

บทคัดย่อ

งานวิจัยเรื่องนี้ศึกษาปฏิกิริยาการถ่ายโอนโปรตอนซึ่งเกิดขึ้นที่หมู่กรดซัลฟอนิก (sulfonic acid group) ในแนฟิอ่อน (Nafion[®]) โดยใช้วิธีทางทฤษฎีและสารเชิงซ้อนที่เกิดจากกรดทริฟลิก ($\text{CF}_3\text{SO}_3\text{H}$) อิโอนไฮโคลนีียม (H_3O^+) และ H_2O เป็นแบบจำลอง การศึกษาเริ่มจากการค้นหาสารตั้งต้น (precursor) และสารเชิงซ้อนแทรนซิชัน (transition complex) ที่เป็นไปได้ในระดับไฮเดรชันต์ๆ โดยใช้แบบจำลองเทสท์พาร์ทิคิล (Test-particle model; T-model) ทฤษฎีฟังก์ชันน์ดความหนาแน่น (Density Functional Theory; DFT) และการคำนวณแบบบินิชิโอ (ab initio calculations) จากนั้น นำสารตั้งต้นและสารเชิงซ้อนแทรนซิชันที่คำนวณได้ ไปเป็นโครงแบบเริ่มต้นในการจำลองโมเลกุลพลวัตบอร์น-อพเพนไฮเมอร์ (Born-Oppenheimer Molecular Dynamics simulation; BOMD) ที่อุณหภูมิ 298 K โดยนำปฏิกิริยานุคลaan (elementary reactions) ไปวิเคราะห์และจัดกลุ่ม สำหรับสารเชิงซ้อน $\text{H}_3\text{O}^+ \text{-} \text{H}_2\text{O}$ การจำลอง BOMD แสดงว่ามีสมดุลพลวัตประหนึ่ง (quasi-dynamic equilibrium) ระหว่างสารเชิงซ้อนชุนเดล (Zundel complex; H_5O_2^+) และสารเชิงซ้อนไอเกน (Eigen complex; H_9O_4^+) ซึ่งพิจารณาว่าเป็นปฏิกิริยานุคลaanที่สำคัญที่สุดในการบวนการถ่ายโอนโปรตอน และอายุเฉลี่ย (average life time) ของ H_3O^+ ที่คำนวณได้ มีค่าใกล้เคียงกับค่าต่ำสุดที่วัดจากสเปกไทรัสโคปิกการสั่น (vibrational spectroscopy) ที่ความถี่ต่ำ ผลการวิจัยแสดงว่าปฏิกิริยาการถ่ายโอนโปรตอนที่ $-\text{SO}_3\text{H}$ เกิดไม่พร้อมกัน (concerted) เนื่องจากการกระเพื่อมของพลังงานความร้อนและการมีสมดุลพลวัตประหนึ่งแบบต่างๆ ทั้งนี้ $-\text{SO}_3\text{H}$ สามารถมีส่วนร่วมในปฏิกิริยาการถ่ายโอนโปรตอนได้ทั้งทางตรงและทางอ้อม โดยสามารถกระตุ้นให้เกิดตำแหน่งโปรตอน (proton defect) สารเชิงซ้อนแทรนซิชัน $-\text{SO}_3^-$ และ SO_3H_2^+

คำสำคัญ: แนฟิอ่อน กรดทริฟลิก การถ่ายโอนโปรตอน การจำลองโมเลกุลพลวัต

Abstract

Proton transfer reactions at the sulfonic acid groups in Nafion[®] were theoretically studied, using complexes formed from triflic acid (CF₃SO₃H), H₃O⁺ and H₂O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the Test-particle model ([T-Model](#)), Density Functional Theory ([DFT](#)) and *ab initio* calculations. They were employed as starting configurations in Born-Oppenheimer Molecular Dynamics ([BOMD](#)) simulations at [298](#) K, from which elementary reactions were analyzed and categorized. For the H₃O⁺ - H₂O complexes, [BOMD](#) simulations suggested that, a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and considered to be one of the most important elementary reactions in proton transfer process. The average life time of H₃O⁺ obtained from [BOMD](#) simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO₃H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO₃H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO₃⁻ and -SO₃H₂⁺ transition states.

keywords: Nafion[®], triflic acid, proton transfer, MD simulations