

บทคัดย่อ

ความผิดปกติของโปรตีนแอนอ่อน ออกซิเจน-วัน ชนิดที่พบในไต (kidney anion exchanger 1 หรือ kAE1) อันเนื่องมาจากการถ่ายพันธุ์ของยีน AE1 (หรือยีน SLC4A1) ทำให้เกิดโรคได้ผิดปกติในการขับกรด (distal renal tubular acidosis) ผู้ป่วยโรคนี้มีสภาวะเป็นกรดในร่างกาย เมื่อจากไตไม่สามารถขับกรดออกทางปัสสาวะได้จากผลการทดลองในเซลล์เพาะเลี้ยงชนิดที่ทำให้เกิดข้าว (polarized cultured cells) พบว่า ในขณะที่โปรตีนปกติสามารถจะเคลื่อนข้ายไปอยู่ที่ส่วนฐานของเยื่อหุ้มของเซลล์ (basolateral membrane) โปรตีนที่ผิดปกติกันถูกเคลื่อนข้ายของโปรตีน kAE1 หรือตัวบ่งชี้ว่าความล้มเหลวในการเคลื่อนข้ายของโปรตีนชนิดนี้ เกิดขึ้นได้อย่างไร ขึ้นไม่มีใครทราบ การเคลื่อนข้ายของยีนที่ต้องของโปรตีน kAE1 อาจจะจำเป็นต้องอาศัยส่วนทึ่งที่อยู่ทางด้านปลายอะมิโน (amino terminus) และปลายคาร์บอคซิล (carboxyl terminus) ของโปรตีน การเข้าใจกระบวนการเคลื่อนข้ายของโปรตีน kAE1 มีความจำเป็นจะต้องรู้ว่าโปรตีนจะไปรบกับที่มีปฏิสัมพันธ์กับโปรตีน kAE1 คณผู้วิจัยจึงใช้วิธีสต์ทู-ไชบริต (yeast two-hybrid method) ในการตรวจสอบเพื่อค้นหาโปรตีนจากไทด์มนุษย์ที่จับกับโปรตีน kAE1 (kAE1-binding protein หรือ kAE1-BP) โดยใช้ส่วนของโปรตีน kAE1 ทางด้านปลายอะมิโน (amino terminus) และปลายคาร์บอคซิล (carboxyl terminus) ซึ่งมีกรดอะมิโนจำนวน 338 และ 36 ตัว เป็นเหยื่อ (bait) เพื่อใช้จับกับโปรตีนที่ได้มาจากซี-ดีเอ็นเอ (cDNA) ซึ่งเตรียมมาจากไทด์มนุษย์ ลำดับนิวคลีโอไทด์ส่วนหนึ่งของซี-ดีเอ็นเอของโปรตีนที่ได้ ถูกนำมาใช้ในการในการค้นหาลำดับนิวคลีโอไทด์ของซี-ดีเอ็นเอที่สมบูรณ์และชนิดของโปรตีนในฐานข้อมูล NCBI GenBank และฐานข้อมูล EMBL โดยวิธี BLAST search จากการทดลองพบว่ามีโปรตีนหลายชนิดสามารถจับได้กับรีเวนปลายทึ่งสองของโปรตีน kAE1 จากข้อพิจารณาด้านหน้าที่ของโปรตีนและข้อพิจารณาทางเทคนิค โปรตีน integrin-linked kinase (ILK) และ adaptor protein subunit mu1A (AP1mu1A) ได้ถูกคัดเลือกและนำมาศึกษาในเซลล์ชนิด human embryonic kidney (HEK 293) เพื่อยืนยันว่ามีปฏิสัมพันธ์กับโปรตีน kAE1 และหาความสำคัญทางชีววิทยาด้วยวิธีต่างๆ ได้แก่ co-immunoprecipitation, affinity co-purification, immunofluorescence staining และ cell surface biotinylation ผลการทดลองแสดงให้เห็นว่าโปรตีน kAE1 สามารถจะถูกตัดก่อนและถูกแยกร่วมกับ ILK และ AP1mu1 และพบว่าปราภูมิอยู่ด้วยกันที่ผิวเซลล์ การศึกษาโดยวิธี flow cytometry พบว่าการแสดงออกของโปรตีน AP1mu1A ไม่มีผลต่อการปราภูมิของโปรตีน kAE1 ที่ผิวเซลล์ ในขณะที่การศึกษาด้วยวิธี cell surface biotinylation แสดงให้เห็นว่า ILK ช่วยให้โปรตีน kAE1 ปราภูมิผิวเซลล์ และ ILK ยังช่วยเพิ่มการแลกเปลี่ยนคลอโรค์และไบคาร์บอเนต ($\text{Cl}^-/\text{HCO}_3^-$) ของ kAE1 อีกด้วย ผลการศึกษาต่อมาแสดงให้เห็นว่าโปรตีน ILK ช่วยให้โปรตีน kAE1 ปราภูมิที่ผิวเซลล์โดยการรวมตัวเป็นกลุ่ม (complex) กับโปรตีนชนิดอื่น ได้แก่ kAE1-paxillin-actopaxin ซึ่งช่วยชื่อม kAE1 กับโปรตีนอีกตินโครงสร้างของเซลล์ (actin cytoskeleton) ข้อมูลที่ได้แสดงว่าโปรตีน ILK เป็นตัวชี้ว่าอย่างระหว่างโปรตีน kAE1 และโปรตีนอีกตินโครงสร้าง ซึ่งจะช่วยทำให้โปรตีน kAE1 อยู่สภาวะเสถียรและปราภูมิเพิ่มขึ้นที่ผิวเซลล์

Abstract

Defect of human kidney anion ($\text{Cl}^-/\text{HCO}_3^-$) exchanger 1 (kAE1) protein caused by mutations of *AE1* (*SLC4A1*) gene results in a human kidney disease – distal renal tubular acidosis (dRTA), characterized by metabolic acidosis due to defective acid secretion in the distal nephron. While the wild-type kAE1 is normally located at the basolateral membrane of polarized cultured cells, the mutant proteins exhibited intracellular retention or apical mis-targeting. There is as yet no information as to the proteins involved in kAE1 trafficking process nor is there any indication as to how this process fails. The correct trafficking of kAE1 may require both of its amino- (N) and carboxy- (C) terminal regions. To understand the regulation of kAE1 trafficking process, it is necessary to identify the proteins that interact with it. Yeast two-hybrid (Y2H) system was thus employed to screen for kAE1-binding proteins (kAE1-BP) from human kidney cDNA library by using both N- and C-terminal regions of human kAE1, consisting of 338 and 36 amino acids, respectively, as baits. The partial sequences of prey-cDNAs obtained from the screening and sequencing were analyzed with homology BLAST search for full-length cDNA and proteins in the NCBI GenBank and EMBL databases. Many putative kAE1-BPs of both termini have been identified. From functional and technical consideration, integrin-linked kinase (ILK) and adaptor protein subunit mu1A (AP1mu1A) were selected for investigation in human embryonic kidney (HEK 293) cells to confirm their interaction with kAE1 and to understand their biological significance by using co-immunoprecipitation, affinity co-purification, immunofluorescence staining, and cell surface biotinylation methods. The results showed that kAE1 co-precipitated and co-purified with ILK or AP1mu1 as well as co-localized with either protein at the cell surface. The effect of AP1mu1A over expression on cell surface expression of kAE1 was examined by flow cytometry, showing that AP1mu1A did not affect to kAE1 expression at the cell surface, whereas cell surface biotinylation result showed that ILK promoted cell surface expression of kAE1 and it also enhanced $\text{Cl}^-/\text{HCO}_3^-$ transport activity of kAE1. Further investigation found that ILK promoted kAE1 expression at the cell surface in HEK 293 cells by forming a kAE1-ILK-paxillin-actopaxin complex linking kAE1 to the actin cytoskeleton. These experimental data demonstrate that ILK provides a linkage between kAE1 and the underlying actin cytoskeleton to stabilize kAE1 at the plasma membrane, resulting in the higher level of cell surface expression.

Keyword: kindey anion exchanger 1 (kAE1), distal renal tubular acidosis (dRTA), yeast two-hybrid (Y2H), kAE1-binding proteins (kAE1-BP), integrin-linked kinase (ILK), adaptor protein subunit mu1A (AP-1 mu1A)