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First principles calculations are carried to study the structural stability of SiC, GaN, InN, ZnO, and CdSe
which are found to transform from a fourfold coordinated wurtzite �WZ� structure under ambient conditions to
two different crystalline structures under loading of different triaxialities. Under hydrostatic compression,
transformation into a sixfold coordinated rocksalt �RS� structure occurs, and under uniaxial compression along
the �0001� direction and uniaxial tension along the �011̄0� crystalline direction �except SiC and GaN�, trans-
formation into a fivefold coordinated unbuckled wurtzite phase �HX� is observed. The lack of the WZ→HX

transformation for SiC and GaN under uniaxial tension along the �011̄0� direction is because for these two
materials the tensile stress required for the enthalpy of HX to become lower than the enthalpy of WZ is higher
than their corresponding ultimate tensile strength. Critical stress levels for the transformations are found to
depend on the formation energies of the WZ, HX, and RS structures which in turn are related to the ionicity of
each material. The transformations are a manifestation of the tension-compression response asymmetry of
these materials.
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I. INTRODUCTION

One-to-one binary compounds obeying the octet rule �i.e.,
I-VII, II-VI, III-V, or IV-IV materials� are generally semicon-
ductors or insulators. Although these type AB compounds
have the same chemical formula units, their crystal structures
under ambient conditions show significant variations with
bond ionicity. While highly ionic compounds such as CsCl
�I-VII� prefer dense crystal structures with a coordination
number of 8 �CN=8�, compounds such as NaCl �also I-VII�
with lower degrees of ionicity gravitate toward the rocksalt

�RS� structure �Fm3̄m space group� with CN=6. As the de-
gree of ionicity decreases �shifting toward covalent bonding
states�, compounds such as ZnO �II-VI�, GaN �III-V�, and
SiC �IV-IV� stabilize in wurtzite �WZ� �P63mc� structures
with CN=4. In such covalent compounds, the valence elec-
tron counting �two electrons in each bond� is satisfied
through the formation of four bonds for each atom. However,
in compounds with higher degrees of ionicity such as CsCl
and NaCl, the gain in cation-anion attractions leads to the
formation of structures with higher CN. Nevertheless, bond
ionicity should not be considered as the only factor in deter-
mining crystalline structures in such compounds since the
assumption of a particular structure also depends on intrinsic
factors such as composition, band structure, valence elec-
trons, bonding states, and structural symmetries. Extrinsic
factors such as loading and temperature also play significant
roles.
Calculations and experiments have been carried out to

study the structural stabilities of these materials. Over two
decades ago, first principles calculations have been used to
evaluate the formation energies of different crystalline struc-
tures �see, e.g., Refs. 1 and 2�. X-ray diffraction experiments
have been used to determine the natural occurring structures.
Consequently, the stable crystalline structures under ambient
conditions are well established �for a comprehensive review,

see Ref. 3�. Furthermore, advances in experimental tech-
niques, such as the use of intense and tunable x ray from
synchrotron radiation, have also allowed x-ray diffraction
analyses under external loading. For hydrostatic compres-
sion, it is observed that most materials with low CN struc-
tures �e.g., WZ and ZB� transform into a more compressed
crystalline form with higher CN structures �e.g., RS�.3–13
First principles and empirical potential calculations have
yielded phase equilibrium pressures that are comparable but
always lower than the transformation pressures measured
from experiments.3,14–23 The higher experimental values are
attributed to the existence of an energy barrier between the
phases for each transformation. This finding is supported by,
for example, the observation that critical pressure for the
upward WZ→RS transformation is higher than the critical
pressure for the downward RS→WZ transformation3,18 or
the trapping of nanocrystallite ZnO in the RS phase under
ambient condition after a high heat–high pressure
treatment.24 If there was no transformation barrier, the up-
ward and downward transformations would occur at the
same pressure and there would be no trapping of the meta-
stable high pressure phase.
The recent synthesis of quasi-one-dimensional nanostruc-

tures such as nanowires, nanobelts, and nanorods of GaN,
ZnO, and CdSe �see, e.g., Refs. 25 and 26� necessitates un-
derstanding the response of such materials to uniaxial load-
ing. These nanostructures are single crystalline and nearly
defect-free and, therefore, are endowed with high strengths
and the ability to undergo large deformations without failure.
Also, their high surface-to-volume ratios enhance atomic
mobility and promote phase transformations under loading.
A novel fivefold coordinated unbuckled wurtzite phase �HX�
within the P63 /mmc space group was observed in

�011̄0�-oriented ZnO nanowires under uniaxial tensile
loading.27,28 The stability of this novel phase and the stabili-
ties of WZ and RS phases of ZnO under uniaxial tension
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along the �011̄0� direction as well as hydrostatic compres-
sion were analyzed through enthalpy calculations. It is found
that the HX structure cannot be stabilized by a hydrostatic
pressure. Instead, both empirical potential based molecular
dynamics �EP-MD� simulations and first principles calcula-
tions showed that transformation into the HX structure can

occur under either tensile loading along the �011̄0� direction
or compressive loading along the �0001� direction of suffi-
cient magnitude. For this WZ→HX transformation, the
uniaxial stress deforms the crystal in only one direction.
Since the unit cell of HX is significantly shorter than the unit
cell of WZ in the c or �0001� direction �details later�, either
compression along the c direction or tension along the per-

pendicular �011̄0� direction can cause the transformation.
For compression along the c direction, the corresponding
contribution to enthalpy by mechanical work is linearly pro-
portional to −�c�c, with �c and �c being the compressive
stress and the change in unit cell size in the c direction,
respectively. For tension along the b direction, the corre-
sponding contribution to enthalpy by mechanical work is lin-
early proportional to −�b�b, with �b and �b being the ten-
sile stress and the change in unit cell size in the b direction,
respectively. In contrast, for the WZ→RS transformation,
the all around external pressure uniformly compresses the
WZ crystal in all directions and causes it to collapse into the
RS phase which has a lower equilibrium unit cell volume.
The mechanical work contribution to enthalpy is p�V, with
p and �V being the external pressure and volume reduction,
respectively. The discovery of the novel HX phase has sub-
sequently been confirmed in �0001�-oriented ZnO
nanoplates29 and nanowires.30

To gain insight into the existence of the WZ, HX, and RS
structures in materials with different ionicities, we analyze
here the energetic favorability of these phases for ZnO and
CdSe �groups II-VI�, GaN and InN �III-V�, and SiC �IV-IV�
under uniaxial loading along the �011̄0� and �0001� crystal-
line axes as well as under hydrostatic compression. The like-
lihood of transformations from WZ into HX or RS and the
effort of load triaxialities on the transformations are
analyzed.

II. CRYSTAL STRUCTURES

The natural form of the five materials studied is wurtzite,
as shown in Fig. 1 �left column�. This structure is quantified
customarily by the lattice constant a, the c /a ratio, and the
internal parameter u which specifies the relative distance
along the c axis between the two hexagonal-close-packed
cation and anion sublattices. To describe the HX and RS
structures and the transformation from WZ to each of these
phases, an extra lattice parameter b and an internal parameter
v are introduced.19,20 v defines the horizontal distance along
the b axis between the cation and anion sublattices. Out of
the five parameters �a, b, c, u, and v� illustrated in Fig. 1,
only the three external ones �a, b, and c� can be directly
manipulated through applied loading. The two internal pa-
rameters �u and v� cannot be varied directly. These param-
eters are determined such that, for any given configuration,

the net forces on all atoms in the unit cell vanish. An analysis
of the variations of u with c /a and v with b /a can be found
in Refs. 19 and 20. The three structures are significantly
different, with c /a�1.63 and b /a�1.73 for WZ,
c /a�1.20 and b /a�1.73 for HX, and c /a�1.00 and
b /a�1.00 for RS. The ideal values of c /a, b /a, u, and v for
WZ, HX, and RS under no load and zero temperature are
listed in Table I. The c /a value for HX is obtained via en-
thalpy minimization. All other parameters are determined
from the geometry of each structure, for instance, perfect
tetrahedral coordination for WZ and perfect cubic for RS.
Actual values of these parameters can deviate from those in
the table, depending on the material, loading, and tempera-
ture.

III. COMPUTATIONAL METHOD

First principles calculations are carried out to evaluate the
total energy of each material in its natural and deformed

TABLE I. Ideal lattice parameters for WZ, HX, and RS crystal-
line structures.

Parameters WZ HX RS

c /a �8 /3=1.63 1.20 1.00

u 3 /8=0.37 0.50 0.50

b /a �3=1.73 �3=1.73 1.00

v 1 /3=0.33 1 /3=0.33 0.50
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FIG. 1. �Color online� Schematic illustration of the WZ, HX,
and RS structures: small spheres represent anions and large spheres
represent cations. The middle and bottom rows show top view and
side view, respectively. Parameters a, b, c, u, and v are indicated.
For realistic rendering, the images shown are drawn to scale using
parameters for ZnO at equilibrium conditions, i.e., ambient pressure
for WZ, �=−�c

eq for HX, and p=peq for RS. �V, �b, and �c are the
percentage changes in V �volume�, b, and c relative to the same
quantities for WZ.
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states. The calculations are based on the density functional
theory �DFT� with local density approximation �LDA� and
ultrasoft pseudopotentials,31 as implemented in the VASP

code.32 Test calculations have shown that generalize gradient
approximations �GGAs� give the results that are qualitatively
the same as LDA.33 Zinc 3d, gallium 3d, indium 4d, and
cadmium 4d electrons are treated as valence electrons. Cut-
off energies for the plane wave expansion are 400 eV for
ZnO, 180 eV for CdSe, 350 eV for nitrides, and 300 eV for
SiC. The k-point sampling set is based on a 7�7�7 divi-
sion of the reciprocal unit cell based on the Monkhorst-Pack
scheme34 with the � point included, which gives approxi-
mately 100 inequivalent k points.
The stability of each crystal structure and compound can

be determined by analyzing enthalpy as a function of c /a
and b /a. The enthalpy per a wurtzite unit cell under uniaxial
loading is

H�c/a,b/a� = E�c,b,a,u,v� − Ajk�iqi, �1�

where E is the formation energy per wurtzite unit cell, �i is
the stress along the i direction, qi is the lattice parameter in
the i direction, Ajk is the cross section area of the unit cell
perpendicular to the stress direction, and Ajk�iqi �summation
not implied� is the external work. For tension along the b
axis, i=b, Aac=ac /2, and qb=b, with �b being the tensile
stress. For compression along the c axis, i=c, Aab=ab /2, and
qc=c, with −�c being the compressive stress. For hydrostatic
compression, the enthalpy is

H�c/a,b/a� = E�c,b,a,u,v� + pV , �2�

where p and V=abc /2 are the pressure and unit cell volume,
respectively. Under ambient pressure, the enthalpy is equal to
the internal formation energy. Note that a wurtzite unit cell
contains two cation-anion pairs, i.e., 2 f.u. and occupy the
volume V=abc /2.
For each c /a and b /a pair, the internal parameters u and v

and the unit cell volume V are allowed to relax so that the
configuration that yields the minimum H is obtained. For a
given load condition, the minima on the enthalpy surface
with c /a and b /a as the independent variables identify the
corresponding stable and metastable structures. For the
analyses at hand, the parameter ranges considered are �1.00,
1.63� for c /a and �1.00, 1.73� for b /a, with the increments of
0.05 for c /a and 0.10 for b /a. This meshing of the structural
space results in approximately 170 strained configurations.
For tensile loading along the b direction, additional configu-
rations with b /a up to 2.30 are also investigated, increasing
the number of total configurations to 200. Out of these 170
or 200 configurations, those around �c /a ,b /a�
��1.63,1.73�, �1.2, 1.73�, and �1.00, 1.00� are more care-
fully analyzed since these three parameter sets define the
neighborhoods of stable WZ, HX, and RS structures, respec-
tively, for the given load condition.
For each strained configuration �each c /a-b /a pair�, the

energies associated with at least four different unit cell vol-
umes are calculated. An equation of state �energy-volume
relation� is obtained by a third-degree polynomial fit. Under
loading, the volume that minimizes H is not the same as the
volume that minimizes E. The equation of state allows the

minimum enthalpy for each combination of c /a-b /a pair and
loading condition to be obtained. As an illustration, the en-
ergy and enthalpy are shown in Fig. 2 as functions of volume
for WZ ZnO �c /a=1.61 and b /a=1.73� under hydrostatic
pressure. At ambient pressure �p�0�, the energy and en-
thalpy are equal and the minimum enthalpy is equal to E�V0�,
with V0 being the equilibrium volume of WZ in a stress-free
state. At p=p1, the minimum enthalpy occurs at V=V1 for
which dE /dV=−p1.

IV. RESULTS AND DISCUSSIONS

A. Ambient conditions (stress-free state)

Figure 3�a� shows the energy �or enthalpy at zero external
loading� landscape for ZnO. The global minimum occurs at
the wurtzite structure with �c /a ,b /a�= �1.61,1.73�. The sec-
tions of the surface along b /a=1.73 �solid line� and 1.00
�dash line� are shown in Fig. 3�b�. By virtue of symmetry,
b /a is fixed at �3��1.73� for WZ and HX and at 1.00 for
RS. Clearly, in stress-free state, WZ is the most stable struc-
ture with the lowest energy, HX has higher energy and is not
stable �no local minimum�, and the RS structure is meta-
stable with a high energy. For CdSe, GaN, InN, and SiC, the
shapes of the energy landscapes �not shown but can be found
online35� are similar to that of ZnO. Their two-dimensional
�2D� sections at b /a=1.73 and 1.00 are shown in Fig. 4. The
energy difference �see Ref. 36� between HX and WZ
��EHX−WZ� and that between RS and WZ ��ERS−WZ� are
tabulated in Table II. The energies of the three phases
for all compounds except CdSe follow the order of
ERS�EHX�EWZ. For CdSe, ERS�EHX. This exception can
be attributed to the fact that for compounds such as CdSe
with high ionicity, the energy differences between RS, HX,
and WZ are relatively small. Under this situation, other ef-
fects, such as energy cost for bond distortions, can affect the
ordering in energies.
There are significant variations of �EHX−WZ or �ERS−WZ

among the materials, partly reflecting differences in the ion-
icity. Several indices are available to describe the ionicity of
materials. Although LDA calculation is sometimes believed
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FIG. 2. �Color online� Energy �solid curve� and enthalpy
�dashed curve� as functions of volume for wurtzite �c /a=1.61 and
b /a=1.73� ZnO. At hydrostatic pressure p1=8.22 GPa, the volume
that minimizes enthalpy �V1� is smaller than the volume at ambient
pressure �V0�.
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to slightly overestimate the ionicity in materials, the trend of
ionicity between materials should be qualitatively correct.
Therefore, Phillips’ ionic scale �f i�,37 which has the range
between 0 �the least ionic� and 1�the most ionic�, is used here
by choice. The values of f i for the compounds studied here
are listed in Table II.37 The variations of �EHX−WZ and
�ERS−WZ with f i are shown in Fig. 5. For RS, �ERS−WZ �solid
line� decreases monotonically as f i increases. For HX,
�EHX−WZ �dash line� decreases monotonically with f i �except
for CdSe�. This is expected because compounds with higher
levels of ionicity can significantly lower their energies
through increases in CN. While ionicity is not the only factor
that determines the relative stability of crystal structures, it
clearly affects the stability of structures. For covalent com-
pounds �e.g., SiC and GaN�, the structure with fourfold co-
ordination is highly favored, resulting in large differences
between the formation energies of RS �sixfold� and WZ
�fourfold� and between the formation energies of HX �five-
fold� and WZ. On the other hand, for compounds with higher
levels of ionicity, the differences in formation energies
among RS, HX, and WZ are lower. In this paper, only ionic
compounds that have fourfold coordinated structures �WZ�
under ambient conditions are considered.

TABLE II. Energy difference �eV/2 pairs� between HX �or RS�
and the WZ structure. The Phillips ionicity parameters �f i� are also
listed. �Ref. 37�.

Compounds Phillips’ f i

EHX−EWZ

�eV�
ERS−EWZ

�eV�

SiC 0.177 2.53 2.74

GaN 0.500 1.32 1.74

InN 0.578 0.61 0.78

ZnO 0.616 0.26 0.41

CdSe 0.699 0.44 0.30

(a)

(b)

FIG. 3. �Color online� �a� Energy �E� �or enthalpy H under zero
external loading� landscape for ZnO �in eV per wurtzite unit cell
which contains two cation-anion pairs or 2 f.u.�. Each point on the
surface represents the minimum energy for a given combination of
c /a and b /a. To arrive at the minimum, u, v, and V are allowed to
relax while a, b, and c are kept constant. Energy levels above
−20.50 eV are truncated as they are not of interest in the discus-
sions here. �b� 2D sections of the energy surface for b /a=1.73
�solid line� and 1.00 �dashed line�.
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B. Hydrostatic compression

Sufficiently high pressures can cause the WZ structure to
collapse into the denser RS phase. As shown in Fig. 1, the
volume of the RS structure is �17% smaller than the volume
of the WZ structure ��V�−0.17V0, with V0 being the equi-
librium volume of WZ�. For a given constant pressure p, the
difference in contributions to enthalpy by mechanical work
between RS and WZ is approximately p�V �neglecting the
difference in bulk moduli of the two phases�. If p is suffi-
ciently high, mechanical work can overcome the formation
energy difference, driving the transformation forward. Figure
6 shows �HRS−WZ=HRS−HWZ and �HHX−WZ=HHX−HWZ as
functions of p for the five compounds studied. The rather
linear trends confirm that the bulk moduli of the WZ, HX,
and RS phases are quite comparable. The slight deviation
from linearity of �HRS−WZ reflects the fact that the bulk
modulus of RS is somewhat higher �approximately 25%�
than that of WZ. Note that the slope of the �HRS−WZ line is
approximately five times that of the �HHX−WZ line, consis-
tent with the fact that the volume decrease associated with
the WZ→RS transformation �17%� is approximately five
times of that associated with the WZ→HX transformation
�3.6%�.
The equilibrium pressure peq between the WZ and RS

structures �the pressure at which the enthalpies of RS and
WZ become equal� can be obtained by examining the en-
thalpy surfaces at several pressures. This pressure is identi-
fied with the intercept of the enthalpy curve with the hori-
zontal axis in Fig. 6. The enthalpy surfaces of all five
materials at their equilibrium pressure peq are qualitatively
the same �not shown here but can be found online35�. There-

fore, we choose to present only the enthalpy surface for InN
in Fig. 7�a�. The corresponding 2D section is shown in Fig.
7�b�. At p� peq, WZ has the lowest enthalpy. As p is in-
creased above peq, RS has a lower enthalpy than WZ. peq

depends strongly on the ionicity of the compound. This is
expected because the initial energy difference between WZ
and RS ��ERS−WZ=ERS−EWZ� depends on the ionicity of the
material �from �ERS−WZ=2.74 eV for SiC to 0.30 eV for
CdSe�. SiC has the highest �ERS−WZ and therefore the high-
est peq �64.9 GPa�. CdSe has the lowest �ERS−WZ and there-
fore the lowest peq �2.2 GPa�. The equilibrium pressures of
the five materials are listed in Table III. Our calculated equi-
librium pressures are in good agreement with other calcu-
lated results in general �see Table III�. To compare with ex-
periments, one should not directly compare the calculated
equilibrium pressure with either the critical pressures of the
upward or downward WZ to RS transformations. This is be-
cause there is a transformation barrier between the two
phases that causes the upward critical pressure to be higher
�and the downward critical pressure to be lower� than the
equilibrium pressure.3,18 The averages between the upward
and downward critical pressures, shown as pt in Table III, are
shown as an approximate experimental equilibrium pressures
and are in good agreement with the calculated equilibrium
pressures.
To gain insight on the transformation enthalpy barrier, we

extracted �from the plots� the homogeneous transformation
barrier �in the unit of eV/2 pairs� of these five materials and
tabulated in Table III using square brackets. The barrier for
ZnO of 0.30 eV /2 pairs is the same as Limpijumnong and
Jungthawan have previously reported.18 The barriers for SiC
and GaN of 1.26 and 0.76 eV /2 pairs are in good agreement
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with the calculated values reported by Miao and Lambrecht38

�for SiC� of 1.2 eV /2 pairs and by Limpijumnong and
Lambrecht20 �for GaN� of 0.9 eV /2 pairs. We can see that
the magnitude of the barrier increases with the zero pressure
energy difference between phases ��ERS−WZ�, hence the ion-
icity. The detailed investigation of the barriers will be a sub-
ject of further study on more materials in the future.
Figure 8 shows the variation of equilibrium pressure with

the initial energy difference. An approximately linear depen-
dence of peq on �ERS−WZ is seen. The linear fit gives

peq � 25.97��ERS−WZ� − 4.68. �3�

The units of peq and �ERS−WZ are in GPa and eV/2 pairs,
respectively. This approximate universal relationship can be
used to estimate the difference in the formation energy of the
RS and WZ phases when the equilibrium pressure is known
or vice versa.
Figure 6 also shows that the �HHX−WZ line never inter-

cepts the horizontal axis for all five materials over the pres-
sure range analyzed. Obviously, HX is not a thermodynami-
cally stable structure under hydrostatic compression and the
WZ→HX transformation does not occur for such conditions.

C. Uniaxial compression along the [0001] direction

Figure 1 shows that HX has a lattice constant c signifi-
cantly shorter ��19% � than that of WZ in the �0001� direc-

tion. This difference allows WZ to transform into HX via
compression in the c direction. Under constant compressive
stess −�c �negative sign indicates compression�, the me-
chanical contribution to the enthalpy difference between WZ
and HX is −Aab�c�c, where �c�−0.19c. A sufficiently high
−�c would allow mechanical work to offset the energy dif-
ference between HX and WZ, affecting the transformation
into the HX structure. The shapes of the enthalpy surfaces
for SiC, GaN, InN, and ZnO at their respective equilibrium
compressive stress −�c

eq are qualitatively the same �not
shown here but can be found online35�. Therefore, we choose

TABLE III. Equilibrium pressure, transformation barrier, and
stresses for SiC, GaN, InN, ZnO, and CdSe for the WZ→RS and
WZ→HX transformations. peq is the hydrostatic pressure that es-
tablishes the equilibrium between the WZ and RS structures and pt
�reported here as an average between the experimental upward and
downward pressure of transformations� is the corresponding experi-
mental value. −�c

eq ��b
eq� is the value of the compressive �tensile�

force per unit area along the c direction �b direction� at which the
WZ and HX structures are in equilibrium. For CdSe, although
−�c

eq=3.8 GPa provides equilibrium between the WZ and HX
phases, the RS phase has a lower enthalpy �hence more stable�
under this condition. The transformation enthalpy barrier in eV/2
pairs between the WZ and RS phases at a given equilibrium pres-
sure are given in square brackets following peq in the same column.

Material

RS HX

peq

�GPa�
�Present�

peq

�GPa�
�Other�

pt

�GPa�
�Expt.�

−�c
eq

�GPa�
�b
eq

�GPa�

SiC 64.9�1.26� 60,a 66.6,b

66,c 92d
67.5e 60.5

GaN 44.1�0.76� 51.8,f 42.9g 52.2,h 31i 30.5

InN 12.2�0.51� 21.6,f 11.1g 10,j 12.1h 9.6 14.7

ZnO 8.2�0.30� 6.6,k 9.3,l

8.0m
5.5,n 8.5o 6.0 10.8

CdSe 2.2�0.40� 2.5p 2.1q 3.8 5.8

aDFT �GGA� calculations by Miao and Lambrecht �Ref. 41�.
bDFT �LDA� calculations �of zincblende to RS� by Karch et al.
�Ref. 17�.
cDFT �LDA� calculations �of zincblende to RS� by Chang and Co-
hen �Ref. 42�.
dDFT �B3Lyp� calculations �of zincblende to RS� by Catti �Ref. 43�.
eSynchrotron angle dispersive x-ray diffraction �ADX� experiment
by Yoshida et al. �Ref. 10�.
fDFT �LDA� calculations by Christensen and Gorczyca �Ref. 14�.
gDFT �LDA� calculations by Serrano et al. �Ref. 44�.
hADX experiment by Ueno et al. �Ref. 6�.
iSynchrotron energy-dispersive x-ray diffraction �EDX� by Xia et
al. �Ref. 8�.
jSynchrotron EDX experiment by Xia et al. �Ref. 9�.
kDFT �LDA� calculations by Jaffe et al. �Ref. 16�.
lDFT �GGA� calculations by Jaffe et al. �Ref. 16�.
mDFT �GGA� calculations by Ahuja et al. �Ref. 45�.
nSynchrotron EDX experiment by Desgreniers. �Ref. 5�.
oSynchrotron EDX experiment by Recio et al. �Ref. 46�.
pDFT �LDA� calculations by Côté et al. �Ref. 23�.
qEDX experiment by Cline and Stephens �Ref. 4�.

(a)

(b)

InN

FIG. 7. �Color online� �a� Enthalpy surface maps �in eV/2 pairs�
for InN at its RS-WZ equilibrium pressures, peq=12.2 GPa. �b� 2D
sections of the enthalpy surface for b /a=1.73 �solid line� and 1.00
�dashed line�.
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to present the enthalpy surface for InN with a 2D section plot
in Fig. 9�a�. The stability of the HX phase can be
better analyzed through the enthalpy difference �HHX−WZ

=HHX−HWZ as a function of the compressive stress along the
c direction �dashed lines, Fig. 10�. If the elastic moduli of
HX and WZ along the c direction are assumed to be equal,
�H would vary linearly with −�c with an approximate slope
of Aab�c�−0.19�abc /2��−0.19V. Figure 10 also shows
the enthalpy difference between RS and WZ, �HRS−WZ

=HRS−HWZ �solid lines�. Note that �HHX−WZ and �HRS−WZ

show similar trends, with similar slopes. This is because for
the WZ→RS transformation, �c /c�18%, while for the
WZ→HX transformation, �c /c�19%.
For all materials except CdSe, �HHX−WZ is always lower

than �HRS−WZ, indicating that HX is more stable than RS
under compression in the c direction. For CdSe, where ini-
tially �i.e., under no load condition� the RS phase has a
slightly lower energy than HX, �HRS−WZ is always lower
than �HHX−WZ, indicating that RS is the preferred structure
over HX under uniaxial compression along the �0001� direc-
tion as well as under hydrostatic compression. As a result,
the the enthalpy surface at −�c

eq of CdSe �Fig. 9�b�� is quali-
tatively different from those of the other four materials �rep-
resented by Fig. 9�a��, i.e., the RS phase has lower enthalpy.
The equilibrium stress for the transformation �−�c

eq� of each
material is shown in Fig. 10. Below −�c

eq, WZ phase is
stable. Above −�c

eq, HX is stable �RS for CdSe�. The values
of −�c

eq depend on the initial energy difference ��E�
between WZ and HX and are listed in Table III. For SiC,
�E=EHX−EWZ=2.53 eV, the stress required to cause the
HX→WZ transformation is high �−�c

eq=60.5 GPa�. On the
other hand, for ZnO, �E=0.26 eV and −�c

eq=6.0 GPa which
is only 1 /10 of the stress level required for SiC. This linear
trend is clearly seen in Fig. 11 which shows −�c

eq as a func-
tion of �E for the materials analyzed. The linear fit gives

− �c
eq � 25.72��EHX−WZ� − 4.56. �4�

The coefficients in the equation are based on the units of
−�c

eq and �EHX−WZ in GPa and eV/2 pairs, respectively. The
similarity in the numerical values of coefficients of Eqs. �4�
and �3� is fortuitous. Note that the WZ-HX homogeneous
transformation enthalpy barrier is significantly lower than
that of WZ-RS, i.e., always less than 0.1 eV /2 pairs for all
materials studied except SiC. However, for SiC, the barrier is
only slightly higher, i.e., 0.13 eV /2 pairs.

D. Uniaxial tension along the †011̄0‡ direction

The HX structure also has a longer dimension in the

�011̄0� direction compared to the WZ structure �longer by
approximately 9%, see Fig. 1, middle column�. This differ-
ence allows WZ to transform into HX via tension in the b

��011̄0�� direction. Note that the difference in b between the
two structures is only about half of the difference in c. Ac-
cordingly, the mechanical enthalpy contribution Aac�b�b is
roughly half of the case of c compression for the comparable
stress magnitude. Only three �InN, ZnO, and CdSe� out of
the five materials studied have a local minimum correspond-
ing to the HX structure under tensile loading along the b
direction. We choose to present the enthalpy surfaces for InN
�those for ZnO and CdSe can be found online35� at the equi-
librium tensile stress �b

eq �Fig. 12�a�� with its 2D section plot
�Fig. 12�b��. The plot35 between the enthalpy differences
�HHX−WZ=HHX−HWZ as functions of tensile stress �b are
similar to the compressive stress case. The equilibrium ten-
sile stress �b

eq �14.7, 10.8, and 5.8 GPa for InN, ZnO, and
CdSe, respectively� is approximately twice the equilibrium
compressive stress −�c

eq for the c direction. EP-MD simula-

0 0.5 1 1.5 2 2.5 3
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GaN
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p
eq
= 23.51 (ΔERS-WZ

)

FIG. 8. �Color online� Correlation between equilibrium hydro-
static pressure �peq� and the difference in energy ��E� between the
RS and WZ phases of the five materials. peq is the pressure at which
the WZ and RS structures are in equilibrium, as illustrated in Fig. 6
and tabulated in Table III. The energy difference �E=ERS−EWZ is
calculated under the conditions of zero external loading and is tabu-
lated in Table II.

(a) InN (b) CdSe

FIG. 9. �Color online� Enthalpy surface maps for �a� InN and �b�
CdSe at their respective HX-WZ equilibrium c direction stress
�−�c

eq�. Their 2D sections for b /a=1.73 �solid line� and 1.00
�dashed line� are also shown in the bottom panel. Note that, unlike
other materials studied here, CdSe favors RS over HX phase under
c-direction stress.
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tions have shown that under tensile loading, �011̄0�-oriented
ZnO nanowires can indeed transform into the HX structure
under tensile loading.28 The nanowires can sustain tensile
stresses up to 14 GPa before failure, which is well above the
equilibrium stress �b

eq predicted here. The equilibrium trans-
formation stress of �b

eq=5.8 GPa for CdSe is the lowest
among the materials studied. For nanostructures, other fac-
tors such as surface effects may contribute to facilitate the
WZ→HX transformation.39 As a result, HX can emerge as
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FIG. 10. �Color online� Enthalpy differences ��H� between the RS and WZ �solid line� and HX and WZ �dashed line� as a function of
c-direction stress �−�c� for �a� SiC, �b� GaN, �c� InN, �d� ZnO, and �e� CdSe. As the magnitude of the stress reaches the equilibrium value
�−�c

eq, indicated by solid dots�, enthalpies of the HX and WZ structures become comparable. At stresses above −�c
eq, the HX phase is more

stable.
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FIG. 11. �Color online� Correlation between equilibrium stresses
�−�c

eq and �b
eq� and the difference in energy ��E� between the HX

and WZ phases for the five materials. −�c
eq ��b

eq� is the equilibrium
value of the c-direction compressive stress �b-direction tensile
stress� for the HX and RS structures �see Table III�. The energy
difference �E=EHX−EWZ is calculated under conditions of zero
external loading and is tabulated in Table II.

(a)

(b)

InN

FIG. 12. �Color online� �a� Enthalpy surface maps �in eV/2
pairs� for InN at its HX-WZ stresses along the b direction,
�b
eq=14.7 GPa. �b� 2D sections of the enthalpy surface for

b /a=1.95 �solid line� and 2.20 �dashed line�.
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an intermediate phase during a WZ→RS transformation in
CdSe nanorods,39 even though it does not have the lowest
enthalpy in the bulk calculations. The relationship between
�b
eq and �EHX−WZ=EHX−EWZ is shown Fig. 11. Note that the

�b
eq of CdSe may be higher than its fracture strength.
A local minimum for HX is not observed in the enthalpy

surfaces for SiC and GaN, even at extremely high theoretical
levels of �b �60 GPa for SiC and 30 GPa for GaN�.35 The
lack of transformation in these materials can be attributed to
the fact that their equilibrium transformation stresses are
higher than their respective ultimate tensile strengths ��b

eq

	�UTS�. Indeed, EP-MD simulations have shown that for
GaN nanowires, �UTS�30 GPa,40 only a fraction of the
rough estimation of equilibrium stress of �c

eq
60 GPa. The
�b
eq of SiC is even higher since it has a higher energy differ-
ence between WZ and HX, making it more likely to have
fractured before reaching its theoretical equilibrium stress of
�c
eq
120 GPa.

V. CONCLUSIONS

First principles calculations are carried out to study the
stability of the WZ, RS, and HX phases of SiC, GaN, InN,
ZnO, and CdSe under loading of different triaxialities. The
energy of the materials correlates with their ionicity. At am-
bient conditions, WZ has the lowest energy level, HX has the
second highest energy level, and RS has the highest energy
level �with the exception of CdSe whose RS phase has a
lower energy level than its HX phase�. All five materials
have the fourfold wurtzite structure as their stable and natu-
rally occurring phase. Under all around hydrostatic compres-
sion, the materials can transform into the sixfold coordinated
RS structure. Under uniaxial compression along the �0001�
direction and uniaxial tension along the �011̄0� direction, the
materials can transform into the fivefold coordinated unbuck-
led wurtzite structure. The equilibrium conditions for the
transformations are outlined. For the WZ→RS transforma-
tion, the equilibrium hydrostatic pressures �peq� are predicted

to be 64.9, 44.1, 12.2, 8.2, and 2.2 GPa for SiC, GaN, InN,
ZnO, and CdSe, respectively. These values are in good
agreement with other theoretical calculations and experimen-
tal measurements. For the WZ→HX transformation under
uniaxial compression along the �0001� direction, the equilib-
rium stresses �−�c

eq� are 60.5, 30.5, 9.6, and 6.0 GPa for SiC,
GaN, InN, and ZnO, respectively. For CdSe, uniaxial com-
pression along the �0001� direction induces a WZ→RS
transformation at a stress of 2.4 GPa instead of the
WZ→HX transformation because the formation energy of
RS is lower than HX for CdSe. For the WZ→HX transfor-

mation under uniaxial tension along the �011̄0� direction, the
equilibrium transformation stresses ��b

eq� are 14.7, 10.8, and
5.8 GPa for InN, ZnO, and CdSe, respectively. The stress
level for CdSe is close to its fracture limit. No transformation

is observed for SiC and GaN under tension along the �011̄0�
direction due to the fact that their theoretical equilibrium
transformation stresses are well above their respective ulti-
mate fracture strengths. The magnitudes of peq, −�c

eq, and �b
eq

are approximately linearly dependent with the formation en-
ergy differences between the relevant phase of the materials.
Based on the calculations of five materials, we established a
general linear function between peq and RS−WZ energy dif-
ference that could be useful for predicting the difference in
formation energy of the RS and WZ phases of other materi-
als when the equilibrium pressure is known or vice versa.
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APPENDIX

Tables IV–VIII.

TABLE IV. Lattice parameters for WZ, HX, and RS SiC under equilibrium loading conditions.

Parameters
WZ

p=0 GPa
HX

−�c
eq=60.5 GPa

RS
peq=64.9 GPa

a �Å� 3.05
�3.06,a 3.08b�

3.32 4.00
�3.68,a,c 3.84d�

b �Å� 5.28 5.74 4.00

c �Å� 4.97 3.98 4.00

V=
abc

2
�Å3�

40.0 38.0 32.0

c /a 1.63 1.20 1.00

b /a 1.73 1.73 1.00

u 0.38 0.50 0.50

v 0.35 0.33 0.50

aDFT �LDA� calculations by Karch et al. �Ref. 17�.
bXRD experiment by Schultz et al. �Ref. 47�.
cSynchrotron ADX by Yoshida et al. �Ref. 10�.
dDFT �LDA� calculations by Hatch et al. �Ref. 48�.
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TABLE V. Lattice parameters for WZ, HX, and RS GaN under equilibrium loading conditions.

Parameters
WZ

p=0 GPa
HX

−�c
eq=30.5 GPa

RS
peq=44.1 GPa

a �Å� 3.15 �3.19,a 3.16,b,c 3.10d� 3.43 4.16 �4.01,a 4.10,b 4.07e�
b �Å� 5.46 5.94 4.16
c �Å� 5.11 4.12 4.16

V=
abc

2
�Å3� 44.0 42.0 36.0

c /a 1.62 1.20 1.00
b /a 1.73 1.73 1.00
u 0.38 0.50 0.50
v 0.35 0.33 0.50

aSynchrotron EDX experiment by Xia et al. �Ref. 8�.
bXRD experiment by Xie et al. �Ref. 49�.
cDFT �LDA� calculations by Kim et al. �Ref. 50�.
dDFT �LDA� calculations by Yeh et al. �Ref. 51�.
eXRD experiment by Lada et al. �Ref. 52�.

TABLE VI. Lattice parameters for WZ, HX, and RS InN under equilibrium loading conditions.

Parameters
WZ

p=0 GPa

HX
RS

peq=12.2 GPa−�c
eq=9.6 GPa �b

eq=14.7 GPa

a �Å� 3.54 �3.53,a 3.54,b,c 3.52d� 3.82 3.48 4.64 �4.67,e 4.62d�
b �Å� 6.13 6.62 7.66 4.64
c �Å� 5.70 4.59 4.35 4.64

V=
abc

2
�Å3� 61.9 58.1 58.0 50.0

c /a 1.61 1.20 1.25 1.00
b /a 1.73 1.73 2.20 1.00
u 0.38 0.50 0.51 0.50
v 0.35 0.33 0.31 0.50

aDFT �LDA� calculations by Kim et al. �Ref. 50�.
bDFT �LDA� calculations by Yeh et al. �Ref. 51�.
cXRD experiments by Osamura et al. �Ref. 53�.
dDFT �LDA� calculations by Furthmüller et al. �Ref. 54�.
eADX experiment by Ueno et al. �Ref. 6�.

TABLE VII. Lattice parameters for WZ, HX, and RS ZnO under equilibrium loading conditions.

Parameters
WZ

p=0 GPa

HX
RS

peq=8.2 GPa−�c
eq=6.0 GPa �b

eq=10.8 GPa

a �Å� 3.21 �3.20,a 3.25,b,c 3.26d� 3.49 3.24 4.24 �4.28,b 4.27c,e�
b �Å� 5.54 6.03 6.46 4.24
c �Å� 5.15 �5.17,a 5.22d� 4.19 4.20 4.24

V=
abc

2
�Å3� 45.7 �46.69,e 47.24,f 47.98d� 44.1 44.0 38.1 �39.03,e 38.16f�

c /a 1.61 �1.59f� 1.20 1.30 1.00
b /a 1.73 1.73 2.00 1.00
u 0.38 �0.38a,d,f� 0.50 0.50 0.50
v 0.33 0.33 0.31 0.50

aDFT �LDA� calculations by Malashevich and Vanderbilt �Ref. 56�.
bSynchrotron EDX experiments by Desgrenier �Ref. 5�.
cXRD experiments by Karzel et al. �Ref. 55�.
dEXAFS experiments by Decremps et al. �Ref. 57�.
eDFT �GGA� calculations by Jaffe et al. �Ref. 16�.
fDFT �GGA� calculations by Ahuja et al. �Ref. 45�.
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Molecular dynamics and density functional studies of a body-centered-tetragonal
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We report a previously unknown body-centered-tetragonal structure for ZnO. This structure results from a
phase transformation from wurtzite in �0001�-oriented nanorods during uniaxial tensile loading and is the most
stable phase for ZnO when stress is above 7 GPa. The stress-induced phase transformation has important
implications for the electronic, piezoelectric, mechanical, and thermal responses of ZnO. The discovery of this
polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A
crystalline structure-load triaxiality map is developed to summarize the relationship between structure and
loading.

DOI: 10.1103/PhysRevB.76.172103 PACS number�s�: 61.50.Ks, 61.46.�w, 62.25.�g, 64.70.Nd

Natural selection of the lowest energy state determines the
bonding state and atomic arrangement of a material under
ambient conditions. Deviations from this natural state occur
when external stimuli such as mechanical loading and tem-
perature changes are provided, leading to failure through
bond breaking or polymorphism due to atomic rearrange-
ment. At the macroscopic scale, failure is dominant since
atomic mobility is relatively low and defects are more preva-
lent. At the nanoscale, however, high surface-to-volume ra-
tios and nearly defect-free structures lead to higher atomic
motilities and more pronounced polymorphic transitions.
Consequently, polymorphs previously unknown for bulk ma-
terials can be revealed. Recently, a fivefold coordinated hex-
agonal phase �referred to as HX� of ZnO was observed in
�011̄0�-oriented ZnO nanowires under uniaxial tensile
loading.1,2 This discovery has subsequently been confirmed
in �0001�-oriented ZnO nanoplates3 and nanowires.4 Here,
we report yet another polymorph of ZnO with a body-
centered-tetragonal structure with four-atom rings �referred
to as BCT-4, space group P42/mnm�, which occurs under
uniaxial tensile loading along the �0001� crystalline axis of
the wurtzite structure. While similar structures have been
reported for carbon5 and lithium aluminum oxide,6,7 this
polymorph has been reported here for a binary system. The
results here show that the extent of polymorphism in ZnO
�and perhaps in other groups IV, III-V, and II-VI materials
such as GaN and CdSe� is much more pronounced than pre-
viously known. With the discovery of these phases, a more
complete picture has emerged for the polymorphism of ZnO
under the influence of mechanical loading with all realistic
triaxialities. The recent fabrication and applications of
defect-free, single-crystalline nanowires, nanobelts, and
nanorings of materials such as ZnO, GaN, and CdSe high-
lights the need for understanding the extent of polymor-
phism. Characterization of the thermomechanical and electri-
cal responses of the relevant phases is crucial since the
performance and functionalities of these slender quasi-one-
dimensional materials as components in ultrasensitive
chemical and biological sensors, nanoresonators, field effect

transistors, and nanogenerators8–11 are either significantly af-
fected by or utilize the phase transitions.12–14

Our analyses include both molecular dynamics �MD�
simulations and density functional theory �DFT� based first
principles calculations. The MD simulations are performed
to study the phase transformation and the associated me-
chanical response of ZnO nanorods with the �0001� growth
direction under loading and subsequent unloading. The first
principles calculations are carried out to determine the ener-
getic favorability and the electronic band structures of the
parent and transformed phases. The impact of this phase
transformation on the thermal, mechanical, and electric re-
sponses of the nanorods is also evaluated.
The as-synthesized hexagonal ZnO nanorods have a

wurtzite structure with a sixfold symmetry around the �0001�
axis and six 	011̄0
 lateral crystalline surfaces,15,16 as illus-
trated in Fig. 1�a�. The lattice parameters �Ref. 16� are a
=3.25 Å, u=0.38, and c=5.21 Å as shown in Fig. 2�a�. The

dddd

[0001][0001][0001][0001]

{{{{ }}}}0110011001100110

StStStStrrrrainainainain

S
t

S
t

S
t

S
trrrre

ss
(G

P
a)

es
s

(G
P

a)
es

s
(G

P
a)

es
s

(G
P

a)

0000 0.050.050.050.05 0.10.10.10.1 0.150.150.150.15 0.20.20.20.2

0000

5555

10101010

15151515

20202020

25252525

Unloading from D

Loading
Unloading from B

EEEE

AAAA

BBBB

CCCC

DDDD

FFFF

32.5 Å32.5 Å32.5 Å32.5 Å
300 K300 K300 K300 K

(a)

(b)

dddd

[0001][0001][0001][0001]

{{{{ }}}}0110011001100110

StStStStrrrrainainainain

S
t

S
t

S
t

S
trrrre

ss
(G

P
a)

es
s

(G
P

a)
es

s
(G

P
a)

es
s

(G
P

a)

0000 0.050.050.050.05 0.10.10.10.1 0.150.150.150.15 0.20.20.20.2

0000

5555

10101010

15151515

20202020

25252525

Unloading from D

Loading
Unloading from B

EEEE

AAAA

BBBB

CCCC

DDDD

FFFF

32.5 Å32.5 Å32.5 Å32.5 Å
300 K300 K300 K300 K

(a)

(b)

FIG. 1. �Color online� �a� �0001� nanorod with d=32.5 Å and
�b� stress-strain curve of this nanorod at 300 K during loading and
unloading.
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nanorods analyzed here have the same length of 145.8 Å and
five different cross-sectional widths �d=19.5, 26.0, 32.5,
39.0, and 45.5 Å�. A Buckingham-type potential with charge
interactions is used to define atomic interactions in the MD
calculations.13,17,18 The analysis concerns quasistatic defor-
mation at 300 K.1

Figure 1�b� shows the stress-strain response of a nanorod
with lateral dimension d=32.5 Å. Four distinct stages are
observed. The first stage �A→B� corresponds to the elastic
stretching of the wurtzite �WZ� structure up to a strain of
7.5%. Further deformation results in a precipitous stress drop
�B→C� associated with the WZ to BCT-4 phase transforma-
tion. The transformation completes at a strain of 8.5%. Con-
tinued loading causes elastic stretching of the BCT-4 struc-
ture �C→D� and culminates in the eventual failure at a strain
of 16.9% �point E�. To analyze the stability of the parent and
transformed structures, unloading is performed from states
prior to transformation initiation �first peak tensile stress,
point B� and failure initiation of the nanorod �second peak
tensile stress, point D�. The unloading path from B coincides
with the loading path, confirming that the deformation from
A to B is indeed the elastic response of the WZ-structured
nanorod. Unloading from D also results in the elastic recov-
ery of the BCT-4 structure, and continued unloading beyond
the transformation completion strain �point C� does not result
in a reverse transformation. Instead, the nanorod retains
the BCT-4 structure when the stress is reduced to zero �F in
Fig. 1�b��.
The WZ to BCT-4 transformation occurs through a com-

bination of �1� the breaking of every other Zn-O bond along
the �0001� direction �bond A in Fig. 2�a�� and �2� the forma-
tion of an equal number of Zn-O bonds along the same di-
rection �bond B in Fig. 2�a�� next to the broken bonds. This
process repeats on alternate planes along the �011̄0� direc-
tion. The transformed structure retains the tetrahedral coor-
dination with each Zn/O atom at the center and four O/Zn

atoms are at the vertices of a tetrahedron. The geometry of
the tetrahedron can be characterized through the O-Zn-O
bond angles ��i, i=1–6�, as shown in Fig. 2�a�. For WZ, all
bond angles are approximately equal ��i�108° �. For
BCT-4, the formation of four-atom rings results in three dis-
tinct bond angles ��1�90°, �2�112.7°, and �3�113.7°�.
As seen from Fig. 2�b�, the transformed phase consists of

four-atom �two Zn and two O� rings arranged in a BCT lat-
tice. Note that the four-atom ring at the center is rotated by
90° relative to the rings at the corners of the tetragonal lattice
cell. Strictly speaking, the unit cell consists of two-ring clus-
ters �one of each orientation, total of eight atoms� positioned
in a simple tetragonal primitive lattice. Figure 2�b� also
shows the lattice parameters a, b, and c for the WZ and
BCT-4 structures. Their respective values as obtained from
MD and DFT calculations �in square brackets� at various
stress levels are listed in Table I along with unit cell vol-
umes. For WZ, the ratios c /a and b /a are 1.60 and 1.73,
respectively. Throughout the transformation, the b /a ratio
remains at its initial value of 1.73 �±0.02�, reflecting the
symmetries of the loading and the lattice. On the other hand,
upon transformation to BCT-4 at a stress above 7 GPa, the
c /a ratio increases to 1.8. Phenomenologically, the predilec-
tion for the BCT-4 phase over the WZ phase under the tensile
loading conditions considered here can be explicated by its
elongated configuration in the �0001� direction �higher c /a
ratio� relative to that of the WZ structure. Upon unloading,
the residual strain at F in Fig. 1�b� is 6.8% according to both
MD and DFT. It reflects the dimensional difference between
the unstressed WZ and BCT-4 structures in the �0001� direc-
tion. This unstressed BCT-4 structure corresponds to the
“ideal” BCT-4 structure predicted by the DFT calculations
with b /a=c /a=1.73 in Fig. 3�a�.
The relative favorability of the two phases is studied by

calculating the enthalpy �per four Zn-O pairs� using DFT
calculations.2,19 The complete enthalpy surfaces �not shown
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FIG. 2. �Color online� �a� Wurtzite �WZ� and body-centered-
tetragonal with four-atom rings �BCT-4� structures and �b� crystal-
lographic transition through breaking and formation of bonds and
differences in bond angles between the WZ and the BCT-4
structures.

TABLE I. Lattice constants for WZ and BCT-4 ZnO in tension
along the c axis obtained via MD and DFT �in square brackets�
calculations.

Parameters
WZ
�=0

BCT-4

�=0 �=4 �=7 �=10

a �Å� 3.29
�3.20�

3.24
�3.17�

3.22
�3.13�

3.20
�3.09�

3.19
�3.06�

b �Å� 5.67
�5.55�

5.58
�5.48�

5.54
�5.42�

5.51
�5.35�

5.48
�5.32�

c �Å� 5.17
�5.13�

5.52
�5.48�

5.67
�5.71�

5.77
�5.87�

5.84
�5.98�

V=abc �Å3� 96.4
�91.1�

99.8
�95.2�

101.2
�96.9�

101.7
�97.0�

102.1
�97.3�

�V �Å3� 0.0
�0.0�

3.4
�4.1�

4.8
�5.8�

5.3
�5.9�

5.7
�6.2�

c /a 1.57
�1.60�

1.71
�1.73�

1.76
�1.82�

1.80
�1.9�

1.83
�1.95�

b /a 1.72
�1.73�

1.72
�1.73�

1.72
�1.73�

1.72
�1.73�

1.71
�1.73�
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due to space limitation� show that the BCT-4 structure has
minimum enthalpy at b /a=1.73 for all values of tensile
stress considered. For clarity without loss of generality, the
discussions here use Fig. 3 which shows the enthalpy values
�eV per four Zn-O pairs� for both structures for b /a=1.73 at
�=0, 4, 7, and 10 GPa. At any stress level, each structure
has its own enthalpy minimum. The first minimum is in the
vicinity of c /a�1.6 which corresponds to WZ with lattice
parameters slightly different from those at zero stress, and
the second minimum is in the vicinity of c /a�1.7–1.9,
which corresponds to BCT-4. At zero stress, WZ is the stable
crystal structure and its enthalpy is lower than that of BCT-4
by 0.3 eV �Fig. 3�a��. As the stress is increased to 4 GPa
�Fig. 3�b��, the difference in enthalpies decreases, and at a
stress of 7 GPa �Fig. 3�c��, the two minima become compa-
rable indicating that WZ and BCT-4 are equally favored.
This value of stress corresponds to the equilibrium transition
stress for the two phases. Since an energy barrier �associated
with intermediate transitional states� exists for the transfor-
mation, a stress level higher than the 7 GPa equilibrium
stress is required to initiate the transformation. At a stress of
10 GPa �Fig. 3�d��, the enthalpy of BCT-4 is lower, and this
structure is clearly favored. Further increases in stress result
in the eventual initiation of the phase transformation. The
specific stress level at which the transformation initiates de-
pends on the rod size and temperature. For the particular
nanorod in Fig. 1 at 300 K, the critical stress level is �
=17.9 GPa. The gradual evolution of the local enthalpy
minimum for the BCT-4 at �=0 into a global minimum as
stress increases confirms that the phase transformation ob-
served in MD simulations is indeed energetically favored.
The phase transformation observed here alters the electri-

cal, thermal, and mechanical responses of the nanorods. Re-
cently, WZ-structured ZnO nanorods have been used to suc-
cessfully generate direct electric current through mechanical
bending.20 The transformation from the piezoelectric WZ
structure to the nonpiezoelectric BCT-4 structure establishes
an upper bound for the maximum possible current generation
and operational strain for this application. Specifically, the
electric field output E3 can be related to the longitudinal

strain 
3 through E3=
3 /d33, where d33�20.5 pm/V is the
piezoelectric coefficient for the ZnO nanorods. Since the
strain at the initiation of transformation �B in Fig. 1�b�� is
approximately 7.5% for all rod sizes, the maximum electric
field output is therefore 3.7 V/nm. The mechanical response
of BCT-4 also differs significantly from that of WZ. In par-
ticular, the enthalpy curves for BCT-4 are flatter than those
for WZ �Fig. 3�, indicating that the elastic stiffness of BCT-4
is lower than that for WZ. Indeed, in Fig. 1�b�, the slope of
curve AB �228 GPa, which is the �0001� elastic modulus of
WZ� is higher than that of curve FD �167 GPa, which is the
corresponding modulus of BCT-4�. The thermal response of
semiconductors such as ZnO is dominated by phonons and
the interactions between phonons and surfaces.21 The WZ to
BCT-4 phase transformation changes the atomic arrangement
and hence the phonon spectrum, resulting in potentially large
changes in thermal conductivity. The electronic band struc-
tures of WZ and BCT-4 are shown in Fig. 4. Note that the
total number of bands for BCT-4 is twice that for WZ be-
cause the unit cell of BCT-4 has twice as many atoms as WZ.
Both phases have direct band gaps at �. Although DFT cal-
culations with local density approximations are known to
underestimate band gaps and therefore are not normally used
to predict absolute band gap values, they can provide valid
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FIG. 3. �Color online� Enthalpy �per four
Zn-O pairs� as a function of c /a obtained from
DFT calculations for b /a=1.73 at tensile stresses
of �a� �=0 GPa, �b� �=4 GPa, �c� �=7 GPa,
and �d� �=10 GPa in the �0001� direction.

FIG. 4. Band structures of �a� WZ ZnO and �b� BCT-4 ZnO
obtained by DFT calculations. The energy is relative to the top of
the valence bands.
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relative comparisons between the two phases. The calculated
band gap and average electron effective mass of BCT-4 are,
respectively, 12% and 17% smaller than those of WZ, giving
the nanorod a smaller band gap and potentially higher elec-
tron mobility after the WZ-to-BCT-4 transformation. These
mechanically induced electrical property shifts may have ap-
plications in devices that depend on coupling between re-
sponses.
Most importantly, the identification of the BCT-4 structure

leads to a more complete understanding of the nature and
extent of polymorphism in ZnO and its dependence on load
triaxiality. Joining wurtzite �WZ�, zinc blende �ZB�, rocksalt
�RS�, and HX, BCT-4 constitutes the fifth polymorph of ZnO
discovered so far. It is now possible to construct a structure-
load triaxiality map for ZnO, as shown in Fig. 5. Among the
previously well known phases, WZ is the most stable and
naturally occurring phase and RS is observed under hydro-
static compressive conditions. Both BCT-4 and HX are sta-
bilized under uniaxial loading, with HX occurring under ten-

sion along the �011̄0� and/or �21̄1̄0� directions as well as
compression along the �0001� direction and BCT-4 occurring
under tension along the �0001� direction. It is worthwhile to
note that ZB grows epitaxially on specific surfaces of cubic
crystals and cannot be obtained via a transformation from
WZ under external loading; therefore, it is not included in
this map.
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FIG. 5. �Color online� Crystalline structure-load triaxiality map
summarizing the nature and much wider extent of polymorphism in
ZnO than previously known; WZ is the natural state at ambient
conditions, RS occurs under hydrostatic or near hydrostatic com-

pression, HX occurs under tension along the �21̄1̄0� and �011̄0�
directions as well as compression along the �0001� direction, and
BCT-4 occurs under tension along the �0001� direction. The green
and red arrows indicate, respectively, possible and impossible trans-
formation paths under relevant load direction reversals. ZB can only
be grown epitaxially on certain crystalline planes of cubic crystals
and cannot be obtained via a transformation from WZ under exter-
nal loading; therefore, it is not included in this map.
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A first principles study of an Mn impurity in PbTiO3 and PbZrO3 has been carried out to determine
its favorable location and its electronic and magnetic properties. We find that it is energetically
favorable for the Mn atom to substitute for Ti/Zr �as opposed to substituting for Pb and O or to
residing in an interstitial position� under all equilibrium crystal growth conditions. The Mn defect
mainly occurs as neutral-charge Mn substitute Ti/Zr, which has a total electron spin of 3 /2. When
no other impurities are present, a small concentration of charged Mn impurities that also form tends
to make the sample slightly p type �n type� in oxygen-rich �poor� equilibrium growth conditions.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2654120�

I. INTRODUCTION

The piezoelectric ceramics, including PbZr1−xTixO3
�henceforth PZT�, have been applied in a wide variety of
electrical devices, such as high-voltage high-power genera-
tors and sensors.1–3 The advantages of PZT over other piezo-
electric ceramics include a higher value for the piezoelectric
coupling coefficient and easier modification of its response
properties via chemical doping. When the amount of Ti and
Zr is roughly equal, the PZT system undergoes a low-
temperature rhombohedral-tetragonal crystal phase
transition.4–6 The strongest piezoelectric response and high-
est sensitivity to impurity doping effects are observed for
doping levels that are close to this phase boundary.6–8

There is a rich literature that describes the modification
of the piezoelectric response and other properties of PZT by
various types of impurities �see, e.g., Refs. 9–12�, and this
remains an active area of research. Usually, donor-type im-
purities, when substituting for either Pb or Ti/Zr, tend to
increase the piezoelectric coupling constant �as well as af-
fecting other electric properties�, whereas acceptor-type im-
purities tend to reduce this coupling constant. The former are
referred to as soft dopants, and the latter as hard dopants in
this context.

One dopant that has been the subject of interest is
Mn.13,14 Although mainly used as a hard dopant, which sub-
stitutes for the Ti/Zr site and causes a reduction in the pi-
ezoelectric coupling strength close to rhombohedral-
tetragonal phase boundary, recent studies have indicated that
the role of Mn may be more complex.15 It was observed that
a small concentration of Mn ��0.5 at. % � actually can have
a softening effect on PZT. As the concentration of this im-

purity is increased ��1 at. % �, there is a recovery of the
expected hardening effect, so that a further increase of Mn
concentration results in a decrease of the piezoelectric cou-
pling. This finding corresponds interestingly with an electron
spin resonance �ESR� experiment on PbTiO3, which indi-
cates that the fraction of Mn ions that act as acceptors �rather
than neutral substitutes� decreases with increasing Mn con-
centration before reaching a minimum near 1 at. % and then
rapidly increasing.16

This intriguing behavior of the piezoelectric response as
a function of Mn impurity concentration, along with an in-
terest in the magnetic state of the Mn impurity in the PZT
environment, provides motivation for the present study. Al-
though there may be many factors beyond the scope of this
work that influence the electric response of the doped piezo-
electric system, we can, as a starting point, try to understand
the basic properties of the impurity introduced, such as its
preferred site of occupation and charge state. For this pur-
pose, we carry out first principles calculations of the elec-
tronic properties of PbTiO3 and PbZrO3 �henceforth PT and
PZ, respectively� in the presence of a small number of Mn
atoms. These simpler stoichiometric materials are considered
because of the high computational cost of studying the PZT
alloy. An application of our work to the PZT system is to be
understood as an interpolation between the PT and PZ re-
sults.

The outline of this article is as follows. In Sec. II we
present a detailed analysis of the allowable equilibrium
growth conditions of PT and PZ �i.e., the range of allowed
atomic chemical potentials�, so that any dependence of the
Mn defect position and charge state on growth conditions
may be later determined. The discussion in that section may
be useful in future studies of other types of impurities and
defects in PZT. The details of our theoretical and computa-a�Electronic mail: sukit@sut.ac.th
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tional method are described in Sec. III. In Sec. IV we present
our main results: the formation energy of possible Mn impu-
rity types in PT and PZ as well as that of relevant native
defects in these materials. We also discuss the midgap defect
states associated with the Mn impurity. We conclude in Sec.
V.

II. DEFECT FORMATION ENERGIES AND CRYSTAL
GROWTH CONDITIONS

If a certain type of defect has the formation energy Ef,
then the concentration c of this defect, for a sample under
thermal equilibrium, can be written as16,17

c�Xq� = Nsites exp�− Ef�Xq�/kBT� , �1�

where Nsites is the number of �symmetry-equivalent� possible
defect sites per unit volume and c�Xq��Nsites. To calculate
the defect formation energy Ef�Xq�, we use a so-called super-
cell approach.18,19 In the supercell approach, a single defect
is included within a sufficiently large supercell �containing
several unit cells of the bulk material�, which is then re-
peated periodically through space. The defect formation en-
ergy Ef�Xq� of the defect labeled X with charge q is defined
as the energy gained by the supercell when the defect is
added to it and is given by18,19

Ef�Xq� = Etot�Xq� − Etot�0� −�
i

�ni�i + q
F, �2�

where the first two terms on the right side are the result of a
total energy calculation for the supercell with and without
the defect, respectively. The sum in the third term is taken
over all the species of atoms that must be added or removed
from the supercell to form the defect, �ni is the number of
atoms of element i that are added, and �i is the correspond-
ing atomic chemical potential. The final term in Eq. �1� de-
pends on the charge of the defect and the Fermi energy 
F.

The Fermi energy can be estimated by assuming that the
sample is charge neutral, i.e., by assuming that the total
charge of all impurities, valence band holes, and conduction
band electrons is zero. Nevertheless, it is often useful to
imagine that the Fermi energy can be freely varied within the
band gap and that, as 
F is raised through the energy levels
associated with defects, electrons move from an external res-
ervoir into the system to occupy these levels. In this picture,
the stable charge state �i.e., the charge state q that gives the
minimum defect energy Ef�Xq�� changes as the Fermi level is
varied such that the defect levels can be identified with kinks
in a graph of the defect energy for the stable charge state
versus 
F. The levels that are determined in this way, known
as thermodynamic transition levels, correspond to measur-
able quantities: they can be observed in an experiment for
which the structure is allowed to relax after a transition, such
as deep-level transient spectroscopy. One should keep in
mind that these levels might not directly correspond to those
measured in optical experiments, where the system does not
have time to relax. Below, based on first principles calcula-
tions, we predict the positions of defect levels associated
with various Mn defects in PT and PZ.

In using Eqs. �1� and �2� to determine the abundance of
defects, one needs to know the chemical potentials, which

can vary greatly depending on growth and postgrowth treat-
ment processes. However, the range of possible values of �i

can be roughly determined by considering the requirements
for controllable growth of the crystal.20,21

In our case, equilibrium growth of the PbTiO3 crystal
requires that the following condition on the chemical poten-
tials be satisfied:

�Ti + �Pb + 3�O = �PbTiO3. �3�

Here, each atomic chemical potential is defined as the energy
with respect to its elemental phase value, for example, �Ti
=0 corresponds to the chemical potential of the Ti atom in
metallic titanium. With this choice of reference energies, we
calculated �PbTiO3=−13.41 eV.

If the sum on the left-hand side of Eq. �3� was larger
than the right-hand side, then rapid, uncontrolled growth of
the PbTiO3 crystal would occur. If the sum on the left-hand
side was smaller than the right-hand side, then the crystal
would disintegrate rather than grow. We also have to take
into account additional constraints to ensure that the growth
of other compounds, which contain some or all of the con-
stituent elements of PbTiO3, is energetically less favorable
than the growth of PbTiO3 itself.

The requirement that the PbTiO3 crystal growth is favor-
able over the formation of metallic Pb, Ti, or O2 gas restricts
the chemical potentials to the octant �Ti ,�Pb,�O�0. Along
with Eq. �3�, planes corresponding to equilibrium growth of
PbO2 and TiO2,

�Pb + 2�O = �PbO2 �4�

and

�Ti + 2�O = �TiO2 �5�

are relevant, respectively. Regions �of the three-dimensional
chemical potential space� in which the right sides of Eqs. �4�
and �5� exceed the left sides correspond to growth conditions
for which PbO2 and TiO2 crystals disintegrate. For stable
growth of PbTiO3 to be ensured, a point ��Ti ,�Pb,�O� must
lie on the segment of the plane of Eq. �3� that is within the
region in which both PbO2 and TiO2 are disintegrating.
�Other competing phases, such as PbO and TiO, have been
considered but found to give no further restriction on the
allowed chemical potentials.�

In Fig. 1 we illustrate the determined conditions for
stable PbTiO3 growth with a shaded region on the �Ti-�Pb
plane. The values ��Ti ,�Pb� that lie within this shaded region
correspond to

C +
1

2
�Ti � �Pb � K + 2�Ti and �Pb � 0, �6�

where

C = �PbTiO3 −
3
2�TiO2 = 1.96 eV, �6a�

K = 3�PbO2 − 2�PbTiO3 = 16.21 eV. �6b�

For every point within the shaded region, there is a value of
�O given by Eq. �3� for which PbTiO3 crystals grow in equi-
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librium without losing out to other phases. Selected values
for �O are given in the figure.

In the ��Ti ,�Pb,�O� coordinate system, the point �X

��−9.50,−2.79,−0.37� eV, marked as X in Fig. 1, describes
oxygen-rich growth conditions �this point has the highest
possible �O�. Note that this point also corresponds to both
Ti-poor and Pb-poor conditions. Oxygen-poor �and Ti-rich�
growth occurs at �A��−3.92,0 ,−3.16� eV, marked as A in
the figure. There is no unique Pb-rich growth condition but
rather a line of allowed points having �Pb=0. The point
marked B in Fig. 1 is �B��−8.11,0 ,−1.77� eV, and its sig-
nificance is explained below.

We are interested in determining whether an Mn impu-
rity prefers to occupy the A site �the Pb site� or the B site �the
Ti/Zr site� in PbTiO3 and PbZrO3. This depends on the dif-
ference in the formation energies for a Mn atom occupying
these two sites. In thermal equilibrium, the ratio of Mn atom
occupancy at the A and B sites is simply given by

c�MnPb�
c�MnTi�

= exp
− Ef�MnPb� − Ef�MnTi�
kBT

� , �7�

where MnPb labels a defect for which Mn substitutes for Pb
and

Ef�MnPb� − Ef�MnTi� = Etot�MnPb� − Etot�MnTi�

+ ��Pb − �Ti� . �8�

Of the terms on the right side of Eq. �8�, only ��Pb−�Ti�
depends on growth conditions.

From Eq. �8�, it is clear that the growth conditions that
provide the best chance for Mn to substitute Pb are those for
which �Pb−�Ti is the least. Within the region of allowed
growth, �Pb−�Ti has its minimum value at �A. On the other
hand, �Pb−�Ti has its maximum value at �B, which corre-

sponds to growth conditions that provide the best chance for
Mn to substitute Ti. To establish that MnTi are more abundant
than MnPb in PT, it is sufficient to show that Ef�MnPb�
�Ef�MnTi� at �A. If this is true, then Mn-for-Ti substitution
is energetically more favorable �than Mn for Pb� for all pos-
sible equilibrium growth conditions.

Note that the ratio of equilibrium concentrations of Mn
impurities in different lattice sites given in Eq. �7� is inde-
pendent of �Mn. This means that, to identify whether Mn
atoms prefer to occupy A or B site, the value of �Mn is not
crucial. However, to roughly estimate the concentration of a
given type of Mn impurity, we take �Mn to be equal to the
maximum value allowed by the constraint associated with
the formation of Mn metal or MnO2 �whichever imposes the
lower maximum�. At the point �A it is the Mn metal, for
which �Mn=0, that imposes the stricter condition, whereas
over most of the shaded region of Fig. 1 it is MnO2 that is
relevant.

We have carried out the analysis of growth conditions
for PbZrO3 and have found that it proceeds in much the same
way as for PbTiO3. To avoid repetition, we give only the
main results. The conditions needed for stable growth of PZ
can be represented by a region in ��Zr ,�Pb,�O� space that
resembles the shaded area in Fig. 1, and the points X, A, and
B for PT all have analog in the PZ case. Oxygen-rich growth
corresponds to ��Zr ,�Pb,�O�= �−8.77, −0.89, −1.30� eV,
whereas the growth condition most favorable for Mn-for-Pb
substitution corresponds to ��Zr ,�Pb,�O�= �−6.95, 0 ,
−2.25� eV and that favoring Mn-for-Zr substitution is
��Zr ,�Pb,�O�= �−8.38, 0 , −1.77� eV.

III. COMPUTATIONAL METHOD

We use spin-polarized density functional theory22 �DFT�
with local density approximation �LDA� and ultrasoft
pseudopotentials,23 as implemented in the VASP codes.24

Spin-orbit couplings are not considered. The plane wave ba-
sis set used in the calculation contains plane waves up to a
maximum energy of 450 eV. By obtaining the total energy
dependence on the volume of the cubic unit cell, we deter-
mined the lattice constant for cubic PT and PZ to be a
=3.89 and 4.12 Å, in good agreement with previous DFT
calculations.25 The corresponding experimental values of PT
and PZ are 3.97 Å �Ref. 26� and 4.13 Å �Ref. 27�, respec-
tively. We determine the formation energy of defects by a
supercell approach using a 40-atom supercell, which is a 2
�2�2 repetition of the primitive unit cell, with all atoms in
the supercell allowed to relax by minimization of the
Hellmann-Feynman force to less than 0.05 eV/Å. To ensure
convergence, selected calculations were repeated using a 3
�3�3 �135-atom� supercell. By repeating calculations with
the larger supercell, we have established that the interaction
between Mn atoms in neighboring supercells are not impor-
tant, i.e., that our results are a good approximation of the low
concentration limit. For the Brillouin zone integrations, the
2�2�2 shifted Monkhorst-Pack28 special k-points are used.
The band gaps of PT and PZ at this special k-point are cal-
culated to be 2.59 and 3.29 eV, respectively, which follow
the usual LDA tendency of underestimating the band gap.

FIG. 1. An illustration of the allowed thermal equilibrium growth conditions
for PbTiO3. The axes are the chemical potentials of Ti and Pb, each mea-
sured relative to its value in the natural elemental phase. For stable growth
of PbTiO3, ��Ti ,�Pb� must lie in the shaded region. The chemical potentials
of the constituent elements are related through Eq. �3� such that the allowed
chemical potential of oxygen �O is uniquely determined once �Ti and �Pb
are chosen �selected values of �O are shown�. The significance of A, B, and
X is discussed in the text.
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The experimental band gaps of PT and PZ are 3.40 eV �Ref.
29� and 3.80 eV �Ref. 30�, respectively.

For simplicity, we carried out our calculations in the
high T cubic phase of PT and PZ. The piezoelectric tetrago-
nal and rhombohedral phases occur at lower temperature.
The local environment of the Mn impurity is expected to be
similar in all three phases, since the ion shifts associated with
the crystal phase changes are small. The cubic system should
thus provide a good indication of the role of Mn doping in
the low T phases as well.

IV. RESULTS

In Fig. 2 the formation energies of MnPb and MnTi im-
purities, in the minimum energy charge states, are plotted as
a function of the Fermi energy 
F. The plots are for the three
choices of growth conditions described above, that is, for �A,
�B, and �X �Figs. 2�a�–2�c� respectively�.

First, we note that the formation energy for Mn substi-
tuting Ti is always significantly lower than that for Mn sub-
stituting Pb. Even for �A, at which Mn has its best opportu-
nity to substitute Pb, the formation energy of MnPb is still
larger than that of MnTi by more than 1.5 eV. According to
Eq. �7�, the equilibrium concentration of MnPb is negligible
compared to the concentration of MnTi defects at any reason-
able temperature. �The formation energy of MnO, not shown,
is even larger than that of MnPb.� We can thus safely con-
clude that, among lattice sites, Mn atoms always prefer the
Ti/Zr site in bulk PT and PZ systems. Note that under
growth condition �B, the formation energy of MnTi is always
negative when the maximum possible value of the Mn
chemical potential, set by the threshold of metallic Mn
growth, is assumed ��Mn=0�. This means that, under condi-
tion �B, the chemical potential of Mn must be lower �by at
least �Mn�−1.3 eV, so that the formation energy of MnTi is
positive� than this maximum value in order to maintain
stable growth of PT and keep the level of Mn incorporation
low.

Next, we consider Mn interstitials. There are two inter-
stitial sites in the perovskite lattice that are plausible candi-

dates for Mn occupation. One is located midway along the
line between Pb neighbors, on the edge of the cubic unit cell,
as shown in Fig. 3�a�, and the other is located along the line
between Pb and Ti sites, on the body diagonal, as shown in
Fig. 3�b�.

Based on our calculated formation energies, Mn intersti-
tials prefer to reside between the Pb–Pb neighboring atoms,
Mnint, �Fig. 3�a��, rather than between the Pb–Ti neighboring
atoms, Mnint� �Fig. 3�b��. �Strictly speaking, Mnint� does be-
come slightly energetically favorable in extreme n-type con-
ditions. However, in such conditions the formation energy
for MnTi is much lower than that for either interstitial site—
thus in all cases the concentration of Mnint� is expected to be
negligible compared to other Mn defects.� We do not con-
sider Mnint� further. On the other hand, Mnint �Fig. 3�a�� can
be important because of its high positive stable charge state
and its low formation energy in p-type conditions. We show
in Fig. 4�a� plot of the formation energy of this interstitial
defect in comparison with that of MnTi for the same three
choices of growth conditions as Fig. 2 �the formation energy
of a titanium vacancy VTi, discussed below, is also shown�.

The Ti-rich condition �A, shown in Fig. 4�a�, is the most
favorable condition for Mnint to form. In this case, the for-

FIG. 2. The defect formation energy
for the Mn impurity when substituting
for lead �denoted MnPb� and for tita-
nium �MnTi� in PbTiO3 is plotted vs
the electron Fermi energy. The dashed
vertical line indicates the calculated
conduction band minimum, whereas
the full range of the graph corresponds
to the experimental band gap. Only the
formation energy for the lowest energy
charge state is shown. The slopes of
the plots reflect the charge states of the
defects and the kinks in the plots cor-
respond to the energy positions at
which transition from one charge state
to another takes place, as discussed in
the text. The panels are for different
growth conditions.

FIG. 3. �Color online� Schematic illustration of Mn interstitials in PbTiO3.
Two types of Mn interstitials are shown: at the site between �a� the Pb–Pb
neighboring atoms �Mnint� and �b� Pb–Ti neighboring atoms �Mnint� �. The
large spheres at the corner of unit cell are Pb atoms, the medium-sized
sphere at the cube center is a Ti atom, and the small spheres at the face
centers are O atoms.
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mation energy of Mnint is negative for a wide range of values
of the Fermi energy extending from extreme p-type to
slightly n-type conditions. Over this range, the number of
Mn interstitial defects would be expected to increase rapidly
during growth, while the number of substitutional defects
would remain negligible. However, Mnint has a high positive
charge state whenever it is energetically favored over other
forms. Since the system must remain charge neutral, the in-
corporation of Mnint requires a compensating addition of
negative charge. This balance ensures that MnTi defects will
always occur in higher concentration than the interstitials
under thermal equilibrium growth conditions.

To see this, one may imagine introducing Mn to a Ti-rich
PT sample that initially has its Fermi level just above the
valence band maximum �VBM�. Under this condition, the
Mnint, which is a donor, would form rapidly �since the for-
mation energy is negative for this Fermi energy�. The elec-
trons donated by the Mn interstitials would compensate pre-
existing intrinsic holes and hence the Fermi level would rise
as the Mnint concentration increased. This would continue
until some acceptor could form at a concentration compa-
rable to that of Mnint. In Fig. 4�a�, it is clear that MnTi will
act as this compensating acceptor. Thus, if we start the Mn
doping process with a sample that is p type, the Fermi level
will increase until it reaches a value at which the formation
energy of MnTi

1− and Mnint
3+ are roughly equal. A balance is

then achieved between donation by Mnint
3+ and acceptance by

MnTi
1−, which stabilizes the Fermi level. From Eq. �1� we find

that the precise value of this pinned Fermi level is 
F

�1.86 eV, indicated with a dotted line in Fig. 4. �Note that
free carriers in the valence and conduction bands can be
ignored at any reasonable temperature since the pinned
Fermi level is deep inside the band gap.� At this Fermi level,
the relative concentrations of the most abundant Mn forms
are c�MnTi

0 ��8�c�MnTi
1−��24�c�Mnint

3+�, assuming the
temperature of 900 °C. Without other lower-energy compen-
sating acceptors, this relative concentration of interstitial de-
fects is the highest value possible for thermal equilibrium
growth under any chemical potential conditions. This is the

basis of our conclusion that the vast majority of Mn defects
are neutral MnTi and that the concentration of Mnint is always
much lower.

We have also considered several fundamental native
point defects in PT to determine whether any of them could
compensate Mn impurities. Only the Ti vacancy, denoted VTi,
is found to have sufficiently low formation energy to merit
consideration. The titanium vacancy occurs in the 4− charge
state and has a reasonably low formation energy under �B

and �X conditions. However, from Figs. 4�b� and 4�c�, we
can see that VTi never acts as the leading compensating
acceptor—it always loses out to an Mn acceptor. Also, since
the formation energies of the leading donor �Mnint� and lead-
ing acceptor �charged MnTi� at the pinned Fermi level are
significantly higher than the formation energy of MnTi

0 , the
number of Mnint and charged MnTi is negligible compared to
the number of MnTi

0 for �B and �X growth conditions.
We summarize the preceding results of our total energy

calculations before discussing the defect states inside the
band gap. For all thermal equilibrium growth conditions of
PT, the vast majority of Mn impurities will substitute for Ti
and will have neutral charge state. This neutral MnTi defect
carries a magnetic moment of three electronic spins, as ex-
plained below. �ESR measurements have consistently seen
evidence of Mn-for-Ti substitutes in the 3/2 spin state in
PbTiO3, in agreement with our results. Mixed valence states
for the Mn-for-Ti substitutes have also been reported in ESR
studies, though the presence of non-neutral substitutes ap-
pears to depend on experimental growth conditions and fir-
ing temperature.16,31� In addition, our calculations indicate
that under Ti-rich conditions, Mn-doped PT cannot be grown
p type under thermal equilibrium because of the spontaneous
formation of positively charged Mnint, which pushes the
samples into the n-type region. On the other hand, for O-rich
conditions, the Mn-doped PT samples could be predicted to
be slightly p type because the pinned Fermi level is closer to
the VBM than the middle of the band gap.

From the kinks in the graph of Ef�MnTi� vs 
F, one can
identify several thermodynamic transition levels close to the

FIG. 4. The defect formation energies
of Mn substituting for Ti �denoted
MnTi�, Mn interstitial �Mnint�, and Ti
vacancy �VTi� in PbTiO3 for three
growth conditions. The pinned value
of the Fermi energy is indicated by a
vertical dotted line. This level is deter-
mined by assuming perfect charge
compensation between the leading ac-
ceptor �in this case, MnTi� and the
leading donor �Mnint�. Since MnTi in
1− charge state should act as the lead-
ing acceptor �when no other lower-
energy acceptors are present�, its for-
mation energy plot is extended with a
dashed line to the intersection with
that of the leading donor �Mnint�.
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band edges. If the Fermi level is varied through the band gap
starting at the VBM, the stable charge state of MnTi changes
from 3+ to 3− as these Mn levels are being filled one by one.
Although the calculated Kohn-Sham �KS� single electron
states do not coincide exactly with these transition levels �the
difference comes from the structural relaxation energy when
changing from one charge state to another�, a rough corre-
spondence can be made. It is thus interesting to follow the
occupation of these single electron states, along with the
magnetization of the supercell, as the defect charge state
changes from 3+ to 3−. We describe this progression below
and also illustrate it using the calculated density of states
�DOS� and Mn local density of states,32 �LDOS� in Fig. 5.
There are a total of six levels, a degenerate triplet for each
spin, that are localized near the Mn ion and located inside the
band gap. These levels are derived from the dxy, dxz, and dyz

atomic orbitals of Mn, which remain degenerate in the cubic
crystal field experienced by the Mn atom at the octahedral Ti
site �the doublet corresponding to the other two d orbitals
having been split off into the conduction band by the per-
turbing crystal field�. In bulk PT, a Ti atom donates four
electrons to O atoms. Therefore, the removal of a neutral Ti
atom leaves four holes in the valence band. Upon being in-
serted as a substitute, the 3d54s2 Mn atom sheds four elec-

trons to fill these holes. Since none of the modified atomic
orbitals of Mn lie below the VBM, the Mn atom donates its
remaining three electrons to the reservoir—leaving the sys-
tem in the 3+ charge state—when the Fermi level is close to
the VBM. In all our calculations, we set initial atomic mag-
netic moments to point along the positive ẑ direction �note
that the spin-orbit coupling is not included, so the spin quan-
tization axis ẑ is arbitrary�. Because of this choice of initial
configurations, the fully relaxed configurations are such that
the spin-up Mn levels are the first to be occupied when the
Fermi energy is increased. The ẑ component of the total spin
of the supercell, denoted Mz, is zero in the 3+ charge state.
As electrons are added into the spin-up states, Mz increases
to a maximum of 3/2 when the charge state is neutral and all
spin-up �spin-down� Mn levels are filled �empty� before de-
creasing back to zero as spin-down electrons are added and
the charge state goes from neutral to 3−. In the 3+ charge
state, the six empty levels are degenerate and lay roughly
0.5 eV above the VBM �see the top panel of Fig. 5�. As the
spin-up levels become occupied, one by one, the energy of
the spin-up triplet drops slightly closer to the VBM due to
the system seeking a minimum total energy of all occupied
states. The level of the unoccupied spin-down triplet, on the
other hand, increases significantly and progressively, owing
to the Coulomb repulsion with the electrons present in
spin-up states �note the large energy splitting between the
spin-up and spin-down Mn states for the intermediate charge
states in Fig. 5�. Once the spin-up states are filled and the
occupation of the spin-down states begins, the trend reverses
until the energy levels of the six states are again equal in the
3− charge state, with a value slightly below the conduction
band minimum �CBM� �the bottom panel of Fig. 5�.

In Fig. 5, the LDOS peaks near the VBM correspond to
the Mn �dxy ,dxz ,dyz�-derived triplets. An additional peak in
the LDOS occurs close to the conduction band minimum and
dips slightly into the band gap for charges between 2+ and 0,
as seen in the spin-up LDOS of Fig. 5. This additional peak
corresponds to the empty doublet derived from the localized
dx2−y2 and d3z2−r2 Mn orbitals. It does not give rise to ther-
modynamic levels since the corresponding single electron
levels are pushed into the conduction bands once the spin-
down �dxy ,dxz ,dyz� triplet begins to be filled.

The top of the valence band for PT is composed mainly
of oxygen p orbitals, whereas the bottom of the conduction
band is mainly composed of Ti d orbitals. We thus expect
that the dipole-allowed optical transitions at the excitation
energy below the bulk band gap will correspond to excita-
tions from valence band to the empty midgap Mn states.

The case of PbZrO3 is so similar that we merely list our
results. The MnZr defect is found to have the lowest forma-
tion energy �lower by about 4 eV than the MnPb defect at
�A�. For MnZr, the positions of the two thermodynamic tran-
sition levels are very similar to those for MnTi, with the same
sequence of stable charge states.

The location of the Mn impurity within the unit cell
could be inferred from the extended x-ray absorption spec-
troscopy �EXAFS� measurement near the Mn absorption
threshold. This measurement technique provides information
about the distance and identity of neighbors of the Mn atom.

FIG. 5. Spin-polarized density of states for PbTiO3 supercell with a Mn
substitute Ti �MnTi�. In each panel, the unfilled curve is the total DOS while
the filled curve is the Mn local DOS �Ref. 32� and the upper �lower� curves
are for spin up �down�. All seven possible charge states �from 3+ to 3−� are
shown in separate panels. The Fermi level for each charge state is shown as
a dashed vertical line that moves from the valence band maximum to the
conduction band minimum, each of which is indicated by a solid vertical
line, as the charge is decreased. The DOSs inside the band gap are derived
from Mn d orbitals.
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To make an accurate comparison with experimental data the
actual position of neighboring atoms, which are displaced
due to the insertion of Mn atoms, must be known. For this
purpose we list in Table I the distances between the Mn atom
and its nearest and next-nearest neighbors in PT and PZ ob-
tained from our first principles calculations. It may be noted
that, in all cases, the difference between the relaxed and bulk
positions of the atoms is relatively small �all are less than
10%�. However, this was not obvious beforehand and could
only be assured by performing the structural relaxations as
we have done.

As a final point of discussion, we recall that Mn impu-
rities have been observed to have a softening effect on the
piezoelectric response of PZT at low concentrations and a
hardening effect at higher concentrations. Certainly it is dif-
ficult to make a connection between the piezoelectric re-
sponse and our calculations since structural changes occur-
ring on length scales much larger than a unit cell, which
might take place when Mn is introduced, can also affect the
former, whereas our results only consider local properties.
Still, it may be worth noting that both donor-type and
acceptor-type Mn impurities were found above to have a low
formation energy under allowable growth conditions of PT
and PZ. Thus, although equilibrium growth favors neutral
substitutes, it is plausible that a sufficient number of charged
Mn substitutes and interstitials might be present and playing
a role in the observed hardening/softening effects, especially
in nonequilibrium growth conditions. Since softening �hard-
ening� is typically associated with donor �acceptor� impuri-
ties, the observation that Mn impurities can have both soft-
ening and hardening effects is consistent with our finding
that both Mn donors and acceptors are low-energy defects,
depending on growth conditions. If one was able to correlate
Mn location �measured via EXAFS, for example� with the
measured piezoelectric response, then further insight into
this issue might result.

V. CONCLUSIONS

The Mn impurity prefers to occupy the Ti/Zr site
�MnTi/Zr� over other sites in PbTiO3 and PbZrO3 under all
equilibrium growth conditions. The majority of MnTi/Zr de-
fects occur in the neutral charge state, with a total electron
spin of Mz=3/2. �Note that spin interactions between Mn
atoms were not considered in this study so no claim is being
made about dilute magnetism.� There is expected to be a
small concentration of MnTi/Zr in a 1− charge state with a
total spin of Mz=1 and a similar amount of Mn interstitials
in a 3+ charge state with Mz=2. These minority impurities
could be important for determining the Fermi level since

their total charge, for Mn concentrations on the order of 1%,
far exceeds the number of thermally excited free carriers.
The Fermi level thus determined suggests that Mn-doped
PZT should be slightly p type in O-rich conditions and
slightly n type in O-poor conditions if the sample is not
dominated by other low-energy impurities. The lattice relax-
ation in the vicinity of the Mn substitute is minor, with
nearest-neighbor bond lengths changing by less than 10%.
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We recently reported the discovery of a novel pseudoelastic behaviour resulting
from a reversible phase transformation from wurtzite (P63mc) to a novel graphite-
like hexagonal (P63/mmc) structure in ½01�10�-oriented ZnO nanowires under
uniaxial loading [Phys. Rev. Lett. 97 105502 (2006)]. This previously unknown
phenomenon is observed in nanowires and has not been reported for bulk ZnO.
In this paper, molecular dynamics simulations are carried out to characterize the
tensile behaviour dominated by this transformation of nanowires with lateral
dimensions of 18–41 Å over the temperature range of 100–700K. Significant size
and temperature effects on the behaviour are observed. Specifically, the critical
stress for the initiation of the phase transformation, the recoverable strains
associated with the pseudoelasticity and the hysteretic energy dissipation are
found to be both size and temperature dependent and can vary by as much as
59%, 32% and 57%, respectively. The large recoverable strains of 10–16% are
unusual for the normally rather brittle ZnO ceramic and are due to both elastic
stretch and the phase transformation in the slender one-dimensional nanowires.
The hysteretic energy dissipation is in the range 0.05–0.14GJm�3 per cycle and
such low levels are attributed to the relatively low energy barrier for the
transformation. Unlike the pseudoelasticity in fcc metal nanowires of Cu, Ni and
Au, which leads to a novel shape memory effect, the pseudoelasticity quantified
here does not result in a shape memory of ZnO nanowires. The primary reason is
the absence of an energy barrier for the phase transformation at zero stress.

1. Introduction

Pseudoelasticity and the shape memory effect (SME) are traditionally associated
with shape memory alloys and elastomers [1]. Such effects have recently been
discovered in single crystalline metal nanowires as a consequence of their nanoscale
dimensionality [2–5]. We have recently reported a novel pseudoelastic behaviour in
½01�10�-oriented ZnO nanowires which arises from a reversible phase transformation
from a tetrahedrally coordinated wurtzite (herein denoted as WZ, P63mc space
group) phase to a newly discovered graphite-like phase (herein denoted as HX,
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P63/mmc space group) [6]. This previously unknown five-fold coordinated
polymorph of ZnO can result from either tensile loading along the ½01�10� direction
or compressive loading along the [0001] direction. For ½01�10� nanowires in tension,
recoverable strains, which comprise of the elastic stretching of the WZ and HX
phases and a contribution from the transformation, can be up to 16%. This is quite
extraordinary since ionic compound semiconductors such as ZnO, GaN, InN and
BN are known to be brittle under tensile loading. While the ability to undergo a
phase transformation is the primary reason for the unusual pseudoelastic behaviour,
the nearly defect-free nature of these nanowires and the large surface-to-volume
ratios, which enhance atomic mobility, also contribute to the wires’ ability to
undergo deformation without fracture. The high strengths, large recoverable strains
and property variations associated with transformation make these nanowires ideal
candidates for nanocomponents in a variety of nano-electromechanical systems
(NEMS), such as sensors, actuators and switches. Since this pseudoelastic behaviour
has just been discovered in ZnO nanowires that have only been synthesized recently,
a fundamental understanding of the overall constitutive behaviour, the nature of the
phase transformation and the characteristics of the transformed phase is needed in
order to unleash the potential of these nanowires.

In this paper, the pseudoelastic responses of ½01�10� ZnO nanowires with lateral
dimensions of 21.22� 18.95, 31.02� 29.42 and 40.81� 39.89 Å2 under quasistatic
tensile loading are characterized. The characterization accounts for temperatures
between 100 and 700K. The analysis focuses on the formation of the new HX
crystalline structure and the transformation path from WZ to HX under uniaxial
tensile loading. In particular, the atomic motions or lattice distortion resulting in the
formation of the HX structure are quantified through the gradient of a continuum
deformation map. The analysis lends itself to the quantification of the recoverable
strains associated with the pseudoelastic behaviour of the nanowires, including
contributions from the elastic stretching of the WZ and the HX phases and lattice
size change due to the phase transformation. The size and temperature dependence
of important parameters, including the critical stress for the initiation of phase
transformation, maximum recoverable strain and hysteretic dissipation, are also
quantified.

2. Computational framework

Molecular dynamics (MD) simulations using the Buckingham potential with charge
interactions [7, 8] are carried out. The nanowires considered are single-crystalline and
wurtzite-structured, with lattice constants a¼ 3.249 Å and c¼ 5.206 Å and a growth
direction along the ½01�10� axis [9–11]. The wire structure is generated by repeating a
wurtzite unit cell along the ½2�1�10�, [0001] and ½01�10� directions (figure 1). Three
different cross-sectional sizes (21.22� 18.95, 31.02� 29.42 and 40.81� 39.89 Å2) are
considered. The smallest cross-sectional size (21.22� 18.95 Å2) is chosen such that
the short-range cut-off distance in the Buckingham potential [7, 8] is smaller than the
smallest wire dimension and long-range interactions are properly considered [12].
Periodic boundary conditions are specified in the axial direction. Calculations with
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different computational cell sizes show that any length greater than 100 Å,
irrespective of the cross-section size, is sufficient to avoid image effects [13, 14].
Here, a periodic computational cell length of 150.83 Å is used for all the cross-
sections analyzed.

Since the crystallographically constructed nanowires may not be in equilibrium,
preloading relaxations are carried out to obtain the wires’ free-standing configura-
tions. The relaxations occur at desired temperatures without external loading, until
thermodynamic quantities (such as energy, stress, and temperature) indicate that
statistical steady states have been reached. A relaxation time of 3 ps is found to be
adequate for achieving equilibrium states for the ranges of wire size and temperature
considered. During the relaxations, minimization of the wires’ energy occurs through
surface reconstruction and adjustment of the lattice spacing in the wire core. The
surface reconstruction manifests in the forms of decreases in the interlayer spacing
between outer surface layers and in-plane contractions of the surfaces [13].
Such morphological changes on surfaces and in the wires’ cores are also monitored.
This is especially important for nanostructures since their surface-to-volume ratios
are high and extensive surface, and in some cases, core reconstructions may occur.
For example, [100] oriented fcc metal nanowires are known to reconstruct into [110]
orientations as a consequence of surface energy minimization [2, 4, 15, 16].

Following the initial relaxations, a quasistatic loading scheme is employed to
effect tensile deformation and to obtain the mechanical response of the nanowires.
Approximate quasistatic tensile loading in each deformation increment is achieved
though successive loading and equilibration steps using a combination of algorithms
for NPT and NVE ensembles [17]. Specifically in each deformation increment,
stretching at a specified rate of 0.005 ps�1 is first carried out for 0.5 ps using
a modified version of the NPT algorithm of Melchionna et al. [18, 19]. Subsequently,
with the strain maintained constant, the nanowire is relaxed for 3 ps via an algorithm
for NVE ensemble [17] at the specified temperature. This equilibration duration is
chosen such that a statistically steady state is reached and no further structural

Figure 1. Configuration of a ½01�10� nanowire with lateral dimensions of 21.22� 18.95 Å2

after geometric construction and before initial relaxation.
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changes occur. It is possible that the magnitude of the strain increment in each step
may affect the calculated stress-strain response. To minimize this error, calculations
using series of strain increments between 0.35% and 0.1% were carried out. Based on
the results, a strain increment of 0.25% and an equilibration period of 3 ps per
loading step are found to minimize fluctuations in the calculated response and are
used in the analysis reported. Since the loading proceeds in a series of equilibration
steps, this process essentially simulates quasistatic loading of the specimen.
Unloading is implemented in a similar manner with a reduction in strain for each
unloading step. The virial formula is used to calculate the stress [20].

Changes in lattice structures are characterized using the average lattice constants
and the radial distribution function (RDF) [21]. The average lattice constants are
calculated at each strain increment by averaging local lattice constants over the bulk
volume of the wire. Surface layers (figure 2) are not included in this calculation and
the local lattice parameters are computed from coordinates of atoms in the wire core.
The RDF describes how atoms in a system are radially packed around each other.
It measures the density of atoms in a spherical shell of radius r and thickness dr
surrounding an atom in the structure, i.e.

g rð Þ ¼ nðr, rþ drÞ=VS

N=V
, ð1Þ

where g(r) is the RDF, n(r, rþ dr) is the number of atoms in the spherical shell,
VS¼ 4�r2dr is the volume of the spherical shell, N is the total number of atoms in the
system and V is the volume of the structure. The RDFs are generated at the end

Nanowire Surface layer Core

Figure 2. Decomposition of a nanowire into surface atoms and interior atoms using the
coordination number (CN); the surface atoms have CNs below 4 and the core atoms have CNs
equal to 4.
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of the equilibration stage of a relevant strain increment when a steady state has been
achieved. In particular, the RDFs for the WZ structure after initial relaxation and
for the HX structure after transformation completion are studied to characterize the
structural changes associated with the phase transformation.

3. Results and discussion

3.1. Loading response

Figure 3a shows the tensile stress–strain curve of a 40.81� 39.89 Å2 wire during
loading and unloading at 100K. The configurations of this wire at four different
stages (three of which are during loading) of deformation along the curve are shown
in figure 3b, with the atoms coloured by their coordination numbers. In the wurtzite
structure [initial configuration, (i) in figure 3b], each atom has a coordination
number of 4, typical for tetrahedral structures. Atoms on surfaces and edges have
coordination numbers of 3 or less. In the HX phase [(ii) and (iii) in figure 3b], on the
other hand, each atom has a coordination number of 5 due to an additional Zn–O
bond along the [0001] axis as compared to the WZ phase. This five-fold coordination
will be discussed later.

The loading response (figure 3a) consists of initial elastic stretching of the WZ
wire (A!B), structural transformation from WZ to HX (B!D) and elastic
stretching of the HX wire (D!E), culminating in the eventual failure at E. The
stress–strain relation in the elastic regime between A and B is essentially linear.
Deformation beyond the elastic regime results in a stress drop from 11.31 to
10.45GPa (B!C). This relaxation event indicates the initiation of a phase
transformation [22]. The HX phase nucleates near the wire’s surface at a strain of
0.065 (figure 3a). As the deformation progresses, the transformed region sweeps
through the whole specimen [C!D and configuration (ii) in figure 3b] and the
transformation is completed at a strain of 0.108 and a stress of 10.58GPa (point D
in figure 3a). Continued loading beyond point D causes elastic stretching of the
transformed structure [D!E in figure 3a and configuration (iii) in figure 3b] and
the eventual failure at a strain of 0.162 and a stress of 12.28GPa through cleavage
along ð�12�10Þ type planes.

3.2. Crystallographic change

Figure 4 outlines the crystallographic characteristics of the initial WZ phase and
the transformed HX phase. Following Limpijumnong and co-workers [23, 24],
a common set of lattice parameters (a, b, c, uc and vb) for these two structures is used
and illustrated in figure 4a. Additionally, two layers of atoms perpendicular to the
½01�10� direction and two layers perpendicular to the ½2�1�10� direction are shown in
figures 4b and c, respectively, to delineate the atomic motions associated with the
transformation. The figure shows that, as a result of the transformation, the (0001)
Zn and O basal planes become coplanar and the HX structure acquires a new
symmetry (mirror plane perpendicular to the [0001] axis). Consequently, an
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additional Zn–O bond is formed along the [0001] axis (figures 4b and c), giving the
HX phase a five-fold coordination. Table 1 lists the lattice parameters for the WZ
and HX structures at several stress levels for the 40.81� 39.89 Å2 wire. During the
deformation, u¼ uc/c changes from its initial value of 0.4 for WZ to a value of 0.5 for
HX, implying the flattening of buckled wurtzite basal planes. A similar unbuckled
structure has been observed in GaN, MgO and ZnO thin films as a result of extensive
surface reconstructions to suppress surface polarity [25–28].

Figure 5 shows the RDF profiles before loading is applied (point A, �¼ 0GPa)
and upon completion of the WZ!HX transformation (point D, �¼ 8.58GPa) for
the nanowire in figure 3. The profile for the initial wire (WZ structure) has its first

Figure 3. Tensile behaviour of a 40.81� 39.89 Å2 nanowire: (a) stress–strain curve under
loading and unloading; (b) deformed configurations at different stages of loading and
unloading.
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Table 1. Lattice parameters for WZ, HX and RS under different loading conditions for
a 40.81� 39.89 Å2 nanowire.

WZ HX

�¼ 0GPa �¼ 0GPa �¼ 11.39GPa �¼ 8.58GPa �¼ 12.29GPa
Parameter "¼ 0a "¼ 0 "¼ 0.065 "¼ 0.108 "¼ 0.162

(Å) 3.25 3.26 3.23 3.38 3.40
b (Å) 5.63 5.62 6.05 6.22 6.62
v 0.33 0.32 0.29 0.31 0.29
c (Å) 5.21 5.18 4.92 4.30 4.15
u 0.38 0.41 0.46 0.50 0.49
b/a 1.73 1.74 1.87 1.84 1.95
c/a 1.60 1.57 1.53 1.27 1.22

aExperiment [29].

Figure 4. Illustrations of the WZ and HX structures involved in the phase transformation:
(a) lattice structures of the WZ and HX phases; (b) atomic arrangement on ½01�10� plane;
(c) atomic arrangement on ½2�1�10� plane.
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peak at a radial distance of 1.93 Å, indicating a Zn–O bond distance consistent with
the experimental value of 1.95 Å [29]. Upon completion of the WZ!HX
transformation at point D, this peak has split into two peaks with the primary
peak at 1.98 Å and the secondary peak at 2.20 Å. The primary peak corresponds to
Zn–O bonds in the basal ({0001}) plane of the HX structure, while the secondary
peak is associated with the additional bonds formed along the [0001] axis (see
figure 4). Also seen in figure 5 are peaks corresponding to lattice constants a, b and c.
Initially in the WZ phase, the ‘a’ peak is at 3.26 Å and the ‘c’ peak is at 5.18 Å.
The transformation to HX results in the shift of the ‘a’ peak to 3.38 Å and the shift
of the ‘c’ peak to 4.30 Å. These shifts indicate that the transformation to the HX
structure involves both an expansion of the basal planes (increase in ‘a’) to
accommodate the flattening of the buckled plane and a contraction in ‘c’ which
results in the formation of the Zn–O bond along the [0001] axis. The transformation
is also associated with a shift of the ‘b’ peak from 5.60 Å for WZ to 6.22 Å for HX,
consistent with the nature of the applied tensile loading. The values reported in
table 1 also show a progressive increase in the lattice parameter b toward 6.22 Å as
the stress is increased towards the level of 8.58GPa at the completion of the
transformation. Further load increases are accompanied by increases in b with the
associated RDF peak shifting toward a higher value (not shown).

3.3. Characterization of the deformation

The deformation can be quantified in a continuum sense through the deformation
gradients Fi (i¼ 1, 2, and 3) associated with the three stages of deformation, with
i¼ 1 denoting the first stage (elastic stretching of WZ, A!B in figure 3a), i¼ 2
denoting the second stage (transformation from WZ to HX, B!D in figure 3a) and
i¼ 3 denoting the third stage (elastic stretching of HX, D!E in figure 3a). In such

Figure 5. Radial distribution function profiles for a 40.81� 39.89 Å2 nanowire before
loading (point A in figure 3a] and upon completion of phase transformation (point D in
figure 3a).
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an analysis, the deformation of a representative volume of � ¼ �a� �b� �c (figure 6) is

used, with dimensions �a, �b and �c being the average values of lattice constants a, b and

c, respectively. Since the average values of the lattice parameters are used here,

the deformed wire is regarded as a repetition of this representative volume.

The deformation gradient for each stage can then be expressed as

Fi ¼

�ai
�ai�1

0 0

0
�ci
�ci�1

0

0 0
�bi
�bi�1

0
BBBBBBBB@

1
CCCCCCCCA
, i ¼ 1, 2, 3: ð2Þ

In the above expressions, �ai�1, �bi�1, and �ci�1 are the average lattice constants at the

beginning of stage i and �ai, �bi, and �ci are the average lattice constants at the end of

stage i. Note that �a0, �b0, and �c0 are the constants for the initial (undeformed, WZ)

wire. The relative volume change associated with stage i is

�i

�i�1
¼ det Fið Þ, ð3Þ

where � is the volume of the wire at the beginning and end of stage i, respectively.
For a 40.81� 39.89 Å2 wire at 100K, the deformation gradient for the first stage

(A!B in figure 3a) is

F1 ¼
0:991 0 0

0 0:960 0

0 0 1:065

0
BB@

1
CCA: ð4Þ

The associated volume increase is 1.27% and the longitudinal (elastic) strain

"33 ¼ F33
1 � 1 ¼ 0:065 consistent with that seen from the stress-strain curve in

figure 3.

Figure 6. Representative volume defined in a unit cell of the wurtzite lattice for the purpose
of deformation analysis.
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During the second stage of deformation (phase transformation B!D in
figure 3a), �a increases and �c decreases. The corresponding deformation gradient is

F2 ¼
1:047 0 0
0 0:876 0
0 0 1:043

0
@

1
A: ð5Þ

The volume ratio associated with the transformation is �2/�1¼ 0.957, indicating
a slight decrease in volume of 4.3%. This decrease in volume under tensile loading is
counterintuitive. It is a direct consequence of the discrete lattice structure and the
structural transformation. Specifically, the uniaxial tensile stress in the ½01�10� or ‘b’
direction causes the interatomic distances in the [0001] Zn and O basal planes (a) to
increase, causing the two types of basal planes to become coplanar and, therefore,
the volume decrease.

The deformation gradient for the elastic deformation of the HX phase in the
third stage (D!E in figure 3a) is

F3 ¼
1:008 0 0
0 0:962 0
0 0 1:05

0
@

1
A: ð6Þ

Although the ‘a’ and ‘b’ directions are perpendicular to each other, a increases
slightly (with a corresponding strain of "11¼ 0.008) under the tensile loading along
the ‘b’ direction. This gives rise to a negative phenomenological Poisson’s ratio of

�13 ¼ � "11
"33

¼ �0:16: ð7Þ

The total elastic strain of the wire beyond the completion of the phase trans-
formation and before fracture (between D and F in figure 3a) is "33 ¼ F33

3 � 1 ¼ 0:05.
Here, the reference state of this strain is the length of the wire at the completion of
transformation (point D). The corresponding volume increase is 1.68%.

Overall, the total strain of the wire between points A and E is " ¼
F33
1 F33

2 F33
3 � 1 ¼ 0:162. Here, the reference length is the original length of the wire.

3.4. Unloading response

Unloading of an HX structured wire from any strain prior to wire fracture activates
a novel pseudoelastic behaviour. Take the wire in figure 3 for example; unloading
from a strain of 14.5% (point F) initially results in the recovery of the elastic
straining of the HX structure embodied in F3 and goes beyond the end point of the
WZ!HX transformation during loading (point D). This elastic unloading within
the HX structure continues until point G where a reverse transformation from HX to
WZ initiates at a strain of 0.087 and a stress of 7.38GPa. Further unloading results
in the complete reversal of the HX!WZ transformation at H (with a strain of 0.039
and a stress of 7.04GPa). Unloading between H and A follows the elastic trend of
the WZ phase and the hysteresis loop is completed.

For the wire in figure 3, the total recoverable strain is �16% which is significant
since ZnO is a ceramic. The hysteretic energy dissipation in one loading and
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unloading cycle is �0.14GJm�3. This dissipation level is significantly lower than
that observed for wurtzite to rock salt (WZ!RS) transformations in bulk ZnO
(�1.38GJm�3 per cycle), therefore, limiting heat generation and heat-related
damage and making the nanowires ideal for applications involving cyclic loading and
unloading [30]. The low level of dissipation can be attributed to the fact that (i) the
crystallographic transition between the WZ and HX structures, which does not
require the formation of defects such as dislocations or twin boundaries, is smooth
and (ii) the energy barrier for the transformation between the WZ and the HX
structures is relatively low [6].

3.5. Effects of size and temperature

Temperature and lateral dimensions have significant effects on the pseudoelastic
behaviour of the wires. Figures 7a–c show the loading part of the stress–strain curves
over 100–700K for the 21.22� 18.95, 31.02� 29.42 and 40.81� 39.89 Å2 nanowires,
respectively. The critical stress for the nucleation of the HX phase (�c) is marked by
open circles in these figures. Figure 7d shows the variation of this critical stress as a
function of size and temperature. Overall, the critical stress decreases as the wire size

Figure 7. Stress–strain curves of (a) a 21.22� 18.95 Å2 wire, (b) a 31.02� 29.42 Å2 wire and
(c) a 40.81� 39.89 Å2 wire at different temperatures. (d) The critical stress for the initiation of
phase transform (�c) as a function of lateral dimensions and temperature.
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is reduced. The critical stress also decreases as temperature is increased. Over the
temperature range analyzed, �c for the 31.02� 29.42 Å2 wire is up to 42% higher
than that for the 21.22� 18.95 Å2 wire, whereas the values for the 40.81� 39.89 Å2

wire are approximately 11–15% higher than those for the 31.02� 29.42 Å2 wire. In
contrast to the well-established trend that the stiffness of nanowires increases as wire
size is reduced [13], �c decreases as the wire size is reduced. The higher surface-to-
volume ratios at smaller wire sizes cause both effects. Note that, as the wire size is
reduced from 50 Å to 10 Å, the surface-to-volume ratio increases by �35%. In
particular, for polar (0001) surfaces (figure 1), the imbalance of charges results in
extensive surface reconstruction.

Figure 8 shows the positions of atoms on layers perpendicular to the [0001]
direction before and after the initial relaxation. Obviously, relative to the ideal bulk
structure, the surface layers contract and the Zn and O basal planes become
essentially coplanar, resulting in a layered surface structure (LY) which is
crystallographically similar to the HX structure. This phenomenon has been
predicted by first-principle calculations and observed in experiments on ZnO
nanofilms [25, 26]. The reconstructed LY surfaces in the initial wire before loading
play an important role because they can act as nucleation sites for and lower the
energy barrier of the WZ!HX transformation due to the geometric similarities
between the LY and HX structures. The smaller wire cores at smaller wire sizes
facilitate the initiation of the phase transformation from the surfaces, resulting in the
lower �c values.

As the temperature increases from 100K to 700K, a 25.2% decrease in �c is
observed for the 40.81� 39.89 Å2 wire (figure 7d). This effect is attributed to thermal
softening and the ability of the nanowire to overcome the energy barrier for the
transformation at higher temperatures. Note that over the same range of
temperature, the elastic modulus of the nanowire decreases by 24% [13].
Temperature changes also significantly affect hysteretic dissipation. To illustrate
this effect, the stress-strain curves of the 40.81� 39.89 Å2 wire at 100K, 300K, 500K
and 700K are shown in figure 9.

The corresponding dissipation during the loading–unloading cycle, along with
those for the 21.22� 18.95 and 31.02� 29.42 Å2 wires at these temperatures, is given

Figure 8. Surface reconstruction of a 21.22� 18.95 Å2 nanowire at 100K relative to its
configuration in bulk ZnO, the images correspond to the states of the wire after (a) geometric
construction (before initial relaxation) and (b) after initial relaxation.
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in figure 10. For the 40.81� 39.89 Å2 wire, the dissipation decreases by 39.6%
as temperature is increased from 100K to 700K. A similar trend is seen for the
21.22� 18.95 and 31.02� 29.42 Å2 wires which show decreases of 52.9% and 56.6%,
respectively, over the same temperature range.

Figure 9. Stress–strain responses of a 40.81� 39.89 Å2 wire during one loading–unloading
cycle at (a) 100K, (b) 300K, (c) 500K and (d) 700K.

Figure 10. Hysteretic dissipation in one loading–unloading cycle as a function of lateral
dimensions and temperature.
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Table 2 lists the values of several key parameters quantifying the pseudoelastic
behaviour at various cross-sectional sizes and temperatures. In particular, note that
the maximum recoverable strain decreases significantly as temperature is increased,
while the strain at which the WZ!HX transformation completes is essentially
temperature-independent. The enhanced mobility of atoms at higher temperatures
promotes the formation of defects and may be a factor contributing to the failure at
lower strain levels.

3.6. Pseudoelasticity without shape memory

The pseudoelastic behaviour quantified here is reminiscent of a very similar
pseudoelastic behaviour (which leads to a novel shape memory effect) in fcc metal
nanowires discovered and analyzed by Liang et al. [3, 4]. This similarity in the
pseudoelastic behaviours between nanowires of the two classes of materials naturally
raises the question of whether a similar SME also exists in the ZnO nanowires
analyzed here. To answer this question, we first note that the pseudoelasticity and the
SME in the fcc metal nanowires are driven primarily by a surface-stress-induced
lattice reorientation process which requires the formation of intermediate transi-
tional structures involving partial dislocations. One attribute of that unique lattice
reorientation process is that an energy barrier exists between the phases even at very
low temperatures. Therefore, spontaneous relaxation occurs only at temperatures
above a critical value. It is this temperature dependence that gives rise to the SME in
the fcc metal wires.

To ascertain if a SME exists in the ZnO nanowires analyzed here, partially and
fully transformed wires were cooled to various final temperatures, the lowest being
10K. Subsequently, unloading is carried out at the low temperatures to determine if
the HX phase can be retained without external stress. For all wire sizes considered
and under all initial/final temperature combinations analyzed, the wires reverted

Table 2. Size and temperature dependence of the stress–strain response of the nanowires.

Cross-section
dimensions
(Å2)

Temperature
(K)

�c
(GPa) "c

Strain at
completion of
transformation

Maximum
recoverable

strain

Ultimate
tensile
strength
(GPa)

Hysteretic
dissipation
(GJm�3)

21.22� 18.95 100 10.02 0.051 0.100 0.165 15.56 0.155
300 8.59 0.045 0.096 0.155 14.50 0.171
500 6.29 0.033 0.097 0.148 13.56 0.088
700 4.15 0.027 0.091 0.127 12.34 0.073

31.02� 29.42 100 10.10 0.053 0.110 0.155 13.05 0.106
300 9.59 0.053 0.110 0.154 12.50 0.086
500 8.31 0.049 0.098 0.140 11.44 0.053
700 7.17 0.040 0.116 0.138 10.89 0.046

40.81� 39.89 100 11.32 0.065 0.108 0.159 12.30 0.139
300 10.40 0.063 0.109 0.162 11.68 0.104
500 9.31 0.060 0.114 0.143 10.60 0.089
700 8.47 0.051 0.086 0.108 9.21 0.084
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fully back to the WZ structure. This result shows that there is no critical temperature
below which either partially or fully HX-structured wires can exist without external
loading. The absence of such a critical temperature and the lack of an HX structure
at zero loading effectively rule out the possibility of a SME in the ZnO nanowires.
This finding can be explained by the enthalpy surface for ZnO at 0K and zero
external loading. Figure 11 shows the potential energy profile of one ZnO unit cell at
different structural configurations (when there is no external loading, the enthalpy is
equal to the potential energy). This profile is obtained through first principle
calculations, details of which are provided by Kulkarni et al. [6] and Limpijumnong
and Jungthawan [23]. Lattice structures corresponding to WZ, RS and HX are
labelled in this figure. Note that only two local minima (energy wells) exist, one at the
WZ structure and the other at the RS structure. A well is not seen at the HX
structure. Obviously, WZ is the stable phase and any sample with the HX structure
would spontaneously transform into the WZ structure. On the other hand, the RS
structure is a metastable phase which may exist if temperature and load histories are
carefully controlled. In contrast, it is not possible for HX to exist without loading
since no energy well is seen for it on the energy surface. Of course, the enthalpy
surface can be modified by appropriate external loading to include a local minimum
(well) at the HX structure. Tensile loading of sufficient magnitude along the
b-direction is such an example and has been shown to cause the WZ!HX phase
transformation [6]. Crystallographically, the two-way WZ$HX transformation
occurs through smooth lattice structure evolution without the formation of defects
or intermediate structures. In particular, the process can be illustrated by a look at
the buckling and unbuckling of the [0001] Zn and O basal planes.

Figure 12 shows the evolution of the 3-D O–Zn–O bond angle (�) at various
stages of deformation. The strain values are associated with the loading process of

Figure 11. Potential energy map of ZnO with highlights of the WZ, RS and HX lattice
structures.
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the 40.81� 39.89 Å2 wire. The evolution of � during unloading is very similar except
that the corresponding wire strain values are slightly different. For a perfect,
undeformed WZ lattice, �� 108.2� (figure 12a). As deformation progresses,
� increases as loading is increased and the structure evolves (figures 12b and c).
Upon full WZ!HX transformation, the basal planes flatten out and � becomes
120� (figure 12d), at the same time, a new bond is formed along the [0001] axis
(figures 4b and c). During unloading, the reverse process is seen, with � decreasing as
the load is decreased. The lack of defect or intermediate structure formation in the
process makes ZnO nanowires different from FCC metal nanowires such that the
energy requirement for the nucleation of the WZ$HX transformation is very low.
Therefore, during the actual unloading of a HX wire, the barrier for the HX!WZ
transformation is primarily due to the breaking of the additional [0001] bond formed
during the forward transformation. This barrier is relatively small [6] and is easily
overcome by the strain energy stored in the HX structure. Consequently,
spontaneous HZ!WZ transformation occurs at all temperatures and no SME is
observed in the ZnO nanowires.

4. Conclusions

A novel pseudoelastic behaviour we discovered recently in ½01�10�-oriented ZnO
nanowires over the temperature range 100–700K has been characterized.

Figure 12. Increase in the O–Zn–O bond angle (�) between Zn and O atoms on [0001] basal
planes at various levels of strain during tensile loading along the ½01�10� wire axis.
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MD simulations of the uniaxial tensile loading and unloading of nanowires with
lateral dimensions between 18 and 41 Å show that this behaviour results from a
unique structural transformation from WZ to a previously unknown phase (herein
referred to as HX). Crystallographically, this newly discovered polymorph of ZnO
has a five-fold coordination, in contrast to the four-fold coordination of the initial
WZ structure, implying that the transformation proceeds towards higher ionicity.
The transformation is fully reversible upon unloading with recoverable strains up
to 16%. The hysteretic dissipation associated with a loading-unloading cycle is
0.05–0.14GJm�3 and this value is significantly lower then the value for the reversible
WZ–RS transformation in ZnO.

Significant temperature and size dependence of the pseudoelastic response is
observed. In particular, the critical stress for the nucleation of the HX phase and the
maximum recoverable strain decreases as temperature increases. In addition, the
critical stress is lower at smaller wire sizes. Extensive surface reconstructions that
minimize surface charge polarity and surface energy contribute to these temperature-
and size-effects.

Unlike the pseudoelasticity in fcc metal nanowires, which was discovered recently
by Liang et al. [2–4] and underlies a novel shape memory effect, the pseudoelasticity
in the ZnO nanowires analyzed here does not lead to a SME. The primary reason for
this lack of an SME is the absence of an energy barrier between the WZ and the HX
lattice structures when no external loading is applied. The absence of an energy
barrier between WZ and HX at zero stress can be regarded as a consequence of the
smooth and continuous nature of the crystallographic transition which does not
require the formation of defects such as dislocations and twin boundaries. The result
is that stretched HX ZnO nanowires can spontaneously revert back to the WZ state
at any temperature.
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Abstract

Synchrotron extended X-ray absorption fine structure (EXAFS) measurements at the Mn K edge were performed on Mn-doped PZT ceramics

with Mn concentrations of 0.5, 1.0 and 2.0 mol%. The Fourier transforms of EXAFS structures from all samples are similar and agree well with the

model of Mn substituting on the Ti/Zr site (i.e. the B site of the perovskite ABO3 structure). This shows that Mn predominantly substituted for Ti/Zr

in the range of concentration under study.

# 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

PZT ceramics have been used widely as piezoelectric

components in applications such as sensors, actuators,

transformers, transducers and ultrasonic motors. The required

properties for different applications can be obtained con-

veniently by the change of the PZT composition (Zr/Ti ratio)

and the addition of cation dopants in the structure. Manganese

oxide is one of the most effective dopants for hard PZT

ceramics. Studies concerning Mn doped PZT ceramics have

been reported elsewhere [1–4].

Conventionally, it has been supposed that Mn2+ and Mn3+

ions substitute for Zr4+ and Ti4+ ions on the B-site of the ABO3

perovskite structure, forming acceptor-type defect. Never-

theless, in recent works [3,5–7], it has been observed that at

substitution levels below 1 at%, the addition of Mn to PZT

ceramics gives rise to unexpected increases in the dielectric and

piezoelectric coefficients, and an increase in nonlinearity. In

other words, this could be an indicator for donor defects in low

Mn level doped PZT ceramics. However, the nature of the

donor-type defects is still unclear. Furthermore, the site

occupation by Mn is still a matter of controversy.

Synchrotron light is one of the most powerful tools for

investigating structure of materials. The extended X-ray

absorption fine structure (EXAFS) technique is one of the

techniques utilizing the synchrotron light, which allows the

local structure of the interesting atoms or ions in the structure of

materials to be investigated [8,9]. The local structure around

Mn ions within the PZT lattice can be investigated using

EXAFS technique.

2. Experimental procedure

PZT samples were prepared according to the formula Pb

(Zr0.54Ti0.46)1�x�y Mnx Mgy O3 (with y = 0 and 0.01, x = 0,

0.005, 0.01 and 0.02) by a conventional mixed oxides method.

Magnesium was employed in some of these compositions to

provide a well-defined acceptor-type base composition, which

could be compensated by any donor-type defects present.

The raw materials, PbO (>99.9%, Penarroya Oxide), TiO2

(>99.9%, Tioxide Group Limited), ZrO2 (>99.9%, MEL

Chemical E101) and dopants; MnO (>99% Aldrich) and MgO

(>99.95%Alfa Aesar) were mixed and milled with isopropanol

for 20 h, and were then oven dried at 100 8C. The dried

mixtures were calcined at 850 8C.
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The calcined PZT powders were vibrational milled with

water for 20 h. At this stage, 0.5 wt% PVA and 0.5 wt% PEG

were added in the mixtures. The slurries were freeze dried

producing fine uniform powders.

The powders were uniaxially pressed into a 10 mm diameter

die with the load of 100 MPa. All samples were sintered in a

closed alumina crucible and Pb-rich atmosphere at 1250 8C.
Crystal structures of sintered specimens were investigated

using X-ray diffractometer (Philips PW 3020).

EXAFS measurements were performed on the PZT

ceramics in order to study the local structure around Mn ions

in the PZT perovskite structure. In addition, the effect of Mn

concentration on the site occupation of Mn ions in PZT lattice

was investigated. The experiments were carried out at the

station 7.1 EXAFS beam line of the synchrotron radiation

source (SRS), Daresbury, U.K. For EXAFS experiments at

station 7.1, X-rays were monochromatized by a Si (1 1 1)

double crystal. The EXAFS spectrum was measured at the

Mn Kedge in the fluorescencemode due to a low concentration

of Mn in the samples. The fluorescence detection system

consists of an array of nine high-purity germanium diodes

mounted in a common cryostat. To do fluorescence measure-

ments, the sample was aligned at 458 to the line of the beam, in

order tomaximize the solid angle seen by the detector. The data

analysis of all EXAFSmeasurements was carried out using the

analysis programs; EXCALIB (the program developed by

SRS) and FEFF7 [10].

3. Results and discussion

3.1. Phase investigation for Mn–Mg doped PZT ceramics

XRD patterns of Mn doped PZT and Mn–Mg doped PZT

ceramics are shown in Figs. 1 and 2, respectively. The splitting

of (1 1 1) and ð1 1̄ 1Þ peaks at 388 2u, as well as the presence of
the {0 2 0}R peak at 2u of 438 indicates the presence of the

rhombohedral phase. The production of rhombohedral PZT in

this study was done to avoid the effect of Mn on the shift of

MPB (morphotopic phase boundary) toward the rhombohedral

phase region as reported by Kim and Yoon [2]. In this case,

increasing Mn concentration merely stabilizes the rhombohe-

dral phase rather than causing a change in structure from

tetragonal to rhombohedral.

3.2. EXAFS study for Mn–Mg doped PZT ceramics

The data analysis of all EXAFS measurements was carried

out using the analysis programs; EXCALIB and FEFF7. Figs. 3

and 4 show the Fourier transform for the EXAFS spectra of

various Mn doped PZT samples with and without 1% of Mg.

The Fourier transform is a complex function of distance R,

the amplitude of which is denoted by the real function r(R). The

Fig. 1. XRD patterns of Mn doped PZT with the Zr/Ti = 56/44.

Fig. 2. XRD patterns of Mn–Mg doped PZT with the Zr/Ti = 56/44.

Fig. 3. Fourier transforms of the EXAFS spectra for Mn–Mg doped PZT

ceramics.

Fig. 4. Fourier transforms of the EXAFS spectra for Mn doped PZT ceramics.
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position of peaks in r(R) is related to bond distances between

the Mn ion and neighbouring ions while the height of each peak

is proportional to the number of neighbours. However, the bond

lengths and coordination numbers cannot be read directly from

r(R). In order to determine the bond lengths and coordination

numbers, the k-dependent amplitude and phase corrections

must be made to the EXAFS signal. For instance, prior to the

phase correction, the peaks in r(R) are normally smaller than

the corresponding bond lengths by 0.5 Å. However, the location

of Mn within PZT unit cell can be resolved without making

phase and amplitude corrections. By simply comparing the raw

Fourier transform, r(R), for different Mn concentrations, as

shown in Figs. 3 and 4, there is no observable change in peak

positions, particularly for the first main peak, with Mn

concentration over the range of 0.5–2% for either the samples

with or without Mg doping. Since the peak position indicates

the bond distance between Mn and its neighbours or the

location of Mn within the PZT unit cell, the coincidence of the

main peaks as seen in Figs. 3 and 4 is evidence that no change in

the location of the majority of Mn ions occurs with increasing

Mn concentration. Furthermore, the location of Mn appears to

be unaffected by the presence of 1% Mg.

In order to determine the preferred site occupation of Mn

ions in PZT unit cell, the Fourier transform of EXAFS spectra

for rhombohedral PZTwith Mn ion occupying A(Pb) and B(Ti/

Zr) sites were simulated, as shown in Fig. 5.

For the B-site curve, the first main peak occurring at roughly

1.5 Å is due to the six nearest oxygen atoms, while the second

peak at 3.5 Å is attributed to the nearest Pb atoms. There is no

significant feature at 1.5 Å for the A-site spectrum. This is the

obvious distinction between A-site and B-site EXAFS.

Comparing the results shown in Figs. 3 and 4, it is evident

that the peaks are clearly incompatible with a simulation of

EXAFS when Mn occupies the A(Pb)-site but are in good

qualitative agreement with a simulation that assumes Mn

occupies the B(Ti/Zr)-site. However, the minority A-site

occupation cannot be ruled out.

4. Conclusions

The X-ray diffraction measurements for all PZT samples

indicated the presence of rhombohedral phase.

EXAFS measurements and analysis indicated that Mn ions

seemed to be a B-site favoured dopant in the PZT lattice, since

the position of the highest peak of the Fourier transform of

EXAFS spectra for all Mn–Mg doped PZT samples occurred in

the region of 1.5 Å, corresponding to the simulated EXAFS for

B-site substitution. The evidence for the A-site substitution was

not obviously observed.
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Abstract

Based on first principles calculations, we investigate two probable types of deactivation mechanisms that hinder current efforts of
doping ZnO p-type. (i) Passivation by Hydrogen. H prefers to bind with NO at the anti-bonding site and form NO–H complexes with a

binding energy of about 1 eV. (ii) Passivation by the formation of substitutional diatomic molecules (SDM). Carbon impurities and
excess N strongly prefer to passivate NO and form low-energy SDM on the Oxygen site, (NC)O or (N2)O, both of which are donors with
several-eV binding energies. Our calculated vibrational frequencies of NO–H complexes and SDMs are consistent with the frequencies
recently observed by IR measurement on N-doped ZnO, which is not p-type.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recent SIMs results on nitrogen-doped ZnO grown by
chemical vapor deposition technique show a substantial
amount of H, C and N in unwanted forms [1–4]. These
impurities are likely to play important roles in compensat-
ing or passivating N acceptors, making it difficult to dope
ZnO p-type. Recent IR measurements on N-doped ZnO,
which is not p-type, revealed several peaks associated with
H, including a peak at 3020 cm�1 which is consistent with
the N–H stretch vibration frequency. In addition, the
spectrum in the lower frequency range contains several
peaks in the range of 1800–2000 cm�1, which are close to
the frequencies of diatomic molecules.

Based on first principles calculations, we found two types
of defect complexes that are likely to form. While isolated
H is predicted to exclusively be a donor in ZnO [5,6], it can
also passivate NO acceptors and form an electrically
inactive NO–H complex (Fig. 1) [3]. For the second type
of complex, C impurities and excess N atoms prefer to
passivate NO acceptors and form a ‘‘substitutional diatomic
molecule’’ (SDM), which is a strongly bound NC or N2

molecule substituted on an oxygen site [(NC)O or (N2)O]
(Fig. 2) [7,8]. The (NC)O or (N2)O SDMs are single and
double donors, respectively. These SDMs have electronic and
structural properties similar to free diatomic molecules. The
calculated local vibrational modes (LVM) of these defects are
in good agreement with the peaks recently observed by FTIR
measurement on N-doped ZnO. These results suggest that, in
addition to H, one should be careful with a C impurity that
can turn an existing N acceptor (NO) into an (NC)O SDM,
which is a donor. In addition, excessive N incorporation
could lead to an unwanted (N2)O SDM, which is a double
donor, instead of the desired NO.
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2. Theoretical approach

2.1. Total-energy and formation energy calculations

Our first principles calculations are based on the
pseudopotential planewave method with density-functional
theory in the local-density approximation. The Vanderbilt-
type ultra-soft pseudopotential [9], as implemented in the
VASP codes [10], is used. The use of ultrasoft versions of
the pseudopotentials allows relatively low energy cutoffs
(300 eV) to be used for the planewave basis set. The Zn 3d
electrons are treated as valence electrons. The calculated
heat of formation for ZnO of 3.58 eV agrees with the
experimental value of 3.60 eV.

To study defects, we use a supercell approach with a
supercell containing at least 36 atoms. Test calculations for
the (N2)O and NO–H complexes are performed with a
larger 96-atom cell to ensure that the convergence is within
70.2 eV. For charged defects, a jellium background was
used. Since LDA substantially underestimates the ZnO
band gap, we have instead examined the electronic
properties at the 2� 2� 2 Monkhorst-Pack special k

points, which are also used for the Brillouin zone
integration. The band gap at the special k points is
2.5 eV. All atoms in the cell are allowed to relax until the
magnitude of the residue force on each atom is o0.05 eV/Å.
The defect formation energy ðDH f Þ which has been
described in detail elsewhere (for example, Refs. [11,12]),
can be defined as

DH f ¼ EtotðD; qÞ � Etotð0Þ þ DnZnmZn þ DnOmO
þ DnXmX þ qEF, ð1Þ

where Etot(D,q) and Etot(0) are the total energies from first
principles calculations of the supercell with and without the
defect, D, and X (QH, N, C) represents impurity elements.
Quantities DnA and mA are the number of species A (QZn,
O, H, N, C) removed from a defect-free cell to its respective
reservoir to form the defect cell and the corresponding
reservoir chemical potential. The chemical potentials mZn,
mO, mH, mN and mC have upper limits at their respective
natural phases, i.e. the energies of metallic Zn, gaseous O2,
H2, N2 and solid-state C, which are offset to zero in the
present study. To keep the ZnO thermodynamically stable,
it is also required that mZn+mO ¼ mZnO,calc ¼ –3.58 eV. This
imposes an additional constraint that mO be in the range
�3.58 eVpmOp0 and redefines mZn ¼ –3.58 eV–mO. Unless
noted otherwise, all calculations in this paper are done in
the Zn-rich limit, i.e. mZn ¼ 0. In Eq. (1), q and EF are the
defect charge state and Fermi level with respect to the
VBM.

2.2. Vibration frequency calculations

We use the so-called frozen phonon calculation ap-
proach. After the defect is relaxed to the lowest energy
configuration, we dislocate the vibrating atom (for example
H atom in the N–H LVM case) along the vibrating
direction in a small step at a time (typical step is 0.05 Å).
For each step, the calculated total energy is recorded. The
potential energy curve is constructed from the plot of total
energy versus the vibrating distance.
In the case of NO–H complex, it is a good approximation

to dislocate only the H atom to construct the potential
energy curve. This is because H is much lighter than other
atoms. However, when calculating the N–H stretch
frequency the reduced mass of N and H atoms must be
used. Due to its light mass, the H atom vibrates with a
large amplitude, i.e. �10% of the bond distance in the
ground state and 20% in the first excited state. Therefore, it
is important to include anharmonic effects in the LVM
calculation [13,14].
In the case of SDMs, the situation is somewhat different.

N and C have a comparable mass that is over ten times
heavier than H, leading to a much smaller zero-point
vibration amplitude. Since the amplitude of the vibration is
small, the anharmonicity in N–C and N–N vibrations are
much smaller than that of the H–N vibration. For example,
including anharmonicity in the calculation only leads to a

ARTICLE IN PRESS

Fig. 1. Atomic structure of the NO–H complex. Large sphere is Zn and

small sphere is O. Impurities N and H are labeled.

Fig. 2. Atomic structure of the substitutional diatomic molecule, where

the encircled AB dimer replaces an O atom in ZnO. For (N2)O SDM,

AQBQN. For (NC)O SDM, AQN and BQC. The large sphere is Zn

and the small sphere is O.
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change in the LVM of a free N2 molecule by o20 cm�1 out
of a total frequency of about 2000 cm�1 [14]. In calculating
the LVM of SDMs, both atoms in the dimer are
simultaneously dislocated with the same amplitude in
opposite directions. Other atoms in the supercell are fixed.

3. Results and discussions

3.1. Passivation by hydrogen

Using the definition of the formation energy given
above, we calculated the formation energies of an isolated
interstitial H, a nitrogen acceptor NO, and a NO–H
complex in ZnO. An isolated interstitial H is exclusively
a donor in ZnO and always exists in the form of H+. For
an isolated H+ location, there are four low-energy sites
surrounding an O atom with the so-called BCJ site being
the site with the lowest energy [6,15]. The other three sites
have slightly higher energies (approximately within 0.2 eV).
An isolated NO is an acceptor. Currently the exact location
of the ionization energy of NO is still under debate [3]. Over
almost the entire Fermi energy range, the isolated NO is
stable in a (1�)-charge state whereas an isolated interstitial
H atom is always stable in a (1+)-charge state. The two
defects, therefore, have a Coulomb attraction and have a
strong tendency to form a NO–H defect complex. The
formation energy of H+ (at BCJ site) and NO are plotted
(dashed lines) as a function of Fermi level in Fig. 3 with the
sum of the two formation energies shown as dotted lines. In
the same figure, we also plot the formation energy of the
NO–H complex (thick solid line). The binding energy of the
NO–H complex is 0.95 eV, i.e. the difference in energy
between the dotted and solid line. For the NO–H defect
complex, the ABN? configuration (Fig. 1) has the lowest

formation energy. The ABN configurations are energeti-
cally more stable than the BC by about 0.2–0.3 eV, making
the likelihood of forming BC configurations negligible. The
difference in formation energy between the two ABN

configurations is within the computational error bar. Both
ABN configurations have a similar N–H stretch mode
frequency, with an average value of 2927 cm�1. The
anharmonic contributions are rather large, i.e. approxi-
mately 8%. Both BC configurations also have a similar
N–H stretch mode frequency, with an average value of
3319 cm�1, which is clearly higher than those of the ABN

configurations. The anharmonic contributions are less than
half of those for the ABN cases. The smaller anharmonic
contribution in BC in comparison with ABN agrees with
the usual trend found for an isolated H in ZnO [6] as well
as in the GaN system [13]. To estimate the systematic error
of our calculation, we calculated the known stretch-mode
frequency of a free ammonia (NH3) molecule. We obtained
the symmetric stretch LVM of 3194 cm�1 which is
143 cm�1 smaller than the known experimental value
(3337 cm�1). Assuming that our calculated LVM of the
N–H bond in ZnO is underestimated by similar amount,
our adjusted value for ABN of 2927+143 ¼ 3070 cm�1 is in
reasonable agreement with the recently observed peak at
3020 cm�1 [3].

3.2. Passivation by the formation of substitutional diatomic

molecules

The diatomic molecule is one of the most common forms
for first row elements, namely, C, N, and O, because these
small atoms tend to form strong triple bonds with each
other. Recently, similar complexes, such as N2 and NC
inclusions in GaAs have been studied both theoretically
and experimentally [16,17]. In the case of ZnO, the (N2)O
and (NC)O SDM are found to have bonding and anti-
bonding characteristics very similar to their free molecules
confirmed by the detailed investigation of the electronic
wavefunctions [7,8]. Here, we will focus only on the
energetic and the LVM of the complexes.
Fig. 4 shows the EF dependence of the formation energy

(DHf ) in the Zn-rich, N-rich, and C-rich conditions
(mZn ¼ mN ¼ mC ¼ 0) for (CO)O, (NC)O, (NO)O, and (N2)O.
Since the isolated interstitials Ni and Ci have very high
formation energies, they tend to immediately bind with the
closest lattice O, forming (NO)O and (CO)O. However, in
the presence of NO, (NO)O and (CO)O are unstable against
the formation of (N2)O and (NC)O. The binding energies
are typically several eV due in part to Coulomb attraction
between oppositely charged impurities and in part to the
combination of two impurities into one. This can
significantly reduce the formation energy because, for
example, when NO þ ðNOÞO ! ðN2ÞO þOO, one less oxy-
gen site is disturbed by the impurities after the reaction. In
the right panel of Fig. 4, the formation energy of NO and
(NO)O are shown as the dashed line and the thin solid line
with the sum of the two as the dotted line. The sum is to be
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Fig. 3. Formation energy of an interstitial H, NO (dashed lines) and a

NO–H complex (solid line) in ZnO as a function of electron Fermi energy.

The dotted line shows the sum of the formation energies of an isolated

interstitial hydrogen and an isolated NO. The Zn-rich condition, N2 and

H2 phase precipitation limits were assumed. The energy difference between

the dotted line and the solid line is the binding energy of the NO–H

complex.
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compared with the thick solid line, which is the formation
energy of (N2)O defect. We can immediately see that the
binding energy, which is the difference between the dotted
line and the thick solid line, depends somewhat on the
Fermi energy, but has a typical value of several eV. The
binding energy is of similar magnitude for the case of
(NC)O, as shown in the left panel. This is especially true in
the case of p-type ZnO, for which the binding energies are
large enough to make both (N2)O and (NC)O lower in
energy than isolated NO. It is therefore expected that the
formation of (N2)O and (NC)O will compete with the
formation of NO acceptors. Since these SDMs are donors
in p-type samples, their formation further hinders p-type
doping by compensating the already lowered NO acceptors.

The situation could be worse when one tries to increase
N concentration, [N], above the equilibrium value via non-
equilibrium growth methods. Effectively, this is similar to
increasing the nitrogen chemical potential mN. Although
the formation energy of NO decreases as one raises mN, the
formation energy of the (N2)O complex decreases twice as
fast. In thermal equilibrium, this would end up increasing
the concentration of the donor (N2)O complex instead of
the acceptor NO. However, because the formation of (N2)O
from NO+(NO)O involves the breakup of one SDM, the
diffusion of Ni, and the formation of another SDM, one
might be able to adjust the growth temperature to be low
enough that (N2)O is suppressed.

The calculated frequencies for (N2)O
2+ and (NC)O

+, which
are the most stable form for these complexes in p-type
ZnO, are 2108 and 1995 cm�1, respectively. These frequen-
cies fall within 200 cm�1 of the experimentally observed
values [2]. Moreover, recent XPS experiments have found
strong signals of N–N and C–N bonds with similar
characteristics to those of free diatomic molecules [4].
These observations strongly suggest the existence of (N2)O
and (NC)O in these samples.

4. Conclusion

First principles total energy calculations show that H, C,
and N can passivate NO acceptors in ZnO. H can passivate
NO and form NO–H complexes with the binding energy of
approximately 1 eV. C and excess N can passivate NO and
form low energy (NC)O and (N2)O substitutional diatomic
molecules (SDM) on the oxygen site in ZnO. The
calculated vibrational frequencies are in qualitative agree-
ment with recent IR experiments. Our calculations also
show that both (NC)O and (N2)O are donors in p-type
ZnO. These results should shed new light on efforts to
improve the fabrication of high quality p-type ZnO by
nitrogen.
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Abstract

Molecular dynamics (MD) simulations and first-principles calculations are carried out to analyze the stability of both
newly discovered and previously known phases of ZnO under loading of various triaxialities. The analysis focuses on a
graphite-like phase (HX) and a body-centered-tetragonal phase (BCT-4) that were observed recently in ½01�10�- and
[0001]-oriented nanowires respectively under uniaxial tensile loading as well as the natural state of wurtzite (WZ) and
the rocksalt (RS) phase which exists under hydrostatic pressure loading. Equilibrium critical stresses for the transforma-
tions are obtained. The WZ !HX transformation is found to be energetically favorable above a critical tensile stress of
10 GPa in ½01�10� nanowires. The BCT-4 phase can be stabilized at tensile stresses above 7 GPa in [0001] nanowires. The
RS phase is stable at hydrostatic pressures above 8.2 GPa. The identification and characterization of these phase transfor-
mations reveal a more extensive polymorphism of ZnO than previously known. A crystalline structure–load triaxiality map
is developed to summarize the new understanding.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Phase transformations; Load triaxiality; Zinc oxide; Molecular dynamics; Density functional theory

1. Introduction

Polymorphic transitions occur in materials with non-convex free energy landscapes or materials that dis-
play multiple local minima along with a global minimum under ambient conditions. The global minimum
in free energy corresponds to a stable crystalline structure and is the natural state of the material. Each local
minimum, on the other hand, represents a metastable lattice structure that the material can assume under
external stimuli. Traditionally, external loading and temperature changes are used to transform materials from
their stable structures to metastable states. Stress-induced phase transformations are widely observed in
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groups IV, III–V and II–VI materials including ZnO, which have been predominantly studied through
compressive loading (Mujica et al., 2003). Having a parent wurtzite (WZ, P63mc space group) structure, these
materials transform to a rocksalt (RS, Fm�3m space group) structure under high hydrostatic pressures. The
recent fabrication of defect-free, single-crystalline nanowires, nanobelts and nanorings of ZnO (IIB–VIA),
GaN (IIIA–VA) and CdSe (IIB–VIA) necessitates the analyses of responses to loading of various triaxialities,
including bending and uniaxial tension since these materials have slender quasi one-dimensional geometries
and are capable of undergoing significant elongations (Diao et al., 2004; Kulkarni et al., 2005; Liang and
Zhou, 2006).

There are three hitherto known polymorphs of ZnO, including WZ, RS and zinc blende (ZB, F �43m) (Ozgur
et al., 2005). WZ is the natural state under ambient conditions. RS occurs under high hydrostatic pressures.
ZB can only be grown on certain crystalline surfaces of cubic crystals. So far, the existence of polymorphs
other than WZ, ZB and RS at various loading triaxialities has not been extensively studied. Recently, we
observed a graphitic structure (hereafter referred to as HX) in ½01�10�-orientated nanowires (Kulkarni et al.,
2006) and a body-centered-tetragonal phase (hereafter referred to as BCT-4) in [0001]-oriented nanowires
under uniaxial tensile loading (Wang et al., accepted for publication). Here, we characterize the phase
transformations from WZ that lead to these novel structures. For comparison and overall perspective, the
WZ-to-RS transformation is also analyzed. Our analyses use first-principles calculations based on the density
functional theory (DFT) and molecular dynamics (MD) simulations. Particular interest is on the crystallo-
graphic changes and critical loading condition for each transformation. A crystalline structure–load triaxiality
map is developed to summarize the relationship between the structures and load condition.

2. Computational framework

The MD simulations use the Buckingham potential with charge interactions (Binks and Grimes, 1993; Wolf
et al., 1999). The calculations concern the quasi-static uniaxial tension of nanowires with the ½01�10� growth
orientation and nanorods with the [0001] growth orientation and the hydrostatic compression of bulk
ZnO. The initial structures considered are single-crystalline and wurtzite-structured with lattice constants
a = 3.249 Å and c = 5.206 Å, as illustrated in Fig. 1(a) (Wang, 2004). The computational cell for bulk struc-
ture is 29.24 · 28.13 · 31.24 Å in size and is created by repeating a unit wurtzite cell along the [0001],½01�10�
and ½2�1�10� directions. Periodic boundary conditions (PBCs) are specified along the three directions to approx-
imate infinite material extension. The ½01�10�-oriented nanowires have rectangular cross-sections and f2�1�10g
and {0001} lateral surfaces and the computational cell size is 21.22 · 18.95 · 150.83 Å. The [0001]-oriented
nanorods have hexagonal cross-sections with a six-fold symmetry around the [0001] axis and six f01�10g lat-
eral surfaces. The corresponding computational cell size is 28.14 · 65.0 · 145.8 Å. PBCs are specified only
along the axial directions for the nanowires.
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Fig. 1. (a) The wurtzite (WZ) crystal structure and (b) formation energy surface of ZnO with minima corresponding to the WZ, HX and
RS structures.
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Since the crystallographically constructed computational cells may not be in equilibrium, pre-loading relax-
ations are carried out to obtain their free standing configurations. Following this initial equilibration, approx-
imate quasi-static tensile loading in each deformation increment is achieved though successive loading (at a
specified rate of 0.005/ps) and equilibration steps (for 3 ps) using a combination of algorithms for NPT (Mel-
chionna et al., 1993; Spearot et al., 2005) and NVE ensembles (Haile, 1997). The loading process results in a
longitudinal strain increment of 0.25% (dilatation increment of �0.75%) per deformation increment. Unload-
ing is implemented in a similar manner with a reduction in strain for each unloading step. The virial formula is
used to calculate the stress (Zhou, 2003).

The DFT calculations use the VASP code (Kresse and Furthmüller, 1996) with local density approximation
(LDA) and ultrasoft pseudopotentials (Vanderbilt, 1990) and focus on the evaluation of the total energy in the
natural and deformed states. The stability of each crystal structure is determined by analyzing enthalpy as a
function of lattice parameter ratios c/a and b/a. The enthalpy per unit cell (2 Zn–O pairs) under uniaxial load-
ing is defined as

Hðc=a; b=aÞ ¼ Eðc; b; a; u; vÞ � 1

2
fiqi; ð1Þ

where E is the formation energy, fi is the uniaxial force along the i direction, qi is the lattice parameter in the i
direction, and fiqi (summation not implied) is external work per unit volume V. For tension along the ½01�10�
axis, i = b, fb = rb · (ac) and qb = b, with rb being the tensile stress. For tension along the c axis, i = c,
fc = rc · (ab), and qc = c, with rc being the tensile stress. For hydrostatic compression, the enthalpy is

Hðc=a; b=aÞ ¼ Eðc; b; a; u; vÞ þ 1

2
pV ; ð2Þ

where p is the pressure and V = abc is the volume of two unit cells containing 4 Zn–O pairs. For each c/a and
b/a pair, the internal parameters u and v and the volume V are allowed to relax so that the configuration that
yields minimum H is obtained. For a given load condition, the minima on the enthalpy surface with c/a and
b/a as the independent variables identify the corresponding stable and metastable structures.

3. Results and discussion

3.1. Stress-free state

Under ambient conditions, ZnO assumes the WZ structure which belongs to the P63mc space group. As
shown in Fig. 1a, this structure consists of two hexagonal close packed sublattices (one for Zn and the other
for O) with an offset of ‘uc’ along the [0001] axis. The lattice parameters a, b, c, u = uc/c, v = vb/b which com-
pletely define the structure are also indicated in the figure. Fig. 1b shows the formation energy (or enthalpy at
zero external loading) landscape for ZnO. The structures corresponding to WZ, RS and HX are shown. The
global minimum occurs at the WZ structure with (c/a, b/a) = (1.61, 1.73). Clearly, WZ is the most stable struc-
ture with the lowest energy; HX and RS have higher energies and are not stable under ambient conditions.

3.2. Uniaxial tension along the ½01�10� orientation

Fig. 2a shows an intermediate configuration during the tensile loading of a ½01�10�-oriented nanowire with
the cross-sectional size of 21.22 · 18.95 Å using MD simulations. The corresponding stress–strain (r–e)
response is shown in Fig. 2b. The region between A and B corresponds to elastic stretching of the WZ struc-
ture. Loading beyond B results in a stress drop from 10.02 to 6.98 GPa (B ! C) at e = 5.14%. This softening
behavior corresponds to the nucleation of the HX phase. At this stage, u changes from its initial value of 0.38
for WZ to a value of 0.5 for HX, implying the flattening of the buckled wurtzite basal plane (Zn and O atoms
becoming co-planar) [Fig. 2c]. As a result, Zn atoms are at equal distances from O atoms along the [0001] axis
and the structure acquires the additional symmetry of a mirror plane perpendicular to the [0001] axis. This
process occurs while the orientation of the basal plane remains invariant. Since v remains unchanged, HX has
the same hexagonal symmetry around the c-axis as WZ. As the deformation progresses, the transformed
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region sweeps through the entire wire length (C ! D) and the transformation completes at e = 9.71%
(r = 9.65 GPa). Further deformation occurs through the elastic stretching of the transformed structure
(HX) and ultimate fracture occurs at e = 16% (r = 15.29 GPa, not shown) through cleavage along f�12�10g
planes.

Unloading from any strain prior to the initiation of failure, e.g. point E with e = 14.5%, is first associated
with the recovery of the elastic deformation within the HX structure (E ! F). A reverse transformation from
HX to WZ (F ! G ! H) initiates at e = 5.77% (r = 4.59 GPa, point F) and completes at e = 0.6%
(r = 1.15 GPa, point H). Unloading beyond H occurs through elastic deformation within the WZ structure
(H ! A). Strains up to 14.5% can be recovered, highlighting a very unusual aspect of the behavior of ZnO
which normally is quite brittle. Obviously, the large recoverable strains observed here are associated with
the unique structural transformation process. The energy dissipation associated with the stress–strain hyster-
esis loop is �0.16 GJ/m3, much lower than that for the WZ M RS transformation in bulk (�1.38 GJ/m3 with a
maximum recoverable volumetric strain of 17% in compression) (Desgreniers, 1998).

Fig. 2d and e shows the enthalpy surfaces (eV/unit cell) for rb = 10 and 13 GPa, respectively. In each case,
there are two minima. The first minimum ðHWZ

minÞ is in the vicinity of c/a � 1.6 and b/a � 1.9 corresponding to a
WZ structure with lattice parameters slightly different from those at zero stress. The second minimum ðHHX

minÞ
in the vicinity of c/a � 1.3 and b/a � 1.9 corresponds to the HX phase. At a stress value of 10 GPa, HHX

min and
HWZ

min are comparable and consequently both WZ and HX are equally favored. At an applied stress of 13 GPa
[Fig. 3e], HHX

min is lower than HWZ
min, indicating that HX is more stable. Obviously, the critical stress value for the

WZ-to-HX transformation is rb � 10 GPa. As the magnitude of rb is increased above this equilibrium tran-
sition value, HX becomes more stable and simultaneously the transformation barrier is even lower, resulting in
an increased driving force for transformation.
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Fig. 2. (a) Nanowire with HX and WZ phases (transformation in progress under uniaxial tensile loading in the ½01�10�), (b) tensile stress–
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3.3. Uniaxial tension along the [0001] orientation

Fig. 3a shows the configuration of a [0001]-oriented nanorod with a lateral dimension of d = 32.5 Å.
Fig. 3b shows the corresponding stress–strain response. Four distinct stages (A ! B, B ! C, C! D and
D ! E) are observed. The first stage (A ! B) corresponds to the elastic stretching of the WZ structure up
to a strain of 7.5%. Further deformation results in a precipitous stress drop (B ! C) associated with the
WZ to BCT-4 phase transformation which initiates in a local zone and propagates along the length of the
nanorod. Crystallographic analysis reveals that the transformed phase consists of four-atom (2 Zn and 2 O)
rings arranged in a BCT lattice [Fig. 3c]. The four-atom ring at the center has an orientation different (rotated
by 90�) from that of the rings at the corners of the tetragonal lattice cell. The BCT-4 structure thus obtained
preserves the initial tetrahedral coordination such that each Zn/O atom is at the center and four O/Zn atoms
are at the vertices of a distorted tetrahedron. The distortion in the coordination tetrahedron can be analyzed
through a quantification of the 3-D O–Zn–O bond angles (ai, i = 1..6). For WZ, the bond angles are approx-
imately equal (ai � 108�). For BCT-4, the formation of 4-atom rings results in three distinct groups of bond
angles (a1 � 90�, a2 � 112.7� and a3 � 113.7�). Throughout the transformation, the b/a ratio remains at its ini-
tial value of 1.73 (±0.02), reflecting the symmetries of the loading and the lattice. The transformation com-
pletes at a strain of 8.5%. Further loading causes the elastic stretching of the BCT-4 structure (C ! D) and
culminates in the eventual failure at a strain of 16.9% (point E).

To analyze the stability of the WZ and BCT-4 structures, unloading is performed from points B and D
which correspond, respectively, to the states prior to the transformation initiation and failure initiation of
the nanorod. The unloading path from B coincides with the loading path, confirming that the deformation
from A to B is indeed the elastic response of the WZ structured nanorod. Unloading from D also results
in the elastic recovery of the stretched BCT-4 structure and continued unloading beyond the transformation
completion strain (point C) does not result in a reverse transformation back to WZ. Instead, the nanorod
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retains the BCT-4 structure when the stress is reduced to zero [F in Fig. 3b]. The residual strain at F in Fig. 3b
is 6.8% according to both MD and DFT. It reflects the dimensional difference between the unstressed WZ and
BCT-4 structures in the [0001] direction. This unstressed BCT-4 structure corresponds to the ‘‘ideal’’ BCT-4
structure predicted by the DFT calculations with b/a = c/a = 1.73.

Fig. 3d and e show the enthalpy values (eV per 4 Zn–O pairs) for both WZ and BCT-4 with b/a = 1.73 at
r = 7 and 10 GPa. At any stress level, each structure has its own enthalpy minimum. The first minimum (HWZ

min)
is in the vicinity of c/a � 1.6 which corresponds to a WZ structure with lattice parameters slightly different
from those at zero stress and the second minimum (HBCT�4

min ) is in the vicinity of c/a � 1.7–1.9 which corre-
sponds to the BCT-4 structure. At a stress of 7 GPa, HWZ

min and HBCT�4
min become comparable, indicating that

WZ and BCT-4 are equally favored. This value of stress corresponds to the equilibrium transition stress
for the two phases. At 10 GPa [Fig. 3c], HBCT�4

min is lower than HWZ
min and BCT-4 is clearly favored. Further

increases in stress result in a higher driving force for and the eventual initiation of the phase transformation
into the BCT-4 structure as HBCT�4

min becomes progressively lower than HWZ
min. The gradual evolution of the local

enthalpy minimum for the BCT-4 at r = 0 into a global minimum as stress increases confirms that the phase
transformation is indeed favorable.

3.4. Hydrostatic compression

Fig. 4a and b show the initial WZ and transformed RS structures for ZnO. The corresponding pressure–
dilatation relation is shown in Fig. 4c. Three distinctive stages of response during loading (A ! B, B ! C and
C! D) and unloading (D ! E, E ! F and F ! G) are observed. During loading, the first stage (A ! B) cor-
responds to the elastic deformation of the WZ structure. The precipitous drop in pressure at p = 9.4 GPa is
associated with the transformation of the initial WZ structure to the RS structure. Crystallographically, the
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transformation proceeds such that both u and v change to 0.5 and the b/a and c/a ratios become unity [Fig. 4d].
Consequently, the RS structure has a six-fold coordination and belongs to the Fm�3m space group. The trans-
formation pressure observed here is consistent with experimental measurements in the range of 8.7–9.1 GPa
(Desgreniers, 1998; Karzel et al., 1996). These values are higher than the phase equilibrium stress predicted
by first-principles calculations (6.6–8.5 GPa) (Jaffe and Hess, 1993; Jaffe et al., 2000; Limpijumnong and Jung-
thawan, 2004). The difference is that, while the MD and experimental values are actual transformation stresses
which reflect the effect of the energy barrier between the WZ and RS phases, the DFT phase equilibrium stress
only indicates the level of stress at which the two phases are equally favored but does not relate to the stress
required to overcome the energy barrier and activate the transformation.

Upon transformation completion, further increase in pressure results in the elastic deformation of the RS
phase. Unloading is carried out from various stages of deformation of the RS phase to analyze the reversibility
of the transformation. Specifically, unloading from point D along the loading path results in the recovery of
the elastic deformation of the RS phase. Decrease in pressure beyond the transformation initiation point (B)
does not result in the reverse transformation. Instead, the RS structure remains upon complete unloading.
This retention of the RS structure upon full unloading has been reported in experiments (Recio et al.,
1998). However, a spontaneous reverse transformation has also been observed in experiments (Mujica
et al., 2003). Both sets of experimental results are reasonable because in experiments temperature is controlled
only in an average sense and different experiments are carried out at different temperatures. Excess thermal
energy in high temperature regions can allow the energy barrier between the RS and WZ structures to be over-
come, resulting in the reverse RS-to-WZ transformation upon unloading. Furthermore, in experiments,
defects such as grain boundaries in polycrystalline ZnO samples can act as potential nucleation sites for the
reverse transformation and this effect is not considered in the calculations. In the simulations, the RS structure
can easily revert to the WZ structure upon the application of a small negative hydrostatic pressure (E ! F),
leading to full elastic recovery of the volumetric strain (F ! G).

Fig. 4e and f show the enthalpy landscapes for p = 8.22 and 13 GPa, respectively. Similar to what is seen for
the HX and BCT-4 transformations, there are two minima; one corresponds to WZ (HWZ

min, c/a � 1.6 and
b/a � 1.6) and the other corresponds to RS (HRS

min, c/a � 1.0 and b/a � 1.0). At p = 8.22 GPa, HWZ
min ¼ HRS

min

and WZ and RS are equally favored. This value of pressure is the phase equilibrium pressure for ZnO. As
the pressure is increased to 13 GPa, HRS

min becomes much lower than HWZ
min and the transformation to RS is ener-

getically favored.

4. Summary

The identification of the novel HX and BCT-4 crystalline structures and the characterization of the WZ-to-
HX and WZ-to-BCT-4 phase transformations lead to a more complete understanding of the nature of
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Fig. 5. Crystalline structure–load triaxiality map showing the relationship between applied loading and the resulting polymorphs of ZnO.
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polymorphism in ZnO and its dependence on load triaxiality. Obviously, polymorphism is much more pro-
nounced in ZnO than previously understood and load triaxiality plays a very significant role in determining
the structures. Fundamentally, this complexity is a reflection of the anisotropy and tension–compression
asymmetry embedded in the atomic bonding and crystalline structures. It is possible to construct a crystalline
structure–load triaxiality map for ZnO, as shown in Fig. 5. Among the previously well known phases, WZ is
the most stable and naturally occurring phase and RS is observed under hydrostatic compressive conditions.
Both BCT-4 and HX are stabilized under uniaxial loading, with HX occurring under tension along the ½01�10�
and BCT-4 occurring under tension along the [0001] direction.
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