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Abstract

Relaxed control for a class of sethilinear and strongly nonlinear impulsive
evolution equations are investigated. Boundedness of solutions of semilinear and
strongly nonlinear are prdved. Properties of original and relaxed trajectories are
discussed. The existence of optimal relaxed control are also presented in both
semilinear and strongly nonlinear cases. Density property of the original trajectories in
the set of relaxed trajectories is proved.

These results can be applied to Lagrange optimal control problem. For
illustration, an example of a quasi-linear impulsive parabolic partial differential
equation and the corresponding optimal relaxed control are presented.

Keywords: Nonlinear impulsive evolutior,l equations, optimal control, relaxation,

semigroup, evolution triple.
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Recently, the differential equations with impulsive conditions have been studied

quite extensively. In which case, the traditional initial value problem

x(0) = x,, 5
is replaced by the impulsive conditions

x(0)=x,,
Ax(t;) = F(x(1,))
where0 <1, <t, <...<t, <T,Ax(t,)) = x(t;')—x(t,.‘), i=1,2,...,n,and F,'s are some operators.
The impulsive conditions are the combinat;i)ns of the traditional initial value problems
and the short-term perturbations where duration can be negligible in comparison with
the duration of the process. They have advantage over the traditional initial value
problems because they can be used to model other phenomena that cannot be modeled
by the traditional initial value problems, such as the dynamics of portfolio strategy

subjected to abrupt changes due to terrorists or outbreak of diseases. In these cases an



impulsive control approach, where the investor can change his portfolio only finitely
often in a finite time intervals, proved to be useful .
For equations in finite dimensional spaces or equations in general Banach spaces but with
linear and continuous operators, the impulsive problems have been examined by many
authors where the existence and uniqueness of solutions and stability and property are
investigated.

For a semilinear impulsive evofution equations with unbounded linear
operator 4 of the form

x(t)=Ax(t)+ f(x(£)),t >0, = ¢, M
x(0)=x,,
Ax(t)y=F(x(1)), O0<tf<t,<...,<t,<T
has been studied by Ahmed. He discussed the problem of existence and uniqueness of
mild solution and optimal control but relaxations for optimality were not addressed.
We wish to present just that and this is the first problem for investigation in this
project.  Secondly, in a recent paper by the author, the existence of optimal control
for a class of a strongly non linear evolution equation of the form
x(t)+ A(t, x(£)) = g(t,x(e)), ¢ #¢,, 2)
x(0) = xy,
Ax(t,)=F(x(2,)),0<t, <t, <...t, <T

where A is a nonlinear monotone operator, was proved. Again the relaxations for
optimality were not addressed. This is the second problem for our investigation in this

project.

aquszasn
The purpose of this project is to find sufficient conditions for the relaxations of
H

optimality for the semilinear evolution equation (1) and the strongly nonlinear

evolution equation (2).
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1. For the construction of a classical solution of the impulsive system, we

propose to use the Schauder fixed point theorem on a suitable Banach space.

2. For the construction of a optimal control pair, we propose to use Balder’s

result about strong-weak lower semicontinuoity of integral functionals.

3. For the construction of relaxed systems, we use measure control as a new

admissible space.

HAUNISAUHHOUINY

1. Investigate the relationship of the original trajectories and the relaxed

trajectories ;

2. Investigate the relationship of the optimal value of the original system and

the relaxed system

3. Given some examples for illustration.

Operation Plan

Duration/Month

Activities
1-6 7-12

12-18

18-24

\4

1. Try to prove that X = X,

2. Try to prove that m =m,

v

3. Give some examples

Y

4. Writing a paper

v
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We can proved the following three mains theorems

Theorem 1. (Existence of relaxed optimal control pairs for strongly nonlinear evolution
equations)

Under some suitable conditions there exists (X,1) € A, such that J (x,A) = m_ (See,
Theorem 5.1 in [1 ] for the detail of the proof).

Theorem 2. (Existence of relaxed optimal control pairs for semilinear evolution
equations)

Under some suitable conditions there exists (x, A)e A, such that J(X, A)=m, (See,
Theorem 5.1 in [2 ] for the detail of the proof).

Theorem 3. Under some suitable conditions there exists (¥,1)¢€ A, such that

J(x,A) = m_ (See, Theorem 5.1 in [3 ] for the detail of the proof).

Poarg:
By using our impulsive model, we can continue to investigate relaxation of the impulsive

system and periodic impulsive system which are also important models in finance and

nanoelectronic.

End of Executive Summary
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We consider the following strongly nonlinear impulsive evolution

x(ry + A(t,x(1)) g(t, x(1)) ,
x(0) = x,eH, 1)
Ax(t)y=F(x(t,),i=12,...,n,

where A is a nonlinear monotone operator. By using the technique of evolution triple,
monotone operator, and Schauder’s fixed point theorem, we proved that the (1) has a

solution.

Next, we consider the following impulsive controlled system

i

g(t, x(£)) + B(t)u(?) ,

x e H, (2)
F(x(t)),i=12,...,n

x(t) + A(t,x(2)
x(0)
Ax(1;)

il

(0<t <1, <...<t,<T) where the control function u(t) is an element of space U,,. We
proved that, for each u, one can find a trajectory x such that the admissible pair (x‘,u) 1s
a solution 6f (2).
Now, let us define a Lagrange cost function
J(x,u) = J:‘L(t,x(t),u(z))dt
where L is only a lower semcontinuogs function (not a convex function) in the
variable u. By using technique of convexiﬁng the orientor field (or relaxation), we can

prove that there is an admissible pair (x,,%,) in the convexified field such that

J(xo,u0)=( inf  J(x,u)

x,uYeAqy

This proves the existence of an optimal control pair. Moreover, we also proved the
density property, i.e., there is an original admissible controlled sequence {,} such that

{u,} convergestou as n-—> 0,



We apply our model to a quasi-linear partial differential equation in R" and
proved that such a model in R" together with Lagrange cost function has an optimal pair
in the covexified field.

Now let us consider semilinear impulsive evolution equations of the form

x()=Ax(O+ f (gc!(t)),t>0,t¢t,, 3
x(0)=x,,
Ax(t)=F(x(1,)), 0O<t <t,<..,<t,<T

where A is a linear and unbounded operator. Again, we consider a relaxation problem
as above and we also proved the main results such as existence of optimal control pair in
the convexifed field and density property of the original controls in the set of relaxation

controsl.
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Abstract—Relaxed control for a class of strongly nonlinear impulsive evolution equations is in-
vestigated. Existence of solutions of strongly nonlinear impulsive evolution equations is proved and
properties of original and relaxed trajectories are discussed. The existence of optimal relaxed control
and relaxation results are also presented. For 1llustranon one example is given. © 2006 Elsevier
Ltd. All rights reserved.

Keywords—Impulsive system, Banach space Nonlmear monotone operator, Evolution triple,
Relaxation. :

1. INTRODUCTION
In this paper, we present suffictent conditions of optimality for optimal relaxed control prolglems
arising in systems governed by strongly nonlinear impulsive evolution equations on Banach spaces.
The general descriptiops d,i}_‘_such Systems were proposed in [1] as given below.
F(Eh+ AL, z(t)) = g(t, z(t),u(t)), telI\D,
z(0) = zo, (1)
Az(t;) = Fi(z(t)), i=1,2,...,n,

where ﬁi.E (0, T) is a bounded open interval of the real line and let the set D = {t;,to,...,ta}
be a partition on (0,T) such that 0 < t; < t; < -+ < t, < T. In general, the operator 4 is

‘a’nénlinear monotone operator, g is a nonlinear nonmonotone perturbation, Az(t) = z(t}) —

() = z(tF) — =(t;), i = 1,2,...,n, and Fis are nonlinear operators. This model includes all
the standard models used by many authors in the field (see [2,3]). The objective functional is
given by J(z,u) = fo L(t,z(t), u(t)) dt.

In a recent paper by the author [1], the existence of optimal control was proved, but sufficient
conditions of relaxation for optimality were not addressed. We wish to present just that. Before
we can consider such problems, we need some preparation. The rest of the paper is organized as
follows. In Section 2, some basic notations and terminologies are presented. Section 3 contains

This work was supported by Thailand Research Fund. Grant No. BRG 48 2005.
I would like to thank Prof. X.L. Xiang for her valuable suggestions and comments.

0898-1221/06/8 - see front matter (© 2006 Elsevier Ltd. All rights reserved. Typeset by AasS-TEX
doi:10.1016/j.camwa.2006.10.015



780 P. SATTAYATHAM

some preparatory results. Relaxed impulsive systems are presented in Section 4. Sufficient’
conditions of relaxation for optimality are discussed in Section 5. In Section 6, we presented an
example for illustration.

2. SYSTEM DESCRIPTION

Let V be a real reflexive Banach space with topological dual V* and H be a real separable
Hilbert space. Let V < H < V”* be an evolution triple and the embedding V — H be compact.

The system model considered here is based on this evolution triple (see [4, Chapter 23]).

Let (z,y) denote the paring of an element z.€ V* and an element y € V. If z,y € H, then
(z,y) = (z,v), where (z,y) is the scalar product on H. The norm in any Banach space X will
be denoted by || - || x.

Let p,q > 1 be such that 2 < p < +o0 and 1/p+1/¢ = 1 and let T = (0,T). For by q satisfying
the preceding conditions, it follows from reflexivity of V' that both L (I, V) and. Ly(I, V*) are
reflexive Banach spaces. The pairing between L,(I,V) and L,(I,V*) will be denoted% by (-)-

Define

WyolI) = {z: z € Ly(I,V), & € L, (I, V")},
with the norm
lzllw,,y = Nzl L,z vy + 1ElL ez, vy

where  denoted the derivative of = in the generalized sense. The space (Wpo(I), || - lw,. 1))
becomes a Banach space which is clearly reflexive’and separable and the embedding Wp,(I) —
C(I, H) is continuous. If the embedding V —.H is compact, the embedding Wy, (1) — L,(/, H)
is also compact (see [4, Problem 23.13(b)]). Sometimes we write Wy, (0,T') instead of Wye([).
Similarly, we can define W,,(s,t) for & < s < t < T and the space (Wy(s,t), || - lw,q(s,t))
is also a separable reflexive Banach space. Moreover, the embedding Wpe(s,t) — C([s,t], H)
is continuous and the embedding W,;q(s t) < Ly((s,t), H) is also compact. We define the
set PWpe(0,T) = {z : :1:|(ts o € qu(t,,t,+1)- i=0,12,...,n, tc =0, thy1 = T} For
each z € PWpy(0,T), wé.define ||z pw,,01) = Soro 12w, (ti,tis1)- As a result, the space
(PWy.(0,T), |l - ||PW,,q(0 T)) bécomes a Banach space. Let PC([0,T],H) = {z : z is a map
from [O T) into Hsuch that z is continuous at every point t # t;, left continuous at ¢t = ¢; and
right-hand limit.z( t:“) exists for ¢ = 1,2,...,n}. Equipped with the supremum norm topology,
itisa Bar;ﬁgchéfspa‘,Ce. ‘Consider the following impulsive evolution equation:

C(t) é—F"-;;l(t,x(t)) = g(t, z(t)), telI\D, ‘
z(0) = zo € H, (2)
Ax(t;) = Fi(z(t:)), 1=1,2,...,n and 0<?t; <ta<--<t,<T.

By a solution z of problem (2), we mean a function z € PW,4(0,T) N PC([0,T), H) such that
z(0) = o and Az(t;) = Fi(z(t:)),i = 1,2,...,n, and satisfies

(j:(t)"u) + (A(t, z(t)),v) = (g(tvx(t))vv)

for all v € V and p-a.e. on I, where u is the Lebesgue measure on I.

3. PREPARATORY RESULTS

For the study of relaxation for optimality it is essential to guarantee the existence and unique-
ness of solutions of the impulsive evolution equation and certain other related equations. Here
in this section, for convenience of the reader, we quote some results from the recent work of the
author [1]. First, we recall some hypotheses on the data of problem (2).
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HypoTHESsIS (A). A:IxV — V* is an operator such that

(1) t — A(t,z) is weakly measurable, i.e., the functions t — (A(t,z),v) are u-measurable
onl, forallz,veV.

(2) For each t € I, the operator A(t) : V — V* is uniformly monotone and hemicontinuous,
that is, there is a constant ¢; > 0 such that

(At z1) — A(t, z2), 71 — 22) 2 1l|lz1 — 22|},

for all z1,z3 € V, and the map s — (A(t,z + sz),y) is continuous on [0,1] for all
z,y,z€ V.

(3) Growth condition: there exists a constant c; > 0 and a nonnegative function a1(-) € Lo(I}
such that

A 2)llv- < a1(t) + eall=]57Y,
forallz eV, forallt € I.
(4) Coerciveness: there exists a constant cz > 0 and ¢4 > 0 such that

(At z),z) > es|lx||} — ca, forallz eV, foralltel.

HypoTHESIs (G). g: I x H — V* is an operator such that

(1) ¢ is measurable in the first variable and continuous in the second variable.

(2) g is locally Lipschitz with respect to x, i.e., for any p > 0, there exists a positive constant
L(p) such that

lg(t, 1) = g(t, z2)lly- < Lp) flzr — z2ll g,
forallt € I and all z1,z2 € H with ||zyf| € p,-Jlz2]| < p.
(3) There exist c5 > 0, 2 < k < p, and & nonnegative function hy(-) € Lo(I) such that

llg(t,z)

v < ha(t) + csllzf!

forallzeV,tel.
Y

Hypothesis (F). F;: H — H ‘is locally Lipschitz continuous on H, i.e., for any p > 0, there
exists a constant L; (p) stich that

o F=) - Bdo)lle < Lip)lley — z2llw
for all 1,73 €'H withilz1lla < p, llz2llu <p (i=1,2,...,n).

It is someblmes eonvenient to rewrite system (2) into an operator equation. To do this, we set
X = L,,([ V) and hence X* = L,(I,V*). Moreover, we set

A2)(t) = A(t, z(t),
G(z)(t) = g(t, z(t)),

for all x € X and for all ¢ € (0,7). Then the original equation (2) is equivalent to the following
operator equation (see [4, Theorem 30.A]):

z + Az = G(z),
z(0) = zq € H, ' (4)
Az(t;) = Fy(z(t;)), i=12...,n and O0<t;j<ty<---<t,<T.

It follows from Theorem 30.A of Zeidler [4] that equation (4) defines an operator 4 : X — X*
such that A is uniformly monotone, hemicontinuous, coercive, and bounded. Moreover, by using
Hypothesis (G)(3) and using the same technique as in Theorem 30.A, one can show that the
operator G : L,,(I,H) — X* is also bounded and satisfies

”G(U)”X' <M, + M2”v“L (] HYy’ for all v € Lp(I)H)'

We state the following results from (1, Theorem B].

(3)
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THEOREM 3.1. Under Assumptions (A), (F), and (G), system (2) has a unique solution = €
PWpe(0,T) N PC([0,T], H) and there is a constant M > 0 such that ||z||pw,, 01y < M and
lzllpeqo,r) oy < M. :

ProoF. See [1, Theorem B| for the proof of existence and boundedness. The uniqueness follows
from Assumption (G)(2). To see this, suppose that system (2) has two solutions z;, z2. Then it
follows from integration by part formula and monotonicity of A(t,z) that

la(®) = 220y =2 [ (105) = ga(s)a(s) =), ds
=—2/<A@wmg)—wax@xm@>—mw»w_vw
4]
+2A(ﬂ&m@”—d&m@hwﬂﬂ—rﬂﬂwuvds
SQA(ﬂ&m@ﬁ—ﬂ&u@ﬁﬂdﬂ—zﬂﬂwuva
<2 [ flols, 21(5)) = ols, za(s)lv- 1) = 2l ds
szL@yé|uuﬂ-zx@mnmaﬂ—rx@muw

<20 [ os(s) = aa(s)lfs ds,

for some positive constant C;. By Gronwall’s"lemma, we get z1(t) = z,(t) for all ¢ € [0,T].
Hence x; = z; and this prove the uniqueness:of t¥e solution of system (2).

Now, let us consider the corresponding-control system. We model the control space by a
separable complete metric space Z (ie., a Polish space). By Py (Pyc), we denote a class of
nonempty closed (closed and convex) subset of Z. Let I = (0,7T). Recall that a multifunction
T : 1 — Ps(Z) is said to be measurable if for each F € P;Z, T~!(F) is Lebesgue measdrable
in I. We defined St to be the set of all measurable selections of I'(-), i.e.,

Sr = {u T —Z | u(t) is measurable and u(t) € I'(t), p-ae. t € I},

where u is the Lebesgtue measure on I. Note that the set Sp # ¢ if I' : I — P;(Z) is measurable
(see [5, Theorem.2.23, p. 100]). Consider the following control systems:
) + At () = g(t, 2(0) u(t)),  tel,
z(0) = z0 € H, (5)
Az(t;) = Fi(z(ty)), i=1,2,...,n, 0<ti<tg<---<t, <T.

Here, we require the operator A and F;s of (5) to satisfy Hypotheses (A), and (F), respectively,
as in Section 3. We now give some new hypotheses for the remaining data.

HypotHEsis (U). U : I — P¢.(Z) is a measurable multifunction satisfying U(-) C F, where F'
is a compact subset of Z. For the admissible controls, we choose the set U,q = Sy.

HypoTHESIS (G1). g:I X H x Z — V* is an operator such that

(1) t v+ g(t,z,2) is measurable, and the map (z,z) — g(t, z, z) is continuous on H x Z.

(2) For each fixed z, g(t,z, z) is locally Lipschitz continuous with respect to £ and uniformly
int.

(3) There exist constants a,b > 0 such that

lg(t,z, 2)llv- < a+b|zl|f

forallz € H, t € (0,T), and z € Z, where 2 < k < p.
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By Assumption (U), the control set Sy is nonempty and is called the class of original ¢ontrol.
Now, let us define
e Xo={z € PW,(I)nPC(I,H) | z is a solution of (5) corresponding to u}.
e Xj is called the class of original trajectories.
o Ag = {(z,u) € PWp(I) " PC(I,H) x Sy | = is a solution of (5) corresponding to u}.
e Ay is called the class of admissible state-control pairs.
The following theorem guarantees that X¢ # ¢. Its proof follows immediately from Theo-

rem 3.1 by defining the function ¢, (¢, z) = g(¢, z,u) and noting that g, satisfies all hypotheses of
Theorem 3.1.

THEOREM 3.2. Assume that Hypotheses (A),(F), (G1), and (U) hold. For every u € Sy, equs-
tion (5) has a unique solution z{u) € PWy,(I) N PC(I, H). Moreover the set X, is bounded in
PWPQ(I) A PC(I H) ie. ”:I:(U.)“PW e (0,T) < M and Hx(u)HPC([O T),H) < M for all ‘BE‘SU

4. RELAXED IMPULSIVE SYSTEMS

We consider the following optimal control problem:

T
i {J(a:,u) - /O L(t, (t), u(t)) dt} (P)

subject to equation (5).

1t is well known that, to solve the optimization problem involving (P) and obtain an optimal
state-control pair, we need some kind of convexity hypothesis on the orientor field L(t,z(t), u(t)).
If the convexity hypothesis is no longer satisfied, in order to get an optimal admissible pair, we
need to pass to a larger system with measure control (or know as “relaxed control”) in which the
orientor field have been convexified. For this purpose, we introduce the relaxed control and the
corresponding relaxed systems.

Let Z be a separable complete metric space (i.e., a Polish space) and B(Z) be its Borel o-figld.
Let (Q,%, 1) be a measure space. We will denote the space of probability measures on the
measurable space (Z, B(Z)) by M¥(Z).

A Caratheodory intégrand on 2x Z is a function f : 2xZ — Rsuchthat f(-,z) is £-measurable
on £, f(w,-) is eontinusus on Z for all w € Q, and sup{|f(w,?)| : z € Z} < a(w), a.e., for
some functionsszdg-)_ € L,(?). We denote the set of all Caratheodory integrands on & x Z by
Car(§2, Z), Bya transition probability, we mean a function A :  x B(Z) - [0,1] such that for
every A€ B(Z), A(-, A) is S-measurable and for every w € Q, AN(w,-) € M1(Z). We use R(R, Z)
to deriote the set of all transition probability from (2, ¥) into (Z, B(Z)). Following Balder (6],
) we can define a topology on R(Q, Z) as follows: let f € Car(Q, Z) and define

nm= [ | e 210 w) (d2) dut). (6)

The weak topology on R(2,Z) is defined as the weakest topology for which all functionals I :
R(Q,Z) - R, f € Car(Q, Z), are continuous.

Suppose @ = I = [0,T] and Z is a compact Polish space, then the space Car(l,Z) can be
identified with the separable Banach space L{I,C(Z)) where C(Z) is the space of all real-valued
continuous functions on Z. To see this, we associate to each Caratheodory integrand ¢(:,-) the
map t — ¢(t,-) € C(Z). Let M(Z) be the space of all regular bounded countably additive
measure defined on B(Z). We note that M(Z) is a Banach space under the total variation norm,
Le., IMlamz) = |AI(Z2). Then by Riesz representation theorem, the dual [C(Z)]* can be identified
algebraically and metrically with M (Z). The duality pair between M(Z) and C(Z) is given by

A f) = /Z fMdz). )
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So M(Z) is a separable (see [7, p. 265]) dual Banach space and hence has a Radon-Nikodym
property. This observation, combined with Theorem 1 of Diestel and Uhr [8, p. 98], tells us that

Li(I1,C(Z))" = Leo(I, M(Z)).

So the weak topology on R(I, Z) coincides with the relative w* (L (I, M(Z))), L1(I,C(Z)) topol-
ogy. The duality pair between Lo, (I, M(Z)) and L,(I,C(Z)) is given by

T
) = / ), F(2)) de

0

T
:/ /f(t)(z))\(t)(dz)dt (8)
0 zZ
T
=/ /f(t,z)/\(t) (dz) dt,
0 Z

which is the same formula as in (6) with f(¢,2) = f(t)(z). This fact will be usefal in the study
of the relaxed control system where the control functions are transition probability.
Now we introduce some assumptions imposed on the class of relaxed control which will be

denoted by Syg.
AssuMmpPTION (Ul). Z is a compact Polish space, U : I — Py.(Z) is a measurable multifunction.

. Define $(t) = {A € Mi(Z), MU(t)) = 1} and let Sz C R(I,Z) be the set of transition
probabilities on I x B(Z) that are measurable selections of £(-). For any v € Sy, we define
the relaxation &, € Sx of u by 4,(t) = Dirac probability measure at u(t). Then we can identify
Sy € Sy. From now on, we shall consider Sy and Sy as a subspace of the topological space
R(I,Z) with the weak topology defined above.

We list two lemmas which will be useful in discussing relaxation problem. The proofs can be

found in [7, Theorem 1V 2. 1] and [6, Corollary 3], respectively. .

LEMMA 4.1. Suppose Z Js”a compacc Polish space. Then Sy, is convex, compact, and sequentially
compact. ¢

LEMMA 4.2. Sy 1s dense in Sy.

THEOREM 4.3, " Let f:1x Hx Z — R be such that

lety— (t z, z) Is measurable and (x,z) — h(t,z, z) is continuous.
2. |h(ta:r 2)| L Y(t) € Ly(I) for all (z,2) € H x Z.
Y Ifzy — z € C([0,T],H) then

hk(') ) - }_7‘() ')» in Ll(Ia C(Z))7

as k — 0o, where hy(t, z) = h(t,zx(t), 2) and h{t, 2) = h(t, z(t), 2).
ProorF. The proof is similar to Lemma 3.3 in [3].

Next, let us consider this new larger system know as “relaxed 1mpulswe syst;em

z'(t)+A(t,r(t)):/Zg(t,z(t),z)/\(t)(dz), 0<t<T,
(0>=zo, ©
Ax(ts) = Fulz(ts), i=1,2,....n.

We will dencte the set of trajectories of (9) by X,, i.e., X, = {z € PW,,(I)n PC(I,H) |z is
a solution of (9) corresponding-to A € Syz}. Moreover, the set of admissible state-control pairs
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of (9) will be denoted by 4, = {(z,A) € PWy(I) N PC(I,H) x Sg | = is a solution of (9)
corresponding to A € Sg}.

Note that Xp C X, since Sy C Sy and if the hypotheses of Theorem 3.2 are satisfied,
Xo # ¢ = X # ¢. To see this, given any relaxed control A € Sg, if we set g(t,z(t), A(t)) =
Jz g(t,z(t), 2)A(t) (dz) then, working as in the proof of Theorem 3.2, one can show that there ex-
ists a relaxed admissible trajectory z(A) corresponding to A. We summarize the above discussion
into a theorem.

THEOREM 4.4. Assume that Hypotheses (A), (F), (G1), and (U1) hold. For every A € Sy,
equation (9) has a unique solution z(\) € PWpo(I)N PC(I, H). Moreover the set X, is bounded
in Pqu(I) n PC(I,H), j.e., H.’E(A)” PW,,(0,T) < M and ”I(’\)“PC([O,T],H) < M for all X € SE.

The next theorem gives us a useful relation between Xy and X

THEOREM 4.5. If Assumptions (A), (F), (G1), and (U1) hold, then X, = X, (closure is taken
in PC(I, H)).

Before proving this theorem, we need a lemma.

LEMMA 4.6. If Assumptions (A), (F), (G1), and (Ul) hold and Ay — X in R(I,Z), suppose
that {z,z} is the solution of (9) corresponding to {Ag, A}, by working with a subsequence if
necessary, T, — x in PC(I,H) as k — co. :

PROOF. Suppose that Ay — X in R(I,Z) as k — oo and {zx,z} is the solution of (9) corre-
sponding to {Ax, A}. Since (z, Ax) € A, for each positive irteger k, then (zg,ux) must satisfy
the equation - :

Ex(t) + Alt, 24(0) = /Z o(t, 2 (t), 2)Me(t) (dz),
Ik(O) =125 € H, . (10)
AIL‘k(ti)=Fi(Ik(ti))', 1=1,2,...,n, O<t;<tya<---<t,<T.

To finish the proof, we try to_choose y € X, such that y is a solution of (9) correspondirzg to
this A and zx — y in PC(J, H) assk — oo. The uniqueness property of the solution of (9) implies
z =y and hence z, — z+in PC(J, H). This proves that z € X, and we are done. We shall do
this by considering e_acf; case separately.
CasE 1. Find y on the interval (0,t;). For notational convenience, we let I = (0,t;), X) =
Ly(I;,V), and Xt ;..,E.,(II,V*). We note that X; = L,(/;,V) can be considered as a closed
subspacemof X ='L,(I,V). Let z; and A; be the restriction of the functions zx, Ac on the
interval Jy (k =1,2,...). Hence, by Theorem 4.4, {z}} is bounded in Wpe(I1). By reflexivity of
qu(fi;}_ there is a subsequence of {z}}, again denoted by {z}}, such that
&,
gf;‘j“ U zp 52!, in Wpe(l)), ask — oo. (11)
%ince the embedding Wye([,) < X, is continuous, the embedding Wpo(Ih) — Ly(I1,H) is
compact and the operator 4 : X; — X7 maps bounded sets to bounded sets, it follows from (11)
that there exists a subsequence of {z}}, again denoted by {z}}, such that

. - w . .
i 5 ! in X, iy 5 it in X7,
w .
Aa:,lc = €, in X7, (12)
15 ! in L,(I,, H
Tp = L, in Ly(I), H),

and, by [3, Theorem 3.B], z} = z! in C([0,t,], H), as k — co and for some ¢ € X}. Consider
the following equation:

L\~ A @ x'Ll\c&t\\ = g z% CHE SN AN KON EAN © Sh <y,

- 2 (0) = x.

(13)
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Define an operator G : I; — V* and G : I} — V* as follows:
Gi(t) = /Zg(t,x,lc(t),z) AL (1) (d2), k=1,2,3,...,
60 = [ o(tx'(0:2) N) (@2).
It follows from Assumption (G1) that G and Gy € Lo([y, V™).

With this new notation, equation (13) can be rewritten into an equivalent operator equation

of the form

iy +A(zy) =Gr;  0<t<ty, 14)
23 (0) = zo.
For each fixed v € V, define
gk(t, 2) = (g (t,zk(t),2) ,v) ey
g(t,z) = (g (t,zl(t),z) ,v)v,_v.
It follows from Assumption (G1) that, for each fixed t € Iy,
ax(t,-), and g(t,-) € G(Z),
and furthermore
x(,-), and g(-,-) € Li(1,,C(2)).
Since 21 = 2! in C([0, 1], H) (see equation (12)), then Theorem 4.3 gives
gx(, ) — §(-, ), in Li(1;,C(Z)), ask-— oco.
»

Since AL — Al in R(I;,Z), by equation (7), we have A} WAl in (L (1, C(2))* as k — oo.
Hence, it follows from Proposition 21.6(e) of Zeidler [4, p. 216] that

Ok ae) = (ALa),  ask— oo
This meaps that |

z ]g‘/z@ (t,21(2), 2) ) AL () (dz)dt——»/ol/;(g (t,'(0),2),0) A (0) (de) e (15)

1#ask — oo. The convergence in (15) is true for all v € V then we get

Gr %G, ask—oo, inL,(I,V*).

By equation (12), z} = z! in C([0,t,], H) and this implies z}(0) — z!(0) in H as k —
oo. Referring to the initial condition, we have z}(0) = zo € H for all £ = 1,2,3,.... Thus,

z!(0) = zo.
Up to this point, we can conclude that z! satisfies the following equation:

:bl(t)+£(t):/g(t,rl(z);z) A(t) (d2),
Z
’L‘I(O) =1z9 € H.

Next we aim to prove that £ = Az! in X}.
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To prove this we note from equation (14) that

(4 (Illc) ’IL>>X;—X1 = (4 (xllc) ! >X1*

: (16)
- <<zllw$;lc - Il»x;—xl + <<Gk,$llc - Il>>xl-_.x1 :
From integration by part formula, we have
«i'lluxllc - :l:l»x;_xl = «il’x’lc - II»X{—X:
(17

+3 (k) == @l - =k ~ =" O)3)

Substitute (17) into (16) and noting that the second term on the right-hand side of (17) is
always nonnegative, then we get

«A (Illc) axllc»x;_xl < «A (Illc) :Il»x;-xl - «i’l’zllc - Il»x;..x,
+ k() = O, + (Gruh — e gy, -
Therefore,
klin;o (4 (Illc) ’Illc»x‘-_x, < <<£’Il> Xi=X1?
and hence A satisfies condition (M) (see [4, p. 474]). Then we have

A (1:1): =¢..

Now we can say that z! is the solution of the following equation:

' (t) + A (L, 7' (t) = / g (t,z' (1), z) A(t) (dz),
Z
2’ (0) = z0 € H. 1y

This proves that z! sé.t;léﬁes {9Y on the interval (0,¢;) and z! is the required y on (0,¢;).

CAsE 2. Find y Qrf%#fjge Zinterval (t1,t2). The proof is similar to Case 1. Here, let I, = (¢,15),
Xy = Ly(1,V), and X§ Lo(1,V*). Let 22, u? be the restriction of the functions zx and ux on
the interval, _12,,, tespettively (k = 1,2,...). It follows from equation (10) that (z?,u?) satisfies
the operator ‘équation
il 1':2+A(zz):(;k; t <t < tg,
z (1) = o (t7) + B (2R(t))

c*:
’@yhere xk(t ) =zi(t1) = zi(t1) (k =1,2,3,...). By using the same proof as in Case 1, we get
‘that

(18)

z2 5 22, in Wye(ty,t2), and 2 3 22, in C([t;,t2], H), ask — oo,

which implies that z2(t]) — z%(t}) in H as k — oo and, moreover, z is also satisfied the

operator equation
i+ A(z%) =G, 1 <t<t.

We are left to verify the initial condition at ¢;. To see this, we note that the expression on
the right-hand side of (18) converges to z!(t1) + Fi(z!(t1)) as k — oo (see Hypothesis (F)).
On the other hand, the left-hand side z}(t}) — z2(tJ) in H as k — oco. Hence, z%(t}) =
z(t1) + Fi(z'(t1)) = 2%(t7) + Fi(z?(t1)). This proves that z? satisfies (9) on the interval (i, ¢3)
and 22 is the required y on (t1,t2). Continuing this process we can find ¥ on the interval (¢;,t;41),
j=0,1,...,n. By piecing them together from j = 1,2,...,n and taking into account the impact
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of jump, we obtain y which is the solution of (9) corresponding to the relaxed control A satisfying
zx — y in PC(I,H) as k — co. Since z = y, zx — z in PC(I,H) as k — oo. The proof of
Lemma 4.6 is now complete.

PROOF OF THEOREM 4.5. First, we shall show that X, C X. Letting € X, then there exists
A € Sy such that (z,A) € A,. By virtue of density result Lemma 4.2, there exists a sequence
{ux} € Sy such that §,, — Ain R(I,Z). Let zix be the solution of (9) corresponding to u.
Then we have a sequence {(zx,ux)} C Ao. Since (zx,ux) € Ao for each positive integer k, then
(zk, ux) must satisfy the equation

#4(8) + At 2(0) = [ ot 2(0) )00, (1) (ds),
zx(0) = z0 € H,
Az (t;) = Fi(ze(ts)), i1=1,2,...,n, k=1,2,3,...,
O<ti<ta< - - <ty <T.

Applying Lemma 4.6, we get xx — z in PC(I, H). This proves that z € X and hence X, C Xj.
Finally,"we will show that X, is closed in PC(I, H). Let {z4} be a sequence of points in X, such
that zy — z in PC(I, H) as k — oo. By definition of X, there is a sequence {\x} of points in Sy,
such that (zx, Ax) € Ay, £ =1,2,3,.... By Lemma 4.1, Sy, is compact in R(I, Z) under the weak
topology. Moreover, R(I, Z)-topology coincides with the relative w* (Lo (I, M(Z)), L1(I,C(Z)))
topology which is metrizable (see [2, p. 276]). Then, by passihg to a subsequence if necessary, we
may assume that Ay — A in R(J, Z). Applying Lemma- 4.6, there is z € X, such that 2 — z in
PC(I,HY as k — co. Hence X, is closed in PC(J, H) and, consequently, X, C X, = X,. The
proof of Theorem 4.5 is now complete.

The following corollary is an immediate’consequence of Lemma 4.6.
COROLLARY 4.7. Under assumption of Theorem 4.5, the function X —— z(X) is continuous from
Sy C R(I,Z) into PC(I,H): s
5. EﬁI:STENCE OF OPTIMAL CONTROLS

Consider the follo&}ng Lagrange optimal control problem (P.): find a control policy A € Sg,
such that 1t m}pﬁ;ts g'minimum to the cost functional J given by

B

IO = J (2 ) E/I/Zz 1,2 (0)), 2) M2) (d2) dt, (P.)

%Wh%i:e”fA is the solution of system (9) corresponding to the control A € Sy.. We make the following
l%éﬁ),f;thothesm concerning the integrand (., .,.).

"HYPOTHESIS (L). 1 : I x HxZ — RU{+c} is Borel measurable satisfying the following
conditions:

(1) (¢, 2) — Ut &, 2) is lower semicontinuous on H x Z for each fixed .
(2) ¥(t) < U(t,€, 2) almost everywhere with ¥(t) € Li(I).

Let m, = inf{J(X) : X € Sg}. We have the following theorem on the existence of optimal
impulsive control.

THEOREM 5.1. Suppose Assumptions (A), (F), (G1), (Ul), (L) hold and Z is compact Polish
space, then there exists (%, \) € A, such that J(Z,)) =

PRroOF. If J(A) = +oo for all A € Sy, then every control is admissible. Assume Inf{J(A): A €
Sz} = m; < +oo. By Assumption (L), we have m, > ~oo. Hence m, is finite. Let {A\x} be a
minimizing sequence so that limg_.o J(Ax) = m,. By Lemma 4.1, Sy is compact in the topology
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R(I, Z). Hence, by passing to a subsequence if necessary, we may assume that A\x — X in R(I, Z)
as k — co. This means that Ay 5 X in Leo(J, M(Z)) as k — oo. Let {zx,Z} be the solution
of (9) corresponding to {\g,A}. By Lemma 4.6, we get 7, — % in PC(I,H) and (Z,)) € A,.
Next, we shall prove that (Z, ) is an optimal pair.

As before, we identify the space of Caratheodory integrand Car(J, Z) with the separable Banach
space L,(I,C(Z)). We note that every semicontinuous measurable integrand { : / x H x Z —
R U {400} is the limit of an increasing sequence of Caratheodory integrand {;} € L,(I,C(Z))
for each fixed h € H. Thus, there exists an increasing sequence of Caratheodory integrand
{{;} € Li(I,C(Z)) such that

Li(t,Z(t), z) T U(t, Z(t), 2), asj — oo, foralltel, ze2Z.

Since =y — % in PC(I, H), by applying Theorem 4.3 on each subinterval of [0, T7, I;(t, 2 (t), z) —

Li(t,z(t),z) as k — oo for almost all ¢t € I and all z € Z. We note that since Ay ™ X in
Loo(I,M(Z)) as k — oo, then

J(f,i)=((i,l))=/1/2l(t;:z(t),z) A(t) (d2) dt
=j132°/1/zzj (6, 2(2), 2) A(t) (dz) dt

=~ lim lim //lj(t,a:k(t),z),\k(t) (d2) dt
j—o0 k—oo iJz
< limg—co lim / / Lt zu(), 2)M(t) (dz) dt = m.
I—eJrJz

However, by definition of m., it is obvious that J(z,A) > m.. Hence J(Z, \) = m,. This implies
that (%,)) is an optimal pair.

REMARK. If Jo(z,u) = ; I(ts=(1), u(t))dt is the cost functional for the original problem 'ﬁmd

= inf{Jo(z, u) : u € U.g}, insgeneral we have m, < m. It is desirable that m, = m, i.e., our
relaxatlon is reasonablg. With ‘sofne stronger conditions on [, i.e., the map (&,7,2) = I(t,€, 2)
is continuous and (t,“&, ‘)1"< Or(t) for all most all t € I and 6r € Ly(I), one can show that
m, = m. The prqsgf is %nﬁllar to Theorem 4.B. in (3].

D

6. EXAMPLE

In tpxs §éctxon we present an example of a strongly nonlinear impulsive system for which our

géqera.l%heory can be applied. Let / = (0,7) and  C RV be a bounded domain with C!

%%,guhda&“y 0). For p > 2 and 8 > 0, we consider the following quasi-linear parabolic control
ﬁroﬁ]em

N
Bt—:z:(t,z) - ; D; ('D,;I(t, z)]pﬂ2 Dir(t,z)) = g(t, z,z(t, 2), u), onl x £,

19
II]xag = 0 1‘(0,2) = xo(z), ( )

Ax{t;, z) = Fi(z{ts, 2)), i=1,2,...,n,
where (0 <ty <to < - <t, <T).
Here the operator D; = ai:,» (i=1,2,...,N). We need the following hypotheses on the data
of (19).
HyroTHESIS (G'). f:IxQ x Rx RN — R is an operator such that

(1) (t,z) — f(t,2,& u) is measurable I x ; and the map (&,u) — f(t,z,£,u) is continuous
on R x RV. .
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(2) There exist constants by > 0, by(t, z) € Lo(I x Q) such that

If(t,z,f,u)l < b1|§| + bg(t,l).

HypoTtHEsIs (F'). F; : Lo(}) — Lo(Y) (G = 1,2,...,n) are operators such that for any p > 0
there exists a constant L;(p) > 0 such that

1F:(h1) = Fi(h)ll g,y < Li(p) l1h1 = h2ll1,
for all k1, hy € Lo(§2) with ||h]||L2(Q) <p, ”h2”L2(Q) <p(i=1,2,...,n)

THEOREM 6.1. If Hypotheses (G') and (F') hold and letting zo(-) € L2{Q2), u € Uyug (’deﬁned

below) then system (19) has a solution z € L,(I, PWL?(Q) n PC(I, L5(R)) such that &2
Lo(I, W=1a(Q).

PROOF. In this system, the evolution triple is V = W, P(Q), H = Ly(R), and V* = W=19(Q).

All embeddings are compact (Sobolev embedding theorem). Define an operator A: I x V — V*

by

N
(A3l = [ 3 ID(@)P D)D) d. (20)
2 =

One can easily check that A(t, z) satisfies Hypothesis (A) in-Section 3. The uniform monotonicity
of A(t,) is a consequence of the result of Zeidler {4, p.-783]). _

In the sequel, we suppose that 81:(+), B2i(-) (1 < i £ N) are continuous functions from [0, T]
to R and satisfy B1:(") < Boi(-) 1 <i < N) forallt€[0,T],1 <1< N. There exists a constant
a > 0 such that —a < f1;(t) < Bai(t) < aforallt e [0,T], 1<i < N. Set Z = [~a,a)¥ c RV.
Then Z is a compact Polish space. Deﬁfne

U(®) = {(wslt) €8 5 fult) < w(®) < fu(®), 15 < N}

It is clear that U : I — Py (Z) is measurable. The set of admissible controls U,q is dhosen
as Usa = Sy = {u: 1 ~» RN | u is measurable and u(t) € U(t) ae. ¢t € [0,T]}. Hence the
multifunction U satisfies (U1).

Next, for ¢ e#f’%'eﬂ H, w € Z define a function b¥ : [ x H x V. — R by b*(t,¢,%) =
Ja f(t, 2,6, wlh(%) dzy Then, the map ¥ — b¥(t, ¢,¥) is bounded on V and hence s a continuous
linear formf,on Vi, Thus there exists an operator g : [ x H x Z — V* such that

5% b (t, 4, %) = (9(t, 6,0), Y}y v (21)
Bﬁmusmg Hypothesxs (G’), we obtain that g satisfies Hypothesis (G1) of Section 3.

' »Usmg the operator A and g as defined in equation (20) and (21), one can rewrite system (19)
»;m an abstract form as in (9). So, applying Theorem 4.4, system (19) has a solution.
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Abstract y

Relaxation control for a class of semilinear impulsive controlled systems is investigated. Existence of mild solutions for
semilinear impulsive controlled systems is proved. By introducing a regular countably additive measure, we convexify the original
control systems and obtain the corresponding relaxed control systems. The existence of optimal relaxed controls and relaxation
results is also proved.
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1. Introduction s
Let I = [0, T] be a closed and bounded interval of the real line. Let D = {¢(, 12, ..., t,) be a partition on (0, T')
suchthat 0 < 1) < # < --- < 1, < T. A semilinear impulsive controlled system can be described by the following

evolution equation:

x(t) = Ax(t)+ f(t,x(t),u(t)) te (0, T)\D,
x(0) = xp, (1.1)
Ax(t) = Li(x(@)), i=1,2,...,n, o

where A is the infinitesimal generator of a Co-semigroup {T (¢), ¢ > 0} in a Banach space X, the functions f, J;,
i =1,2,..., are continuous nonlinear operators from X to X, and Ax(#;) = x(1; +0) — x(t; — 0) = x{; + 0) — x(;).
This system contains the jump in the state x at time 7; with J; determining the size of the jump at #. In this
paper, we aim to prove the existence of state—control pairs of the system (1.1). Moreover, by defining the objective
functional J(x, u) = fOT L(z, x(2), u(z))ds, we shall find sufficient conditions to guarantee the existence of optimal
state—control pairs when convexity conditions on a certain orientor field are not assumed. This is the relaxation
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problem. By introducing regular countable additive measures, we convexify the original control systems and obtain
the corresponding relaxed control systems. Under some reasonable assumptions, we prove that the set of original
trajectories is dense in the set of relaxed trajectories in an appropriate space. The existence of optimal relaxed controls
is obtained under some regularity hypotheses concerning the cost functional.

In recent years, relaxed systems have attracted much attention since some orientor fields do not satisfy the
convexity condition. See, for instance, [1,6,7]. Ahmed [1] dealt with this problem and introduced measure-valued
controls in which the control space is compact and values of relaxed control are countable additive measures, while
Papageorgious [6] and other authors including us continue to discuss this problem in another direction. However,
to our knowledge, there are few authors who have studied the problem of relaxed controls of systems governed by
impulsive evolution equations, particularly, relaxation on semilinear impulsive evolution equations. We organize the
paper as follows. In Section 2, we describe the original control systems and the corresponding relaxed control systems.
The properties of relaxed trajectories are given in Section 3. Section 4 is devoted to the existence of relaxed optimal
controls and relaxation theorems.

2. Original and relaxed controlled systems

In what follows, let the Banach space (X, || - || x) be the state space, I = [0, T] be a closed and bounded interval of
the real line, C(/, X) denote the space of continuous functions, and C'(/, X) denote the space of first-order continuous
differentiable functions. Let L(X, ¥) denote the space of bounded linear operators from X to Y and L(X) denote the
space of bounded linear operators from X to X. .

We denote the ball {x € X : |lx|| < r) by B,. Define PC(I,X) = {x : I — X : x(1)iscontinuous at r #
t;, left continuous at t = #;, and the right hand limit x(t,-+) exists}. Equipped with the supremum norm topology, it is
a Banach space.

We introduce the following assumptions. .

[A]: The operator A is the infinitesimal generator of a Cosemigroup {T(t),t > 0} on X.
[F]: f:1 x X — X is an operator such that
() £ = f(z,&) is measurable and locally Lipschitz continuous with respect to the last variable, i.e., for any
finite number p > 0, there exists a constant L1(p) > 0 such that

N fee, x1) — £ x2)lx < Li(e)lixr — xallx,

Vxy,x2 € B).
(2) There exists a constant k > 0 such that || (¢, x)||lx < k(1 + ||x]x).
[J]: J: : X — X is an operator such that
(1) J; maps a bounded set to a bounded set.
(2) There exist constants h; > 0,i = 1,2, ..., n, such that

Iix) = i) < hillx —yll, x.yeX.
Consider the following impulsive systems:
x(t) = Ax(t) + f(t,x(1)) t€[0,T]\ D,

x(0) = xo, 2.1
Ax(t)y = JLi(x(@®), i=12,...,n.

By a mild solution of (2.1), we shall mean that a function x € PC(/, X) satisfies the following integral equation:

H
x(t) = T(t)xo +/ T —1)f(r,x(z))dr + Z T —t)Ji (x(4)).
0 /

O<tj <t

Theorem 1. Suppose the assumptions [A), [F], and [J) hold; then for every xg € X the system (2.1) has a unique mild
solution x € PC(I, X) and the mild solution depends continuously on the initial conditions—that is, if xo, vo € X

and if x(t), y(t) are mild solutions of Eq. (2.1) which satisfy x(0) = xo and y(0) = yq. Then there exists a constant
C>0s.t

sup |[x(0) =yl < Clixp — yollx.
1e[0,7]
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Proof. Firstly, we consider the following general differential equation without impulse:
x(t) = Ax(®) + f@t,x(t)) t>0, (2.1.1)
x(0) = xp.

Define a closed ball B(xg, 1) as follows:
B(xo, 1) = {x € C([0, 1], X), [x(t) —xoll < 1,0 <t < T},

where T will be chosen later. Define a map P on B(xpo, 1) by

!

(Px)(t) =T (t)xo —i—/ Tt —1)f(r,x(r))dr
0

and let M = sup,¢[o,7) [T (2)|l. Using assumption [F], one can verify that P maps B(xo, 1) to B(xo, 1). To prove this,
we note that '

!
(Px)(t) = xoll < IIT(#)xo — Xoll +/0 1T =Dl f(z, x(T))dv
< Mk(1 4 p)t + T (£)xo — xoll.

Since T (¢) is the strongly continuous Cg-semigroup, there exists Tj1 > O such that for all ¢t € [0, Tyi1], IT (t)xp—x0ll <
%. Now, let 0 < Tay < TAT(IH—;;) Set T{ = min{T}y, T22}; hence for all ¢ € [0, 7{] we have ||(Px)(¢) — xoll < 1.

Hence P : B(xo,_l) — B(xp. 1).
Let x), x2 € B(xg, 1). By assumption [F](1), we have
t
[(Px){(t) — (Px2)()]| < /o N7 — o) f(z, xi (D) — f(z, x2(0))dT
MtL(p)|lx1 — x2|l.

IA

Now, let0 < T} = WLIIW; then ||(Px))(t) — (Px) ()| < %Hx; — x2||. Hence, we shall choose T; = min{7}. T{'}

to guarantee that P is a contraction map on B(xo, 1). This implies that (2.1.1) has a unique mild solution on [0, T7].
Again, using the assumption [F], we can obtain the a priori estimate of mild solutions of Eq. (2.1.1). To see this, we
note that b

!
lx1 < 1T ®xoll +/0 I7@ =)z, x(z)ldT

!

< Mlixoll + MkT + Mk/ Ix(z)lidz.
0
By the Gronwall inequality, we obtain

@Il < (Mlxoll + MAT) eM* Jo &
< (M||xoll + MkT)eM*T =M1
That is, there exists a constant M = (M ||xo|l + MkT) eM*T > 0 such that for ¢ € [0, T] we have ||x(z)|| < M. Then
we can prove the global existence of the mild solution of system (2.1.1) on [0, T].
Now, we are ready to construct a mild solution for the impulsive system (2.1). For ¢ € [0, #1), the above result
implies that x(¢#) = T (t)xp + f(; T(t ~ 1) f(7, x(1))dr is the unique mild solution of the system (2.1) on [0, 7]
Clearly the solution is continuous on [0, 1) and since T (¢) is a continuous semigroup, then x(#) can be extended

continuously until the point of time ¢; which is denoted b,y x(t1). It is easy to see that x(1;) € X. Since J1 maps
bounded sets to bounded subsets of X, the jump is uniquely determined by the expression

x(t1+0)=x(t —0) + Ji(x(t1 —0)) = x(11) + J1(x(1))) = x).

Consider the time ¢ € (¢1, 7). We have

x(t) = T(t)xo + f T —1)f(r.x(@)dr + T — 1) Ji1(x(11)).
0

ach spaces, No
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Again, x € C((1], 12), X) and can be extended continuously until the point of time #; which is denoted by x(#2) € X.
By the previous result, x(-) is a mild solution of Eq. (2.1) on (¢, r2]. Because J; maps bounded sets to bounded sets,
the jump is uniquely determined by

x(tz +0) = x(t2 — 0) + J2(x(t2 — 0)) = x(12) + J2(x(02)) = x2.

This procedure can be repeated on ¢ € (12, t3], (3, 24), . . ., (t,, T1. Thus we obtain a unique mild solution of problem
(2.1) on [0, T] and it is given by

13
x(t) = T()xo +/ Tt —7)f(r,x(r))dr + Z T(—t)ix()), 0=<:<T.
0

O<tj <t

For the proof of continuous dependence on the initial value, one can use the Gronwall inequality to find a constant C
such that ||x () — y(®) || < Cllxo — yollx for all ¢+ € [0, T]. The proof is now complete. O
i
Now, we introduce the admissible controls space U,g.

Let I" be a compact Polish space (i.e., a separable complete metric space).
We define

Uyg = {u': [0, T] — I'|u is strongly measurable}.

By the measurable selection theorem, Uzg # ¢ (see [3]). We make the following assumptions for our control systems.

Assumptions

[F1} f : I x X x I’ = X is an operator such that

(1) t > f(,&, n)is measurable, and (&, n) — f(¢, &, n) is continuouson X x I'.
(2) For any finite number p > 0, there exists a constant L{p) > 0 such that

lf(t, x1,0) = f(t, x2,0)llx < L(p)llx; — x2llx,

forall x| < p, ||x2ll < p,andt € I, o € I'.
(3) There exists a constant kg > 0 such that s

IFG, x,0)llx <kr( +llxllx) (t€l,0€l).

Consider the following original control system:

x(t) = Ax (1) + (@, x(1), ut)),
x(0) = xp, 2.2)
Ax(t) = Ji(x(4)),  u(-) € Uag. ‘

Theorem 2. Suppose the assumptions [A], [J1, and [F1] hold. Then for every xo € X and u € Uy, the system (2.2)
has a unique mild solution x € PC(I, X) which satisfies

!
x(®)=T()xo +/ T —1)f(r, x(7), u(r))dr + Z T —t)Ji(x(1)).
0

O<t; <t

Proof. Let u € U,g and define g, (1, x) = f(¢, x, u). Since f is measurable, then g, : I x X — X is measurable on
[0, T'] for each fixed x € X. Hence g, satisfies the assumption {F]. By Theorem 1, the system (2.2) has a unique mild
solution x € PC(I, X).

In order to introduce the relaxed control system corresponding to (2.2), we need some preparations which are drawn
from ([4], p. 618-650). Let I" be a compact Polish space, and C(I") consist of all continuous real-valued functions.
Endowed with the supremum norm, C(I") is a Banach space. Let @(C) be a o -field generated by the collection C of
all closed sets of I" and let Yo (I") be the space of all regular countably additive measures on the measurable space
(I', #(C)). For u € Zica(I), || denotes the total variationof . 13 '
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Lemma 3. The dual space C(I')* can be identified algebraically and metrically with Lca(I') with the norm
Nl seacry = 1CT).
The duality pairing of C(I'") and 3yca(I') is given by
(fiu)= /; fo)u(do)

for f e C(I), p € Eea(D).
Let LY(I, C(I")) be the space of all (the equivalence class of) strongly measurable C(I")-valued functions u(-)
defined on I such that

lul =/l||u(t)||dz < +oo.

L1, C(I")) is a Banach spacé. L‘u’,o(l, C(I')*) is the space of all C(I')*-valued C(I')-weakly measurable functions
g(-) such that there exists C > 0 with

g, I = Cliyllcry aein0<t<T, (2.2.1)

foreach 'y € C(I') (the null set where (2.2.1) fails to hold:may depend on y). Two functions g(-), h(-) are said to be
equivalent in LS (1, C(I')*) (in symbols, g = h) if (g(t),y) = (f(t),y)a.e.in0 <t < T foreachy € C(I').

Lemma 4. The dual L' (1, C(I"))* is isometrically isomorphic to L% (1, C(I')*). The duality pairing between the two
spaces is given by

T
(g f))=/0 (8(1), f(r))dt,

where g € L°(1, C(I"*) and f € L'(1, C(I')).

Since I' is a compact metric space, C(I')* is a separable Banach space (see [8], p. 265) and hence has the
Radon-Nikodym property which tells us that L1 (1, C(I"))* = LI, Zra(I)).

Definition 1. The space R(I, I") of relaxed controls consists of all w(-) in LI, Lo (I)) = L'(IfC(I"))* that
satisfy ,

Wwif f(¢,) e L', C(I'y)issuchthat f(r,0) > 0foro € "ae.in0 <t < T then

T
/ / S, oyu(t,do)de =0,
o Jr

(1) if x (¢) is the characteristic function of a measurable sei 'e C[0,T],and 1 € C(I') is the function 1{g) = 1, then

T
/ f(x(r) & 1(o)u(r, do)dr = Jel.
0 r

Note that x (1) ® 1(-) € L!(I, C(I)).
We note that (ii) can be generalized to

T T
f / (6() ® Lo ), do)dr = f 6 ()t
0 r 0

for any ¢ () € L' (I).
In fact, for w(-) € R(I, I'), we have

Nl Lo Beory <1, u(@) 20,and u(z, I') =1 ae. in0<t<T.

In particular,

g,y =1 ae.in0=<t=<T.

Balee, ctil., Relaxationsof noslinear impulsive: controlied systefris on Banach $paces. Nonlinear
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Lemma 5. Let {un(-)} be a sequence in R({, I'). Then there exists a subsequence which is L'(I, C(I))-weakly
convergent in L°(1, Xica()) to u(-) € R(I, T).

Sometimes, using another equivalent definition of R(I, I') is more convenient. We denote by I, (I") the set of all
probability measures (i in Lwea(I'). We denote the Dirac miasure with mass at u using the functional notation §(- — u)
or8,. The set D = {5, : u € I'} of all Dirac measures is a subset of Ilca(I).

Lemma 6. I1;,(I") is C(I")-weakly compact, also C(I")-weakly closed in 2c(I').
Let Tonv denote the closed convex hull (closure taken in the weak C(I")-topology). Then

Hrca(F) = tonv(D).

Since C(I') is separable, the equivalent relation in L°°(I, Xio(I')) is equality almost everywhere. Let us define
the set

R, Mo (D)) ={u € LU, Do), vst.v~uand v(t) € ILea(lMN) ae.in0 <t <T).

If u(:) € Uyg then one can check that the Dirac delta with mass at u(t) (written as 8(- — u(t)) is an element of
R(I, IIca(IN)). Hence we can identify Uqaq as a subset of R(1, Ilcy(I')). We note further that R(1, I,ca(I')) = R(I, ")
(see [4], Theorem 12.6.7).

Now, let us consider the new larger system known as the “relaxed impulsive system”:

x(t) = Ax(t) + F(t, x(¢)n(),
x(0) = xo, (2.3)
Ax(t) = Ji(x (1)), () € U,

The admissible control space is U, = R(I, ITca(I')). The function F : I x X X 2ca(I") = X is defined by
F(,x)u = / @, x,0)u(do).
r
The following theorem is an immediate consequence of Theorem 2.

Theorem 7. Assume that assumptions [A), (11 and [F1] hold. For every u(-) € U,, the relaxed control‘system 2.3)
has a unique solution.

3. Properties of relaxed trajectories

In this section, we will denote the set of original trajectories and relaxed trajectories of the system (2.2) by X and
the system (2.3) by X,, i.e.,

Xo={x € PC([0, T]; X) | x is a solution of (2.2) corresponding to u(-) € Uy}
and
X, ={x € PC([0, T]; X) | x is a solution of (2.3) cbrresponding to u(-) € U,).

Theorems 2 and 7 show that X # ¢ implies X, # ¢. Moreover, since Uyg C U, we have Xy C X,.
Next, we introduce one more hypothesis concerning the operator A.

[A1] Anoperator A is the infinitesimal generator of a compact Cg-semigroup {T(t), ¢t = 0}.
Lemma 8. Let A satisfy assumption [A1] on Banach space X. Let | < p and define
S(g(-) =/ T(-—s)g(s)ds Vg()e LPU, X).
0

Then S : LP(1, X) — C(1, X) is compact.
Proof. See Lemma3.2in[5]. O

chales, eval,, R’elaigﬁoﬁ; of wonlinear impulsive controlfed’ systems on Banach spuces, Nonliniear
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Lemma 9. Let X be reflexive and separable. Suppose the assumptions [A1] and [F1] hold. If {u"(-)} is a sequence
in L, Seea(I)) with i () — () L'(I, C(I'))-weakly as n — oo then

pn() = / T( — r)/ fr,x(@), o)(u"(t) — u(x))(do)dr - 0 inC(l, X)asn — oo,
Q r
where x € C([0, T], X).
Proof. Due to reflexivity of X, {T*(z),t > 0} is a Cp-demigroup in Banach space X* (see [2], p. 47). Define
gn(1) = [ f(t,x(1), 0)(u" () — u(r))(do); then
lign (D) = /rllf(T.X(T).O)II(M"(T) — pu(thH(do)

< kp(1+ Ix(@IDNK"(T) = L@l Sea(r)
< 2kp(l + flx (D). o

Since x(¢) is the solution of (2.3), then it is bounded by M. This implies that {g,(-)} is bounded in LP({, X),

1 < p < 4o00. Hence there exists a subsequence (denoted with the same symbol) with g, (") 5 g()in LP(I, X).
By Lemma 8, we have

pa?) =f' T(-—r)gnmdr—‘»/o' T(—Dg(@)dr = p() inCU, X).
0

Forfixed0 <t <T,h* € X*, we have

(pn(f), h*) — /0 (T(t _ r)g"(r)' h*)d‘t
= fo (gn(T), T™(t — T)A")d7
{
= /(-) /;Jf('ﬂ x(1),0), T*(, _ _E)h*)(#'n(.[) — () (do)dr

H
= /0 /F E(7, o) (" (r) — (1)) (do)de y
where £(7,0) = (f(z, x(1),0), T*(t — T)h*). '
By assumption [F1], for 7 fixed, the map o — &(t, ¢') is continuous. This implies that £(t, o) € C(I") and
(T, o)l < k(1 + Jlx(DD.
Hence £(-, ) € LY(1, C(I)).
Since 1 (-) = u(-) L'(I, C(I"))-weakly in LI, Zra(I)), then

/ _/ £(r,0)(u" (1) — p(1))(do)dt — 0 asn — oo,
0 Jr

This implies that, for fixed ¢ € 1,

(on(1),h*y — 0 Vh* € X*.

1

Hence p, (1) — 0asn — oo. Thus p(t)y =0. This meansb'thal pn(-) — O0asn - oinC{,X). O
Remark. Using the same proof, one can see that the result of Lemma 9 is also true when x € PC([0, T1, X).

Theorem 10. Let X be reflexive and separable. Suppose the assumptions (A1), [J1, and [F1] hold. If x(-, u) is the
solution of (2.3) corresponding to y then, for every € > 0, there exists u(-) € Uyq such that x(-, u) is a solution of
(2.2) corresponding to u and satisfying

lxC, ) —xCo)llpcu.xy < &,
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Proof. Let u(-) € U,; since Uyg € U, and Uyg is dense in U,, there thus exists a sequence {u,} € Uy such that

Up £> u. Let x, () = x(-, un) be the solution of (2.2) corresponding to u, and x(-) = x(-, i) be the solution of (2.3)
corresponding to p1. Since

!
xn(t) = T(t)xo+/ T(t — ) f(7, %a(2), ua ()T + Y T = 1) JiOxn(1))
0

O<t; <t

T(:)xo+/ T —1) [/ f(r,xnm,o)au,,m(do)]dz+ 3 T )i (n))
0 r

O<t; <t
and
s =T+ [ 161 U f(r,x(t).a)u(?)(do)}dr+ S T — )i (x@),
0 r T O<ti<t
we have

!
xn(1) —x(1) = / T(t—r1) [/F(f(fyxn(r)ﬂ)r?u,,(f_) - f(T,X(f),U)rYu,,(T))(dU)] dr
0

+f0 T(t—-1) [/P f(@,x(1), 0)(u,(T) — u(f))(da)] dr
+ Y T = )i (1)) — Jix(6)))]

O<ti<t

=L+ L+ 15

By the Lipschitz condition [F1], we get
!
e M/ L(o)xa(z) = x(DI,
0

where I| = f(; Tt — [ [r(f(7, x(2), 0)84,(T) — f(T)x(T), 0)84,(7))(do)]d7, and M is a boundsfor || T ()| in
0<t<T.

Using assumption [J}(2), we have

Il < Y Mhillxa () — x @),

O<t; <t

where I3 = 3 g o, T(t — )i (xa (1)) — Ji (x(6)].
We denote the second integral I, by p,(1), i.e,,

!
pn(t)Elszo T —1) [/rf(f,X(r),O)(éu,.(r)—/L(t))(do)]dr.

Thus

t
lxn () = x (@O < M/o L) llxn(t) = x(D)lldT + llon(D)]l + Z Mhillxn () — x ()]

O<ti <t

By the impulsive Gronwall inequality, we get

hxn (1) = x(O < Clion (O,

where C = []o_, (1 + Mh;) exp(M L(p)1).

By using Lemma 9, we show that p,(-) — 0asn — ocoin PC([0, T], X). Hence x,(-) — x(-)asn — oo in
PC([0, T], X). The proof is complete. O




4. Relaxed optimal controls and relaxation theorems

Consider the following Lagrange optimal control (P;): Find a control policy po € U, such that it imparts a
minimum to the cost functional J given by

J)=J(xu, 1) = -/;/Fl(t,x#(t), o) (t)(do)de, P)

where x,, is a solution of the system (2.3) corresponding to the control 1 € U,.
We make the following hypotheses concerning the integrand I(-, -, -).

[L11:7x X x ' - R =R U {400} is an operator such that
(1) (¢, &,0) > (1, E, ) is measurable,
2) (¢,0) > 11, &, 0) is lower semicontinuous,
(3) 1I(t, &, 0)| < 6r(r) for almost all ¢ € I provided that [|§]|x < R, o € I" and 0g(¢) € LY.

Before proving the existence of the relaxed control, we need a lemma.

g
Lemma 11. Suppose h : I x X x I' — R satisfies '

(1) t = h(1, &, 0) is measurable, (§,0) — h(t, &, o) is continuous,
(2) |h(t, €, 0)| € ¥r(t) € LY(I) provided that |E||x < Rando € T.

If x, » xin C(, X) then h,(-,-) = h(-,-) in L'U, C(I")) as n = oo, where hp(t,0) = h(t, x,(1), o) and
h(t,o) = h(t, x(1),0).

Proof. It follows immediately from the first hypothesis of this lemma that
Mo h e L'(I,C(D)).

For each fixed ¢t € I, we shall show that A, (7, -) — A(¢, ) in C(I') as n — o0.
By definition, we have

sup lhn(tv U) - h(t! U)l = "hn(tv ) - h(ta )“C{F)

oel”
Since ' is compact, there exists o, € I" such that
|rn(t, 0n) = B{t, 0n)| = lhp(t,-) = h(t, M)
and we can assume 0, — o* as n = 00. We note that

sup lhn(t, o) — h(t, 0)] = |hn(t, op) — B(t, 04)]
oel’

S hn(t, 0n) — ha(r, 6 + lha(t, 0*) = h(t, 0*)| + |h(1, 0*) = A(t, on)l.

Then, by continuity of i, we have |h, (¢, 0,) — h(t, 0,)| — O as n— 0.
This means

lhn(t, ) — k¢, Hicry = 0 asn — oo.

Assuming that x, — x in C(/, X) as n — oo then there exists R such that ||x, (O, lx (]| < R.
Hence, by the second hypothesis of this lemma, we have

Anlt, ) — R(, Hlcry < YR
This implies that

[”hn(f. ) —=ht, Mleydt > 0 asn — oo.
i

We have
Ba(-n-) = h(,) inL'I, C))asn - oo.

This proves the lemma.  [J !




Let m, = inf{J () : u € U,}. We have the following e;fistence of relaxed optimal control.

Theorem 12. Suppose assumptions [A1], [F1], [J] and [L] hold. Then there exists u* € U, such that J(u*) = m,.

Proof. Let {u,} be a minimizing sequence so that lim, e J(it,) = m,. Recall that U, is w*-compact in

L®(1, Zica(I')); by passing to a subsequence if necessary, we may assume fin 5 w*in LI, X (1)) as n — o0.
Next, we shall prove that (x, u*) is an optimal pair, where x is the solution of (2.3) corresponding to u*.

Since every lower semicontinuous measurable integrand is the limit of an increasing sequence of Caratheodory
integrands, there exists an increasing sequence of Caratheodory integrands (/x} such that

Le(t,E.0) 1 1(1,6E,0) ask > ocoforalltel,o e .

Invoking the definition of weak topology and applying Lemma 11 on each subinterval of [0, T1, li (¢, xn (1), 0) —
Le(t, x(t),0)asn — oo foralmost allt € I and all 0 € I, then

//l(t,x(t),o)u*(t)(da)dt
1Jr

lim // L(t, x (), o)yu™ (D) (do )dr
1Jr

i

J(x, 1)y = J(u")

i

k— 00

= lim lim //lk(t,x,,(t),o)/Ln(I)(do*)dt
1Jr !

k— oo n—>00

A

lim / / I(t, x, (1), o)pn (1) (do)de
n-»00 ! r
= m,.
However, by definition of m,, it is obvious that J(x, u*) > m,. Hence J (x, u*) = m,.
This implies that (x, u*) is an optimal pair. O

IfJ(u) = f, 1(t, x(t), u(t))dr is the cost function for the original problem, and J (ug) = inf{J (1), u € Upyg) = my,
in general, since Uyg € U,, we have m, < myg. It is desirable that m, = my, i.e., our relaxation is reasonable. We have
the following relaxation theorem. For this, we need hypotheses on / stronger than [L]:

[L1]11:1 x X x I’ — R is an operator such that s
(1) (t,&,0) = (¢, £, o) is measurable,
(2) (¢,0) — Iz, £, o) is continuous,
(3) {{(t. &, 0)] < 6g(t) for almost all t € I, provided [|E|lx < R,o0 € ["and 6 € LY.
Theorem 13. If assumptions [Al], J], [F1], and [L1] hold and I’ is compact then mqg = m,.

Proof. Let (x, 4*) be the optimal pair (thé existence was guaranteed by the previous theorem); thatis m, = J(x, u*).
By Theorem 10, there exists {#"} C U,q and {x,} € PC({, X) such that

8uy () = p*() L'(J, C(I))-weakly in L¥(I, Trea(I),

and x, — xin PC(I, X) asn — oo0.
Applying Lemma 11 to each subinterval of [0, T], one can verify that

IC.xn(:), ) = 1C,x(), ) in L1, C(I)).

By definition of the weak topology on U,, we have
J(ua) = J(bu,) = / / I(t, xn (1), 0)du, (t)(do)dt
1Jr

— // (2, x(0), o)™ ()(do)dt = J(x. u*) = m,.
1JT

But, by definition of mo, J (u,) > mp. Hence m, = lim,_, oo J(11,) = mg. This implies mg = m,. The proof is now
complete. O

. B, Pongehalee, et al., Reluxation 6
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Abstract

Relaxed control for a class of semilinear impulsive evolution equations is investigated.
Boundedness of solutions of semilinear impulsive evolution equations is proved and prop-
erties of original and relaxed trajectories are discussed. The existence of optimal relaxed
control and relaxation results are also presented.

K eywords: Impulsive system, Banach space, semilinear equation, relaxation.
AMS (MOS) subject classification: 34G20

1 Introductions

In this paper, we present sufficient conditions of optimality for optimal relaxed control prob?ems
arising in systems governed by semilinear impulsive evolution equations on Banach spaces. The
general descriptions of such systems are given below.

C—(iizx(t) = Az(t) + f(t z(t),ult)), teI\D (1a)
z(0) = mp € X, (1b)
Dzx(ty = Fi(z(t)), 1=1,2,..,n, ) (1c)

where I = [0, 7] is a bounded closed interval of the real line R, and let the set

D = {i1,t2,...,t,} be a partition on [0, T] such that 0 < ¢; < t; < ... < t, < T. In general, the
operator A : D(A) € X — X is the infinitesimal generator of a strongly continuous semigroup
{T(t),t > 0}, f is a nonlinear perturbation, Az(t) = z(t])—z(t]) = z(t})—=z(t;),i = 1,2,.

and F}s are nonlinear operators. This model includes all the standard models used by many
authors in the field (see Sattayatham&Huawu [8], Ahmed {1]). The objective functional is given
by J(z,u) = [ L(t,z(t),u(t))dt.

In recent years impulsive evolution equations on infinite dimensional Banach spaces have
been considered in several papers by Liu [5] and Ahmed [1]. Liu considers the problem of
existence and regularity of the solution while Ahmed considers the optimal impulsive control
problem and necessary conditions, but sufficient conditions of relaxation for optimality were not
addressed. We wish to present just that. Before we can consider such problems, we need some
preparation. The rest of the paper is organized as follows. In section 2, some basic notations

*This work was supported by Thailand Research Furd. Graut No. BRG 4880017



and terminology are presented. Section 3 contains some preparatory results. Relaxed impulsive
systems are presented in section 4. Sufficient conditions of relaxation for optimality are discussed
in section 5.

2 System descriptions

Let X be a Banach space. Let C([0,T], X) be the Banach space of all continuous functions
from [0,T] into X with the supremum norm, i.e., ||| = sup{|jz(t)lly : 0 < t < T}. The
operator A : D{A) C X — X is the infinitesimal generator of a strongly continuous semigroup
{T(t),t > 0}.

Let PC(|0,T], X) denote the space of piecewise continuous functions on [0,7] with values
in X which are left continuous and possessing right hand limits. Equipped with the supremum
norm topology, it is a Banach space. Consider the following evolution systems

%x(t) = Az(t) +:g(t,a:(t)), te I'\D, (2a)
z(0) = =zp€ X, (2b)
Ax(t))y = Fi(z(t)), i=1,2,..,n. (2c¢)

By a mild solution z(t, zq) of the system (2a)-(2c) corresponding to the initial state zp € X,
we mean a function z € PC([0,T], X) such that z(0) = zq, and satisfy the following integral
equation

t
z(t) = T(t)xo + /T(t — 8)g(s,z(s))ds + Z T(t—-t)F(a2(t:)),0<t<T.

0 0<t;<t

3 Preparatory results

For the study of relaxation for optimality, it is essential to guarantee the existence and uniqueness
of solutions of the impulsive evolution equation and certain other related equations. Here in
this section, for the convenience of the reader, we quote some results from the recent work of
Liu [4]. But first, we recall some hypotheses on the data of problem (2a)-(2c).

(G) g: I x X — X is an operator such that

(1) t = g(t,z) is measurable, the map = —— g(t,z) is continuous, and there exists a
constant L > 0 such that

lloCt,z) —g(t. )l < Lllz—yll, tel, z,ye X.

(2) There exists a constant & > 0 such that |{g(¢,z)|| < k(1 +||z]]), tel, z€ X.

(F) F;: X - X,i=1,2,...,n, are continuous and there exist constants Ii,; >0,i=1,2,...,n
such that

1

Fi(z) - Fipli < hillz —9ll, z,y € X.

(A) Let 4'(:) be the strongly continuous semigroup generated by the unbounded operator
A. Let B(X) be the Banach space of all linear and bounded operators on X. Denote



= max ||T(t
M tg&%” ®llax)

and assume that
n
MILT + > hy) < 1.
k=1

By the uniform boundedness principle ||T(t)HB(X) is bounded on [0, 7], so M in hypothesis
(A) is finite. We state the following results which give sufficient conditions for the existence of
a mild solution.

Theorem 3.1 Let hypotheses (A), (G), and (¥) be satisfied. Then for every z9 € X,
equations (2a)-(2c) has a unique mild solution. Moreover, the set of mild solutions is bounded
in PC([0,T],X).

Proof. For the existence and uniqueness of the mild solutions, see Liu ([5], Theorem 2.1).
Moreover, one can prove the boundness of the set of mild solutions by using Grownwall inequality.
To see this, suppose that z(-) is a mild solution of equation (2a)-(2c). Then we have

el < ||T<t>mou+[) It = )} lgs, a(sDlids + S TG — )} I Fsla(e)l]

O<t; <t
< Mlleoll+ Mk [ (L la@)lhds + M3 1A
0 o<ti<t
< M||m0|]+MkT+Mk/t||z(s)|lds+M1.
0

3
Applying Grownwall inequality on each subinterval for which z(t) is continuous, we obtain

le@ll < (M, + Mllzo|| + MRT)M* Joer
< (My + Mllzoll + MKT)eMHT = A,

for some constants M;and Ms. This proves that the set of mild solutions is bounded in PC({0, T, X).

Now, let us consider the corresponding control system. We model the control space by a
separable complete metric space Z (i.e., a Polish space). By P (Py.),we denote a class of
nonempty closed (closed and convex) subsets of Z. Let [ = [0,T]. Recall that a multifunction
I': I — P;y(Z) is said to be measurable if for each F € P;(Z), I"}(F) is Lebesgue measurable
in I. We defined St to be the set of all measurable selections of I'(+), i.e.,

Sr = {u: I — Z | uft) is measurable and u(t) € T'(¢), y-a.e. t € I},
where p is the Lebesgue measure on I. Note that theset Sy # ¢ if T': I — Py(Z) is measurable
{see Li&Yong [6], Theorem 2.23, p.100). Consider the following control systems

Lalt) = As(t) +olt,2(),u(®), t€(0,71\D, 3
:12(0) = zp€ X,
Nzt = Fix(ty) ,i=1,2,..,n.



Here, we require the operators A4, and F; ‘s of (3) to satisfy hypothesis (A) and (F) respectively.
We now give some new hypotheses for the remaining data.

(U) U:I- Ps(2Z) is a measurable multifunction satisfying U(-) C K, where
K is a compact subset of Z. For the admissible controls, we choose the set U,q = Sy.
(G1) g:1x X x Z— X is an operator such that
(1) t — g(t,z, z) is measurable, the map (z, z) +— g(t,z, z) is continuous on
X x Z, and there is a constant L > 0 such that

“g(t!wlv’z) _g(t7$27z)“ < Lllxl - z'Z“a forall t¢ Is T1,T2 € X,a.l'ld z€ 2.

(2) There exists a constant k& > 0 such that |[g(¢,z, z)|| < k(1 +]||z]]), t€ I, z € X.and
z€Z.

By assumption (U), the control set Sy is nonempty and is called the class of original control.
Now, let us define
Xo = {z € PC([0,T],X) | z is a solution of (3) corresponding to u}.
X is called the class of original trajectories.
Ap = {(z,u) € PC([0,T],X) x Sy | x is a solution of (3) corresponding to u}.
Ay is called the class of admissible state-control pairs.

The following theorem guarantees that Xg # ¢. Its proof follows immediately from Theorem
3.1 by defining the function g, (t,z) = g(¢,z,u) and noting that g, satisfies all hypotheses of
Theorem 3.1.

Theorem 3.2 Assume that hypotheses (A),(F), (G1) and (U) hold. For every u € Sy,
equation (3) has a unique mild solution z(u) € PC([0,T], X). Moreover, the set of mild solutions
is bounded in PC([0,T], X).

4 Relaxed impulsive systems
We consider the following optimal control problem

T
(P) inf{J(z,u) = OfL(t,m(t),u(t))dt}

subject to equation (3).

It is well known that, to solve optimization problems involving (P) and obtain an optimal
state-control pair, we need some kind of convexity hypothesis on the orientor field L(t, z(t), u(?)).
If the convexity hypothesis is no longer satisfied, in order to get an optimal admissible pair, we
need to pass to a larger system with measure control (or know as "relaxed control") in which
the orientor field has been convexified. For this purpose, we introduce the relaxed control and
the corresponding relaxed systems.

Let Z be a separable complete metric space (i.e. a Polish space) and B(Z) be its Borel
o-field. Let (2,2, 1) be a measure space. We will denote the space of probability measures on
the measurable space (Z, B(Z)) by M} (Z). _

A Caratheodory integrand on 2 x Z is a function f : Q@ x Z — R such that f(-,z) is Z-
measurable on Q, f(w,-) is continuous on Z for allw € 2, and sup{lf(w,z)|: z € Z} < a(w),a-e.,
for some functions af-) € L;(§2). We denote the set of all Caratheodory integrands on Q2 x Z by
Car(Q, Z).

By a transition probability, we mean a function A : Q x B(Z) — [0,1] such that for every
A € B(Z), (-, A) is Z-measurable and for every w € Q, Mw, ) € M1(Z). We use R(Q, Z) to



denote the set of all transition probabilities from (2, %) into (Z, B(Z)). Following Balder [2], we
can define a topology on R({}, Z) as follows : Let f € Car(£2, Z) and define

h@%iﬁﬁfmmxmwa@w» (4)

The weak topology on R(§?, Z) is defined as the weakest topology for which all functionals
If: R(Q,Z) — R, f € Car(f, Z), are continuous.

Supposing 2 = I = [0,T] and Z is a compact Polish space, then the space Car(I, Z) can be
identified with the separable Banach space L, (I, C(Z)) where C(Z) is the space of all real valued
continuous functions on Z. To see this, we associate to each Caratheodory integrand ¢(-,-) the
map t — ¢(t,-) € C(Z). Let M(Z) be the space of all regular bounded countably additive
measures defined on B(Z). We note that M(Z) is a Banach space under the total variation
norm, ie., | A lar(zy=| A | (Z). Then by the Riesz representation theorem, the dual [C(Z)]*
can be identified algebraically and metrically with M (Z). The duality pair between M(Z) and
C(Z)-is given by

wﬁ=[fmxa>

So M(Z) is a separable (see Warga [9], p.265) dual Banach space and hence has a Radon-
Nikodym property. This observation combined with Theorem 1 of Diestel and Uhr {3, p. 98],
tells us that

Li(I1,C(2))" = Lo (I, M(Z)). (5)

Hence the weak topology on R([I, Z) coincides with the relative w*( Lo (I, M(Z))), L, (I, C(Z))-
topology.

The duality pair between L. (I, M(Z)) andFLl(I, C(2)) is given by b
T
o = [oo. s (©)
To
= [ [ oo
;

i

//Z f(t, 2)A(t)(dz)dt,

0

which is the same formula as in (4) with f(t,z) = f(¢)(2). This fact will be useful in the study
of the relaxed control system where the control functions are transition probabilities.

Now we introduce some assumptions imposed on the class of relaxed controls which will be
denoted by Sx.

(U1) Z is a compact Polish space, U : [ — P;:(Z) is a measurable multifunction.

Define £(t) = {A € M} (Z), MU(t)) = 1} and let Sz C R(I,Z) be the set of transition
probabilities on I x B(Z) that are measurable selections of £(-). For any u € Sy, we define the
relaxation &, € Sz of u by 4,(t) = Dirac probability measure at u(t). Then we can identify

Sy € Ss. From now on, we shall consider Sy and Sy as a subspace of the topological space
R(I, Z) with the weak topology defined above.



We list two lemmas which will be useful in discussing the relaxation problem. The proofs
can be found in Warga [9, Theorem IV 2.1] and Balder [2, Corollary 3] respectively.

Lemma 4.1 Suppose Z is a compact Polish space. Then Sy, is convex, compact, and sequentially
compact.

Lemma 4.2 Sy is dense in Sy.

The following theorem is the Arzela-Ascoli Theorem for continuous vector-valued functions.
A proof of this result can be found in Carroll [3, Thm. 8.18, p. 34].

Theorem 4.3 (Arzela-Ascoli) A subset K C C(I, H) is relatively compact if and only if K is
equicontinuous and for all t € I, K(t) = {f(¢)| f € K} is a relatively compact subset of H.
Next, let us consider this new larger system know as "relaxed impulsive system"

z(t) = Az(t) +/;g(t,x(t),z)>\(t)(dz), 0<t<T, (7
.’B(O) = o,
Az(t;) = Flz(%)), i=1,2,..,n.

We will denote the set of trajectories of (7) by X,, i.e.,

X, ={z € PC(I,X) | z is a mild solution of (7) corresponding to A € Sx}.

Moreover, the set of admissible state-control pairs of (7) will be denoted by

A, = {(z,)) € PC(I,X) x Sx | = is a mild solution of (7) corresponding to A € Sx}.

Note that Xy € X,, since Sy C Sy, and, if the hypotheses of Theorem 3.2 are satisfied,
Xo # ¢ = X, # ¢. To see this, given any relaxed control A € Sy, if we set g(¢,z(t), A(t)) =
J7 9(t, 2(t), 2)A(t)(dz) then, working as in the proof of Theorem 3.2, one can show that there
exists a relaxed admissible trajectory z(\) corresponding to A. We now summarize the above
discussion into a theorem:. 5

Theorem 4.4 Assume that hypotheses (A), (F), (G1) and (U1) hold. For every X € Sy,
equation (7) has a unique mild solution z(\) € PC(I, X ). Moreover the set X, is bounded in
PC(I,X), ie., | z(X) lpcir,x) £ M for all X € Sy.

The next theorem gives us a useful relation betweeen Xy and X,.

Theorem 4.5 If assumptions (A), (G), (F), (G1) and (U1) hold, then X, = Xy (closure is
taken in PC(I, X)).

Before proving this theorem, we need a lemma.

Lemma 4.6 If assumptions (A), (G), (F), (G1) and (U1) hold and Ay — A in R(I,Z).
Suppose that {zx,z} is the solution of (7) corresponding to {Ax, A}. Assume further that there
exists y € PC(I, X) such that zx — y as k — oo. Then y is a solution of (7) corresponding to
the control variable X.

Proof Since zx is a solution of (7) corresponding to the control variable Ay then

zk(t) = T(t)xzo —|—/0 T(t- s)-/Zg(s,xk(s),z)/\k(s)(dz)ds + Z T(t—ti) Filze(t;)),0 <t < T.

0<t; <t



We aim to prove that y is a solution of (7) corresponding to the control variable A, i.e., we shall
show that

y(t) = T(t)zo + [) T(t - s) Lg(s,y(s),z)A(s)(dz)ds + z T(t—t)Fi(y(t:)),0<t < T.

o<t <t

For each fixed 0 < ¢t < T, and h* € X*, we denote the duality pair between X and X* by (.,.)
and denote hi(s,z) = (T(t — s)g(s,y(s),z),h*), where 0 < s <t < T, z € Z. It follows from
(G1) that h}(s,2) is a Carathedory integrand. Then, by the topology on R(I, Z), we have

/{0 , /Z (Tt - $)a(s,3(s), 2), ") Mels)(d=)dt — /M /Z (Tt — )g(5,y(s), 2, h*}A(s) (d=)de in R,

as n — oo. Hence

(/{M/ZT(t—S)g(S,y(S),z)/\k(S)(dz)dt,h*) —>:<'/[0’q‘/ZT(t—S)g(S,y(S),Z)/\(S)(dZ)dt,h*) in R,

as n — o0, Since h* is an arbitrary element in X* then

/[O,t]/;T(t - 8)g(s,y(s), 2) A (s)(dz)dt — /[0,1] /Z T(t — s)g(s,y(s),2)A(s)(dz)dt in X, (8)
as n — oo. Moreover, we note that

| o Tt~ 9) [ 905, 2(5), ) Mels)(dz)ds — fig  f T( — $)als,u(s), 2)Me(5) (=)t
+ foq [z T(t = 9)a(s,9(5), 2)Aels) ()t — fig y [ Tt — 5)g(s,u(s), DA(s)(d=)atl|  »

<113 T(t—5) [ 95, au(5), 2)Ax(5)(d2)ds— fio [ T{t=)als, u(s), DAu(s)d)dsl]  (9)
Hl fio J2 T = 9)a(s, y(s), DMu()(d2)ds = fio s [ Tt~ 5)gls,u(s), 2)A(5)(dz)dis|

It follows from equation (8) that the second expression of inequality (9) converges to zero as
k — oo. The first expression also converges to zero. To see this, we note that

I /0 T(t - s) /Z 95, z(5), 2)Me(s) (d2)ds — /M /Z Tt~ 5)g(s, u(5), 2)M(s) (dz)ds([x

< /[o,t]/z”T(t = s)llyllg(s, zk(s), z) = 9(s,y(s), 2)lIx Ax(s)(dz)ds
< / / ML||ze(s) — y(s)llx A(s){dz)ds (assumption G1)
[0t J2Z .
< [ Tl =@l ( MEx(o))
< /{ llza(s) ~ y(s)llx MLAW(s)(Z)ds
< ML/ llzk(s) —y(s)llx ds — 0 as k — oo. (Ak(s) is a probability measure on Z)
[0.¢]



Now we turn to the jump part.

WY T —t)Fila(t) — D T(t—ta) Fi(y(t:)llx

o<t <t ) o<t <t
< Z Tt — t)llsx) |1Filze(ts)) — Fi(y(ta)llx
o<t <t
< MY |IFiax(t) - Fly(t)lx
o<t <t
< M D hillak(t) — y(Es)llx — 0as k — oo.

o<t <t

This prove that

klirr;oxk =T(t)xo + /0 Tt —s) /Zg(s,y(s),z)/\(s)(dz)ds + Z T(t — t;)Fi(ze(ts)).

O<t; <t
By the assumption, we get klim zr = y. Hence y is the solution (7) as required.
oo ,

Lemma 4.7 If assumptions (A), (G), (F), (th) and (U1) hold, the semigroup {T'(¢)} in the
assumption (A) is compact, and Ay — A in R(I, Z). Suppose that {z«,z} is the solution of (7)
corresponding to {Ag, A}, by working with a subsequence is necessary, zx — z in PC(I,X) as
k — o0.

Proof Suppose that Ay — Ain R(I, Z) as k — oo and {zk, z} is the solution of (7) corresponding
to { Ak, A}. Since (zk, Ax) € A, for each positive integer k, then (zx, \x) must satisfy the eqyation

ze(t) = T(t)zo +/o T(t—s) /ZQ(S,mk(S)yz)/\k(S)(dz)ds + Z T(t—t;) Fi(ze(t;), 0 <t <

o<t <t

while (z, \) satisfies

z(t) = T(t)zo + /0 T(t - s) /Zg(s,w(s),z))\(s)(dz)ds + Z T(t—t:)Fi(z(t;)),0< t < T.

o<t <t

To finish the proof, we try to choose y € X, such that y is a solution of (7) corresponding
to this A and zx — y in PC(I,H) as k — co. The unique property of solution of (7) implies
z = y and hence zx — z in PC(I,X) and we are done. Since zj is a mild solution of (7),
then by Theorem 4.4, {z4} is a bounded sequence in PC(I, X). By using the same technique as
in [7, p. 193], one can prove that the set {z} is equicontinuous. To see this, let p,t,t' € [0,T)]
be such that 0 < p <t < t. Let N =sup{ || y(s,zx(s),2)|| : s € [0,T],z € Z} which is finite
and independent of k£ since g is continuous on the compact space Z, the solution set {z;} is
bounded, and hypothesis G;. Then



llen(t) — 2l < T )20 — T(o)aol + 11 f¥ T( £ 9(s, zk(s), 2)Ak(s)(dz)ds]|
+|\(fz_p +f§_p)(T(t’ - s) - Tt - s) fg (s,zr(s), 2)Ar{s)(d2)ds]||
+t<§:<t, T~ t)I| |zt + <t2<t, NT(t" — t)T(t = t)l] [1Fa(zx(ta)l]
< T (@)oo — T(t)aoll + M f1 || f 5 9(s, za(s), 2)Mi(s)(dz)]|ds
+[o PITE = s) = T(t ~ 3)]] L llg(s, mi(s), 2) () () lds
+ [1NIT(E = ) = T(t = 8)l| [ 5 [la(s, zk(s), 2)Ak(d=)]Ids
+MZ<UMHF (e (t)]] + <t2<t (|T(t" = t:) ~ T(t — )] || Fize(ta)]
< |IT{)zo — T(t)zol| + MNE —t) + N [i7 Tt ~ s) = T(t - s)|lds + 2MNp

+ 2 M||Fi(z(t: ))l|+ 2 TR =) = T = )l E (e (1]
t<ti<t!
Since t > p > 0 is arbitrary, and since T'(t) is continuous in the uniform operator topology for
t > p > 0, the first four terms on right-hand of inequality (10} tend to zero as ¢ tends to t’ and
p tends to zero. Moreover, the two jump terms also tend to zero as ¢ tend to ¥ since there is
no jump in the interval (¢,t') if length |t — t’| is small enough. This proves that the set {zx} is
equicontinuous.

Let K = {z}} be the restriction of the sequence {zx} on the interval [0, ¢,], i.e., TL(t) = zx(t)
on [0,%;] and equal to zero elsewhere. Clear K(0) = {zp} is compact in H. For 0 < € < t < #3,

define .

Kit) = (T(e)zh(t —€) : k=1,2,...}

For each t € [0,%1], K*(t) is a bounded subset of H and, by our hypothesis, T'(¢) is a compact
operator for t > 0, it follows from the above expression that K1(¢) is relative compact for
t € (¢,t1]. Further, by using the same proof as in (10), one can show that

sup{|lzi(t) — T()zp(t — €)]) 1k =1,2,...} = 0ase—0.

Then the set K}(t) can be approximated to an arbitrary degree of accuracy by a relatively
compact set. Hence K'(t) itself is relatively compact. Applying Arzela-Ascoli Theorem, the
sequence {z}} is relatively compact in C([0,¢], X). Then there exists a subsequence of {z}},
again denoted by {z}}, such that

z} — y* in C(]0,¢,], X) as k — oo.

Now, let {z%} be the restriction of the sequence {xx} on the interval (ti,ts], i.e., z2(t) =
zk(t) on (t1,t2] and equal to zero elsewhere. By using the same proof as above, there exists a
subsequence of {z%}, again denoted by {z?}, such that

z} — 3% in C((t),t2], X) as k — oo.
It is obvious that y2?(t*) = Jim zx(tT). Hence y? possesses a right hand limit. Continue this
— 00

process until to the interval (t,_1,t,]. Define a function y on [0, T] as follows:

(10)



_J =(0)ift=0
y(t) - { y‘(t) if t € (ti—-lvti)) 1= 0,1,2,...,77.

Then y € PC([0,T], H) and there is a subsequence of {«x} converges to y. Applying lemma
4.6, we get y is also a solution of (7). By uniqueness of the solution of (7), we get = = y. Hence
there is a subsequence of {zx} converges to z and we are done.

Proof of Theorem 4.5 Firstly, we shall show that X, C Xp. Let z € X, then there exists
A € Sy such that (z,A) € A,. By virtue of the density result as in Lemma 4.2, there exists a
‘sequence {ux} C Sy such that §,, — X in R(I, Z). Let zx be the solution of (7) corresponding

to ug. Then we have a sequence {(zk,ux)} C Ag. Since for each k, (z,ux) € Ap then (xk, uk)
must satisfy the equation

I

Eht) = Azi(t) + fz a(t, 2 (t), 2)6u, (D) (d2),

z(0) = zp€ X,
Az (t;) = Fi(ze(ts)), i=12,..,n, k=1,23,...
(0 < ty<ty<..<ty)

Applying Lemma 4.7, we get 2y — z in PC(I,X). This proves that z € Xp, and hence
X, C Xg. Finally, we will show that X is closed in PC(I, X). Let {xx} be a sequence of points
in X, such that zx — z in PC(I, X) as kK — oo. By definition of X, there is a sequence {A}
of points in Sy such that (zx, A\¢) € A, k= 1,2,3,.... Lemma 4.1 implies that Sz is compact
in R(I,Z) under the weak topology. Moreover, R(I, Z)—topology coincides with the relative
w* (Loo(I,M(2Z)), L1(I,C(2Z)))-topology. Then, by passing to a subsequence if necessary, we
may assume that Ay — A in R(I,Z) as k — oo. Applying Lemma 4.7, there is z € X, gsuch
that zx — z in PC(J,X) as k — oco. Hence X, is closed in PC{I,X) and consequently,
X, ¢ X, = X,. The proof of Theorem 4.5 is now complete.

The following corollary is an immediate consequence of lemma 4.7

Corollary 4.8 Under assumption of Theorem 4.5, the function A —— z(\) is continuous from
S C R(I, Z) into PC(I, X).

5 Existence of optimal controls

Consider the following Lagrange optimal control problem (P,) : Find a control policy X € Sx,
such that it imparts a minmum to the cost functional J given by

(P,) JO) = J@M ) = [ [, Utz (t),2)A(¢)(dz)dt,

where z* is the solution of the system (7) corresponding to the control A € Sy. We form the
following hypothesis concerning the integrand I(., .,.).

(L) l:Ix HxZ— RU/{+co} is Borel measurable satisfying the following conditions
(1) (&, 2) — UL, &, =) is lower semicontinuous on H x Z for each fixed t.
{2) There exist ¥(t) € Li(I, R) such that |I(t,&, z)| < ¥(¢) for almost all ¢ € I.
(3) ! maps bounded set into bounded set.

Let m, = inf{J(A) A € Sg}. We have the following theorem on the existence of optimal
impulsive control.
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Theorem 5.1 Suppose assumptions (A),(F),(G1), (Ul) (L) hold and Z is a compact Polish space,
then there exists (Z, ) € A, such that J(Z,)\) =

Before giving the proof of Theorem 5.1, we need a lemma. The proof is similar to Lemma
3.3 in [10].
Lemma 5.2 Let h: I x H x Z — R be such that
1. t+~— (t,z,2) is measurable and (z,z) — h(t,z, z) is continuous.
| h(t,z,z) |< ¥(t) € Ly(I) for all (z,z) € H xZ.
If zx— zeC([0,T],H) then

hi(,) = h(,) in Li(1,C(2))
as k — oo, where hi(t, z) = h(t,zx(t), 2z) and h(t, z) = h(t,z(t), 2).

Proof of Theorem 5.1 If J(\) = +oo fop all A € Sy, then every control is admissible.
Assume inf{J()) : A € Sy} = m, < +oo. By assumption (L), we have m, > —co. Hence m,
is finite. Let {\x} be a minimizing sequence so that limg—oo J(Ax) = m,. By Lemma 4.1, Sx
is compact in the topology R(I, Z). Hence, by passing to a subsequence if neccesary, we may
assume that A\x — X in R(I,Z) as k — oco. This means that A > X in Loo(I, M(Z)) as
k — oo. Let {zx,%} be the solution of (7) correspond to { Ak, A}. By Lemma 4.5, we get zx — %
in PC(I,X) and (%, \) € A,. Next, we shall prove that (%, \) is an optimal pair.

As before, we identify the space of Caratheodory integrand Car(I, Z) with the separable
Banach space L;(I,C(Z)). We note that every lower semicontinuous measurable integrand
l: IxHxZ — RU{+oo} is the limit of an increasing sequence of Caratheodory integrand {l;} €
Li(1,C(Z)) for each fixed h € H. Thus, there exists an increasing sequence of Caratheodory
integrands {I;} € L1(I,C(Z)) such that

[

Li(t,Z(t),z) T U(t,ZT(t),z) asj — o0 foralltel,ze Z.

Since zx — Z in PC(I, X), by applying Lemma 5.2 on each subinterval of [0, T, I;(t, zx t) z) —

l(t,z(t),z) as k — oo for almost all ¢ € I and all z € Z. We note that since M = Ain
Loo{I,M(Z)) as k — oo, then

J(Z,A)

il

(3, 1)) = //l(t,f(t),z):\(t)(dz)dt
= hm // (t, Z(t), 2) \(t)(d=)dt
= lim lim //lj(t,xk(t),z))\k(t)(dz)dt

Jj—ook—co

hm lim //l(t a:k(t ) 2)A(t)(dz)dt = m,.

k—ooj-~00

IA

However, by definition of m., it is obvious that J(Z, A).> m,. Hence J(%, A} = m,.. This implies
that (Z,)) is an optimal pair.

Remark. If Jo(z,u) = f, I(t,z(t),u(t))dt is the cost functional for the original problem and
m = inf{Jo(z,u) : u € Usg}. In general we have m, < m. It is desirable that m, = m, i.e., our

11



relaxation is reasonable. With some stronger conditions on [, i.e., the map (&,7,z) — I(t,, )
is continuous and | I(¢,&, z) |< 6g(t) for all most all t € I and g € Li(I), one can show that
m, = m. The proof is similar to Theorem 4.B. in [10)].

10.
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