายใหม่ในการใช้ออกแบบและการพัฒนายารักษามาลาเรีย ซึ่งกลุ่มของเรา เป็นกลุ่มแรกที่ได้โครงสร้างสามมิติของเอนไซม์ OMPDC จากเชื้อมาลาเรียของคนชนิดฟัล ซิพารัม ผลการวิจัยนี้มีการร่วมมือกับ Professor T. Horii และคณะ แห่ง Osaka University และได้รับการตีพิมพ์และเก็บข้อมูลโครงสร้างสามมิติของเอนไซม์ทั้ง 3 รูปแบบ ไว้ในฐานข้อมูลสากล
- 4. ได้ทำการโคลนยืนส์ OPRT และ OMPDC ที่ถูกตัดด้านปลายอะมิโนให้สั้นลง จากเชื้อมาลาเรียของคน ซึ่งทั้ง OPRT และ OMPDC ของเชื้อมีขนาดใหญ่กว่าเอนไซม์ เดียวกันที่อยู่ในสิ่งมีชีวิตชั้นสูงรวมทั้งของคนโดยพบว่าที่ด้านปลายอะมิโนของเอนไซม์จาก เชื้อมีจำนวนกรดอะมิโนเพิ่มขึ้น แล้วนำไปแสดงออกของยืนส์ที่สั้นลงทั้งสองในแบคทีเรียอี โคไล ซึ่งยืน truncated mutant OPRT เท่านั้นที่มีการแสดงออกและในปริมาณที่ต่ำมาก แต่ก็ทำ การแยกเอนไซม์รีคอมบิแนนท์ mutant OPRT ออกมาได้และมีความเสถียรและมี

ประสิทธิภาพที่ไม่ดีเมื่อเทียบกับเอนไซม์รีคอมบิแนนท์ที่เป็น wild type OPRT ที่ได้จาก ข้อ 2 งานวิจัยส่วนนี้จะมีการดำเนินต่อไปโดยเป็นวิทยานิพนธ์ของนิสิตระดับปริญญาเอก 2 คน

ผลงานวิจัยของโครงการนี้ในช่วงเวลา 3 ปีที่ได้รับทุนสนับสนุน มีการผลิตปริญญาโท-เอก มีการเสนอผลงาน มีการร่วมมือกับต่างประเทศ มีการเก็บข้อมูลยืนและข้อมูลโครงสร้างสาม มิติของเอนไซม์ไว้ในฐานข้อมูลสากล มีผลงานวิจัยจากโครงการโดยตรงได้รับการตี พิมพ์จำนวน 4 เรื่อง (1-4) และจากโครงการทางอ้อมอีก 4 เรื่อง (5-8) ดังนี้

- 1) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human parasite *Plasmodium falciparum. Acta Crystallographica* **F62**, 542-545 (2006)
- 2) Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase. *Journal of Biochemistry* **143**, 69-78 (2008)
- 3) Dihydroorotase of human malarial parasite *Plasmodium* falciparum differs from host enzyme. *Biochemical and Biophysical* Research Communication **366**, 821-826 (2008)
- 4) Malaria parasite: genomics, biochemistry and drug target for antimalarial development. *Chulalongkorn Medical Journal* **50**, 127-142 (2006)
- 5) Malarial parasite carbonic anhydrase and its inhibitors. *Current Topics in Medicinal Chemistry* **7**, 909-917 (2007)
- 6) The alpha-carbonic anhydrase from the malarial parasite and its inhibition. *Current Pharmaceutical Design* **14**, 631-640 (2008)
- 7) Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of the malaria parasite. *Asian Pacific Journal of Tropical Medicine* **1**, 31-49 (2008)
- 8) Biochemistry research in Thailand: present status and foresight studies. *ScienceAsia* **34**, 1-6 (2008)

Abstract

Project Code: BRG4880006

Project Title: Pyrimidine Biosynthetic Enzymes as Drug Target in

Human Malaria Parasite

Investigator: Prof. Dr. Jerapan Krungkrai, Department of Biochemistry,

Faculty of Medicine, Chulalongkorn University, Rama

4 Rd., Pathumwan, Bangkok, Thailand.

E-mail Address: fmedjkk@md.ac.th.,jerapan.k@gmail.com.

Project Period: 28 July 2005–27 July 2008

Project Description:

This project is performed to better understanding of *P. falciparum* metabolic pathway with the goal of illuminating new chemotherapeutic targets for drug development. Since *P. falciparum* is totally dependent on *de novo* synthesis of pyrimidine nucleotides from small precursors, and differs from its human host, having both the *de novo* and salvage pathways. Thus, interference of this unique pathway in *P. falciparum* will result in an effective mean to control the disease.

The specific objectives of the project (TRF supported) are: (1) to conduct molecular and biochemical characterization of the third enzyme of the pathway, namely, dihydroorotase (DHO), catalyzing formation of dihydroorotate from carbamoyl aspartate, and (2) to characterize structural, kinetic, and functional properties of the recombinant orotate phosphoribosyltransferase (OPRT, [orotate reaction: phosphoribosyl-1-pyrophosphate (PRPP) \rightarrow orotidine monophosphate (OMP) + PP_i]), and orotidine 5'-monophosphate decarboxylase (OMPDC, reaction: [OMP → uridine 5'-monophospate (UMP)]), the fifth and sixth enzymes of the pyrimidine pathway in human malarial parasite, P. falciparum. One of our ultimate goal for the ongoing project in my laboratory is structure-based design of antimalarial drug development based on the known 3-dimensional structure of the enzymes.

In the 3-year project, we have the following results to fulfill our objectives:

1. The enzyme DHO has been purified from *P. falciparum* obtained from *in vitro* cultivation, and the gene encoding *P. falciparum* DHO (*Pf*DHO) has been identified and located on chromosome 14, cloned, sequenced and functionally expressed as soluble protein in *Escherichia coli*. Both native and recombinant *Pf*DHO, exhibiting a monofunctional enzyme similarly to type II DHO, are shared kinetic properties and inhibitory effects by orotate and its 5-substituted

derivatives similarly to type I DHO which is found in higher organisms like human enzyme. The results were published in *Biochem. Biophys. Res. Commun.* vol. 366, pp. 821-826 (2008). The nucleotide sequence of the gene *Pf*DHO was deposited in GenBank/EMBL/DDBJ databases with accession number AB373011.

- 2. Genes encoding *P. falciparum* OPRT (*Pf*OPRT) and *P. falciparum* OMPDC (*Pf*OMPDC) were functionally expressed in *E. coli*.. The recombinant *Pf*OMPDC has been purified homogeneity in a large amount and then crystallized by the seeding method in the hanging drop using polyethylene glycol as the precipitant. The complete set of X-ray diffraction data from the crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. The crystal exhibits trigonal symmetry (space group *R*3). This work was cooperated with Prof T. Horii at Osaka University, Japan. The results were published in *Acta Crystallogr*. vol. F62, pp. 542-545 (2006).
- 3. The crystal structures were analyzed from the X-ray diffraction and data collected at SPring-8 Japan, and the works have been collaborated with Osaka University. The X-ray analysis of apo, substrate OMP or product UMP-complex form of PfOMPDC at 2.7, 2.65 and 2.6 Å, respectively. Our results provide insight into the substrate recognition mechanism with dynamic structural changes and the rearrangement of the hydrogen network at the active site of the enzyme. The structural basis for the 3-dimensional structure of substrate or product binding to PfOMPDC will help to uncover the decarboxylation mechanism and facilitate structure-based optimization of new antimalarial drugs. We were the first group in the world to discover this. We had one publication for the crystal structure works which was published in J. Biochem. vol.143, pp. 69-78 (2008). The three crystal structures complexed with substrate or product or uncomplexed forms were deposited in ProteinDataBank with the PDB entries ID: 2ZA1, 2ZA2 and 2ZA3.
- 4. Lastly, since both *Pf*OPRT and *Pf*OMPDC malarial proteins contain long N-terminal extension that the unique properties have never been found in these two enzymes of other organisms, constructions of N-terminally truncated *Pf*OPRT and *Pf*OMPDC enzymes were then performed by our two PhD graduates. The N-terminally truncated *Pf*OPRT was produced as the mutant enzymes, however, its very low yield was obtained. The truncated mutant *Pf*OMPDC was not expressed in *E. coli*. Our preliminary study suggests that the truncated *Pf*OPRT mutant enzyme is less active and stable than the wild type *Pf*OPRT. Further characterization of the mutant enzymes will be studied in

details. This part will be the PhD thesis of these students in the coming years.

In the 3-year project, we have outputs for our activities as follows:

- a) There are four publications:
- 1. Krungkrai S.R., Kusakari, Y., Tokuoka, K., Inoue, T., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Mori, Y., Kai, Y., Krungkrai, J., and Horii, T. (2006) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human parasite *Plasmodium falciparum*. *Acta Crystallographica* **F62**, 542-545.
- 2. Tokuoka K., Kusakari Y., Krungkrai S.R, Matsumura H., Kai Y., Krungkrai J., Horii T., Inoue T. (2008) Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase. *Journal of Biochemistry* **143**, 69-78.
- 3. Krungkrai, S.R., Wutipraditkul, N., and Krungkrai, J. (2008) Dihydroorotase of human malarial parasite *Plasmodium falciparum* differs from host enzyme. *Biochemical and Biophysical Research Communication* **366**, 821-826.
- 4. Krungkrai, J., and Krungkrai, S. (2006) Malaria parasite: genomics, biochemistry and drug target for antimalarial development. *Chulalongkorn Medical Journal* **50**, 127-142.
 - b) Graduation:

One MSc student was graduated, two PhD students are being trained.

c) Presentation:

There was a poster presentation in "The second Thailand-Japan joint forum on infectious diseases" with topic entitled: "Functional characterization of *Plasmodium falciparum* pyrimidine enzymes orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase".

d) Collaboration:

We have solid collaborations with expert groups in Osaka University (Japan) and University of Florence (Italy).

- e) There are four publications related to the ongoing project:
- 1) Krungkrai, J., Krungkrai, S.R., and Supuran, C.T. (2007) Malarial parasite carbonic anhydrase and its inhibitors. *Current Topics in Medicinal Chemistry* **7**, 909-917.
- 2) Krungkrai, J., and Supuran, C.T. (2008) The alphacarbonic anhydrase from the malarial parasite and its inhibition. *Current Pharmaceutical Design* **14**, 631-640.

- 3) Krungkrai, J., Kanchanaphum, P., Pongsabut, S., and Krungkrai, S.R. (2008) Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of the malaria parasite. *Asian Pacific Journal of Tropical Medicine* **1**, 31-49.
- 4) Krungkrai, J., Incharoensakdi, A., and Tungpradabkul, S. (2008) Biochemistry research in Thailand: present status and foresight studies. *ScienceAsia* **34**, 1-6.

Executive Summary

Project Title: Pyrimidine Biosynthetic Enzymes as Drug Target in

Human Malaria Parasite (Project Code: BRG4880006)

Investigator: Prof. Dr.Jerapan Krungkrai, Department of Biochemistry,

Faculty of Medicine, Chulalongkorn University, Rama 4

Rd., Pathumwan, Bangkok, Thailand.

E-mail: fmedjkk@md.ac.th.,jerapan.k@gmail.com.

Period: 28 July 2005–27 July 2008

Project Description:

Malaria remains one of the world's major public health problems. *Plasmodium falciparum*, the etiologic agent of the most lethal and severe form, is responsible for 1.5-2.7 million deaths annually. Chemotherapy of malaria is available but it is complicated both drug toxicity and widespread drug resistance. The need for more efficacious and less toxic agents, particularly rational drugs that exploits pathways and targets unique to the parasite, is therefore acute. This project is performed to better understanding of *P. falciparum* metabolic pathway with the goal of illuminating new chemotherapeutic targets for drug development. Since *P. falciparum* is totally dependent on *de novo* synthesis of pyrimidine nucleotides from small precursors, and differs from its human host, having both the *de novo* and salvage pathways. Thus, interference of this unique pathway in *P. falciparum* will result in an effective mean to control the disease.

The specific objectives of the project (TRF supported) are: (1) to conduct molecular and biochemical characterization of the third enzyme of the pathway, namely, dihydroorotase (DHO), catalyzing formation of dihydroorotate from carbamoyl aspartate, and (2) to characterize structural, kinetic, and functional properties of the recombinant orotate phosphoribosyltransferase (OPRT, reaction: [orotate phosphoribosyl-1-pyrophosphate (PRPP) \rightarrow 5'orotidine monophosphate (OMP) + PP_i]), and orotidine 5'-monophosphate decarboxylase (OMPDC, reaction: [OMP → uridine 5'-monophospate (UMP)]), the fifth and sixth enzymes of the pyrimidine pathway in human malarial parasite, P. falciparum. One of our ultimate goal for the ongoing project in my laboratory is structure-based design of antimalarial drug development based on the known 3-dimensional structure of the enzymes.

In the 3-year project, we have the following results to fulfill our objectives:

- 1. The enzyme DHO has been purified from *P. falciparum* obtained from *in vitro* cultivation, and the gene encoding *P. falciparum* DHO (*Pf*DHO) has been identified and located on chromosome 14, cloned, sequenced and functionally expressed as soluble protein in *Escherichia coli*. Both native and recombinant *Pf*DHO, exhibiting a monofunctional enzyme similarly to type II DHO, are shared kinetic properties and inhibitory effects by orotate and its 5-substituted derivatives similarly to type I DHO which is found in higher organisms like human enzyme. The results were published in *Biochem. Biophys. Res. Commun.* vol. 366, pp. 821-826 (2008). The nucleotide sequence of the gene *Pf*DHO was deposited in GenBank/EMBL/DDBJ databases with accession number AB373011.
- **2**. Genes encoding *P. falciparum* OPRT (*Pf*OPRT) and *P. falciparum* OMPDC (*Pf*OMPDC) were functionally expressed in *E. coli*.. The recombinant *Pf*OMPDC has been purified homogeneity in a large amount and then crystallized by the seeding method in the hanging drop using polyethylene glycol as the precipitant. The complete set of X-ray diffraction data from the crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. The crystal exhibits trigonal symmetry (space group *R*3). This work was cooperated with Prof T. Horii at Osaka University, Japan. The results were published in *Acta Crystallogr*. vol. F62, pp. 542-545 (2006).
- 3. The crystal structures were analyzed from the X-ray diffraction and data collected at SPring-8 Japan, and the works have been collaborated with Osaka University. The X-ray analysis of apo, substrate OMP or product UMP-complex form of PfOMPDC at 2.7, 2.65 and 2.6 Å, respectively. Our results provide insight into the substrate recognition mechanism with dynamic structural changes and the rearrangement of the hydrogen network at the active site of the enzyme. The structural basis for the 3-dimensional structure of substrate or product binding to PfOMPDC will help to uncover the decarboxylation mechanism and facilitate structure-based optimization of new antimalarial drugs. We were the first group in the world to discover this. We had one publication for the crystal structure works which was published in J. Biochem. vol.143, pp. 69-78 (2008). The three crystal structures complexed with substrate or product or uncomplexed forms were deposited in ProteinDataBank with the PDB entries ID: 2ZA1, 2ZA2 and 2ZA3.
- **4**. Lastly, since both *Pf*OPRT and *Pf*OMPDC malarial proteins contain long N-terminal extension that the unique properties have never been found in these two enzymes of other organisms, constructions of N-terminally truncated *Pf*OPRT and *Pf*OMPDC enzymes were then

performed by our two PhD graduates. The N-terminally truncated *Pf*OPRT was produced as the mutant enzymes, however, its very low yield was obtained. The truncated mutant *Pf*OMPDC was not expressed in *E. coli*. Our preliminary study suggests that the truncated *Pf*OPRT mutant enzyme is less active and stable than the wild type *Pf*OPRT. Further characterization of the mutant enzymes will be studied in details. This part will be the PhD thesis of these students in the coming years.

In the 3-year project, we have outputs for our activities as follows:

- (a) There are four publications:
- 1) Krungkrai S.R., Kusakari, Y., Tokuoka, K., Inoue, T., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Mori, Y., Kai, Y., Krungkrai, J., and Horii, T.(2006) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human parasite *Plasmodium falciparum*. *Acta Crystallographica* **F62**, 542-545.
- 2) Tokuoka K., Kusakari Y., Krungkrai S.R, Matsumura H., Kai Y., Krungkrai J., Horii T., Inoue T. (2008) Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase. *Journal of Biochemistry* **143**, 69-78.
- 3) Krungkrai, S.R., Wutipraditkul, N., and Krungkrai, J. (2008) Dihydroorotase of human malarial parasite *Plasmodium falciparum* differs from host enzyme. *Biochemical and Biophysical Research Communication* **366**, 821-826.
- 4) Krungkrai, J., and Krungkrai, S. (2006) Malaria parasite: genomics, biochemistry and drug target for antimalarial development. *Chulalongkorn Medical Journal* **50**, 127-142.

(b) Graduation:

One MSc student was graduated, two PhD students are being trained.

(c) Presentation:

There was a poster presentation in "The second Thailand-Japan joint forum on infectious diseases" with topic entitled: "Functional characterization of *Plasmodium falciparum* pyrimidine enzymes orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase".

(d) Collaboration:

We have solid collaborations with expert groups in Osaka University (Japan) and University of Florence (Italy).

(e) There are four publications related to the ongoing project:

- 5) Krungkrai, J., Krungkrai, S.R., and Supuran, C.T. (2007) Malarial parasite carbonic anhydrase and its inhibitors. *Current Topics in Medicinal Chemistry* **7**, 909-917.
- 6) Krungkrai, J., and Supuran, C.T. (2008) The alphacarbonic anhydrase from the malarial parasite and its inhibition. *Current Pharmaceutical Design* **14**, 631-640.
- 7) Krungkrai, J., Kanchanaphum, P., Pongsabut, S., and Krungkrai, S.R. (2008) Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of the malaria parasite. *Asian Pacific Journal of Tropical Medicine* **1**, 31-49.
- 8) Krungkrai, J., Incharoensakdi, A., and Tungpradabkul, S. (2008) Biochemistry research in Thailand: present status and foresight studies. *ScienceAsia* **34**, 1-6.

Project Description

1. Rationale and Objectives

Malaria remains one of the world's major public health problems, including countries like Thailand. *Plasmodium falciparum*, the etiologic agent of the most lethal and severe form, is responsible for 1.5-2.7 million deaths annually. Chemotherapy of malaria is available but it is complicated both drug toxicity and widespread drug resistance. The need for more efficacious and less toxic agents, particularly rational drugs that exploits pathways and targets unique to the parasite, is therefore urgent. This project is performed to better understanding of *P. falciparum* metabolic pathway with the goal of illuminating new chemotherapeutic targets for drug development.

The *de novo* pyrimidine biosynthetic pathway of *P. falciparum* is an important target for drug development because the parasite, unlike its human host, is unable to salvage pyrimidine bases and nucleosides. The malarial parasite relies on the *de novo* pathway for its pyrimidine precursors. Thus, inhibitors of the pathway could be effective antimalarial agents, as the infected patient could synthesize their pyrimidine nucleotides mostly from salvage pathways *via* uridine and cytidine nucleosides. The activities of all six of the enzymes necessary to synthesize uridine 5'-monophosphate (UMP) have been identified in *P. falciparum* (see diagram).

The biochemical studies on the enzymes of the pathway in *P. falciparum* and *P. berghei* have revealed some interesting features. The first three enzymes, carbamyl phosphate synthase II (CPS II, pyr1), aspartate transcarbamylase (ATC, pyr2), and dihydroorotase (DHO, pyr3) appear to exist as discrete proteins similar to the activities in prokaryotic system. This is unlike the activities in the mammalian systems where the CPS II, ATC and DHO activities are found in a single multifunctional protein. The ATC and DHO are poorly characterized enzymes. Orotate analogues, potent inhibitors of the malarial DHO, 5-fluoroorotate and 6-thiodihydroorotate have strong antimalarial activities against both *P. falciparum in vitro* and also *P. berghei* in mouse model. However, molecular and biochemical properties for DHO in *P. falciparum* are presently not known.

Numerous studies have focused on the dihydroorotate dehydrogenase (DHOD, pyr4), the fourth enzyme in the pathway, particularly as a target of the antimalarial agents, hydroxynaphthoquinone. The DHOD in *P. falciparum* and *P. berghei* has been proved to be mitochondrial protein. The enzymatic reaction of the malarial DHOD requires coenzyme CoQ for catalysis. The DHOD gene homologue of *P. falciparum* has been cloned, and expressed in our lab (supported from TDR/WHO), and also by other groups.

The orotate analogues, particularly 5-fluoroorotate, have strong antimalarial activities. 5-Fluoroorotate and other orotate analogues do inhibit both the malarial DHO and DHOD, but they also inhibit thymidylate synthase, most likely following conversion to their respective nucleotide analogues by orotate phosphoribosyltransferase (OPRT, pyr5) and orotidine 5'-monophosphate (OMP) decarboxylase (OMPDC, pyr6), the fifth and sixth enzymes. An effective antimalarial agent pyrazofurin inhibits malarial OPRT

while its 5'-monophosphate derivative inhibits malarial OMPDC.

Supported from the TRF (BRG4580020), the two enzymes OPRT and OMPDC have been purified to homogeneity from *P. falciparum*. Characterizations of both enzymes have been studied, i.e., physicochemical and kinetic properties. The *P. falciparum* OPRT and OMPDC exist as a multienzyme complex having two subunits each of OPRT and OMPDC. We have cloned both pyr5 and pyr6 genes encoding *P. falciparum* OPRT and OMPDC, respectively. We have expressed both *P. falciparum* OPRT and OMPDC genes in *E. coli*. Using the recombinant proteins, the tight-associated enzymes were confirmed as the multienzyme complex, which are similar to those of the native *P. falciparum* enzymes. However, detailed kinetic, structural and functional characteristics of the multienzyme complex formation are poorly understood. A systemic study is necessary to understand the unique properties of the malarial OPRT and OMPDC enzyme complex.

In this funding project (BRG4880006), we have two main objectives as follows:

- 1. To conduct molecular and biochemical characterization of dihydroorotase (DHO)
- 2. To characterize structural, kinetic, and functional properties of the recombinant orotate phosphoribosyltransferase (OPRT) and OMP decarboxylase (OMPDC)

One of our ultimate goal for the ongoing projects in my laboratory is structurebased design and optimization of antimalarial drug development based on the known 3dimensional structure of the pyrimidine enzymes.

2. Methods, Results and Discussion

During the 3-year period of the proposal we have carried out the experiments simultaneously to serve our two objectives. The experimental results are described in ordering the objectives of the project.

2.1 Molecular and biochemical characterization of *P. falciparum* DHO

Molecular and biochemical properties of *P. falciparum* DHO are poor understood. The malarial DHO seems to have similar properties to the bacterial enzyme. Thus, we intend characterize this monofunctional enzyme in *P. falciparum* using both molecular and biochemical approaches to identify the unique features.

2.1.1 Purification of P. falciparum DHO

The *P. falciparum* culture is maintained continuously and is scale up for mass cultivation using a modified procedure of Trager and Jensen. The native enzyme DHO has been purified from mass culture. Purification was performed using FPLC techniques. The enzyme activity was assayed by using radioactive substrate and TLC technique.

2.1.2 Cloning and expression of pyr3 gene encoding PfDHO

The gene *pyr3* encoding *Pf*DHO was identified and localized on chromosome 14. The amino acid sequence is 30% identity with the known crystal structure *E. coli*. The ORF of *pyr3* was cloned by PCR technique. The sequence of the *pyr3* gene was verified. Expression of the *pyr3* gene was performed in *E. coli* as soluble active protein. Purification of the recombinant enzyme was performed using nickel-affinity columns.

2.1.3 Physical and kinetic characterization of native DHO

We measured the activity of DHO from synchronized *in vitro* cultures of P. falciparum. The total activity in the trophozoite (87.4 \pm 10.2 nmol min⁻¹ per 10⁸ parasites) and schizont (108 \pm 13 nmol min⁻¹ per 10⁸ parasites) stages were increased \sim 23-fold and \sim 28-fold, respectively, as compared to the activity in the ring stage

(3.8±0.5 nmol min⁻¹ per 10⁸ parasites). This finding confirms stage-dependent activity of the pyrimidine enzyme in *P. falciparum*. From the crude extract preparation of the parasite to FPLC on Mono Q, Superose, and finally Mono P columns, the DHO was purified to near homogeneity at ca. 356-fold and 26% yield. The purified enzyme appeared as a dominant band at 42 kDa on SDS-PAGE. Gel filtration chromatography on the Superose column of the purified DHO obtainable from the Mono P column showed the enzyme activity eluted as a single symmetric peak at 40±4 kDa, indicating that the native enzyme exists in the monomeric form.

Comparison the *P. falciparum* and *P. berghei* amino acid sequences with the crystal structure in *E. coli* to determine structural features revealed two salt bridges and three hydrophobic interactions on dimeric interface, responsible for the subunit-subunit interaction in the bacteria. These residues are not conserved in the *P. falciparum* and *P. berghei* sequences, partly supporting our observation that the native malarial enzyme is a monomeric protein, as we have premised based on *P. berghei*. DHO from the bacterial *A. aeolicus* and the apicomplexan *T. gondii* that appear to function in monomeric form, likewise, lack this conserved residues for the subunit-subunit interaction.

2.1.4 Physical and kinetic characterization of recombinant DHO (*Pf*DHO)

Gel filtration chromatography of the recombinant enzyme shows that the activity was eluted at both monomeric (40 ± 3 kDa) and dimeric (80 ± 8 kDa) position, although more than 75% of the total activity was associated with the monomeric form. However, both forms had similar k_{cat} values. This observation was not found in the native enzyme isolated from the parasite. The dimeric property of the recombinant DHO was, however, confirmed by dimethyl suberimidate chemical cross-linking analysis. Only the cross-linked dimeric form was observed. The recombinant PfDHO, demonstrated in both

studies, however, also suggest that the monofunctional enzyme may possibly active in both monomeric and dimeric forms. The dimeric form may exist under certain conditions during the enzyme preparations. Thus, oligomerization behavior remains to be explored by having its crystal structure.

The enzyme catalyzes reversible reaction of L-CA to L-DHO, the activities of the pfDHO were then measured in both reactions over the pH range of 4.0-11.0. In the ring cyclization reaction, very high activity appeared at acidic pH. In contrast, the rate of ring cleavage reaction was very high at alkaline pH, and lower activity was observed at acidic pH. The pH-activity profile for both reactions intersects at pH 6.6, suggesting that the enzyme catalysis involves His residues located on the active site. This observation is similar to those found in mammalian, T. gondii, and C. fasciculata enzymes. At pH 6.0, the enzyme displayed normal Michaelis-Menten saturation kinetics for the maximal ring cyclization of L-CA. $K_{\rm m}$ of L-CA and $k_{\rm cat}$ values were determined to be 0.285+0.012 mM and 60.2+4.4 min⁻¹, respectively. The maximal ring cleavage reaction rate of L-DHO measured at pH 9.0 has $K_{\rm m}$ of L-DHO and $k_{\rm cat}$ values of 0.012 ± 0.001 mM and 89.5 ± 10.6 min⁻¹, respectively. The $k_{\rm cat}/K_{\rm m}$ values for the ring cyclization and cleavage reactions were 2.11×10^5 and 7.46×10^5 M⁻¹ min⁻¹, respectively. Comparing to the mammalian enzyme, its catalytic efficiency in the ring cyclization reaction is 680-fold more than that of the malarial enzyme, while that in the ring cleavage reaction, only a 60-fold difference was noted. This indicates that the monofunctional DHO enzyme is generally less efficient than the DHO in the mammalian multifunctional CAD enzyme.

Since the equilibrium between L-CA and L-DHO favors the former by a ratio of 17:1 at physiological pH 7.4, inhibitor studies involving reversible reactions of the enzyme were measured at this pH. The inhibitory effect of orotate and various 5-

substituted orotate derivatives was investigated with PfDHO and compared with the mammalian enzyme. All of the six compounds were competitive inhibitors of both ring cyclization and cleavage reactions. The K_i values for the inhibitors were obtained from double reciprocal plots, and are shown in **Table 1**.

Table 1 Kinetic constants of L-CA, L-DHO, OA and its 5-substituted derivatives in the ring cyclization and cleavage reactions of the recombinant *Pf*DHO

Substrate or	Diameter of	Ring cyclization reaction			Ring cleavage reaction		
OA derivative	e substituent in	K_{m}	$k_{\rm cat}$	Ki	$K_{\rm m}$	$k_{\rm cat}$	$K_{\rm i}$
	position 5 (Å)	(µM)	(min ⁻¹)	(μM)	(µM)	(min ⁻¹)	(μM)
L-CA (pH 6.0))	285 <u>+</u> 12	60.2 <u>+</u> 4	.4 -			
L-DHO (pH 9.0) 12±1 89.5±10.6 -							
OA (pH 7.4)				660 <u>+</u> 52			950 <u>+</u> 88
F-OA	2.7	145 <u>+</u> 11			70 <u>+</u>		70 <u>+</u> 5
NH ₂ -OA	2.9	440 <u>+</u> 43		160 <u>+</u> 17			
CH ₃ -OA	3.5	560 <u>+</u> 65 30			302 <u>+</u> 40		
Br-OA	3.8	1,460 <u>+</u> 140			2,	600 <u>+</u> 170	
I-OA	4.1	>3,500		>3,500			

The most effective inhibitor was 5-fluoroorotate, while 5- bromoorotate and 5- iodoorotate were the least in both enzymatic directions. Both L-CA and L-DHO had no inhibitory effect on the enzyme at the pH 7.4. In the ring cleavage reaction, the

reported K_i values for the mammalian and E. coli enzymes are 6 and 32 μ M, respectively. Increasing K_i values of the 5-substituted orotate derivatives of the parasite enzyme were proportional to the bulkiness in the size of the 5-substituents, but were not related to the order of electronegativity of these 5-substituents. The result suggests a steric hindrance of the bulky 5-substituent which may have positioned adjacent to the binding site of the inhibitor. Similar findings reported in the mammalian enzyme, indicates that PfDHO shares some enzyme characteristics to the mammalian DHO although significant kinetic differences do exists, the mammalian enzyme is 10 to 20-fold more sensitive to the inhibitors than that of the parasite.

In summary, the malarial enzyme shares a number of characteristics to both type I (e.g., mammals) and II (e.g., *E. coli*) enzymes. Comparison of parasite and human enzymes by the overall amino acid sequence homology, structural properties, kinetic and inhibitor characteristics lent valuable insights into the differences of the active site between these two enzymes. Specific inhibitors may limit the pyrimidine nucleotide pool in the parasite, but have no significant adverse effect to humans in which the salvage pathway for nucleotide synthesis is actively functional. Thus, the parasite DHO presents a potential chemotherapeutic target for new antimalarial drug design.

2.2 Characterization of kinetic, structural and functional properties of the recombinant *P. falciparum* OPRT and OMPDC

2.2.1 Production of the recombinant PfOPRT and PfOMPDC in E. coli

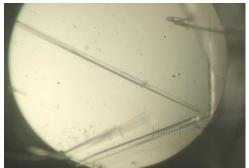
In the last project, the poor production of the recombinant enzymes *Pf*OPRT and *Pf*OMPDC in *E. coli* was achieved (less than 1 mg recombinant protein per 1 L *E. coli* culture). We have improved our cloning and expression for the recombinant enzymes by changing both the expression vectors and the *E. coli* host cells to get 3-4 mg recombinant

protein per 1 L *E. coli* culture. Purification of the recombinant *Pf*OPRT and *Pf*OMPDC was performed by using the N-terminal His6-tag protein-nickel-affinity chromatography and following by gel-filtration chromatography. These produced soluble active enzymes with purity of more than 99% assessed by a dynamic light scattering. The highest purified and concentrated enzymes (~10 mg/ml) are important for crystallization.

2.2.2 Production of the N-terminally truncated PfOPRT and PfOMPDC

Since the amino acid sequences of both *Pf*OPRT and *Pf*OMPDC have unique properties, i.e., N-terminal extensions and insertions. *Pf*OPRT and *Pf*OMPDC have extensions of 66 and 32 amino acids from their N-termini, respectively. We propose that the extensions play a functional role on formation of the multienzyme complex. In addition to the full-length genes of both *Pf*OPRT and *Pf*OMPDC enzymes expressed in *E. coli*, we have constructed the mutant enzymes lacking the N-terminal extension for both *Pf*OPRT and *Pf*OMPDC by PCR cloning with appropriated primers. Constructions of N-terminally truncated *Pf*OPRT and *Pf*OMPDC enzymes were performed by our PhD graduates. The N-terminally truncated *Pf*OPRT was produced as the mutant enzymes, however, its very low yield was obtained. The truncated mutant *Pf*OMPDC was not expressed in *E. coli*. Our preliminary study suggests that the truncated *Pf*OPRT mutant enzyme is less active and stable than the wild type *Pf*OPRT. Further characterization of the mutant enzymes and the wild type enzymes will be studied in details (e.g., kinetic and functional properties etc.). This part will be the PhD thesis of the two students in the coming years.

2.2.3 Crystallization and crystal structure determination of either *Pf*OMPDC or *Pf*OPRT


There are two crystal structures for bacterial OPRT (E. coli and S. typhimurium) and four crystal structures for bacterial and yeast OMPDC (E. coli, B. subtilis, M.

thermoautotrophicum, and *S. cerevisiae*). By having the highly purified and concentrated proteins of both recombinant *Pf*OPRT and *Pf*OMPDC, 3-dimensional structures with/without substrate and inhibitor complexing at the active site will be elucidated by crystallization using an automated hanging-drop vapor-diffusion method, and X-ray data collection, structure determination/refinement/analysis. Potent inhibitors will be designed based on the obtained 3-D structure of the enzymes.

At present, we are very lucky to have crystal of *Pf*OMPDC (**Fig. A & B**) and its X-ray diffraction data (**Table 2**). These experiments are being co-operated with Prof. Toshihiro Horii and Dr. Tsuyoshi Inoue (Osaka University, Japan).

Fig. A Thin crystals from sitting-drop from the first crystallization trial.

Fig. B Improved quality of crystals by the hanging-drop method.

Table 2 Statistics of crystal parameters and X-ray diffraction data collection*

Crystal system	Trigonal with hexagonal unit-cell		
Space group	R3		
Unit-cell parameters (Å)	a = b = 201.81, and $c = 44.03$		
(°)	$\alpha = \beta = 90.0$, and $\gamma = 120.0$		
Resolution range (Å)	50.0 – 2.70		
No. of molecules per asymmetric unit	2		
V _M (Å ³ /dalton)	2.3		
$V_{ m solv}(\%)$	46		
No. of measured reflections	451,733		
No. of unique reflections	18,313		
*R _{merge} (%)	5.9 (27.5)		
Completeness (%)	99.6 (100.0)		
Average $I/\sigma(I)$	12.4 (4.0)		

^{*} Values in parentheses are for the highest resolution shell (2.85-2.70 Å)

The results are summarized as follows: The active recombinant *P. falciparum* OMPDC (*Pf*OMPDC) was crystallized by the seeding method in a hanging-drop using PEG3000 as a precipitant. A complete set of diffraction data from the native crystal was collected to 2.7 Å resolution at 100 K by using synchrotron radiation. The crystal exhibits trigonal symmetry (space group *R*3) with hexagonal unit-cell of a = b = 201.81 Å, and c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% ($V_{\rm M} = 2.3$ Å 3 Da $^{-1}$).

 $^{^{+}}R_{\text{merge}} = \Sigma |I(k)-I|/\Sigma I(k)$, where I(k) is value of the kth measurement of the intensity of a reflection, I is the mean value of the intensity of that reflection and the summation is the over all measurements.

Then, we have characterized the X-ray analysis of apo, substrate OMP or product UMP-complex forms of OMPDC from *Pf*OMPDC at 2.7, 2.65 and 2.6 Å, respectively. The structural analysis provides the substrate recognition mechanism with dynamic structural changes, as well as the rearrangement of the hydrogen bond array at the active site. The structural basis of substrate or product binding to *Pf*OMPDC will help to uncover the decarboxylation mechanism and facilitate structure-based optimization of antimalarial drugs. We also propose a protruding domain at the N-terminal insertion of *Pf*OMPDC is responsible for binding to *Pf*OPRT, supporting our proposal earlier that the N-terminal domain of *Pf*OMPDC binds to that of *Pf*OPRT.

The sequence alignment for 10 known crystal structures of OMPDC is shown in **Fig. 1**. This reveals the existence of 11 totally conserved amino acid residues, corresponding to Asp23, Lys102, Asp136, Lys138, Asp141, Ile142, Gly169, Pro264, Gly265, Gly293 and Arg294 in *P. falciparum*. The alanine replacement around the active site, however, shows that *Plasmodium* OMPDCs have somewhat different sequences. The most striking observation is that a large insertion is present at the N-terminal domain, in *Plasmodium* OMPDCs.

The molecular replacement calculations were performed with the program MOLREP in the CCP4 program package, using the structure of the OMPDC-PO₄ complex from *P. falciparum* (PDB code: 2f84) as the search model. A dimer molecule was located in an asymmetric unit of the crystal. Structure models of the apo form were refined against the diffraction data using CNS and REFMAC. The models were manually adjusted by electron density mapping using COO. Even after several cycles of refinement, the electron density for residues 70–74 and 268–274 for one subunit, and 68–70 and 268–272 for the other subunit, was poor. Some other parts of the side chain structure (residues 1, 35, 69, 75, 76,

79, 199, 201, 255, 269, 275, 281, 301, 306, 314, 317 and 318 for one subunit; and residues 1, 71, 96, 174, 207, 222, 231, 255, 266, 269, 273, 274, 275, 281, 306, 314, 317 and 318 for the other subunit) also had poor electron density. The models for these residues were built by using alanine. All models were refined for a few cycles of CNS with B-factor refinement until convergence. The coordinates of the apo, and OMP- or UMP-complex forms of *Pf*OMPDC are deposited in the Protein Data Bank.

2.2.4 Overall structure of *Pf*OMPDC

The 2.7 Å structure of the apo form of *Pf*OMPDC was solved with *R* and R_{free} values of 21.6 and 31.2, respectively, by using the MR method with the PO₄-complex OMPDC. *Pf*OMPDC was crystallized in the trigonal space group of *R*3. One dimer molecule existed in the asymmetric unit. Each OMPDC subunit of this dimeric enzyme folded as an $(\alpha/\beta)_8$ barrel, with eight central β -sheets surrounded by thirteen α helices (**Fig. 2a**). β 1, residues 18–21; β 2, 100–104; β 3, 132–139; β 4, 161–164; β 5, 187–193; β 6, 237–241; β 7, 261–263; and β 8, 288–292; and α 1, residues 3–14; α 2, 26–37; α 3, 42–47; α 4, 60–64; α 5, 78–94; α 6, 113–128; α 7, 143–154; α 8, 173–176; α 9, 200–203; α 10, 213–227; α 11, 246–255; α 12, 276–279; and α 13, 302–315. There were three extra short α helices: η 1, residues 51–54; η 2, 105–108; and η 3, 230–233.

As predicted from protein sequence analysis (Fig. 1), there was a large insertion region (48–86), forming $\alpha 3$, $\eta 1$ and $\alpha 4$ helices and extended $\alpha 5$ -helix (**Fig. 2b**). Also *Pf*OMPDC contained a small insertion region (208–217), extended $\alpha 10$ -helix. These insertions are not found in other characterized OMPDC structures, and appear to be a unique structural feature of the OMPDCs belonging to *Plasmodium*.

The active site was located at the open end of the $(\alpha/\beta)_8$ barrel, which corresponded to the carboxy-terminal of the β strands and the amino-terminal of the α helices. In the apo structure, the L1 loop comprised of residues 268–274 was disordered

around the active site, while the L1 loop structure was stabilized upon binding of substrate or product.

2.2.5 Structural changes of L1 and L2 loops upon binding of OMP/UMP of *Pf*OMPDC

The structural analysis of PfOMPDC complexes has been performed with R and R_{free} values of 20.8 and 28.3, respectively for the 2.65 Å structure complexed with OMP, and 21.5 and 28.9, respectively, for the 2.6 Å with UMP.

Comparison between the apo and OMP- or UMP-complex of PfOMPDC showed a root-mean-square deviation of 0.75 and 0.74 Å, respectively. Several notable structural differences were found around the active site near the open end of the $(\alpha/\beta)_8$ barrel upon binding of OMP or UMP.

The L1 loop which was not determined in the apo form, was stabilized upon binding of the ligands, Glu269 in the L1 loop access to the pyrimidine ring moiety of OMP or UMP formed the loop structure of L1 (**Fig. 3**). While the structure of the α 9 helix was formed in the L2 loop region (194–213) in the apo form, the secondary structure unfolded in the presence of OMP or UMP, associated with the movement of Thr195. The difference in C_{α} position and the bond angle of C_{α} – C_{β} in Thr195 was calculated to be 3.8 Å and 70°, respectively, between the apo and OMP-complex; and 3.6 Å and 70°, respectively, between the apo and UMP-complex. It was revealed that both the L1 and L2 loops recognized the pyrimidine ring with the large structural changes. The details of the structural changes to the active site of PfOMPDC are described below.

2.2.6 Change in active site structure upon binding of OMP/UMP of PfOMPDC

Schematic drawings of the OMP- or UMP-complex are shown in **Fig.4a and 4b**, respectively. Both the guanidium group and the backbone amide of Arg294 interacted directly with the phosphate group of OMP or UMP, as did the amide of Gly293.

Thr145(B) and Asn104 hydrogen-bonded to the 2'- and 3'-hydroxyl group of the ribose ring, respectively. In the top part of the pyrimidine ring, comprising O4, N3 and O2, there were hydrogen bonds to Thr195 and Gln269. Thr195 accepted a hydrogen bond from N3 and donated a hydrogen bond to O4. A pocket near C5 of the pyrimidine ring was surrounded by several hydrophobic residues of Ile142(B), Leu191, Thr194, Val240 and Pro264 (not shown in Fig. 4a).

Compared with the apo form, there was a change in active site structure upon ligand binding. Arg294 and Thr195 in L2, and Gln269 in L1 exhibited a large structural movement upon binding of OMP or UMP. The movement of three nitrogen positions and the dihedral angle in the guanidium residue of Arg294 were calculated to be 2.9 Å and 48°, respectively, for the OMP-complex; and 2.9 Å and 52°, respectively, for the UMP-complex. The helix structure of α 12 did not change, while the L1 and L2 loops had the large structural movements described above. The average difference in the top part of residues Thr195 and Arg294 was measured to be 1.5 and 1.6 Å, respectively for OMP- and UMP-complexes. On the other hand, in the bottom part of the active site, the C_{α} atom of Gln293, Asn104 and Thr145(B) adopted almost the same positions between the apo and complex forms. The average difference in the bottom part of residues Asn104, Thr145(B) and Gln293 was 0.3 Å for both the OMP- and UMP-complexes.

The binding mode of OMP was basically the same as that of UMP, except for the residue Lys102. In the OMP binding form, Lys102 hydrogen-bonded to the carboxylate oxygen of pyrimidine. After decarboxylation, Lys102 changed the hydrogen bond to O5 of ribose (**Fig. 4**).

2.2.7 Rearrangement of hydrogen bond network around Lys102 of PfOMPDC

In the apo form, Lys102 formed a hydrogen bond network with Asp136, Lys138 and Asp141 from the other protomer of the dimer (**Fig. 5a**). The conserved catalytic array

of Lys102-Asp136-Lys138-Asp141(B) makes hydrogen bond network at the active site. The amino group of Lys102 recognized the carboxyl group of OMP, and then the distance between Lys102-Asp136 was lengthened from 2.7 to 3.6 Å, breaking the hydrogen bond between Lys102 and Asp136 upon binding of OMP (**Fig. 5b**). The UMP binding form (**Fig. 5c**), which mimicked the structure after decarboxylation, possessed two hydrogen bonds at Lys102-Asp136 and Lys138-Asp141(B) (**Fig. 5c**). In the UMP-complex, Lys102 hydrogen-bonded to Asp136 instead of the carboxyl group of the pyrimidine ring, breaking the hydrogen bond between Asp136 and Lys138, after decarboxylation.

The details of the reaction mechanism have been proposed by Raugei *et al.*, that a very stable charged network OMP-Lys-Asp-Lys-Asp promotes transition state electrostatic stabilization, and fully conserved Lys138 (*Pf*OMPDC numbering) largely contributes to the stabilization of the transition state or equivalently, the carboanionic intermediate.

In this study we have determined the X-ray structure of the apo, substrate or product-complex forms of *Pf*OMPDC. These three kinds of structural analyses provided an insight into the rearrangement of the hydrogen network in the array of OMP-Lys-Asp-Lys-Asp, by comparison between the initial and completion stages of the decarboxyl reaction.

At the initial reaction step, the side chain of Lys102 broke a hydrogen bond with the carboxyl group of Asp136, and then formed a hydrogen bond with the carboxyl oxygen atom of the substrate, upon binding OMP. These processes increased the negative charge on the two carboxyl groups on the substrate and Asp136, which led electrostatic repulsion between the carboxyl groups. Even the short distance of 2.5 Å between the two carboxyl groups, and the positively charged residues of Lys102 and Lys138 maintained the unstable structure.

Then, the decarboxylation reaction started from the structure with electrostatic repulsion. After direct decarboxylation, the newly generated carboanion at the C6 position

of the pyrimidine ring may have been stabilized by the conserved array, and absorbed a proton from the Lys138 side chain directly. In the completion step, two pairs of hydrogen bonds, Lys102-Asp136 and Lys138-Asp141(B), were formed, and all of the electrostatic charge in the array was compensated (**Fig. 4c**). It seems to be difficult, however, to specify from our structural models which Lys residues stabilized the forming carboanion intermediate in the transition state. A structural analysis of complexes with a transition state analogue will uncover the mechanism of transition state stabilization by Lys residues.

Eukaryotes express OMPDC as a bifunctional protein, UMP synthase, which catalyzes the orotate phosphoribosyltransferase reaction before the decarboxylation reaction. On the other hand, PfOMPDC forms a complex with orotate phosphoribosyltransferase (OPRT), which forms a heterotetrameric complex in P. falciparum. In our multiple sequence alignment, we found a unique structural feature of the OMPDCs belonging to Plasmodium. A large insertion was observed between $\beta1$ and $\alpha5$, which formed a protruding domain consisting of three α helices, $\alpha2$, $\alpha3$ and $\alpha4$. We propose that the unique insertion may participate in making a complex with OPRT.

In our structural observations, the top part of the active site played a role in substrate binding, with large structural movement. The average difference of 1.5 Å in the top part is twice the root-mean-square deviation calculated from all C_{α} atoms. In contrast, the bottom part of the active site was significantly rigid; the average difference was half of the overall root-mean-square deviation. Even a small difference, such as the rearrangement of hydrogen bonds in the array of OMP-Lys-Asp-Lys-Asp, may have played a pivotal role in catalysis. The corresponding residues for binding and catalyzing showed >80% consensus among all the OMPDCs.

In summary, we have proposed a reaction mechanism and characteristic domain for binding of *Plasmodium OPRT*, by the three kinds of structural analysis. Further structural

analyses of complexes with transition state analogues will reveal the stabilization mechanism of the carboanion intermediate. Moreover, structural analysis of the complex between *Pf*OMPDC and *Pf*OPRT will also clarify the heterotetrameric reaction mechanism, which may lead to the development of important antimalarial drugs.

Figure 1

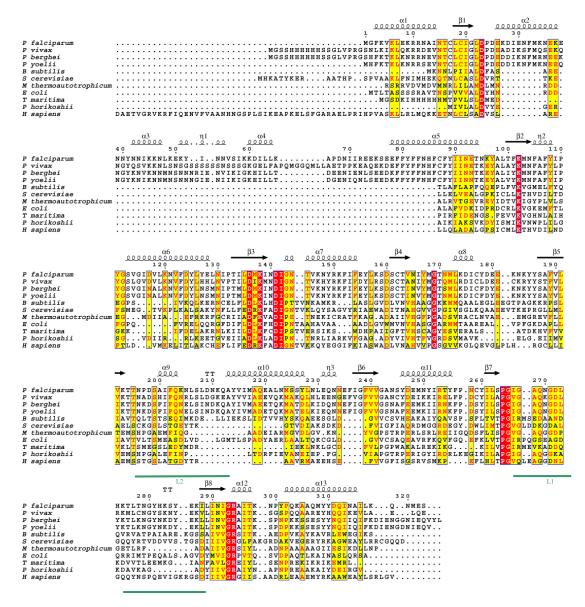


Fig. 1. Multiple sequence alignments of *Pf*OMPDC compared with those of 10 known crystal structures. PDB IDs are showed in parentheses: *Plasmodium vivax* (2FFC), *Plasmodium berghei* (2FDS), *Plasmodium yoelii* (2AQW), *Bacillus subtilis* (1DBT), *Saccharomyces cerevisiae* (1DQW), *M. thermoautotrophicum* (1DV7), *E. coli* (1L2U), *Thermotoga maritima* (1VQT), *Pyrococcus horikoshii* (2CDZ) and *Homo sapiens* (2EAW). Red shaded amino acids are conserved in all 10 sequences; yellow shaded amino acids are similar residues. Above the sequences, the secondary structural elements are shown, as identified in *Pf*OMPDC. The L1 and L2 loops are identified and marked by bottom underlines.

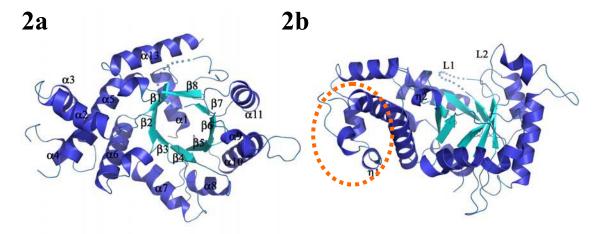


Fig. 2. Monomer of PfOMPDC. The α helices (in blue) and β sheets (in cyan) are separated by loops. One subunit folds as an $(\alpha/\beta)_8$ barrel with eight central β sheets surrounded by 13 α helices. The disordered L1 loop is shown as a dotted line. (a) Viewed through α/β barrel. (b) Viewed perpendicular to the view in panel a. A large insertion region from residue 48 to 86, constructed the insertion domain containing three helices, Tand was present in dot circle (in orange)he figures were drawn with PYMOL.

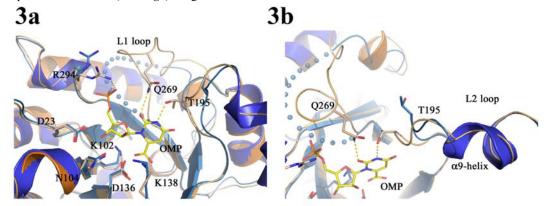


Fig. 3. Movement of L1 (a) and L2 (b) loops upon bindings of OMP. Blue and orange structures show the apo form and OMP-complex. (a) The L1 loop, which was not determined in the apo form (blue dotted line), was stabilized, and the loop structure containing Q269 was formed. (b) The α 9 helix only formed in the apo from, and unfolded in association with the movement of Thr195 (C_{α} distance of 3.8 Å), and then access to the ligand.

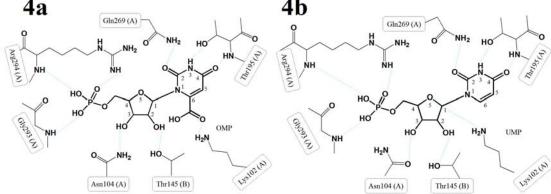


Fig. 4. Schematic drawings of the hydrogen bonding pattern around OMP (a) and UMP (b). The binding motif of OMP was basically the same as that of UMP, except for the residue Lys102.

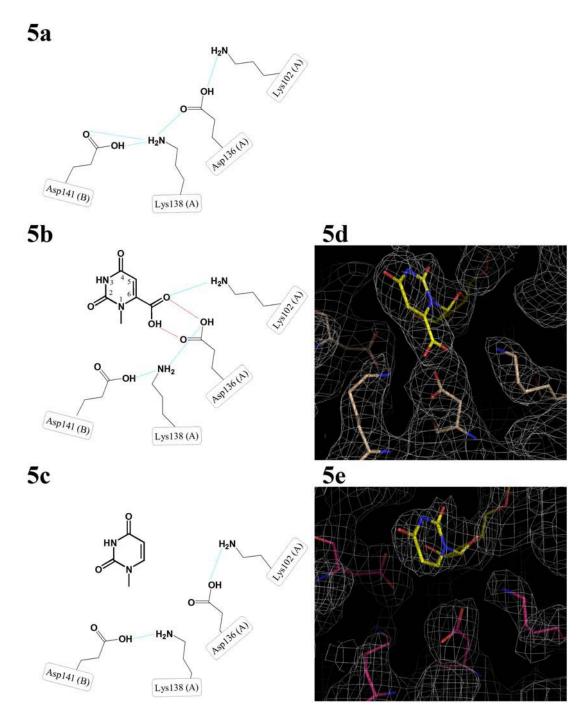


Fig. 5. Proposed reaction mechanism. Stepwise representation of the rearrangement of the hydrogen bond network, with a particular electron density map around Lys102. (a) Apo form. Lys102 formed a hydrogen bond network with Asp136, Lys138 and Asp141. (b) The substrate entered the active site. As Lys102 turned away from Asp136, charge repulsion between the two carboxylate groups initiated decarboxylation and Lys 138 donated a proton to C6. (c) After decarboxylation, Lys102 hydrogen-bonded to Asp136 instead of the carboxyl group of the pyrimidine ring. (d) Electron density maps of OMP (d) and UMP (e) binding forms. These contours show the SIGMAA-weighted 2Fo-Fc map at 1.5 σ . The programs COOT and PYMOL were used to make these figures.

Outputs

In the 3-year project, we have outputs for our activities as follows:

(a) There are four publications:

- 1) Krungkrai S.R., Kusakari, Y., Tokuoka, K., Inoue, T., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Mori, Y., Kai, Y., Krungkrai, J., and Horii, T.(2006) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human parasite *Plasmodium falciparum*. *Acta Crystallographica* **F62**, 542-545.
- 2) Tokuoka K., Kusakari Y., Krungkrai S.R, Matsumura H., Kai Y., Krungkrai J., Horii T., Inoue T. (2008) Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase. *Journal of Biochemistry* **143**, 69-78.
- 3) Krungkrai, S.R., Wutipraditkul, N., and Krungkrai, J. (2008) Dihydroorotase of human malarial parasite *Plasmodium falciparum* differs from host enzyme. *Biochemical and Biophysical Research Communication* **366**, 821-826.
- 4) Krungkrai, J., and Krungkrai, S. (2006) Malaria parasite: genomics, biochemistry and drug target for antimalarial development. *Chulalongkorn Medical Journal* **50**, 127-142.

(b) There are four data deposited in databases:

- 1) The three crystal structures complexed with substrate or product or uncomplexed forms were deposited in ProteinDataBank with the PDB entries ID: 2ZA1, 2ZA2 and 2ZA3.
- 2) The nucleotide sequence of the gene *Pf*DHO was deposited in GenBank/EMBL/DDBJ databases with accession number AB373011.

(c) Graduation:

One MSc student was graduated, two PhD students are being trained.

(d) Presentation:

There was a poster presentation in "The second Thailand-Japan joint forum on infectious diseases" with topic entitled: "Functional characterization of *Plasmodium falciparum* pyrimidine enzymes orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase".

(e) Collaboration:

We have solid collaborations with expert groups in Osaka University (Japan) and University of Florence (Italy).

(f) There are four publications related to the ongoing project:

- 1) Krungkrai, J., Krungkrai, S.R., and Supuran, C.T. (2007) Malarial parasite carbonic anhydrase and its inhibitors. *Current Topics in Medicinal Chemistry* 7, 909-917.
- 2) Krungkrai, J., and Supuran, C.T. (2008) The alpha-carbonic anhydrase from the malarial parasite and its inhibition. *Current Pharmaceutical Design* **14**, 631-640.
- 3) Krungkrai, J., Kanchanaphum, P., Pongsabut, S., and Krungkrai, S.R. (2008) Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of the malaria parasite. *Asian Pacific Journal of Tropical Medicine* 1, 31-49.
- 4) Krungkrai, J., Incharoensakdi, A., and Tungpradabkul, S. (2008) Biochemistry research in Thailand: present status and foresight studies. *ScienceAsia* **34**, 1-6.

Appendix (ภาคผนวก)

1. บทความสำหรับการเผยแพร่

โครงการวิจัยเรื่อง

"เอนไซม์ของวิถีการสังเคราะห์เบสไพริมิดีนเป็นตำแหน่งเป้าหมายของการ พัฒนายาในเชื้อมาลาเรียของคน"

ปัจจุบันมาลาเรียยังเป็นโรคดิดเชื้อที่เป็นปัญหาทางสาธารณสุขที่สำคัญ โดยเชื้อ มาลาเรียก่อให้ เกิดอาการอย่างรุนแรงในคน มีคนติดเชื้อทั่วโลกปีละถึง 500 ล้านคนและ เสียชีวิตลงปีละ 1.5-2.7 ล้านคน การควบคุมโรคมาลาเรียทำได้ด้วยความยากลำบากขึ้น เนื่องจากมีการแพร่ระบาดของเชื้อที่ดื้อต่อยาที่ใช้ในการรักษา ยาที่ใช้มักมีผลข้างเคียงต่อ ผู้ป่วย การพัฒนาและการแพร่กระจายของยุงกันปล่องที่ดื้อต่อยาฆ่าแมลง อีกทั้งยังไม่มีวัคซีน ที่จะนำมาใช้ในการป้องกันโรคในขณะนี้ จึงเป็นสถานการณ์เร่งด่วนที่จะต้องพัฒนาการควบคุม โรคให้มีประสิทธิภาพ อาทิเช่น การพัฒนาวัคซีน และการพัฒนายารักษามาลาเรียชนิดใหม่ ๆ ขึ้นมาทดแทนให้ทันใช้โดยอาศัยตำแหน่งเป้าหมายที่มีความจำเพาะในเชื้อมาลาเรียที่ได้จาก โครงการจีโนมและความรู้ที่สะสมต่อเนื่องกันมานานหลายสิบปี ถึงกระนั้นความรู้ทางชีวเคมี ของเชื้อมาลาเรียยังไม่กระจ่างนัก โดยเฉพาะการสังเคราะห์เบสไพริมิดีนซึ่งเป็นสารตั้งต้นใน กระบวนการสังเคราะห์สารพันธุกรรมของเชื้อมาลาเรียของคน

เมื่อผู้ป่วยมาลาเรียมีการติดเชื้อเกิดขึ้น เชื้อมาลาเรียจะแบ่งตัวอย่างรวดเร็วและ เจริญเติบโตเพื่อให้มีชีวิตรอดอยู่ได้ในผู้ป่วย เชื้อมีความจำเป็นจะต้องสร้างสารพันธุกรรม ขึ้นมาเพื่อการดังกล่าว สารตั้งต้นที่สำคัญตัวหนึ่งในการสร้างสารดังกล่าวคือเบสไพริมิดีน ซึ่ง มีลักษณะโครงสร้างเป็นวงแหวนรูปหกเหลี่ยม การสร้างเบสดังกล่าวต้องอาศัยเอนไซม์หลาย ชนิดในการเร่งปฏิกิริยาเปลี่ยนโมเลกุลขนาดเล็ก อาทิเช่น คาร์บอนไดออกไซด์ อะดีโนซีน ไตรฟอสเฟต กรดอะมิโนกลูตามีนและแอสปาเตต จนได้เป็นโมเลกุลของไพริมิดีน อาศัย หลักฐานทางชีวเคมีที่ทำก่อนหน้านี้พบว่าเชื้อมาลาเรียมีเอนไซม์ต่าง ๆในการสร้างไพริมิดี นดังกล่าว และเรียกว่า "วิถีการสังเคราะห์เบสไพริมิดีนในเชื้อมาลาเรีย"

โครงการวิจัยเรื่อง "เอนไซม์ของวิถีการสังเคราะห์เบสไพริมิดีนเป็นตำแหน่ง เป้าหมายของการพัฒนายาในเชื้อมาลาเรียของคน" ต้องการสร้างองค์ความรู้เกี่ยวกับวิถี การสังเคราะห์เบสไพริมิดีนในเชื้อมาลาเรียของคนให้มีความเข้าใจอย่างถ่องแท้ และนำไปใช้ เป็นตำแหน่งเป้าหมายของการพัฒนายารักษาต่อไป จากผลงานวิจัยที่ผ่านมาแสดงว่าการ สังเคราะห์เบสไพริมิดีนซึ่งเป็นสารตั้งต้นในกระบวนการสังเคราะห์สารพันธุกรรม มีความแตก ต่างระหว่างเชื้อมาลาเรียและของคน ดังนั้นถ้ายับยั้งการทำงานของวิถีการสังเคราะห์เบสไพริ

มิดีนในเชื้อมาลาเรียได้ จะต้านการเจริญเติบโตของเชื้อมาลาเรีย สามารถนำสารยับยั้ง ดังกล่าวมาสู่การพัฒนายารักษามาลาเรียชนิดใหม่ได้อย่างมีประสิทธิภาพ

โครงการวิจัยนี้มีวัตถุประสงค์ดังนี้

- ก.ได้สร้างความรู้เกี่ยวกับชีวเคมีและอณูชีววิทยาของคุณ ลักษณะวิถีการสังเคราะห์ เบสไพริมิดีนในเชื้อมาลาเรียของคนที่เกี่ยวกับไดไฮโดรออโรเทท (DHO) เอนไซม์ตัวที่สาม ของวิถี และ
- ข. มีความเข้าใจอย่างถ่องแท้ถึงโครงสร้างเอนไซม์ 2 ชนิดคือ ออโรเทท ฟอสโฟไร โบสีลทรานซ์เฟอเรส (OPRT) และ ออโรทิไดเลท ดีคาร์บอกซีลเลส (OMPDC) เอนไซม์ตัวที่ห้าและหกของวิถีการสังเคราะห์เบสไพริมิดีนในเชื้อมาลาเรียโดยมีเป้าหมายใน การได้มาซึ่งโครงสร้างสามมิติของเอนไซม์ที่ศึกษาอยู่เป็นตำแหน่งเป้าหมายใหม่ในการ ออกแบบและพัฒนายารักษามาลาเรีย

ผลการวิจัยที่ได้จากโครงการในระยะเวลา 3 ปีที่ผ่านนี้โดยครอบคลุมวัตถุประสงค์ ข้างต้น สรุปได้ดังนี้

- 1. ได้ทำการแยกเอนไซม์ DHO ซึ่งเร่งปฏิกิริยาการเปลี่ยน carbamoyl aspartate ไปเป็น dihydrorotate ได้อย่างบริสุทธิ์จากเชื้อมาลาเรียของคนที่เพาะเลี้ยง ได้มากพอในห้อง ทดลอง และได้ทำการโคลนจีน DHO ซึ่งพบว่าอยู่บนโครโมโซมคู่ที่ 14 แล้วนำไปแสดงออกของจีนนี้ในแบคทีเรียอีโคไล ทำการแยกเอนไซม์รีคอมบิแนนท์ให้บริสุทธิ์ และมีการทำงานได้ประสิทธิภาพสูง เอนไซม์ที่เตรียมได้ทั้งจากเชื้อมาลาเรียและรีคอมบิแนนท์ ข้างต้นแสดงคุณสมบัติการเร่งปฏิกิริยาแบบโมเลกุลเชิงเดี่ยวได้เหมือนกับคุณสมบัติของ เอนไซม์แบบที่ 2 ที่มีผู้ศึกษามาก่อน และยังแสดงคุณสมบัติทั้งในแง่จลนศาสตร์และผลการใช้ สารยับยั้งเอนไซม์ เช่น orotate และอนุพันธ์ของมันเหมือนกับคุณสมบัติของเอนไซม์แบบที่ 1 ที่พบได้ในเอนไซม์ของสิ่งมีชีวิตชั้นสูงรวมทั้งของคนด้วย ผลการวิจัยนี้ได้รับการตีพิมพ์และ เก็บข้อมูลยืนไว้ในฐาน ข้อมูลสากล
- 2. ได้ทำการโคลนจีน OPRT และ OMPDC จากเชื้อมาลาเรียของคน ซึ่ง OPRT เร่งปฏิกิริยาการเปลี่ยน orotate และ 5-phosphoribosyl-1-pyrophosphate ไปเป็น orotidine 5'-monophosphate (OMP) และ OMPDC เร่งปฏิกิริยาการ เปลี่ยน OMP ไปเป็น uridine 5'-monophosphate (UMP) แล้วนำไปแสดงออกของ จีนทั้งสองในแบคทีเรียอีโคไล ทำการแยกเอนไซม์รีคอมบิแนนท์ทั้งสองให้บริสุทธิ์ เอนไซม์ที่ ได้ทำงานมีประสิทธิภาพสูง ได้ศึกษาเปรียบเทียบกับเอนไซม์ของคนที่มีการศึกษาไว้ก่อนหน้า นี้แล้วพบ ว่ามีคุณสมบัติแตกต่างกันระหว่างเอนไซม์นี้ในเชื้อมาลาเรียและในคนอย่างสิ้นเชิง จากนั้นนำเอนไซม์รีคอมบิแนนท์ PfOMPDC ที่บริสุทธิ์สูงและมีปริมาณมากพอ ไปทำให้ เกิดผลึกโดยอาศัยสาร polyethylene glycol เป็นตัวตกผลึก นำผลึกที่ได้ไปทำให้เกิดการ หักเหของ X-ray โดยใช้เครื่อง synchrotron ที่กำลังขยาย 2.7 อังสตรอม สมมาตรของ

ผลึกเป็น trigonal และ R3 space group ผลการวิจัยนี้มีการร่วมมือกับ Professor T. Horii และคณะ แห่ง Osaka University และได้รับการตีพิมพ์

- 3. ได้ทำการวิเคราะห์โครงสร้างสามมิติของเอนไซม์ PfOMPDC ในรูปแบบของ เอนไซม์อิสระ ของเอนไซม์ที่มี substrate OMP จับอยู่ และของเอนไซม์ที่มี product UMP จับอยู่แทน OMP โดยการนำผลึกของเอนไซม์ทั้ง 3 รูปแบบข้างตันที่ได้ ไปใช้เครื่อง synchrotron ที่ Spring-8 Japan ที่กำลังขยายขนาด 2.7, 2.65 และ 2.6 อังสตรอม ตามลำดับ โครงสร้างสามมิติของเอนไซม์ที่ได้ ทำให้ทราบกลไกการเร่งปฏิกิริยาเริ่มตั้งแต่การ ที่ substrate OMP จับกับ active site มีการจัดเรียงใหม่ของ hydrogen network มี การเปลี่ยนแปลงของโครงสร้างสามมิติของเอนไซม์ และการกำจัดหมู่คาร์บอกซีลออกจาก OMP ให้ได้ UMP ในที่สุด โครงสร้างสามมิติของเอนไซม์ที่ได้นำไปเป็นตำแหน่งเป้าหมาย ใหม่ในการใช้ออกแบบและการพัฒนายารักษามาลาเรีย ซึ่งกลุ่มของเราเป็นกลุ่มแรกที่ได้โครง สร้างสามมิติของเอนไซม์ OMPDC จากเชื้อมาลาเรียของคนซนิดฟัลซิพารัม ผลการวิจัยนี้มี การร่วมมือกับ Professor T. Horii และคณะ แห่ง Osaka University และได้รับการ ตีพิมพ์และเก็บข้อมูลโครงสร้างสามมิติของเอนไซม์ทั้ง 3 รูปแบบไว้ในฐานข้อมูลสากล
- 4. ได้ทำการโคลนจีน OPRT และ OMPDC ที่ถูกตัดด้านปลายอะมิโนให้สั้นลง จากเชื้อมาลาเรียของคน ซึ่งทั้ง OPRT และ OMPDC ของเชื้อมีขนาดใหญ่กว่าเอนไซม์ เดียวกันที่อยู่ในสิ่งมีชีวิตชั้นสูงรวมทั้งของคนโดยพบว่าที่ด้านปลายอะมิโนของเอนไซม์จากเชื้อ มีจำนวนกรดอะมิโนเพิ่ม ขึ้น แล้วนำไปแสดงออกของยืนส์ที่สั้นลงทั้งสองในแบคทีเรียอีโคไล ซึ่งยืน truncated mutant OPRT เท่านั้นที่มีการแสดงออกและในปริมาณที่ต่ำมาก แต่ก็ ทำการแยกเอนไซม์รีคอมบิแนนท์ mutant OPRT ออกมาได้และมีความเสถียรและมีประ สิทธิ ภาพที่ไม่ดีเมื่อเทียบกับเอนไซม์รีคอมบิแนนท์ที่เป็น wild type OPRT ที่ได้จากข้อ 2 งานวิจัยส่วนนี้จะมีการดำเนินต่อไปโดยเป็นวิทยานิพนธ์ของนิสิตระดับปริญญาเอก 2 คน

ได้เสนอว่าเอนไซม์ที่ศึกษานี้ใช้เป็นตำแหน่งเป้าหมายใหม่ในการพัฒนายารักษามาลาเรีย และควรศึกษาเอนไซม์ที่ใช้ในการสังเคราะห์สารไพริมิดีนให้ครบทั้งระดับจีนและโปรตีนเหล่านี้ เพื่อสร้างองค์ความรู้นำไปใช้ออกแบบและพัฒนายารักษามาลาเรียตัวใหม่ โดยมีตำแหน่ง เป้าหมายที่การสังเคราะห์เบสไพริมิดีนในเชื้อมาลาเรีย คุณสมบัติจำเพาะของเอนไซม์ในเชื้อ มาลาเรียน่าจะมีความสำคัญในแง่การเกิดวิวัฒนาการของเอนไซม์ที่พบในเซลล์ของสัตว์ชั้นต่ำ และชั้นสูง สัตว์เลี้ยงลูกด้วยนมรวมทั้งของคนด้วย นอกจากนี้ความสำคัญในการควบคุมการ ทำงานของเอนไซม์ทั้งสองในวิถีการสังเคราะห์เบสไพริมิดีน คงต้องศึกษาวิจัยต่อไป

ผลงานวิจัยของโครงการนี้ในช่วงเวลา 3 ปีที่ได้รับทุนสนับสนุน มีการผลิตปริญญาโท-เอก มีการเสนอผลงาน มีการร่วมมือกับต่างประเทศ มีการเก็บข้อมูลยืนและข้อมูลโครงสร้าง สามมิติของเอนไซม์ไว้ในฐานข้อมูลสากล มีผลงานวิจัยจากโครงการโดยตรงได้รับการตีพิมพ์ จำนวน 4 เรื่อง (ลำดับ 1-4) และจากโครงการทางอ้อมอีก 4 เรื่อง (ลำดับ 5-8) ดังนี้

- 1) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human parasite *Plasmodium falciparum. Acta Crystallographica* **F62**, 542-545 (2006)
- 2) Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase. *Journal of Biochemistry* **143**, 69-78 (2008)
- 3) Dihydroorotase of human malarial parasite *Plasmodium* falciparum differs from host enzyme. *Biochemical and Biophysical* Research Communication **366**, 821-826 (2008)
- 4) Malaria parasite: genomics, biochemistry and drug target for antimalarial development. *Chulalongkorn Medical Journal* **50**, 127-142 (2006)
- 5) Malarial parasite carbonic anhydrase and its inhibitors. *Current Topics in Medicinal Chemistry* **7**, 909-917 (2007)
- 6) The alpha-carbonic anhydrase from the malarial parasite and its inhibition. *Current Pharmaceutical Design* **14**, 631-640 (2008)
- 7) Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of the malaria parasite. *Asian Pacific Journal of Tropical Medicine* **1**, 31-49 (2008)
- 8) Biochemistry research in Thailand: present status and foresight studies. *ScienceAsia* **34**, 1-6 (2008)

Appendix

(ภาคผนวก)

2. Reprints

- 1) Krungkrai S.R., Kusakari, Y., Tokuoka, K., Inoue, T., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Mori, Y., Kai, Y., Krungkrai, J., and Horii, T.(2006) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human parasite *Plasmodium falciparum*. *Acta Crystallographica* **F62**, 542-545.
- 2) Tokuoka K., Kusakari Y., Krungkrai S.R, Matsumura H., Kai Y., Krungkrai J., Horii T., Inoue T. (2008) Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase. *Journal of Biochemistry* **143**, 69-78.
- 3) Krungkrai, S.R., Wutipraditkul, N., and Krungkrai, J. (2008) Dihydroorotase of human malarial parasite *Plasmodium falciparum* differs from host enzyme. *Biochemical and Biophysical Research Communication* **366**, 821-826.
- 4) Krungkrai, J., and Krungkrai, S. (2006) Malaria parasite: genomics, biochemistry and drug target for antimalarial development. *Chulalongkorn Medical Journal* **50**, 127-142.
- 5) Krungkrai, J., Krungkrai, S.R., and Supuran, C.T. (2007) Malarial parasite carbonic anhydrase and its inhibitors. *Current Topics in Medicinal Chemistry* **7**, 909-917. (First page)
- 6) Krungkrai, J., and Supuran, C.T. (2008) The alphacarbonic anhydrase from the malarial parasite and its inhibition. *Current Pharmaceutical Design* **14**, 631-640. (First page)
- 7) Krungkrai, J., Kanchanaphum, P., Pongsabut, S., and Krungkrai, S.R. (2008) Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of the malaria parasite. *Asian Pacific Journal of Tropical Medicine* **1**, 31-49. (First page)
- 8) Krungkrai, J., Incharoensakdi, A., and Tungpradabkul, S. (2008) Biochemistry research in Thailand: present status and foresight studies. *ScienceAsia* **34**, 1-6. (First page)

Acta Crystallographica Section F Structural Biology and Crystallization Communications

ISSN 1744-3091

Editors: H. M. Einspahr and J. M. Guss

Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human malaria parasite *Plasmodium falciparum*

Sudaratana R. Krungkrai, Keiji Tokuoka, Yukiko Kusakari, Tsuyoshi Inoue, Hiroaki Adachi, Hiroyoshi Matsumura, Kazufumi Takano, Satoshi Murakami, Yusuke Mori, Yasushi Kai, Jerapan Krungkrai and Toshihiro Horii

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Crystallographica Section F Structural Biology and Crystallization

Communications

ISSN 1744-3091

Sudaratana R. Krungkrai, a,b‡ Keiji Tokuoka,c‡ Yukiko Kusakari,c‡ Tsuyoshi Inoue,c,d Hiroaki Adachi,e,d Hiroyoshi Matsumura,c,d Kazufumi Takano,d,f,g Satoshi Murakami,d,h Yusuke Mori,d,e Yasushi Kai,c Jerapan Krungkrai and Toshihiro Horiib*

^aUnit of Biochemistry, Department of Medical Science, Faculty of Science, Rangsit University, Patumthani 12000, Thailand, bDepartment of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan, ^cDepartment of Materials Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, ^dSOSHO Project (Crystal Design Project), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, eDepartment of Electrical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, ^fDepartment of Material and Life Science, Osaka University, 2-1 Yamadaoka. Suita. Osaka 565-0871, Japan, ⁹PRESTO, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, hDepartment of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan, and Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand

‡ These authors contributed equally to this work.

Correspondence e-mail: fmedjkk@md2.md.chula.ac.th, horii@biken.osaka-u.ac.jp

Received 21 February 2006 Accepted 2 May 2006

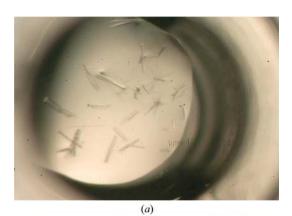
© 2006 International Union of Crystallography All rights reserved

Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human malaria parasite *Plasmodium falciparum*

Orotidine 5'-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the *de novo* synthesis of uridine 5'-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite *Plasmodium falciparum*. Active recombinant *P. falciparum* OMPDC (*Pf*OMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group *R*3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% ($V_{\rm M} = 2.3$ Å 3 Da $^{-1}$).

1. Introduction

There are an estimated 300–500 million cases of malaria and up to three million people die from this disease annually. *Plasmodium falciparum* is the causative agent of the most lethal and severe form of human malaria (Guerin *et al.*, 2002). Chemotherapy of malaria is available, but is complicated by both adverse effects and widespread resistance to most of the currently available antimalarial drugs (Attaran *et al.*, 2004; White, 2004). More efficacious and less toxic agents that uniquely target the parasite are therefore required.


The malaria parasite depends on de novo synthesis of pyrimidine nucleotides, whereas the human host has the ability to synthesize them by both de novo and salvage pathways (Krungkrai et al., 1990; Jones, 1980; Weber, 1983). The final two steps of uridine 5'-monophosphate (UMP) synthesis require the addition of ribose 5-phosphate from 5-phosphoribosyl-1-pyrophosphate (PRPP) to orotate by orotate phosphoribosyltransferase (OPRT; EC 2.4.2.10) to form orotidine 5'-monophosphate (OMP) and the subsequent decarboxylation of OMP to form UMP by OMP decarboxylase (OMPDC; EC 4.1.1.23). Both enzymes are encoded by two separate genes in most prokaryotes and the malaria parasite (Krungkrai et al., 2003; Krungkrai, Aoki et al., 2004), whereas their genes in most multicellular organisms, including humans, are fused into a single gene, resulting in the bifunctional UMP synthase (Livingstone & Jones, 1987; Suttle et al., 1988; Suchi et al., 1997). Our recent studies have demonstrated that the two enzymes exist as a heterotetrameric (OPRT)₂(OMPDC)₂ complex in two species of malaria parasites, P. falciparum and P. berghei (Krungkrai, Prapunwattana et al., 2004; Krungkrai et al., 2005). By multiple sequence-alignment analysis, the protein sequence of P. falciparum OMPDC was found to be less than 20% identical to both the human enzyme (Suttle et al., 1988) and the four bacterial and yeast OMPDCs for which crystal structures are known, i.e. Bacillus subtilis (Appleby et al., 2000), Escherichia coli (Harris et al., 2000), Methanobacterium thermoautotrophicum (Wu et al., 2000) and Saccharomyces cerevisae (Miller et al., 2000). The low sequence identities make it difficult to build a homology model for P. falciparum OMPDC. However, the low similarity between the enzymes of the host and the pathogen mean that OMPDC has promise as a drug target. In addition, OMPDC is known to be an unusually proficient catalyst (Miller & Wolfenden, 2002). These facts have prompted us to perform crystallization and X-ray diffraction analysis of the monofunctional P. falciparum OMPDC (PfOMPDC)

expressed in *E. coli*. Here, we report the conditions for expression, purification, crystallization and preliminary crystallographic analysis of the uncomplexed apo form of *Pf*OMPDC.

2. Experimental

2.1. Protein expression and purification

The recombinant OMPDC protein was prepared by cloning and expression of the gene encoding PfOMPDC in E. coli. The oligonucleotide primers were 5'-CGG GAT CCA TGG GTT TTA AGG TAA AAT TA-3' and 5'-CCA TCG ATT TAC GAT TCC ATA TTT TGC TTT AA-3', which encompass BamHI and ClaI restriction sites (in bold), respectively. The polymerase chain reaction was carried out using P. falciparum cDNA as a template and Pfu DNA polymerase (Promega) at 368 K for 5 min, followed by 40 cycles of 368 K for 1 min, 328 K for 1 min and 341 K for 3 min and finally an additional 341 K for 10 min. The PCR-derived fragment of ~980 bp complete PfOMPDC was inserted into the expression vector pTrcHis-TOPO (Invitrogen) linearized with BamHI and ClaI. E. coli TOP10 (Invitrogen) cells were transformed with the recombinant plasmid and induced with 1 mM isopropyl β -D-thiogalactopyranoside at 291 K for 18-20 h and the cell paste was then harvested by centrifugation at 8000g for 10 min. The recombinant enzyme was expressed as a soluble protein and purified using an Ni2+-nitrilotriacetic acidagarose affinity column (Qiagen) with 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 250 mM imidazole and 10% glycerol as the elution buffer. The recombinant protein was further purified by AKTA fast protein liquid chromatography using a Superdex-75 HiLoad 26/60 column (Amersham Biosciences) equilibrated with 50 mM Tris-HCl

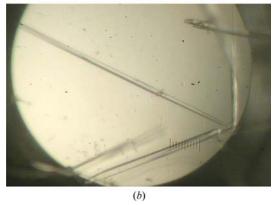
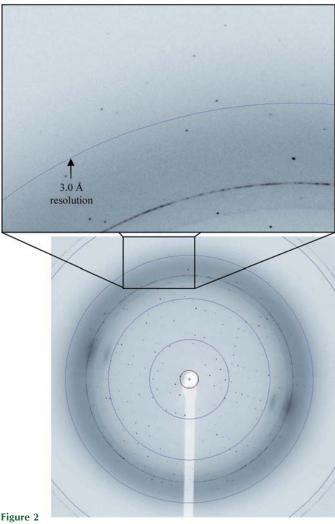



Figure 1 Crystals of OMPDC from P. falciparum. Thin crystals were obtained in the first crystallization trial in a sitting drop (a); however, the quality of the crystals was improved by using the seeding method in a hanging drop (b).

pH 8.0, 300 mM NaCl, 5 mM dithiothreitol. The enzyme activity was eluted as a single symmetrical peak at a position corresponding to 76 kDa. SDS–PAGE analysis (Laemmli, 1970) showed a homogenous preparation with a molecular weight of 38 kDa, suggesting that the active form of the PfOMPDC is a dimer. The OMPDC activity was monitored by the decrease in the absorbance of OMP at 285 nm according to a previously described method (Yablonski $et\ al.$, 1996). The purified recombinant enzyme had a specific activity of approximately 10 µmol min $^{-1}$ per milligram of protein, corresponding to a 300-fold purification and 30% yield. Up to 30 mg of the pure recombinant protein was obtained from 10 1 E. coli cell culture. The purified protein was concentrated by Centricon ultrafiltration to 10 mg ml $^{-1}$ and the homogeneity was confirmed by dynamic light scattering using a DynaPro-MS/X (Protein Solutions Inc.).

2.2. Crystallization of PfOMPDC

Purified PfOMPDC in 50 mM Tris-HCl pH 8.0 buffer containing 300 mM NaCl and 5 mM dithiothreitol was concentrated to 10 mg ml⁻¹. Crystallization of PfOMPDC was first performed using the sitting-drop vapour-diffusion method at 293 K with the semi-automatic crystallization robot SHOZO (Adachi et al., 2005). The crystallization conditions were initially screened by a sparse-matrix

X-ray diffraction image from a OMPDC crystal. The frame edge in the close-up is

sampling method (Jancarik & Kim, 1991) using Crystal Screens I and II (Hampton Research) and Wizard Screens I and II (Emerald BioStructures) in 96-well sitting-drop plates (Corning) at 293 K. The drop size was 1 µl protein solution (10 mg ml⁻¹) plus 1 µl of one of the precipitating reagents. The reservoir contained 0.2 ml of the same reagent. From the 200 crystallization conditions, needle-shaped crystals with maximum dimensions of $0.03 \times 0.03 \times 1.2$ mm appeared in the drops using Crystal Screen II solutions No. 30 [10% PEG 6K, 0.1 M HEPES pH 7.5, 5% 2-methyl-2,4-pentanediol (MPD)] and No. 37 (10% PEG 8K, 0.1 M HEPES pH 7.5, 8% ethylene glycol) and Wizard Screen I solution No. 41 (30% PEG 3K, 0.1 M CHES pH 9.5) within 2 d at 293 K (Fig. 1). While the crystals that appeared from Crystal Screen II solutions No. 30 and No. 37 were fragile, those from Wizard Screen II solution No. 41 were suitable for X-ray crystallographic studies after size improvement by the seeding method using 13%(w/v) and 18%(w/v) PEG 3K solutions for the sitting drop and the mother liquor, respectively.

3. Data collection and processing

X-ray diffraction data were collected from a single crystal of *Pf*OMPDC on the X06SA beamline at the Swiss Light Source (Paul Scherrer Institute, Villigen, Switzerland). Prior to data collection, the crystal of *Pf*OMPDC was soaked in a cryoprotectant solution consisting of 18%(*w*/*v*) PEG 3K, 0.1 *M* CHES pH 9.5, 8% MPD. The crystal of *Pf*OMPDC was then mounted in a standard nylon loop in a stream of cold nitrogen gas at 100 K. The diffraction patterns were recorded on a MAR CCD detector (MAR USA) at cryogenic temperature (100 K). The wavelength, crystal-to-detector distance, oscillation range and exposure time were 0.978 Å, 250 mm, 1.0° and 1 s, respectively. A complete data set was collected from 200 images covering 200° in total (Fig. 2).

The diffraction intensity data were processed and scaled using MOSFLM (Leslie, 1992). The crystal of PfOMPDC is trigonal,

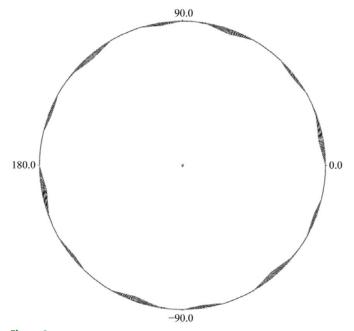


Figure 3 Stereographic projections of the self-rotation function calculated in the $\kappa = 180^{\circ}$ section. The resolution of the data used was 15.0–2.7 Å. The X-ray data were reduced in a trigonal crystal system using a hexagonal cell. 12 peaks were clearly obtained in the calculated self-rotation map, suggesting that a non-crystallographic twofold axis exists in the asymmetric unit.

Table 1 Crystal parameters and X-ray diffraction data-collection statistics. Values in parentheses are for the highest resolution shell (2.85–2.70 Å).

Crystal system	Trigonal with hexagonal unit cell
Space group	R3
Unit-cell parameters (Å, °)	a = b = 201.81, c = 44.03,
	$\alpha = \beta = 90.0, \ \gamma = 120.0$
Resolution range (Å)	50.0-2.70
No. of molecules in ASU	2
$V_{\rm M}$ (Å ³ Da ⁻¹)	2.3
V_{soly} (%)	46
No. of measured reflections	451733
No. of unique reflections	18313
R_{merge} † (%)	5.9 (27.5)
Completeness (%)	99.6 (100.0)
Average $I/\sigma(I)$	12.4 (4.0)

† $R_{\text{merge}} = \sum |I(k) - I| / \sum I(k)$, where I(k) is value of the kth measurement of the intensity of a reflection, I is the mean value of the intensity of that reflection and the summation is over all measurements.

belonging to space group R3, with unit-cell parameters a=b=201.81, c=44.03 Å. From the 451 733 accepted observations to 2.7 Å resolution, 18 313 unique reflections were obtained. The statistics of the diffraction data are shown in Table 1.

The self-rotation function calculated with the program POLARRFN from the CCP4 program package (Collaborative Computational Project, Number 4, 1994) suggested that two PfOMPDC molecules correlated by a non-crystallographic twofold axes were present in the asymmetric unit (Fig. 3), giving a Matthews coefficient of $2.3 \text{ Å}^3 \text{ Da}^{-1}$ and a solvent content of 46%.

Preliminary molecular-replacement calculations were performed with the program AMoRe (Navaza, 2001) from the CCP4 program package (Collaborative Computational Project, Number 4, 1994) using the structure of OMPDC from B. subtilis (PDB code 1dbt) as the search model (Appleby et al., 2000). Since the identity of the amino-acid sequences between PfOMPDC and B. subtilis OMPDC is only 16%, MAD data collection using SeMet-derivative crystals was attempted. During the phase calculation using the anomalous dispersion signal, the crystal structure of OMPDC from P. vivax was deposited in the PDB (PDB code 2ffc). The deposited structure is that of a complex with UMP, demonstrating a product-binding form. The space group of the crystal is $P2_12_12$, in contrast to the crystal reported here, which belongs to space group R3. The molecular-replacement method using this structure and a structural comparison between the apo and holo forms are in progress.

The authors are grateful to Mr T. Tomizaki, Paul Scherrer Institute for his kind help during data collection on the X06SA beamline at the Swiss Light Source (SLS). This work was partially supported by the Thailand Research Fund (BRG 4880006) to JK and SRK. This work is also partly founded by Grant-in-Aids for Scientific Research 16017260 (to TI) and 13226058 (to TH) and CLUSTER (to TI and TH) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by grants from the CREST Project (to YM), the Japan Science and Technology Agency and partly from the National Project on Protein Structural and Functional Analyses, Japan (to TI). One of the authors (KT) expresses his special thanks to the Center of Excellence (21st Century COE) program 'Creation of Integrated EcoChemistry of Osaka University'.

References

Adachi, H., Matsumura, H., Inoue, T., Niino, A., Takano, K., Murakami, S., Mori, Y. & Sasaki, T. (2005). *Jpn. J. Appl. Phys.* 44, 6302–6303.

- Appleby, T. C., Kinsland, C., Begley, T. P. & Ealick, S. E. (2000). Proc. Natl Acad. Sci. USA, 97, 2005–2010.
- Attaran, A., Barnes, K. I., Curtis, C., d'Alessandro, U., Fanello, C. I., Galinski, M. R., Kokwaro, G., Looareesuwan, S., Makanga, M., Mutabingwa, T. K., Talisuna, A., Trape, J. F. & Watkins, W. M. (2004). *Lancet*, **363**, 237–240.
- Collaborative Computational Project, Number 4 (1994). *Acta Cryst.* D**50**, 760–763.
- Guerin, P. J., Olliaro, P., Nosten, F., Druilhe, P., Laxminarayan, R., Blinka, F., Kilama, W. L., Ford, N. & White, N. J. (2002). Lancet Infect. Dis. 2, 564– 573.
- Harris, P., Poulsen, J.-C. N., Jensen, K. F. & Larsen, S. (2000). Biochemistry, 39, 4217–4224.
- Jancarik, J. & Kim, S.-H. (1991). J. Appl. Cryst. 24, 409-411.
- Jones, M. E. (1980). Annu. Rev. Biochem. 49, 253-279.
- Krungkrai, J., Cerami, A. & Henderson, G. B. (1990). Biochemistry, 29, 6270–6275.
- Krungkrai, J., Prapunwattana, P., Wichitkul, C., Reungprapavut, S., Krungkrai, S. R. & Horii, T. (2003). Southeast Asian J. Trop. Med. Public Health, 34, Suppl. 2, 32–43
- Krungkrai, S. R., Aoki, S., Palacpac, N. M. Q., Sato, D., Mitamura, M., Krungkrai, J. & Horii, T. (2004). Mol. Biochem. Parasitol. 134, 245–255.

- Krungkrai, S. R., DelFraino, B. J., Smiley, J. A., Prapunwattana, P., Mitamura, T., Horii, T. & Krungkrai, J. (2005). *Biochemistry*, **44**, 1643–1652.
- Krungkrai, S. R., Prapunwattana, P., Horii, T. & Krungkrai, J. (2004). Biochem. Biophys. Res. Commun. 318, 1012–1018.
- Laemmli, U. K. (1970). Nature (London), 227, 680-685.
- Leslie, A. G. W. (1992). Int CCP4/ESF-EACMB Newsl. Protein Crystallogr. 26. Livingstone, L. R. & Jones, M. E. (1987). J. Biol. Chem. 262, 15726–15733.
- Miller, B. G., Hassell, A. M., Wolfenden, R., Milburn, M. V. & Short, S. A. (2000). *Proc. Natl Acad. Sci. USA*, **97**, 2011–2016.
- Miller, B. G. & Wolfenden, R. (2002). Annu. Rev. Biochem. 71, 847–885.Navaza, J. (2001). Acta Cryst. D57, 1367–1372.
- Suchi, M., Mizuno, H., Kawai, Y., Tsuboi, T., Sumi, S., Okajima, K., Hodgson, M. E., Ogawa, H. & Wada, Y. (1997). Am. J. Hum. Genet. 60, 525–539.
- Suttle, D. P., Bugg, B. Y., Winkler, J. K. & Kanalas, J. J. (1988). Proc. Natl Acad. Sci. USA, 85, 1754–1758.
- Weber, G. (1983). Cancer Res. 43, 466-492.
- White, N. J. (2004). J. Clin. Invest. 113, 1084-1092.
- Wu, N., Mo, Y., Gao, J. & Pai, E. F. (2000) Proc. Natl Acad. Sci. USA, 97, 2017–2022
- Yablonski, M. J., Pasek, D. A., Han, B., Jones, M. E. & Traut, T. W. (1996) J. Biol. Chem. 271, 10704–10708.

Structural Basis for the Decarboxylation of Orotidine 5'-Monophosphate (OMP) by *Plasmodium Falciparum* OMP Decarboxylase[†]

Keiji Tokuoka¹, Yukiko Kusakari¹, Sudaratana R. Krungkrai^{2,3}, Hiroyoshi Matsumura¹, Yasushi Kai¹, Jerapan Krungkrai⁴, Toshihiro Horii² and Tsuyoshi Inoue^{1,*}

¹Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; ²Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; ³Unit of Biochemistry, Department of Medical Science, Faculty of Science, Rangsit University, Patumthani 12000; and ⁴Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok 10330, Thailand

Received August 6, 2007; accepted October 2, 2007; published online November 1, 2007

Orotidine 5'-monophoshate decarboxylase (OMPDC) catalyses the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP). Here, we report the X-ray analysis of apo, substrate or product-complex forms of OMPDC from Plasmodium falciparum (PfOMPDC) at 2.7, 2.65 and 2.65 Å, respectively. The structural analysis provides the substrate recognition mechanism with dynamic structural changes, as well as the rearrangement of the hydrogen bond array at the active site. The structural basis of substrate or product binding to PfOMPDC will help to uncover the decarboxylation mechanism and facilitate structure-based optimization of antimalarial drugs.

Key words: apo form, OMP-complex, orotidine 5'-monophoshate decarboxylase, structural comparison, UMP-complex, x-ray structural analysis.

Abbreviations: OMP, orotidine 5'-monophosphate; OMPDC, OMP decarboxylase; PfOMPDC, OMPDC from *Plasmodium falciparum*; OPRT, orotate phosphoribosyltransferase; SDS–PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis.

Human malaria is caused by four species of the parasitic protozoan genus Plasmodium. Of these four species, Plasmodium falciparum is responsible for the vast majority of the 500 million episodes of malaria worldwide, and accounts for 2-3 million deaths annually (1). Chemotherapy of malaria is available, but is complicated by drug toxicity and widespread resistance to most of the currently available antimalarial drugs (2). There is an urgent need for more efficacious and less-toxic agents, particularly rational drugs that exploit pathways and targets unique to the parasite. In general, drug-screening procedures have rarely been applied to this disease, and there is a paucity of information on a number of biochemical pathways that can be exploited for chemotheraphy. The malarial parasite is totally dependent on de novo pyrimidine biosynthesis for its growth and development because it lacks the relevant salvage enzymes (3-5). The de novo pathway contains six reaction steps. The initial reaction catalysed by carbamoyl phosphate synthetase is the formation of carbamoyl phosphate by combination of carbonate, ATP and an amino group from glutamine. Three additional reactions are necessary to form the pyrimidine ring from carbamoyl phosphate. In the final

two steps, uridine 5'-monophosphate (UMP) requires the addition of a ribose phosphate moiety from 5-phosphoribosyl-1-pyrophosphate to orotate by orotate phosphoribosyltransferase (EC 2.4.2.10, OPRT) to form orotidine 5'-monophosphate (OMP) and pyrophosphate (PP $_{i}$), and the subsequently decarboxylation of OMP to form UMP, by OMP decarboxylase (EC 4.1.1.23, OMPDC).

In most prokaryotes and yeasts (6, 7), the OPRT and OMPDC enzymes are encoded by two separate genes, while in most multicellular eukaryotes, the genes for both enzymes have been joined into a single gene, resulting in the expression of a bifunctional protein, namely UMP synthase, with two different catalytic domains (8–11). The bifunctional UMP synthase has also been reported in kinetoplastid parasites, e.g. Trypanosoma cruzi and Leishmania mexicana (12, 13). In contrast, mammalian hosts can utilize both the de novo and salvage pathways (8, 14). Inhibitors of the de novo pathway have strong antimalarial activity for in vitro P. falciparum growth (15–18).

The sequence alignment for 10 known crystal structures of OMPDC is shown in Fig. 1. This reveals the existence of 11 totally conserved amino acid residues (shaded in red), corresponding to Asp23, Lys102, Asp136, Lys138, Asp141, Ile142, Gly169, Pro264, Gly265, Gly293 and Arg294 in *P. falciparum*. The alanine replacement around the active site, however, shows that *Plasmodium* OMPDCs have somewhat different sequences (19). The most striking observation is that a large insertion

^{*}To whom correspondence should be addressed. Tel: +81-6-6879-7410, Fax: +81-6-6879-7409,

E-mail: inouet@chem.eng.osaka-u.ac.jp

[†]Coordinates have been deposited in the Protein Data Bank (accession codes 2ZA2, 2ZA1 and 2ZA3 for the apo form, and OMP- or UMP-complex of PfOMPDC, respectively).

70 K. Tokuoka et~al.

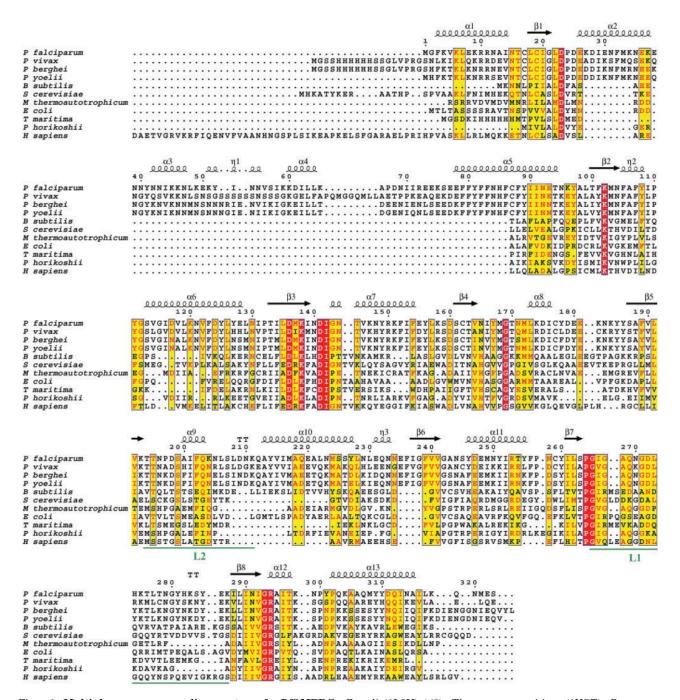


Fig. 1. Multiple sequence alignments of PfOMPDC compared with those of 10 known crystal structures.

PDB IDs are showed in parentheses: Plasmodium vivax (2FFC) (48), Plasmodium berghei (2FDS) (48), Plasmodium yoelii (2AQW) (48), Bacillus subtilis (1DBT) (24), Saccharomyces cerevisiae (1DQW) (32), M. thermoautotrophicum (1DV7) (22),

E. coli (1L2U) (49), Thermotoga maritima (1VQT), Pyrococcus horikoshii (2CDZ) and Homo sapiens (2EAW). Red-shaded amino acids are conserved in all 10 sequences; yellow-shaded amino acids are similar residues. Above the sequences, the secondary structural elements are shown, as identified in PfOMPDC. The L1 and L2 loops are identified and marked by bottom underlines.

is present at the N-terminal domain, in all Plasmodium OMPDCs. It has been proposed that the N-terminal domain of PfOMPDC binds to that of P. falciparum OPRT (PfOPRT) (20).

Currently, the most accredited mechanisms involve direct decarboxylation of OMP (21). This was proposed based on X-ray analysis of the structure of OMPDC–inhibitor complexes (22–28), and is supported by a wealth of theoretical and experimental studies (22, 29–31). It has been proposed that the protonation/decarboxylation of OMP could be a concerted event at the direct decarboxylation (23). In contrast, some other experimental

evidence supports the formation of a carboanionic intermediate upon decarboxylation (32, 33). In both cases, kinetic studies have unambiguously identified Lys72 (Methanobacterium thermoautotrophicum numbering) as the residue that protonates the C6 center (21, 34, 35). Another recently proposed catalytic mechanism assumes a preliminary protonation of the uracil ring far from the decarboxylation center. Kollman (36), assuming a protonated Asp70, has proposed as a first step in decarboxylation, an interesting mechanism involving an enamine protonation at C5 carried out by the Lys72 residue (M. thermoautotrophicum numbering). Furthermore, based on ab initio calculations, it has been proposed that O2 and O4 are protonated prior to decarboxylation (36, 37). The latest proposals for this reaction mechanism strongly support direct decarboxylation of OMP, with the formation of a carboanionic intermediate via a transitionstate stabilization mechanism, in which the fully conserved Lys72 (M. thermoautotrophicum numbering) plays a fundamental role by stabilizing the forming negative charge at C6, and consequently, the transition state (31).

In this study, we report the X-ray analysis of the apo, substrate- and product-complex forms of OMPDC from *P. falciparum* (*Pf*OMPDC). This structural analysis provides us with a substrate recognition mechanism with dynamic structural changes, as well as the rearrangement of the hydrogen-bond array occurring during enzymatic catalysis at the active site. We also propose a protruding domain at the N-terminal insertion of *Pf*OMPDC is responsible for binding to *Pf*OPRT.

MATERIALS AND METHODS

Protein Expression and Purification—The recombinant OMPDC protein was prepared by cloning and expression of the gene encoding PfOMPDC in Escherichia coli. The oligonucleotide primers were 5'-CGG GAT CCA TGG GTT TTA AGG TAA AAT TA-3' and 5'-CCA TCG ATT TAC GAT TCC ATA TTT TGC TTT AA-3', which includes encompass BamHI and ClaI restriction sites (in bold), respectively. Polymerase chain reaction (PCR) was carried out using Pfu DNA polymerase (Promega) at 95°C for 5 min, followed by 40 cycles of 95°C for 1 min, 55°C for 1 min and 68°C for 3 min, with a final 68°C for 10 min. The expected 980 bp product for full-length PfOMPDC was inserted into the linearized expression vector pTrcHis-TOPO (Invitrogen). Escherichia coli TOP10 (Invitrogen) cells were transformed with the recombinant plasmid and induced with 1 mM isopropyl β-D-thiogalactopyranoside at 37°C for 18-20 h, and the cell paste was harvested by centrifugation at 8000g for 10 min. The recombinant enzyme was expressed as a soluble protein, and further purified by using a Ni²⁺-nitrilotriacetic acid-agarose affinity column (Qiagen) with 50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 250 mM imidazole and 10% glycerol as the eluting buffer. Further purification was achieved using a Superdex-75 Hiload 26/60 column (GE Healthcare) on ÄKTA fast protein liquid chromatography (GE Healthcare) equilibrated with 50 mM Tris-HCl, pH 8.0, 300 mM NaCl, 5 mM dithiothreitol. The enzyme activity was eluted as a single symmetrical peak at a position of 76 kDa. SDS–PAGE analysis (38) showed that the homogeneous preparation had a molecular mass of 38 kDa. The active form of PfOMPDC was a dimer. OMPDC activity was monitored by a decrease in absorbance of OMP at 285 nm, as described previously (11). The purified recombinant enzyme had a specific activity of \sim 10 μ mol min⁻¹ (mg protein)⁻¹, 300-fold purification, and 30% yield. Up to 30 mg pure recombinant protein was obtained from 10 L of the $E.\ coli$ cell culture. The purified protein was concentrated by Centricon ultrafiltration to 10 mg mL⁻¹, and the homogeneity was confirmed by dynamic light scattering with DynaPro-MS/X (Protein Solutions).

Data Collection and Processing—The apo form was crystallized by a previously reported method (39). Complex crystals with OMP or UMP were prepared by soaking in a solution containing 10 mM OMP or UMP for 2 min.

X-ray diffraction data from the apo form were collected at X06SA beamline (Swiss Light Source, Switzerland) and from OMP- or UMP-complex at BL38 beamline (SPring-8, Japan). Prior to data collection, crystals of apo form and OMP- or UMP-complex of *Pf*OMPDC were soaked in a cryoprotectant solution consisting of 23% (w/v) PEG3K, 0.1M CHES (pH 9.5) and 8% glycerol. The apo form and OMP- or UMP-complex were then mounted in a standard nylon loop in a stream of liquid nitrogen at 100 K. The diffraction patterns were recorded on a MarCCD detector (Mar Research) for the apo form, and on an ADSC Quantum detector (Area Detector Systems Corporation) for the complexes at cryogenic temperature (100 K).

The diffraction intensity data were processed and scaled using MOSFLM (40) and HKL2000 (41). The statistics of the diffraction data collection are shown in Table 1.

Structure Determination and Refinement—The molecular replacement calculations were performed with the program MOLREP (42) in the CCP4 program package (43), using the PO₄-complex of PfOMPDC (PDB code: 2f84) as the search model. A dimer molecule was located in an asymmetric unit of the crystal. Structure models of the apo form were refined against the diffraction data using CNS (44) and REFMAC (45). The models were manually adjusted by electron density map using COOT (46). Even after several cycles of refinement, the electron density for residues 70-74 and 268-274 for one subunit, and 68-70 and 268-272 for the other subunit, was poor. Some other parts of the side chain structure (residues 1, 35, 69, 75, 76, 79, 199, 201, 255, 269, 275, 281, 301, 306, 314, 317 and 318 for one subunit; and residues 1, 71, 96, 174, 207, 222, 231, 255, 266, 269, 273, 274, 275, 281, 306, 314, 317 and 318 for the other subunit) also had poor electron density. The models for these residues were built by using alanine. All models were refined for a few cycles of CNS with B-factor refinement until convergence. The coordinates of the apo, and OMP- or UMP-complex forms of PfOMPDC was deposited as 2ZA2, 2ZA1 and 2ZA3 in the Protein Data Bank. Final refinement statistics for the refined coordinate sets for three structures are shown in Table 1.

72 K. Tokuoka et~al.

Table 1. Data collection and refinement statistics.

	apo form	OMP-complex	UMP-complex
Diffraction data			
Space group cell dimensions (Å)	R3	R3	R3
a	201.81	201.87	202.49
b	201.81	201.87	202.49
c	44.03	44.19	44.36
Resolution (Å)	50.0-2.70 (2.85-2.70)	50.0-2.60 (2.69-2.60)	50.0-2.60 (2.69-2.60)
Measured reflections (n)	57,278	105,551	65,099
Unique reflections (n)	18,313	20,677	20,877
Completeness (%)	99.6 (100.0)	98.8 (99.2)	99.0 (99.9)
$R_{ m merge}^{ m a}$ (%)	5.9 (27.5)	8.6 (33.9)	8.7 (31.7)
Refinement statistics			
Resolution (Å)	50 - 2.70	50-2.65	50-2.65
$R_{ m cryst}^{ m b}$ (%)	21.6	20.8	21.1
$R_{ m free}^{ m c}$ (%)	31.2	28.3	29.4
No. of water molecules	39	134	56
Root mean square deviation bond length (Å)	0.007	0.009	0.007
Root mean square deviation bond angle (°)	1.4	1.9	1.4

 $[^]aR_{\mathrm{merge}} = \sum |I(k) - I|/\sum I(k)$, where I(k) is value of the kth measurement of the intensity of a reflection, I is the mean value of the intensity of that reflection and the summation is the over all measurements. $^bR_{\mathrm{cryst}} = \sum ||F_o| - |F_c||/\sum |F_o|$ calculated from 90% of the data, which were used during the course of the refinement. $^cR_{\mathrm{free}} = \sum ||F_o| - |F_c||/\sum |F_o|$ calculated from 10% of the data, which were used during the course of the refinement.

RESULTS

Overall Structure—The 2.7 $\hbox{\normalfont\AA}$ structure of the apo form of PfOMPDC was solved with R and R_{free} values of 21.6 and 31.2, respectively, by using the MR method with the PO₄-complex of PfOMPDC. PfOMPDC was crystallized in the trigonal space group of R3. One dimer molecule existed in the asymmetric unit (Fig. 2a). The dimer interface was consisted of 10 hydrogen-bond interactions, Lys138(A)-Asp141(B), Asn140(A)-Asn165(B), Asn140(A)-Lys138(B), Asp141(A)-Lys138(B), Lys151(A)-Glu26(B), Asn165(A)-Asn140(B), Asn165(A)-Asn165(B), Asn196(A)-Met168(B), Asp198(A)-Asn171(B) and Asp198(A)-Thr170(B) (Fig. 2b). Each OMPDC subunit of this dimeric enzyme folded as an $(\alpha/\beta)_8$ barrel, with eight central β -sheets surrounded by 13 α helices (Fig. 2c). β 1, residues 18–21; $\beta 2$, 100–104; $\beta 3$, 132–139; $\beta 4$, 161–164; β5, 187–193; β6, 237–241; β7, 261–263; and β8, 288–292; and $\alpha 1$, residues 3–14; $\alpha 2$, 26–37; $\alpha 3$, 42–47; $\alpha 4$, 60–64; $\alpha 5$, 78–94; $\alpha 6$, 113–128; $\alpha 7$, 143–154; $\alpha 8$, 173–176; $\alpha 9$, 200-203; $\alpha 10$, 213-227; $\alpha 11$, 246-255; $\alpha 12$, 276-279 and α 13, 302–315. There were three extra short α helices: η 1, residues 51–54; η 2, 105–108 and η 3, 230–233 (Fig. 2d).

As predicted from protein sequence analysis (Fig. 1), there was a large insertion region (48–86), forming $\alpha 3,$ $\eta 1$ and $\alpha 4$ helices and extended $\alpha 5$ -helix (Fig. 2b). Also PfOMPDC contained a small insertion region (208–217), extended $\alpha 10$ helix. These insertions are not found in other characterized OMPDC structures outside of the Plasmodium species, and appear to be a unique structural feature of the Plasmodium OMPDCs.

The active site was located at the open end of the $(\alpha/\beta)_8$ barrel, which corresponded to the carboxy-terminal of the β strands and the amino-terminal of the α helices. In the apo structure, the L1 loop comprised of residues 268–274 was disordered around the active site, while the L1 loop structure was stabilized upon binding of substrate

or product. The detailed structural comparison between the apo and holo form is described later.

Structural Changes of L1 and L2 Loops upon Binding of OMP/UMP—The structural analysis of PfOMPDC complexes has been performed with R and $R_{\rm free}$ values of 20.8 and 28.3, respectively for the 2.65 Å structure complexed with OMP, and 21.1 and 29.4, respectively, for the 2.65 Å with UMP.

Comparison between the apo and OMP- or UMP-complex of PfOMPDC showed a root-mean-square deviation of 0.75 and 0.74 Å, respectively, by using for 318 structurally equivalent C_{α} atom positions. Several notable structural differences were found around the active site near the open end of the $(\alpha/\beta)_8$ barrel upon binding of OMP or UMP.

The L1 loop which was not determined in the apo form, was stabilized upon binding of the ligands, preventing from solvent. Glu269 in the L1 loop access to the pyrimidine ring moiety of OMP or UMP formed the loop structure of L1 (Fig. 3a). While the structure of the α 9 helix was formed in the L2 loop region (194-213) in the apo form, the secondary structure unfolded in the presence of OMP or UMP, associated with the movement of Thr195 (Fig. 3b). The difference in C_{α} position and the dihedral bond angle of C_{β} – C_{γ} in Thr195 was calculated to be 3.8 Å and 149.1°, respectively, between the apo and OMPcomplex; and 3.6 Å and 150.0°, respectively, between the apo and UMP-complex. It was revealed that both the L1 and L2 loops recognized the pyrimidine ring with the large structural changes. The details of the structural changes to the active site of PfOMPDC are described later.

Change in Active-Site Structure upon Binding of OMP/UMP—Schematic drawings of the OMP- or UMP-complex are shown in Fig. 4a and b, respectively. Both the guanidium group and the backbone amide of Arg294 interacted directly with the phosphate group of OMP

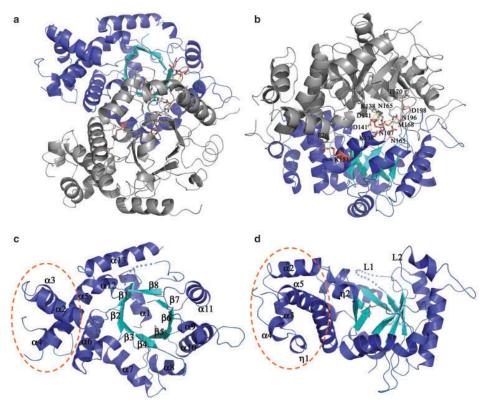
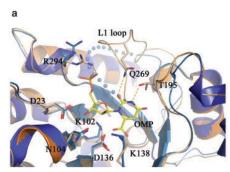
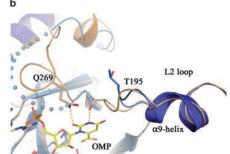


Fig. 2. Mol-A (colour in blue) and mol-B (colour in gray) forms a dimer structure of PfOMPDC. (a) Viewed through α/β barrel. (b) Viewed perpendicular to the view in panel 2a. Monomer of PfOMPDC. The α helices (in blue) and β sheets (in cyan) are separated by loops. One subunit folds as an $(\alpha/\beta)_8$ barrel with eight central β sheets surrounded by 13 α helices.

The disordered L1 loop is shown as a dotted line. (c) Viewed from same direction as the mol-A in 2a. (d) Viewed from same direction as the mol-A in 2b. A large insertion region from residue 48 to 86, constructed the insertion domain containing three helices, and was presented in dot circle (in orange). The figures were drawn with PYMOL (50).


or UMP, as did the amide of Gly293. Thr145(B) and Asn104 hydrogen-bonded to the 2'- and 3'-hydroxyl group of the ribose ring, respectively. In the top part of the pyrimidine ring, comprising O4, N3 and O2, there were hydrogen bonds to Thr195 and Gln269. Thr195 accepted a hydrogen bond from N3 and donated a hydrogen bond to O4. A pocket near C5 of the pyrimidine ring was surrounded by several hydrophobic residues of Ile142(B), Leu191, Thr194, Val240 and Pro264 (not shown in Fig. 4a).


Compared with the apo form, there was a change in active-site structure upon ligand binding. Arg294 and Thr195 in L2, and Gln269 in L1 exhibited a large structural movement upon binding of OMP or UMP. The averaged movement of three nitrogen positions in the guanidium residue of Arg294 were both calculated to be $2.9\,\mbox{\normalfont\AA}$ for the OMP- or UMP-complexes, and the dihedral angles of C_δ - N_ϵ and N_ϵ - C_ζ of Arg294 are 120.1° and 87.2° for OMP-, and 64.6° and 118.2° for UMPcomplexes, respectively. The helix structure of $\alpha 12$ did not change, while the L1 and L2 loops had the large structural movements described earlier. The average difference in the top part of residues Thr195 and Arg294 was measured to be 1.5 and 1.6 Å, respectively for OMPand UMP-complexes. On the other hand, in the bottom part of the active site, the C_{α} atom of Gln293, Asn104 and Thr145(B) adopted almost the same positions between the apo and complex forms. The average difference in the bottom part of residues Asn104, Thr145(B) and Gln293 was $0.3\,\text{Å}$ for both the OMP- and UMP-complexes.

The binding mode of OMP was basically the same as that of UMP, except for the residue Lys102. In the OMP binding form, Lys102 hydrogen-bonded to the carboxylate oxygen of pyrimidine. After decarboxylation, Lys102 changed the hydrogen bond to O5 of ribose (Fig. 4).

Rearrangement of Hydrogen-Bond Network Around Lys102-In the apo form, Lys102 formed a hydrogenbond network with Asp136, Lys138 and Asp141 from the other protomer of the dimer (Fig. 5a). The conserved catalytic array of Lys102-Asp136-Lys138-Asp141(B) makes the hydrogen-bond network at the active site. The amino group of Lys102 recognized the carboxyl group of OMP, and then the distance between Lys102-Asp136 was lengthened from 2.7 to 3.6 Å, breaking the hydrogen bond between Lys102 and Asp136 upon binding of OMP (Fig. 5b and d). The UMP binding form (Fig. 5c and e), which mimicked the structure after decarboxylation, possessed two hydrogen bonds at Lys102-Asp136 and Lys138-Asp141(B) (Fig. 5c). In the UMP-complex, Lys102 hydrogen bonded to Asp136 instead of the carboxyl group of the pyrimidine ring, breaking the hydrogen bond between Asp136 and Lys138, after decarboxylation.

74K. Tokuoka et al.

 ${\rm Fig.~3.}$ Movement of L1 (a) and L2 (b) loops upon bindings of OMP. Blue and orange structures show the apo form and OMP-complex. (a) The L1 loop, which cannot be unequivocably determined in the apo form (blue dotted line), was stabilized, access to the ligand. The figures were drawn with PYMOL (50).

and the loop structure containing Q269 was formed. (b) The $\alpha 9$ helix only formed in the apo from, and unfolded in association with the movement of Thr195 (C_{α} distance of 3.8 Å), and then

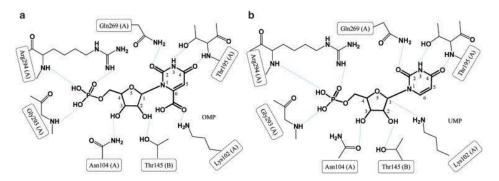


Fig. 4. Schematic drawings of the hydrogen bonding OMP was basically the same as that of UMP, except for the pattern around OMP (a) and UMP (b). The binding motif of

residue Lys102.

The observed rearrangement of the hydrogen-bond network based on the structural determination of the apo form and OMP- and UMP-complex in Plasmodium OMPDCs is the first report.

DISCUSSION

The details of the reaction mechanism have been proposed by Raugei et al. (31), that a very stable charged $network\ OMP-Lys-Asp-Lys-Asp\ promotes\ transition\ state$ electrostatic stabilization, and fully conserved Lys138 (PfOMPDC numbering) largely contributes to the stabilization of the transition state or equivalently, the carboanionic intermediate.

In this study, in an attempt to provide further proofof-principle, we have determined the X-ray structure of the apo, substrate or product-complex forms of PfOMPDC. These three kinds of structural analyses provided an insight into the rearrangement of the hydrogen network in the array of OMP-Lys-Asp-Lys-Asp, by comparison between the initial and completion stages of the decarboxyl reaction. At the initial reaction step, the side chain of Lys102 broke a hydrogen bond with the carboxyl group of Asp136, and then formed a hydrogen bond with the carboxyl oxygen atom of the substrate, upon binding OMP. These processes increased the negative charge on the two carboxyl groups on the

substrate and Asp136, which led to electrostatic repulsion between the carboxyl groups. Even the short distance of 2.5 Å between the two carboxyl groups, and the positively charged residues of Lys102 and Lys138 maintained the unstable structure.

Then, the decarboxylation reaction started from the structure with electrostatic repulsion. After direct decarboxylation, the newly generated carboanion at the C6 position of the pyrimidine ring may have been stabilized by the conserved array, and absorbed a proton from the Lys138 side chain directly (31). In the completion step, two pairs of hydrogen bonds, Lys102-Asp136 and Lys138-Asp141(B), were formed, and all of the electrostatic charge in the array was compensated (Fig. 5c). It seems to be difficult, however, to specify from our structural models which Lys residues stabilized the forming carboanion intermediate in the transition state.

Ning Wu et al. (47) reported the mutational study for this enzyme from M. thermoautotrophicum. Asp70 and Lys72 (corresponding to Asp136 and Lys138, respectively, in P. falciparum) were mutated to an alanine, however those mutants still had enzymatic activity to convert from OMP to UMP, indicating Asp70 cannot be the only driving force for decarboxylation. The same argument can be made for Lys72, and then the mechanism of protonation as well as that of decarboxylation was not specified completely.

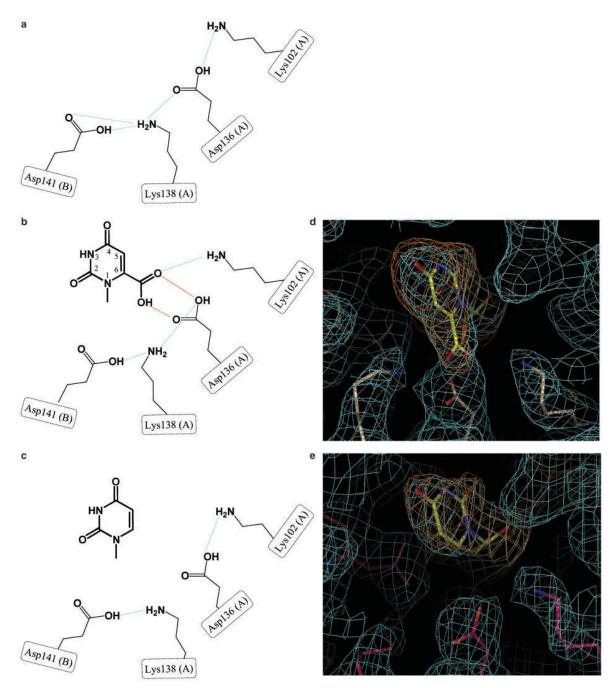


Fig. 5. **Proposed reaction mechanism.** Stepwise representation of the rearrangement of the hydrogen-bond network, with a particular electron density map around Lys102. (a) Apo form. Lys102 formed a hydrogen-bond network with Asp136, Lys138 and Asp141. (b) The substrate entered the active site. As Lys102 turned away from Asp136, charge repulsion between the two carboxylate groups initiated decarboxylation and Lys138 donated

a proton to C6. (c) After decarboxylation, Lys102 hydrogen bonded to Asp136 instead of the carboxyl group of the pyrimidine ring. (d) Electron density maps of OMP (d) and UMP (e) binding forms. These contours show the SIGMAA-weighted $2F_o - F_c$ map at 1.5 σ as well as the $F_o - F_c$ omit map. The programs COOT (46) and PYMOL (50) were used to make these figures.

A structural analysis of complexes with a transition state analogue will further uncover the mechanism of transition state stabilization by Lys residues.

Eukaryotes express OMPDC as a bifunctional protein, UMP synthase, which catalyses the orotate

phosphoribosyltransferase reaction before the decarboxylation reaction. On the other hand, *Pf*OMPDC forms a complex with orotate phosphoribosyltransferase (OPRT), which forms a heterotetrameric complex in *P. falciparum* (20). In our multiple sequence alignment, we found

a unique structural feature of the OMPDCs belonging to *Plasmodium*. A large insertion was observed between $\beta 1$ and $\alpha 5$, which formed a protruding domain consisting of three α helices, $\alpha 2$, $\alpha 3$ and $\alpha 4$. We propose that the unique insertion may participate in making a complex with OPRT.

In our structural observations, the top part of the active site played a role in substrate binding, accompanied by large structural movement. The average difference of 1.5 Å in the top part is twice the root-mean-square deviation calculated from all C_{α} atoms.

Eleven structures of OMPDC have been reported. Among them four kind of nucleotide complex structures are available to compare with those of apo forms to date. Each of OMPDC from M. thermoautotrophicum, P. horikoshii, E. coli and S. cerevisiae showed a large structural change around the active site near the open end of the $(\alpha/\beta)_8$ barrel upon binding of the nucleotide. The structure of each loop which corresponds to the L1 loop in PfOMPDC was stabilized by making hydrogen bond with the pyrimidine ring moiety of nucleotide ligands, which is same manner as our complex showed. On the other hand, the OMPDCs from three species except S. cerevisiae retained the structure of α -helix which correspond to $\alpha 9$ near the L2 loop region in PfOMPDC, did not display any structural changes upon binding of nucleotide ligands. PfOMPDC has long insertion after a9 helix which makes the L2 loop harder to access to pyrimidine moiety. Therefore a helix needs to be unfold upon binding OMP or UMP in PfOMPDC.

On the contrary, the bottom part of the active site was significantly rigid; the average difference was half of the overall root-mean-square deviation. Even a small difference, such as the rearrangement of hydrogen bonds in the array of OMP-Lys-Asp-Lys-Asp, may have played a pivotal role in catalysis. The corresponding residues for binding and catalysing showed >80% consensus among all the OMPDCs, and the structural movements described earlier may be in common with them.

In summary, we have proposed a reaction mechanism and characteristic domain for binding of *Plasmodium* OPRT, as inferred from structural analyses of apo and holo forms. Future studies on the structural analyses of complexes with transition state analogues will unravel the stabilization mechanism of the carboanion intermediate. The structural analysis of the complex between *Pf*OMPDC and *Pf*OPRT will, likewise, clarify the heterotetrameric reaction mechanism which could lead to the development of important antimalarial drugs.

The synchrotron radiation experiments were mainly performed at the BL44XU in the SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2006A6806-NL1-np and 2006B6806-NL1-np), and the final data collection was carried out at BL38B1. The authors are grateful to M. Yoshimura, E. Yamashita, A. Nakagawa, M. Kawamoto, N. Shimizu and K. Hasegawa, for their kind support with the data collection at these beam-lines.

This work was supported in part by the program of Grants-in-Aid for Scientific Research (B) (18350086) to T.I., and

Founding Research Centers for Emerging and Reemerging Infectious Diseases to TH, of the Ministry of Education, Culture, Sport, Science and Technology (MEXT), Japan, the Thailand Research Fund (BRG 4880006) to S.R.K. and J.K., and a part of a grant from the 21st century Center of Excellence (21COE) Program 'Creation of Integrated EcoChemistry' of Osaka University to K.T.

REFERENCES

- Guerin, P.J., Olliaro, P., Nosten, F., Druilhe, P., Laxminarayan, R., Binka, F., Kilama, W.L., Ford, N., and White, N.J. (2002) Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development. *Lancet Infect. Dis.* 2, 564–573
- Ridley, R.G. (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415, 686–693
- Gero, A.M. and O'Sullivan, W.J. (1990) Purines and pyrimidines in malarial parasites. Blood Cells 16, 467–484; discussion 485–498
- Krungkrai, J., Cerami, A., and Henderson, G.B. (1990) Pyrimidine biosynthesis in parasitic protozoa: purification of a monofunctional dihydroorotase from *Plasmodium berghei* and Crithidia fasciculata. Biochemistry 29, 6270–6275
- Krungkrai, J., Cerami, A., and Henderson, G.B. (1991)
 Purification and characterization of dihydroorotate dehydrogenase from the rodent malaria parasite Plasmodium berghei. *Biochemistry* 30, 1934–1939
- Umezu, K., Amaya, T., Yoshimoto, A., and Tomita, K. (1971) Purification and properties of orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase from baker's yeast. J. Biochem. (Tokyo) 70, 249–262
- Quinn, C.L., Stephenson, B.T., and Switzer, R.L. (1991) Functional organization and nucleotide sequence of the Bacillus subtilis pyrimidine biosynthetic operon. J. Biol. Chem. 266, 9113–9127
- Jones, M.E. (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu. Rev. Biochem. 49, 253–279
- 9. Floyd, E.E. and Jones, M.E. (1985) Isolation and characterization of the orotidine 5'-monophosphate decarboxylase domain of the multifunctional protein uridine 5'-monophosphate synthase. J. Biol. Chem. 260, 9443–9451
- Livingstone, L.R. and Jones, M.E. (1987) The purification and preliminary characterization of UMP synthase from human placenta. J. Biol. Chem. 262, 15726–15733
- Yablonski, M.J., Pasek, D.A., Han, B.D., Jones, M.E., and Traut, T.W. (1996) Intrinsic activity and stability of bifunctional human UMP synthase and its two separate catalytic domains, orotate phosphoribosyltransferase and orotidine-5'-phosphate decarboxylase. J. Biol. Chem. 271, 10704–10708
- 12. Gao, G., Nara, T., Nakajima-Shimada, J., and Aoki, T. (1999) Novel organization and sequences of five genes encoding all six enzymes for de novo pyrimidine biosynthesis in Trypanosoma cruzi. J. Mol. Biol. 285, 149–161
- Nara, T., Hshimoto, T., and Aoki, T. (2000) Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes. Gene 257, 209–222
- Weber, G. (1983) Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Res. 43, 3466–3492
- Scott, H.V., Gero, A.M., and O'Sullivan, W.J. (1986) In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo. *Mol. Biochem.* Parasitol. 18, 3–15

- Queen, S.A., Jagt, D.L., and Reyes, P. (1990) In vitro susceptibilities of Plasmodium falciparum to compounds which inhibit nucleotide metabolism. *Antimicrob. Agents Chemother.* 34, 1393–1398
- Krungkrai, J., Krungkrai, S.R., and Phakanont, K. (1992) Antimalarial activity of orotate analogs that inhibit dihydroorotase and dihydroorotate dehydrogenase. *Biochem. Pharmacol.* 43, 1295–1301
- Seymour, K.K., Lyons, S.D., Phillips, L., Rieckmann, K.H., and Christopherson, R.I. (1994) Cytotoxic effects of inhibitors of de novo pyrimidine biosynthesis upon *Plasmodium* falciparum. Biochemistry 33, 5268–5274
- Miller, B.G., Snider, M.J., Wolfenden, R., and Short, S.A. (2001) Dissecting a charged network at the active site of orotidine-5'-phosphate decarboxylase. J. Biol. Chem. 276, 15174–15176
- Krungkrai, S.R., DelFraino, B.J., Smiley, J.A., Prapunwattana, P., Mitamura, T., Horii, T., and Krungkrai, J. (2005) A novel enzyme complex of orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase in human malaria parasite *Plasmodium* falciparum: physical association, kinetics, and inhibition characterization. Biochemistry 44, 1643–1652
- Miller, B.G. and Wolfenden, R. (2002) Catalytic proficiency: the unusual case of OMP decarboxylase. Annu. Rev. Biochem. 71, 847–885
- Wu, N., Mo, Y., Gao, J., and Pai, E.F. (2000) Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. *Proc. Natl Acad.* Sci. USA 97, 2017–2022
- Harris, P., Navarro Poulsen, J.C., Jensen, K.F., and Larsen, S. (2000) Structural basis for the catalytic mechanism of a proficient enzyme: orotidine 5'-monophosphate decarboxylase. *Biochemistry* 39, 4217–4224
- Appleby, T.C., Kinsland, C., Begley, T.P., and Ealick, S.E. (2000) The crystal structure and mechanism of orotidine 5'-monophosphate decarboxylase. *Proc. Natl. Acad. Sci. USA* 97, 2005–2010
- Feng, W.Y., Austin, T.J., Chew, F., Gronert, S., and Wu, W. (2000) The mechanism of orotidine 5'-monophosphate decarboxylase: catalysis by destabilization of the substrate. Biochemistry 39, 1778–1783
- 26. Houk, K.N., Lee, J.K., Tantillo, D.J., Bahmanyar, S., and Hietbrink, B.N. (2001) Crystal structures of orotidine monophosphate decarboxylase: does the structure reveal the mechanism of nature's most proficient enzyme? Chembiochem 2, 113–118
- Begley, T.P., Appleby, T.C., and Ealick, S.E. (2000)
 The structural basis for the remarkable catalytic proficiency of orotidine 5'-monophosphate decarboxylase. Curr. Opin. Struct. Biol. 10, 711–718
- Wu, N. (2002) Crystal structures of inhibitor complexes reveal an alternate binding mode in orotidine-5'monophosphate decarboxylase. J. Biol. Chem. 277, 28080–28087
- 29. Warshel, A., Strajbl, M., Villa, J., and Florian, J. (2000) Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization. Biochemistry 39, 14728–14738
- Hur, S. and Bruice, T.C. (2002) Molecular dynamic study of orotidine-5'-monophosphate decarboxylase in ground state and in intermediate state: a role of the 203-218 loop dynamics. Proc. Natl. Acad. Sci. USA 99, 9668–9673
- 31. Raugei, S., Cascella, M., and Carloni, P. (2004) A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. *J. Am. Chem. Soc.* **126**, 15730–15737

- 32. Miller, B.G., Hassell, A.M., Wolfenden, R., Milburn, M.V., and Short, S.A. (2000) Anatomy of a proficient enzyme: the structure of orotidine 5'-monophosphate decarboxylase in the presence and absence of a potential transition state analog. Proc. Natl. Acad. Sci. USA 97, 2011–2016
- Miller, B.G., Snider, M.J., Short, S.A., and Wolfenden, R. (2000) Contribution of enzyme-phosphoribosyl contacts to catalysis by orotidine 5'-phosphate decarboxylase. Biochemistry 39, 8113–8118
- Porter, D.J. and Short, S.A. (2000) Yeast orotidine-5'phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation. *Biochemistry* 39, 11788–11800
- Smiley, J.A. and Jones, M.E. (1992) A unique catalytic and inhibitor-binding role for Lys93 of yeast orotidylate decarboxylase. *Biochemistry* 31, 12162–12168
- Lee, J.K. and Houk, K.N. (1997) A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase. Science 276, 942–945
- Phillips, L.M. and Lee, J.K. (2001) Theoretical studies of mechanisms and kinetic isotope effects on the decarboxylation of orotic acid and derivatives. J. Am. Chem. Soc. 123, 12067–12073
- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685
- Krungkrai, S.R., Tokuoka, K., Kusakari, Y., Inoue, T., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Mori, Y., Kai, Y., Krungkrai, J., and Horii, T. (2006) Crystallization and preliminary crystallographic analysis of orotidine 5'-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum. Acta. Crystallograph. Sect. F. Struct. Biol. Cryst. Commun. 62, 542-545
- MOSFLM. (Data-collection) Leslie, A.G.W. (1992) Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26, Daresbury Laboratory, Warrington, UK
- Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods* Enzymol. 276, 307–326
- Navaza, J. (2001) Implementation of molecular replacement in AMoRe. Acta. Crystallogr. D. Biol. Crystallogr. 57, 1367–1372
- 43. Collaborative Computational Project, n. (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 50, 760–763. Write to the Help Desk NCBI | NLM | NIH Department of Health & Human Services Privacy Statement | Freedom of Information Act | Disclaimer
- Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., and Warren, G.L. (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D. Biol. Crystallogr. 54, 905–921
- Murshudov, G.N., Vagin, A.A., Lebedev, A., Wilson, K.S., and Dodson, E.J. (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr. D. Biol. Crystallogr. 55, 247–255
- Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132
- 47. Wu, N., Gillon, W., and Pai, E.F. (2002) Mapping the active site-ligand interactions of orotidine 5'-monophosphate decarboxylase by crystallography. *Biochemistry* 41, 4002–4011

78 K. Tokuoka et~al.

48. Vedadi, M., Lew, J., Artz, J., Amani, M., Zhao, Y., Dong, A., Wasney, G.A., Gao, M., Hills, T., Brokx, S., Qiu, W., Sharma, S., Diassiti, A., Alam, Z., Melone, M., Mulichak, A., Wernimont, A., Bray, J., Loppnau, P., Plotnikova, O., Newberry, K., Sundararajan, E., Houston, S., Walker, J., Tempel, W., Bochkarev, A., Kozieradzki, I., Edwards, A., Arrowsmith, C., Roos, D., Kain, K., and Hui, R. (2007) Genome-scale protein expression and structural biology

- of Plasmodium falciparum and related Apicomplexan organisms. $Mol.\ Biochem.\ Parasitol.\ 151,\ 100-110$
- Harris, P., Poulsen, J.C., Jensen, K.F., and Larsen, S. (2002) Substrate binding induces domain movements in orotidine 5'-monophosphate decarboxylase. J. Mol. Biol. 318, 1019–1029
- 50. DeLano, W.L. (2005) The case for open-source software in drug discovery. $Drug\ Discov.\ Today\ {f 10},\ 213-217$

Available online at www.sciencedirect.com

Biochemical and Biophysical Research Communications 366 (2008) 821-826

www.elsevier.com/locate/vbbrc

Dihydroorotase of human malarial parasite *Plasmodium falciparum* differs from host enzyme

Sudaratana R. Krungkrai ^a, Nuchanat Wutipraditkul ^b, Jerapan Krungkrai ^{c,*}

- ^a Department of Medical Science, Faculty of Science, Rangsit University, Patumthani 12000, Thailand
- ^b Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- ^c Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Received 24 November 2007 Available online 17 December 2007

Abstract

Plasmodium falciparum, the causative agent of human malaria, is totally dependent on de novo pyrimidine biosynthetic pathway. A gene encoding P. falciparum dihydroorotase (pfDHOase) was cloned and expressed in Escherichia coli as monofunctional enzyme. PfDHOase revealed a molecular mass of 42 kDa. In gel filtration chromatography, the major enzyme activity eluted at 40 kDa, indicating that it functions in a monomeric form. This was similarly observed using the native enzyme purified from P. falciparum. Interestingly, kinetic parameters of the enzyme and inhibitory effect by orotate and its 5-substituted derivatives parallel that found in mammalian type I DHOase. Thus, the malarial enzyme shares characteristics of both type I and type II DHOases. This study provides the monofunctional property of the parasite DHOase lending further insights into its differences from the human enzyme which forms part of a multifunctional protein.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Monofunctional enzyme; Dihydroorotase; Pyrimidine; Plasmodium falciparum; Malaria

Malaria remains a major and growing threat to the public health of the population living in the endemic areas [1]. One of the four species that infect humans, *Plasmodium falciparum* is the most lethal parasite. Resistance to antimalarial drugs and their toxicity are contributing factors to the spread of the disease. This highlights the need to develop quickly more effective and less toxic new antimalarial drugs with different mechanism of action [2].

Pyrimidine nucleotides are essential metabolites. Unlike human and other mammalian cells [3], however, *P. falciparum* cannot salvage preformed pyrimidine bases or nucleosides from human host, but relays solely on nucleotide synthesized through the *de novo* pathway [4–10]. The *de novo* pathway involves six sequential enzymes catalyzing the conversion of precursors HCO_3^- , ATP, Glu, and Asp to uridine 5'-monophosphate (UMP) [3,4,8]. There are

some key differences of the enzymes in the *de novo* pathway between malarial parasites and higher eukaryotes, including human host [4–7,9–13]. The third enzyme of the pathway, dihydroorotase (DHOase), is a Zn²⁺ amidohydrolase superfamily that catalyzes reversible cyclization of *N*-carbamoyl-L-aspartate (L-CA) to form L-dihydroorotate (L-DHO). Based on known DHOase sequences and phylogenetic analysis, they are classified into two families [14]. The type I DHOase is found in higher organisms, archaebacteria, and eubacteria (e.g., *Aquifex aeolicus*) [14,15]. The type II DHOase is predominately found in eubacteria (e.g., *Escherichia coli*) [16], exhibiting significant differences in their sequences.

In this study, we report the cloning, functional expression of the *P. falciparum* gene encoding DHOase activity in *E. coli* and the purification of the recombinant DHOase to apparent homogeneity. Physical, kinetic, and inhibitory properties of the recombinant enzyme are characterized and compared with the native enzyme, purified from the *in vitro* culture of *P. falciparum*.

^{*} Corresponding author. Fax: +66 02 2524986. E-mail address: fmedjkk@md2.md.chula.ac.th (J. Krungkrai).

Materials and methods

Materials. Cloning and expression vectors, restriction enzymes, and all molecular biological reagents were purchased from Qiagen, Invitrogen, Novagen, and Promega. Radiochemicals were from Du Pont. Other chemicals were of the highest quality commercially available. L-[¹⁴C]DHO and L-[¹⁴C]CA were synthesized as described previously [5].

Parasite cultivation and crude extract preparation. Asynchronous stages of *P. falciparum* (strain 3D7) were cultivated according to Trager and Jensen method [17]. Synchronous cultures were achieved using sorbitol treatment [7]. Parasites and the crude extract were prepared as essentially described [9].

Genomic DNA, total RNA, and cDNA preparation. Genomic DNA and total RNA were purified from an asynchronous culture of *P. falciparum* by DNAZOL and TRIZOL (Life Technologies), respectively. First strand cDNA was synthesized as essentially described [10].

Identification and characterization of P. falciparum DHOase homolog. Homology search of pfDHOase was performed with the BLAST program of the NCBI server [18]. A single open reading frame encoding DHOase homolog was annotated as putative DHOase within a sequence on chromosome 14 of P. falciparum in the Plasmodium Genome Database (http://www.PlasmoDB.org) and further characterized by the Tblastn program. Pair-wise and multiple sequence alignments of pfDHOase with known sequences from other organisms, including other Plasmodium species, were performed using the CLUSTALW program.

Cloning and sequencing of P. falciparum DHOase homolog. cDNA encoding pfDHOase was amplified by PCR using Pfu DNA polymerase (Promega) with the following forward and reverse primers 5'CGCGGAT CCATGAAAAATTACTTTTATATTCC3' and 5'CCCAAGCTTTTAA AACTTACATAATG3' introducing BamHI and HindIII restriction sites, respectively (shown in boldface type).

The PCR cycling condition, including denaturation, annealing, and extension steps, was performed as described [10]. The PCR product was purified using gel extraction kit (Qiagen) and then ligated by using Ligafast (Toyobo) into Zero Blunt TOPO cloning vector (Invitrogen). The p/DHOase sequence was determined by the dideoxy chain-termination method. The p/DHOase plasmid was subcloned into three expression vectors: pET 15b (Novagen), pTrcHis A (Invitrogen), and pQE-30 Xa (Qiagen) plasmids.

Recombinant expression and purification of P. falciparum DHOase from E. coli. Plasmid constructs were transformed into competent E. coli cells as follows: pET 15b/E. coli BL21 (DE3); pTrcHis A/E. coli TOP10; pQE-30 Xa/E. coli M15. The cells were grown in LB medium (37 °C) to $A_{600}=0.5$, induced with 1 mM isopropyl β -D-thiogalactopyranoside, and harvested after induction for 18 h at 18 °C. Recombinant protein purification was performed at 4 °C by a nickel-nitrilotriacetic acid (Ni-NTA) gel and a gel filtration Superose 12 column connected to a FPLC system, as described [10].

Purification of native DHOase from P. falciparum. Native DHOase from the crude extract of P. falciparum was purified by three sequential steps on a FPLC system using anion-exchange Mono Q, gel filtration Superose 12, and chromatofocusing Mono P columns. The purification conditions, including buffers, are reported elsewhere [5].

Enzymatic activity assay. DHOase activity in the ring cleavage reaction using L-[14C]DHO was measured in the different purification steps [5]. Spectrophotometric method was used to detect both the ring cyclization and cleavage reactions of the recombinant pfDHOase, as described [19]. Radiochemical assay was used to confirm the authenticity of the pfDHOase reaction in both enzymatic directions from the spectrophotometric method.

Kinetics and inhibition studies. Kinetic analysis for both ring cyclization and cleavage reactions were determined using five different preparations of pure recombinant pfDHOase enzyme (50 nM per reaction). The $K_{\rm m}$ and $V_{\rm max}$ values were obtained from triplicate measurements of initial velocities with at least five substrate concentrations. The $k_{\rm cat}$ values were calculated from $V_{\rm max}/[E]$. Catalytic efficiency ($k_{\rm cat}/K_{\rm m}$) values were also determined. Kinetic data of initial velocities and inhibition by orotate (OA) and its 5-substituted derivatives as double-reciprocal plots were fitted to the appropriate equations for competitive inhibitors.

Results and discussion

Recent findings have highlighted potential vulnerability of the human parasite toward agents which affect pyrimidine biosynthetic pathway [6–8,10,11,20,21]. Nevertheless, only two enzymes of the P. falciparum pathway have crystal structures, the fourth [11] and sixth [22] enzymes. Much importance has been given to DHOase since compounds presumed to affect the enzyme activity have been shown to be selectively toxic toward the human parasite [6,8]. However to fully exploit this target, detailed physical, kinetic, and structural characterization of pfDHOase is required. Here, we have prepared appropriate quantities of the recombinant enzyme for detailed characterization, as compared to limited amounts of the native enzyme obtainable from in vitro P. falciparum culture. The malarial enzyme is unique since it is a monofunctional protein and thus differs from the mammalian host in which the 36.7kDa enzyme is located on the central part of the 240kDa CAD multifunctional protein [23].

Identification and characterization of gene and amino acid sequence for P. falciparum DHOase

The gene encoding pfDHOase was identified as a single copy on chromosome 14 (locus: PF14_0697) in PlasmoDB. It has an intronless open reading frame (1077 bp), which encodes a 41,718-Da protein (358 residues) with a pI of 7.45. The malarial sequence was aligned to both type I and II DHOases, and found to be most similar to E. coli, having 348 residues with a molecular mass of 38 kDa [13,19]. The bacterial DHOase belongs to type II family and its crystal structure has already been obtained. The catalytic residues of the malarial DHOase were conserved to the amino acids predicted from the crystal structures in four organisms: E. coli (PDB code: 2EG6, type II), A. aeolicus (PDB code: IXRF, type I), Porphyromonas gingivalis (PDB code: 2GWN, type I), and Agrobacterium tumefaciens (PDB code: 2OGJ, type unknown) (Supplemental Figure).

In PlasmoDB, putative DHOases were found in six *Plasmodium* species. The *P. falciparum* enzyme had 63–65% identity to *P. vivax*, *P. knowlesi*, *P. berghei*, *P. chabaudi*, and *P. yoelii*. All malarial enzymes were most similar (46–57%) to the type II DHOase: bacteria *E. coli* (46%), plant *Arabidopsis thaliana* (48%), fungi *Saccharomyces cerevisae* (48%), and apicomplexan *Toxoplasma gondii* (57%); compared to type I DHOase of bacteria (<37%) *A. aeolicus*, and *P. gingivalis*. Interestingly, the malarial enzyme had also very low homology (<20%) to the human DHOase (334 residues, 36.7 kDa, p*I* 6.1) [23]. Phylogenetic analysis of most DHOase sequences obtained from the database indicates that the malarial sequence, as well as the fungal and plant enzymes, presumably has common proteobacterial ancestors.

In silico, the overall structure of the malarial enzyme is predicted to be a TIM-barrel model with two zinc atoms bridged by a carboxylated Lys98 in the active site. The zinc ligand residues are well conserved between $E.\ coli$ and $P.\ falciparum$. Furthermore, the bacterial flexible loop (residues 106–116), its movement in the active site which is necessary for catalysis [16], are also highly conserved in the $P.\ falciparum$ sequence at residues 101–111. Five amino acids responsible for substrate L-CA binding are fully conserved residues. By comparison, this partly supports the general catalysis of DHOase involving loop movement in the active site, as shown in $E.\ coli$. The zinc ligand residues and the presence of flexible loops of $P.\ falciparum$ are different from the type I human [23] and $A.\ aeolicus$ enzymes [15]. Unique for $P.\ falciparum$ is an insertion of 15 amino acids (206–220), close to the seventh α -helical region (Supplemental Figure).

Cloning, expression, and purification of P. falciparum DHOase in E. coli

The cDNA encoding pfDHOase was cloned into the pET 15b and pTrcHis A vectors; and then expressed in $E.\ coli\ BL21(DE3)$ and TOP10 cells, respectively. The pfDHOase expression in these vectors and $E.\ coli$ cells was relatively low, with limited solubility. The third vector, pQE-30 Xa, was then attempted and expression in $E.\ coli$ M15 showed relatively good yield (1.5–2.0 mg of pure pfDHOase per 1 L $E.\ coli$ culture). The recombinant enzyme was purified to apparent homogeneity, as assessed by SDS–PAGE (Fig. 1A). The pfDHOase molecular mass was estimated to be 42.4 ± 2.5 kDa (n=6), corresponding to the predicted molecular mass of 41,718 Da. The recombinant enzyme was active with a specific activity of $970\ \text{nmol min}^{-1}$ mg protein $^{-1}$.

Purification and physical properties of native P. falciparum DHOase

We measured the activity of DHOase from synchronized in vitro cultures of P. falciparum. The total activity in the trophozoite (87.4 \pm 10.2 nmol min⁻¹ per 10⁸ parasites, n = 3) and schizont ($108 \pm 13 \text{ nmol min}^{-1}$ per 10^8 parasites, n=3) stages were increased \sim 23- and \sim 28-fold, respectively, as compared to the activity in the ring stage $(3.8 \pm 0.5 \text{ nmol min}^{-1} \text{ per } 10^8 \text{ parasites}, n = 3)$. This finding confirms stage-dependent activity of the pyrimidine enzyme in P. falciparum [4]. From the crude extract preparation of the parasite to FPLC on Mono Q, Superose, and finally Mono P columns, the DHOase was purified to near homogeneity at ca. 356-fold and 26% yield (Table 1). The purified enzyme appeared as a dominant band at 42 kDa on SDS-PAGE (Fig. 1B). Gel filtration chromatography on the Superose column of the purified DHOase obtainable from the Mono P column showed that enzyme activity eluted as a single symmetric peak at 40 ± 4 kDa (n = 3), indicating that the native enzyme exists in the monomeric form (Fig. 1C).

Comparing the *P. falciparum* and *P. berghei* amino acid sequences with the crystal structure in *E. coli* to determine

structural features revealed two salt bridges and three hydrophobic interactions on dimeric interface, responsible for the subunit–subunit interaction in the bacteria. These residues were not conserved in the *P. falciparum* and *P. berghei* sequences, partly supporting our observation that the native malarial enzyme is a monomeric protein, as we have premised based on *P. berghei* [5]. DHOases from the bacterial *A. aeolicus* [15] and the apicomplexan *T. gondii* [24] that appear to function in monomeric form, likewise, lack these conserved residues for the subunit–subunit interaction (Supplemental Figure).

Physical and kinetic characterization of recombinant P. falciparum DHOase

Gel filtration chromatography of recombinant enzyme shows that the activity was eluted at both monomeric $(40 \pm 3 \text{ kDa}, n = 5)$ and dimeric $(80 \pm 8 \text{ kDa}, n = 5)$ positions, although more than 75% of the total activity was associated with the monomeric form (Fig. 2A). However, both forms had similar k_{cat} values. This observation was not found in the native enzyme isolated from the parasite. The dimeric property of the recombinant DHOase was, however, confirmed by dimethyl suberimidate chemical cross-linking analysis [5]. As shown in Fig. 2B, only the cross-linked dimeric form was observed. The recombinant pfDHOase, demonstrated in both studies, however, also suggests that the monofunctional enzyme may possibly be active in both monomeric and dimeric forms. The dimeric form may exist under certain conditions during the enzyme preparations. Thus, oligomerization behavior remains to be explored by having its crystal structure.

Since the enzyme catalyzes reversible reaction of L-CA to L-DHO, the activities of the pfDHOase were then measured in both reactions over the pH range of 4.0–11.0. In the ring cyclization reaction, very high activity appeared at acidic pH. In contrast, the rate of ring cleavage reaction was very high at alkaline pH and lower activity was observed at acidic pH. The pH-activity profile for both reactions intersects at pH 6.6 (Fig. 3), suggesting that the enzyme catalysis involves His residues located on the active site. This observation is similar to that found in mammalian [25], T. gondii [24] and Crithidia fasciculata [5] enzymes. Metal chelators EDTA and 1,10-phenanthroline had no effect on the enzyme activity when tested at 2.5 mM. The pfDHOase activity was strongly inhibited by 10-min preincubation with 1.0 mM diethyl pyrocarbonate (DEPC) and its activity was restored >95% when the enzyme was preincubated with both 1.0 mM DEPC and 5.0 mM L-CA. Zn²⁺ inhibited competitively the ring cyclization reaction with a K_i of 2.85 mM. Co^{2+} also inhibited the enzyme with a K_i of 3.55 mM (Supplemental Table).

At pH 6.0, the enzyme displayed normal Michaelis–Menten saturation kinetics for the maximal ring cyclization of L-CA. $K_{\rm m}$ of L-CA and $k_{\rm cat}$ values were determined to be 0.285 ± 0.012 mM and 60.2 ± 4.4 min⁻¹, respectively. The maximal ring cleavage reaction rate of L-DHO measured

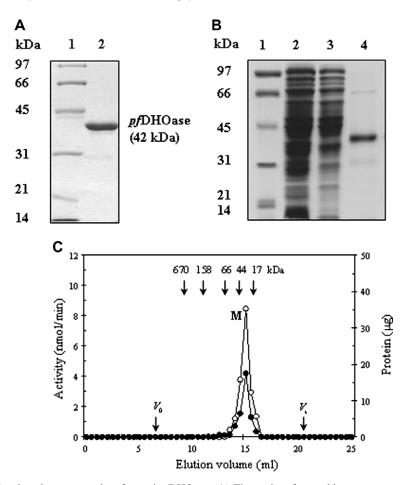
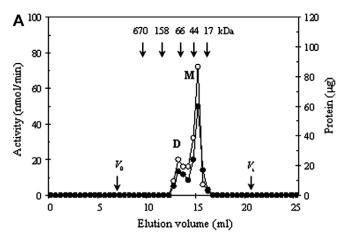


Fig. 1. SDS-PAGE and gel filtration chromatography of parasite DHOase. (A) The purity of recombinant enzyme was assessed by 12% gel of SDS-PAGE. Lane 1, the molecular mass markers are indicated in kDa; lane 2, 10 µg of the purified recombinant pfDHOase, a single 42-kDa band is shown. (B) SDS-PAGE of native DHOase from in vitro P. falciparum culture. Three purification steps of the native enzyme from P. falciparum were subjected to SDS-PAGE (12% gel). Lane 1, the molecular mass markers; lane 2, 80 µg protein obtained from Mono Q column; lane 3, 40 µg protein taken from Superose 12 column, lane 4, 5 µg protein obtained from Mono P column, a dominant 42-kDa protein is observed. (C) Gel filtration chromatography of native and monomeric (M) DHOase form of P. falciparum. The fractions (0.5 ml) were collected and assayed for both enzymatic activity (open circles) and protein concentration (closed circles).


Table 1
Purification of native DHOase from *in vitro* culture of *P. falciparum*

Step	Total protein (mg)	Total activity (nmol min ⁻¹)	Specific activity (nmol min ⁻¹ mg ⁻¹)	Yield (%)	X-fold purified
Crude extract	273.86	383.4	1.4	100	1
Mono Q FPLC	7.53	253.0	33.6	66	24
Superose 12 FPLC	1.12	172.5	154.0	45	110
Mono P FPLC	0.20	99.7	498.5	26	356

at pH 9.0 has $K_{\rm m}$ of L-DHO and $k_{\rm cat}$ values of $0.012\pm0.001~{\rm mM}$ and $89.5\pm10.6~{\rm min}^{-1}$, respectively. The $k_{\rm cat}/K_{\rm m}$ values for the ring cyclization and cleavage reactions were calculated to be 2.11×10^5 and $7.46\times10^5~{\rm M}^{-1}~{\rm min}^{-1}$, respectively. Comparing to the mammalian enzyme, its catalytic efficiency in the ring cyclization reaction $(1.44\times10^8~{\rm M}^{-1}~{\rm min}^{-1})$ is 680-fold more

than that of the malarial enzyme, while that in the ring cleavage reaction $(4.44 \times 10^7 \, \text{M}^{-1} \, \text{min}^{-1})$ only a 60-fold difference was noted [26]. This indicates that the monofunctional DHOase enzyme is generally less efficient than the DHOase in the mammalian multifunctional CAD enzyme [5,12,19,24,26].

Since the equilibrium between L-CA and L-DHO favors the former by a ratio of 17:1 at physiological pH 7.4 [25], inhibitor studies involving reversible reactions of the enzyme were measured at this pH. The inhibitory effect of orotate (OA) and its 5-substituted derivatives; 5-fluoro-orotate (F-OA), 5-aminoorotate (NH₂-OA), 5-methylorotate (CH₃-OA), 5-bromoorotate (Br-OA), and 5-iodoorotate (I-OA) was investigated with pfDHOase and compared with the mammalian enzyme [27]. All of the six compounds were competitive inhibitors of both ring cyclization and cleavage reactions. The K_i values for the inhibitors were obtained from double-reciprocal plots and are shown in Table 2. The most effective inhibitor was 5-fluoroorotate, while 5-bromoorotate and 5-iodoorotate

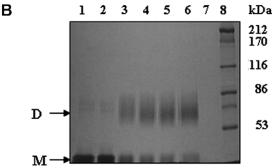


Fig. 2. Gel filtration chromatography of monomeric and dimeric forms, and SDS–PAGE of chemically cross-linked dimer of recombinant p/DHOase. (A) A gel filtration chromatographic profile demonstrates monomeric (M) and dimeric (D) forms of the p/DHOase enzyme. The 0.5-ml fractions were collected and assayed for both enzymatic activity (open circles) and protein concentration (closed circles). Molecular mass markers, void volume (V_0), and total eluting volume (V_1) are indicated with arrows. (B) Dimethyl suberimidate cross-linking of the p/DHOase pattern was analyzed by SDS–PAGE (8% gel). Lane 1, a non cross-linking monomeric (M) form (20 µg protein); lanes 2–6, cross-linking products of dimeric (D) form p/DHOase at 5, 15, 30, 45, and 60 min incubation, respectively; lane 7, sample buffer (blank); lane 8, the molecular mass markers are given in kDa.

were the least in both enzymatic directions. Both L-CA and L-DHO had no inhibitory effect on the enzyme at the pH 7.4. K_i values of these inhibitors for dimeric pfDHOase isolated from the gel filtration column (Fig. 2A) were also determined and found to be similar to values obtained from the monomeric DHOase. In the ring cleavage reac-

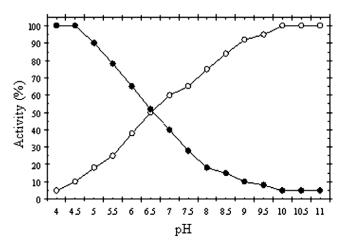


Fig. 3. Effect of pH on the ring cyclization and cleavage activities of recombinant *pf*DHOase. Incubation mixtures contained 50 nM enzyme, 50 mM buffer, MES–KOH for pH 4.0–5.5, Hepes–KOH for pH 6.0–8.0, and Tris–HCl for pH 8.5–11.0), 150 mM KCl, and 2.5 mM ι-[¹⁴C]CA or 0.25 mM ι-[¹⁴C]DHO. The maximal activities of the ring cyclization and cleavage reactions were 1.47 and 1.86 μmol min⁻¹ mg protein⁻¹, respectively, and were calculated to 100% enzyme activities. The ring cyclization reaction profile is indicated by closed circles and the cleavage reaction by open circles.

tion, the K_i values reported for 5-fluoroorotate of the mammalian [27] and $E.\ coli\ [16]$ enzymes are 6 and 32 μM , respectively. Increasing K_i values of the 5-substituted orotate derivatives of the parasite enzyme were proportional to the bulkiness in the size of the 5-substituents, but were not related to the order of electronegativity of these 5-substituents. The result suggests a steric hindrance of the bulky 5-substituent which may have positioned adjacent to the binding site of the inhibitor. Similar findings for the five 5-substituted compounds reported in the mammalian enzyme [27] indicate that pfDHOase shares some enzyme characteristics to the mammalian DHOase although significant kinetic differences do exists, the mammalian enzyme is 10- to 20-fold more sensitive to the inhibitors than that of the parasite.

In summary, the malarial enzyme shares a number of characteristics to both type I (e.g., mammals) and II (e.g., *E. coli*) enzymes. Comparison of parasite and human enzymes by the overall amino acid sequence homology, structural properties, and kinetic and inhibitor characteris-

Table 2
Kinetic constants of L-CA, L-DHO, OA, and its 5-substituted derivatives in the ring cyclization and cleavage reactions of the recombinant pfDHOase

Substrate or OA	Diameter of substituent	Ring cyclization reaction			Ring cleavage reaction		
derivative	in position 5 (Å)	$K_{\rm m} (\mu M)$	$k_{\rm cat}~({\rm min}^{-1})$	<i>K</i> _i (μM)	$K_{\rm m} (\mu M)$	$k_{\rm cat}~({\rm min}^{-1})$	<i>K</i> _i (μM)
L-CA (pH 6.0)		285 ± 12	60.2 ± 4.4	_			
L-DHO (pH 9.0)					12 ± 1	89.5 ± 10.6	_
OA (pH 7.4)				660 ± 52			950 ± 88
F-OA	2.7			145 ± 11			70 ± 5
NH ₂ -OA	2.9			440 ± 43			160 ± 17
CH ₃ -OA	3.5			560 ± 65			302 ± 40
Br-OA	3.8			1460 ± 140			2600 ± 170
I-OA	4.1			>3500			>3500

tics lent valuable insights into the differences of the active site between these two enzymes. Specific inhibitors may limit the pyrimidine nucleotide pool in the parasite, but have no significant adverse effect to humans in which the salvage pathway for nucleotide synthesis is actively functional [28].

Acknowledgments

We thank Dr. N.M.Q. Palacpac for critical review of this manuscript. The study was supported by Thailand Research Fund (BRG 4880006).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bbrc.2007.12.025.

References

- R.W. Snow, C.A. Guerra, A.M. Noor, H.Y. Myint, S.I. Hay, The global distribution of clinical episodes of *Plasmodium falciparum* malaria, Nature 434 (2005) 214–217.
- [2] R.G. Ridley, Medical need, scientific opportunity and the drive for antimalarial drugs, Nature 415 (2002) 686–693.
- [3] M.E. Jones, Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis, Annu. Rev. Biochem. 49 (1980) 253–279.
- [4] A.M. Gero, G.V. Brown, W.J. O'Sullivan, Pyrimidine de novo synthesis during the life cycle of the intraerythrocytic stage of Plasmodium falciparum, J. Parasitol. 70 (1984) 536–541.
- [5] J. Krungkrai, A. Cerami, G.B. Henderson, Pyrimidine biosynthesis in parasitic protozoa: purification of a monofunctional dihydroorotase from *Plasmodium berghei* and *Crithidia fasciculata*, Biochemistry 29 (1990) 6270–6275.
- [6] J. Krungkrai, S.R. Krungkrai, K. Phakanont, Antimalarial activity of orotate analogs that inhibit dihydroorotase and dihydroorotate dehydrogenase, Biochem. Pharmacol. 43 (1992) 1295–1301.
- [7] J. Krungkrai, Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in *Plasmodium falciparum*, human malaria parasite, Biochim. Biophys. Acta 1243 (1995) 351–360.
- [8] K.K. Seymour, S.D. Lyons, L. Phillips, K.H. Rieckmann, R.I. Christopherson, Cytotoxic effects of inhibitors of *de novo* pyrimidine biosynthesis upon *Plasmodium falciparum*, Biochemistry 33 (1994) 5268–5274.
- [9] S.R. Krungkrai, P. Prapunwattana, T. Horii, J. Krungkrai, Orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase exist as multienzyme complex in human malaria parasite *Plasmodium falciparum*, Biochem. Biophys. Res. Commun. 318 (2004) 1012–1018.
- [10] S.R. Krungkrai, S. Aoki, N.M.Q. Palacpac, D. Sato, T. Mitamura, J. Krungkrai, T. Horii, Human malaria parasite orotate phosphoribosyltransferase: functional expression, characterization of kinetic reaction mechanism and inhibition profile, Mol. Biochem. Parasitol. 134 (2004) 245–255.

- [11] D.E. Hurt, J. Widom, J. Clardy, Structure of *Plasmodium falciparum* dihydroorotate dehydrogenase with a bound inhibitor, Acta Cryst. D62 (2006) 312–323.
- [12] R.E. Kelly, M.I. Mally, D.R. Evans, The dihydroorotase domain of the multifunctional protein CAD: subunit structure, zinc content, and kinetics, J. Biol. Chem. 261 (1986) 6073–6083.
- [13] T. Nara, T. Hshimoto, T. Aoki, Evolutionary implications of the mosaic pyrimidine-biosynthetic pathway in eukaryotes, Gene 257 (2000) 209–222.
- [14] C. Fields, D. Brichta, M. Shepherdson, M. Farinha, G. O'Donovan, Phylogenetic analysis and classification of dihydroorotase: a complex history of a complex enzyme, Pathways Pyrimidines: Int. Newsletter 7 (1999) 49–63.
- [15] P.D. Martin, C. Purcarea, P. Zhang, A.V.S. Sadecki, H.I. Guy-Evans, D.R. Evans, B.F.P. Edwards, The crystal structure of a novel, latent dihydroorotase from *Aquifex aeolicus* at 1.7 Å resolution, J. Mol. Biol. 348 (2005) 535–547.
- [16] M. Lee, C.W. Chan, S.C. Graham, R.I. Christopherson, J.M. Guss, M.J. Maher, Structures of ligand-free and inhibitor complexes of dihydroorotase from *Escherichia coli*: implications for loop movement in inhibitor design, J. Mol. Biol. 370 (2007) 812–825
- [17] W. Trager, J.B. Jensen, Human malaria parasites in continuous culture, Science 193 (1976) 673–675.
- [18] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403–410.
- [19] M.W. Washabaugh, K.D. Collins, Dihydroorotase from *Escherichia coli*: purification and characterization, J. Biol. Chem. 259 (1984) 3293–3298
- [20] T. Heikkila, C. Tamsey, M. Davies, et al., Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase, J. Med. Chem. 50 (2007) 186–191.
- [21] A.M. Bello, E. Poduch, M. Fujihashi, et al., A potent, covalent inhibitor of orotidine 5'-monophosphate decarboxylase with antimalarial activity, J. Med. Chem. 50 (2007) 915–921.
- [22] K. Tokuoka, Y. Kusakari, S.R. Krungkrai, H. Matsumura, J. Krungkrai, T. Horii, T. Inoue, Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by *Plasmodium falciparum* OMP decarboxylase, J. Biochem. (2008), doi:10.1093/jb/mym193
- [23] J.P. Simmer, R.E. Kelly, A.G. Rinker Jr., B.H. Zimmermann, J.L. Scully, H. Kim, D.R. Evans, Mammalian dihydroorotase: nucleotide sequence, peptide sequences, and evolution of the dihydroorotase domain of the multifunctional protein CAD, Proc. Natl. Acad. Sci. USA 87 (1990) 174–178.
- [24] S.M.R. Lopez, M.A.H. Triana, B.H. Zimmermann, Cloning and preliminary characterization of the dihydroorotase from *Toxoplasma* gondii, Mol. Biochem. Parasitol. 148 (2006) 93–98.
- [25] R.I. Christopherson, M.E. Jones, Interconversion of carbamyl-L-aspartate and L-dihydroorotate by dihydroorotase from mouse Ehrlich ascites carcinoma, J. Biol. Chem. 254 (1979) 12506–12512.
- [26] M.I. Mally, D.R. Grayson, D.R. Evans, Catalytic synergy in the multifunctional protein that initiates pyrimidine biosynthesis in Syrian hamster cells, J. Biol. Chem. 255 (1980) 11372–11380.
- [27] R.I. Christopherson, M.E. Jones, The effects of pH and inhibitors upon the catalytic activity of the dihydroorotase of the multienzymatic protein pyr1-3 from mouse Ehrlich ascites carcinoma, J. Biol. Chem. 255 (1980) 3358–3370.
- [28] G. Weber, Biochemical strategy of cancer cells and design of chemotherapy, Cancer Res. 43 (1983) 3466–3492.

เชื้อมาลาเรีย: จีโนมิกส์ และ ชีวเคมี กับตำแหน่งเป้าหมายในการพัฒนายารักษาโรคมาลาเรีย

จิระพันธ์ กรึงไกร * สุดารัตน์ กรึงไกร **

Krungkrai J, Krungkrai S. Malaria parasite: Genomics, biochemistry and drug target for antimalarial development. Chula Med J 2006 Feb; 50(2): 127 - 42

Malaria remains a global health problem attributed by its major cause of morbidity and mortality in developing and tropical countries. Of these, 400-500 million people are infected with the parasite, and two million die each year. Plasmodium falciparum, the etiologic agent of the most lethal and severe form of the four species that infect humans, is resistant to most of the currently available antimalarial drugs. The need of more efficacious agents — particularly rational drugs that exploit metabolic pathways and targets unique to the malaria parasite — is therefore urgent. The basic knowledge of the current genomics and biochemistry of the parasite are essential to the design and development of new antimalarial drugs. This paper reviews the most recent information on P. falciparum genomics and metabolomics, and will apply the data for drug development, and also identify the molecular targets of the drug.

Keywords: Malaria, Plasmodium falciparum, Genomics, Biochemistry, Drug target, Antimalarial drug.

Reprint request: Krungkrai J. Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. E-mail: fmedjkk@md2.md.chula.ac.th. Received for publication. September 30, 2005.

^{*} ภาควิชาชีวเคมี คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

^{**} ภาควิชาวิทยาศาสตร์การแพทย์ คณะวิทยาศาสตร์ มหาวิทยาลัยรังสิต

จิระพันธ์ กรึงไกร, สุดารัตน์ กรึงไกร. เชื้อมาลาเรีย: จีโนมิกส์ และ ชีวเคมี กับตำแหน่ง เป้าหมายในการพัฒนายารักษาโรคมาลาเรีย. จุฬาลงกรณ์เวชสาร 2549 ก.พ; 50(2): 127 - 42

มาลาเรียเป็นโรคที่มีอุบัติการณ์ และอัตราการเสียชีวิตสูงในประชากรตามภูมิภาคร้อนชื้น ทั่วโลก มีการติดเชื้อมาลาเรียประมาณ 400-500 ล้านคน และเสียชีวิตด้วยโรคนี้ประมาณ 2 ล้านคน ต่อปี ปัญหาที่สำคัญในการรักษาคือ เชื้อมาลาเรียชนิด Plasmodium falciparum มีการดื้อต่อยารักษา ที่ใช้อยู่ในปัจจุบัน จึงมีความจำเป็นในการพัฒนายาชนิดใหม่โดยอาศัยองค์ความรู้เกี่ยวกับข้อมูล จีโนมิกส์ และชีวเคมีของเชื้อมาลาเรีย บทความนี้จะสรุปความรู้ก้าวหน้าของจีโนมิกส์ และการนำองค์ ความรู้ดังกล่าวของเชื้อที่มีอยู่ในขณะนี้ไปประยุกต์ใช้ในการพัฒนายาชนิดใหม่ รวมทั้งจะแสดงตำแหน่ง โมเลกุลเป้าหมายในวิถีเมตาบอลิสมต่าง ๆ ที่คาดว่าจะได้ยาชนิดใหม่ไปยับยั้งที่ตำแหน่งเหล่านี้ได้และ ไปทำลายเชื้อมาลาเรียที่มีการดื้อต่อยาได้

คำสำคัญ: เชื้อมาลาเรีย, Plasmodium falciparum, จีโนมิกส์, ชีวเคมี, ตำแหน่งเป้าหมายของยา, ยารักษาโรคมาลาเรีย

วัตถุประสงค์ :

- 1. เพื่อให้ทราบความรู้ความก้าวหน้าด้านจีในมิกส์ของเชื้อมาลาเรียที่ทำให้เกิดโรคในคน
- 2. เพื่อให้เข้าใจถึงความรู้พื้นฐานชีวเคมีของเชื้อมาลาเรีย
- 3. เพื่อให้ทราบตำแหน่งเป้าหมายใหม่ในการพัฒนายารักษาโรคมาลาเรียในอนาคต
- 4. เพื่อให้เข้าใจแนวทางในการพัฒนายารักษาโรคมาลาเรีย โดยอาศัยความรู้ด้านจีโนมิกส์ และชีวเคมีของเชื้อมาลาเรีย

มาลาเรียเป็นโรคที่มีอุบัติการณ์และอัตราการเสีย ชีวิตสูงในประชากรตามภูมิภาคที่มีอากาศร้อนชื้นทั่วโลก รองจากการติดเชื้อนิวโมเนีย (pneumococcal acute respiratory infections) และวัณโรค (tuberculosis) จากข้อมูลขององค์การอนามัยโลก (1) พบวามีการติดเชื้อ มาลาเรียประมาณ 400-500 ล้านคนในแต่ละปี และเสีย ชีวิตด้วยโรคนี้ประมาณ 2 ล้านคนต่อปี โดยมีสาเหตุจาก การติดเชื้อ Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae หรือ Plasmodium ovale ชนิดใดชนิดหนึ่งหรือ 2 ชนิดปนกัน (2,3) สำหรับโรคนี้ใน ประเทศไทย จากสถิติปี 1998 ของกระทรวงสาธารณสุข พบวามีอัตราการติดเชื้อประมาณ 100 ราย และการเสีย ชีวิตประมาณ 1,26 รายต่อประชากร 1 แสนคน (4)

การติดเชื้อชนิด *P. falciparum* ทำให้เกิดโรค มาลาเรียชนิดรุนแรง (severe malaria) ผู้ป[่]วยบางรายอาจ เป็นมาลาเรียขึ้นสมอง (cerebral malaria) มีอาการแทรก ซ้อนที่รุนแรง อาทิเช[่]น ภาวะเลือดจางรุนแรง (severe anemia) ไดวาย (renal failure) ปอดบวมน้ำ (pulmonary edema) ระดับน้ำตาลในเลือดต่ำ (hypoglycemia) มี เลือดออก (bleeding) ชักรุนแรง (repeated generalized convulsion) ภาวะกรดสูง (acidemia/acidosis) และ ปัสสาวะสีดำ (malaria hemoglobinuria) เป็นต้น ซึ่งเป็น สาเหตุทำให[้]ผู้ป่วยเสียชีวิตได^{้ (5)} ปัญหาที่สำคัญในการ รักษาคือ เชื้อมาลาเรีย ดังกล่าวมีการดื้อต่อยารักษาที่ใช้ อยู่ในปัจจุบัน รวมทั้งยาหลายชนิดมีข้อจำกัดในการ ใช้ อาทิเช่น ความเป็นพิษ คุณภาพไม่ดี และราคาแพง เป็นต้น (ตารางที่ 1) ในช่วงปี 1975 -1997 ได้มีการพัฒนา ยาทั่ว ๆ ไปถึง 1,223 ชนิด แต่มียาใหม่นำมาใช้สำหรับ รักษาโรคมาลาเรียเพียง 3 ชนิดคือ halofantrine, mefloquine และ malarone และในระยะ 3-4 ปีที่ผ่านมา ได้มีความพยายามมาก ขึ้นของหลายองค์กรที่ให้ทุนสำหรับ การพัฒนายารักษาโรคมาลาเรียชนิดใหม่ โดยอาศัยองค์ ความรู้เกี่ยวกับข้อมูลจีในมิกส์ (genomics) และชีวเคมี ของเชื้อมาลาเรียมาใช้

Table 1. Overview of antimalarial drugs.

Drug	Target	Main limitation ¹
Chloroquine	food vacuole	resistance
Quinine	not known	compliance/safety/resistance
Amodiaquine	not known	safety/resistance
Mefloquine	not known	(safety)/resistance/(cost)
Primaquine	not known	safety
Halofantrine	not known	safety/resistance/cost
Artemisinins	food vacuole	compliance/(safety)/(GMP) ² /(cost)
(artemether,arteether,artesunate)		
Sulfadoxine-pyrimethamine	folate pathway	resistance
(Fansidar ^R)	(DHPS-DHFR)3	
Atovaquone-proguanil	mitochondrion-folate	resistance / potential/cost
(Malarone ^R)		
Lumefantrine-artemether	not known-food vacuole	(compliance)/resistance/potential(cost)
(Coartem ^R)		
Antibiotics used in combination	apicoplast	(safety)/(cost)

¹ Liabilities placed in brackets refer to issues that are less serious for the drug in question than those liabilities not placed in brackets.

² GMP= good manufacture practice.

³ DHPS-DHFR= dihydropteroate synthase-dihydrofolate reductase .

ในปัจจุบัน Malaria Genome Project สำหรับ เชื้อ P. falciparum ได้สำเร็จลงแล้ว (6,7) และใกล้จะสำเร็จ แล้วสำหรับเชื้อ P. yoelii ที่ติดเชื้อเฉพาะในหนูถีบจักร (8) ส่วนข้อมูลสำหรับเชื้อ P. vivax คาดว่าจะสำเร็จเร็ว ๆ นี้ (9) ข้อมูลจีในมิกส์ ที่ได้ดังกล่าวทำให้ความรู้พื้นฐานด้าน ชีวเคมีของเชื้อ P. falciparum มีความกระจางชัดขึ้น ถึงแม้จะต้องรอการศึกษาต่อไปอีกในยุคหลังจีในมิกส์ (post-genomics era) ซึ่งเป็นการวิจัยที่เกี่ยวข้องกับหน้าที่ การทำงานของ genome เหล่านี้ อาทิเช่น gene knockout, transcriptomics, DNA microarrays, RNA interference, proteomics, metabolomics เป็นต้น เพื่อให้ข้อมูลพื้นฐาน มีความสมบูรณ์ขึ้นและประยุกต์ใช้งานได้

บทความนี้จะเน้นการนำองค์ความรู้ทางจีในมิกส์
และชีวเคมีของเชื้อไปประยุกต์ใช้ในการพัฒนายารักษา
มาลาเรียชนิดใหม่ได้ และจะยกตัวอย่างตำแหน่งโมเลกุล
เป้าหมาย (molecular drug targets) ในวิถีเมตาบอลิสม
ต่าง ๆ ที่คาดว่าจะได้ยาใหม่ไปยับยั้งที่ตำแหน่งเหล่านี้ได้
และไปทำลายเชื้อมาลาเรียที่มีการดื้อต่อยาได้ในที่สุด

จีในมิกส์และชีวเคมีของเชื้อมาลาเรีย

(Genomics and biochemistry of malaria parasite)

ตั้งแต่ปี 1996 The Institute for Genomic Research, The Wellcome Trust Sanger Institute และ Stanford Genome Technology Center ได้ร่วมกันทำ

Table 2. Malaria parasites have three genomes: one chromosomal and two organellar genomes.

				Numbers of	
Genome		Size	Genes&protein	RNA genes	Protein targeting
Chromosomal	DNAs	2.28 Mb	5,268	43	4,471 (cytosol/membrane)
Chromosome	1	0.64 Mb	143	0	ND^1
	2	0.95 Mb	223	1	ND
	3	1.06 Mb	239	2	ND
	4	1.20 Mb	237	5	ND
	5	1.34 Mb	312	5	ND
	6	1.38 Mb	312	3	ND
	7	1.35 Mb	277	7	ND
	8	1.32 Mb	295	0	ND
	9	1.54 Mb	365	0	ND
	10	1.69 Mb	403	0	ND
	11	2.04 Mb	492	2	ND
	12	2.27 Mb	526	3	ND
	13	2.75 Mb	672	5	ND
	14	3.29 Mb	769	2	ND
Extrachromoso	mal (orga	anellar) DNA	as		
Mitochondrial [DNA	6 kb^2	3		246
Apicoplast DN	A	35 kb ³	30		551

¹ND= not determined.

² linear DNA with A+T = 69 %

³ circular DNA with A+T= 86 %

Malaria Genome Project โดยมีจุดหมายในการหาลำดับ นิวคลีโอไทด์ของ genomeในเชื้อ P. falciparum ซึ่งมี chromosomes อยู่ทั้งสิ้น 14 คู่ที่เรียงขนาดจากเล็กไปใหญ่ (chromosome 1 มีขนาด 0.64 Mb → chromosome 14 มีขนาด 3.29 Mb) โดยอาศัยความช่วยเหลือจากบริษัท Cerela Genomics ในการจัดเรียงลำดับของแต่ละ gene ลงบนแต่ละ chromosome และกำหนดว่าเป็น gene ที่ code สำหรับ protein และ gene สำหรับ RNA อะไรบ้าง รวมทั้งไปทำหน้าที่ที่ไหนบ้าง (protein targeting) อาทิ เช่น ไซโตซอล (cytosol) เยื่อหุ้มเซลล์ (cell membrane) ไมโตคอนเดรีย (mitochondria) หรือ apicoplast (ตารางที่ 2) เชื้อ *P. falciparum* genome มีประมาณ 5,300 genes (ทั้ง nuclear genomes และ extrachromosomal genomes ซึ่งก็ได้แก่ genome ในmitochondria และ apicoplast) และได้ประกาศความสำเร็จเมื่อเดือนตุลาคม ์ 1 2002 ที่ผ่านมา ⁽⁶⁾

Genome ของเชื้อ *P. falciparum* มีลักษณะ สำคัญต[่]าง ๆ ได้นำมาเปรียบเทียบกับ genomes ของ *P. vivax*, ยุงพาหะ *Anopheles* spp. รวมทั้งของ มนุษย^{์ (6, 10-14)} นอกจากนี้เชื้อมาลาเรียยังมี genome อันที่ 2 อยู[่]ที่ออร์กาเนล ไมโตคอนเดรีย ซึ่งมีขนาด 6 kb และเป็นเส้นตรง (linear DNA) จะมี genes เพียง 3 ชนิด และมี genome อันที่ 3 อยู่ที่ออร์กาเนล apicoplast ซึ่งมีขนาด 35 kb และเป็นวงกลม (circular DNA) จะมี genes ประมาณ 30 ชนิด (ตารางที่ 3) ออร์กาเนลไมโต-คอนเดรีย และ apicoplast มีระบบ transcription และ translation เป็นแบบเซลล์โปรคารีโอต (prokaryotic cell) และแบคทีเรีย จึงเป็นตำแหน่งเป้าหมายของยา antibiotics (ตารางที่ 1) ขณะนี้ยังได้ใช้ประโยชน์ของ 6kb-DNA จากไมโตคอนเดรีย บอกถึงการวิวัฒนาการซึ่ง เชื่อว่า P. falciparum แยกมาจาก P. reichenowi ของ ลิงชิมแปนซีเมื่อประมาณ 5 -10 ล้านปีก่อน และมีจุด กำเนิดที่ทวีปอัฟริกา และกระจายไปสู่ภูมิภาคต่าง ๆ ทั่ว โลกเมื่อประมาณ 5 หมื่นปีที่ผ่านมา (15) ซึ่งสอดคล[้]องกับ ข้อมูลการวิเคราะห์ single nucleotide polymorphisms (SNPs) บน chromosome 3 ที่บอกจุดกำเนิดของ P. falciparum วามีอายุ ประมาณ 1 แสนปีกว่า (16)

Table 3. Unique characteristics of genomes in *P. falciparum*, *P. vivax*, *Anopheles* spp. and human.

Characteristic	P. falciparum¹	P. vivax	Anopheles	Human
Size (Mb)	23	24	280	2,900
(A+T) content (%)	81	60	ND^2	59
Number of genes	5,268	5,126	15,000	31,000
Hypothetical protein (%)	60	ND	ND	ND
Gene density (kb per gene)	4.3	4.4	ND	ND
Genes with introns (%)	54	ND	ND	>90
Percent coding	53	ND	ND	<5
Number of exons per gene	2.4	ND	ND	ND
Microsattelites frequency	++	+	ND	++++
SNPs (site)	10,000 ³	ND	400,000	1,420,000

¹ Comparative genomics of *P. falciparum* and *Arabidopsis thaliana* shows the most similarity. (6, 12)

² ND= not determined.

³ SNPs (single nucleotide polymorphisms) of *P. falciparum* is only determined in chromosome 3 (~403 sites), the value is based on our calculation for all 14 chromosomes, assuming 1 SNP site per 2.3 kb).

ในการศึกษาชีวเคมีของเชื้อ P. falciparum ในขณะนี้ทราบว่ามีโปรตีนที่ทำหน้าที่ต่าง ๆ แล้ว 39% ของจำนวนโปรตีนทั้งหมด อาทิเช่น structural proteins. cell adhesion, chaperone, defense/immunity, carrier, transporter, โปรตีนควบคุมกระบวนการการ transcription และ translation และเอนไซม์ เป็นต้น (ตารางที่ 4) มีโปรตีนที่คาดไว้แต่ยังไม่ทราบหน้าที่อีก 61 % ของ จำนวนโปรตีน นอกจากนี้ยังได้มีการจัดทำ website metabolomics ของ metabolic pathways ต่าง ๆ ของ เชื้อ P. falciparum (17) โดยใช้แผนที่ภาพของ Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (18) และความรู้จากการศึกษาทางชีวเคมีในช่วง 30-40 ปีที่ผ่านมา รวมทั้งข้อมูลจากการวิเคราะห์ลำดับ นิวคลีโอไทด์ใน Malaria Genome Project (6, 8, 9) สามารถ เชื่อมโยงฐานข้อมูลต่าง ๆ เช่น Entrez, Swiss-protein database, KEGG เป็นต[้]น

ภาพรวมเมตาบอลิสมของเชื้อมาลาเรีย

(Overview of malaria parasite metabolism)

ข้อมูลทันสมัยจาก Malaria Genome Project พบว่า เชื้อ *P. falciparum* มีเอนไซม**์** 733 ชนิด (ประมาณ 14 % ของจำนวนโปรตีนทั้งหมด 5,268 ชนิด, ตารางที่ 4) สามารถสร้างวิถีเมตาบอลิสม (metabolic pathways) ต่าง ๆ อาทิเช่น glycolysis, tricarboxylic acid cycle (Krebs cycle), electron transport pathway, pentose phosphate pathway, fatty acid biosynthetic pathway, heme biosynthetic pathway, coenzyme Q biosynthesis, shikimic acid pathway, amino acid metabolism, purine และ pyrimidine pathway, folate metabolism และ hemoglobin catabolic pathway (รูปที่ 1)

วิถีเมตาบอลิสมเหล่านี้อาจถูกจัดแบ่งแยกเป็น ส่วนต่าง ๆ ที่บางวิถีเมตาบอลิสมไม่พบในเซลล์ของมนุษย์ อาทิเช่น ออร์กาเนล apicoplast หรือบางวิถีเมตาบอลิสม อาจพบได้ในเซลล์ของมนุษย์แต่มีลักษณะต่าง ๆ ของ เอนไซม์ในวิถีนั้น ๆ แตกต่างไป เช่น การสลายน้ำตาล กลูโคส จะเป็นแบบไม่ใช้ O₂ (anaerobic glycolysis) หรือบางวิถีเมตาบอลิสมมีความเหมือนกันกับวิถีที่พบใน เซลล์แบคทีเรีย อาทิเซ่นวิถีการสังเคราะห์โคเอนไซม์โฟเลต ซึ่งใช้เป็นตำแหน่งเป้าหมายของยารักษามาลาเรียกลุ่ม antifolates ตัวอย่างเช่น pyrimethamine, cycloguanil, sulfonamides เป็นต้น ความรู้ความเข้าใจลักษณะที่เป็น เอกลักษณ์จำเพาะของวิถีเมตาบอลิสมเหล่านี้ที่พบได้ใน เชื้อ P. falciparum โดยเฉพาะเอนไซม์ที่เร่งปฏิกิริยา

Table 4. Possibly molecular functions predicted from *P. falciparum* genomics.

Function	% of total protein
Structural molecule	3
Cell adhesion molecule	2
Chaperone	2
Defense/Immunity protein	2
Enzyme	14
Enzyme regulator	1
Ligand binding or carrier	10
Transporter	2
Transcription regulator	1
Translation regulator	1
Other	1
No assignment	61

จำเพาะอาจจะเป็นตำแหน่งโมเลกุลเป้าหมาย สำหรับ การพัฒนายารักษามาลาเรียชนิดใหม่ รวมทั้งเป็นเอนไซม์ ตำแหน่งเป้าหมายของยารักษาที่ใช้ในปัจจุบันได้ (รูปที่ 2) เมื่อปี 2002 Robert Ridley ผู้เชี่ยวชาญของ องค์การอนามัยโลกได้สรุปตำแหน่งเป้าหมายไว้ในวิถี เมตาบอลิสมต่าง ๆ ที่พบทั้งในส่วนไซโตซอล ถุงอาหาร (food vacuole) ไมโตคอนเดรีย apicoplast รวมทั้งเยื่อ หุ้มเซลล์ โดยอาศัยองค์ความรู้เกี่ยวกับชีวเคมีของเชื้อ มาลาเรียและแนวทางการพัฒนายารักษามาลาเรียชนิด ใหม่ (19)

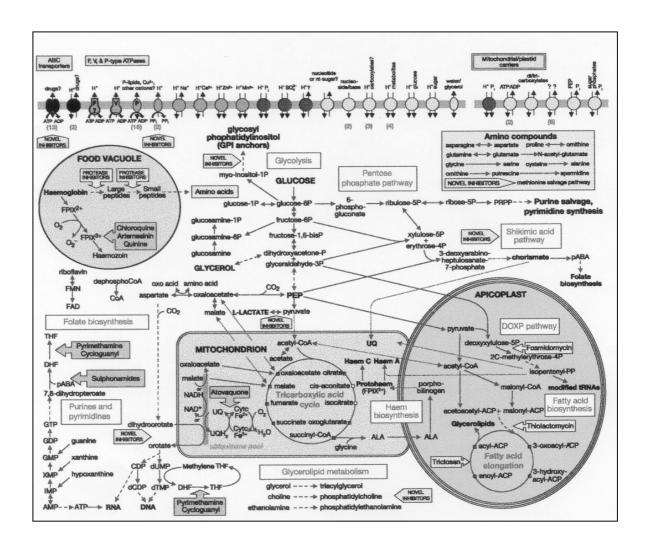



Figure 1. Overview of metabolism in *P. falciparum*. Glucose and glycerol are carbon sources.

Broken lines indicate several omitted steps of a metabolic pathway. In various metabolic pathways, anaerobic glycolysis to generate ATP operates in cytosol, Krebs cycle exists in a mitochondrion and operates only in sexual gametocytes but not in asexual stages, heme and fatty acid synthesis operate in apicoplast, hemoglobin catabolic pathway operates in food vacuole. The known antimalarial drug targets are also illustrated (Ref. 6).

Figure 2. Growing trophozoite stage of *P. falciparum* in a human red cell. The organellar (mitochondrion, apicoplast, food vacuole) and cytosolic metabolic pathways are possible targets for new antimalarial development. Lists of about 20 enzymes in the pathways are also proposed (Ref. 19).

เมตาบอลิสมของโคเอนไซม์โฟเลต (Metabolism of coenzyme folate)

โคเอนไซม์โฟเลตทำหน้าที่เป็นตัวให้และ/หรือตัว รับหน่วยคาร์บอนในปฏิกิริยาต่าง ๆ ในวิถีเมตาบอลิสม ของเพียวรีน, ไพริมิดีน, กรดอะมิโน รวมทั้งในขั้นตอน แรก ๆ ของการสังเคราะห์โปรตีน เชื้อมาลาเรียจะสังเคราะห์โฟเลตขึ้นใช้เองโดยเริ่มจากสารตั้งต้น guanosine 5'-triphosphate (GTP) เหมือนกับในเซลล์แบคทีเรียที่เป็น de novo pathway ในขณะที่เซลล์ของมนุษย์ไม่สามารถ สังเคราะห์ได้เอง (20) นอกจากนี้เชื้อยังมี shikimic acid pathway ที่จะสังเคราะห์ p-aminobenzoic acid (pABA) ให้กับวิถีสังเคราะห์โฟเลตด้วย (22) ขณะนี้พบว่ามี gene สำหรับเอนไซม์ในวิถีโฟเลตครบยกเว้น dihydroneopterin aldolase ที่ยังตรวจสอบไม่ได้ (23) ในวิถีนี้มีเอนไซม์

dihydropteroate synthase (DHPS) เป็นตำแหน่งเป้า หมายของยา sulfonamides และเอนไซม์ dihydrofolate reductase (DHFR) เป็นตำแหน่งเป้าหมายของยา pyrimethamine และ cycloguanil การเกิดผ่าเหล่าของ genes ที่ให้เอนไซม์ทั้ง 2 ทำให้มีการสังเคราะห์เอนไซม์ ที่ผิดปกติบริเวณ active site จะไม่สามารถจับกับยา ดังกล่าวได้ดี เกิดมีภาวะการดื้อยาของเชื้อที่พบได้ในทุก ภูมิภาคของโลกที่มีการระบาดของมาลาเรีย (21)

เมตาบอลิสมของเพียวรีนและไพริมิดีน

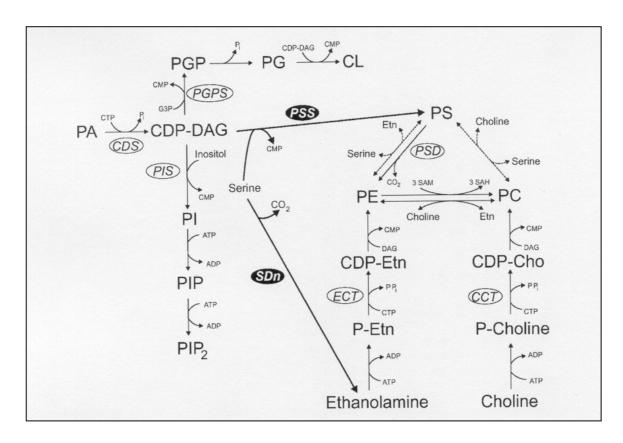
(Metabolism of purine and pyrimidine)

วิถีการสังเคราะห์นิวคลีโอไทด์ของทั้งเพียวรีน และไพริมิดีน เป็นตำแหน่งเป้าหมายในการพัฒนายา รักษามาลาเรียกลุ่มใหม่ (รูปที่ 1 และ 2) เชื้อมาลาเรียจะ สังเคราะห์เพียวรีนนิวคลีโอไทด์โดยอาศัยการดึงเบสมา จากเซลล์เจ้าบ้าน (salvage pathway) และไม่มีความ สามารถสังเคราะห์ขึ้นได้เอง ซึ่งต่างจากเซลล์ของมนุษย์ ดังนั้นถ้ายับยั้งเอนไซม์ในการดึงเบสมาใช้ จะสามารถฆ่า เชื้อมาลาเรียได้ เอนไซม์ที่มีการศึกษากันมากคือ purine nucleoside phosphorylase (PNP) และ hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) เอนไซม์ PNP จะเร่งปฏิกิริยา phosphorolysis ของ inosine ให้ hypoxanthine จากนั้นเอนไฮม์ HGXPRT จะเติมหมู่ ribosyl phosphate ให้ hypoxanthine, xanthine หรือ guanine ได้เป็น inosine 5'-monophosphate (IMP), xanthosine 5'-monophosphate (XMP) และ quanosine 5'-monophosphate (GMP) ตามลำดับที่ต่างจากเอนไซม์ นี้ของมนุษย์ (รูปที่ 1) genes ของทั้งเอนไซม์ HGXPRT และ PNP ของเชื้อ P. falciparum ได้ถูกโคลนและแสดง ออกได้ดีในเชื้อแบคทีเรีย E. coli จึงทำให้มีการศึกษาถึง สารยับยั้งที่มีโครงสร้างเหมือนกับ transition state ของ เอนไซม์ทั้ง 2 ได้ คือ สาร immucillin GP (24) และสาร immucillin G (25, 26) โดยอาศัยโครงสร้าง 3 มิติที่ได้จาก x-ray crystallography ของเอนไซม์ HGXPRT ในเชื้อ P. falciparum (27) สาร immucillin G จับกับเอนไซม์ PNP ของเชื้อ (K, เท่ากับ 0.03 nM) ได้ดีกว่าเอนไซม์ของมนุษย์ ถึง 30 เท่า และมีฤทธิ์ฆ่าเชื้อมาลาเรียได้ที่ IC ₅₀ (ระดับ ความเข้มข้นที่ทำให้เชื้อตายไปครึ่งหนึ่ง) เท่ากับ 50 nM ⁽²⁶⁾ ้ ส่วนสาร immucillin GP และสาร immucillin HP ซึ่งมี หมู่ฟอสเฟตที่ปลาย 5' ของน้ำตาลไรโบส จับกับเอนไซม์ HGXPRT ของเชื้อและเอนไซม์ HGPRT ของมนุษย์ได้ดี พอ ๆ กัน และไม่มีรายงานการทดสอบฤทธิ์ฆ่าเชื้อมาลาเรีย ขคงสารทั้งสคง ^(24, 27)

เชื้อ P. falciparum สามารถสังเคราะห์ไพริมิดีน-นิวคลีโอไทด์ได้เอง (de novo) และไม่ใช้การดึงไพริมิดีน จากเซลล์เจ้าบ้าน ซึ่งแตกต่างไปจากเซลล์ของมนุษย์ (28) ดังนั้นถ้ายับยั้งเอนไซม์ในการสังเคราะห์ดังกล่าว ก็จะ สามารถฆ่าเชื้อมาลาเรียได้โดยไม่ทำอันตรายต่อเซลล์ ของมนุษย์ กลุ่มวิจัยของเราได้ศึกษาเอนไซม์ในวิถีการ

สังเคราะห์ไพริมิดีนอย่างต่อเนื่อง เอนไซม์ dihydroorotate dehydrogenase (DHOD) ของเชื้อมีความแตกต่าง โดยเฉพาะที่ active site จากเอนไซม์ของมนุษย์ และเป็นตำแหน่งเป้าหมายใหม่ที่จะใช้พัฒนายารักษา มาลาเรีย (28-31)

เมตาบอลิสมของการย่อยสลายฮีโมโกลบิน (Metabolism of hemoglobin breakdown)


เชื้อ P. falciparum มีความสามารถอย่างจำกัด ในการสังเคราะห์กรดอะมิโนขึ้นเอง ถึงแม้ว่าจะมี shikimic acid pathway ช่วยสังเคราะห์กรดจะมิในชนิด aromatic ได้บ้าง รวมทั้งมีความสามารถในการเปลี่ยนกรดอะมิใน ชนิดต่าง ๆ กลับไปมาได้บ้าง (รูปที่ 1) เป็นผลทำให้เชื้อ มีการดึงกรดจะมิในเกือบทั้งหมดมาใช้โดยตรงจากเซลล์ เจ้าบ้านหรือการสลายฮีโมโกลบินของเม็ดเลือดแดงที่ถูก กินเข้าไปในถุงอาหารของตัวเชื้อ (ประมาณ 60 -70 % ของฮีโมโกลบินในเม็ดเลือดแดง) เพื่อให้ได้กรดอะมิโนไป ใช้ในวิถีเมตาบอลิสมต่าง ๆ และฮีมที่เกิดขึ้นอาจเป็นที่จับ ของยา chloroquine รวมทั้งยาสมุนไพรจีน artemisinin และอนุพันธ์ของมัน ในระหว่างปี 1988-1990 Daniel Goldberg และคณะ (32) ได้เริ่มศึกษากระบวนการสลาย โกลบินในถุงอาหารของเชื้อ P. falciparum และค้นพบ วิถีการสลายโกลบินที่จัดเป็นระเบียบโดยอาศัยเอนไซม์ ที่เป็น acidic proteases หลายชนิดทั้งที่เป็น aspartate proteases เรียกชื่อเฉพาะว่า "plasmepsin" I, II, IV และ cysteine proteases ซึ่งเรียกว่า "falcipains" (33)

เอนไซม์ plasmepsin I (PM I) จะสลายโกลบิน สายแอลฟาก่อนที่จำเพาะตำแหน่งเดียว จากนั้น PM II, PM IV, falcipains, facilysins จะสลายให้โกลบินเส้น สั้น ๆ แล้วจึงถูกเอนไซม์อื่น ๆ เช่น aminopeptidases สลายต่อให้กรดอะมิโนอิสระ โครงสร้างของเอนไซม์ PM II ของเชื้อมาลาเรียถือเป็นโครงสร้างแรกของเอนไซม์ใน เชื้อที่มีการค้นพบ (34, 35) เอนไซม์ PM II เป็นตำแหน่ง เป้าหมายใหม่ในการพัฒนายารักษามาลาเรีย (36-38) โดย จะมีบริเวณ active site ต่างจากเอนไซม์ aspartate

proteases ของมนุษย์เช่น pepsin, cathepsin D เป็นต้น สารยับยั้งที่จับเอนไซม์ PM II ของเชื้อ ($K_{\rm p}$ เท่ากับ 0.07 μ M) ได้ดีกว่าเอนไซม์ cathepsin ของมนุษย์ประมาณ 22 เท่า สารยับยั้งดังกล่าวอาทิเช่น allophenylnorstatine KNI-727 มีฤทธิ์ฆ่าเชื้อมาลาเรีย P. falciparum ได้ที่ IC $_{50}$ เท่ากับ 10 μ M. $^{(37.38)}$

เมตาบอลิสมของลิปิด (Metabolism of lipid)

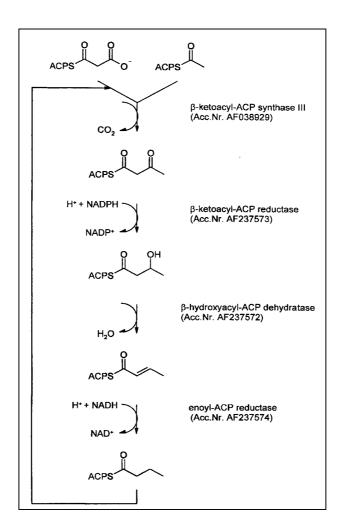

เชื้อมาลาเรีย *P. falciparum* ไม่สามารถ สังเคราะห์ cholesterol ได้เอง จะอาศัยดึงจากเซลล์ เจ้าบ้านมาใช้ แต[่]มีความสามารถในการสังเคราะห์ phospholipids (PL) บางชนิดขึ้นได้เอง เช่น phosphatidylethanolamine (PE) และ phosphatidylcholine (PC) โดยผ่าน Kennedy pathway เหมือนกับในเซลล์ของสัตว์ เลี้ยงลูกด้วยนม ในเชื้อมาลาเรียพบว่าทั้ง PE และ PC จะเป็นส่วนประกอบส่วนใหญ่ถึง 90 % ของ PL ทั้งหมด สำหรับ phosphatidylserine (PS) ซึ่งเป็นส่วนประกอบ ประมาณ 5 % ของ PL จะถูกสังเคราะห์จากเอนไซม์ PS synthase (PSS) ที่มีคุณสมบัติเหมือนกับในเซลล์แบคทีเรีย นอกจากนี้ยังมีการเปลี่ยน serine ไปเป็น ethanolanine โดยเอนไซม์ serine decarboxylase (SDn) ที่ต่างไป จากเซลล์ของมนุษย์ (รูปที่ 3) สำหรับการสังเคราะห์ phosphatidylinositol (PI) ในเชื้อจะคล้ายกับในเซลล์ ของมนุษย์ (39,40)

Figure 3. Biosynthesis of phospholipid (PL) in *P. falciparum*. Phosphatidylethanolamine (PE) and phhosphatidylcholine (PC) synthetic reactions are typically Kennedy pathway. Bold lines indicate the reactions operating in the malaria parasite, but absence from human cell: CDP-DAG → PS and serine → ethanolamine. Broken lines show the reactions existing in human cell, but no significance in the malaria parasite. Most abbreviations are found in the text (Ref. 39).

เนื่องจากเชื้อมาลาเรียมี apicoplast ซึ่งเป็น ออร์กาเนลที่ได้จาก secondary endosymbiosis จาก algae ชนิดหนึ่งแต่ไม่สามารถทำหน้าที่สังเคราะห์แสง ได^{้ (41, 42)} ใน apicoplast มีการสังเคราะห์สาร isoprenoid เช่น isopentenyl diphosphate โดย deoxyxylulose 5-phosphate (DOXP) pathway ซึ่งเป็นแบบ nonmevalonate pathway (รูปที่ 1) โดยจะไม่พบ pathway แบบนี้ในเซลล์มนุษย์ สาร isoprenoid ดังกล่าวไปจับกับ โปรตีนหลายชนิดเกิดกระบวนการ farnesylation ขึ้น DOXP pathway ก็เป็นตำแหน่งเป้าหมายหนึ่งในการพัฒนายา รักษามาลาเรียกลุ่มใหม่ เช่น fosmidomycin (เป็น herbicide ชนิดหนึ่ง) ที่สามารถยับยั้งการทำงานของ เอนไซม์ 2-C-methyl-D-erythrose 4-phosphate synthase ในปฏิกิริยาการสังเคราะห์ methylerythrose phosphate

ออร์กาเนล apicoplast ยังมีระบบการสังเคราะห์ mRNA และโปรตีนเป็นแบบของเซลล์แบคทีเรีย จึงเป็น ตำแหน[่]งของยา antibiotics ที่ใช้ในการรักษาร่วมกับ

Figure 4. Four enzymatic steps in elongation of fatty acid biosynthesis in *P. falciparum*. The enzymes are shown with the GenBank database accession numbers (in brackets). Enzyme NADH-dependent enoyl-ACP reductase, catalyzes conversion of *trans*-2-enoyl-ACP into Acyl-ACP, serves as molecular drug target of antibacterial tricosan, Genz-8575 and Genz-10850.

ยารักษามาลาเรียตัวอื่น (quinine) ที่ใช้อยู่ อาทิเช่น tetracycline, doxycycline และ clindamycin เป็นต้น (ตารางที่ 1, รูปที่ 2) (41, 42) นอกจากนี้ apicoplast จะมีการสังเคราะห์กรดไขมันเป็นแบบที่ II ซึ่งต่างจากของสัตว์ ทั่วไปและของมนุษย์ซึ่งเป็นแบบที่ I การสังเคราะห์กรด ใขมันแบบที่ II จะพบได้ใน plastid ของพืช ใน algae และในเซลล์แบคทีเรีย เอนไซม์ในการสังเคราะห์กรด ใขมันแบบที่ II นี้มีคุณสมบัติจำเพาะคือ เอนไซม์ทั้ง 7 ชนิด ที่ใช้สำหรับการสังเคราะห์กรดไขมันจะไม่รวมกันเป็นกลุ่ม เอนไซม์ 7 ชนิดบนโปรตีนเดียวกัน (multifunctional single polypeptide) แตกต่างไปจากเอนไซม์นี้ ที่พบในแบบที่ I (รูปที่ 4)

เอนไซม์ NADH-dependent enoyl-ACP reductase ของเชื้อมาลาเรียเป็นตำแหน่งเป้าหมายโดย สาร tricosan (ซึ่งเป็นยาฆ่าเชื้อแบคทีเรียชนิดหนึ่ง) จะ ยับยั้งการทำงานของเอนไซม์ดังกล่าว โดยไปจับกับเอนไซม์ ได้ดีที่ K ประมาณ 0.05 µM สามารถฆ่าเชื้อมาลาเรีย P. falciparum สายพันธ์ต่าง ๆ ที่ IC ในระดับ 0.7-1.5 µM (43, 44) และฆ่าเชื้อมาลาเรีย P. berghei ในหนูทดลอง ได้หมดที่ระดับ 38 mg/kg (44) ได้มีการศึกษาโครง สร้าง 3 มิติของเอนไซม์จากเชื้อมาลาเรียแล้ว รวมทั้งสาร tricosan และสาร Genz-8575 และ Genz-10850 (ได้จาก การทำ high-throughput screening) ที่ไปจับกับบริเวณ active site (43, 45) ความรู้ความเข้าใจดังกล่าวทำให้เอนไซม์ enoyl-ACP reductase ที่ใช้สังเคราะห์กรดไขมันแบบที่ II ในเชื้อมาลาเรียเป็นตำแหน่งเป้าหมายที่มีความเป็นไปได้ สูงที่จะพัฒนายารักษามาลาเรียชนิดใหม่ได้

บทสรุปและแนวโน้มการศึกษาวิจัย (Conclusion and research trend)

ในระยะ 2-3 ปีที่ผ่านมาหลังจากที่มีองค์ความรู้ ด้านจีในมิกส์ของเชื้อมาลาเรียแล้ว (46) ทำให้องค์ความรู้ พื้นฐานด้านชีววิทยา (47) และด้านชีวเคมีที่ศึกษาต่อเนื่อง เป็นเวลานาน (48) มีความเข้าใจกระจ่างชัดยิ่งขึ้นในวิถี เมตาบอลิสมต่าง ๆ ของเชื้อมาลาเรีย ทั้งที่บางวิถีมีความ เหมือนและมีความแตกต่างจากเซลล์ของมนุษย์ที่เป็น เจ้าบ้าน สามารถนำไปประยุกต์ในการพัฒนายารักษา มาลาเรียชนิดใหม่ที่อาศัยตำแหน่งเป้าหมายที่เป็นเอนไซม์ ในวิถีเมตาบอลิสมที่มีเอกลักษณ์จำเพาะต่อเชื้อ และไม่ทำ อันตรายต่อเซลล์ของมนุษย์ จะเป็นวิธีการหนึ่งที่จะได้ยา ที่ใช้ในการควบคุมโรคมาลาเรียต่อไปได้ (48-51)

ในระยะทุก ๆ 5 ปี ข้างหน้า มีการคาดหมายว่า จะมียาใหม่เพิ่มขึ้น 1 ชนิดให้ได้ ขณะนี้ องค์กรต่าง ๆ ที่ให้ความสนใจมีมากขึ้นอาทิเช่น Global Fund to Fight AIDS, Tuberculosis and Malaria (52), the Multilateral Initiative on Malaria in Africa (53,54), the Medicines for Malaria Venture (19,55) และ the Roll Back Malaria (56) โดยมีองค์การอนามัยโลกเป็นผู้ประสานการให้ทุนการวิจัย และพัฒนายารักษามาลาเรียตัวใหม่ อย่างไรก็ตามกระบวน การในการพัฒนายาตัวหนึ่ง ๆ จะต้องอาศัยสหศาสตร์ (multi-disciplinary) และสหทรัพยากร (multi-resources) มาร่วมกันใช้เพื่อสร้างความสำเร็จ โดยบทบาทของชีวเคมี รวมทั้งข้อมูลทางจีโนมิกส์ จะให้ตำแหน่งเป้าหมายที่คาด ว่าจะพัฒนาสารยับยั้งหรือสารนำ (lead compounds) ที่ ไปสู่ยารักษามาลาเรียชนิดใหม่ ๆ ได้ (57-61)

อ้างอิง

- World Health Organization, Tropical Diseases
 Research: Progress 1995 -1996, Thirteenth
 Programme Report of the UNDP/World Bank/
 WHO Special Programme for Research and
 Training in Tropical Diseases. TDR Geneva:
 1997
- Greenwood B, Marsh K, Snow R. Why do some African children develop severe anemia. Parasitol Today 1991 Oct;7(10):277-81
- 3. Knight JC, Udalova I, Hill AV, Greenwood BM, Peshu N, Marsh K, Kwiatkowski D.A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with

- severe malaria. Nat Genet 1999 Jun;22(2): 145-50
- Annual epidemiological surveillance report.
 Nontaburi: Division of Epidemiology, Ministry of Public Health, 1998
- World Health Organization, Division of Control of Tropical diseases. Severe and complicated malaria. Trans R Soc Trop Med Hyg 1990; 84(Suppl 2):1-26
- 6. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, et al. Genome sequence of the human malaria parasite *Plasmodium* falciparum. Nature 2002 Oct;419(6906): 498 - 511
- 7. The Plasmodium Genome Resource [online] 2005 [cited 2005 Nov 10]. Available from: URL: http://plasmodb.org/
- 8. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, et al. Genome sequence and comparative analysis of the model rodent malaria parasite *Plasmodium yoelii*. Nature 2002 Oct 3;419(6906):512 9
- 9. Carlton J. The *Plasmodium vivax* genome sequencing project. Trends Parasitol 2003

 May; 19(5): 227 31
- 10. Hoffman SL, Subramanian GM, Collins FH, Venter JC. *Plasmodium*, human and *Anopheles* genomics and malaria. Nature 2002 Feb 7;415(6872):702 9
- 11. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, et al. A proteomic view of the *Plasmodium falciparum* life cycle.

- Nature 2002 Oct 3;419(6906):520 6
- 12. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al. The genome sequence of the malaria mosquito *Anopheles gambiae*. Science 2002 Oct 4;298(5591): 129 49
- 13. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al. The sequence of the human genome. Science 2001 Feb;291(5507): 1304 51
- 14. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000 Nov;290(5493):972 - 7
- 15. Rich SM, Licht MC, Hudson RR, Ayala FJ.

 Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of *Plasmodium falciparum*. Proc Natl Acad Sci USA 1998 Apr;95(8):4425 30
- 16. Mu J, Duan J, Makova KD, Joy DA, Huynh CQ, Branch OH, Li WH, Su XZ. Chromosomewide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 2002 Jul; 418(6895): 323 - 6
- 17. The Hebrew University of Jerusalem. Introduction [online] Last updated 9 Nov 2005 [cited 2005 Nov 10]. Available from: URL: http:// sites. huji.ac.il/malaria/introduction.html
- 18. Kanehisa M, Goto S, Kawashima S, Nakaya A.
 The KEGG databases at GenomeNet. Nucleic
 Acids Res 2002 Jan; 30(1):42-6
- Ridley RG. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature

- 2002 Feb 7;415(6872):686 93
- 20. Krungkrai J, Webster HK, Yuthavong Y. Folate and cobalamin metabolism in *Plasmodium falciparum*. Parasitol Today 1990 Dec;6(12): 388 91
- 21. Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y. Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol 2003 May;10(5):357 65
- 22. Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, Coombs GH, Milhous WK, Tzipori S, Ferguson DJ, et al. Evidence for the shikimate pathway in apicomplexan parasites. Nature 1998 Jun; 393(6687): 801-5
- 23. Nirmalan N, Wang P, Sims PF, Hyde JE.

 Transcriptional analysis of genes encoding enzymes of the folate pathway in the human malaria parasite *Plasmodium falciparum*.

 Mol Microbiol 2002 Oct;46(1):179 90
- 24. Li CM, Tyler PC, Furmeaux RH, Kicska G, Xu Y, Grubmeyer C, Girvin ME, Shramm VL.

 Transition-state analogs as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases. Nat Struct Biol 1999 Jun;6(6):582 7
- 25. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Kim K, Schramm VL. Transition state analogue inhibitors of purine nucleoside phosphorylase from *Plasmodium falciparum*. J Biol Chem 2002 Feb 1;277(5):3219 25
- 26. Kicska GA, Tyler PC, Evans GB, Furneaux RH, Schramm VL, Kim K. Purine-less death in

- Plasmodium falciparum induced by immucillin-H, transition state analogue of purine nucleoside phosphorylase. J Biol Chem 2002 Feb 1;277(5):3226 31
- 27. Shi W, Li CM, Tyler PC, Furneaux RH, Cahill SM, Girvin ME, Grubmeyer C, Schramm VL, Almo SC. The 2.0 A structure of malarial purine phosphoribosyltransferase in complex with a transition-state analogue inhibitor. Biochemistry 1999 Aug 3;38(31):9872 80
- 28. Krungkrai J. Dihydroorotase and dihydroorotate dehydrogenase as a target for antimalarial drugs. Drugs Future 1993 May;18(5):441 50
- 29. McRobert L, McConkey GA. RNA interference (RNAi) inhibits growth of *Plasmodium falciparum*. Mol Biochem Parasitol 2002 Feb; 119 (2):273 8
- 30. Baldwin J, Farajallah AM, Malmquist NA, Rathod PK, Phillips MA. Malarial dihydroorotate dehydrogenase. Substrate and inhibitor specificity. J Biol Chem 2002 Nov 1;277(44): 41827 34
- 31. Krungkrai J, Prapunwatana P, Wichikul C, Reungprapavut S, Krungkrai SR, Horii T. Molecular biology and biochemistry of malarial parasite pyrimidine biosynthetic pathway. Southeast Asian J Trop Med Public Health 2003 Dec;34 (Suppl 2): 32 43
- 32. Goldberg DE, Slater AF, Beavis R, Chait B, Cerami A, Henderson GB. Hemoglobin degradation in the human malaria pathogen *Plasmodium falciparum*: a catabolic pathway initiated by a specific aspartic protease. J Exp Med 1991 Apr;173(4):961 9
- 33. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba

- M, Goldberg DE. Four plasmepsins are active in the *Plasmodium falciparum* food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci USA 2002 Jan;99(2):990 5
- 34. Silva AM, Lee AY, Gulnik SV, Maier P, Collins J, Bhat TN, Collins PJ, Cachau RE, Luker KE, Gluzman IY, et al. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from *Plasmodium falciparum*. Proc Natl Acad Sci USA 1996 Sep;93(19): 10034 9
- 35. Bernstein NK, Cherney MM, Loetscher H, Ridley RG, James MN. Crystal structure of the novel aspartic proteinase zymogen proplasmepsin II from *Plasmodium falciparum*. Nat Struct Biol 1999 Jan;6(1): 32 7
- 36. Francis SE, Gluzman IY, Oksman A, Knickerbocker A, Mueller R, Bryant ML, Sherman DR, Russell DG, Goldberg DE. Molecular characterization and inhibition of a *Plasmodium falciparum* aspartic hemoglobinase. EMBO J 1994 Jan;13(2):306 17
- 37. Nezami A, Luque I, Kimura T, Kiso Y, Freire E. Identification and characterization of allophenylnorstatine-based inhibitors of plasmepsin II, an antimalarial target.

 Biochemistry 2002 Feb 19;41(7):2273 80
- 38. Nezami A, Kimura T, Hidaka K, Kiso A, Liu J, Kiso Y, Goldberg DE, Freire E. High-affinity inhibition of a family of *Plasmodium falciparum* proteases by a designed adaptive inhibitor. Biochemistry 2003 Jul;42(28): 8459-64

- 39. Vial HJ, Eldin P, Tielens AGM, Hellemond JJ.

 Phospholipids in parasitic protozoa. Mol

 Biochem Parasitol 2003 Feb;126(2):143 54
- 40. Wengelnik K, Vidal V, Ancelin ML, Cathiard AM, Morgat JL, Kocken CH, Calas M, Herrera S, Thomas AW, Vial HJ. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 2002 Feb 15;295(5558):1311-4
- 41. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF, McFadden GI. Dissecting apicoplast targeting in the malaria parasite *Plasmodium falciparum*. Science 2003 Jan 31;299(5607): 705 8
- 42. Foth BJ, McFadden GI. The apicoplast: a plastid in *Plasmodium falciparum* and other Apicomplexan parasites. Int Rev Cytol 2003; 224:57 110
- 43.Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase.

 J Biol Chem 2002 Apr 12;277(15):13106 14
- 44. Surolia N, Surolia A. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of *Plasmodium falciparum*. Nature Med 2001 Feb;7(2): 167-73
- 45. Kuo MR, Morbidoni HR, Alland D, Sneddon SF, Gourlie BB, Staveski MM, Leonard M, Gregory JS, Janjigian AD, Yee C, et al. Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound

- activity and structural data. J Biol Chem 2003 Jun 6;278(23):20851 9
- 46. Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H, Gupta D, Kissinger JC, Labo P, et al. The PlasmoDB:. *Plasmodium* genome resource. A database integrating experimental and computational data. Nucleic Acids Res 2003 Jan 1; 31(1): 212 5
- 47. Aravind L, Iyer LM, Wellems TE, Miller LH.

 *Plasmodium biology: genomic gleanings.

 *Cell 2003 Dec 26;115(7):771 85
- 48. Vernick KD, Waters AP. Genomics and malaria control. N Engl J Med 2004 Oct 28; 351(18): 1901 4
- 49. Nezami A, Freire E. The integration of genomic and structural information in the development of high affinity plasmepsin inhibitors. Int J Parasitol 2002 Dec 4; 32(13):1669 76
- 50. Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: metabolic maps and functions of the *Plasmodium falciparum* apicoplast. Nat Rev Microbiol 2004 Mar;2(3):203 16
- 51. Lu JZ, Lee PJ, Waters NC, Prigge ST. Fatty Acid synthesis as a target for antimalarial drug discovery. Comb Chem High Throughput Screen 2005 Feb;8(1):15 26
- 52. Kapp C. Global fund on AIDS, tuberculosis, and malaria holds first board meeting. Lancet 2002 Feb;359(9304):414
- 53. Nchinda TC. Malaria: a reemerging disease in Africa. Emerg Infect Dis 1998 Jul-Sep;4 (3):

- 398 403
- 54. Heddini A, Keusch GT, Davies CS. The multilateral initiative on malaria: past, present, and future.

 Am J Trop Med Hyg 2004 Aug;71(Suppl 2): 279 82
- 55. Medicines for Malaria Venture. Curing Malaria

 Together [online] 2005 [cited 2005 Nov 10].

 Available from: URL: http://www.mmv.org
- 56. Roll Back Malaria [online] [cited 2005 Nov 10]. Available from: URL: http://www.rbm.who.int
- 57. White NJ. Antimalarial drug resistance. J Clin Invest 2004 Apr;113(8):1084 92
- 58. Fidock DA, Rosenthal PJ, Croft SL, Brun R,
 Nwaka S. Antimalarial drug discovery:
 efficacy models for compound screening.
 Nat Rev Drug Discov 2004 Jun;3(6):509 20
- 59. Reungprapavut S, Krungkrai SR, Krungkrai J.

 Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy.

 J Enzyme Inhib Med Chem 2004 Jun;19(3): 249 56
- 60. Krungkrai J, Scozzafava A, Reungprapavut S, Krungkrai SR, Rattanajak R, Kamchonwongpaisan S, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of *Plasmodium falciparum* carbonic anhydrase with aromatic sulfonamides: towards antimalarials with a novel mechanism of action? Bioorg Med Chem 2005 Jan 17;13(2):483 9
- 61. Boa AN, Canavan SP, Hirst PR, Ramsey C, Stead AM, McConkey GA. Synthesis of brequinar analogue inhibitors of malaria parasite dihydroorotate dehydrogenase.

 Bioorg Med Chem 2005 Mar;13(6):1945 67

กิจกรรมการศึกษาต่อเนื่องสำหรับแพทย์

ท่านสามารถได้รับการรับรองอย่างเป็นทางการสำหรับกิจกรรมการศึกษาต่อเนื่องสำหรับแพทย์ กลุ่มที่ 3 ประเภทที่ 23 (ศึกษาด้วยตนเอง) โดยศูนย์การศึกษาต่อเนื่องของแพทย์ จุฬาลงกรณ์มหาวิทยาลัย ตามเกณฑ์ของศูนย์การศึกษาต่อเนื่องของแพทย์แห่งแพทยสภา (ศนพ.) จากการอ่านบทความเรื่อง "เชื้อมาลาเรีย จีโนมิกส์ และชีวเคมี กับตำแหน่งเป้าหมายในการพัฒนายารักษาโรคมาลาเรีย" โดยตอบ คำถามข้างล่างนี้ ที่ท่านคิดว่าถูกต้องโดยใช้แบบฟอร์มคำตอบท้ายคำถาม โดยสามารถตรวจจำนวนเครดิต ได้จาก http://www.ccme.or.th

คำถาม - คำตอบ

- 1. เชื้อมาลาเรียที่ทำให้เกิด severe and cerebral malaria คือ
 - ก. Plasmodium vivax
 - 1. Plasmodium falciparum
 - ค. Plasmodium malariae
 - 1. Plasmodium ovale
 - ৭. All of above
- 2. ข้อความต่อไปนี้ถูกต้องเกี่ยวกับจีในมิกส์ของเชื้อมาลาเรีย
 - ก. Mitochondrion genome มีขนาด 16 kb เท่ากับของมนุษย์
 - ข. Apicoplast genome มีขนาด 100 kb เท่ากับ chloroplast ของพืช
 - ค. Nucleus genome มีขนาด 23 Mb เล็กกว่าของยุงก้นปล่องและมนุษย์
 - ง. มี single nucleotide polymorphisms จำนวนเท่า ๆ กับของมนุษย์
 - จ. มี genes ทั้งหมด 31,000 genes
- 3. Metablic pathway ที่พบเฉพาะในเชื้อมาลาเรีย และไม่พบในมนุษย์ได้แก่
 - ก. Folate biosynthesis
 - 1. Heme biosynthesis
 - ค. Anaerobic glycolysis
 - Fatty acid biosynthesis
 - จ. เฉพาะข้อ ก และ ข

S	-	•••••	•••••	

คำตอบ สำหรับบทความเรื่อง "เชื้อมาลาเรีย จีในมิกส์ และชีวเคมี กับตำแหน่งเป้าหมายใน การพัฒนายารักษาโรคมาลาเรีย"

จุฬาลงกรณ์เวชสาร ปีที่ 50 ฉบับที่ 2 เดือนกุมภาพันธ์ พ.ศ. 2549 รหัสสื่อการศึกษาต[่]อเนื่อง 3-23-201-9010/0602(1004)

ชื่อ - นามสกลผขอ CME credit	เลขที่ใบประกอบวิชาชีพเวชกรรม
વ શુ -	
ทอยู	
10	

1. (ก) (ข) (ค) (ง) (จ)

4. (ก) (খ) (ค) (খ) (৭)

2. (n) (l) (A) (l) (l)

5. (ก) (ข) (ค) (ง) (จ)

3. (n) (1) (A) (A)

- 4. คู่ของเอนไซม์และยาหรือสารยับยั้งที่ทำงานใน hemoglobin catabolic pathway คือ
 - ก. Heme synthetase/chloroquine
 - ข. Lactate dehydrogenase/NADH
 - ค. Plasmepsin/allophenylnorstatine
 - 1. Dihydrofolate reductase/pyrimethamine
- จ. Purine nucleoside phosphorylase/immucillin
 ข้อใดต่อไปนี้ถูกต้องเกี่ยวกับยารักษามาลาเรีย และตำแหน่งเป้าหมายของยา
 - ก. Fansidar ®/pentose phosphate pathway
 - 1. Chloroquine/glycolysis
 - ค. Coartem ®/fatty acid biosynthesis
 - 1. Halofantrine/purine biosynthesis
 - 9. Malarone ®/mitochondrion and folate biosynthesis

ท่านที่ประสงค์จะได้รับเครดิตการศึกษาต่อเนื่อง (CME credit) กรุณาส่งคำตอบพร้อมรายละเอียดของท่านตามแบบฟอร์มด้านหน้า

> ศาสตราจารย์นายแพทย์สุทธิพร จิตต์มิตรภาพ ประธานคณะกรรมการการศึกษาต่อเนื่อง ตึกอานันทมหิดล ชั้น 5 คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เขตปทุมวัน กทม. 10330

Asian Pac J Trop Med 2008; 1(1):31-49

Putative metabolic roles of the mitochondria in asexual blood stages and gametocytes of *Plasmodium falciparum*

Krungkrai J¹, Kanchanaphum P¹, Pongsabut S¹, Krungkrai SR²

Abstract

Upon infection into human red cell, *Plasmodium falciparum* differentiates into asexual and sexual (gametocyte) stages. The mitochondrion is a tubular-cristate organelle, functionally and structurally different between the two stages. Genes and proteins involving metabolic and functional roles, protein targeting and import to this organelle, are comprehensively reviewed. The genes and proteins of the electron transport system are identified, partially characterized in human and rodent malaria parasites consisting of a single subunit of NADH dehydrogenase, two subunits of succinate dehydrogenase, cytochrome C reductase and cytochrome Coxidase. One of the primary functional roles of the mitochondrion in the parasite is the coordination of pyrimidine biosynthesis, the electron transport system and oxygen utilization through dihydroorotate dehydrogenase. All enzymes of tricarboxylic acid cycle, pyruvate dehydrogenase complex and some enzymes of ATP synthase, are identified and partially characterized using the completed *P. falciparum* genome. Some metabolic and functional roles of the organelle include oxidative phosphorylation, ubiquinone and heme biosynthesis, antioxidant defense and redox balance. Recent physiological studies involve membrane potential maintenance, cellular signaling and cation homeostasis. The organelle is a target for antimalarial drug, i. e. atovaquone. Based on the lines of evidence, we hypothesize that the parasite exhibits metabolic adaptation of the underdeveloped mitochondrial organelle to life in the mosquito vector and the human host.

Keywords: malaria; mitochondrion; metabolism; electron transport system; oxygen utilization; pyrimidine biosynthesis; tricarboxylic acid cycle; heme biosynthesis; ubiquinone biosynthesis; protein synthesis; antimalarial drug target

INTRODUCTION

Malaria remains one of the most important diseases of the world, causing annual infections to at least 515 million people from the developing countries and 1. 5-2. 7 million deaths mainly in sub-Saharan Africa^[1-3]. Of the four *Plasmodium* species of bloodborne apicomplexan parasite, *P. falciparum* is responsible for the most severe form of human malaria. Disease symptoms include fever, chills, prostration,

Correspondence to: Jerapan Krungkrai, PhD, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Bangkok 10330, Thailand. jerapan. k@ gmail. com Tel: +66-022564482 Fax: +66-022524963 anemia, delirium, metabolic acidosis, cerebral malaria, multi-organ system failure, coma and death $^{[2,4]}$. To combat the disease, there is an urgent need to develop new drugs due to the increasing prevalence of drug resistant parasites to currently use antimalarials, chloroquine and sulfadoxine-pyrimethamine, which consequently accounts for increase morbidity and mortality $^{[5,6]}$.

Upon blood stage infection, *P. falciparum* grows and differentiates into various asexual stages, i. e., ring, trophozoite and schizont, as well as into infectious sexual stages (gametocytes) which are taken up during the mosquito blood meal. In the *Anopheles* mosquito, sporozoite-stage parasites develop after fertilization of male and female gametes

¹Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama 4 Road, Bangkok 10330, Thailand

²Unit of Biochemistry, Department of Medical Science, Faculty of Science, Rangsit University, Paholyothin Road, Patumthani 12000, Thailand

Asian Pac J Trop Med 2008; 1(1):31-49

role in the transfer of electrons between the mtETS complexes and acts as a proton carrier that supports ATP synthesis [80]. Thus the inhibition of the electron transfer at this site represents an important target for chemotherapeutic attack.

One class of compounds extensively investigated over fifty years for antimalarial activity is the quinone analog, hydroxynaphthoquinone. One of the compounds, atovaquone which is 2-(trans-4-(4'-chlorophenyl) cyclohexyl) -3-hydroxy-1, 4-naphthoquinone, is currently used as a potent antimalarial [113]. Atovaquone affects multiple sites in which Q_{8.9} plays a significant catalytic role in the target enzyme, e. g. complex ∭^[111], and DHODase ^[39]. The malarial parasites synthesize their own ubiquinones and cannot salvage this from the host. Furthermore, all genes necessary for a complete ubiquinone biosynthetic pathway, starting from chorismate to ubiquinone, are also identified. We have found that atovaquone at micromolar levels strongly inhibits ubiquinone biosynthesis in P. falciparum, similar to its effect on Pneumocystis carinii [114].

Many derivatives of 5-hydroxy-2-methyl-1, 4-naphthoquinone have been synthesized and tested for their antimalarial activities on the in vitro growth of *P. falciparum* ^[115]. These include fifteen quinoline quinones ^[40]. 5-Hydroxy-2-methyl-1, 4-naphthoquinone exhibits a strong effect on the malarial mtETS complex I, II and mitochondrial oxygen consumption ^[74,76]. Thus, quinoline quinones may represent a new class of compounds with potent antimalarial activity.

Proteomics

There are 246 (~4.6% of total parasite proteins) proteins targeted to the mitochondrion after translation using the TargetP and MitoProtII methods as originally identified [34, 61]. Using recently developed PlasMit program for prediction of mitochondrial transit peptides, Bender et al [62] have predicted 381 (\sim 7.1%) mitochondrial proteins, based on 5334 annotated genes in the P. falciparum genome, close to the numbers of the mitochondrial proteins in other organisms. However, the human mitochondrial proteomics indicate about 1000 proteins involved for function, carbohydrate bioenergetic and metabolisms, and regulatory functions in apoptosis and cell death, and homeostasis [116]. Most of the parasite mitochondrial protein sequences identified to date are hypothetical proteins. Nevertheless, homology searching using bioinformatics approaches have identified some components of metabolic pathways, transporter and import proteins (Table 1).

Import mechanism

Basic knowledge on mitochondrial import mechanism has been limited $^{[117]}$. A long N-terminal sequence having a typical feature of a mitochondrial targeting signal has been identified in the de novo pyrimidine synthetic DHODase gene homologue for the first time in P. falciparum $^{[118]}$. The DHODase is then verified as the mitochondrial protein by using a polyclonal antibody raised against the purified protein from P. falciparum and immunogold-labeled electron microscopy $^{[26]}$.

Recently, Wilson's group has used the GFP chimeric protein targeted to the mitochondrion and identified the import signal within a region of 68 amino acids in the mitochondrial protein HSP-60 (Table 1) may play a role as a molecular chaperone^[93-96]. Most recently, the transferring protein orthologue (translocase of outer membrane) has also been identified in P. $falciparum^{[119]}$. The proteins contain N-terminal sequences with homologies to mitochondrial transfer peptides which use to enter the organelle, similar to higher eukaryotes [62]. Sienkiewicz et al[102], in contrast, recently demonstrates that the mitochondrial iron superoxide dismutase (FeSOD) has a 70-residue long N-terminal extension that shows a typical bipartite apicoplast organelle targeting sequence^[120], but the FeSOD protein targets the GFP fusion into the parasite's mitochondrion. The verification of the proposed mitochondrial proteins will, therefore, be necessary.

Comparing mitochondrial and apicoplast organelles

A non-photosynthetic chloroplast, or apicoplast, has been demonstrated in malaria parasites since eleven years ago^[121]. The apicoplast, as well as the mitochondrion, is considered to be a target for drug development ^[122]. The apicoplast retains a circular

Krungkrai J, et al. Malaria parasite mitochondrion

Table 1 P. falciparum mitochondrial proteins and their biochemical functions

No	Name	Function
1	Coq4	CoQ biosynthesis
2	Lon protease homologue	Chaperone/protease
3	Prohibitin/BAP37 (PHB2 homologue)	Respiratory chain assembly
4	Valyl-tRNA synthetase	Translation
5	Elongation factor g (EF-G)	Translation
6	50s RPL24	Translation
7	50s RPL17	Translation
8	DNA-directed RNA polymerase	Transcription
9	EF-Tu	Translation
10	50S RPL2	Translation
11	Citrate synthase	TCA cycle
12	Isocitrate dehydrogenase (NADP-dependent)	TCA cycle
13	Succinyl-CoA sythetase beta subunit	TCA cycle
14	Succinate dehydrogenase Fe-S subunit	TCA cycle/complex II
15	Fumerate hydratase class I	TCA cycle
16	NADH dehydrogenase	Complex I
17	Rieske Fe-S protein 3	Complex III
18	Cytochrome c1	Complex III
19	ATP synthase beta subunit	Complex V
20	ATP synthase gamma subunit	Complex V
21	ATP synthase alpha subunit	Complex V
22	ATP synthase delta subunit	Complex V
23	Dihydroxy hexaprenylbenzoate methyltransferase	CoQ biosynthesis
24	Geranyl diphosphate synthase/prenyl transferase (Coq1)	CoQ biosynthesis
25	Coq2	CoQ biosynthesis
26	Coq5 (CoQ synthesis methyltransferase)	CoQ biosynthesis
27	Coq8 (ubiquinol-cytochrome \boldsymbol{c} reductase assembly protein, ABC1)	CoQ biosynthesis
28	Branched-chain alpha keto-acid DH E1 alpha subunit	Amino acid degradation
29	Branched-chain alpha keto-acid DH E1 beta subunit	Amino acid degradation
30	Mitochondrial serine hydroxymethyltransferase	One carbon metabolism
31	Rhodanese	Amino acid degradation/ Cyanide detoxification
32	Mitochondrial intermediate processing peptidase (MPP)	Import
33	MPP alpha subunit	Import
34	MPP beta subunit	Import/complex III
35	HSP-60/CPN-60	Import
36	Mitochondrial phosphate carrier	Transport
37	Delta aminolevulinate synthase	Heme synthesis
38	HSP-70/DnaK	Protein folding
39	Dihydroorotate dehydrogenase	Pyrimidine biosynthesis
40	GrpE	Protein folding

Asian Pac J Trop Med 2008; 1(1): 31-49

Table 2 Structure, genomics and proteomics of mitochondrial and apicoplast organelles in the asexual stage of P. falciparum

Property	Mitochondrion	Apicoplast
Size (in trophozoite stage)	1. 0x0. 2 μm	1.6x0.3 μm
Membrane layer	2	3-4
Number per cell	single	single
DNA:		
-size	6 kb	35 kb
-shape	linear	circular
-copy number	>20	>15
-% A + T content	69%	86%
- gene encoding protein	3	23
tRNA	import	import
Protein identified	381	551
Replication:		
-mechanism	phage-like	bi-directional theta,
		rolling circle
-replicating enzyme	unknown	multienzyme complex
Transcription/Translation	bacterial-type,	bacterial-type,
	70S ribosome	70S ribosome

Representing $\sim 7.1\%$ and $\sim 10\%$ of the total proteins encoded by the parasite genome.

Table 3 Functional/metabolic roles between mitochondrial and apicoplast organelles in the asexual bloog stage P. falciparum

Property	Mitochondrion	Apicoplast
Electron transport system	present	absent
Oxygen consumption	present	absent
Oxidative phosporylation/ ATP synthesis	absent	absent
Pyrimidine synthesis	involved	not involved
Tricarboxylic acid cycle	present	absent
Ubiquinone biosynthesis	present	absent
Heme biosynthesis	involved	involved
Fatty acid biosynthesis'	absent	present
Isoprenoid biosynthesis	absent	present
Redox and antioxidant system	present	possibly present
Cellular signaling/homeostasis	present	unknown

The operating fatty acid biosynthesis requires the utilization of NADH as an electron donor and the production of fatty acid as an electron acceptor, however, it is presently unknown for an antioxidant defense system in the apicoplast.

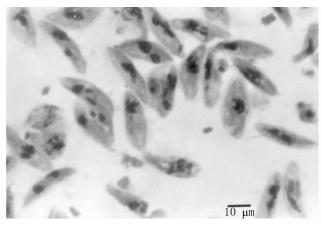


Figure 1 Maturing sexual satge of Plasmodium falciparum from an in vitro culture. (Giemsa)

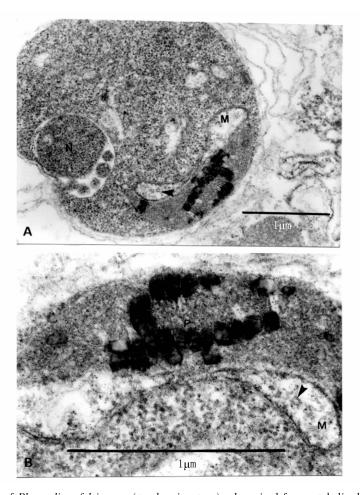


Figure 2 Asexual stage of *Plasmodium falciparum* (trophozoite stage) polymerized from catabolized heme in a food vacuole (TEM). A: Single mitochondrion with a clearly double membrane organelle, and an elongated form, preparing for binary fission; B: Single tubular cristate structure(arrowhead) in the organelle at higher magnification, classified as type I mitochondrion. N: Nucleus; M: Mitochondria; P: Crystalline hemozoin pigment.

Asian Pac J Trop Med 2008; 1(1): 31-49

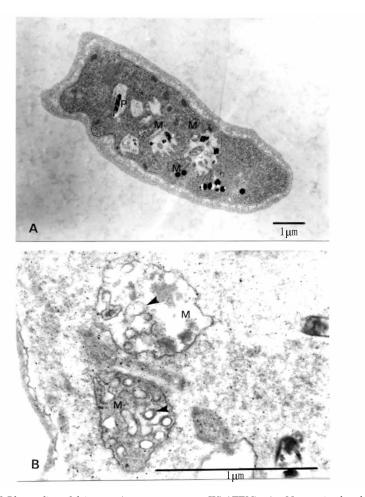


Figure 3 Sexual stage of *Plasmodium falciparum* (gametocyte stage IV) (TEM). A: Many mitochondria in a single parasite B: Two organelles containing several cristae (arrowheads) clssified as type II mitochondrion. M: Mitochondria; P: Pigment.

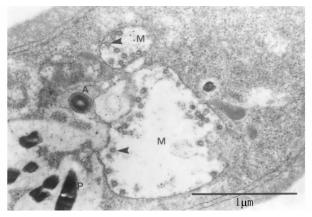


Figure 4 Type III mitochondria in the maturing sexual stage of *Plasmodium falciparum* (TEM). Electron-dense and finely compact of the tubular cristae (arrowheads) are typically found with this type of the mitochondrion. An apicoplast, associated to one of the mitochondria, was observed with a multi-membraneous organelle, containing electron-dense matrix and absence of internal cristae. M: Mitochondria; P: Pigment; A: Apicoplast. It is noted that the mitochondrial localization is closely associated to the food vacuole, a place where hemoglobin is degraded to free amino acids and hemozoin pigment is formed.

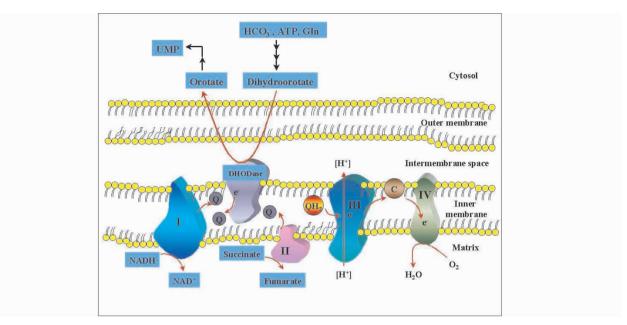


Figure 5 A diagram of the proposed arrangement of the mitochondrial electron transport system and its link with pyrimidine biosynthesis *via* dihydroorotate dehydrogenase in the asexual and sexual blood stages of *Plasmodium falciparum*. Dihydroorotate dehydrogenase (DHODase), an inner membrane protein of the pyrimidine pathway, generates electrons to the mitochondrial electron transporting complexes, containing NADH – ubiquinol reductase (a single component of complex I, NADH dehydrogenase), succinate – ubiquinone oxidoreductase (succunate dehydrogenase, complex II), cytochrome c reductase (complex III) and cytochrome c oxidase (complex IV) which is the final electron acceptor. Q, oxidized ubiquinone; QH₂, reduced ubiquinone; C, cytochrome C.

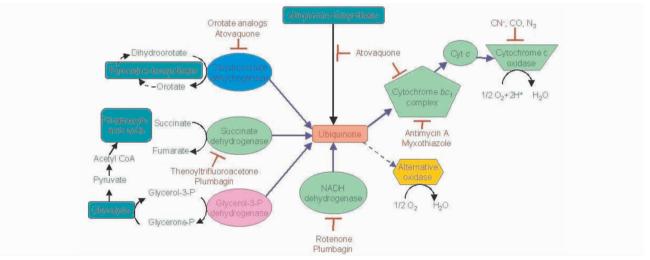


Figure 6 A diagram of proposed mitochondrial metabolic networks of *Plasmodium falciparum*. The mitochondrial electron transport complexes contain a single polypeptide NADH dehydrogenase, two – subunits succinate dehydrogenase, cytochrome c reductase (cytochrome bc_1) and cytochrome c oxidase. Alternative oxidase as a cyanide (CN^-) insensitive – branched pathway (shown in a broken line) and glycerol – 3 – phosphate (glycerol – 3 – P) dehydrogenase are also included in the respiratory chain. A part of the pyrimidine biosynthesis is shown and linked to coenzyme ubiquinone. The ubiquinone plays a central role for electron and proton transferring coenzyme. Cytochrome c (Cyt c, a component of cytochrome bc_1 complex) is also shown serving an electron transferring protein. Glycolysis, possibly links to the TCA cycle, is operating in the cytosol. The tree – bars indicate known active sites of inhibitors and the antimalarial atvaquone, plumbagin. The diagram is adapted from web site: http://sites.huji.ac.il/malaria.

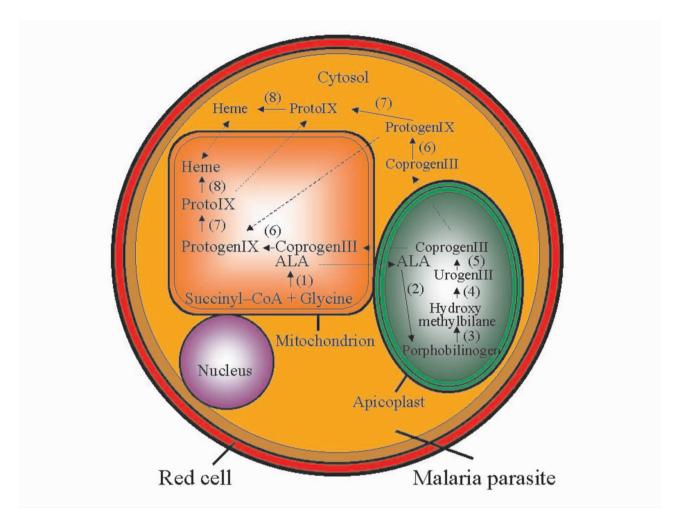


Figure 7 — A schematic representation of *de novo* heme biosynthetic pathway of *Plasmodium falciparum*. The parasite's heme pathway operates in three possible compartmentations: mitochondrion, apicoplast and cytosol. Solid and broken indicate eight enzymatic Reactions (1→8) and proposed exchange of metabolites among three subcellular compartments, respectively. δ-aminolevulenic acid synthase catalyzes the condensation of succinyl – CoA and glycine (Reaction 1) to produce δ-aminolevulenic acid (ALA) in the mitochondrion, porphobilinogen synthase and hydroxylmethylbilane synthase catalyze ALA to prophobilinogen (Reaction 2) and then to hydroxymethylbilane (Reaction 3) in the apicoplast. The fourth and the fifth enzymes, uroporphyrinogenIII (UrogenIII) synthase (Reaction 4) catalyzing the production of UrogenIII, and UrogenIII decarboxylase (Reaction 5) converting UrogenIII to coproporphyrinogenIII (CoprogenIII), occur also in the apicoplast. The last three enzymes of the pathway, CoprogenIII oxidase (Reaction 6) catalyzing CoprogenIII to protoporphyrinogenIX (Protogen IX), ProtogenIX oxidase (Reaction 7) converting ProtogenIX to protoporphyrin IX (ProtoIX), and ferrochelatase (Reaction 8) producing heme from ProtoXI, are possibly operating in either cytosol or mitochondrion. The hypothetical pathway for the functional heme biosynthesis in the parasite is adapted from Sato *et al* ^[94].

35 kb of its original algal plastid genome and synthesizes 23 proteins^[123]. Apicoplast DNA is inherited only through the female gamete [55], and the organelle DNA replication occurs by a unique enzyme complex synthesized by an open reading frame encoding contiguous DNA polymerase, DNA primer and DNA helicase components [124]. More than 500 proteins predicted to function in the apicoplast have been identified using the bioinformatic approaches and experimental evidences, leading to rapid advancement in metabolic maps and functional determinations [125]. We have summarized the present knowledge on properties, stuctures, genomics, transcriptomics, proteomics, and metabolic/functional roles in the mitochondrion and apicoplast of P. falciparum (Table 2, 3).

Aided by the recent progress of the malarial genome database, we now have a better understanding of several metabolic networks confined with the apicoplast. The primary ones are type II fatty acid biosynthesis (acetyl-CoA ---> fatty acids) and isoprenoid biosynthesis (non-mevalonate pathway). The type II de novo fatty acid synthetic pathway is catalyzed by separate enzymes as demonstrated in bacteria and plants, unlike the type I fatty acid pathway in mammals which were shown to be multifunctional enzymes [125]. Detailed characterization of lipoylation pathways involving pyruvate dehydrogenase complex indicates that the apicoplast can function in converting pyruvate to acetyl-CoA for use in fatty acid biosynthesis which it is absent in the mitochondrion [126,127], but the other lipoylation pathway involving α-keto acid dehydrogenase complex is located in the parasite's mitochondrion[106]. This is an unusual property of the mitochondrion, named as the strange organelle [128]. The organelle cannot produce acetyl-CoA, but takes it up from the apicoplast for the TCA cycle to generate NADH and other metabolites. In the isoprenoid biosynthesis using isopentenyl diphosphate as the precursor, the apicoplast operates the non-mevalonate pathway using the enzymes 1-deoxy-D-xylulose-5-phosphate (DOXP) synthase and DOXP reductoisomerase, similar to those of bacteria and algae [123].

It has been proposed earlier that the malaria parasite imports a nearly complete set of host-cell heme biosynthetic enzymes to use for its own machinery apparatus to produce heme [129]. Later, all eight enzymes required for the heme *de novo* pathway

have been identified in the nuclear genome of the parasite [61]. The malaria parasite, unlikes any other organisms, has the ability to synthesize heme de novo by sharing the pathway within the boundaries of the apicoplast and the mitochondrial organelle (Figure 7) [94, 125, 130]. The localization of the first three enzymes, δ-aminolevulenic acid synthase (ALAS), porphobilinogen synthase (PBGS) hydroxylmethylbilane synthase (HMBS) operating in the pathway has been verified using a GFP reporter in live transfected P. falciparum [94]. ALAS is targeted to the mitochondrion, but PBGS and HMBS are targeted to the apicoplast. The fourth and the enzymes, uroporphyrinogen III (UROS, Reaction 4) and uroporphyrinogen III decarboxylase (UROD, Reaction 5), have apparent apicoplast targeting sequences at their N-terminus. The last three enzymes of the pathway, coproporphyrinogen III oxidase (CPO, Reaction 6), protoporphyrinogen IX (PPO, Reaction 7) and ferrochelatase (FC, Reaction 8), lack the bipartite sub-structures at their N-terminus [94]. Hence enzymes UROS and UORD are predicted to be apicoplastic proteins, and enzymes CPO, PPO and FC are either cytosolic or mitochondrial proteins. This suggests a mechanistic model for multiple intracellular localization of the parasite organelle proteins, especially in the de novo heme biosynthesis. Some human mitochondrial proteins have also multiple subcellular compartments, their detailed targeting mechanisms recently reviewed^[131]. Compartmentation of all heme enzymes in the parasite remains to be verified. It has been hypothesized that an exchange of metabolites in the pathway to produce heme between the two organelles ensues, including organelle attachment^[94,125]. The proposed contact/attachment of both organelles is evident by visualizing their close apposition on subcellular fractionations and electron micrographs using either P. falciparum (Figure 4) or other malaria parasites [30, 132].

CONCLUSIONS AND FUTURE PROSPECTS

Based on the morphological, biochemical and genetic findings in the asexual and sexual stages of the human malaria parasite *P. falciparum*, mitochondrial heterogeneity may have functional significance for growth and development and completion of life cycle. The mitochondrial structures and functions may

Asian Pac J Trop Med 2008; 1(1): 31-49

reflect an evolution of *Plasmodium* spp. in which they are living in relatively low oxygen environments of the human host to maintain their redox balance, and also an organelle metabolic adaptation to life in the mosquito vector. It is necessary to study the biochemistry and physiology of the mitochondrion in more detail, for instance, membrane potential, differences in the mechanism of energy metabolism, functionality of the tricarboxylic acid cycle, oxidative phosphorylation and ATP synthesis, functional properties of the electron transport complexes, roles of ubiquinone and heme biosynthesis, and oxygen tension on the survival of the parasites circulating in the human blood^[74, 107, 133].

Regulation of the tricarboxylic acid cycle, the electron transport system and the oxidative phosphorylation for energy metabolism needs to be considered [77-79, 134]. Understanding of the parasite's organelle biogenesis is still requiring, including the involvement of cellular signaling essential for the process [71]. In addition, detailed internal organization of the organelle related to its metabolic adaptation and heterogeneity should be further elucidated using novel electron microscopic tomography [45, 135].

Special thanks to the malarial genome database [61], about 250-380 proteins are predicted to target to the mitochondrion post-translationally. These include some enzymes of the pyruvate dehydrogenase complex, the complete tricarboxylic acid cycle enzymes, many electron transport complexes and ATP synthase^[46-47, 51, 61-63, 128]. Functional analyses remain to be elucidated using techniques such as gene RNA interference, microarray and knock-out, metabolomics [32, 35, 42]. The mitochondrion is a chemotherapeutic target for antimalarial drug development, for example, the enzyme dihydroorotate dehydrogenase [136]. In our post-genomics era, proteomics should be performed with mitochondria from all stages of the human parasite, in the presence or absence of any novel compounds affecting biogenesis and functions of the organelle. Identification of genes/proteins responsible for the mitochondrial heterogeneity throughout the life cycle of the parasite is, likewise, necessary.

ACKNOWLEDGEMENTS

We acknowledge the contributions of our collaborators: P. Prapunwattana, S. Petmitr, K. Likhitwita-

yawuid, N. Wutipraditkul, N. Suraveratum, A. Bhumiratana, S. Kudan, R. Kanchanarithisak, S. Vettchagarun and D. Burat for human malaria parasite cultivation, light and electron microscopic techniques, mitochondrial enzymes and oxygen uptake experiments. We thank H. Ginsburg and G. Schneider for the metabolic maps and the list of mitochondrial proteins of *P. falciparum*. We also thank N. M. Q. Palacpac for critical review of the manuscript.

Supported by: the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (CHEMAL), the National Science and Technology Development Agency of Thailand (Career Development Award), and the Thailand Research Fund (Basic Research).

REFERENCES

- Guerin PJ, Olliaro P, Nosten F, Druilhe P, Laxminarayan R, Binka F, et al. Malaria: current status of control, diagnosis, treatment, and a proposed agenda of research and development. Lancet Infect Dis. 2002; 2: 564-73.
- 2 Greenwood BM, Bojang K, Whitty CJM, Targett GAT. Malaria. Lancet. 2005; 365: 1487-98.
- Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of *Plasmodium falciparum* malaria. *Nature*. 2005; 434: 214-7.
- 4 Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalaria drug discovery: efficacy models for compound screening. *Nat Rev Drug Disc*. 2004; 3: 509-20.
- 5 Greenwood BM, Mutabingwa T. Malaria in 2002. Nature. 2002; 415: 670-2.
- 6 Jana S, Paliwal J. Novel molecular targets for antimalarial cheomotherapy. *Inter J Antimicrob Agents*. 2007; 30: 4-10
- 7 Alano P. Plasmodium falciparum gemetocytes: still many secrets of a hidden life. Mol Microb. 2007; 66: 291-302.
- 8 Sinden RE. A proteomic analysis of malaria biology: integration of old literature and new technologies. *Int J Parasitol*. 2004; 34: 1441-50.
- 9 Trager W, Jensen JB. Human malaria in continuous culture. Science. 1976; 193: 673-7.
- 10 Horrocks P, Dechering K, Lanzer M. Control of gene expression in *Plasmodium falciparum*. Mol Biochem Parasitol. 1998; 95: 171-81.
- 11 Kumar N, Cha G, Pineda F, Maciel J, Haddad D, Bhattacharyya M, et al. Molecular complexicity of sexual development and gene regulation in Plasmodium falciparum. Int J Parasitol. 2004; 34: 1451-8.
- Moreira CK, Marrelli MT, Jacobs-Lorena M. Gene expression in Plasmodium: from gametocytes to sporozoites. Int J Parasitol. 2004; 34: 1431-40.
- 13 Rangarajan R, Bei AK, Jethwaney D, Maldonado P, Dorin D, Sultan AA, et al. A mitogen-activated protein kinase regulates male gametogenesis and transmission of

- the malaria parasite Plasmodium berghei. EMBO Rep. 2005; **6**: 464-9.
- 14 Mather MW, Henry KW, Vaidya AB. Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets. 2007; 8: 49-60.
- 15 Ginsburg H, Divo AA, Geary TG, Boland MT, Jensen JB. Effect of mitochondrial inhibitors on intraerythrocytic Plasmodium falciparum in in vitro cultures. J Protozool. 1986; 33: 121-5.
- 16 Lanners HN. Effect of the 8-aminoquinoline primaquine on culture-derived gametocytes of the malaria parasite Plasmodium falciparum. *Parasitol Res.* 1991; 77: 478-81.
- 17 Fry M, Pudney M. Site of action of the antimalarial hydroxynaphtho-quinone, 2-(trans-4-(4-chlorophenyl) cyclohexyl)-3-hydroxy-1, 4-naphtho-quinone (566C80). Biochem Pharmacol. 1992; 43: 1545-53.
- 18 Kawai S, Kano S, Suzuki M. Morphologic effects of artemether on *Plasmodium falciparum* in Aotus Trivirgatus. Amer J Trop Med Hyg. 1993; 49: 812-8.
- 19 Langreth SG, Jensen JB, Reese RT, Trager W. Fine structure of human malaria in vitro. J Protozool. 1978; 25: 443-52.
- Sherman IW. Biochemistry of Plasmodium (malaria parasites). Microbiol Rev. 1979; 43: 453-95.
- 21 Aikawa M. Plasmodium: the fine structure of malarial parasites. Exp Parasitol. 1971; 30: 284-320.
- Fry M, Beesley JE. Mitochondria of mammalian Plasmodium spp. Parasitology. 1991; 102: 17-26.
- 23 Feagin J, Drew ME. Plasmodium falciparum: Alterations in organelle transcript abundance during the erythrocytic cycle. Exp Parasitol. 1995; 80: 430-40.
- Petmitr S, Krungkrai J. Mitochondrial cytochrome b gene in two developmental stages of human malarial parasite Plasmodium falciparum. Southeast Asian J Trop Med Pub Health. 1995; 26: 600-5.
- 25 Krungkrai J, Krungkrai SR, Bhumiratana A. Plasmodium berghei: partial purification and characterization of the mitochondrial cytochrome c oxidase. Exp Parasitol. 1993; 77: 136-46.
- 26 Krungkrai J. Purification, characterization and localization of mitochondrial dihydroorotate dehydrogenase in *Plasmodium falciparum*, human malaria parasite. *Biochim Biophys Acta*. 1995; 1243: 351-60.
- 27 Krungkrai S, Learngaramkul P, Kudan S, Prapunwattana P, Krungkrai J. Mitochondrial heterogeneity inhuman malarial parasite Plasmodium falciparum. Science Asia. 1999; 25: 77-83.
- 28 Krungkrai J, Prapunwattana P, Krungkrai S. Ultrastructure and function of mitochondria in gametocytic stage of *Plasmodium falciparum*. *Parasite*. 2000; 7: 19-26.
- 29 Krungkrai J, Krungkrai SR, Suraveratum N, Prapunwattana P. Mitochondrial ubiquinol-cytochrome c reductase and cytochrome c oxidase: chemotherapeutic targets in malarial parasites. Biochem Mol Biol Int. 1997; 42: 1007-14.
- 30 Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P. Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Pub Health. 1999; 30: 636-42.

- 31 Learngaramkul P, Petmitr S, Krungkrai SR, Prapunwattana P, Krungkrai J. Molecular characterization of mitochondria in asexual and sexual blood stages of *Plasmodium falciparum*. Mol Cell Biol Res Commun. 1999; 2: 15-20.
- 32 Biagini GA, Viriyavejakul P, ONeill PM, Bray PG, Ward SA. Functional characterization and target validation of alternative complex I of *Plasmodium falciparum* mitochondrion. *Antimicrob Agents Chemother*. 2006; 50: 1841-51.
- 33 **Kobayashi T**, Sato S, Takamiya S, Komaki-Yasuda K, Yano K, Hirata A, *et al*. Mitochondria and apicoplast of *Plasmodium falciparum*: behaviour on subcellular fractionation and implication. *Mitochondrion*. 2007; 7: 125-32.
- 34 Vaidya AB, Mather MW. A post-genomic view of the mitochondrion in malaria parasites. Curr Top Microbiol Immunol. 2005; 295: 233-250.
- 35 Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007; 446: 88-91.
- 36 Krungkrai J, Cerami A, Henderson GB. Purification and characterization of dihydroorotate dehydrogenase from the rodent malaria parasite *Plasmodium berghei*. *Biochemistry*. 1991; 30: 1934-9.
- 37 Krungkrai J, Krungkrai SR, Phakanont K. Antimalarial activity of orotate analogs that inhibit dihydroorotase and dihydroorotate dehydrogenase. *Biochem Pharmacol*. 1992; 43: 1295-301.
- 38 Krungkrai J. Dihydroorotase and dihydroorotate dehydrogenase as a target for antimalarial drugs. *Drugs Fut.* 1993; 18: 441-50.
- 39 Krungkrai J, Prapunwattana P, Wichitkul C, Reungprapavut S, Krungkrai SR, Horii T. Molecular biology and biochemistry of malarial parasite pyrimidine biosynthetic pathway. Southeast Asian J Trop Med Pub Health. 2003; 34(S2): 32-42.
- 40 Krungkrai J. Structure and function of mitochondria in human malarial pathogen *Plasmodium falciparum*. Trends Comp Biochem Physiol. 2000; 6: 95-107.
- 41 Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. *Parasitology*. 2004; 129: 511-24.
- 42 van Dooran GG, Stimmler LM, McFadden GI. Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev. 2006; 30: 596-630.
- Ifediba T, Vanderberg JP. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature. 1981; 294: 364-6.
- 44 Takashima E, Takamiya S, Takeo S, Mi-ichi F, Amino H, Kita K. Isolation of mitochondria from *Plasmodium falciparum* showing dihydroorotate dependent respiration. *Parasitol Int.* 2001; 50: 273-8.
- 45 Perkins GA, Frey TG. Recent structure insight into mito-chondria gained by microscopy. *Micron*. 2000; 31: 97-111
- 46 Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002; 419: 520-6.
- 47 Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003;

Asian Pac J Trop Med 2008; 1(1):31-49

301: 1503-8.

- 48 LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature. 2005; 438: 103-7.
- 49 Suthram S, Sittler T, Ideker T. The Plasmodium protein network diverges from those of other eukaroytes. *Nature*. 2005; 438: 108-12.
- 50 Date SV, Stoeckert Jr CJ. Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res. 2006; 16: 542-9.
- 51 Hall N, Karras M, Raine JD, Carlton JM, Kooij TWA, Berriman M, et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science. 2005; 307: 82-6.
- 52 Siddall ME, Desser SS. Ultrastructure of gametogenesis and sporogony of Haemogregarina (sensu lato) myoxocephali (Apicomplexa: Adeleina) in the marine leech *Malmiana scorpii*. J Protozool. 1992; 39: 545-54.
- 53 Feagin J. The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol. 1992; 52: 145-8.
- McIntosh MT, Srivastava R, Vaidya AB. Divergent evolutionary constraints on mitochondrial and nuclear genomes of malaria parasites. *Mol Biochem Parasitol*. 1998; 95: 69-80.
- 55 Creasey AM, Ranford-Cartwright LC, Moore DJ, Williamson DH, Wilson RJM, Walliker D, et al. Uniparental inheritance of the mitochondrial gene cytochrome b in Plasmodium falciparum. Curr Genet. 1993; 23: 360-4.
- 56 Conway DJ, Fanello C, Lloyd JM, Al-Joubori BMAS, Baloch AH, Somanath SD, et al. Origin of Plasmodium falciparum malaria is traced by mitochondrial DNA. Mol Biochem Parasitol. 2000; 111: 163-71.
- 57 Volkman SK, Sabeti PC, DeCaprio D, Neafsey DE, Schaffner SF, Milner Jr. DA. A genome-wide map of diversity in *Plasmodium falciparum*. Nat Genet. 2007; 39: 113-9.
- 58 Jeffares DC, Pain A, Berry A, Cox AV, Stalker J, Ingle CE, et al. Genome variation and evolution of the malaria parasite Plasmodium falciparum. Nat Genet. 2007; 39: 120-5.
- 59 Ullu E, Tschudi C, Chakraborty T. RNA interference in protozoan parasites. Cell Microbiol. 2004; 6: 509-19.
- 60 Gunasekera AM, Patankar S, Schug J, Eisen G, Kissinger J, Roos D, et al. Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Mol Biochem Parasitol. 2004; 136: 35-42.
- 61 Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002; 419: 498-511.
- 62 Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G. Properties and prediction of mitochondrial transit peptides from *Plasmodium falciparum*. Mol Biochem Parasitol. 2003; 132: 59-66.
- 63 Bozdech Z, Linas M, Pulliam BL, Wong ED, Zhu J, De-Risi JL. The transcriptome of the intraerytrocytic developmental cycle of *Plasmodium falciparum*. *PLOS Biol*. 2003;

- 1: E5.
- 64 Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, et al. A green algal apicoplast ancestor. Science. 2002; 298: 2155.
- 65 Perez-Martinez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d'Alayer J, et al. Subunit II of cytochrome c oxidase in *Chlamydomonad algae* is a heterodimer encoded by two independent nuclear genes. *J Biol Chem*. 2001; 276: 11302-9.
- 66 Preiser PR, Wilson RJ, Moore PW, McCready S, Hajibagheri MA, Blight KJ, et al. Recombination associated with replication of malarial mitochondrial DNA. EMBO J. 1996; 15: 684-93.
- 67 Wesseling JG, Dirks R, Smits MA, Schoenmakers JGG. Nucleotide sequence and expression of a beta-tubulin gene from *Plasmodium falciparum*. Gene. 1989; 83: 301-9.
- 68 Waters AP, van Spaendonk RM, Ramesar J, Vervenne RA, Dirks RW, Thompson J, et al. Species-specific regulation and switching of transcription between stage-specific ribosomal RNA genes in Plasmodium berghei. J Biol Chem. 1997; 272: 3583-9.
- 69 Carter R, Graves PM, Creasey A, Byrne K, Read D, Alano P, et al. Plasmodium falciparum: an abundant stagespecific protein expressed during early gametocyte development. Exp Parasitol. 1989; 69: 140-9.
- 70 Sharma A, Sharma I, Kogkasuriyachai D, Kumar N. Structure of a gametocyte protein essential for sexual development in *Plasmodium falciparum*. *Nature Struct Biol*. 2003; 10: 197-203.
- 71 Nisoli E, Clementi E, Moncada S, Carruba MO. Mitochondrial biogenesis as a cellular signaling framework. *Bio*chem Pharmacol. 2004; 67: 1-15.
- 72 Dorin D, Alano P, Boccaccio I, Ciceron L, Doerig C, Sulpice R, et al. An atypical mitogen-activated protein kinase (MAPK) homologue expressed in gametocytes of the human malaria parasite Plasmodium falciparum: identification of a MAPK significance. J Biol Chem. 1999; 274: 29912-20.
- 73 Scheibel LW. Plasmodial metabolism: carbohydrate. In: Wernsdorfer WH, McGregor I, editors. Malaria I. New York: Churchill Livingstone. 1988: 171-217.
- 74 Krungkrai J, Kanchanarithisak R, Krungkrai SR, Rochanakij S. Mitochondrial NADH dehydrogenase fro *Plasmodium falciparum* and *Plasmodium berghei*. Exp Parasitol. 2002; 100: 54-61.
- Murphy AD, Doeller JE, Hearn B, Lang-Unnasch N. Plasmodium falciparum: cyanide-resistant oxygen consumption. Exp Parasitol. 1997; 87: 112-20.
- 76 Suraveratum N, Krungkrai S, Learngaramkul P, Prapunwattana P, Krungkrai J. Purification and characterization of Plasmodium falciparum succinate dehydrogenase. Mol Biochem Parasitol. 2000; 105: 215-22.
- 77 Ulschmid JK, Rahlfs S, Schirmer RH, Becker K. Adenylate kinase and GTP: AMP phosphotransferase of the malarial parasite *Plasmodium falciparum* central players in cellular energy metabolism. *Mol Biochem Parasitol*. 2004; 136: 221-30.
- 78 Uyemura SA, Luo S, Moreno SNJ, Docampo R. Oxidative

- phosphorylation, Ca²⁺ transport, and fatty acid-induced uncoupling in malaria parasites mitochondria. *J Biol Chem.* 2000: **275**: 9709-15.
- 79 Uyemura SA, Luo S, Vieira M, Moreno SN, Docampo R. Oxidative phosphorylation and rotenone-insensitive malate-and NADH-quinone oxidoreductases in *Plasmodium yoelii* yoelii mitochondria in situ. J Biol Chem. 2004; 279: 385-93.
- 80 Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985; 54: 1015-69.
- 81 Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem. 2003; 72: 77-109.
- 82 Grigorieff N. Structure of the respiratory NADH: ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol. 1999; 9: 476-83.
- 83 Evans DE, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. *J Biol Chem.* 2004; 279: 33035-8.
- 84 Krungkrai J, Cerami A, Henderson GB. Pyrimidine biosynthesis in parasitic protozoa: purification of a monofunctional dihydroorotase from *Plasmodium berghei* and *Crithidia* fasciculata. Biochemistry. 1990; 29: 6270-5.
- 85 Krungkrai SR, Wutipraditkul N, Krungkrai J. Dihydroorotase of human malarial parasite *Plasmodium falciparum* differs from host enzyme. *Biochem Biophys Res Commun*. 2008; 366: 821-6.
- 86 Krungkrai SR, DelFraino BJ, Smiley JA, Prapunwattana P, Mitamura M, Horii T, et al. A novel enzyme complex of orotate phosphoribosyltransferase and orotidine 5-monophosphate decarboxylase in human malaria parasite Plasmodium falciparum: physical association, kinetics and inhibition characterization. Biochemistry. 2005; 44: 1643-52.
- 87 Srivastava IK, Rottenberg H, Vaidya AB. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. *J Biol Chem*. 1997; 272: 3961-6.
- 88 Fleck SL, Pudney M, Sinden RE. The effect of atovaquone (566C80) on the maturation and viability of *Plasmo*dium falciparum gametocytes in vitro. Trans Roy Soc Trop Med. 1996; 90: 309-12.
- 89 Vaidya AB, Lashgari MS, Pologe LG, Morrisey J. Structural features of Plasmodium cytochrome b that may underline susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. *Mol Biochem Parasitol*. 1993; 58: 33-42.
- 90 Zhao Y, Hanton WK, Lee KH. Antimalarial agents, 2. Artesunate, an inhibitor of cytochrome oxidase activity in Plasmodium berghei. J Nat Prod. 1986; 49: 139-42.
- 91 **Eckstein-Ludwig U**, Webb RJ, Van goethem ID, East JM, Lee AG, Kimura M, *et al.* Artemisinins target SER-CA of *Plasmodium falciparum*. *Nature*. 2003; **424**: 957-61.112.
- 92 Divo AA, Geary TG, Jensen JB, Ginsburg H. The mito-chondrion of *Plasmodium falciparum* visualized by rhodamine 123 fluorescence. *J Protozool*. 1985; 32: 442-6.
- 93 Sato S, Rangachari K, Wilson RJM. Targeting GFP to the malarial mitochondrion. *Mol Biochem Parasitol*. 2003; 130: 155-8.
- 94 Sato S, Clough B, Coates L, Wilson RJM. Enzymes for

- heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite *Plasmodium falciparum*. *Protist.* 2004: **155**: 117-25.
- 95 Sato S, Wilson RJM. The use of DsRED in single- and dual-color fluorescence labeling of mitochondrial and plastid organelles in *Plasmodium falciparum*. Mol Biochem Parasitol. . 2004; 134: 175-9.
- 96 Sato S, Wilson RJM. Organelle-specific cochaperonins in apicomplexan parasites. *Mol Biochem Parasitol*. 2005; 141: 133-43.
- 97 Tonkin CJ, van Dooran, GG, Spurck TM, Struck NS, Good RT, Handman E, et al. Localization of o. rganellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol Biochem Parasitol. 2004; 137: 13-21.
- 98 **Rutter GA**, Rizzuto R. Regulation of mitochondrial metabolism by ER Ca²⁺ release: an intimate connection. *Trends Biochem Sci.* 2000; **25**: 215-21.
- 99 Gazarini ML, Garcia CR. The malaria parasite mitochondrion senses cytosolic Ca²⁺ fluctuations. *Biochem Biophys Res Commun.* 2004; 321: 138-44.
- 100 Krungkrai J. Malarial dihydroorotate dehydrogenase mediates superoxide radical production. *Biochem Int.* 1991; 24: 833-9.
- 101 Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H. Oxidative stress in malaria-infected erythrocytes: host-parasite interactions. *Int J Parasitol*. 2004; 34: 163-89.
- 102 Sienkiewicz N, Daher W, Dive D, Wrenger C, Viscogliosi E, Wintjens R, et al. Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol Biochem Parasitol. 2004; 137: 121-32.
- 103 Fridovich I. Superoxide radical and superoxide dismutase. Annu Rev Biochem. 1995; 64: 97-112.
- Tielens AGM, Rotte C, van Hellemond JJ, Martin W. Mitochondria as we don't know them. *Trends Biochem Sci.* 2002; 27: 564-72.
- 105 Chan M, Sim TS. Recombinant Plasmodium falciparum NADP-dependent isocitrate dehydrogenase is active and harbors a unique 26 amino acid tail. Exp Parasitol. 2003; 103: 120-6.
- 106 Wrenger C, Muller S. The human parasite *Plasmodium falciparum* has distinct organelle-specific lipoylation pathways. *Mol Microbiol*. 2004; 53: 103-13.
- 107 Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum. Biochim Biophys Acta. 2002; 1553: 123-39.
- 108 Luttik MAH, Overkamp KM, Kotter P, de Vries S, van Dijken JP, Pronk JT. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenase catalyzing the oxidation of cytosolic NADH. J Biol Chem. 1998; 273: 24529-34.
- Fang J, Beattie DS. Novel FMN-containing rotenone-insensitive NADH dehydrogenase from *Trypanosoma brucei* mitochondria: isolation and characterization. *Biochemis*try. 2002; 41: 3065-72.
- 110 Fisher N, Bray PG, Ward SA, Biagini GA. The malaria

Asian Pac J Trop Med 2008; 1(1): 31-49

- parasite type II NADH: quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. *Trends Parasitol.* 2007: **23**: 305-10.
- 111 Kessl JJ, Lange BB, Merbitz-Zahradnik T, Zwicker K, Hill P, Meunier R, et al. Molecular basis for atovaquone binding to the cytochrome bc1 complex. J Biol Chem. 2003; 278: 31312-8.
- 112 **de Macedo CS**, Uhrig ML, Kimura EA, Katzin AM. Characterization of the isoprenoid chain of coenzyme Q in *Plasmodium falciparum*. *FEMS Microbiol Lett*. 2002; **207**: 13-20.
- 113 Tropical Disease Research. Thirteenth programme report: progress 1995-1996. Geneva: World Health Organization. 1997.
- 114 Kaneshiro ES, Sul D, Hazra B. Effects of atovaquone and diospyrin-based drugs on ubiquinone biosynthesis in Pneumocystis carinii organisms. Antimicrob Agents Chemother. 2000; 44: 14-8.
- 115 Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J. Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med. 1998; 64: 237-41.
- Ravichandran V, Vasquez GB, Srivastava S, Verma M, Petricoin E, Lubell J, et al. Data standards for proteomics: mitochondrial two-dimensional polyacrylamide gel electropho-resis data as a model system. Mitochondrion. 2004; 3: 327-36.
- 117 Przyborski JM, Lanzer M. Protein transport and trafficking in Plasmodium falciparum-infected erythrocytes. Parasitology. 2005; 130: 1-16.
- 118 LeBlanc SB, Wilson CM. The dihydroorotate dehydrogenase gene homologue of *Plasmodium falciparum*. Mol Biochem Parasitol. 1993; 60: 349-52.
- Macasev D, Whelan J, Newbigin E, Silva-Filho MC, Mulhern TD, Lighgow T. Tom22′, an 8 kDa trans-site receptor in plants and protozoans, is a conserved feature of the TOM complex that appeared early in the evolution of eukaryotes. *Mol Biol Evol*. 2004; 21: 1557-64.
- 120 Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, et al. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science. 2003; 299: 705-8.
- 121 McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastids in human parasites. *Nature*. 1996; 381: 482.
- 122 Surolia N, Surolia A. Tricosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of *Plasmodium falciparum*. Nat Med. 2001; 7: 167-73.
- 123 Wilson RJM. Progress with parasite plastids. *J Mol Biol*. 2002; **319**: 257-74.
- 124 Seow F, Sato, S, Janssen CS, Riehle MO, Mukho-

- padhyay A, Phillips, RS, et al. The plastidic DNA replication complex of *Plasmodium falciparum*. Mol Biochem Parasitol. 2005: **141**: 145-53.
- 125 Ralph SA, van Dooran GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, et al. Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol. 2004; 2: 203-16.
- 126 McMillan PJ, Stimmler LM, Foth BJ, McFadden GI, Muller S. The human malaria parasite *Plasmodium falci*parum possesses two distinct dihydrolipoamide dehydrogenases. *Mol Microbiol*. 2005; 55: 27-38.
- 127 Foth BJ, Stimmer LM, Handman E, Crabb BS, Hodder AN, McFadden GI. The malaria parasite *Plasmodium falciparum* has only one pyruvate dehydrogenase complex, which is located in the apicoplast. *Mol Microbiol*. 2005; 55: 39-53.
- 128 Ralph SA. Strange organelle-Plasmodium mitochondria lack a pyruvate dehydrogenase complex. Mol Microbiol. 2005; 55; 1-4.
- 129 **Bonday ZQ**, Dhanasekaran S, Rangarajan PN, Padmanaban G. Import of host δ-aminolevulinate dehydratse into the malarial parasite: identification of a new drug target. *Nat Med.* 2000; **6**: 898-903.
- 130 Dhanasekaran S, Chandra NR, Sagar BKC, Rangarajan PN, Padmanaban G. δ-aminolevulinic acid dehydratase from *Plasmodium falciparum* indigenous vs imported. *J Biol Chem.* 2004; 279: 6934-42.
- Mueller JK, Andreoli C, Prokisch H, Meitinger T. Mechanisms for multiple intracellular localization of human mitochondrial proteins. *Mitochondrion*. 2004; 3: 315-25.
- 132 **Hopkins J**, Fowler R, Krishna S, Wilson I, Mitchell G, Bannister L. The plastid in *Plasmodium falciparum* asexual blood stages: a three-dimensional ultrastructural analysis. *Protist.* 1999; **150**: 283-9.
- 133 **Escalante AA**, Freeland DE, Collins WE, Lal AA. The evolution of primate malaria based on the gene encoding cytochrome b from the linear mitochondrial genome. *Proc Natl Acad Sci USA*. 1998; **95**: 8124-9.
- 134 Scheffler IE. A century of mitochondrial research: achievements and perspectives. *Mitochondrion*. 2000; 1: 3-31
- 135 **Frey TG**, Mannella CA. The internal structure of mitochondria. *Trends Biochem Sci.* 2000; **25**: 319-24.
- 136 Heikkila T, Ramsey C, Davies M, Galtier C, Stead AMW, Johnson AP, et al. Design and synthesis of potent inhibitors of the malaria parasite dihydroorotate dehydrogenase. J Med Chem. 2007; 50: 186-91.

Biochemistry Research in Thailand: Present Status and Foresight Studies

Jerapan Krungkraia*, Aran Incharoensakdib and Sumalee Tungpradabkulc

- ^a Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
- ^b Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- ^c Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- * Corresponding author, E-mail: fmedjkk@md.chula.ac.th

ABSTRACT: Here, we present the status of biochemistry in Thai universities in many aspects such as departmental infrastructures, academic staffs, budgets for academic and research affairs, research activities including publications, mapping and directions, and finally foresight and policy prospects. This study provides a linkage of personnel and research activities, and lends further insights into the capability of Thai biochemists in terms of the publication in high impact journals. The data indicated that the average impact factor of the journal published by Thai biochemists was comparable to the average impact factor of the journals listed in biochemistry and molecular biology category in the Institute for Scientific Information-Web of Science (ISI-WOS). We hope that this study may serve as a model for other disciplines of science and technology in Thailand and help to enhance the capability of Thai researchers.

KEYWORDS: Thailand Biochemistry, Publications, Research mapping, Policy, Foresight.

INTRODUCTION

Biochemistry is a cross-discipline integrating chemistry and life in our world. The subject is linked to various biological sciences, e.g., medicine, paramedicine (e.g., pharmaceutical sciences, dentistry, veterinary medicine, medical technology, nurse, public health, etc.), agriculture, and also to other natural sciences, as well as to industry. The development of biochemistry in Thai universities started with the establishment of the Department of Biochemistry at the Faculty of Science at Mahidol University to train graduate students in 1964. Five years later, the Department of Biochemistry at the Faculty of Science at Chulalongkorn University started offering a Bachelor of Science degree in biochemistry. All departments responsible for teaching biochemistry in faculties of medicine were originally formed in combination with the Department of Physiology. For example, the Department of Biochemistry at the Faculty of Medicine at Chulalongkorn University, was initially established in 1947 and became independent in 1964.

At present, there are 15 departments of biochemistry distributed among nine state universities. Interestingly, only five departments offer undergraduate curricula in biochemistry, whereas up to 10 departments train graduate students in biochemistry and related subjects, e.g., molecular biology, genetic engineering and bioinformatics. Exceptionally, only the Department of Chemistry at Chiang Mai University offers a Bachelor of Science in biochemistry program, which is taught by staff in

biochemistry. Although biochemistry research in Thailand originated more than 40 years ago as evidenced by the first biochemistry publication from Thailand in an international database in 1967 ¹, the status of academic and research activities are not known. To our knowledge, there are very few attempts to analyze research performance and publication status of the Thai scientists both internationally ²⁻⁴ and nationally ⁵⁻⁷.

Here, we present our findings on the survey and analysis of biochemistry status in Thai universities in many aspects such as infrastructure, personnel, budgets for academic and research affairs, research activities, as well as publications, research mapping and directions, and finally foresight and policy prospects. The impact of research publications on biochemistry by Thai biochemists is also compared to that in the ISI-WOS database under the same category. This communication is a part of the final report on foresight project on physical and biological sciences at state universities during the period of 1998-2004 8.

DEPARTMENTAL INFRASTRUCTURE OF BIOCHEMISTRY IN THAILAND

In the research project financially supported by Commission on Higher Education, Ministry of Education, we focused mainly on eight state universities. Among these eight universities, only one university had no Department of Biochemistry (Table 1). Totally, there are 13 departments of biochemistry in the Faculty of Science, Faculty of Medicine, Faculty of Pharmacy and

Table 1. Department of Biochemistry: infrastructure, academic staff and curricula in biochemistry and related subjects (data 2005).

University	Faculty	Department	ment Staff	Curriculum ¹		
<u> </u>				B.Sc.	M.Sc.	Ph.D
Chulalongkorn (CU)	Science	CU SCI	23	+	+	+
	Medicine	CU MED	10	-	+	-
	Pharmacy	CU PHARM	10	-	-	-
	Dentistry	CU DENT	6	-	-	-
Chiang Mai (CMU)	Science	NA^2	NA^2	+	-	-
	Medicine	CMU MED	19	-	+	+
Kasetsart (KU)	Science	KU SCI	11	+	+	+
Khon Kaen (KKU)	Science	KKU SCI	11	+	+	-
	Medicine	KKU MED	18	-	+	+
Mahidol (MU)	Science	MU SCI	21	-	+	+
	Medicine	MU MED	11	-	+	+
	Pharmacy	MU PHARM	5	-	-	-
Prince of Songklanakarin (PSU)	Science	PSU SCI	15	+	+	+
Suranaree University of Technology (SUT)	Science	NA^2		-	+	+
Srinakarinwirot (SWU)	Science	NA^2		-	-	-
	Medicine	SWU MED	8	-	+	+
Burapha (BU)	Science	ND^3		+	-	-
Naresuan (NU)	Medical Science	ND^3		-	+	+

^{1 +} and - indicate the existence and non-existence of the curriculum, respectively.

Faculty of Dentistry of seven universities, namely Chulalongkorn University (CU), Chiang Mai University (CMU), Kasetsart University (KU), Khon Kaen University (KKU), Mahidol University (MU), Prince of Songkla University (PSU) and Srinakarinwirot University (SWU). The only university that had no Department of Biochemistry is Suranaree University of Technology (SUT). There are also two Departments of Biochemistry which are not included in this research: at the Faculty of Science, Burapha University (BU) and Faculty of Medical Science, Naresuan University (NU).

Personnel: Number, Education, Academic Position and Age

From all 13 departments, there were 168 staff and 51% of these were at CU and MU. The percentage of their educational background can be described as follows: Ph.D. (77%), M.Sc. (20%), B.Sc. (1.5%) and Certificate or Medical Board (1.5%). Their academic positions were Professor (5%), Associate Professor (39%), Assistant Professor (24%) and Lecturer (32%). The personnel categorized as teaching staff with different age range were 21-35 years old (young or new generation, 20%), 36-50 years old (middle-age generation, 47%) and 51-65 years old (senior generation, 33%). Interestingly, an analysis of the number of staff among these three generations of age ranges yielded a normal distribution profile with the majority of staff in the age range 41-55 years old. Notably, two-thirds of staff in the CU departments were

of senior generation. It is also noted that academic staff with academic position of Assistant Professor and Lecturer constitute a major portion (56%) of the whole staff. Approximately 70% of the senior generation were Associate Professors, whereas 40% of the middle-age generation were Assistant Professors. Eighty five percent of the young generation were still Lecturers. Interestingly, 75% of both middle-age and senior generations were Ph.D. holders, whereas about 85% of the young generation were Ph.D.s. Despite the limited numbers in all departments, the academic staff had very good educational background with some having had postdoctoral training abroad. This is an important asset for strengthening the biochemical research and postgraduate study in these departments.

BUDGET FOR ACADEMIC AND RESEARCH AFFAIRS

The total budget and income from all departments of biochemistry in seven universities was valued at 162.54 million Baht for the period 1998-2004 and as average per person per year was valued at 153,000 Baht for expenses in teaching activities for bachelor degree, master degree and doctoral degree, both in the field of biochemistry and other related programs.

All Departments of Biochemistry received research funding from both the universities themselves and outside the university totaling 289 million Baht. This can be divided into 218 million Baht (external source) and 71 million Baht (internal source), i.e. the ratio of external source to internal source was 3:1. The

²Data are not available.

³BU and NU are not included in the research project.

average amount of research funding that faculty members from seven universities received externally and internally was 191,000 Baht and 61,800 Baht per person each year, respectively. It is worth mentioning that MU and CU received support from external research fund amounting to 61% of the research fund received by all seven universities. In particular, the Department of Biochemistry, Faculty of Science at MU ranked first in the amount of external research funding. The ability to obtain research funds, especially from external sources, is somewhat related to the productivity in terms of the number of publications, i.e. MU and CU contributed about 65% of total publications from all seven universities produced during the same period (see later section).

RESEARCH ACTIVITY: PAST RECORDS, PRESENT STATUS AND FORESIGHT

Research output

There were totally 323 research articles published by seven state universities (the ISI-WOS database, 1998-2004) or 93% of total publications from Department of Biochemistry in all universities nationwide (346 articles). MU had the highest number accounting for 1.6 fold of that from CU, the second-ranked in publication output. As a whole, each Thai biochemist published approximately 0.28 international research publications per year, which was double the number published by the physical science researchers ¹⁰. The first three Departments of Biochemistry having the highest productivity in terms of the number of research publications per person per year, were MU SCI, CU MED, KKU MED with values of 0.88, 0.53 and 0.40, respectively. With regard to the research funding mentioned in the previous section, the research expense for one paper to be published averaged about 900,000 Baht.

Research system and individual interests: strength and weakness of biochemistry in Thailand

Research in the field of biochemistry depends on the individual rather than on the system. There are some reasons/characteristics for the strength of biochemistry research in Thailand:

- (1). There was a very high percentage of faculty members with Ph.D. degree (77% of total faculty members in department of biochemistry). These Ph.D.s were also the most productive (0.34 article/person/year) compared to those without Ph.D. degree, i.e., M.Sc. (0.17 article/person/year) and B.Sc. (no productivity).
- (2). The middle-age generation of staff was the most productive (0.39 article/person/year) when compared to the senior (0.36 article/person/year) and young (0.05

article/person/year) generation staff. In addition, the number of middle-age generation staff represented about a half of the total staff.

- (3). Even though faculty members having Professor position represent only about 5 % of total members, they were the most productive (2.1 articles/person/year) compared to those having other academic positions, i.e. Associate Professor (0.9 article/person/year), Assistant Professor and Lecturer (0.36 article/person/year).
- (4). Thai biochemists published their papers in journals listed in the ISI-WOS database (1998-2004) with the average impact factor (IFa) of 2.141 which is comparable to the international standard using the ISI-WOS database (IFa = 2.292, an average for 261 journals in biochemistry and molecular biology discipline). Furthermore, these publications by Thai biochemists were cited on the average of 5.5 citations per article, and more importantly 37% of these papers were cited more than five times per article.
- (5). Up to 68% of total articles involved the cooperation of at least two institutes. Two institutional collaborators comprised 55%. Co-authorships with foreign universities accounted for 37%.
- (6). Most departments had Ph.D. curricula in biochemistry and related fields. This facilitates the production of critical mass of graduate students resulting in high output of publications.
- (7). The academic staff in some departments combine to form research units/centers, which can be upgraded to Center of Excellence. This is an effective strategy to produce high quality publications.
- (8). Biochemistry academic staff had high potential to obtain research funds from external organizations, including some prestigious overseas funding agencies such as Rockefeller Foundation, World Health Organization, NIH USA, and USAID, etc.
- (9). Four out of 37 outstanding scientists, announced by Foundation for the Promotion of Science and Technology under the Patronage of His Majesty the King during 1982-2007, are Thai biochemists belonging to one department ¹¹.

On the other hand, there are reasons/characteristics for the research weakness in our biochemistry community:

- (1). The number of faculty members having publications in journals listed in the ISI-WOS database (1998-2004) represented only 40% of total members. This means that the majority of our staff had no such publications, reflecting weak research performance in these departments.
- (2). Surprisingly, two-thirds of the research publications were from only nineteen academic staff, $\sin \sigma$ whom published ≥ 2 articles per person per year.

(3). The new generation staff, comprising 21% of total staff and having more percentage of Ph.D. background, produced only 5% of total publications in the ISI-WOS database (around 0.05 article per person each year).

These analyses indicate that the research strength and weakness in our biochemistry community relies upon individual interests. However, our study provides a linkage between strong academic staff and research activities, and lends further insights into the impact of Thai biochemists, which is comparable to the average impact of biochemistry and molecular biology category on the ISI-WOS database. In addition, the young generation should be encouraged to engage in active research with more publication output.

Research mapping and direction

As mentioned earlier, research depends on the individual Thai biochemist. Using the information on all publications, citations and particular keywords for mapping research areas, the top ten categories (% distribution) in research mapping were analyzed and found to be: (1) protein (23% of total papers), (2) human, (3) enzyme, (4) polymerase chain reaction, (5) cancer, (6) drugs, (7) liver, (8) malaria, (9) virus, (10) shrimp (7% of total papers). Analyzing the citations per paper in each category provides the impact or strength of each research map as shown in Table 2. Drugs, shrimp and malaria are the three top ranked research directions and areas of expertise for our Thai biochemistry community (Table 2).

In comparison with research publication topics in the Journal of Biological Chemistry (*J. Biol. Chem.*), the top ranked journal in biochemistry with the highest citations and number of publications in biochemistry and molecular biology category during 2002-2005 based on the Science Citation Index database⁹, the topics of publication are categorized as shown in Table 3¹². The top five ranks are summarized: (1) signal transduction, (2) membrane, (3) protein structure, (4)

Table 3. Research publication topics classified in *J. Biol. Chem.* during 2003-2005 (data updated in 2006).

Rank	Topics	%
1	Signal transduction	20
_	Membrane (transport, functions, structure, biogene	
3	Protein structure	13
4	Gene structure and regulation	10
5	Cell and Development Biology	9
6	Protein synthesis	7
6	Enzyme catalysis	7
7	DNA replication, repair, recombination	6
8	Metabolism and Bioenergetics	4
9	RNA structure, catalysis	3
9	Glycoprotein	3
10	Lipids	2
11	Genomics, proteomics, bioinformatics	1

gene structure and regulation, and (5) cell and development biology. The international topics and trend of researches here are not related to research mapping of biochemistry in Thailand found in the present study (Table 2).

Research foresight on production of publications

During the past 10 years, researches in Departments of Biochemistry have been published in international journals indexed by the PubMed MEDLINE and the ISI-WOS databases. Table 4 shows number of publications searched by name of academic staff and research work addressed by the Thai departments of biochemistry in the ISI database during 1998-2004. The productivity of research output is calculated as number of papers per person per year. It should be noted that the efficiency and the productivity increased about twice every 5 years.

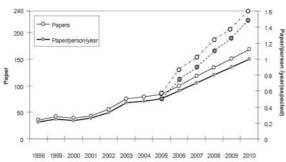

In the next 3-4 years, it can be expected that the productivity will be at least 150 articles per year published (Figure 1). This will enable, in 2007-2008, Departments of Biochemistry to publish 0.85-1 article per person per year, which is comparable to department

Table 2. Department of Biochemistry: research mapping, citations per paper of the top ten research category of articles published during 1998-2004 with 2,012 total citations (data updated in 2006).

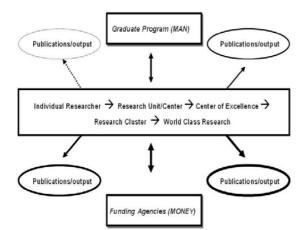

Rank	Citations per paper	Category	Papers	%of total papers	Citations	% of total citations
1	10.4	Drugs	45	12	467	23
2	9.5	Shrimp	26	7	247	12
3	9.1	Malaria	39	11	353	18
4	8.9	Virus	33	9	293	15
5	6.2	Enzyme	71	19	439	22
6	5.8	PCR	65	18	375	19
7	5.3	Protein	85	23	451	22
8	4.8	Liver	43	12	208	10
9	4.5	Human	72	20	321	16
10	3.8	Cancer	47	13	158	8

Table 4. Departments of Biochemistry: number of articles published during 1998-2005 in the SCI ISI database (data update on 2006) and the expected output during 2006-2010 (italic numbers).

Year	Papers	Paper/person/year		
1998	35	0.21		
1999	42	0.25		
2000	39	0.23		
2001	43	0.26		
2002	56	0.33		
2003	75	0.45		
2004	79	0.47		
2005	84	0.50		
2006	100	0.60		
2007	118	0.70		
2008	134	0.80		
2009	151	0.80		
2010	168	1.0		

Fig 1. Department of Biochemistry: research foresight on publications. Progressive curve illustrating the output rate (total papers/year) and the productivity rate (paper/person/year) of papers published during 1998-2010 by Department of Biochemistry, Thailand. Solid lines= the forecast; broken lines = the foresight.

Fig 2. Strategic planning for development of biochemistry research in Thailand: integration of academic staff, graduate training and financial support to world class research in the near future.

MU SCI. This expectation is also dependent on the trend of research funding which is expected to increase, i.e., the Thailand Research Fund ¹³, the Commission on Higher Education ¹⁴ etc. Based on the information in 2005-2006 revealing that currently, departments MU SCI, CUMED and KKU MED have published more than one article/person/year, the above expectation can be met. Moreover, unless there are some unforeseen factors such as a decrease in research funding and graduate students ¹⁵, it is anticipated that MU may have a rate of publication in 2009-2010 equal to 0.85-1.0 article/person/year.

RESEARCH: FUTURE DIRECTION AND POLICY

By making site-visits, interviewing the chairperson, researchers and other staff (having research activity or not) in all departments, making research mapping of areas and expertise, we overview the research direction and the strategic planning for the future of Biochemistry in Thailand, as shown in Figure 2.

The strategies will be achieved by having both more research funding 13,14 and more graduate students training/programs ^{14,15} than in the past. This will generate novel research output, both in terms of publications and patents, for national development in terms of academic-industry co-operation and also for international competitiveness. This will be strengthened by the impact of national researchers in the biological and medical sciences 16. In 2006, Thailand was ranked 46th (having 1,072 articles per year, ~0.13% of global publications) among selected 61 countries (mean = 11,788 articles per year), whereas Singapore was ranked 33rd (3,122 articles per year), being the first among the ASEAN countries. These results were ranked by the Institute for Management Development (IMD), Switzerland 17 which was obtained from the world competitiveness using number of scientific articles published by origin of author as an indicator, collected in year 2003 from the US National Science Foundation. USA was ranked at first in the world with 211,233 articles per year, accounting for ~25% of international publications. The results indicate that Thai researchers do not have high productivity, and have relatively low competitiveness in making contribution to scientific research.

CONCLUDING REMARKS

In general, Departments of Biochemistry in Thailand have high impact in research in some particular areas, e.g., drugs, protein, enzyme, etc., as measured by their individual publications in the ISI-WOS database. Publications by Thai biochemists have high impact comparable to the average impact factor of publication

in international journals of biochemistry and molecular biology category. There are many factors governing strength of their research; academic staff, graduate student training and funding support are predominant parameters. Weaknesses in research need further improvement with particular emphasis on more output from young generation staff. This study may serve as a model for other disciplines especially in science and technology.

ACKNOWLEDGEMENTS

We thank Thongchai Koobkokgrued for excellent technical assistance in the project. We also thank the Commission on Higher Education for financial support on the foresight project on physical and biological sciences at sixteen state universities in 2005-2006.

REFERENCES

- Whitaker JA, Fort EG, Vimokesant S, and Dinning JS. (1967) Hematologic response to vitamin E in the anemia associated with protein-calorie malnutrition. Am J Clin Nutr 20: 783-9.
- Ruenwongsa P, and Panijpan B. (1995) Science and technology publications of state universities in Thailand. J Sci Soc Thailand 21: 207-14.
- Sombatsompop N, Kositchaiyong A, Markpin T, and Inrit S. (2006) Scientific evaluations of citation quality of international research articles in the SCI database: Thailand case study. Scientometrics 66: 521-35.
- Svasti J and Asavisanu R. (2006) Update on Thai publications in ISI databases (1999-2005). ScienceAsia 32: 101-6.
- Chulavatnatol M. (1979) A survey of research in reproductive sciences in Thailand. J Sci Soc Thailand 5: 4-10
- Sombatsompop N, Ratchatahirun P, Surathanasakul V, Premkamolnetr N and Markpin T. (2002) A citation report for Thai academic journals published during 1996-2000. Scientometrics 55: 445-62.
- Svasti J, and Asavisanu R. (2007) Aspects of quality in academic journals: a consideration of the journals published in Thailand. ScienceAsia 33: 37-43.
- 8. Hannongbua S, et al. (2006) Final report on foresight project on physical and biological sciences at sixteen state universities: case studies in faculty of agriculture, faculty of medicine, faculty of science, and department of biochemistry, Bangkok. The Commission on Higher Education. (in Thai)
- The Thomson ISI Web of Science (ISI-WOS) databases, the Institute of Scientific Information, http://www.isiknowledge.com/. Retrieved on January 3-26, 2006 and December 21-22, 2007.
- Hannongbua S, et al. (2005) Final report on foresight project on physical sciences at eight state universities, Bangkok. The Thailand Research Fund and the Thailand Academy of Science and Technology. (in Thai)
- Kritayakirana K. (2007) Promoting basic science in Thailand: Foundation for the Promotion of Science and Technology under the Patronage of His Majesty the King. ScienceAsia 33(Suppl 1): 5-7.
- The Journal of Biological Chemistry, the American Chemical Society, http://www.jbc.org/. Retrieved on January 22-26, 2006.
- 13. Boonsaeng V, and Sobhon P. (2007) Funding policy and

- strategies for basic research by academic division of the Thailand Research Fund. *ScienceAsia* **33(Suppl 1)**: 9-15.
- The Strategic Consortia for Research Scholarships Program, the Commission on Higher Education, Ministry of Education, http://www.research.mua.go.th/. Retrieved on December 22, 2007.
- Svasti M. R. J. (2007) Graduate training, research and excellence: viewpoint from Mahidol University. *ScienceAsia* 33: 253-6.
- 16. Krungkrai J, Incharoensakdi A, and Tungpradabkul S. (2007) Final report on strategies for the development of the national scientific and technological research: national research system and its potential competitiveness, Bangkok. The National Research Council of Thailand. (in Thai)
- 17. IMD World Competitiveness Yearbook 2006.