าเทคัดย่อ

ชื่อโครงการวิจัย การจำแนกพีชคณิตจำกัดด้วยฟังก์ชันที่ไม่สมนัยหนึ่งต่อหนึ่ง

ผู้วิจัย รองศาสตราจารย์ ดร. ฉวีวรรณ รัตนประเสริฐ

คณะวิทยาศาสตร์ มหาวิทยาลัยศิลปากร e-mail address : ratach@su.ac.th

แหล่งทุนอุดหนุน สำนักงานกองทุนสนับสนุนการวิจัย

ระยะเวลา 28 กรกฎาคม 2548 - 28 กรกฎาคม 2551

คำหลัก unary operation, pre-period, partial operation, n-ary operation, invariant

equivalence relation, clone, semigroup, band

สำหรับแต่ละ unary operation f บนเซตจำกัด A ซึ่ง |A|=k จะมีใช่ลดลง $A\supseteq Im f \supseteq Im f \supseteq \dots \supseteq Im f^m = Im f^{m+1}$ โดยเรียกจำนวนเต็มบวกตัวน้อยสุด $\lambda(f)$ ที่ทำให้ $Im f^{\lambda(f)}=Im f^{\lambda(f)+1}$ ว่า pre-period ของ f และ pre-period ของ f มีค่าจาก 0 ถึง k-1 ถ้า $\lambda(f)=k-1$ เมื่อ $k\ge 1$ เราเรียก f ว่า long-tailed (LT)-operation และถ้า $\lambda(f)=k-2$ เมื่อ $k\ge 2$ เราเรียก f ว่า (LT_f)-operation ได้มีการจำแนก Unary (LT)- และ (LT_f)-operations ตลอดจนบรรยาย equivalence relations ทั้งหมดซึ่งไม่แปรเปลี่ยนภายใต้ f ในโครงการวิจัยนี้ เราศึกษา ให้นิยามและจำแนก n-ary operations สำหรับทุกๆ n>1 ซึ่งเป็นทั้ง (LT)- และ (LT_f)-operations รวมถึง บรรยาย invariant equivalence relations ทั้งหมดซึ่งไม่แปรเปลี่ยนภายใต้ f ผลการศึกษาเหล่านี้สามารถประยุกต์ กับสาขาวิชาอื่นๆ ที่ดำเนินการศึกษาด้วยวิธี iteration และ recursion นอกจากนี้ยังจำแนก unary operations บน เซตจำกัดทั้งหมดซึ่ง $\lambda(f)=k-t$ สำหรับทุกๆ $1\le t\le n-1$ และให้รายละเอียดเกี่ยวกับ equivalence relations บนเซตจำกัดซึ่งไม่แปรเปลี่ยนภายใต้ unary operations เหล่านี้

เราใช้สัญลักษณ์ $f:A-\circ \to A$ แทน partial unary operation ซึ่งนิยามบน A ถ้า f เป็น partial unary operation เราแทนโดเมนของ f ด้วย $dom\ f$ และให้ $Im\ f=\left\{ f(a) \mid a\in {\rm Dom\ }f \right\}$ แทนเซตส่วนฉายของ f และถ้า f เป็น proper partial operation บน A ที่ไม่สมนัยหนึ่งต่อหนึ่งบน $dom\ f$ แล้ว $|A|>|dom\ f|\geq |Im\ f|$ และมีจำนวน เต็มบวกตัวน้อยสุด $\lambda(f)$ ที่ทำให้ $Im\ f^{\lambda(f)}=Im\ f^{\lambda(f)+1}$ ในโครงการวิจัยนี้เราศึกษาเพื่อจำแนก partial unary operations ที่มี $\lambda(f)=k$ และ $\lambda(f)=k-1$ และในทั้งสองกรณีเราบรรยาย equivalence relations บน A ทั้งหมดซึ่งไม่แปรเปลี่ยนภายใต้ f ผลงานเหล่านี้เป็นการวางนัยทั่วไปของกรณี total unary operations

เราอาจศึกษา algebraic structure ของ Clone ได้หลายแบบ และเพราะเราอาจนิยาม(n+1)-ary operation บน $O^n(A)$ โดย $S^n(f,g_1,...,g_n)(a_1,...,a_n):=f(g_1(a_1,...,a_n),...,g_n(a_1,...,a_n))$ สำหรับทุกๆ n-ary operations $f,g_1,...,g_n$ บน A และ $a_1,...,a_n\in A$ จึงได้นิยาม binary operation + บน $O^n(A)$ โดย $f+g:=S^n(f,g_1,...,g_n)$ ที่ทำให้ $(O^n(A); +)$ เป็น semigroup สำหรับโครงการวิจัยนี้ แทนที่จะศึกษา clone บนเซตจำกัดใดๆ ซึ่งเป็นโครงสร้างที่ ซับซ้อนและยุ่งยาก เราศึกษา semigroups ของ n-ary operations ซึ่งเป็น subsemigroups ของ $(O^n(A); +)$ และ ศึกษาสมบัติของ semigroup เหล่านี้แทน ตลอดจนศึกษา Green's relations และจำแนก constant subsemigroups, rectangular bands และ normal bands ใน $(O^n(A); +)$

ABSTRACT

Research Title Classification of finite algebras by unary non-bijective functions

Researcher Ass. Prof. Dr. Chawewan Ratanaprasert, Faculty of Science, Silpakom

University. E-mail address: ratach@su.ac.th

Research Grants The Thailand Research Fund

Period July 28, 2005 – July 28, 2008

Keywords unary operation, pre-period, partial operation, n-ary operation, invariant

equivalence relation, clone, semigroup, band

Iterating a unary operation f defined on a finite set A with |A| = k, one obtains the descending chain $A \supseteq Im \ f \supseteq Im \ f^2 \supseteq \dots \supseteq Im \ f^m = Im \ f^{m+1}$. The least integer $\lambda(f)$ with $Im \ f^{\lambda(f)} = Im \ f^{\lambda(f)+1}$ is called the pre-period of f. The pre-period of f is an integer between 0 and k-1. If $\lambda(f) = k-1$ and $k \ge 1$, then f is called a long-tailed (LT)-operation and if $\lambda(f) = k-2$ for $k \ge 2$, f is said to be an (LT_f)-operation. Unary (LT)- and (LT_f) - operations and their invariant equivalence relations have been characterized. In the project, we consider the iteration of n-ary operations for n > 1, define and characterize (LT)- and (LT_f) - operations and their invariant equivalence relations. The results can be applied in all fields where iteration and recursion plays a role.

We denote a partial unary operation f defined on A by $f:A \multimap A$ and denote the domain of f by $dom\ f$ and also let $Im\ f = \{ f(a) \mid a \in Dom\ f \}$ be the image of f. If $f:A \multimap A$ is a proper partial operation on A which is not bijective on its domain, then $|A| > |dom\ f| \ge |Im\ f|$ and there is a least integer $\lambda(f)$ with $Im\ f^{\lambda(f)} = Im\ f^{\lambda(f)+1}$. In the project, we characterize partial unary operations with $\lambda(f) = k$ and $\lambda(f) = k-1$. In both cases, we describe the equivalence relations on A which are invariant with respect to such partial unary operations. This generalizes similar results for total unary operations.

There are several ways to regard a clone as an algebraic structure. If f, $g_1,...,g_n$ are n-ary operations defined on A, by $S^n(f,g_1,...,g_n)(a_1,...,a_n):=f(g_1(a_1,...,a_n),...,g_n(a_1,...,a_n))$ for all $a_1,...,a_n\in A$ an (n+1)-ary operation on the set $O^n(A)$ of all n-ary operations can be defined; and one can derive a binary operation + defined by $f+g:=S^n(f,g_1,...,g_n)$ and obtains a semigroup $(O^n(A);+)$. The collection of all clones of operations on a finite set forms a complete lattice. This lattice is well-described if |A|=2. If |A|>2, this lattice is uncountably infinite and very complex. In the project, instead of clones we study semigroups of n-ary operations, i.e. subsemigroups of the semigroup $(O^n(A);+)$ and their properties. We consider Green's relations for the semigroup $(O^n(A);+)$, characterize all constant subsemigroups of $(O^n(A);+)$, all semilattices, rectangular bands and normal bands contained in $(O^n(A);+)$.