

ภูมิตอบสนองต่อเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์ Native Immune Response against Plasmodium vivax Infection ศ.ดร. รัชชนีย์ อุดมแสงเพ็ชร ภาควิชาพยาชิชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ภูมิตอบสนองต่อเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์: กรณีศึกษาเปรียบเทียบระหว่างคนไข้ใน ประเทศไทยและประเทศจีน

องค์ความรู้ในด้านการศึกษากลไกภูมิคุ้มกันทางด้าน Cell-mediated immunity ต่อเชื้อมาลาเรีย ชนิด *P. vivax* นั้นมียังมีจำกัด ในอดีตได้มีผู้ศึกษาพบว่า คนไข้ที่ติดเชื้อมาลาเรียทั้งสองชนิด (mixed infection ระหว่าง P. falciparum และ P. vivax) จะเกิดความรุนแรงของโรคได้น้อยกว่าคนไข้ที่ติดเชื้อ P. falciparum เพียงชนิดเดียว ดังนั้นแสดงให้เห็นว่า เชื้อ P. vivax น่าจะมีบทบาทที่สำคัญในการกระตุ้นระบบ ภูมิคุ้มกันทางด้านเซลล์ให้มีประสิทธิภาพในการกำจัดและทำลายเชื้อทั้งสองชนิด ส่งผลให้เกิดการลดลงของ ระดับความรุนแรงของโรค งานวิจัยในโครงการ เราได้ทำการศึกษากลไกการกระตุ้นเซลล์ในระบบภูมิคุ้มกัน ชนิดต่างๆ ต่อเชื้อมาลาเรียชนิด *P. vivax* ผลการทดลองแรกเราพบว่าเซลล์ชนิด regulatory T cells เพิ่มขึ้น มากอย่างเห็นได้ชัดในขณะเกิดไข้มาลาเรียในระยะเฉียบพลันซึ่งเราเชื่อว่า ความไม่สมดุลกันระหว่างการ กระตุ้นเซลล์ชนิดนี้ให้มีระดับที่สูงขึ้นในขณะติดเชื้ออาจเป็นกลไกที่สำคัญของเชื้อชนิด P. falciparum และ P. vivax ให้สามารถใช้หลบหลีกภูมิตอบสนองต่อร่างกายได้ เรายังพบว่าเซลล์ชนิด $\gamma\delta$ T cells มีระดับเพิ่ม สูงขึ้นอย่างชัดเจนในคนไข้ P. vivax ซึ่งมีมากกว่าคนไข้มาลาเรียชนิด P. falciparum และจากการทดลองใน หลอดทดลองยังสนับสนุนให้เราเชื่อว่า เซลล์ชนิด $\gamma\delta$ T cells เป็นเซลล์ที่ออกมาทำลายเชื้อมาลาเรียในช่วง ดันของการติดเชื้อ ผลการทดลองต่อมาเราได้ทำการเปรียบเทียบระดับ cell phenotypes ในกลุ่มคนไข้จีน ตอนกลางที่ติดเชื้อมาลาเรียชนิด P. vivax เนื่องจากประเทศจีนตอนกลางเป็นบริเวณที่มีการระบาดของโรค มาลาเรียชนิด P. vivax เพียงชนิดเดียวเท่านั้น ไม่พบการติดเชื้อมาลาเรียชนิดอื่น ๆ โดยการศึกษาเราพบว่า เมื่อคนไข้ได้รับเชื้อในระยะเฉียบพลัน เซลล์บางชนิดมีระดับต่างกัน เช่น regulatory T cell มีระดับต่ำลงใน กลุ่มคนไข้จีน ซึ่งแสดงให้เห็นว่าระดับการกดภูมิคุ้มกันโดย P. vivax มีระดับที่ต่ำกว่ากลุ่มคนไทย แต่ทั้งสอง เชื้อชาติมีระดับ $\gamma\delta$ T cells สูงขึ้น ซึ่งจากผลการทดลองนี้ทำให้เราสามารถสรุปเบื้องต้นได้ว่า $\gamma\delta$ T cells เป็นเซลล์ที่ได้รับการกระตุ้นโดยเชื้อมาลาเรีย P. vivax ส่วนภูมิคุ้มกันทางด้าน antibody ที่จำเพาะต่อเชื้อ P. vivax ในคนจีนมีระดับที่สูงและมีความจำเพาะมากกว่าคนไทย และสิ่งที่น่าสนใจก็คือ ในคนไทยเราพบความ เป็น cross-reactivity ของ antibody ที่มีต่อเชื้อ ผลการทดลองดังกล่าวสามารถชี้ชัดได้ว่า คนไทยที่อาศัยอยู่ ในบริเวณที่มีการระบาดของโรคมาลาเรียเคยมีประวัติการติดเซื้อ P. falciparum มาก่อนแทบทุกคน จึง สามารถตรวจพบantibodyต่อเชื้อ P. falciparum ดังนั้นการศึกษานี้ก่อให้เกิดองค์ความรู้ใหม่ทางด้าน ภูมิคุ้มกันวิทยาต่อเชื้อมาลาเรียชนิด P. vivax ที่จำเพาะเพื่อนำไปสู่การวิจัยและพัฒนารูปแบบใหม่ของ วัคซึนต่อโรคมาลาเรียในอนาคต

Native immune response against *Plasmodium vivax* infection: a comparative study between Thailand and China

Cell-mediated immunity induced by P. vivax has not been investigated widely. A study has shown the severity reduction induced by P. falciparum among mixed P. falciparum and P. vivax infection, indicated the role of host immunity against P. vivax may efficiently destroy malaria parasite during infection. In this project, we performed the study on functional mechanisms of cell mediated immune responses by showing various cell phenotypes during P. vivax infection. Our first finding has shown that regulatory T cell is increased during acute P. vivax infection. This indicates that the parasites can evade the immune responses via induction of regulatory T cells. The next finding, we have found a significant elevation of $\gamma\delta$ T cells in acute *P. vivax* infection higher than that of P. falciparum infection. Moreover, the in vitro study supports the early activation of $\gamma\delta$ T cells in response to *P. vivax* parasites. We characterize lymphocyte phenotypes in the Central China, where P. vivax is the only cause of malaria infection. Our study has shown that regulatory T cell in the Chinese patients is reduced in contrast to the level of $\gamma\delta$ T cell which is increased during acute P. vivax infection. This can be primarily summarized that $\gamma\delta$ T cells play role against P. vivax infection. The antibody mediated immunity against P. vivax infection among Chinese patients is higher and more P. vivax-specific than those of the Thai patients. This suggests the cross-reactivity of anti-malaria antibodies among Thai patients. These findings provide information to understand cell-mediated immune responses against malaria infection, leading to various innovative designs of malaria vaccine in the future.

Executive Summary

Basic Research

1. Research title

Native immune response against Plasmodium vivax infection: a comparative study between Thailand and China

2. Principal investigators

Dr. Rachanee Udomsangpetch

Department of Pathobiology, Faculty of Science,

Mahidol University

Tel. 02-2015576

Fax. 02-354 7158

E-mail: scrud@mahidol.ac.th

3. Field of research

Immunology in Plasmodium vivax malaria

4. Problems and importance of the problems

Malaria infection is a major cause of morbidity and mortality in many countries. Two species of the pathogenic parasite, Plasmodium falciparum and Plasmodium vivax are commonly causing infections. Nevertheless, the pathogenicity and pathogensis of these two organisms are different. Investigations are extensive in falciparum infection due to more severity comparing to that of vivax malaria. Only a few researches have focused on the pathogenesis of vivax infection although the organism is considered one of the major problems in Ethiopian, Latin American and Southeast Asian countries, particularly Thailand. Plasmodium vivax has a typical character in which this organism can remain inside the host for several months or years. Relasping of the infection is common and can cause severe morbidity. During the parasitaemic vivax infection, although host immunity both antibody and cell-mediated responses should play roles against the organisms, however, the mechanism remains unclear. To understand the modulation of host immune system during acute P. vivax infection, it is important to investigate the role of P. vivax-specific T cells during the disease activation process in comparison with the convalescence period. We hypothesized that P. vivax parasites activate lymphocytes to enter a slow expansion of the P. vivax-specific lymphocytes rendering the rise of natural protective immunity. Nonetheless, this specific activation by P. vivax-derived products eventually triggers the activated lymphocytes into apoptosis. These events are conceivably redundant during the onset of infection, particularly in the case of relapsing *P. vivax* infection. Therefore, the more often the infection is relapsed the lower expansion of the *P. vivax*-specific T cells occur. Ultimately, the immunity to *P. vivax* is compromised by the parasites, i.e. low antibody response.

Objectives

The objective of this study is to establish the understanding of the mechanisms of host immune regulation during *P. vivax* infection by determining *P. vivax*-specific T cell activation. In addition, this study also investigates the role of natural and inducible regulatory T cells activation during *P. vivax* infection. Immunity is controlled by and involved with various genetic codes, therefore, a comparison among the populations having different genetic background, living in similar malaria endemicity awaited the investigation.

Methodology:

1. Sample collection

Acute *P. vivax*-infected volunteers registered at Malaria Clinic in Mae Sot and Mae Kasa districts, Tak province will be informed of the details of the project prior to recruitment. Healthy volunteers living outside the endemic area and without previous history of malaria infection are recruited by individual consent and blood sample collected as for baseline controls.

2. Preparation of peripheral blood mononuclear cells (PBMC)

Heparinized blood will be carefully overlayered on LymphoprepTM (AXIS-Shied PoC AS, Norway) and PBMC will be separated by gradient centrifugation. The PBMC pellet will be finally resuspended in RPMI-1640 containing 10% fetal calf serum (FCS). The viability will be determined by tryphan blue exclusion and the number will be counted in hematocytometer.

3. Antigen preparations

Infected blood of *P. vivax* at schizont stage from volunteers will be filtered through the Plasmodipur filter in order to remove leukocytes and used as source of antigen. Parasites in the samples will be separated by centrifugation on the 60% Percoll. The cells in the interface layer between medium and Percoll will be collected, washed 2 times and the pellets will be stored at -70°C and used as malaria antigens.

4. Activation of T cells in vitro

PBMC at 2×10^5 /ml in HEPES-buffer RPMI-1640 supplemented with 10% inactivated AB serum will be activated with optimal concentrations of malaria antigens and cultured under *in vitro* conditions for a week. The cells will be harvested on day 5 and 7 for further analysis.

Control wells will be cultured with RPMI-1640 medium alone as negative control, with RBC antigens as base line stimulation, and with Phytohemagglutinine-A (PHA) (Sigma, UK) as mitogenic activation.

5. Flow cytometric analysis

PBMC from all individuals will be stained as well as activated lymphocytes *in vitro* will be harvested and stained for three-color flow cytometry with various mAb to CD3, CD4, CD8, CD25, CD45RO, and CD19. The stained cells will be analysed on FACScan using the CELLQUEST software (Becton Dickinson, USA).

6. Data analysis

Data will be analysed with SPSS programme (SPSS Inc, USA). Differences in percentage of T and B cell phenotypes of individuals between and within the groups will be compared using parametric analysis *t* test.

Expected outcomes:

The overall goals of this work are

1. To produce two PhD graduate students of Mahidol University

Ms. Patchanee Choothong

Faculty of Medical Technology, Mahidol University

Ms. Sriwipa Chuangchaiya

Faculty of Tropical Medicine, Mahidol Universsy

2. To train a young researcher with focus in Malaria Immunology

Dr. Kulachart Jangpatarapongsa

Thesis dissertation on 24 February 2006.

Expected publications: 4-5 international papers

- [1] Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J, Tangpradubkul S, Hisaeda H, Troye-Blomberg M, Cui L, Udomsangpetch R. *Plasmodium vivax* alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T cells. *Eur. J. Immunol*.
- [2] Chuangchaiya S, Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J, Pattanapanyasat K, Chotivanich K, Troye-Blomberg M, Cui L, Udomsangpetch R. Immune response to *Plasmodium vivax* has a potential to reduce malaria severity. *Clinical and Experimental Immunology.*

- [3] Chootong P, Jangpatarapongsa K, Sirichaisinthop J, Sattabongkot J, Udomsangpetch R. Characteristic of immunity to malaria infection: Comparative T cell responses in two major human malaria. *Microbes and Infection*.
- [4] Xia H, Jangpatarapongsa K, Fang Q, Hu K, Yuan Y, Peng M, Sattabongkot J, Gao Q, Cui L, Li B, Udomsangpetch R. Immune responses against *Plasmodium vivax* infection: The study in the Central of China. *Malaria Journal*.
- [5] Jangpatarapongsa K, Xia H, Hu K, Zhiyong T, Miao J, Fan Q, Cui L, Sattabongkot J, Gao Q, Cui L, Li B, Udomsangpetch R. Natural immune response against *Plasmodium vivax* c-terminal merozoite surface protein-1 (MSP-1) and apical membrane antigen-1 (AMA-1) and cross-reactivity between *P. vivax* and *P. falciparum* infection: A study in Thailand and China. Parasite International.

(เอกสารลับ)

<u>รายงานผลการดำเนินการวิจัยฉบับสมบูรณ์</u>

ชื่อทุนที่ได้รับ ทุนองค์ความรู้ใหม่ที่เป็นพื้นฐานต่อการพัฒนา (BRG4980009)

ชื่อโครงการ ภูมิตอบสนองต่อเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์: กรณีศึกษาเปรียบเทียบระหว่าง

คนไข้ในประเทศไทยและประเทศจีน

Native Immune Response against Plasmodium vivax Infection: a comparative study

between Thailand and China

ชื่อนักวิจัยหลัก ศาสตราจารย์ ดร. รัชนีย์ อุดมแสงเพ็ชร

Professor Dr. Rachanee Udomsangpetch

ชื่อนักวิจัยร่วมโครงการ ดร.กุลชาติ จังภัทรพงศา

Dr. Kulachart Jangpatarapongsa

ชื่อนักวิจัยร่วมโครงการ นพ. จีรพัฒน์ ศิริชัยสินธพ

Dr. Jeerapat Sirichaisinthop

ชื่อนักวิจัยร่วมโครงการ ดร. พัชนี ชูทอง

Ms. Patchanee Choothong

ชื่อนักวิจัยร่วมโครงการ นส. ศรีวิภา ช่วงไชยยะ

Ms. Sriwipa Chuangchaiya

ระยะเวลาโครงการ

1 ก.ย. 2549 - 31 ส.ค. 2552

ความสำคัญและที่มาของปัญหาที่ทำการวิจัยโดยย่อ

ในปัจจุบันโรคมาลาเรียยังคงเป็นปัญหาทางสาธารณสุขอย่างมาก โดยเฉพาะอย่างยิ่งในเขตพื้นที่ ชายแดนระหว่างไทยกับพม่า เชื้อมาลาเรียที่ก่อให้เกิดโรคในมนุษย์และพบได้เป็นส่วนใหญ่ในประเทศไทย ได้แก่ Plasmodium falciparum (PF) และ Plasmodium vivax (PV) ลักษณะเด่นของเชื้อ PV ก็คือ เมื่อเชื้อ เข้าสู่ร่างกายคน แล้วจะเข้าไปแฝงตัวอยู่ในตับและมีชีวิตได้นานหลายเดือนถึงหลายปี ทำให้ผู้ป่วยเกิดโรค มาลาเรียชนิดเดิมได้อีก โดยไม่มีการถูกยุงกัด และอาจเป็นอยู่ในเวลาเวลาหลายเดือนหรือหลายปี ในขณะที่ เชื้ออยู่ในดับ (liver stage) และกระแสเลือด (blood stage) ร่างกายก็มีกลไกทางภูมิคุ้มกันทั้งในแบบ Cellmediated immune response ที่จะช่วยกำจัดเชื้อให้หมดไปจากร่างกาย ในปัจจุบันการศึกษากลไก ภูมิคุ้มกันทางด้าน Cell-mediated immunity ต่อเชื้อมาลาเรียชนิด PV ในคนยังไม่มีใครทำการศึกษา ซึ่ง

การศึกษาที่มีมาแล้วเป็นงานวิจัยในกลุ่มผู้ป่วยที่ติดเชื้อ PF หรือเป็นมาลาเรียของหนูเท่านั้น เนื่องจากเชื้อ PV ไม่มีการระบาดในประเทศกลุ่มแอฟริกาและปัจจุบันยังไม่สามารถทำการเลี้ยงเชื้อในห้องปฏิบัติการได้

เนื่องจากความรู้พื้นฐานทางด้านภูมิคุ้มกันวิทยาทางด้าน Cell-mediated immunity และ Humoral immunity ต่อเชื้อมาลาเรียชนิด PF มีมากมาย แต่กลไกทั้งสองต่อเชื้อ PV นั้นมีอย่างจำกัด ในอดีดได้มีผู้ ศึกษาพบว่า คนไข้ที่ติดเชื้อมาลาเรียทั้งสองชนิด (mixed infection ระหว่าง PF และ PV) จะเกิดความ รุนแรงของโรคได้น้อยกว่าคนไข้ที่ติดเชื้อมาลาเรีย PF เพียงชนิดเดียว (Luxemburger et. al 1997) ดังนั้น แสดงให้เห็นว่า เชื้อ PV น่าจะมีบทบาทที่สำคัญในการกระตุ้นระบบภูมิคุ้มกันทางด้านเซลล์ให้มี ประสิทธิภาพในการกำจัดและทำลายเชื้อทั้งสองชนิด ส่งผลให้เกิดการลดลงของระดับความรุนแรงของโรค

เนื่องจากประเทศจีนตอนกลางได้พบการระบาดของโรคมาลาเรียที่พบเพียง Plasmodium vivax ชนิดเดียวเท่านั้น จึงมีความน่าสนใจที่จะต้องทำการศึกษาภูมิคุ้มกันที่จำเพาะต่อเชื้อชนิดนี้เท่านั้น เพื่อ เปรียบเทียบกับคนไทยซึ่งมีการระบาดของโรคมาลาเรียทั้ง 4 ชนิดซึ่งได้แก่ P. falciparum, P. vivax, P. malariae, P. ovale ทำให้เราไม่สามารถศึกษาภูมิคุ้มกันที่จำเพาะได้อย่างชัดเจนเพียงในประเทศไทย ดังนั้น การศึกษาของเรามีวัตถุประสงค์หลักเพื่อหาภูมิตอบสนองต่อเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์ที่ แตกต่างกันระหว่างประเทศไทยและประเทศจีน ในบริเวณที่มีการระบาดของโรคมาลาเรียนั้นซึ่งเป็นบริเวณที่มี genetic factor ต่างกัน (Rolf et al. 1998; Yao et al. 2002)

ในด้านการศึกษาวิจัยในโครงการ เราได้ทำการศึกษากลไกการกระดุ้นเซลล์ในระบบภูมิคุ้มกันชนิด ต่างๆ โดยเฉพาะอย่างยิ่งเชื้อมาลาเรียชนิด PV ซึ่งเมื่อเร็วๆ นี้ Jangpatarapongsa et al, 2006 พบว่า Cell-mediated immunity มีบทบาทที่สำคัญเป็นอย่างมากต่อการควบคุมเชื้อมาลาเรียในขณะเกิดไข้ โดยเฉพาะอย่างยิ่งเซลล์เม็ดเลือดขาวชนิดทีเซลล์จดจำ (memory T cell) และ แกมม่าเดลต้าทีเซลล์ (gamma delta T cells) ซึ่งมีบทบาทที่สำคัญทั้งทางด้าน innate และ adaptive immunity การศึกษาข้างต้น ยังได้พบว่าเซลล์ชนิดนี้เพิ่มขึ้นมากอย่างเห็นได้ชัดในขณะเกิดไข้มาลาเรียในระยะเฉียบพลัน ดังนั้นจึงทำให้ เกิดโจทย์วิจัยว่า gamma delta T cells มีบทบาทต่อการควบคุมเชื้อมาลาเรียได้อย่างไรทั้งใน liver stage และ blood stage และใช้กลไกใดมากำจัดเชื้อไม่ให้แพร่กระจายได้อย่างรวดเร็ว

นอกจากเชลล์ชนิด gamma delta T cells แล้วเชลล์ที่มีบทบาทต่อการดำรงชีวิตของเชื้อ PF ให้อยู่ ในกระแสเลือดได้ คือ regulatory T cells ซึ่งมีบทบาททางด้านการกดภูมิคุ้มกัน เมื่อเร็วๆ นี้ Walther, et al. 2005 พบว่า เชื้อ PF สามารถกระตุ้นเชลล์ชนิดนี้ให้เพิ่มจำนวนได้ ซึ่งกลุ่มวิจัยจึงเชื่อว่า ความไม่สมดุลกัน ระหว่างการกระตุ้นเชลล์ชนิดนี้ให้มีระดับที่สูงขึ้นในขณะติดเชื้อ เมื่อเปรียบเทียบกับระดับเชลล์ชนิดอื่นๆ เช่น memory T cell และ gamma delta T cell อาจเป็นกลไกที่สำคัญของเชื้อชนิด PF และ PV ให้ สามารถใช้หลบหลีกภูมิตอบสนองต่อร่างกายได้ ดังนั้นจึงสนใจที่จะศึกษากลไกการตอบสนองของเชลล์ชนิด ต่างๆ เหล่านี้ว่ามีความเกี่ยวข้องกันอย่างไร งานวิจัยชิ้นนี้จึงตั้งขึ้นมาเพื่อสร้างความรู้ใหม่ที่จะนำมา ประยุกต์ใช้พัฒนาวัคซีนป้องกันเชื้อโรคมาลาเรียชนิด PV และ PF โดยระบบภูมิคุ้มกันทางด้านเชลล์ และนำ ความรู้ที่ได้มาพัฒนาทางด้านการรักษา และการพัฒนาวัคซีนป้องกันมาลาเรียได้ต่อไปในอนาคต

วัตถุประสงค์ของโครงการ

- 1. เพื่อศึกษาหาระดับ Cell-mediated immunity ต่อเชื้อ PV ที่มีอยู่ในร่างกายของกลุ่มคนที่ติดเชื้อ มาลาเรียชนิด PV ในกลุ่มคนไข้ที่ติดเชื้อในประเทศไทยและประเทศจีน
- 2. เพื่อศึกษากลไกที่แตกต่างกันการกระตุ้นระบบ Cell-mediated immunity ต่อเชื้อ PV, PF และ mixed infection ในกลุ่มคนไข้ไทยและจีน โดยทำการศึกษาการกระตุ้นเซลล์ชนิดต่างๆ เช่น gamma delta T cell, regulatory T cell และ dendritic cell เป็นต้น
- 3. เพื่อศึกษากลไกการทำลายเชื้อมาลาเรีย PV โดยเซลล์เม็ดเลือดขาวชนิด gamma delta T cells, regulatory T cells เป็นต้น

ผลการทดลอง

1. การตรวจวัดระดับ cell phenotypes ในคนไข้ที่ติดเชื้อมาลาเรียชนิดไวแวกซ์ ในประเทศไทย (ผล การทดลองโดยละเอียดอยู่ในเอกสารแนบท้ายฉบับที่ 1)

เราได้ทำการหา cell phenotypes ชนิดต่างๆ เช่น T cells, B cells, memory T cells, regulatory T cells และ gamma delta T cells ใน Peripheral blood mononuclear cell (PBMC) ที่แยก จากเลือดคนปกติและคนไข้ที่ติดเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์ รวมทั้งเซลล์เม็ดเลือดขาวที่ เกี่ยวข้องอื่นๆ เช่น dendritic cells โดยนำค่าที่ได้มาทำการหาความสัมพันธ์กับการก่อโรคมาลาเรียชนิดนี้ โดยผลการทดลองเบื้องต้นพบว่า ขณะที่คนไข้มีการติดเชื้อและกำลังมีไข้ในระยะเฉียบพลัน เซลล์เม็ดเลือด ขาวชนิด memory T cells, gamma delta T cells และ regulatory T cells มีจำนวนเพิ่มสูงขึ้นอย่างเห็นได้ ชัด นอกจากนี้เรายังพบกลไกการกดภูมิคุ้มกันของ regulatory T cells ที่พบว่ามีความสัมพันธ์กับการลดลง อย่างมีนัยสำคัญของกลุ่ม dendritic cells ในคนไข้ที่ดิดเชื้อพลาสโมเดียมไวแวกซ์

(ตีพิมพ์ในวารสาร European Journal of Immunology และเป็นงานวิจัยที่ถูกยกย่องว่าเป็น The Best Immunological Research ของวารสารในเครือ Wiley-Blackwell ดังเอกสารแนบ หมายเลข 1 และ 2)

2. การเปรียบเทียบระดับ cell phenotypes ในคนไข้ที่ติดเชื้อมาลาเรียชนิดไวแวกซ์และชนิดฟัลชิ พารั่ม (ผลการทดลองโดยละเอียดอยู่ในเอกสารแนบท้ายฉบับที่ 3)

การศึกษาหา cell phenotype ดังกล่าวเราได้ทำการเปรียบเทียบทั้งในกลุ่มคนไข้ที่ดิดเชื้อ มาลาเรียชนิดพลาสโมเดียมฟัลซิพารั่ม ซึ่งพบว่าเชื้อพลาสโมเดียมชนิดไวแวกซ์สามารถกระตุ้นระดับ cell phenotype ชนิดต่างๆ โดยเฉพาะอย่างยิ่งกลุ่มเซลล์ชนิด $\gamma\delta$ T cells ที่มีระดับเพิ่มสูงขึ้นอย่างชัดเจนใน คนไข้มาลาเรีย PV เมื่อเปรียบเทียบกับคนไข้มาลาเรียชนิด PF

(ได้รับการตอบรับให้ดีพิมพ์ในวารสาร Clinical and Experimental Immunology ดัง เอกสารแนบหมายเลข 3) นอกจากนี้ยังได้นำผลงานนี้ไปเสนอที่ 2nd European Congress of Immunology ณ กรุงเบอร์ลิน ประเทศเยอรมนี ซึ่งที่ประชุมได้มอบรางวัล Travel award ให้ นส. ศรีวิภา ช่วงไชยา (นศ. ทุนปริญญาเอกกาญจนาภิเษก โดย สกว.) เพื่อเดินทางไปเสนอผลงานดังกล่าวที่กำลังจะจัด ขึ้นในวันที่ 13-16 กันยายน 2552 นี้ (ดังเอกสารแนบหมายเลข 8)

เรายังได้ทำการศึกษา ผลของการกระดุ้น lymphocytes เพื่อศึกษาหาผลของ lymphocyte stimulation ทั้งการศึกษาหา cell proliferation และ cell apoptosis หลังจากการกระตุ้นด้วยเชื้อมาลาเรีย จากการทดสอบในหลอดทดลอง ผลการทดลองข้างต้นเราได้ manuscript ฉบับที่ 2 และรอการตีพิมพ์ใน วารสาร Infection and Immunity (ผลการทดลองโดยละเอียดอยู่ในเอกสารแนบท้ายฉบับที่ 4 ซึ่งเป็น manuscript รอส่งตีพิมพ์ในวารสารวิชาการนานาชาติ) นอกจากนี้ผลงานดังกล่าวยังได้นำเสนอในที่ ประชุม American Society of Tropical Medicine and Hygiene Meeting (ดังเอกสารแนบท้ายหมายเลข 9)

3. การศึกษาระดับ cell phenotypes และระดับแอนติบอดีในคนไข้ที่ติดเชื้อมาลาเรียชนิดไวแวกซ์ ในกลุ่มคนไข้จากประเทศจีน *(ผลการทดลองโดยละเอียดอยู่ในเอกสารแนบท้ายฉบับที่ 5*)

เราได้ทำการเปรียบเทียบระดับ cell phenotypes ในกลุ่มคนไข้จีนตอนกลางที่ติดเชื้อมาลาเรียชนิด PV เนื่องจากประเทศจีนตอนกลางเป็นบริเวณที่มีการระบาดของโรคมาลาเรียชนิด PV เพียงชนิดเดียว เท่านั้น ไม่พบการติดเชื้อมาลาเรียชนิดอื่นๆ โดยการศึกษาเราพบว่า เมื่อคนไข้ได้รับเชื้อในระยะเฉียบพลัน เซลล์บางชนิดมีระดับต่างกัน เช่น regulatory T cell มีระดับต่ำลงในกลุ่มคนไข้จีน ซึ่งแสดงให้เห็นว่าระดับ การกดภูมิคุ้มกันโดยไวแวกซ์มาลาเรียมีระดับที่ต่ำกว่ากลุ่มคนไทย แต่ทั้งสองเชื้อชาติมีระดับ $\gamma\delta$ T cells สูงขึ้น ซึ่งจากผลการทดลองนี้ทำให้เราสามารถสรุปเบื้องต้นได้ว่า $\gamma\delta$ T cells เป็นเซลล์ที่ได้รับการกระตุ้น โดยเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์ ทำให้เราสนใจศึกษากลไกการกระตุ้นและทำลายเชื้อมาลาเรีย โดยเซลล์ชนิดนี้ด่อไป

(จากผลการศึกษาเปรียบเทียบดังกล่าวทำให้เราได้ manuscript ที่รอการแก้ไขเพื่อส่งตีพิมพ์ ในวารสาร Malaria Journal ดังเอกสารแนบหมายเลข 6)

นอกจากผลการศึกษาทางด้าน cell-mediated immunity ที่ต่างกันแล้ว เรายังพบความแตกต่างของ ระบบ Humoral immunity ซึ่งเราพบว่า ภูมิคุ้มกันทางด้าน antibody ที่จำเพาะต่อเชื้อ P. vivax ในคนจีน ระดับที่สูงและมีความจำเพาะมากกว่าคนไทย และสิ่งที่น่าสนใจก็คือ ในคนไทยเราพบความเป็น cross-reactivity ของ antibody ที่มีต่อเชื้อ ในขณะที่เราจะไม่สามารถพบผลดังกล่าวได้ในคนจีน (manuscript รอการแก้ไขเพื่อส่งตีพิมพ์ในวารสารวิชาการนานาชาติ ดังเอกสารแนบท้ายหมายเลข 6) ผลการทดลอง

ดังกล่าวสามารถชี้ชัดได้ว่า คนไทยที่อาศัยอยู่ในบริเวณที่มีการระบาดของโรคมาลาเรียเคยมีประวัติการติด เชื้อ *P. falciparum* มาก่อนแทบจะทุกคน จึงสามารถตรวจพบ antibody ต่อเชื้อ *P. falciparum* ตรงกันข้าม กับคนจีนซึ่งไม่เคยได้รับเชื้อ *P. falciparum* มาก่อนจึงไม่สามารถตรวจพบระดับ antibody ต่อเชื้อชนิดนี้ได้ (ผลการทดลองดังกล่าวได้ส่งไปนำเสนอในที่ประชุมระดับนานาชาติ 14th International Congress of Immunology ณ ประเทศญี่ปุ่น เดือนสิงหาคม 2553)

4. การศึกษากลไกการกระตุ้นและทำลายเชื้อมาลาเรียชนิดพลาสโมเดียมไวแวกซ์โดยเซลล์ชนิด $\gamma\delta$ T cells (ผลการทดลองโดยละเอียดอยู่ในเอกสารแนบท้ายฉบับที่ 7)

งานวิจัยที่ได้ทำควบคู่กันไปคือการศึกษาคุณสมบัติการกระตุ้นเซลล์ชนิด $\gamma\delta$ T cells โดยได้นำ เซลล์ของคนปกติมาทำการกระตุ้นให้เซลล์มีคุณสมบัติเป็น โดยใช้ γδ Т Isopentenylpyrophosphate (IPP) ให้ได้จำนวนมากพอในการนำไปทำการทดลองเลี้ยงร่วมกับเชื้อพลาสโม เดียมไวแวกซ์ที่เก็บได้จากคนไข้ที่เข้ามารับการรักษา ณ มาลาเรียคลินิก อำเภอแม่สอด จังหวัดตาก โดย คนไข้ได้รับการตรวจวินิจฉัยโรคเบื้องต้นด้วยกล้องจุลทรรศน์และวิธีทาง PCR จากการศึกษาการกระตุ้น PBMC จากคนปกดิจำนวน 7 ราย ให้มีคุณสมบัติเป็น $\gamma\delta$ T cells ด้วยสาร IPP พบว่า เปอร์เซ็นต์ $\gamma\delta$ T cells มีจำนวนสูงขึ้นมากกว่า 60% เมื่อเปรียบเทียบกับที่ไม่ได้กระดุ้น หลังจากนั้นจะนำ $\gamma\delta$ T cells ที่ ได้ไปทำการเลี้ยงร่วมกับเชื้อพลาสโมเดียมไวแวกซ์ เพื่อการศึกษากลไกการฆ่าเชื้อพลาสโมเดียมไวแวกซ์ โดยเซลล์ซนิด gamma delta T cells โดยวิธีการวัดทาง Flow cytometry และการตรวจนับจำนวนเชื้อที่ตาย ไป เซลล์อีกส่วนหนึ่งจะถูกนำไปกระตุ้นด้วย recombinant proteins ที่ผลิตขึ้นเอง ซึ่งได้แก่ PvMSP1, PvAMA1 เพื่อศึกษากลไลการกระตุ้น gamma delta T cells โดยมาลาเรียแอนดิเจนชนิดต่างๆ ผลการ ทดลองเบื้องต้นเราพบว่า จำนวนของ gamma delta T cells จะเริ่มแบ่งตัวในวันที่ 2 หลังจากที่กระตุ้นด้วย ตัวเชื้อมาลเรีย โดยจะมี marker ที่บ่งบอกถึง early (CD69+) และ late (CD25+) activation ในวันที่ 1 และ 3 หลังจากการกระตุ้น ส่วนผลของการดูกลไกการฆ่าเชื้อมาลาเรียโดย gamma delta T cells พบการ เพิ่มขึ้นของ CD107a ๋ และการหลั่งสาร IFN-gamma ได้ทำการทดลองแล้วและกำลังอยู่ในระหว่างการ วิเคราะห์ผลทางสถิติ

นอกจากนี้เรายังได้ทำการศึกษากลไกอย่างเดียวกันที่มีต่อเชื้อพลาสโมเดียมฟัลซิพารั่ม โดยเรา พบว่า expression of CD107a+ gamma delta T cells มีการเพิ่มขึ้นอย่างรวดเร็วที่ day 0 และลดลงอย่าง รวดเร็วในวันต่อมา ซึ่งแสดงให้เห็นชัดเจนว่า กลไกการฆ่าและทำลายเชื้อของ gamma delta T cells นั้นจะ เป็นแบบ early response ผลการทดลองข้างต้นได้ถูกส่งไปเสนอที่ 2nd European Congress of Immunology ณ กรุงเบอร์ลิน ประเทศเยอรมนี ซึ่งที่ประชุมได้มอบรางวัล Travel award ให้ ดร.กุลชาติ จังภัทรพงศา เพื่อเดินทางไปเสนอ ผลงานดังกล่าวที่กำลังจะจัดขึ้นในวันที่ 13-16 กันยายน 2552 นี้ด้วยเช่นกัน *(ดังเอกสารแนบหมายเลข 10)* นอกจากนี้ ดร.กุลชาติ จังภัทรพงศา ยังถูกรับเชิญให้ไปบรรยายผลงานวิจัยดังกล่าวในงานประชุม วิชาการของสำนักงานคณะกรรมการการอุดมศึกษาครั้งที่ ๒ ของ สกอ. ที่จัดขึ้นในวันที่ 27-29 สิงหาคม 2552 *(ดังเอกสารแนบหมายเลข 11)*

เนื่องจากการศึกษาหาภูมิคุ้มกันเพื่อการพัฒนาวัคชีนต่อโรคมาลาเรียในอนาคด เรายังต้องการ ข้อมูลทางภูมิคุ้มกันวิทยาต่อโรคมาลาเรียชนิด P. vivax ที่จำเพาะ ซึ่งประเทศจีนเป็นแหล่งตัวอย่าง P. vivax ที่ดีและมีคุณค่าในการศึกษามาก เพราะทางสถาบันของจีนมักไม่อนุญาติให้คนภายนอกประเทศมาใช้ ตัวอย่างผู้ป่วยได้ง่ายๆ ทำให้วิชาการด้านนี้ขาดข้อมูล แต่ทางโครงการของเรานั้นได้ร่วมมือกับนักวิจัยที่ มหาวิทยาลัย Bengbu และที่ Wuxi Institute of Parasitic Diseases มานานแล้ว ซึ่งผลการทดลองที่ได้นี้ ทำให้เราสนใจที่จะมีความร่วมมือกับกลุ่มที่ทำงานวิจัยทางด้านมาลาเรียในประเทศจีนต่อไป

ผลงานที่เกิดขึ้นจากโครงการวิจัย

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ และ manuscript ที่รอการตอบรับ (submitted) หรือ รอส่งตีพิมพ์ (In preparation)

- [1] Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J, Tangpradubkul S, Hisaeda H, Troye-Blomberg M, Cui L, Udomsangpetch R. Plasmodium vivax alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T cells. Eur. J. Immunol (2008) Oct;38(10):2697-705 (Impact factor=4.865)
- [2] Chuangchaiya S, Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J, Pattanapanyasat K, Chotivanich K, Troye-Blomberg M, Cui L, Udomsangpetch R. Immune response to *Plasmodium vivax* has a potential to reduce malaria severity. Clinical Infectious diseases 2009: DEC 2009 (Impact factor=2.853)

- [3] Xia H, **Jangpatarapongsa K**, Fang Q, Hu K, Yuan Y, Peng M, Sattabongkot J, Gao Q, Cui L, Li B, *Udomsangpetch R*. Immune responses against *Plasmodium vivax* infection: The study in the Central of China. Malaria Journal (revised and submitted)
- [4] Chootong P, Jangpatarapongsa K, Sirichaisinthop J, Sattabongkot J, Udomsangpetch R.

 Characteristic of immunity to malaria infection: Comparative T cell responses in two major human malaria. Microbes and Infection (being revised for submission)
- [5] Jangpatarapongsa K, Xia H, Hu K, Zhiyong T, Miao J, Fan Q, Cui L, Sattabongkot J, Gao Q, Cui L, Li B, Udomsangpetch R. Natural immune response against Plasmodium vivax cterminal merozoite surface protein-1 (MSP-1) and apical membrane antigen-1 (AMA-1) and cross-reactivity between P. vivax and P. falciparum infection: A study in Thailand and China. Parasite International (submitted)

2. ผลงานที่ถูกนำเสนอในที่ประชุมระดับชาติ

- [1] Chuangchaiya S, Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J, Pattanapanyasat K, Chotivanich K, Troye-Blomberg M, Cui L, Udomsangpetch R.

 Plasmodium vivax controls Plasmodium falciparum survival by modulating host immune response. RGJ-Ph.D Congress. April 2008 at Chonburi, Thailand.
- [2] Jangpatarapongsa K, Promwan S, Dabkam K, Hongeng S, Chotivanich K, Polpanich D, Sattabongkot J, Sirichaisinthop J, Cui L, Udomsangpetch R. Killing mechanism of Plasmodium vivax parasites by gd T cells. Commission of Higher Education Congress I. Sep 2008 at Chonburi. Thailand (Poster Presentation)
- [3] Jangpatarapongsa K, Promwan S, Dabkam K, Hongeng S, Chotivanich K, Polpanich D, Sattabongkot J, Sirichaisinthop J, Cui L, Udomsangpetch R. Killing mechanism of

Plasmodium vivax parasites by gd T cells. Commission of Higher Education Congress I. Sep 2008 at Chonburi. Thailand (Oral Presentation)

3. ผลงานที่ถูกนำเสนอในที่ประชุมระดับนานาชาติ

- [1] Chootong P, Jangpatarapongsa K, Sirichaisinthop J, Sattabongkot J, Udomsangpetch R.

 Characteristic of immunity to malaria infection: Comparative T cell responses in two major human malaria. American Society of Tropical Medicine and Hygiene Meeting Dec 2007.

 USA.
- [2] Jangpatarapongsa K, Loharungsikul S, Treeratanapaiboon L, Promwan S, Dabkam K, Hongeng S, Chotivanich K, Polpanich D, Sattabongkot J, Sirichaisinthop J, Cui L, Udomsangpetch R. Killing mechanism of *Plasmodium vivax* parasites by gd T cells. 2nd European Congress of Immunology Sep 2009 at Berlin, Germany
- [3] Chuangchaiya S, Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J, Pattanapanyasat K, Chotivanich K, Troye-Blomberg M, Cui L, Udomsangpetch R. Plasmodium vivax controls Plasmodium falciparum survival by modulating host immune response. 2nd European Congress of Immunology Sep 2009 at Berlin, Germany
- [4] Chootong P, Jangpatarapongsa K, Sirichaisinthop J, Sattabongkot J, Udomsangpetch R. Characteristic of immunity to malaria infection: Comparative T cell responses in two major human malaria. 14th International Congress of Immunology. Sep 2010 at Kobe, Japan
- [5] Jangpatarapongsa K, Loharungsikul S, Treeratanapaiboon L, Promwan S, Dabkam K, Hongeng S, Chotivanich K, Polpanich D, Sattabongkot J, Sirichaisinthop J, Cui L, Udomsangpetch R. Killing mechanism of *Plasmodium vivax* parasites by gd T cells.
- [6] Jangpatarapongsa K, Xia H, Fang Q, Sattabongkot J, Gao Q, Cui L, Li B, Udomsangpetch R. Immune responses against *Plasmodium vivax* infection: The study in the Central of China. 14th International Congress of Immunology. Sep 2010 at Kobe, Japan

4. การสร้างนักวิจัยรุ่นใหม่

[1] ดร. กุลชาติ จังภัทรพงศา นักวิจัยระดับหลังปริญญาเอก

ปัจจุบันได้รับการบรรจุในตำแหน่ง อาจารย์ ภาควิชาจุลชีววิทยาคลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

[2] ดร. พัชนี ชูทอง นักศึกษาปริญญาเอกจากโครงการวิจัยนี้ จบการศึกษาปี พ.ศ. 2552

ปัจจุบันได้รับการบรรจุในตำแหน่ง อาจารย์ ภาควิชาจุลชีววิทยาคลินิก คณะเทคนิคการแพทย์ มหาวิทยาลัยมหิดล

[3] **น.ส. ศรีวิภา ช่วงไชยยะ** นักศึกษาปริญญาเอก โครงการปริญญาเอกกาญจนาภิเษก จากโครงการวิจัยนี้ กำลังจะจบการศึกษาภายในปี พ.ศ. 2553 นี้

ศาสตราจารย์ ดร. รัชนีย์ อุดมแสงเพ็ชร

หัวหน้าโครงการ

Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and the induction of regulatory T cells

Kulachart Jangpatarapongsa*^{1,2}, Patchanee Chootong*^{1,2}, Jetsumon Sattabongkot³, Kesinee Chotivanich⁴, Jeeraphat Sirichaisinthop⁵, Sumalee Tungpradabkul⁶, Hajime Hisaeda⁷, Marita Troye-Blomberg⁸, Liwang Cui⁹ and Rachanee Udomsangpetch^{1,2}

- ¹ Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- ² Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- ³ Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- ⁴ Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- ⁵ Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand
- ⁶ Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- ⁷ Department of Parasitology, Faculty of Medical Science, Kyushu University, Fukuoka, Japan
- ⁸ Department of Immunology, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ⁹ Department of Entomology, The Pennsylvania State University, PA, USA

Immunity induced by Plasmodium vivax infections leads to memory T-cell recruitment and activation during subsequent infections. Here, we investigated the role of regulatory T cells (Treg) in coordination with the host immune response during P. vivax infection. Our results showed a significant increase in the percentage of FOXP3+ Treg, IL-10-secreting Type I Treg (Tr1) and IL-10 levels in patients with acute P. vivax infection as compared with those found in either naïve or immune controls. The concurrent increase in the Treg population could also be reproduced in vitro using peripheral blood mononuclear cells from naïve controls stimulated with crude antigens extracted from P. vivax-infected red blood cells. Acute P. vivax infections were associated with a significant decrease in the numbers of DC, indicating a general immunosuppression during P. vivax infections. However, unlike P. falciparum infections, we found that the ratio of myeloid DC (MDC) to plasmacytoid DC (PDC) was significantly lower in acute P. vivax patients than that of naïve and immune controls. Moreover, the reduction in PDC may be partly responsible for the poor antibody responses during P. vivax infections. Taken together, these results suggest that P. vivax parasites interact with DC, which alters the MDC/PDC ratio that potentially leads to Treg activation and IL-10 release.

Key words: Dendritic cell · IL-10 · Malaria · Plasmodium vivax · Regulatory T cell

Comange Metric Professor Rachanee Udomsangpetch e-mail: scrudmu@yahoo.com

^{*}These authors contributed equally to this work.

Introduction

Malaria is a common tropical disease causing deaths among Plasmodium falciparum-infected children mainly in Sub-Saharan Africa [1]. P. falciparum causes malignant tertian malaria that accounts for most malaria-associated deaths, whereas P. vivax causes relapsing fever and the infection rarely becomes fatal. Although a better understanding of immunity is needed for the design of effective vaccines, immune regulation in the host during malaria infection is not fully understood, and few studies have been conducted in patients with P. vivax infections. Our recent study has shown that anti-P. vivax antibody levels were very low in immune individuals living in endemic area and in patients with acute P. vivax malaria. For the cell-mediated arm, an acute P. vivax infection was associated with the activation of memory T cells belonging to either a cytotoxic or helper phenotype [2]. Additionally, previous evidence [3, 4] shows that immunization with pre-erythrocytic antigens can induce IFN-γ release. This suggests that P. vivax can activate the immune system via the Th1 pathway. However, a possible suppressing mechanism arises from the activation of regulatory T cells (Treg) as has been shown in a murine malaria study [5].

Treg constitutively express CD25, which is the IL-2/ α chain receptor [6]. Co-presentation of CD25 with forkhead box protein P3 (FOXP3) dictates the immune-suppressive role of Treg via the release of IL-10 and TGF-β [7]. Treg have been shown to alter the balance between myeloid dendritic cells (MDC) and plasmacytoid dendritic cells (PDC) in blood, which eventually determines the outcome of T-cell responses [8]. The increase in MDC/PDC ratio is associated with the activation of the Th1 pathway, whereas a decreased ratio is associated with the activation of the Th2 pathway [8-10]. In a murine malaria model, the parasites have been shown to evade the immune response via activation of Treg [11]. A recent study confirms this trend during P. falciparum infections where Treg activation was correlated with higher rates of parasite growth [12]. However, the role of Treg during the course of P. vivax infection has not been investigated. Here, we compared Treg population and IL-10 levels among acute P. vivax patients, immune and naïve controls. Results revealed significant association between vivax infections with increased levels of Treg and IL-10. In contrast, P. vivax infections led to a general reduction in DC and lowered the MDC/PDC ratio, suggesting a possible immunosuppressive role of Treg during acute P. vivax infections.

Results

Activation of Treg during P. vivax infection

The percentage of CD4⁺CD25⁺ T cells was quantified and the results are shown in Fig. 1A. Immune individuals living in endemic areas had a similar level of Treg as observed in naïve controls. However, the level was significantly elevated during acute *P. vivax* infections (mean, quartile percentages = 13.8%, 11.3–16.2) when

compared with that of naïve controls (7.5%, 6.3–8.8, P = 0.001) and immune controls (4.3, 4.7–9.9, P = 0.001).

The expression of FOXP3⁺ on CD4⁺CD25⁺ T cells wa analyzed to differentiate the FOXP3⁺ Treg [13]. The result showed that FOXP3⁺ Treg in the acute *P. vivax* malaria patient (20.8%, 12.9–68.3) were approximately 7- and 3-fold higher that that of immune controls (2.7%, 1.9–4.6, P<0.001) and naïv controls (6.3%, 2.4–10.2, P<0.001), respectively. Interestingly the level of FOXP3⁺ Treg in the malaria immune controls wa significantly lower than that in naïve controls (P = 0.4) (Fig. 1B)

IL-10 and the activation of Treg

It is known that Treg produce the anti-inflammatory cytokin IL-10. Results indicated that IL-10 was 4-fold higher during acute P. vivax infections than those measured in immune control (P<0.001) and 2-fold higher than that of naïve control (P=0.005) (Fig. 2A). The levels of IL-10 in plasma collected from immune controls were significantly lower than that seen in naïve controls (P=0.008). As expected, the level of IL-10 producing Treg (CD4+CD25+IL-10+ or type 1 Treg or "Tr1 cells) of P. vivax infected patients was also significantly highe than that of immune controls (P=0.001) and naïve control (P=0.004) (Fig. 2B). Moreover, there was a significant association in the numbers of FOXP3+ Treg and Tr1 cells in acute P. vivax patients (P=0.01). This association was not found in naïve controls (Fig. 2C).

Treg stimulation by P. vivax antigens

Infection with P. vivax resulted in an increase levels of Treg and plasma IL-10. To reproduce these phenomena in vitro, periphera blood mononuclear cells from naïve controls were stimulated with P. vivax antigens and the number of FOXP3+ Treg wa determined on day 5 (Fig. 3A). The results indicated that the number of FOXP3+ Treg was significantly increased when PBMC was stimulated with 50 µg/mL of P. vivax antigen as compared with that of normal red blood cells (NRBC) (P = 0.01) and that o phytohemagglutinine (P = 0.01). Consistent with enzyme-linker immunosorbent assay (ELISA) results, the levels of Tr1 cell measured from flow cytometric (FCM) analysis was found to increase after stimulation with 50 µg/mL of P. vivax antigen a compared with that of NRBC (P = 0.048) (Fig. 3B). Moreover, it reverse transcriptase-polymerase chain reaction (PCR) we also detected the expression of IL-10 in naïve PBMC after 5 days o stimulation with P. vivax antigens (data not shown).

Blood DC during acute P. vivax infection

Circulating DC defined as HLA-DR⁺MDC and HLA-DR⁺PDC were determined in acute *P. vivax* patients and naïve control.

Figure 1. Increased numbers of FOXP3⁺ Treg in patients with acute P. vivax infections. FCM analyses of cryopreserved PBMC stained with anti-CD4 Tricolor, anti-CD25 PE, and anti-FOXP3 Alexa Fluor *# 488 from the indicated groups and lymphocyte populations were gated. (A) CD4⁺CD25⁺ T cells in the lymphocyte population are indicated by the boxed areas. (B) Histograms of FOXP3 expression in the CD4⁺CD25⁺ T cells. The percentages of CD4⁺CD25⁺ (A) and CD4⁺CD25⁺FOXP3⁺ (B) cells are shown. All figures show one representative sample out of seventeen.

(Fig. 4A–C). The results showed that the absolute numbers of both MDC and PDC were significantly reduced in *P. vivax* patients than those of naïve controls (P = 0.09 and 0.03, respectively) (Fig. 4D). Consequently, the MDC/PDC ratio was significantly different between naïve controls and acute *P. vivax* patients (P = 0.01) (Fig. 4E).

During infection, *P. vivax* parasites may activate Treg via *P. vivax*-primed MDC or PDC of the host. Therefore, the association between MDC or PDC with Treg was analyzed. However, there was no association between PDC or MDC with FOXP3⁺ Treg or Tr1 cells (data not shown).

Discussion

Infections by pathogens can lead to either the Th1 or Th2 response. Th1 response often leads to the resolution of malaria infection and therefore is favored in vaccine design [14]. IFN- γ produced by CD8 T cells and/or NK cells inhibits parasite development, thereby contributing to the protection against pre-erythrocytic stages of both *P. falciparum* and *P. vivax* [15].

However, there are studies showing the induction of IL-10 in malaria patients, suggesting that Th2 pathway may also be involved in malaria immunity [16]. Quite different from the findings in P. falciparum, we found that P. vivax infections rarely resulted in significant production of parasite-specific antibodies, but that acute P. vivax infections induced Treg activation. This result is consistent with two recent findings in both P. yoelii and P. falciparum, suggesting that parasites may use a similar mechanism of immune evasion [11, 12]. Although the interactions among malaria-specific T cells, B cells and Treg remain poorly characterized, our result suggested that the increased frequency of Treg during acute P. vivax infection may lead to suppression of both cell- and antibody-mediated immunities, which may benefit parasite survival in hosts. There are evidence indicating that Treg can suppress T-cell responses through the production of IL-10 and TGF-β [17, 18], whereas they may suppress B-cell maturation and differentiation directly [19, 20] or indirectly through the down-regulation of IL-2 or IL-4 production in responder lymphocytes. This may account for low parasitespecific antibody levels seen in P. vivax patients [2].

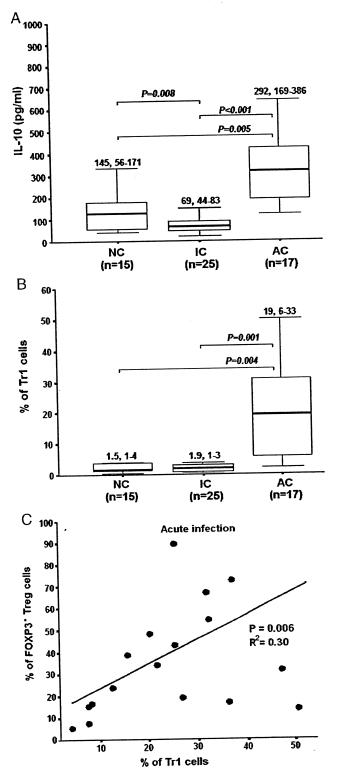
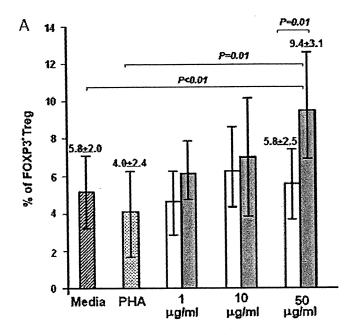



Figure 2. Comparison of the levels of plasma IL-10 (A) and Tr1 cells (B) between naïve controls (NC), immune controls (IC), and patients acutely infected with P. vivax (AC). The correlation between Tr1 cells and FOXP3+ Treg in lymphocytes from patients acutely infected with P. vivax (C). Data are shown as mean (thick horizontal line), inter-quartile range (box plot), maximum and minimum (upper-lower lines) (A and B). The numbers represent mean, inter-quartile range. (Data were log transformed and independent sample t test was used to calculate P value).

In this study, patients with acute P. vivax infection were observed to exhibit higher plasma levels of IL-10 than those o naïve and immune controls. Similar findings have been reported in both P. vivax and P. falciparum infections [21-24]. Ever though there is evidence that CD8 Treg produce IL-10 to suppres T-cell responses [25], our result showed a significant correlation between elevated levels of Tr1 and FOXP3+ Treg, a result furthe corroborating our earlier finding of increased levels of tota CD4+ T cells during acute P. vivax infections [2]. In parallel, w also found a concurrent increased levels of Treg and expression o IL-10 when PBMC from naive controls were stimulated witl P. vivax antigens in vitro. This result is also consistent witl findings that the number of Treg is increased in cord blood mononuclear cells of placental P. falciparum infections and IL-10 elevation after stimulation with P. falciparum antigens [26] Altogether, these results suggest that Treg may be a direct source of IL-10 production and/or enhance the IL-10 production by $\ensuremath{\text{D}}\xspace$ [27]. Recent report showing that the stimulated FOXP3+ Tre produce many cytokines including IL-10 resulting in activation o monocytes/macrophages can support the former hypothesis [28] Our finding showed significant association between differen Treg populations during acute P. vivax infection, despite the fac that some acutely infected cases (23%) appeared to have elevated proportion of Tr1 cells with comparatively low levels of FOXP3 Treg. Previous studies have demonstrated that Tr1 cells gener ated in vitro do not express FOXP3+, but it was found to maintain the suppressor function [29, 30]. This suggests that FOXP: expression is not a prerequisite for the suppressive function of Tr cells. On the other hand, Tr1 cells specific for desmoglein3, th dominant autoantigen in pemphigus vulgaris, are shown to constitutively express FOXP3 [31]. Therefore, the association c Tr1 cells with FOXP3+ Treg remains controversial and need further investigation [32].

Among the three groups of volunteers, the lowest levels c IL-10 and Tr1 cells were observed in the immune controls. Thi suggests that the activation of Treg is transient during *P. viva* infections and that subsequent decline in Treg after parasit clearance could be due to higher levels of memory T cells that were maintained after the infection [2]. Our study did not find correlation of CD4⁺CD25⁺ and FOXP3 levels. This result is in lin with a recent study showing no correlation between CD25⁺ cell and FOXP3 level in human CD4⁺ cells [33].

The immunoregulatory effect of malaria infections is relate with the down-regulation of antigen presenting DC. Consisten with earlier studies documenting the immunosuppressive effect of malaria parasites on the maturation and differentiation of DI [34, 35], we found significantly lower levels of DC (both PDC an MDC) in acute *P. vivax* patients. This finding coincides with the recent study showing the decreasing numbers of MDC and PDI among children with severe *P. falciparum* infection [36]. Anothe reason could be the reallocation of cells away from the peripherate blood, *e.g.* to the spleen. The evidence of lymphopenia in bot *P. falciparum* and *P. vivax* infection supports such an explanatio [37–39]. The levels of MDC and PDC in the peripheral blood ar recovered during post-treatment [36].

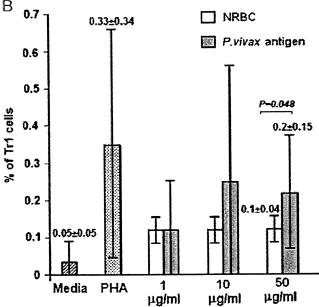
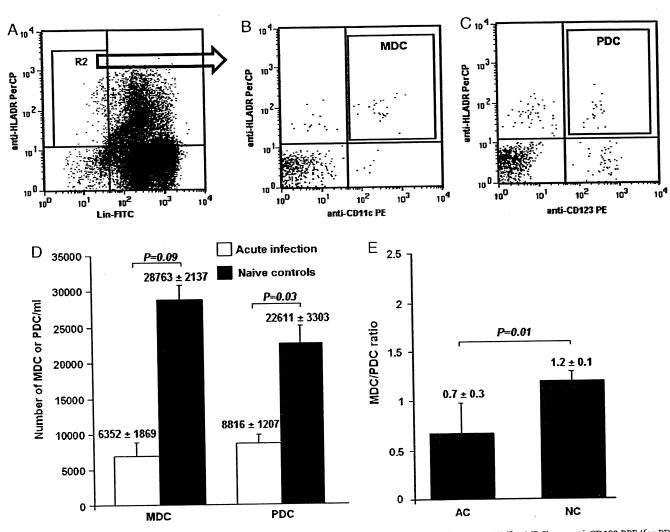


Figure 3. Increased numbers of FOXP3 * Treg (A) and Tr1 cells (B) in lymphocytes after stimulation with P. vivax antigens. PBMC from naïve controls cultured with NRBC or PV schizont lysate at the indicated concentrations were analyzed for FCM analysis. Data represent mean percentage \pm SD of five experiments. Data were log transformed and independent sample t test was used to calculate P value.

It has been shown that the depletion of PDC abrogated the secretion of specific polyclonal IgG in response to influenza virus [40]. Therefore, the reduction in PDC level during *P. vivax* infection may account for the low level of *P. vivax*-specific antibodies in vivax patients [2]. This suggests that PDC are critical for the generation of plasma cells and antibody responses during parasite/pathogen infections. However, unlike that of *P. falci-parum*-infected patients [36], the percentage of PDC was higher

than that of MDC during acute *P. vivax* infections, resulting in a lower MDC/PDC ratio. This may suggest that *P. vivax* parasites suppress host immune response through elevated levels of PDC and Treg. Two pieces of evidence show that the stimulation of PDC induces naïve CD4 and CD8 T-cell differentiation into Th2 cells and IL-10 producing CD8 T-cells [8, 41].

Taken together, we found that acute P. vivax infections were associated with higher levels of Treg and IL-10, but lower levels of DC in the blood. This suggests that Treg are activated by parasites during acute infections, which then play an immunosuppressive role of host cell- and antibody-mediated immunities, resulting in retarded parasite clearance. While the overall levels of DC were reduced, the balance between the two cell types (MDC and PDC) was altered. In addition, our previous study also revealed an increase in the levels of $\gamma\delta$ T cells during acute P. vivax infection. Therefore, the interactions among different DC, T cell phenotypes and P. vivax antigens await further investigations.


Materials and methods

Study population

Blood samples were collected from 17 patients with acute P. vivax infections at two malaria clinics in Mae Sot and Mae Kasa, Tak province, Thailand. Diagnosis of P. vivax malaria infection was based on the examination of Giemsa-stained thick blood films. PCR with four human malaria (P. falciparum, P. vivax, P. malariae, and P. ovale) species-specific primers was performed on DNA isolated from blood samples to verify malaria infections. Only single P. vivax infection was recruited in the experiments. Blood samples were collected from 25 additional people residing in the same P. vivax-endemic area. The subjects defined as "immune controls" have had recent malaria infections and had anti-P. vivax antibodies determined by ELISA. These immune controls did not have P. vivax infections at the time of blood collection as determined by both microscopic and PCR analyses. Fifteen healthy adults living in Bangkok without previous malaria exposure or antibodies to malaria parasites were recruited to serve as "naïve controls". The clinical characteristics of the subjects are listed in Table 1. This study was approved by the Committee on Human Rights Related to Human Experimentation, Mahidol University, and the Ministry of Health, Thailand. Informed consent was obtained from each individual before the blood sample was taken.

Preparation and cryopreservation of PBMC

Venous blood from *P. vivax* patients, immune controls, and naïve controls was collected in heparinized tubes and PBMC were separated by gradient centrifugation using LymphoprepTM (AXIS-Shied PoC AS, Oslo, Norway) according to the manufacturer's

Figure 4. (A–C) FCM analyses of whole blood stained with anti-HLA-DR PerCP and Lin FITC, anti-CD11c RPE (for MDC), or anti-CD123 RPE (for PDC R2 shows the population of HLA-DR $^+$ Lin $^-$. (D) Number of MDC and PDC. (E) MDC/PDC ratio in the peripheral blood of patients acutely infected witl P. vivax (AC) and naïve controls (NC). Numbers represent mean \pm SD. (number of samples: acute infections = 17 and naïve controls = 15) Sample test was used to calculate P value.

Table 1. Information and clinical data of P. vivax patients, immune and naïve controlsa)

	No. of cases	Age (years)	Sex		Hematocrit (%)	Temperature (°C)	Parasitemia (%)
			M	F			
AC	17	38 ± 11 (15–52)	7 16	10 9	43±7 (35-63) 46±3 (43-48)	37.5 ± 1.3 (35–40) 36.8 ± 0.4 (36–37)	0.4±0.3 (0.03–1.2 0
IC NC	25 15	$38 \pm 13 (18-77)$ $29 \pm 7 (22-43)$	8	7	42±4 (37–45)	37.0±0.5	0

a) Mean <u>+</u> standard deviation (range). AC, acute P. vivax infection; IC, immune controls; NC, naïve controls.

recommendations. The PBMC pellet was resuspended at a concentration of 10⁶ cells/mL in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine serum (Invitrogen, Carlsbad, USA). The viability of PBMC, normally above 98%, was determined by tryphan blue exclusion. PBMC in 10% dimethyl sulfoxide were cryopreserved in liquid nitrogen until analysis.

Parasite cultures and antigen preparations

Crude *P. vivax* antigens were obtained from *P. vivax*-infecte red blood cells. Briefly, *P. vivax*-infected blood was depleted white blood cells by filtering through a sterile column of CF1 cellulose (Whatman, Maidstone, UK) and the RBC were washe

with RPMI-1640 by centrifugation at 1190g for 5 min. The parasites were cultured in an atmosphere of 5% CO₂, 5% O₂, and 90% N₂ for 24–30 h at 5% hematocrit in McCoy's 5A medium (Invitrogen) supplemented with 25% human AB serum until they matured to the schizont stage (≥ six nuclei). These mature parasites were enriched by centrifugation on 60% Percoll (Pharmacia, Uppsala, Sweden) at 1190g for 10 min. The enriched infected red blood cell pellets were sonicated for 40 s at 150 watts and the protein concentration was determined by the Bradford assay (Bio-Rad, Hercules, USA). The vials were then aliquoted and stored at -70° C until use. Uninfected RBC were processed similarly and stored at -70° C to be used as a negative control.

In vitro stimulation of PBMC

PBMC from five healthy donors were used for *in vitro* stimulation. PBMC $(2 \times 10^5 \text{ cells/well})$ in RPMI-1640 supplemented with 25 mM HEPES, 1.8 mg/mL p-glucose, 2 mM glutamine, 40 mg/mL of gentamicin, and 10% heat-inactivated fetal bovine serum were cultured for 5 days at 37°C in a humidified chamber with 5% CO₂, 5% O₂, and 90% N₂ in the presence of *P. vivax* antigens at a concentration of 1, 10, or 50 μ g/mL. Medium alone, equivalent concentration of RBC extracts or 2μ g/mL of phytohemagglutinine were used as negative and positive controls, respectively. All the experiments were performed in duplicates. After 5 days of activation, the cells were harvested and stained for Treg marker, CD25 and FOXP3 or IL-10.

Intracellular staining and FCM analysis

For the three-color FCM analysis, PBMC (10⁵ cells/vial) were stained with a combination of fluorochrome-conjugated monoclonal antibodies (mAbs): RPE-Cy5-labeled anti-CD4 (Caltag, Burlingame, USA) and RPE-labeled anti-CD25 (Immunotech, Marseille, France) for 30 min at 4°C and washed with phosphate-buffered saline (PBS). After staining, the cell pellets were fixed with a fixative solution and washed with a permeabilizing solution according to the manufacturer's recommendations (BioLegend, San Diego, USA). After incubation in the permeabilizing buffer for 20 min at room temperature, the cells were incubated with Alexa fluor 488-labeled anti-FOXP3 (BioLegend) or FITC-labeled anti-IL-10 for 30 min and then washed with PBS. Cells were fixed with the fixative solution for data acquisition and analysis on FACSCalibur using the CELLQUEST software (Becton Dickinson, San Jose, USA).

Phenotyping of circulating blood DC

Two hundred microliters of whole blood from *P. vivax*-infected patients were stained with an antibody mixture containing lineage-specific mAbs to CD3, CD14, CD19, CD20, CD56, and

CD66b conjugated with FITC (lin-FITC) (Caltag), antibodies to CD11c (Serotec, Oxford, UK) and CD123 conjugated with RPE (BioLegend), and antibodies to HLA-DR conjugated with PerCP (Becton Dickinson). Stained cells were treated with RBC lysis solution. At least 2×10^5 cells were analyzed in a FACSCalibur flow cytometer (Becton Dickinson). HLA-DR+CD123+lin- cells were defined as PDC and HLA-DR+CD11c+lin- as MDC. The absolute number of circulating MDC and PDC was obtained by multiplying the percentage of MDC or PDC by the number of leukocytes per milliliter of blood.

Determination of IL-10 by ELISA

Polystyrene immunoplates (Corning, Corning, USA) were coated with 25 µL of 1 g/mL of anti-human IL-10 mAb (Mabtech, Nacka, Sweden) diluted in PBS (pH 7.4) and incubated overnight at 4°C. Each well was blocked with 50 µL of 0.1% bovine serum albumin for 90 min at room temperature. After five washings with PBS, 25 μL of plasma (1:2 dilution) or PBS control were added into duplicate wells and incubated overnight at 4°C. The plates were then washed for five times with PBS, after which 25 µL of antihuman IL-10 conjugated with biotin (dilution 1:2000) were added and incubated for 90 min at 37°C, followed by the addition of 25 µL of streptavidin-alp-PQ (dilution 1:2000) (Mabtech) at 37°C for 90 min. After five final washings, 25 μL of p-nitro phenylphosphate (Sigma, Saint Louis, USA) were added and incubated for 30-60 min in the dark at room temperature. Enzyme activity was measured by an automated microplate reader, V-Max (Molecular Device, Sunnyvale, USA) at 405 nm.

Determination of IL-10 gene expression by reverse transcriptase-PCR

RNA was extracted from six samples after *in vitro* stimulation using Trizol[®] solution (Invitrogen) according to the manufacturer's recommendation. Total RNA was reverse transcribed to cDNA; primers of the IL-10 gene and amplification conditions were as described previously [42]. The expression of *IL-10* gene (138 bp) was determined in 1.5% agarose gels containing ethidium bromide. Primers of β -actin were designed as described previously [43] and used as a control (790 bp).

Data analysis

All data were analyzed using the SPSS program (Version 10.0, Chicago, USA). The percentages of CD4⁺CD25⁺, FOXP3⁺ Treg, Tr1 phenotypes, plasma IL-10 levels, and number of MDC and PDC both from volunteers and *in vitro* stimulation were log transformed to produce normal distributions. Parametric analysis was performed using transformed data as follows: the mean percentage differences for Treg phenotypes, IL-10 levels, and number of MDC and PDC between the groups (*i.e.* naïve controls

vs. immune controls, naïve controls vs. acute infection, and immune controls vs. acute infection) were analyzed using the independent samples t test. The Spearman approach was used to evaluate the correlation of Tr1 with FOXP3⁺ Treg and the correlation of MDC or PDC levels with Treg. The results were considered statistically significant (P<0.05) at the 95% confidence interval.

Acknowledgements: We thank all the staff at the Mae Sot and Mae Kasa Malaria Clinics, the Department of Entomology, AFRIMS, Bangkok, and the Malaria Training Center, Saraburi, Thailand, for collection of the samples. We also thank M. Hagstedt, and W. Jangiam for technical support. KJ was a research fellow supported by the Fogarty International Center (FIC), National Institutes of Health (NIH). This work was partly supported by The Thailand Research Fund to RU, by The Commission on Higher Education to KJ (CHE-RES-PD), by BioMalPar to MT and by a grant (D43-TW006571) to LC from FIC, NIH.

Conflict of interest: The authors declare no financial or commercial conflict of interest.

References

- 1 Sachs, J. and Malaney, P., The economic and social burden of malaria.

 Nature 2002. 415: 680-685.
- 2 Jangpatarapongsa, K., Sirichaisinthop, J., Sattabongkot, J., Cui, L., Montgomery, S. M., Looareesuwan, S., Troye-Blomberg, M. and Udomsangpetch, R., Memory T cells protect against Plasmodium vivax infection. Microbes Infect. 2006. 8: 680–686.
- 3 Herrera, S., Bonelo, A., Perlaza, B. L., Fernandez, O. L., Victoria, L., Lenis, A. M., Soto, L. et al., Safety and elicitation of humoral and cellular responses in colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am. J. Trop. Med. Hyg. 2005. 73: 3-9.
- 4 Herrera, S., Bonelo, A., Perlaza, B. L., Valencia, A. Z., Cifuentes, C., Hurtado, S., Quintero, G. et al., Use of long synthetic peptides to study the antigenicity and immunogenicity of the Plasmodium vivax circumsporozoite protein. Int. J. Parasitol. 2004. 34: 1535–1546.
- 5 Hisaeda, H., Yasutomo, K. and Himeno, K., Malaria: immune evasion by parasites. Int. J. Biochem. Cell Biol. 2005. 37: 700–706.
- 6 Shevach, E. M., CD4*CD25* suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2002. 2: 389–400.
- 7 Wan, Y. Y. and Flavell, R. A., The roles for cytokines in the generation and maintenance of regulatory T cells. Immunol. Rev. 2006. 212: 114–130.
- 8 Rissoan, M. C., Soumelis, V., Kadowaki, N., Grouard, G., Briere, F., de Waal Malefyt, R. and Liu, Y. J., Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999. 283: 1183–1186.
- 9 Kuwana, M., Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum. Immunol. 2002. 63: 1156–1163.

- 10 Liu, Y. J., Dendritic cell subsets and lineages, and their functions in inna and adaptive immunity. Cell 2001. 106: 259–262.
- 11 Hisaeda, H., Maekawa, Y., Iwakawa, D., Okada, H., Himeno, I Kishihara, K., Tsukumo, S. and Yasutomo, K., Escape of malaria parasiti from host immunity requires CD4+CD25+ regulatory T cells. Nat. Me 2004. 10: 29-30.
- 12 Walther, M., Tongren, J. E., Andrews, L., Korbel, D., King, E., Fletcher, F. Andersen, R. F. et al., Upregulation of TGF-b, Foxp3, and CD4*CD2! regulatory T cells correlates with more rapid parasite growth in huma malaria infection. *Immunity* 2005. 23: 287-296.
- 13 Shevach, E. M., From vanilla to 28 flavors: multiple varieties Tregulatory cells. Immunity 2006. 25: 195–201.
- 14 Perlmann, P. and Troye-Blomberg, M., Malaria Immunology, 2nd Edr Karger, Basel 2002.
- 15 Herrera, S., Corradin, G. and Arevalo-Herrera, M., An update on the search for a Plasmodium vivax vaccine. Trends Parasitol. 2007. 23: 122-12
- 16 Kurtis, J. D., Lanar, D. E., Opollo, M. and Duffy, P. E., Interleukinresponses to liver-stage antigen 1 predict human resistance to Plasm dium falciparum. Infect. Immun. 1999. 67: 3424–3429.
- 17 Groux, H., Bigler, M., de Vries, J. E. and Roncarolo, M. G., Interleukininduces a long-term antigen-specific anergic state in human CD4 T cells. J. Exp. Med. 1996. 184: 19-29.
- 18 Groux, H., O'Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vrie J. E. and Roncarolo, M. G., A CD4⁺ T-cell subset inhibits antigen-specif T-cell responses and prevents colitis. Nature 1997. 389: 737-742.
- 19 Lim, H. W., Hillsamer, P., Banham, A. H. and Kim, C. H., Cutting edg direct suppression of B cells by CD4⁺CD25⁺ regulatory T cells. J. Immun 2005. 175: 4180–4183.
- 20 Wu, K., Bi, Y., Sun, K. and Wang, C., IL-10-producing type 1 regulato T cells and allergy. Cell. Mol. Immunol. 2007. 4: 269–275.
- 21 Zeyrek, F. Y., Kurcer, M. A., Zeyrek, D. and Simsek, Z., Parasite densi and serum cytokine levels in Plasmodium vivax malaria in Turkey. Parasi Immunol. 2006. 28: 201–207.
- 22 Yeom, J. S., Park, S. H., Ryu, S. H., Park, H. K., Woo, S. Y., Ha, E. I. Lee, B. E. et al., Serum cytokine profiles in patients with Plasmodiu vivax malaria: a comparison between those who presented with an without hepatic dysfunction. Trans. R. Soc. Trop. Med. Hyg. 2003. 97: 687-69
- 23 Prakash, D., Fesel, C., Jain, R., Cazenave, P. A., Mishra, G. C. and Pied, S. Clusters of cytokines determine malaria severity in Plasmodium fall parum-infected patients from endemic areas of Central India. J. Infect. D 2006. 194: 198-207.
- 24 Wroczynska, A., Nahorski, W., Bakowska, A. and Pietkiewicz, I Cytokines and clinical manifestations of malaria in adults with seve and uncomplicated disease. Int. Marit. Health 2005. 56: 103-114.
- 25 Gilliet, M. and Liu, Y. J., Generation of human CD8 T regulatory cells l CD40 ligand-activated plasmacytoid dendritic cells. J. Exp. Med. 2002. 19 695–704.
- 26 Brustoski, K., Moller, U., Kramer, M., Hartgers, F. C., Kremsner, P. C. Krzych, U. and Luty, A. J., Reduced cord blood immune effects cell responsiveness mediated by CD4* cells induced in utero as consequence of placental Plasmodium falciparum infection. J. Infect. D 2006. 193: 146–154.
- 27 Veldhoen, M., Moncrieffe, H., Hocking, R. J., Atkins, C. J. and Stockings B., Modulation of dendritic cell function by naive and regulatory CD-T cells. J. Immunol. 2006. 176: 6202–6210.
- 28 Tiemessen, M. M., Jagger, A. L., Evans, H. G., van Herwijnen, M. J., John, and Taams, L. S., CD4*CD25*Foxp3* regulatory T cells induce alternation

- activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. USA 2007. 104: 19446-19451.
- 29 Levings, M. K., Gregori, S., Tresoldi, E., Cazzaniga, S., Bonini, C. and Roncarolo, M. G., Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25⁺CD4⁺Tr cells. Blood 2005. 105: 1162–1169.
- 30 Vieira, P. L., Christensen, J. R., Minaee, S., O'Neill, E. J., Barrat, F. J., Boonstra, A., Barthlott, T. et al., IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J. Immunol. 2004. 172: 5986-5993.
- 31 Veldman, C., Pahl, A., Beissert, S., Hansen, W., Buer, J., Dieckmann, D., Schuler, G. and Hertl, M., Inhibition of the transcription factor Foxp3 converts desmoglein 3-specific type 1 regulatory T cells into Th2-like cells. J. Immunol. 2006. 176: 3215-3222.
- 32 Sakaguchi, S., Regulatory T cells in the past and for the future. Eur. J. Immunol. 2008. 38: 901-937.
- 33 Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A. et al., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4⁺T reg cells. J. Exp. Med. 2006. 203: 1701–1711.
- 34 Skorokhod, O. A., Alessio, M., Mordmuller, B., Arese, P. and Schwarzer, E., Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-gamma-mediated effect. J. Immunol. 2004. 173: 4066–4074.
- 35 Urban, B. C., Ferguson, D. J., Pain, A., Willcox, N., Plebanski, M., Austyn, J. M. and Roberts, D. J., Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 1999. 400: 73–77.
- 36 Urban, B. C., Cordery, D., Shafi, M. J., Bull, P. C., Newbold, C. I., Williams, T. N. and Marsh, K., The frequency of BDCA3-positive dendritic cells is increased in the peripheral circulation of Kenyan children with severe malaria. *Infect. Immun.* 2006. 74: 6700–6706.
- 37 Hviid, L. and Kemp, K., What is the cause of lymphopenia in malaria? Infect. Immun. 2000. 68: 6087–6089.
- 38 Kassa, D., Petros, B., Mesele, T., Hailu, E. and Wolday, D., Characterization of peripheral blood lymphocyte subsets in patients with acute Plasmodium falciparum and P. vivax malaria infections at Wonji Sugar Estate, Ethiopia. Clin. Vaccine Immunol. 2006. 13: 376–379.

- 39 Richards, M. W., Behrens, R. H. and Doherty, J. F., Short report: hematologic changes in acute, imported Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 1998. 59: 859.
- 40 Jego, G., Palucka, A. K., Blanck, J. P., Chalouni, C., Pascual, V. and Banchereau, J., Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003. 19: 225–234.
- 41 Gilliet, M. and Liu, Y. J., Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells. Hum. Immunol. 2002. 63: 1149-1155.
- 42 Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R. and Mathieu, C., An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 2001. 25: 386–401.
- 43 Kokkinopoulos, I., Jordan, W. J. and Ritter, M. A., Toll-like receptor mRNA expression patterns in human dendritic cells and monocytes. Mol. Immunol. 2005. 42: 957–968.

Abbreviations: FCM: flow cytometric · FOXP3: forkhead box protein P3 · MDC: myeloid DC · NRBC: normal red blood cell · PDC: plasmacytoid DC · Tr1: IL-10-secreting Type I Treg

Full correspondence: Professor Rachanee Udomsangpetch, Department of Pathobiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand

Fax: +662-354-7158

e-mail: scrudmu@yahoo.com

Additional correspondence: Dr. Kulachart Jangpatarapongsa,
Department of Clinical Microbiology, Faculty of Medical Technology,
Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
Fax: +662-441-4380

e-mail: oadworld@yahoo.com

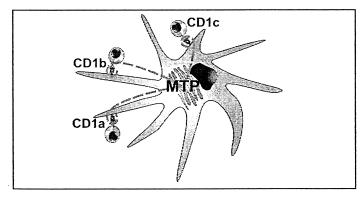
Received: 22/1/2008 Revised: 18/7/2008 Accepted: 18/7/2008

rottent to wort ov

WILEY-BLACKWELL

ImmunoVision - issue 2 of our new newsletter

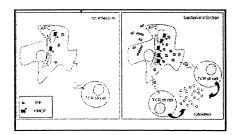
Immuno Vision is a new quarterly newsletter brought to you by Wiley-Blackwell highlighting the best immunological research, the latest books published, news on the key players in the field and other such items of interest to the immunological community. As immunology impacts on so many areas of research, this newsletter serves to distil the findings from across a range of disciplines into one highly valuable resource.


Immuno Vision is brought to you by the editorial team of the European Journal of Immunology (EJI) and can be found online in the "News" section of EJI

URL: e-mail: www.eji-journal.eu ejied@wiley-vch.de

ImmunoDigest

MTP regulates lipid antigen presentation beyond CD1d molecules


While the majority of CD1 family members present lipid antigen to T cells with diverse TCR- α and - β chains, CD1d lipid antigen presentation is restricted to the natural killer T (NKT) cells. It is well established that lipid antigen presentation by CD1d is regulated by the microsomal triglyceride transfer protein (MTP). What is not known, however, is whether MTP is also involved in regulating lipid antigen presentation by other CD1 molecules, namely CD1a, CD1b and CD1c. Kaser et al. reported that MTP regulates both endogenous and – surprisingly – exogenous (microbial) lipid antigen presentation by CD1a, CD1b, and CD1c. As MTP is resident in the endoplasmic reticulum, the authors conclude that MTP can ultimately function distally, regulating the presentation of exogenous, endosomally-loaded, microbial lipid antigens.

Kaser, A. et al., Eur. J. Immunol. 2008. 38: 2351–2359 http://www3.interscience.wiiev.com/journal/120775914/abstract

DOI: 10.1002/eji.200738102

What activates TCR Vc9-Vd2 cells during bacterial infection?

Human TCR Vy9-V δ 2 cells recognize non-peptidic ligands in the absence of MHC and CD1 restriction. Kistowska et al. investigated the mechanisms of TCR Vy9-V δ 2 cell activation during bacterial infections. By infecting DC and monocytes with different bacteria, the authors show that TCR Vy9- V δ 2 cells are activated by mevalonate metabolites of host-origin. Bacterial infection induces rapid activation of the mevalonate pathway by modifying a key enzyme and promoting the synthesis of a stimulatory endogenous metabolite. Thus TCR Vy9-V δ 2 cells, by sensing the host mevalonate pathway altered during infection, immediately provide effector functions, when bacteria-specific T cells are not yet available.

Kistowska, M. et al., Eur. J. Immunol. 2008. 38: 2200–2209 http://www3.interscience.wiley.com/journal/120775995/abstract

DOI: 10.1002/eji.200838366

Wiley Authors Once Again Receive Nobel Frize in Chemistry

Hoboken, N.J., October 8, 2008—John Wiley & Sons, Inc. (NYSE: JWa & JWb) is pleased to announce that all three 2008 Chemistry Nobel laureates are part of our publishing community. We congratulate Dr. Osamu Shimomura, Dr. Martin Chalfie, and Dr. Roger Y. Tsien on their award for having discovered green fluorescent protein and related marine photoproteins, and for having developed them into highly useful tools for chemical, biological, and medical analysis. The original discovery of green fluorescent protein was reported by Osamu Shimomura in 1962 in Wiley's Journal of Cellular and Comparative Physiology.

CANAL CONTRACTOR OF THE CONTRA

Wiley Authors Win Nobel Prize in Physiology or Medicine for 2008


Hoboken, N.J., October 7, 2008 — John Wiley & Sons, Inc, is pleased to announce that the Nobel Assembly at Karolinska Institutet has awarded the Nobel Prize in Physiology or Medicine for 2008 to Prof. Harald zur Hausen and jointly to Prof. Françoise Barré-Sinoussi and Prof. Luc Montagnier.

"We are honored that all three Nobel laureates are part of our publishing community. We congratulate Prof. Harald zur Hausen, Prof. Françoise Barré-Sinoussi and Prof. Luc Montagnier for this recognition of their lifetime achievements which have changed the course of science and medicine, as well as the lives of human beings," said Mike Davis, Vice President and Managing Director, Life Sciences.

Prof. Harald zur Hausen, of Germany, receives the Nobel Prize in Physiology or Medicine for his studies of human papilloma viruses causing cervical cancer. He is Editor-in-Chief of the International Journal of Cancer, has contributed several articles to Wiley–Blackwell journals, and is the book author of Infections Causing Human Cancer, published by Wiley-VCH in 2006.

Prof. Françoise Barré-Sinoussi and Prof. Luc Montagnier, of France, were awarded the Nobel Prize in Physiology or Medicine for discovering the human immunodeficiency virus. Both contributed various articles to Wiley–Blackwell journals and were involved in numerous book projects.

Stem Cells: How Do They Behave When Cultured Under Physiological Conditions?

Embryonic stem (ES) cells hold promise for providing unlimited quantities of specialized cells to treat a wide range of diseases. Little is known about their proliferation and differentiation at low partial pressures of oxygen (pO,), even though the early embryo is normally exposed to such conditions. Powers and co-workers investigate the effects of oxygen on undifferentiated mouse ES cell growth, phenotype retention, and cellular energetics. Growth rate is maximal at intermediate pO, and declines modestly at the extremes over the range of 285-0 mmHg. When cultured at low pO, under conditions that normally maintain the stem cell state, expression of self-renewal genes decreases, but pluripotency is maintained. Following a decrease to low pO2, aerobic metabolism decreases and anaerobic metabolism increases so that the total ATP generation rate remains constant. This work helps us understand the behavior of ES cells at physiological oxygen levels.

Powers, D. E. et al., Biotechnol and Bioeng. 2008. 101: 241-254. http://www3.interscience.wiley.com/

http://www3.interscience.wiley.com/ journal/119815678/abstract DOI.1002/bit.21986

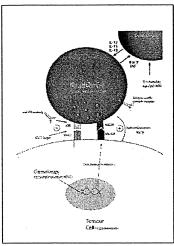
Is it Possible to Completely Camouflage the Surface of Red Blood Cells?

The ever increasing shortage of donated human blood has prompted the development of hemoglobin-based oxygen carriers (HBOCs) for use in transfusion medicine. HBOCs in development range from polymerized hemoglobins to particle encapsulated hemoglobins. However, by taking hemoglobin outside of its native environment—the red blood cell (RBC)—HBOCs exhibit increased NO scavenging compared to RBCs. Previous work addressed this problem by PEGylating bovine RBCs (bRBCs) in order to

camouflage potential antigens while maintaining hemoglobin its native environment (Gund sen and Palmer, 2007. Biotech Bioeng 96:1199-1210). PEGyl ted bRBCS should be physical capable of oxygen transport w the human vasculature but ca we really fool the immune sys by camouflaging xenogenic ce with methoxypolyethylene gly-In this B&B issue, Gundersen Kennedy and Palmer demons that we unfortunately cannot nature yet. The primary xenoa tigen, Gala(1,3)Gal, still rema exposed on the surface of the and is still immunoreactive at tested levels of PEGylation. TI authors recommend a comple fresh approach using siRNA t knockout Gala(1,3)Gal synthe creating a immunologically si natural, hemoglobin carrier. Gundersen, S. I. et al., Biotec and Bioeng. 2008. 101: 337-3http://www3.interscience.wilev.cor journal/117946382/abstract

DOI: 10.1002/bit.21908

5-aminolaevulinic acid a photodynamic therapy reduce HSV-1 replicatio in HaCat cells through a apoptosis-independent mechanism


In this study, the photo-inact on of herpes simplex virus ty (HSV-1) in human keratinocy using 5-aminolaevulinic acid (5-ala) was investigated. We demonstrated that ALA-PDT ment acts on HSV-1 replicati only in post-absorption cond reducing HSV-1 replication b about 70%. We did not detec evidence of apoptosis in the reduction observed after ALA treatment in keratinocytes. S data suggest that the target of photo-inactivation appears to viral replication and not a ce response.

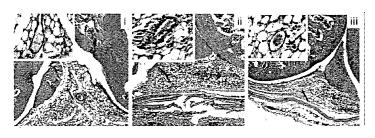
ntipli (www.b.mierszlande.w/lex.go lexings) (21465781/205768)

Ayala et al. Photoderm. Photoimr Photomed. 2008 24: 237-243.

Viewpoints on NK cells

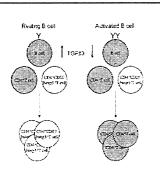
Following on from EJI's successful first Viewpoints on Treg cells (http://www3.interscience. wiley.com/journal/117954013/ issue), the latest discoveries and advances in the field of NK cells are presented in the November issue of Ell. Experts such as James Di Santo, Hans-Gustaf Ljunggren and Mark Smyth discuss aspects ranging from NK cell education and adaptive immunity crosstalk through to immunoevasion and potential therapeutic targets. Find out more about the latest Viewpoint series at www.eji-journal.eu In addition, published articles on NK cells in recent years in EJI include:

Allelic expression patterns of KIR3DS1 and 3DL1 using the Z27 and DX9 antibodies John Trowsdale and colleagues http://www3.interscience.wiley.com/journal/114122280/abstract
DOI 10.1002/ 10.1002/eji.200636773


Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like T cells Immo Prinz and colleagues

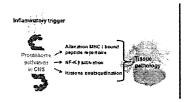
http://www3.interscience.wilev.com/ journai/114261942/abstract DOI 10.1002/ 10.1002/ eji.200737354 Blocking Chemokine Receptors May Help Arthritis

trature de la filita de la companya de la companya


Coelho et al. have shown, in murine models of monarticular antigeninduced arthritis, that blockage of the chemokine receptors known as CXCR1/CXCR2 prevents tissue inflammation, local cytokine production, joint damage, and inflammatory pain. The mechanism by which the drugs (reparixin or DF2162, allosteric inhibitors of CXCR1/CXCR2) act in the system is by preventing the ability of neutrophils to adhere to the vascular endothelium in the joint, thus preventing their extravasation and consequent joint damage. In addition to preventing neutrophil influx and consequent joint damage, the compounds prevented the local production of tumor necrosis factor (TNF), suggesting that neutrophils and their CXCR1/CXCR2 receptors contribute to the local production of TNF. The authors believe their research suggests that compounds, such as antagonists of CXCR1/CXCR2 which prevent the interaction between endothelial cells and neutrophils, may be useful for the treatment of human arthritis. As well as preventing tissue inflammation and joint damage, these compounds appear to have the added benefit of ameliorating the pain associated with arthritis, as measured by diminished hypernociception.

Coelho, F. M. et al, Arthritis Rheum. 2008. 58: 2329-2337. http://www3.interscience.wiley.com/journal/121358012/abstract DOI 10.1002/art.23622

Balancing tolerance and immunity by B cells


B cells are not only precursors for antibodyproducing plasma cells but are also APC. Shah and Oiao demonstrate another role for B cells in the maintenance of a population of Treg. Resting B cells are shown to support the survival and expansion of CD41CD251Foxp31 Treg via the production of TGF-b3. Production of TGFb3 by B cells is in turn down-regulated by TLR signaling or via BCR cross-linking. Reduced TGF-b3 secretion by activated B cells results in decreased survival and expansion of Treg but increased expansion of effector CD41 T cells. Thus, in addition to humoral immune responses, B cells play an important role in balancing T-cell tolerance and immunity, and in preventing autoimmune diseases.

Shah, S. et al., Eur. J. Immunol. 2008. 38: 2488–2498 http://www.impersiense.wilev.com//www.i/101408220 pastradi

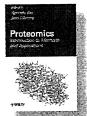
DOI: 10.1002/eji.200838201

Proteasomal activation in the CNS: A link between inflammation and neurodegeneration

Multiple sclerosis (MS) is an inflammatory and autoimmune disease of the CNS leading to axonal and neuronal loss. Using the standard experimental model of MS, namely EAE, Fissolo et al. demonstrated increased and altered proteasomal activity in macro- and microglia in the CNS, as well as in lymphoid tissues, in comparison with activity in non-EAE controls. Inhibition of the proteasome with or without inhibition of lysosomal proteases led to amelioration of EAE. This protective effect is most likely due to a reversal of the effects of proteasomal activation, such as increased availability of antigenic peptides, up-regulation of proinflammatory molecules and changes in histone de-ubiquitination. These novel findings indicate that understanding proteasomal activity in the CNS may be a key to a better understanding of neurodegenerative diseases. Fissolo, N. et al., Eur. J. Immunol. 2008. 38: 2401-2411

http://www3.interscience.wiley.com/ journal/121407419/abstract DOI: 10.1002/eji.200838413

Books of immunological interest


Schrör, Karsten Acetylsalicylic Acid ISBN-10: 3-527-32109-8 ISBN-13: 978-3-527-32109-4 November 2008

Missailidis, Sotiris Anticancer Therapeutics ISBN-10: 0-470-72303-3 ISBN-13: 978-0-470-72303-6 November 2008

Flower, Darren R. Bioinformatics for Vaccinology ISBN-10: 0-470-02711-8 ISBN-13: 978-0-470-02711-0 November 2008

Kraj, Agnieszka/Silberring, Jerzy (Hrsg.) Introduction to Proteomics ISBN-10: 0-470-05535-9 ISBN-13: 978-0-470-05535-9 November 2008

Lutz, Stefan / Bornscheuer, Uwe Theo (Hrsg.) Protein Engineering Handbook ISBN-10: 3-527-31850-X ISBN-13: 978-3-527-31850-6 November 2008

The particular free for the

What's new and updated in Current Protocols in Immunology

Performing aseptic survival surgery in rodents can be challenging. This unit describes some basic principles to assist clinicians, researchers, and technicians in becoming proficient in performing aseptic rodent surgery.

Curr. Protoc. Immunol. 82: 1.12.1-1.12.14.

Unit 2.4 Production of Polyclonal Antisera

Much of modern biology and biochemistry relies on the availability of highly specific antibodies for use such ubiquitous techniques as immunohistochemistry, ELISAs, immunoprecipitation, and immunoblo Thus, the generation of large quantities of specific antibodies directed to proteins or peptides of interes is essential to the success of both basic and applied research programs. In addition, with the advent of antibody-based proteomic strategies for profiling protein expression and post-translational modificatio a requirement for timely production of specific antibodies has emerged. Polyclonal antibodies derived animals immunized with purified proteins or peptides are particularly valuable for use in the laboratory This unit provides protocols for the production of polyclonal antisera specific for protein antigens in rabbits, rats, mice, and hamsters.

Curt. Protoc. Immunol. 82: 2.4.1-2.4.10.

Unit 7.10 Measurement of Proliferative Responses of Cultured Lymphocytes

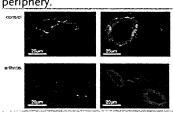
Measurement of proliferative responses of human lymphocytes is a fundamental technique for the assessment of their biological responses to various stimuli. Most simply, this involves measurement o the number of cells present in a culture before and after the addition of a stimulating agent. This unit contains several different prototype protocols to measure the proliferative response of lymphocytes following exposure to mitogens, antigens, allogeneic or autologous cells, or soluble factors. Each of the protocols can be used in conjunction with an accompanying support protocol which contains methods pulsing cultures with [3H]thymidine and determining incorporation of [3H]thymidine into DNA or asse cell proliferation by nonradioactive methods, e.g., reduction of tetrazolium salts (MTT). The protocols described here provide an estimate of DNA synthesis and cell proliferation in an entire cell population, but do not provide information on the proliferation of individual cells. A protocol for CFSE labeling allc specific subpopulations of cells to be separated viably for further analysis.

Unit 20.9 ErbB2 Transgenic Mice: A Tool for Investigation of the Immune Prevention and Treatment of Mammary Carcinomas

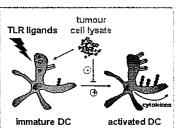
The epidermal growth factor receptor belongs to a superfamily of receptor tyrosine kinases (RTK) that includes ErbB2. ErbB2 is involved in normal physiological processes, such as embryogenesis, cell proliferation, differentiation, adhesion motility, and apoptosis, while its malfunction or overexpression responsible for development defects, diabetes, and cancer. The human ortholog of ErbB2 is referred as Her-2 (human ErbB2) while the rat ortholog is referred as neu (rat ErbB2). As ErbB2 is directly involved carcinogenesis, mice transgenic for the rat neu oncogene allow straightforward assessment of the abil of drugs and vaccines to inhibit the progression of neu-driven cancer. Information from this model maprovide indications on the efficacy of similar treatments in patients. This commentary provides key information regarding the use of these transgenic mouse models for evaluation of the efficacy of anti-t strategies.

Curr. Protos. Immunos. £2:20.9.1-20.9.10

alaria parasites impair the st immune system


Speritive Schlampt September Speritive Speriti

laria is famous amongst nunologists for its chameleon-: camouflage ability and sion of the immune system. gpatarapongsa et al. explored various mechanisms exploited malaria parasites to elude immune system. Acute smodium vivax infection ds to activation of two Treg populations, FOXP31 Treg † Tr1 cells. The authors report association between the level Freg, IL-10, plasmacytoid and myeloid DC during ite P. vivax malaria. While overall levels of DC were uced, the balance between the DC types was found to be ered. These findings indicate nunosuppression of both cell-I antibody-mediated immunity ulting in hindered parasite arance.


gpatarapongsa, K. et al., Eur. J. munol. 2008. 38: 2697–2705 n://www3.interscience.wiley.com/nal/121426028/abstract I: 10.1002/eji.200838186

Disrupted Joint-Immune System-Brain Communication in Arthritis

Investigating experimental arthritis in rats, del Rey et al (p. 3090) have provided the first evidence that changes in cytokine expression in the hypothalamus are observed during a specific peripheral immune response. In their study, this response resulted later in the development of type II collagen (CII)-induced arthritis, a model that has many features in common with human arthritis. Additionally, the researchers found that the cytokine-mediated brain-joint communication is disrupted during the development of the disease. This disruption results in an interruption of two main antiinflammatory pathways controlled at the central nervous system (CNS) level—the hypothalamuspituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS)—which may contribute to aggravated disease. The authors noted that although defects in these pathways have been previously described in patients with rheumatoid arthritis (RA), it was not known that central mechanisms might be involved in these alterations. While it was already known that proinflammatory cytokines are expressed in parallel in the CNS and in the periphery following acute immune challenge, the researchers observed that immunization with CII antigens induces increased hypothalamic expression of interleukin-1 (IL-1) and IL-6 prior to the enhanced production of these cytokines in the periphery. Paradoxically, such increase in the brain disappears when arthritis is manifested and there is maximal production of proinflammatory cytokines in the periphery

del Rey, A. et al., Arthritis Rheum. 2008. 58: 3090-3099. You are what you eat:
Disrupted cells interfere
with TLR-mediated
DC activation

Effective anti-tumour adaptive immunity requires efficient delivery of tumor-associated antigens in the context of appropriateinnate immune activation. Both freeze-and-thawdisrupted tumour cells and DC activation by TLR ligands have been studied extensively for antigen delivery and innate immune activation, respectively. Nevertheless, little is known about DC activation in response to TLR ligands in the presence of freeze-and-thaw-disrupted tumour cells. Tirapu et al. reported that disruption of membrane integrity does not affect the uptake of tumourcell material by DC, but suppresses the responsiveness of DC to TLR-mediated activation. The inhibitory activity associated with disrupted cells is neither cell typenor species-specific, is instantly accessible upon freeze-and-thawdisruption, and appears to be independent of phosphatidylserinemediated inhibition of DC activation. Tirapu, I. et al., Eur. J. Immunol.

2008. 38: 2740–2750 http://www.3.interscience.wiley.com/ journal/121416311/abstract DOI: 10.1002/eji.200838284

Bapat, Sharmila A. (Hrsg.) Cancer Stem Cells Identification and Targets ISBN-10: 0-470-12201-3 ISBN-13: 978-0-470-12201-3 November 2008

Cavaillon, Jean-Marc / Adrie, Christophe (Hrsg.) Sepsis and Non-infectious Systemic Inflammation From Biology to Critical Care ISBN-10: 3-527-31935-2 ISBN-13: 978-3-527-31935-0 Oktober 2008

Versalovic, James / Wilson, Michael (Hrsg.) Therapeutic Microbiology Robotics and Related Strategies ISBN-10: 1-55581-403-4 ISBN-13: 978-1-55581-403-8 September 2008

Wolfbeis, Otto S. (Hrsg.) Fluorescence Methods and Application: Spectroscopy, Imaging, and Probes ISBN-10: 1-57331-716-0 ISBN-13: 978-1-57331-716-0 August 2008

Flower, Darren R. Bioinformatics for Vaccinology ISBN-10: 0-470-02711-8 ISBN-13: 978-0-470-02711-0

DOI. 10.1002/art.23869

25 years of HIV research on virology, virus restriction, immunopathogenesis, genes and vaccines Insights into Langerhans cell function from Langerhans cell ablation models

Summarising the findings of the important recent 25th Anniversary HIV meeting held at the Institut Pasteur in Paris, this review by Scherer, Douek & McMichael provides an important overview of current research endeavouring to find the elusive cure for this devastating condition. We are grateful to the authors for their special attention to this important commission that complements the excellent historical perspective provided earlier this year by Robin Weiss. Both papers are of especial interest in the light of the recent Nobel announcements regarding Francoise Barré-Sinoussi & Luc Montagnier.

Scherer, E., et al., Clin. Exp. Immunol. 154: 6-14.

http://www3.interscience.wiley.com:/ journal/121392066/abstract DOI: 10.1111/j.1365-2249 .2008.03750.x

The T-cell receptor repertoire of regulatory T cells

The CD4+ CD25+ regulatory population of T cells (Treg cells) is the key component of the peripheral tolerance mechanism that protects us from a variety of autoimmune diseases. Experimental evidence shows that Treg cells recognize a wide range of antigenic specificities with increased reactivity to self antigens, although the affinity of these interactions remains to be further defined. In this review, Pacholczyk & Kern discuss how different features of the Treg repertoire influence our understanding of Treg specificities and the role of self reactivity in the generation of this population. Rafal Pacholczyk and Joanna Kern Immunology 125: 450-458

лтрі прама Š.İnsorpolonso. насторі В 1 то 101512150 српаст doi: 10.1111/j.1365-2567.2008.02992.x

Kaplan, D. H. et al., Eur. J. Immmunol.2008. 38: 2369-2376. http://www3.interscience.wiley.com/journal/121407401/abstract DOI: 10.1002/eji.200838397

Induction, function and regulation of IL-17-producing T cells

Mills, K. H. G. Eur. J. Immmunol.2008. 38: 2636-2649. http://www3.interscience.wiley.com/journal/121489807/abstract DOI: 10.1002/eji.200838535

Regulatory B cells as inhibitors of immune responses and inflammation

Bouaziz, J.-D., et al., Immunol. Rev. 224: 201-214.

http://www3.interscience.wiley.com/ journal/121370576/abstract DOI: 10.1111/j.1600-065-X.2008.00661.x

Early T-cell responses in tuberculosis immunity

Winslow, G. M., et al., Immunol. Rev. 225: 284-299.

http://www3.interscience.wiley.com/ journal/121414293/abstract DOI: 10.1111/j.1600-065-X.2008.00693.x

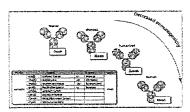
Cytokine Gene Polymorphisms in Recurrent Spontaneous Abortions: A Comprehensive Review

Choi, Y. K. and Kwak-Kim, J. Am. J. Reprod. Immunol. 60: 91-110.

http://www.3.interscience.wiley.com journa +120751213/issue

DOI: 10.1111/j.1600-0897 .2008.00602.x Lessons learnt from many years of experience using anti-D in humans for prevention of RhD immunization and haemolytic disease of the fetus and newborn

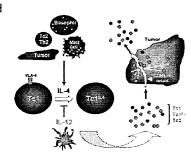
Translation of novel immunotherapies into the human setting represents an ongoing challenge for researchers. Pooling of knowledge from relevant arenas - such as trials involving monoclonal/recombinant antibodies - may be key to developing the means to both predict desired responses, and anticipate deleterious ones. Anti-D therapy for haemolytic disease of the newborn represents an established therapy where alternatives to plasma-derived polyclonal IgG, in the form of monoclonal/recombinant antibodies, have been sought. As it involves a well-established intervention, this transition may represent an ideal means by which to observe the particular response characteristics engendered by antibodies produced by, for instance, different expression systems. This review by Kumpels et al. summarises trial data hitherto and speculates on what might be learned - with particular reference to the TGN1412 trail in which unintended consequences played such a drastic role. B. M. Kumpel Clin Exp Immunol 154: 1-5 http://www3.interscience.wiley.com/


journal/121385811/abstract

doi: 10.1111/j.1365-2249.2008.03735.x

A chromatic explosion: the development and fu of multiparameter flow cytometry

Multiparameter flow cytomet has matured tremendously since the 1990s, giving rise to a technology that allows us to study the immune system in unprecedented detail. In this article, Chattopadhyay, Hogerkorp & Roederer reviev the development of hardware reagents, and data analysis to for multiparameter flow cytor and discuss future advances the field. Finally, we highlight new applications that use thi technology to reveal previous unappreciated aspects of cell biology and immunity. Pratip K. Chattopadhyay, Car Magnus Hogerkorp and Mar Roederer Immunology 125:


441-449 http://www.3.interscience.wiley.co: journal/121493771/abstract doi: 10.1111/j.1365-2567.2008.02

Monoclonal antibodies (mAbs) are increasingly used to treat human diseases, but as they are predominantly generated from mouse hybridomas their application has been hampered by their immunogenecity. To minimize antigenic reactions, researchers from Genmab in The Netherlands established a transgenic mouse platform for the routine production of fully humanized mAbs. In an overview of recent clinical research, the authors describe efficacy and mechanism of action of three novel humanized mAbs derived from this platform. Zanolimumab, Ofatumumab and Zalutumumab are designed to target CD4, CD20 and the epidermal growth factor receptor overexpressed on cancer cells and to attract cytotoxic reactions against them. All three humanized mAbs show improved efficacy in treatment trials of T-cell lymphomas, B-cell leukemias and head and neck cancer.

Ruuls, S.R. et al., Biotechnol. J. 2008, 3: 1157–1171.

http://www3.interscience.wiley.com/ journal/121377802/abstract DOI. 10.1002/biot.200800110 The ability of IL-4 to antagonize antitumour immunity is well recognized. What is less known, however, is the role of IL-4 in effector CD8 T-cell trafficking. Sasaki et al. showed that IL-4 suppresses the migration of protective CD8 T cells into tumor lesions. IL-4 is expressed by various immune cells as well as cancer cells. In tumor-bearing animals, IL-4 suppresses expression of the integrin VLA-4. Suppression of VLA-4 renders antitumor CD8 effector T cells incapable of binding to their molecular counterpart, vascular cell adhesion molecule-1 (VCAM-1) which is expressed on the tumor-associated vasculature. As a consequence, these antitumor effector T cells fail to infiltrate tumor and prevent disease progression. Interestingly, the inhibitory effect of IL-4 on VLA-4 expression is reversed by IL-12 but not IFN-g. The current results suggest that there may be yet another level to the intricacies of IL-4, IL-12 and IFN-g interactions.

Sasaki, K. et al., Eur. J. Immunol. 2008. 38: 2865–2873

http://www3.interscience.wliey.com/ journal/121489692/abstract DOI: 10.1002/eji.200838334 The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1 secretion but dispensable for adjuvant activity
Franchi, L. and Núñez, G. Eur. J. Immunol. 38: 2085-2089. http://www3.interscience.wiiey.com/journal/120775943/abstract DOI: 10.1002/eji.200838549

Phenotype and function of human T lymphocyte subsets: Consensus and issues

Appay, V et al. Cytometry A 2008. 73A: 975 – 983.

http://www3.interscience.wiley.com/ journal/121404281/abstract DOI: 10.1002/cyto.a.20643

The effect of glucosamine and/ or chondroitin sulfate on the progression of knee osteoarthritis: A report from the glucosamine/ chondroitin arthritis intervention trial

Sawitzke, A. D. et al. Arthritis & Rheum. 2008. 58: 3183-3191. http://www3.interscience.wiley.com/journal/121425887/abstract DOI 10.1002/art.23973

Alum adjuvanticity: Unraveling a century old mystery De Gregorio, E., et al., Eur. J. Immunol. 38: 2068-2071. http://www.3.interscience.wiley.com/ journal/120846849/abstract DOI: 10.1002/eji.200838648

Polychromatic plots: Graphical display of multidimensional data Roederer, M and Moody, M. A Cytometry A 2008. 73A: 868 – 874 http://www3.interscience.wiley.com/cgibin/abstract/120775541/ABSTRACT DOI 10.1002/cyto.a.20610

Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1 Ben-Shoshan, J., et al., Eur. J. Immunol. 38: 2412-2418.

http://www3.interscience.wiley.com/ journal/1214C7413/abstract DOI: 10.1002/eji.200838318 How antirheumatic drugs protect joints from damage in rheumatoid arthritis

Schett, G. et al. Arthritis & Rheum. 2008. 58: 2936-2948. http://www3.interscience.wiley.com/cgibin/abstract/121425883/ABSTRACT DOI: 10.1002/art.23951

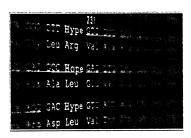
Enhanced B-cell activation mediated by TLR4 and BCR crosstalk

Minguet, S., et al., Eur. J. Immunol. 38: 2475-2487. http://www3.interscience.wiley.com/ journal/121408228/obstract DOI: 10.1002/eji.200738094

Flowcytometric phenotyping of common variable immunodeficiency Warnatz, K and Schlesier, M Cytometry B 2008. 74B: 261-271

A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells
Hochweller,K., et al., Eur. J. Immunol. 38: 2776-2783.
http://www3.interscience.wiley.com/journal/121416316/abstract

Pathophysiology of rheumatoid arthritis: Split or lump?
Boers, M. Arthritis & Rheum.
2008. 58: 2925-2927.
http://www3.interscience.wiley.com/journal/121425905/abstract
DOI: 10.1002/art.23944

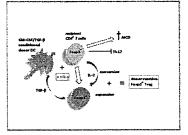

DOI: 10.1002/eji.200838659

Th memory for interleukin-17 expression is stable in vivo Lexberg, M. H., et al., Eur. J. Immunol. 38: 2654-2664. http://www.3.interscience.wiley.com/journal/121416361/abstract DOI: 10.1002/eji.200838541

SEPTEMBER TO SEE THE SEE

Hype or Hope After Genome-wide SNP Studies in Rheumatology?

Making regulatory T cells ex vivo: IFN-g is a good cyto after all



An editorial by van der Helm-van Mil et al. takes a critical look at new genome-wide association studies of single-nucleotide polymorphisms in rheumatology. The authors ask whether these studies are raising hopes for future understanding of diseases and the development of personalized

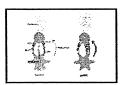
medicine, or if they are mainly hype, built on our fascination with impressive technologies. Using specific examples, the authors noted that single genes, in particular those with small odds ratios, play a limited role in predicting risk of disease onset. Additionally, they stated that very few studies have been performed on the effect of genetics on the progression of disease or response to therapy. When several genetic variations with moderate risk are combined, the risk for disease may increase, but the portion of the population affected will diminish, they continued. Their examples brought the authors to the conclusion that combinations of several genetic variants can provide important pathogenetic insights, but they are uncertain if this is a basis for meaningful clinical predictions. Regarding the combination of genetic context with environmental factors, they said the impact of a gene variant increases considerably with this combination. A direct correlate of findings from genomewide association studies is that criterion-based syndromes can now be subdivided, or sometimes merged into new categories that are more meaningful from pathogenetic perspectives. The most important drawback of testing many variants without any prior hypothesis is the chance of obtaining false-positive findings, they noted, recommending replication in independent case-control studies. Noting that the ultimate goal of a genetic association study is to identify biologic pathways that may help to create new therapies, the researchers offered a 3-step process. However, they noted that, "thus far, the findings have not resulted in novel diagnostic tools that significantly refine the currently available measures for risk stratification and fit easily into daily clinical practice."

van der Helm-van Mil, A. H. M. et al., Arthritis Rheum. 2008. 58: 2591-2597.

http://www3.interscience.wiley.com/journal/121391305/abstract DOI .1002/art.23751

Transplantation saves lives ar improves the quality of life for thousands of organfailure pat Transplantation is, however, not without cost to the patien non-specific immunosuppresresults in complications such increased risk of infection and cancer. The induction of imm

logical tolerance for long-term graft survival in the absence of long term non-specific immunosuppression remains elusive. A promis new development lies in immunotherapy with ex vivo generated o panded regulatory T cells (Treg). Feng et al. described a novel pro for selection of donor-reactive Foxp31 Treg ex vivo by activating C T cells with GM-CSF/TGF-b-conditioned DC in the presence of IFI Interestingly, this results in the preferential death of effector cells, suppression of Th17 responses, expansion of naturally occurring and direct conversion of non-Treg precursors. More importantly, cells prevent transplant rejection without additional manipulation supporting their further development for the clinical transplantatisetting and treatment of autoimmune diseases.


Feng, G. et al., Eur. J. Immunol. 2008. 38: 2512–2527 http://www3.interscience.wiley.com/journal/121408240/abstract DOI: 10.1002/eji.200838411

Automated Analysis of Flow Cytometry Data

Advances in the optics and electronics of flow cytometers have lectheir widespread introduction in many areas of biology and clinica research. However, tools used in the analysis of the data generate have been slower to advance. The automated processing tool deviped by Jeffries and co-workers uses a number of different algorithicand processing techniques to define and describe subpopulation: cells. They demonstrate the usefulness of this software when appl to the immunophenotyping of T-cells in a typical clinical research study. Their effort highlights the different features of the APT whice used to objectively define populations of FOXP3+ cells in HIV-infeindividuals as well as different CD8T cell populations in CMV infeindifferent in The Gambia.

Jeffries, D. et al., Cytometry A. 2008, 73A: 857-867. http://www3.interscience.wiley.com/journal/120735832/abstract DOI. 10.1002/cyto.a.20611

A novel regulator at the DC-T cell interface: gp49B

DC express several cell-surface, ITIM harbouring immune inhibitory receptors that maintain adequate DC developr and/or function; however, little is known about these receptors' immunoregulatory functions in the context of T-cel tivation. In this issue, Kasai et al. demonstrated that gp49B, an ITIM-harboring receptor for avb3 integrin, is expres on DC, and that gp49B-deficient DC induce enhanced proliferation of, and IL-2 secretion by, antigen-specific CD4+ CD8+ T cells in a cell-cell contact manner. The inhibitory role of gp49B at the DC-T cell interface is further demonsted by the accelerated, lethal acute GVH disease in gp49B-deficient recipients, indicating that gp49B negatively regions.

tes DC function in vitro and in vivo. Previous studies have revealed that gp49B attenuates cytokine and chemokine production by mast cells macrophages. The present findings highlight the versatility of the inhibitory role of gp49B at the DC-T cell interface in a physiological settin

DOI: 10.1002/eji.200737550

Clinical and Experimental Immunology Common ARTICLE

Immune response to *Plasmodium vivax* has a potential to reduce malaria severity

S. Chuangchaiya,*

K. Jangpatarapongsa,† P. Chootong,†

J. Sirichaisinthop,[‡] J. Sattabongkot,[§]

K. Pattanapanyasat, K. Chotivanich,*

M. Troye-Blomberg,** L. Cui^{††} and

R. Udomsangpetch##

*Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, †Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University,

SDepartment of Entomology, AFRIMS, SCenter of Excellence for Flow Cytometry, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, *Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand, *Department of Immunology, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden, and †Department of Entomology, Pennsylvania State University, USA

Accepted for publication 11 November 2009 Correspondence: R. Udomsangpetch, Department of Pathobiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand. E-mail: scrud@mahidol.ac.th

Summary

Plasmodium falciparum infection causes transient immunosuppression during the parasitaemic stage. However, the immune response during simultaneous infections with both P. vivax and P. falciparum has been investigated rarely. In particular, it is not clear whether the host's immune response to malaria will be different when infected with a single or mixed malaria species. Phenotypes of T cells from mixed P. vivax-P. falciparum (PV-PF) infection were characterized by flow cytometry, and anti-malarial antibodies in the plasma were determined by an enzyme-linked immunosorbent assay. We found the percentage of CD3+δ2+-T cell receptor (TCR) T cells in the acutemixed PV-PF infection and single P. vivax infection three times higher than in the single P. falciparum infection. This implied that P. vivax might lead to the host immune response to the production of effector T killer cells. During the parasitaemic stage, the mixed PV-PF infection had the highest number of plasma antibodies against both P. vivax and P. falciparum. Interestingly, plasma from the group of single P. vivax or P. falciparum malaria infections had both anti-P. vivax and anti-P. falciparum antibodies. In addition, antigenic cross-reactivity of P. vivax or P. falciparum resulting in antibodies against both malaria species was shown in the supernatant of lymphocyte cultures cross-stimulated with either antigen of P. vivax or P. falciparum. The role of $\delta 2 \pm TCR$ T cells and the antibodies against both species during acute mixed malaria infection could have an impact on the immunity to malaria

Keywords: antibody response, CD4⁺ T cells, CD8⁺ T cells, gamma delta T cells, infections

Introduction

Mixed malaria infection is common and has been reported in many parts of the world where malaria is endemic [1–5]. In regions with low malaria endemicity regions, especially in Thailand, mixed infection with *Plasmodium falciparum* (PF) and *P. vivax* (PV) is common. These co-infections can be either simultaneous or sequential. Previous studies have shown that mixed PV-PF malaria infection is less severe than the single *P. falciparum* infection in terms of lower frequency of anaemia, treatment failure and clinical outcomes for the patients [6]. Moreover, mixed PV-PF malaria infection is approximately a quarter as severe as single *P. falciparum* infection [7]. It is conceivable that interaction between the

host's immunity and the two malaria species may take place during acute infection.

The immune mechanism plays an important role in resisting malaria and other infectious diseases [8]. Immunity to malaria induced by different plasmodia species may give various outcomes. Immunity to *P. falciparum* is still controversial. Previous study has shown immunosuppression in acute *P. falciparum* leading to a lower absolute number of CD3⁺ T cells [9], although the overall percentages of CD4⁺ and CD8⁺ T cells are not changed [9–11]. On the other hand, during acute *P. vivax* infection, the percentage of CD4⁺ but not CD8⁺ T cells is elevated, whereas the number of antibodies against this parasite is low [12].

Table 1. Information and clinical data* of mixed Plasmodium vivax-P. falciparum (PV-PF), single P. vivax, single P. falciparum infections and naive controls

Naive controls	Mixed species	P. vivax	P. falciparum
50	17	63	63
39 ± 5·1	27 ± 9	31 ± 13	28 ± 8·2
45	14	51	54
5	3	12	9
36.5 ± 0.5	38.5 ± 0.8	37.3 ± 0.8	38 ± 1·3
0	$1.8 \pm 2^{\dagger}$	0.2 ± 0.2	1·9 ± 2·1
42 + 5.3		40 + 4.2	41 ± 8·5
-	39 ± 5.1 45 5 36.5 ± 0.5	50 17 $39 \pm 5 \cdot 1$ 27 ± 9 45 14 5 3 $36 \cdot 5 \pm 0 \cdot 5$ $38 \cdot 5 \pm 0 \cdot 8$ 0 $1 \cdot 8 \pm 2^{\dagger}$ $0 \cdot 07 \pm 0 \cdot 1^{\ddagger}$	50 17 63 39 \pm 5-1 27 \pm 9 31 \pm 13 45 14 51 51 5 3 12 36-5 \pm 0-5 38-5 \pm 0-8 37-3 \pm 0-8 0 1-8 \pm 2 [†] 0-2 \pm 0-0 \pm 0-1 \pm

^{*}Mean ± standard deviation. †P. falciparum; ‡P. vivax.

γδT cells play a role in linking the innate and adaptive immunities against the broad range of parasites [13-15]. These yoT cells recognize non-peptide phosphoantigens of the microbes leading to the release of cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and therefore exert the effector function, i.e. cytotoxicity and natural killing [16-18]. Generally, CD3+δ2+T cells predominate in the peripheral blood in response to many infectious agents such as Mycobacterium spp. [19], Pseudomonas aeroginosa and Escherichia coli [14]. In cases of P. vivax malaria, the elevation of CD3+δ2+ T cells is observed in peripheral blood but not in P. falciparum malaria infection [12]. The natural immune response against malaria in hosts during acute mixed PV-PF malaria infection has been investigated rarely. So far, only one study from Ethiopia has shown that $\gamma \delta T$ cells are increased in mixed PV-PF malaria infection and single P. falciparum infection, but not in P. vivax infection [10]. However, successful immunity to malaria required both cell-mediated and humoral immune responses. Therefore, in this study, we characterized the natural immune response during acute mixed PV-PF malaria infection in patients who live in areas of Thailand where malaria is endemic. Understanding both cell-mediated and humoral responses may disclose the roles of the host's immunity to the two malaria species.

Materials and methods

Sample collection

Blood samples were collected in 20 μ l of heparin from 17 acutely mixed PV-PF malaria-infected individuals, 63 *P. vivax*- and 63 *P. falciparum*-infected individuals at malaria clinics in Mae Sot, Tak province, Thailand; 50 malaria naive volunteers from non-malaria endemic areas were recruited as naive controls. Diagnosis of malaria infection was based on the examination of Giemsa-stained thick and thin blood films. Recruitment criteria were: age \geq 15 years; body temperature \leq 40°C; systolic blood pressure \geq 90 mm; haematocrit \geq 25%. Clinical data are shown in Table 1. This study was approved by the Committee on Human Rights

Related to Human Experimentation, Mahidol University, Bangkok. Informed consent was obtained from each individual before blood samples were taken.

Preparation of peripheral blood mononuclear cells (PBMCs)

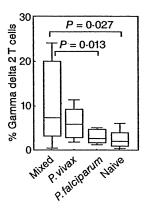
PBMCs were separated from the collected blood by gradient centrifugation at 800 g for 20 min using Lymphoprep™ (AXIS-Shield PoC AS, Oslo, Norway). PBMCs were washed twice with RPMI-1640 by centrifugation at 800 g for 10 min and resuspended in RPMI-1640 containing 10% fetal calf serum (FCS). The viability of the PBMCs was determined by trypan blue exclusion dye. PBMCs (10⁷ cells/ml) diluted in Cell banker® (Nihon Zenuaku Kohgyo, Japan) were stored in liquid nitrogen until further analysis.

Antigen preparation

White blood cells were depleted from P. vivax-infected blood by filtering through a Plasmodiper® (Whatman, Maidstone, UK). The red blood cells were washed twice with RPMI-1640 by centrifugation at 1190 g for 5 min. The parasites were cultured at 5% haematocrit in McCoy's medium (Gibco, Carlsbad, CA. USA) supplemented with 25% human antibody serum for 24-30 h in 5% CO2 until a mature schizont of P. vivax appeared [20]. P. falciparum culture was performed as described previously [21] in RPMI-1640 medium supplemented with 10% human serum until a mature schizont of P. falciparum appeared. P. vivax and P. falciparum parasites were separated by centrifugation on 60% Percoll®. The infected red blood cell (iRBCs) pellets were pulsed for 40 s on ice at 150 watts and stored at -70°C to be used in a lymphocyte stimulation assay and enzyme-linked immunosorbent assay (ELISA). The protein concentration of the P. vivax schizont extract (PvSE), and P. falciparum schizont extract (PfSE) was determined by a Bradford assay (Bio-Rad, Hercules, CA, USA). Uninfected red blood cells (uRBC) were processed similarly and used as control protein.

Antigenic cross-stimulation of lymphocytes

To investigate the antigenic cross-reactivity between *P. vivax* and *P. falciparum* parasites. PBMCs from a single *P. vivax* or *P. falciparum* infection were stimulated with PfSE and PvSE. The PBMCs were cultured at $(2 \times 10^5 \text{ cells}/100 \,\mu\text{l/well})$ in a HEPES-buffer RPMI-1640 supplemented with 10% FCS. The PvSE, PfSE and uRBC at 10 $\mu\text{g}/100 \,\mu\text{l}$ and 100 $\mu\text{g}/100 \,\mu\text{l}$ were added to each well. The cell quality control of the PBMCs was tested with a medium containing 10 $\mu\text{g}/100 \,\mu\text{l}$ of phytohaemagglutinin (PHA) and incubated at 37°C in 5% CO₂ for 5 days. The culture supernatant was stored at –20°C for further investigation of cross-reactivity.


Flow cytometric analysis

Phenotyping of T cells was performed by three-colour flow cytometry (FACScan; Becton Dickinson, Oxford, UK). PBMCs (10^5 cells) were stained with the following three-colour combinations of fluorescent dye conjugated with antibodies that were specific to T cell surface markers: fluorescein isothiocyanate (FITC)-conjugated antibody to CD4, R-phycoerythrin (R-PE)-conjugated antibody to CD3 and R-PE-cyanine 5 (R-PE-Cy5) conjugated antibody to CD8; and FITC-conjugated antibody to $\delta 2^+$ TCR T cells and R-PE antibody to CD3 (Caltag, Burlingame, CA, USA) for 30 min at 4°C. After staining and washing, the cells were fixed with 1% paraformaldehyde in PBS pH 7·4 and analysed using CellQuest software (Becton Dickinson, San Jose, CA, USA).

Determination of antibodies against parasite antigen of *P. vivax* and *P. falciparum* antigen

Two methods were used to determine anti-malarial antibodies.

Enzyme-linked immunosorbent assay. Fifty ml of 10 µg/ml (PBS, pH 7-4) PvSE and PfSE were incubated overnight at 4°C in a 96-well polystyrene immunoplate (Corning, NY, USA). The immunoplate was blocked with 100 µl/well of blocking buffer (0.5% boiled casein in PBS and 0.05% Tween 20) for 2 h at room temperature. After three washings, 50 μl of serum (1:100 dilution in PBS pH 7.4) were added into duplicate wells and incubated overnight at 4°C. After washing with 0.05% Tween 20 in PBS, pH 7.4, 50 μl of horseradish peroxidase-conjugated goat anti-human immunoglobulin G (IgG) (Caltag) and 50 µl of 2,2'-azinodi-(3-ethylbenzthiaoline sulphonic acid) containing 50% hydrogen peroxide (Kirkepaard & Perry Laboratories, Gaithersburg, MD, USA) were added sequentially to each well and incubated for 1 h at room temperature. Enzyme activity was measured by microplate reader, Wallac Victor (Perkin Elmer, Jügesheim, Germany) at 405 nm. The levels of anti-P. falciparum and anti-P. vivax antibodies were expressed as a ratio increase in a median optical density (OD) compared to naive controls.

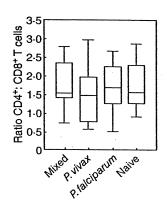


Fig. 1. Phenotyping of T cells in mixed *Plasmodium vivax*— *P. falciparum* (PV-PF), *P. vivax*, *P. falciparum* malaria infection and malaria naive controls determined by flow cytometry. Data are shown as interquartile ranges (box plots), maximum and minimum (upper–lower line) and bars indicate median. (a) CD3*82* T cells; (b) CD4*: CD8* T cells.

Immunofluorescence assay (IFA). The pellets of infected red blood cells by *P. vivax* and *P. falciparum* parasites were spotted, dried and fixed on the multi-well slides. The cultured supernatant from PvSE-stimulated lymphocytes and PfSE-stimulated lymphocytes was added to the multi-well slides and incubated in a humidified box at room temperature for 1-5 h. The slides were then washed three times for 5 min. The multi-well slides were then incubated with goat anti-human IgG conjugated to FITC (Serotec, Oxford, UK). The slides were washed three times and mounted with a coverslip using 50% glycerol in PBS and then analysed with a fluorescence microscope.

Statistical analysis

The phenotypes of lymphocyte were analysed using the spss program (version 11-5; SPSS Inc., Chicago, IL, USA). To compare the phenotype of T cells in different groups, these data were log-transformed in order to obtain a normal distribution. Statistical significance was determined by oneway analysis of variance (ANOVA). Non-parametric analysis (two independent samples) and Mann–Whitney U-test were used to determine the significance levels of anti-P. falciparum and anti-P. vivax antibodies. The results were considered significant at P < 0.05.

Results

Phenotypes of T cells

Flow cytometry was used to identify subsets of T cells, including CD4⁺, CD8⁺ and CD3⁺ δ 2⁺ (Fig. 1). The median percentage of CD3⁺ δ 2⁺ T cells was significantly higher in acute mixed PV-PF malaria infection (7.4%) compared with

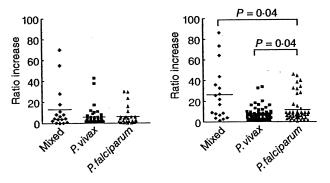


Fig. 2. Antibodies to *Plasmodium vivax* (PV) and *P. falciparum* (PF) in mixed PV-PF, *P. vivax*, *P. falciparum* malaria infection, and malaria naive controls determined by enzyme-linked immunosorbant assay. Data are shown in median ratio and bars indicate median of the ratios. (a) Anti-*P. vivax* antibodies; (b) anti-*P. falciparum* antibodies.

acute *P. falciparum* infection (2·3%, P < 0.01) and naive controls (1·8%, P < 0.03). There was no difference in CD3⁺ δ 2⁺T cells between acute *P. vivax* and the mixed malaria infections (7·4% *versus* 5·9%, P > 0.05). The median percentage of CD4⁺ and CD8⁺ T cells in the mixed malaria infection (36·7% and 24·6%, respectively) was similar to that of the single *P. vivax* (29·2% and 25·5%, P > 0.05) and *P. falciparum* infection (44·8% and 23·5%, P > 0.05) and these levels were not different from the naive controls (44·7% and 24·0%, P > 0.05).

Antibodies to *P. falciparum* and *P. vivax* protein extracts

Antibodies to the parasite protein extracts in the plasma were determined and are shown in Fig. 2. Both mixed malaria and single malaria infections had antibodies against P. vivax and P. falciparum antigens. Interestingly, the mixed infection had the highest plasma levels of antibodies to both P. vivax and P. falciparum antigens [13-fold (P > 0.05) and 24-fold (P < 0.04), respectively] compared with those of the naive controls. The single P. falciparum group had an increased ratio of antibodies to the P. vivax (sixfold, P > 0.05) and P. falciparum infection (10-fold, P > 0.05). The single P. vivax group had a sixfold increase of anti-P. vivax and anti-P. falciparum antibodies compared with the naive control. Of the three malaria infection groups, anti-P. falciparum antibodies were significantly higher in the mixed PV-PF malaria infection (P < 0.04) compared with each single malaria infection group, as shown in Fig. 2b. Antibodies specific to P. vivax protein extracts were low in all groups, as shown in Fig. 2a.

Cross-reactivity of antibodies to *P. vivax* and *P. falciparum* parasites

The plasma antibodies of the single malaria infections, either *P. vivax* or *P. falciparum*, showed reactivity with the other

malaria species regardless of the species that had currently caused the infection. Interestingly, the supernatant collected from the PvSE- or PfSE-stimulated lymphocytes of the single *P. falciparum* infection produced both anti-*P. vivax* and anti-*P. falciparum* antibodies. Similarly, the supernatant collected from the PfSE- or PvSE-stimulated lymphocytes of the single *P. vivax* infection also produced both anti-*P. vivax* and anti-*P. falciparum* antibodies. The antibodies showed strongly positive with mature stages of both parasites as determined by the IFA (data not shown). The supernatant collected from the malaria PvSE- or PfSE-stimulated lymphocytes of the malaria naives showed no reactivity with any parasite.

Discussion

The objective of this study was to characterize the profiles of T cells and the response of antibodies to blood stage antigens of both P. vivax and P. falciparum during acute mixedmalaria infection. Our study gave novel evidence of the natural immune response of γδT cells against mixed malaria infection, were modulated by P. vivax and their role in the reduction of malaria severity caused by P. falciparum. The percentage of CD3⁺δ2⁺T cells were increased significantly in acute mixed and single P. vivax infections compared with these of the naive controls, whereas only a low level of these cells was found in acute P. falciparum patients. The CD4: CD8 ratio did not show any difference between malaria patient groups, which was in line with previous studies [9–11]. These results suggested the role of CD3 $^+\delta2^+T$ cells in the development of the cell-mediated immunity during mixed malaria infection.

The $\gamma\delta T$ cells inhibit development of the pre-erythrocytic stage of P. yoelii in a mouse model lacking $\alpha\beta$ T cells [22], and the α -galactosyl-ceramide (a-GalCer)-activated natural killer (NK) T cells protect mice from P. yoelii infection [23]. Moreover, $\gamma\delta T$ cells, NK, NK T cells and macrophages harboured in the liver where the pre-erythrocytic stage of malaria are presented may boost the immunity to malaria infection [24] more effectively than those malaria having only the erythrocytic stages.

The $\gamma\delta T$ cells control the expansion of *P. chabaudi* in a mouse model [25] and inhibit growth of *P. falciparum* parasites [26] through the release of granulysin [8]. The elevation of CD3+ $\delta 2$ + T cells in acute *P. vivax* infection conceivably plays a similar role to that in *P. falciparum* infection. Interestingly, a greater elevation of the CD3+ $\delta 2$ + T cells was shown in the mixed malaria infection and the single *P. vivax* infection compared with that of the *P. falciparum* infection. By contrast, a previous study in Ethiopia showed that there was no difference in CD3+ $\delta 2$ + T cells in mixed PV-PF malaria infection. However, the CD3+ $\delta 1$ + T cells, having a killer effector function, were more numerous in the single *P. falciparum* and mixed PV-PF malaria infections [10].

Our data showed no correlation between the percentage of CD3 $^{+}\delta2^{+}$ T cells and the number of *P. vivax* parasites or the number of the *P. falciparum* parasites. Nevertheless, the lower number of *P. falciparum* parasites in the mixed malaria infection, as opposed to that in the single *P. falciparum* infection, suggested that *P. vivax* might activate the effector killer function of the CD3 $^{+}\delta2^{+}$ T cells resulting in the inhibition of *P. falciparum* growth.

When P. vivax was co-infected with P. falciparum in the malaria infection, patients had a higher fever than those with single P. falciparum or single P. vivax infections [27]. High temperature is shown to kill P. falciparum parasites in in vitro studies [28,29]. In addition, serum from a P. vivax-infected donor during paroxysm inhibits maturation of P. falciparum schizonts [30]. Together, these data support the notion that a mechanism by which P. vivax controls the expansion of P. falciparum in mixed malaria infection could be via the induction and persistency of high fever in patients, particularly the high systemic temperature in the organs where P. falciparum sequestered. Therefore, if this can be established, the vaccine development imperative against P. falciparum infection and severity may derive from the combination of P. falciparum antigen and the antigen candidate from P. vivax.

Antibodies to malaria, although short-lived, are the primary mechanisms of defence against parasitic infection [31]. Induction and maintenance of anti-malarial antibodies requires repetitive infections [32,33]. Evidence such as the existence of the asymptomatic parasitaemic individual confirms development of immunity against malaria [34,35]. Recently, a study has shown that the incidence of severe malaria in patients with mixed PV-PF malaria infection is 4·2 times less than that in *P. falciparum* infection alone [7].

In this study we have shown that the anti-P. falciparum and anti-P. vivax antibody levels in the mixed malaria infection were higher than those of the single P. vivax or P. falciparum infections. Our data provide a new basis to support previous findings that, on one hand, development of a crossimmune reactivity between P. vivax and P. falciparum during acute mixed infection could be due to the activation of a pool of memory T cells having specificities to both P. vivax and P. falciparum antigens. These cells co-existed in the residents of the endemic areas where there is regular exposure to malaria parasites.

On the other hand, the antigenic cross-stimulation by *P. vivax* antigens sharing common epitopes with *P. falciparum* [36] results in the cell-mediated and antibody responses at high levels against *P. falciparum* during the acute phase of infection. Further investigations in the different geographical endemic areas are needed to verify the two categories. To stratify this finding further, we performed an *in vitro* T cell stimulation assay using PvSE and PfSE antigens derived from *P. vivax* and *P. falciparum*, respectively, to stimulate the PBMCs from acute single *P. vivax* or single *P. falciparum* infections with the two antigens. Both anti-*P. vivax* and anti-*P. falciparum* antibodies, tested by the IFA, were found

in the supernatant collected from these assays, regardless of the parasite species which caused the infection. This suggested that the patients had developed antigen-specific memory T cells against both P. vivax and P. falciparum parasites which were activated upon re-exposure to either P. vivax or P. falciparum antigens. Supporting evidence from a study in Thailand shows the antibody cross-reactivity from a single P. vivax-infected patient against both the schizont extract of P. falciparum parasite and the PfMSP119 parasite protein [30]. In addition, the cross-reactivity between anti-PvMSP5 and anti-PfMSP5 antibodies was observed in single P. vivax or single P. falciparum infections [37]. Our findings were also supported by the evidence from an epidemiological observation and cross-sectional study [2], during a wet season, which showed that the dominant parasite is P. falciparum whereas P. vivax dominates during the dry season. Overall immunity, effector T cells and anti-malaria antibodies to malaria among the residents of endemic areas would be strengthened by the existence of P. vivax.

In summary, our results indicate the possibility of *P. vivax* suppressing *P. falciparum* parasites, because *P. vivax* induces CD3⁺δ2⁺T cells which are effector T killer cells. *P. vivax* infection also elevates anti-*P. falciparum* antibodies during the acute phase, and induces a very high fever. These findings suggest that the interaction between the host and *P. vivax* parasites could offer protection as demonstrated in the mixed PV-PF malaria infection. However, further clinical and experimental research is needed in order to verify these assumptions. Furthermore, in single *P. vivax* or *P. falciparum* infection, similar levels of T helper type 1 (Th1)/Th2 cytokine responses are shown [38]. Clarification of such responses to mixed malaria infection in man, i.e. conversion between Th1- and Th2-type responses, are of interest and require further investigation.

Acknowledgements

We thank all staff at the Mae Sot and Mae Kasa Malaria Clinics, Tak province, the staff of the Department of Entomology, AFRIMS, Bangkok, and the staff of the Malaria Research and Training Center at Prabuthabath, Saraburi, Thailand, for the collection of specimens. We also thank J. Opasnawakun and S. Lerdwana for technical assistances, Dr W. Pan-ngum for statistical analysis, and Mr P. Whalley (ASEAN Institute for Health Development) for the language revision. This work was supported by the Royal Golden Jubilee Programme (5MMU48AH1), the Thailand Research Fund (BRG498009), the Thailand Research Fund-Senior Research Scholar Award, the Commission on Higher Education (CHE-RES-PD) and the FIC, NIH (D43-TW006571).

Disclosure

None.

References

- 1 Black J, Hommel M, Snounou G, Pinder M. Mixed infections with Plasmodium falciparum and P. malariae and fever in malaria. Lancet 1994; 343:1095.
- 2 Maitland K, Williams TN, Newbold CI. Plasmodium vivax and P. falciparum: biological interactions and the possibility of crossspecies immunity. Parasitol Today 1997; 13:227–31.
- 3 Mason DP, McKenzie FE. Blood-stage dynamics and clinical implications of mixed *Plasmodium vivax-Plasmodium falciparum* infections. Am J Trop Med Hyg 1999; 61:367-74.
- 4 Mayxay M, Pukrittayakamee S, Newton PN, White NJ. Mixed-species malaria infections in humans. Trends Parasitol 2004; 20:233–40.
- 5 Snounou G, White NJ. The co-existence of *Plasmodium*: sidelights from falciparum and vivax malaria in Thailand. Trends Parasitol 2004: 20:333-9.
- 6 Price RN, Simpson JA, Nosten F et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg 2001; 65:614–22.
- 7 Luxemburger C, Ricci F, Nosten F, Raimond D, Bathet S, White NJ. The epidemiology of severe malaria in an area of low transmission in Thailand. Tran R Soc Trop Med Hyg 1997; 91:256–62.
- 8 Farouk SE, Mincheva-Nilsson L, Krensky AM, Dieli F, Troye-Blomberg M. Gamma delta T cells inhibit in vitro growth of the asexual blood stages of *Plasmodium falciparum* by a granule exocytosis-dependent cytotoxic pathway that requires granulysin. Eur J Immunol 2004; 34:2248–56.
- 9 Kassa D, Petros B, Mesele T, Hailu E, Wolday D. Characterization of peripheral blood lymphocyte subsets in patients with acute *Plas-modium falciparum* and *P. vivax* malaria infections at Wonji Sugar Estate, Ethiopia. Clin Vaccine Immunol 2006; 13:376–9.
- 10 Worku S, Bjorkman A, Troye-Blomberg M, Jemaneh L, Farnert A, Christensson B. Lymphocyte activation and subset redistribution in the peripheral blood in acute malaria illness: distinct gamma delta+ T cell patterns in *Plasmodium falciparum* and *P. vivax* infections. Clin Exp Immunol 1997; 108:34–41.
- 11 Lisse IM, Aaby P, Whittle H, Knudsen K. A community study of T lymphocyte subsets and malaria parasitaemia. Tran R Soc Trop Med Hyg 1994; 88:709–10.
- 12 Jangpatarapongsa K, Sirichaisinthop J, Sattabongkot J *et al.* Memory T cells protect against *Plasmodium vivax* infection. Microbes Infect 2006; 8:680–6.
- 13 Kabelitz D, Marischen L, Oberg HH, Holtmeier W, Wesch D. Epithelial defence by gamma delta T cells. Int Arch Allergy Imm 2005; 137:73–81.
- 14 Kersten CM, McCluskey RT, Boyle LA, Kurnick JT. Escherichia coli and Pseudomonas aeruginosa induce expansion of V delta 2 cells in adult peripheral blood, but of V delta 1 cells in cord blood. J Immunol 1996; 157:1613-19.
- 15 Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 1995; 373:255-7.
- 16 Garcia VE, Jullien D, Song M et al. IL-15 enhances the response of human gamma delta T cells to nonpeptide [correction of nonpetide] microbial antigens. J Immunol 1998; 160:4322-9.
- 17 Tsukaguchi K, de Lange B, Boom WH. Differential regulation of IFN-gamma, TNF-alpha, and IL-10 production by CD4(+) alpha beta TCR+ T cells and vdelta2(+) gammadelta T cells in response to

- monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol 1999; 194:12-20.
- 18 Wang L, Das H, Kamath A, Bukowski JF. Human V gamma 2V delta 2 T cells produce IFN-gamma and TNF-alpha with an on/off/on cycling pattern in response to live bacterial products. J Immunol 2001; 167:6195-201.
- 19 Dieli F, Troye-Blomberg M, Ivanyi J et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 2001; 184:1082-5.
- 20 Udomsangpetch R, Somsri S, Panichakul T et al. Short-term in vitro culture of field isolates of Plasmodium vivax using umbilical cord blood. Parasitol Int 2007; 56:65–9.
- 21 Cranmer SL, Magowan C, Liang J, Coppel RL, Cooke BM. An alternative to serum for cultivation of *Plasmodium falciparum in vitro*. Tran R Soc Trop Med Hyg 1997; 91:363–5.
- 22 Tsuji M, Mombaerts P, Lefrancois L, Nussenzweig RS, Zavala F, Tonegawa S. Gamma delta T cells contribute to immunity against the liver stages of malaria in alpha beta T-cell-deficient mice. Proc Natl Acad Sci USA 1994; 91:345–9.
- 23 Gonzalez-Aseguinolaza G, de Oliveira C, Tomaska M et al. alpha-galactosylceramide-activated Valpha 14 natural killer T cells mediate protection against murine malaria. Proc Natl Acad Sci USA 2000; 97:8461–6.
- 24 Schmieg J, Gonzalez-Aseguinolaza G, Tsuji M. The role of natural killer T cells and other T cell subsets against infection by the preerythrocytic stages of malaria parasites. Microbes Infect 2003; 5:499–506.
- 25 Seixas EM, Langhorne J. gamma delta T cells contribute to control of chronic parasitemia in *Plasmodium chabaudi* infections in mice. J Immunol 1999; 162:2837–41.
- 26 Elloso MM, van der Heyde HC, vande Waa JA, Manning DD, Weidanz WP. Inhibition of *Plasmodium falciparum in vitro* by human gamma delta T cells. J Immunol 1994; 153:1187-94.
- 27 McKenzie FE, Smith DL, O'Meara WP et al. Fever in patients with mixed-species malaria. Clin Infect Dis 2006; 42:1713-18.
- 28 Kwiatkowski D. Febrile temperatures can synchronize the growth of Plasmodium falciparum in vitro. J Exp Med 1989; 169:357–61.
- 29 Long HY, Lell B, Dietz K, Kremsner PG. Plasmodium falciparum: in vitro growth inhibition by febrile temperatures. Parasitol Res 2001; 87:553-5.
- 30 Nagao Y, Kimura-Sato M, Chavalitshewinkoon-Petmitr P et al. Suppression of Plasmodium falciparum by serum collected from a case of Plasmodium vivax infection. Malar J 2008; 7:113.
- 31 Wipasa J, Elliott S, Xu H, Good MF. Immunity to asexual blood stage malaria and vaccine approaches. Immunol Cell Biol 2002; 80:401-14.
- 32 Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP. High prevalence of asymptomatic *Plasmodium vivax* and *Plasmodium falciparum* infections in native Amazonian populations. Am J Trop Med Hyg 2002; 66:641–8.
- 33 Ladeia-Andrade S, Ferreira MU, de Carvalho ME, Curado I, Coura JR. Age-dependent acquisition of protective immunity to malaria in riverine populations of the Amazon Basin of Brazil. Am J Trop Med Hyg 2009; 80:452–9.
- 34 Kinyanjui SM, Mwangi T, Bull PC, Newbold CI, Marsh K. Protection against clinical malaria by heterologous immunoglobulin G antibodies against malaria-infected erythrocyte variant surface antigens requires interaction with asymptomatic infections. J Infect Dis 2004; 190:1527–33.

- 35 Osier FH, Fegan G, Polley SD *et al.* Breadth and magnitude of antibody responses to multiple *Plasmodium falciparum* merozoite antigens are associated with protection from clinical malaria. Infect Immun 2008; 76:2240–8.
- 36 Black CG, Barnwell JW, Huber CS, Galinski MR, Coppel RL. The *Plasmodium vivax* homologues of merozoite surface proteins 4 and 5 from *Plasmodium falciparum* are expressed at different locations in the merozoite. Mol Biochem Parasitol 2002; 120:215–24.
- 37 Woodberry T, Minigo G, Piera KA et al. Antibodies to Plasmodium falciparum and Plasmodium vivax merozoite surface protein 5 in Indonesia: species-specific and cross-reactive responses. J Infect Dis 2008; 198:134–42.
- 38 Fernandes AA, Carvalho LJ, Zanini GM et al. Similar cytokine responses and degrees of anemia in patients with *Plasmodium falciparum* and *Plasmodium vivax* infections in the Brazilian Amazon region. Clin Vaccine Immunol 2008; 15:650–8.

1	Characteristic of Immunity to Maiaria: Comparative Lymphocyte
2	Responses in P. falciparum and P. vivax Infection
3	
4	Patchanee Chootong 1, 2, Kulachart Jangpatarapongsa 1, 2, Jetsumon
5	Sattabongkot ³ , Jeeraphat Sirichaisinthop ^{4,} Marita Troye-Blomberg ⁵ ,
6	Rachanee Udomsangpetch ^{1, 2}
7	
8	¹ Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol
9	University, Bangkok 10700, Thailand
10	² Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok
11	10400, Thailand
12	³ Department of Entomology, Armed Forces Research Institute of Medical Sciences,
13	Bangkok 10400, Thailand
14	⁴ Center of Malaria Research and Training, Ministry of Public Health, Saraburi
15	18120, Thailand
16	⁵ Department of Immunology Wenner-Gren Institute, Stockholm, SE-10691
17	Stockholm, Sweden.

- 18 Conflict of interest: Authors have no commercial or other association that might pose
- 19 a conflict of interest
- 20 Financial support: This study is supported by the Thailand Government Scholarship,
- 21 The Commission on Higher Education, Ministry of Education to PC and Thailand
- Research Fund of Thailand (BRG498009) to RU.
- 23 Correspondence: Professor Rachanee Udomsangpetch, Department of Pathobiology,
- Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
- email:scrud@mahidol.ac.th

Infection with P. vivax induces memory and regulatory T cell activation during 26 infection. Here, we investigated the characterization of lymphocyte response during 27 P. vivax infection compared with P. falciparum by using in vitro stimulation assays. 28 Our result showed the elevation of $CD4^+$, $CD8^+$ and $\gamma\delta^+T$ cells in acute P. vivax 29 patients and after stimulation with crude P. vivax antigens by significantly showing in 30 CD4⁺ T cells. The acute P. vivax patients showed antibody responses, approximately 31 sixty percent of P. vivax patients had a two-fold increase of antibody level compared 32 with naive controls. Further, antibody levels increased in corresponding to antibody 33 level in each patient after stimulation with P. vivax antigens. In comparison, the level 34 of CD8⁺ and γδ T cells increased in acute P. falciparum patients whereas CD4⁺ T 35 cells were significantly reduced. The stimulation of PBMCs from acute patients 36 showed no significantly response of CD4⁺, CD8⁺ and $\gamma\delta^+$ T cells. Importantly, crude 37 P. falciparum antigens significantly induce B-cell expansion and antibody production 38 in vitro, indicating a major role of humoral immunity in P. falciparum infection. T-39 cell apoptosis is one mechanism to impair cell-mediated immunity in malaria. CD4⁺ 40 and CD8⁺ T cell apoptosis were increased in both acute P. falciparum and P. vivax 41 patients and they were significantly heightened upon antigen stimulation. In this 42 study, we compared the natural response of lymphocyte between P. vivax and P. 43 falciparum infection. Crude P. vivax antigens stimulated lymphocyte expansion by 44 predominantly increase of CD4⁺ cells and induced antibody response. However, T 45 cells of P. falciparum patients lowly responded to crude antigens. The expansion of 46 B-cell and antibody levels upon stimulation suggests the major role of humoral 47 immunity in development of naturally acquired immunity in P. falciparum. The 48 induction of CD4⁺ T cell apoptosis is common strategy in two human malaria for 49 impairment of natural immune response. 50

Malaria is one of the most serious infectious diseases widely distributed in tropical and subtropical countries. Global burden is estimated more than 500 million cases per year. Most of these cases are caused by *P. falciparum* and *P. vivax* [21]. *P. falciparum* is a significant cause of mortality; severe anemia, cerebral malaria, and acute renal failure. In contrast with *P. falciparum*, *P. vivax* infection cause relapsing

- fever but is rarely fatal. (22). The severity of malaria infected patients is mostly associated with immune mediated diseases.
- Both antibodies and T cells play an important role in protective immunity to malaria parasites [19, 25,31,32]. Stimulation of autologous T/B cell mixture with low concentration of P. falciparum antigen gave rise to IgG secretion in vitro cultures [15]. Lymphocytes from malaria exposed and non-exposed donors responded to P. falciparum parasite [5]. However, it is difficult to acquire long lasting immunity despite repeated exposure of parasites to people living in malaria endemic areas [9, 16]. Suppression of malaria-specific T cells proliferation and induction of T cells apoptosis were present during acute P. falciparum infection [1, 4]. Additionally, host immune responses to the parasites were affected on the pathogenesis. High level of pro-inflammatory cytokines such as tumor necrosis factor- α (TNF- α), interleukin (IL)-1 and IL-6 are responsible to severe complicated P. falciparum patients [18].

Very few studies in immunity to *P. vivax* infection have been conducted. Most studies in immunity to malaria were reported in *P. falciparum*. One reason for this could be the difficulty of maintaining *P. vivax* cultures as a source for the preparation of parasites antigens. Since, a characteristic having hypnozoite stage for *P. vivax*, we hypothesized that the natural immune response to *P. vivax* infection differs from that of *P. falciparum*. There have been some studies of human immune response to *P. vivax* circumsporozoite protein (CSP) [7, 8]. The most antibodies response in naturally infected *P. vivax* was targeted to epitopes in non-repeat region of CSP [28]. It is believed that CSP-specific CD4⁺ and CD8⁺ T cell responses, along with CSP-specific antibodies, will be important in immunity to *P. vivax* sporozoite/liver stages.

In immunity to blood stage of *P. vivax*, recently, our study has been shown that memory T cells were maintained in immune villagers and elevated during acute *P. vivax* infection. However, low level of specific antibody to blood stage of *P. vivax* was detected in acute and convalescent period of infection [13]. This indicated the suppressive immunity in blood stage of *P. vivax* infection that needed for further study.

Therefore, this study aims to demonstrate the natural response of lymphocytes and

Therefore, this study aims to demonstrate the natural response of lymphocytes and characteristic of lymphocytes responses to *P. vivax* and *P. falciparum* parasites. We compared the status of lymphocyte proliferation in both human malaria and identified the phenotypes of T cells responding to schizont protein extract, including the apoptosis induction by parasites.

MATERIALS AND METHODS

Sample collection. The acutely *P. vivax* and *P. falciparum* infected volunteers who registered at Malarial Clinics in Mae-Sod and Mae-Kasa districts, Tak province have been informed the details of the project prior blood samples were taken. Selecting criteria of the projects were as followings: (1) systolic blood pressure was not less than 90 mm, (2) body temperature was not higher than 40°C, (3) Hematocrit was not less than 25% and (4) all patients have to be the age of 15 or above. Those who were not fitting the criteria and pregnant patients were excluded. After the patients were selected, 20 ml of peripheral blood were taken. The healthy volunteers who live outside the endemic area and without previous history of malarial infection were included as naive controls.

This study was approved by the Committee on Human Rights Related to Human Experimentation, Mahidol University, and the Ministry of Health, Thailand. Informed consent was obtained from each individual before the blood sample was taken.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

Parasite cultures and antigen preparations. P. vivax and P. falciparum infected blood collected from the same endemic area was used as PvSE and PfSE in in vitro stimulation assays and ELISA, respectively. Briefly, P. vivax infected blood cells was depleted of white blood cell by filtering through Plasmodiper (Whatman, Maidstone, UK) and the red blood cells were washed with RPMI-1640 by centrifugation at 1190× g for 5 min. The parasites were cultured for 24-30 hrs at 5% haematocrit in McCoy's medium (GIBCO, Carlsbad, USA) supplemented with 25% human AB serum at. P. falciparum cultures were performed as described previously [35] in RPMI-1640 medium supplemented with 10% human serum. Both P. vivax and P. falciparum cultures were kept at 5% O2 and 90% N2. After the parasites had matured to schizont stage, antigens were separated by centrifuged in 60% Percoll®. The cells in the interface layer between medium and Percoll® were collected, washed twice and the pellets were stored at -70°C to bed used for in vitro stimulation assays and for antibody detection. Lymphocyte purification and in vitro stimulation assay. Heparinized blood was mixed with equal volume of HEPES-buffer in RPMI-1640 medium (GIBCO, Carlsbad,USA). The diluted blood was carefully overlayered on Lymphoprep™ (AXIS-Shied PoC AS, City, Norway) and PBMCs were separated by gradient 121

centrifugation at 800 x g for 20 mins. After centrifugation, the PBMCs were collected

from the interface between plasma/medium and Lymphoprep™ following washed

twice with RPMI-1640 at 800 x g for 10 mins. The PBMC pellet was finally resuspended in RPMI-1640 containing 10% heated-fetal calf serum (FCS). The viability was determined by Tryphan Blue exclusion and the number was counted in hematocytometer. PBMCs were cultured at 2x10⁶ cells/ well in HEPES-buffer RPMI-1640 supplemented with 10% FCS. The lysate of P. vivax schizont extract (PvSE), P. falciparum schizont extract (PfSE) and lysate of uninfected red blood cells (uRBC) at 10 μg or 100 μg were added in each well. Control cells were cultured with Media and 10 μg of Phytohemagglutinine-A (PHA) and incubated at 37 in 5% CO₂ for 5 days. Lymphocyte proliferation assays. 1×10⁶ peripheral blood mononuclear cells (PBMCs) were resuspended in HEPES-buffer RPMI-1640 supplemented with 10% heat-inactivated FCS and incubated with 2.5 µM of 5-carboxyfluorescein diacetate succinimidyl ester (CFSE) at 37°c for 10 mins. 100 µl of CFSE-labeled cells were plated into each well of 96-well round-bottom tissue culture plates. PvSE or PfSE were added into PBMCs and cultured under in vitro conditions for 5 days. Control wells were cultured with RPMI-1640 medium alone as negative control, with uRBC antigens as base line stimulation, and with 10 µg of PHA as mitogenic activation of PBMCs. The percentage of lymphocyte proliferation in parasite culture was obtained from the total of divided cells in PvSE or PfSE cultures subtracted with uRBC stimulation. Flow cytometry analysis. B and T cells phenotyping was performed by three-color

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

flow cytometry (FACscan Becton Dickinson, Oxford, UK). CD4⁺, CD8⁺ T cells were defined with a combination of fluorochorme-conjugated Mabs, Tricolor labeled anti-CD3, PE labeled anti-CD4 and FITC labeled anti-CD8 (Caltag, Burlingame, USA). For γδ⁺ T cells, PBMCs were stained with mouse IgG1 anti-human TCR Vγ9 (A13) or TCR Vδ2 (BB3), (kindly provided by Dr. L. Moretta, Centro Di Biotechnologie Avanzate, Genova, Italy) for 1 h at 4 °C and washed twice with phosphate buffered saline (PBS). Goat F(ab)² anti-mouse IgG antibodies conjugated with FITC were used to detect the anti-γ9 and δ2 TCR antibodies. B cells were defined by staining with FITC labeled anti-CD19 (Serotec, Oxford, UK).

Determination of antibody response by enzyme linked-immunosorbent assays (ELISA). The purified *P. falciparum* and *P. vivax* parasite were diluted in PBS and coated in 96 well plates. Blocking buffer, 2% BSA in PBST were added in each well and incubated for 2 hrs for protecting of non-specific binding. Sera samples or the stimulated *P. vivax* or *P. falciparum* cultures, 100 μl of 1:100 diluted was added and incubated at room temperature for 1.5 hr. The plates were then washed three times for 5 min for each wash. The secondary antibodies, goat anti-human IgG (FC) conjugated peroxidase (Serotec, Oxford, UK), were added and incubated for 1.5 hr, washed three times as before and then added substrate ABTS, incubated for 1 hr and measure Optical Density (OD) values at 405 wavelength by ELISA plate reader.

Data analysis. All data analyzed using the SPSS program (Version 11.5 Chicago, USA). Non-Parametric analysis (two independent samples); Mann-Whitney test was used for comparison of lymphocytes response between PvSE or PfSE stimulation and media control. The results were considered statistically significant values at P< 0.05.

167 RESULTS

The proliferative response of human lymphocytes in malaria. The function of lymphocytes during P. vivax and P. falciparum infection was assessed by

- identification of divided cell number. CFSE-labeled lymphocytes were determined after 5 days of PBMC stimulation with crude schizont protein extract at varied concentration from 1 μg to 100 μg. The stimulation of naive PBMCs with *P. vivax* antigens showed small increase of lymphocyte proliferation compared with medium control (PvSE1 = 4.45±2.5%, PvSE10 = 7.49±5.4 %, PvSE100 = 7.61±5.6±%, figure 1). Unlike *P. vivax* stimulation, the significant increase of divided cells was observed after stimulation naive PBMCs with *P. falciparum* antigens (PfSE1 = 9.36±4.18%,
- PfSE10 = $10.15\pm3.5\%$, PfSE100 = $15.28\pm3.11\%$, Figure 1). These results indicate the
- higher mitogenic index in P. falciparum than those in P. vivax parasites.
- To evaluate the natural response of lymphocytes during P. vivax or P. falciparum 179 infection, PBMCs of acute malaria patients were stimulated with crude shizont 180 antigen for 5 days and measured the number of divided cells. The results showed that 181 lymphocyte of P. vivax patient expanded upon stimulation with PvSE compared with 182 un-stimulation (PvSE1 = 3.89±2.87%, PvSE10 = 7.49±4.17%, PvSE100 = 183 7.18±5.23%, figure 1). Moreover, the proliferative response of lymphocyte was also 184 showed in P. falciparum stimulation, approximately 5-8% of lymphocytes were 185 stimulated by P. falciparum antigens (PfSE1 = 5.67±3.5%, PfSE10 = 8.19±3.11%, 186 PfSE100 = $7.23\pm2.87\%$, figure 1). These results suggest a boosting of lymphocyte 187 expansion in repeated infection with plasmodium. 188
- Phenotyping of T-cells response to P. vivax and P. falciparum. To identify which subset of T cells response to parasites, the percentage of responded T cells (CD4⁺, CD8⁺ and $\gamma\delta^+$ T cells) were phenotyped in acute P. falciparum and P. vivax patients and after stimulation with 100 μ g of schizont protein extract. PBMCs in acute P.

- vivax patients were reduced compared to naive controls (P. vivax = 23.34×10^6 cell/ml,
- naive controls = 25.56×10⁶ cell/ml, n=8). The percentage of CD4⁺, CD8⁺ T cells and
- 195 $\gamma \delta^+$ T cells in acutely infected *P. vivax* patients showed small increase (CD4⁺ T cells =
- 196 47.2±3.79%, CD8⁺ T cells = 26.77±3.48% and $\gamma\delta$ ⁺ T cells = 2.13 ±3.45%, n=8)
- 197 compared with naive controls (CD4⁺ T cells = 44.04±2.32%, CD8⁺ T cells =
- 198 26.4 \pm 2.02% and $\gamma\delta^+$ T cells = 1.19 \pm 1.21 %, n=8).
- 199 PBMCs in acutely infected P. falciparum patients was significantly reduced
- compared with naive controls (acute patients = 14.1×10^6 cell/ml, naive = 25.56×10^6
- cell/ml, p=0.009, n=8). Phenotyping of T cell population showed significant
- reduction of $CD4^+$ T cells ($CD4^+$ T cells = 34.93±4.9%, p=0.008, figure 2) but small
- increase of CD8⁺ T cells and $\gamma\delta^+$ T cells (CD8⁺ T cells = 35.84±9.9%, $\gamma\delta^+$ T cells =
- 3.01 ± 1.45 %), compared with naive controls (CD4⁺ T cells = 44.04±2.32%, CD8⁺ T
- 205 cells = $26.4\pm2.02\%$, $\gamma\delta^{+}$ T cells = 1.19 ± 1.21 %, figure 2).
- To demonstrate the first exposure to human parasites, naive PBMCs were
- stimulated with crude schizont protein extract in vitro cultures for 5 days and
- assessed the number of responded cells. The results showed small expansion of CD4⁺
- T cells (stimulation = $47.69\pm4.89\%$, un-stimulation = $44.04\pm2.32\%$, figure 2A) CD8⁺
- T cells (stimulation = 28.76±3.4%, un-stimulation = 26.4±2.02%, figure 2B) and $\gamma\delta^{+}$
- T cells (stimulation = $3.6\pm2.7\%$, un-stimulation = $1.19\pm1.21\%$, figure 2C) in *P. vivax*
- cultures. The strong expansion of $CD4^+$ T cells was significantly shown in P.
- 213 falciparum cultures compared with un-stimulation (stimulation = 63.44±2.9%, un-
- stimulation = 44.04±3.79%, p=0.005). However, only small number of naive CD8⁺ T
- cells (stimulation = 29.01±3.91%, un-stimulation = 26.4±2.2%, figure 2B) and naive

- 216 $\gamma \delta^+ T$ cells responded to P. falciparum antigens (stimulation= 2.09±2.08, un-
- stimulation = 1.91 ± 1.21 , figure 2C).
- The natural response of T cells to malaria antigens were demonstrated by
- stimulation of PBMCs from malaria patients with crude schizont antigens in vitro.
- The results showed highly response of CD4⁺ T cells, (stimulation = 57.40±8.05%,
- un-stimulation = 47.69±4.89%, p=0.003, figure 2A) small increase of CD8⁺ T cells
- (stimulation= 32.54±4.49%, un-stimulation = 28.76±3.4%, figure 2B) and $\gamma\delta^{+}$ T cells
- 223 upon stimulation with P. vivax antigens comparing to un-stimulation (stimulation =
- 4.21±3.45%, un-stimulation = 3.06±2.7%, figure 2C). Stimulation of PBMCs from
- 225 P. falciparum patients with crude schizont antigens showed small increase of CD4⁺T
- cells (stimulation = 42.01±6.1%, un-stimulation = 34.93±4.9%, figure 2A) CD8⁺ T
- cells (stimulation = 41.50±4.22%, un-stimulation = 35.84±9.9%, figure 2B) and $\gamma\delta^+$
- T cells (stimulation = $7.18\pm1.95\%$, un-stimulation = $2.09\pm2.08\%$, figure 2C).
- The response of B-cells during P. falciparum and P. vivax infection. Our
- 230 previous study showed that anti-P. vivax antibody levels were very low in acutely
- infected P. vivax patients [13]. To demonstrate the function of B-cells during P. vivax
- infection, B cell number in acute P. vivax patients and the response of B-cells to P.
- 233 vivax antigens after stimulation in vitro were demonstrated compared with naive
- 234 controls. The population of B cells was slightly decreased in acutely infected P. vivax
- and P. falciparum patients compared to naive controls (P. vivax = 16.15±9.65%, P.
- falciparum = $18.89\pm6.28\%$, naive = $20.13\pm1.41\%$, figure 3). The stimulation of naive
- B-cells with P. vivax antigens in cultures showed small increase of B-cells compared
- with un-stimulation (stimulation = 23.18±6.38, un-stimulation = 20.13±1.41%, figure

- 239 241 240 3). Contrastly, naive B-cells strongly respond to P. falciparum antigens, indicating the $32.24\pm6.28\%$, un-stimulation = $20.13\pm1.41\%$, p=0.003, figure 3). mitogenic effect of P. falciparum parasites on B-cell function (stimulation
- antigens that stimulation of PBMCs with P. falciparum induced a significant expansion of Binfected $20.99\pm3.01\%$, un-stimulation = $16.15\pm4.65\%$, figure 3). whereas To (stimulation = $26.2\pm7.61\%$, un-stimulation = $18.89\pm6.28\%$, p=0.007, figure 3) demonstrate P. 'n P. vitro and assessed the total number of CD19[†]B-cells. The result showed vivax and P. falciparum patients vivax accelerated small population of B-cell expansion (stimulation = this phenomenon during malaria infection, were stimulated with crude schizont B-cells of

245

246

248

247

243

242

254 253 252 251 250 249 257 256 255 260 259 258 One patients indicate some mechanisms to withdraw lymphocyte during malaria infection. significant reduction of PBMCs in acutely infected P. falciparum and P. vivax falciparum infection and after stimulation of PBMCs with crude schizont antigen in CD8⁺ vitro. The result showed that the level of T cell apoptosis both CD4⁺T cells and CD8⁺ lymphocyte apoptosis. To demonstrate this phenomenon in vitro, the level of Anexin T cells was higher in P. falciparum and P. vivax patients than naive controls (CD4⁺ T V⁺CD4⁺ $1.6\pm1.43\%$). The strategy P. falciparum effect of P. \vdash and Anexin V⁺CD8⁺ cells, of evasive immunity P. falciparum falciparum and P. vivax parasites $4.95\pm3.81\%$, P. vivax =11 - $6.64\pm3.21\%$ cells were detected in acute by malaria parasite P. 5.67±4.33%, naive vivax on T-cell apoptosis. 11 was the induction 4.20±2.11%, P. $= 1.11\pm0.84\%;$ vivax and P. Naive

264 270 269 267 266 265 268 274 273 272 271 275 with determined on day 5. The result showed that apoptotic T cells both CD4⁺T and CD8⁺ elevation of of PBMCs cells, stimulation = 2.09±1.98%, un-stimulation = 1.6±1.43%, figure 4B). Stimulation cells, stimulation = 2.23±2.14%, un-stimulation = 1.11±0.84%, figure 4A; CD8⁺ T cells apoptosis (stimulation = 9.23±5.49%, un-stimulation = 2.24±1.81%, p=0.008 (stimulation = $4.67\pm4.64\%$, unstimulation = $2.43\pm1.7\%$, figure 4B). Similarly, CD4⁺ $2.58\pm1.11\%$ 2.19±1.43%, figure 4B) was also highly obtained in P. vivax patient cultures figure 4A) and CD8⁺ T cells apoptosis (stimulation = To re-produce apoptosis phenomenon in vitro, PBMCs from naive were stimulated cells were P. falciparum and P. vivax antigens and the number of apoptosis T cells were from acute patients with CD4⁺ higher in P. falciparum (CD4⁺ P $1.6\pm1.43\%$, figure 4B) and *P. vivax* stimulation than in control (CD4⁺ T $1.11\pm0.84\%$, figure 4A; CD8⁺ T cells, stimulation = $2.26\pm2.27\%$, un-= 0.009, figure 4A) and small increase of CD8⁺ T cells apoptosis (stimulation = P. falciparum antigens showed significantly T cells, stimulation = $4.57\pm2.13\%$, un- $11.57\pm4.64\%$, un-stimulation = 3.83±2.33%, un-stimulation T cells apoptosis

263

262

261

induced by P. falciparum and P. vivax stimulated the population of B-cell expansion efficiency to produced malaria specific antibodies, the anti-P. falciparum antibodies during infection (figure 3). To evaluate the function of responded B-cell for their produced with naive controls (0.52±0.15, figure 5C). Anti-P. vivax antibody levels in acutely deviation and antiantibody conventional ELISA method. B-cell of Р. of 2.1±0.27, approximately 4-fold increase specific anti-P. vivax antibodies in both human malaria were determined in individual response falciparum antibodies Ξ. P. falciparum and P. vivax with a all acute P. falciparum patients in antibody levels compared mean OD, and standard infection. Immunity

279

280

281

284

283

282

278

277

higher than mean±2SD of naive controls, 5 in 8 of patients showed two fold increase antibody levels from naive controls. The high responder (H) showed antibody levels infected P. vivax patients was classified into two groups based on the difference responder (L), anti-P.vivax antibody levels of antibody titer (1.2±0.32, figure 5A). Three of 8 patients were classified into low \leq mean \pm SD (0.22 \pm 0.11, figure 5A)

287

288

292

294

293

291

290

289

286

285

of naive controls were stimulated with P. falciparum and P. vivax antigens and were secretion in cultures compared with medium control. The stimulation of PBMCs from and P. falciparum antigen (0.97±0.16, figure 5D) did not significant induce antibody assessed antibody levels. The result showed that crude P. vivax (0.28 \pm 0.13, figure 5B) antibodies (1.4±0.22, figure 5A) over what was found in medium control (0.57±0.12) acute vivax, the stimulation of PBMCs with P. vivax antigens showed that high responder figure 5A) and in naive control cultures (0.97 \pm 0.16, figure 5B). In comparison with P. stimulation, keeping anti- P. vivax antibody in low levels (0.19±0.13, figure 5B) vivax $(1.4\pm0.29, figure)$ had anti-P. The function of B-cell during malaria infection was demonstrated in vitro. PBMCs P. infection. falciparum vivax antibodies higher in corresponding to antibody level in each patient However, the low responder 5B). This result indicates a boosting of antibody levels during P. patients with crude antigens did not respond to induced anti-P. antigens falciparum

298

301

302

300

299

297

296

295

DISCUSSIONS

303

304

307 306 305 natural response of lymphocyte during stimulation of patient lymphocytes with crude antigens from P. falciparum or P. infected red blood cells for reflection to secondary response in vitro of primed cell in The short-lived of naturally-acquired immunity in malaria lead one P. falciparum and P. vivax infection by to assess

crude schizont antigens. CD4⁺ T cell were significant reduced in acute P. falciparum $CD8^{\dagger}$, malaria; vivo. We showed the different characterization of T cell response between two human antigens. acutely suggests falciparum expansion of B-cells upon P. falciparum stimulation resulted in induces high antilevels expansion of B-cells upon crude antigen stimulation showed anti-P. assessment of B-cells and antibody response in malaria patients showed that B-cells patients, lymphocytes. lymphocyte as we showed the elevation of CD4⁺ T-cell apoptosis in acutely infected lymphocyte was obtained in P. which support that high percentage of divided cells in cultures with crude PBMCs from naive controls with crude P. falciparum and P. vivax antigens showed P. falciparum and P. vivax patients and after stimulation with crude schizont antigens. There has been reported the mitogenic property of Plasmodium. P. falciparum antigen, approximately 12 % of B-cell expanded in stimulation. This γδ⁺ Τ significantly infected P. vivax patients with crude antigen accelerated the expansion of major function during P. falciparum P. falciparum indicating Quite different from the finding in P. the antibody cells) of acute P. falciparum patients CD4^{+} presence Ħ. line the impairment in the role of T T cells were the predominant population response higher levels. with and P. ofthan mitogenic previous Some vivax cultures. B-cells were the population responded vivax infection. in medium control. strategies studies component [5]. Contrastly, and vivax, we found that T cells (CD4+ occur beyond The P. did not significant response Ħ stimulation cells vivax infection. infected Similarly, during *P* small falciparum antigens the erythrocyte of The stimulation the infection. vivax antibody **PBMCs** expansion expansion to P. significant The small The of P. 7

326

328

330

329

327

325

324

323

322

321

320

319

318

317

316

309

310

312

313

314

311

the phenomenon; high level of immunoglobulin in Plasmodium infection [2, 6, 10]. falciparum whereas it lowly contain in P. vivax parasite. Therefore, our study support

331

332

335

336

334

333

stimulation of P. vivax-exposed PBMCs with crude antigens. Lymphocyte of P. vivax This patients expanded after stimulation of patient PBMCs with crude P. vivax antigens suppress and γδ⁺T cells after stimulation of PBMCs with malaria antigen can be explained as convalescent P. cells pool in malaria immune person were maintained and activated during acute and association with the previous study, we have shown that memory CD4⁺ Interestingly, CD4⁺ T cells were the predominantly responded to P. vivax antigens. that the repeated infection does not boost Treg response. Therefore, the activation of living in P. vivax area was lower than naive controls [12]. This phenomenon indicated IL-10 model for the expansion of memory or effector cells in re-infection or relapsing with limiting the generation of memory T cells. Taken together, our study clearly support Treg during acute infection is one strategy of parasites for immune suppression and infection [12, P. vivax parasites. In the other hands, immunity induced by P. vivax lead to Treg and induce memory T cells or Treg should be identified for the future development of that the repeated exposure to P. vivax increased population of memory T cells as well The natural response of lymphocytes during P. vivax infection was regulatory result was secreting Thi T cells. The particular P. 33]. Interestingly, or Th2 vivax infection patients [13]. Therefore, T cells activation during acute infection The activation of Treg associated function with the elevation of CD4⁺, CD8⁺ the number of Treg in individual immune control and support parasites vivax schizont antigen or specific epitopes the elevation of CD4⁺, CD8⁺ growth in human malaria and $\gamma \delta^+ T$ produced by and CD8⁺

346

347

350

351

353

352

349

348

345

344

343

342

341

340

339

338

study. response but also the function of responded T cells for parasite killing as well as the successful vaccine. Moreover, it is not only the phenotype and the level of longevity of responded T cell after stimulation with P. vivax antigens need to further --]

355

354

356

357

362 361 360 359 358 376 375 374 373 372 371 370 369 368 367 366 365 364 363 $CD8^{\dagger}$ ofproliferative response during infection [4, 29]. Here, we identified lymphocyte levels candidates; circumsporozoite surface protein (CSP) and merozoite surface protein-1 repeated infection. This phenomenon can be explained the limitation of memory falciparum exposed PBMCs with antigen showed no significant expansion of CD4+ in acutely infected P. falciparum patients. The result showed significantly reduction study [22] stimulation of malaria component, phosphoantigen IPP which is support by previous response suppression of T cell response during P. falciparum infection and explain the taking antigens induce T cell apoptosis during infection [1, 30]. All strategies indicate the malaria antigen in or B-cell epitopes. Therefore, the induction or maintenance of T cell response (MSP-1) [16, 28]. One explanation could be the polymorphic of immunodominant Tinfection cell pool in residence long time Immunity CD4^{+} and $\gamma \delta^+ T$ cells, indicating the impairment of boosting activated T cells frequently have rather weak cellular and humoral responses ofН to develop P. falciparum immunity in individual in endemic areas. The . کې cells induced Η general or to specific malaria antigen is difficult. Further, malaria in patients cells bу P. in both naive falciparum areas. People naturally exposed to malaria Р. compared with naive controls. Stimulation of P. falciparum and patients may reflect the non-specific significantly suppressed lymphocyte to vaccine to

384 387 386 385 389 388 390 392 391 393 394 395 398 397 396 400 399 malaria endemic area [19]. Here, we assessed anti-P. falciparum antibodies in acute schizont antigens. Anti-P. falciparum antibody levels in patients were higher than in stimulation, indicating the presence of memory B cells and they were boosted in naive controls. Further, crude P. falciparum antigens induced antibody levels upon repeated infection. Therefore, humoral immunity may play a greater protective function than cell-mediated immunity in P. falciparum infection. The finding of Bdevelopment in the future. In comparison with P. vivax, antibody response in acute cell epitopes in crude levels patients was classified in two groups (high and low responders) based on the antibody response corresponding to antibody level in each patient after P. vivax stimulation stimulation which is associated with our previous finding, anti-P. whereas levels were very low in the acutely P. vivax infected patients [13]. Interestingly, no Antibody response to blood stage antigen is short-lived in children and adult in correlation between the response of CD19⁺B-cells to crude antigens and antibody expansion of B-cell after P. vivax stimulation developed high antibody levels. This cells which rarely circulate in peripheral blood. The re-exposure with P. vivax induced result indicates that the present of antibody may be provided by long-lived plasma plasma cell to produce antibodies. Very low level of anti-P. vivax antibodies may be could be the activation of B-cell apoptosis as showed in animal model, the majority of resulted from the impairment in the generation of memory B-cells. One possibility difference and in cultures after stimulation of PBMCs from acute patient with crude Ħ anti-P. Ъ. vivax simulation has been shown. Patients did not have vivax antibody in low responder still keep in low levels after from P. falciparum antigens will provide a strategy for vaccine medium control. High responder increased in antibody vivax antibody significant

377

378

381

383

382

380

humoral immunity or induce memory responses could be more explanation during B-cell responses [17]. However, the specific epitopes of P. vivax antigens suppresses Treg can directly suppress B-cells or whether they must suppress Th cells to suppress of PDCs abrogated the secretion of specific polyclonal IgG. Further, the significant impair antibody response as showed evidence in influenza virus [14, 24]. The deletion should be explained. The significant reduction of PDCs in acute P. vivax patients may Moreover, the effect of other immune cells on B-cell function in individual patients apoptosis cells infection P. vivax infection may also result in suppress B-cell response. It has been showed that in the percentage of FOXP3⁺ in the spleen of infected P. chabaudi chabaudi Treg and IL-10 secretion type I T reg in acute AS are B-cells.

406

405

404

403

401

402

410

409

411

408

407

relationship between P. falciparum exposure and the level of apoptotic cells showed a chronic state of T cell activation as described in mitogens or superantigens [20]. The permanent exposure to the immune system of the P. falciparum antigens might induce in stimulation cultures whereas apoptosis cell was low in medium and PHA control. reduction of peripheral CD4⁺ T cells in acute patients and low CD4⁺ T cell expansion increased the percentage of CD4⁺ addition of assay to demonstrate the induction of T cell apoptosis by parasites. We showed that apoptosis after antigens are eliminated. Our study carried out the stimulation course induction or amplification of apoptosis phenomenon. On the other hand, during the individuals living in endemic area which represent of chronic infection. High and Apoptosis was increased in patient suffering from acute malaria and asymptomatic of immune response, T cells clones must be down regulated by inducing P. falciparum to naive and P. falciparum patient's culture consistently T cells which was associated with the significant in vitro

420

419

418

417

416

415

414

413

412

421

424

423

436 as was shown in previous studies; the addition of P. falciparum schizont-rich extract Therefore, the elevation of apoptotic cells should be the affect from parasite induction induced lymphocyte apoptosis in vitro [30]. The frequency of apoptotic cells in the falciparum parasites. Unlike acutely infected P. vivax patients, $\mathrm{CD4}^+$ spleen cells infected with P. chabaudi chabaudi increased > 50 % during parasite growth was seen to be under control [27]. Taken together, these data suggest that the increased in naive and P. vivax patient cultures in association with the expansion of induction of T cell apoptosis in P. CD4[†]T cells clones as well as boosting of humoral immunity. Therefore, the induction response; turning off immune system. The induction of T cell apoptosis when specific cells clones were activated and parasite were eliminated of cell apoptosis vivax infection could be a regulating mechanism of immune is one mechanism of immunosuppression by P. cells apoptosis

427

428

429

430

431

432

433

434

435

426

425

ACKNOWLEDGMENTS

437

438 440 439 442 441 445 444 443 cells. We also thank Dr. Kovit Pattanapanyasat, Faculty of Medical Siriraj Hospital, staff of the Mahidol University for analysis of flow cytometry data. We also would like to thank Finally, we are grateful for participant of all patients in malaria clinic, Tak province Department of Entomology, AFRIM; Bangkok, Thailand for collection of the sample. (BRG498009). Thailand. We thank Dr. L. Morretta for providing monoclonal antibody to gamma and delta T This Mae Sot and Mae work was partly Kasa Malaria Clinic, supported bу the Tak province, and Staff of Thailand Research

ストストストンニー・シ	

468	467	466	465	464	463	462	461	460	459	458	457	456	455	454	453	452	451	450	449	448	447
		7.			6.				5.						ω			2.			-
in naturally infected humans. Am J Trop Med Hyg 46:320-6.	1992. Antibody response to the circumsporozoite protein of Plasmodium vivax	Franke, E. D., C. M. Lucas, G. Chauca, R. A. Wirtz, and S. Hinostroza.	activator in Plasmodium falciparum. Infect Immun 72:5412-8.	Wahlgren, and M. T. Bejarano. 2004. Identification of a polyclonal B-cell	Donati, D., L. P. Zhang, A. Chene, Q. Chen, K. Flick, M. Nystrom, M.	gamma. Immunology 88:412-20.	malaria-infected erythrocytes by proliferation and production of interferon-	human alpha beta T cells respond to membrane-associated components of	Dick, S., M. Waterfall, J. Currie, A. Maddy, and E. Riley. 1996. Naive	Afr Med J 66:787-91.	response in Plasmodium falciparum malaria patientspreliminary results. East	Chemtai, A. K., and G. B. Okelo. 1989. Suppression of T-cell proliferative	transmission in Brazilian endemic areas. Am J Trop Med Hyg 66:299-303.	cellular response in vitro among subjects with long-term exposure to malaria	Braga, E. M., L. H. Carvalho, C. J. Fontes, and A. U. Krettli. 2002. Low	falciparum continuous cultures. Infect Immun 33:758-62.	1981. Parasite-derived mitogenic activity for human T cells in Plasmodium	Ballet, J. J., P. Druilhe, M. A. Querleux, C. Schmitt, and M. Agrapart.	exposed to Plasmodium falciparum infection. Parasite Immunol 22:307-18.	Apoptosis modulation in mononuclear cells recovered from individuals	Balde, A. T., G. Aribot, A. Tall, A. Spiegel, and C. Roussilhon. 2000.

- 469 470 ∞ humans to the circumsporozoite protein of Plasmodium vivax. Infect Immun Franke, E. D., C. M. Lucas, and E. San Roman. 1991. Antibody response of
- **471 59:**2836-8.
- 472 9. Good, M. F., and Y. Zevering. 1994. Malaria-specific memory Н cells:
- 473 putative roles of different types of memory responses in immunity and disease.
- 474 Res Immunol **145:**455-60.
- 475 10. Greenwood, B. M., and R. M. Vick. 1975. Evidence for a malaria mitogen in
- 476 human malaria. Nature **257:**592-4.
- 477 <u>-</u> Ho, M., Ħ. K. Webster, S. Looareesuwan, ×. Supanaranond, Ŗ H
- 478 Phillips, .P Chanthavanich, and D. A. Warrell. 1986. Antigen-specific
- 479 immunosuppression in human malaria due to Plasmodium falciparum. J Infect
- 480 Dis **153:**763-71.
- 481 12. Jangpatarapongsa, K., P. Chootong, J. Sattabongkot, <u>.</u> Chotivanich,
- 482 Sirichaisinthop, S. Tungpradubkul, H. Hisaeda, M. Troye-Blomberg, L.
- 483 Cui, and R. Udomsangpetc. Plasmodium vivax parasites alter the balance of
- 484 myeloid and plasmacytoid dendritic cells and induction of regulatory T cells.
- 485 Eur J Immunol **38**:2697-2705.
- 486 13. Jangpatarapongsa, K., J. Sirichaisinthop, J. Sattabongkot, L. . Cui, S. Z
- 487 Montgomery, Š Looareesuwan, X. Troye-Blomberg, and Ŗ.
- 488 Udomsangpetch. 2006. Memory T cells protect against Plasmodium vivax
- infection. Microbes Infect 8:680-6.
- 490 14. Jego, G., A. K. Palucka, J. P. Blanck, C. Chalouni, V. Pascual, and J.
- 491 Banchereau. 2003. Plasmacytoid dendritic cells induce plasma cell

514	513	512	511	510	509	508	507	506	505	504	503	502	501	500	499	498	497	496	495	494	493	492
	20.		19.						18.			17.				16.				15.		
Profound deletion of mature T cells in vivo by chronic exposure to exogenous	McCormack, J. E., J. E. Callahan, J. Kappler, and P. C. Marrack. 1993.	Immunol 28:p.31-34.	M.Wykes, M. F. G. 2006. Memory B cell response and malaria. Parasite	uncomplicated malaria or healthy controls. Infect Immun 72:5630-7.	children with severe Plasmodium falciparum malaria and matched	IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian	Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta),	Kone, R. Harley, C. V. Plowe, O. K. Doumbo, and M. B. Sztein. 2004.	Lyke, K. E., R. Burges, Y. Cissoko, L. Sangare, M. Dao, I. Diarra, A.	Immunol 175:4180-3.	edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J	Lim, H. W., P. Hillsamer, A. H. Banham, and C. H. Kim. 2005. Cutting	with T cell priming. Eur J Immunol 36:1168-78.	merozoite surface protein-1 epitopes turn off memory T cells and interfere	A. V. Hill, and M. Plebanski. 2006. Dimorphic Plasmodium falciparum	Lee, E. A., K. L. Flanagan, G. Minigo, W. H. Reece, R. Bailey, M. Pinder,	anti-P. falciparum antibodies in vitro. Clin Exp Immunol 68:288-97.	falciparum malaria: IV. T cell dependent production of immunoglobulin and	Perlmann. 1987. Regulation of the immune response in Plasmodium	Kabilan, L., M. Troye-Blomberg, M. E. Patarroyo, A. Bjorkman, and P.	34.	differentiation through type I interferon and interleukin 6. Immunity 19:225-

superantigen. J Immunol 150:3785-92.

Sanchez-Torres, L., A. Rodriguez-Ropon, M. Aguilar-Medina, and L.	27.	537
adults. Infect Immun 57:3181-8.		536
lymphoproliferative responses to mitogens and antigens in malaria-immune		535
1989. Plasmodium falciparum schizont sonic extracts suppress		534
Riley, E. M., O. Jobe, M. Blackman, H. C. Whittle, and B. M. Greenwood.	26.	533
Exp Immunol 73: 17-22.		532
Gambian children during and after an acute attack of falciparum malaria. Clin		531
1988. Cellular immune responses to Plasmodium falciparum antigens in		530
Riley, E. M., G. Andersson, L. N. Otoo, S. Jepsen, and B. M. Greenwood.	25.	529
T-cell help. Blood 103:3058-64.		528
plasma cell differentiation and immunoglobulin production in the absence of		527
Plasmacytoid dendritic cells, antigen, and CpG-C license human B cells for		526
Hornung, B. Jahrsdorfer, T. Giese, S. Endres, and G. Hartmann. 2004.		525
Poeck, H., M. Wagner, J. Battiany, S. Rothenfusser, D. Wellisch, V.	24.	524
Dis 176:233-41.		523
cytokines and a schizont-associated Plasmodium falciparum antigen. J Infect		522
Heppner. 1997. Activation of gammadelta T cells in malaria: interaction of		521
Pichyangkul, S., P. Saengkrai, K. Yongvanitchit, A. Stewart, and D. G.	23.	520
pathogenic basis of malaria. Nature 415:673-9.		519
Miller, L. H., D. I. Baruch, K. Marsh, and O. K. Doumbo. 2002. The	22.	518
burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64:97-106.		517
Mendis, K., B. J. Sina, P. Marchesini, and R. Carter. 2001. The neglected	21.	516

Favila-Castillo. 2001. Mouse splenic CD4+ and CD8+ T cells undergo

- 540 539 extensive apoptosis during a Plasmodium chabaudi chabaudi AS infection. Parasite Immunol 23:617-26
- 542 541 543 28. infection with Plasmodium vivax. Am J Trop Med Hyg 71:29-39 Suphavilai, circumsporozoite **C**., Š protein-specific Looareesuwan, and M. immune responses F. Good. 2004. following Analysis recent
- 547 546 545 544 29. proliferation and subset composition. Scand J Immunol 24:73-81. and N. Odum. 1986. Suppression of parasite-specific response in Plasmodium Theander, T. G., I. C. Bygbjerg, B. J. Andersen, S. Jepsen, A. Kharazmi, falciparum malaria. \triangleright longitudinal study of blood mononuclear
- 550 549 548 30. Toure-Balde, in human mononuclear cells. Infect Immun 64:744-50 Rogier, and C. Roussilhon. 1996. Plasmodium falciparum induces apoptosis A., J. L. Sarthou, G. Aribot, P. Michel, J. F. Trape, $\mathbf{\hat{C}}$
- 552 551 553 31. Troye-Blomberg, M., K. Berzins, and P. Perlmann. 1994. T-cell control of Immunol 14:131-55 immunity to the asexual blood stages of the malaria parasite. Crit Rev
- 557 556 555 554 558 32. Troye-Blomberg, M., P. Romero, M. E. Patarroyo, A. Bjorkman, and P. donors. Clin Exp Immunol 58:380-7 composition falciparum malaria. III. Proliferative response to antigen in Perlmann. 1984. of T cells from patients with acute infection or from immune Regulation of the immune response vitro and subset Ħ. Plasmodium
- 562 561 560 559 33. Walther, M., J. E. Tongren, L. Andrews, D. Korbel, E. King, H. Fletcher, Upregulation F. Andersen, P. Bejon, F. Thompson, S. J. Dunachie, F. H of TGF-beta, FOXP3, Sinden, Š Ċ Gilbert, E. M. Riley, and and CD4⁺CD25⁺ regulatory A. V. Hill. 2005. Edele, J. B. de cells

569	568	567	566	565	564	563
		35.		34.		
	Science 193: 673-675.	W. Trager, J.B. Jenson 1976. Human malaria parasites in continuous culture.	malaria. Clin Exp Immunol 23:471-6.	Wyler, D. J. 1976. Peripheral lymphocyte subpopulations in human falciparum	Immunity 23:287-96.	correlates with more rapid parasite growth in human malaria infection.

570 Figure legend

574 573 572 571 576 575 580 579 578 577 582 581 PBMCs from acutely infected P. vivax and P. falciparum patients were stimulated stimulation in vitro cultures. The percent of divided cells in PvSE or PfSE culture was FIG. 1. Comparison of lymphocyte response in P. falciparum and P. vivax infection. showed 1 μg , 10 μg and 100 μg of PvSE or PfSE, respectively. M= media controls bottom represent the amount of crude P. falciparum or P. vivax antigen: 1, 10, 100 falciparum patients, o = P. vivax patients, divided cell in uRBC stimulation. Each point represents the percent of divided cell in obtained from the total of divided cells in PvSE or PfSE cultures subtracted with with PvSE and PfSE at 1, 10 and 100 µg, respectively. Media and PHA are control of independent test. Asterisk indicate individual. Horizontal bars represent mean statistical significant at P < \blacktriangle = naive controls. Numbers along the 0.05 with the value for each non-parametric group. P

583

587 586 585 584 591 590 589 588 592 FIG. cells stimulation control. The percentage of CD4⁺T cells (a), CD8⁺T cells (b) and $\gamma\delta^+$ T stimulated with 100 µg PvSE and 100 µg PfSE, respectively. Media and PHA act as un-stimulation; \blacksquare = stimulation. statistical experiments subtracted (c) was obtained from the percent of T cell stimulated by malaria protein 2. Phenotype of T cells upon P. falciparum or P. vivax stimulation. PBMCs naive significant with uRBC control from naive acutely infected P. vivax and P. at P stimulation. controls \land 0.05 with the non-parametric two independent test. \square or malaria infected patients. Asterisk The data is shown as falciparum patients were mean values of eight

596

594

naive controls and acutely P. vivax or P. falciparum infected patients were stimulated FIG. cells with 100 μg PvSE and PfSE, respectively. Media and PHA act as stimulation control. patients. □ = un-stimulation, ■ = stimulation. Asterisk indicate statistical significant at shown as mean values of eight experiments from naive control or malaria infected The percent of B cells upon antigen stimulation was obtained from the percent of B < 0.05 with the non-parametric two independent test. stimulated by malaria antigen subtracted with uRBC stimulation. The data is 3. The response B-cells in P. falciparum and P.vivax infections. PBMCs from

599

598

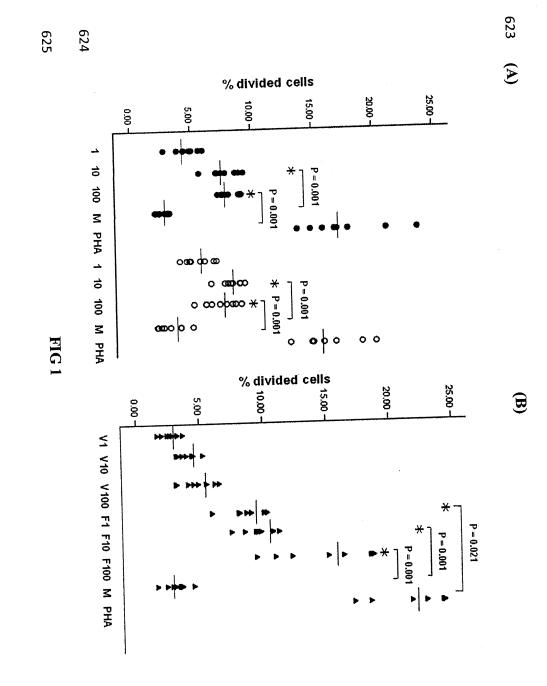
597

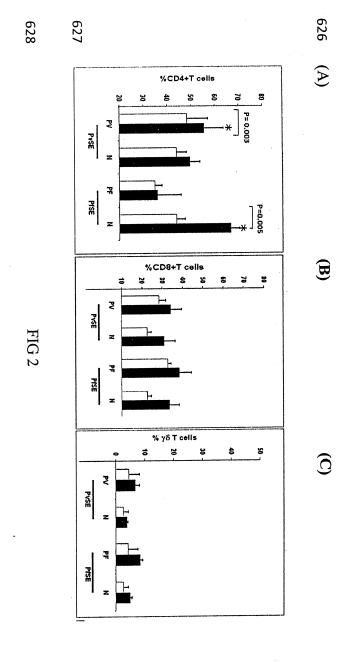
602

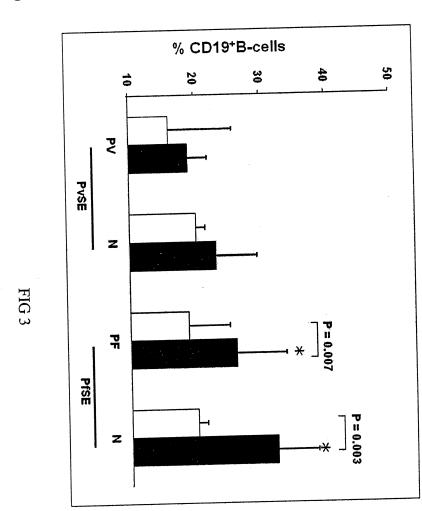
601

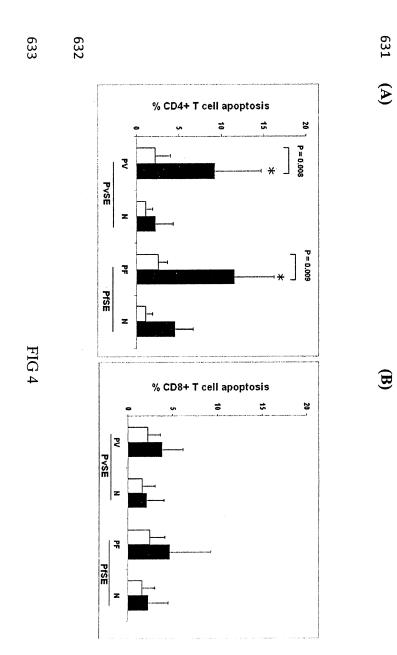
600

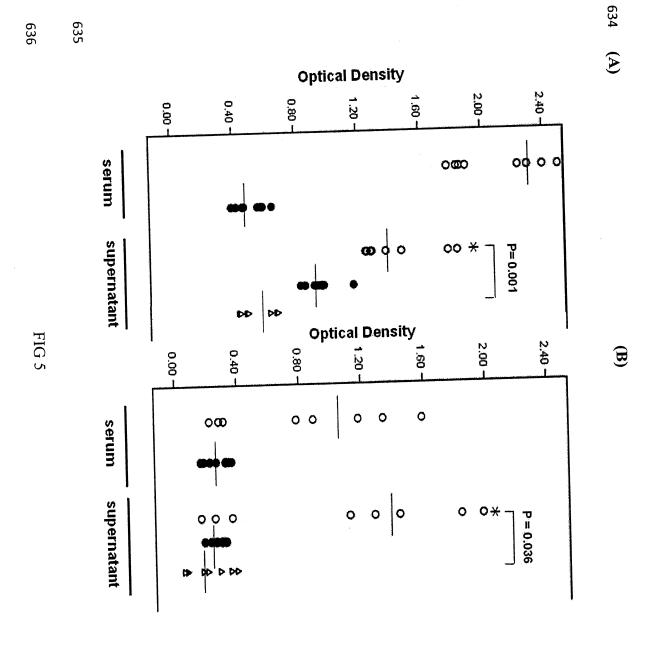
605 604 603 609 809 607 909 611 610 control. The percentage of apoptotic cells were obtained from the median percentage PvSE and 100 µg of PfSE, respectively. Media and PHA were used as a stimulation shown as mean values of eight experiments from naïve controls or acutely infected of apoptotic T cells stimulated by PvSE or PfSE subtracted with uRBC. The data were FIG.4. Influence of malaria antigen on T cell apoptosis. The percentage of apoptotic parametric two independent test. patients. \Box = un-stimulation, \blacksquare = stimulation. (a) CD4⁺ apoptosis. from P. vivax and P. falciparum infected patients upon culture with 100 µg of Asterisk indicate statistical significant at P T cell apoptosis; (b) CD8⁺ T Λ 0.05with the non-


612


613


614


antibodies in culture supernatant of PBMCs exposed to PvSE or PfSE antigens and FIG.5. Malaria antigen induced immunoglobulin in vitro. Scatter diagram


617 615 620 619 618 616622 621 patients or supernatant. The optical density value was obtained from the optical patient sera. Dots represent the mean optical density value in triplicate wells for each falciparum individual. Horizontal bars represent mean OD value for each group. (A) Acute P. density value in uRBC. Each point represents the optical density (OD) value in density value in each patients or PvSE or PfSE stimulation substracted with optical statistical significant at P < 0.05 with the non-parametric two independent test. falciparum patients $\bullet = \Delta aive$ controls; and patients, (B) Acute P. vivax patients. Symbols; = medium controls. Asterisk indicate 0

Formatted: Intl Immunol

Immune response to Plasmodium vivax infection: A study in the Central of China

Udomsangpetch^{c**} Meiyu Peng^d, Jetsumon Sattabongkot^e, Qi Gao^f, Liwang Cui^g, Baiqing Li^{b,d**} Xia^{a,b}*, Kulachart Jangpatarapongsa^c*, Qiang Fang^{a,b}, Kaiming Hu^a, Yuanying Yuan^d, , Rachanee

Department of Pathobiology, Faculty of Science

Mahidol University, Rama VI Road

Bangkok 10400, Thailand

Tel +662 201 5576, Fax +662 354 7158

e-mail: scrud@mahidol.ac.th

** Correspondence: Professor Baiqing Li, MD, PhD

Department of Immunology, Bengbu Medical College,

Bengbu, Anhui 233030, China

Tel/Fax + 86(0)5523171086

e-mail: bb_bqli@yahoo.com

^a Department of Parasitology, Bengbu Medical College, Anhui 233030, China

^bAnhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui 233030 China

^c Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

^dDepartment of Immunology, Bengbu Medical School, Anhui 233030, China

Institute of Medical Sciences, Bangkok 10400, Thailand Department of Entomology, United States Army Military Component, Armed Forces Research

f Jiangsu Institute of Parasitic Disease, Wuxi 210064, China

^gDepartment of Entomology, The Pennsylvania State University, PA 16802, USA

^{*} These authors contributed equally to this work.

^{**} Correspondence: Professor Rachanee Udomsangpetch, PhD

Summary

infection cohort in Central of China. Lymphocytes were collected from patients infected by P. vivax, NK cells "re-infection". This study aims to characterize memory T cells, γδ T cells, regulatory T cells, B cells, immune controls and naive controls. Four-color flow cytometry were used for determination of cell phenotypes. normal controls. This suggests that memory cells and $\gamma\delta$ T cells play role in protection against circulation during acute infection. The level of $\gamma\delta$ T cells increased twice times comparing with infection. However, there was the activation of regulatory T cells during acute infection, suggests one immune suppression mechanism by P. vivax parasites. However, the suppression mechanisms or the interaction between B, NK and NK T cells during malaria infection has not been elucidated vivax infection. Immunity induced by P. vivax infection may leads to activation of T cells during "relapse" or and NK T cells in patients with acute P. vivax infection living in completely P. vivax We found the level of both memory CD4⁺ and CD8⁺ T cells were elevated in blood Our finding showed that B, NK and NK T cells were decreased during acute

cell-mediated immunity to P. vivax infection that could be important for the future development of a successful vaccine and anti-malarial drug designation. Our results provide a further insight into the interaction between P. vivax parasites and host

Key words: malaria immunity, Plasmodium vivax, T cells, NKT cells B cells, gamma delta T cells, NK cells,

Introduction

investigated host immunity during P.vivax infection. of unique host-parasite relationship exists during the infection. Until now very few studies have benign P. vivax infection causes relapsing fever but is rarely fatal (2). This may be because a pattern maintaining P.vivax cultures as a source for the preparation of parasite materials. Therefore, in the Plasmodium from areas where P.vivax is endemic should be encouraged resistance among the P.vivax parasites remains to be verified. The collection of more information increased progress Malaria is a common tropical disease associated with mortality among children infected with gradually in tropical countries, but whether this is due falciparum, mainly in African countries (1). In contrast with P.falciparum malaria, in P.vivax research has been limited. The current incidence of P.vivax infection has One reason to a slow development of drug for this could be

infection in both of cell-mediated and humoral-mediated immune responses against malaria infection the percentage of CD4, CD8, CD3 and B cells. However, these finding have shown the status of cell in Ethiopia, which has found that malaria parasites both P. falciparum and P. vivax has no affected to infection caused of increasing of TH2 cells (7). This was in contrast with the recent study performing maintained during 2 months follow up (6). Another study has found that the infection by P. of memory T cells among P. vivax infected patients in endemic areas of Thailand and this having mixed species, for example, in Thailand, Ethiopia (3-5). Recent study has shown increasing endemic area of central of China which has a completely P. vivax infection cohort unlike other areas in malaria endemic areas around the world. However, this study was performed in a vivax malariamediated immune response in P. vivax infection among mixed species endemic areas Several studies have been shown the status of natural immune responses against vivax

infection who living in completely P. vivax infection cohort without other Plasmodium. spp infection, and aim of establishing the nature of host responses in relation to the severity of the P.vivax infection. Our study aimed to characterize the acquired cell-mediated immunity following P.vivax

Materials and Methods

2.1 Study population

DNA isolated from the blood samples to verify P. vivax infections. Only P. vivax infected patients thick blood films. Polymerase chain reaction (PCR) with species-specific primers was performed on China. The diagnosis of P. vivax malaria infection was based on the examination of Giemsa-stained County Hospital, Guzhen County Hospital, and The First Hospital of Bengbu in Anhui province, were recruited in the experiments Blood samples were collected from 37 patients with acute P. vivax infections (AC) at Wuhe

infections endemic individual before a blood sample was taken Biomedical Institute of Anhui Medical University. Informed consents were obtained from each the subjects are listed in Table 1. This study was approved by Ethical Approval Committee further 17 healthy adults living in Bengbu city area without previous malaria exposure or antibodies malaria parasites were recruited to serve as "naïve controls" (NC). The clinical characteristics Blood samples were collected from additional 21 peoples residing in area. These subjects serving as "immune controls" (IC) did not have acute at the time of blood collection as determined by both microscopy and PCR assay. A the P. vivax

i Preparation of peripheral blood mononuclear cells (PBMC)

heparinized tubes and PBMC were separated by gradient centrifugation using according lymphocyte isolation (TIAN JI HAO concentration of 10⁶ cells/ml in RPMI-1640 (GIBCO, Carlsbad, USA) supplemented with 10% heat-Venous blood from P. vivax patients, immune controls, and naïve controls were collected in to the manufacturer's recommendation. YAO BIOLOGICAL MANUFACTURE, The PBMC pellet was resuspended Tianjing, Ficoll-Hypaque China)

MATERIALS, Hangzhou, China) and number of PBMC was counted. inactivated fetal calf serum (FCS) (HANGZHOU SIJIQING ORGANISM ENGINEERING

2.3 Parasite cultures and antigen preparations

human AB serum. For P. falciparum infected blood, a buffy-coat separation was used to get rid of were washed with RPMI-1640 by centrifugation at 1190 g for 5 minutes. The parasites were cultured through a sterile column of CF11 cellulose (Whatman®, Maidstone, UK) and the red blood cells for in vitro stimulation. Briefly, P. vivax infected blood was depleted of white blood cells by filtering Sweden) at 1190 g for 10 minutes an incubator containing 5% CO₂, 5% O₂ and 90% N₂ until matured to schizont stage (≥6 nuclei). The supplemented with 10% human serum. Both P. vivax and P. falciparum parasites were maintained in white blood cells and the parasites were cultured at 5% hematocrit in RPMI1640 medium stage iRBC 30 hours at 5% hematocrit in McCoy's 5A medium (GIBCO) supplemented with 25% vivax-infected red blood cells (iRBC) purified from infected blood were used as antigens were enriched by centrifugation using 60% Percoll (GE Healthcare, Uppsala,

protein concentration equal to the malaria antigens was stored at -70°C to be used as a negative concentration was determined by the Bradford assay (Bio-Rad, Hercules, USA). The vials were then control. aliquoted and stored at -70°C until use. Uninfected RBCs were processed similarly as above and the The enriched iRBC pellets were sonicated for 40 seconds at 150 watts and the protein

2.4 In vitro stimulation

supplemented with 25 mM HEPES, 2 mM glutamine, 40 µg/ml gentamicin and 10% heat treated days in humidified incubator at 37°C in 5% CO₂, in the presence of P. vivax antigen or P. falciparum counter FJ-353 (262 Factory, Xian, China) Thymidine at the concetntration of for 16-18 hrs. The proliferation of PBMC was determined by βwere performed in triplicates. After 5 days of activation the cells were harvested and added H³. μg/ml of anti-CD3 [OKT] were used as negative and positive controls, respectively. All samples antigen at a concentration of 1, 10, 50 µg/ml. Medium alone, equivalent concentration of RBC and 2 FCS were cultured at $2x10^5$ cells/well in round bottom 96 well plate (Costar, Corning, USA) for 5 PBMC from other 5 healthy donors were used for in vitro stimulation. PBMC in RPMI-1640

2.5 Surface and intracellular staining and flow cytometric (FCM) analysis

pellets were analysed by FACSCalibur using the CELLQuest software (Becton Dickinson, San Jose, mAbs as showed in Table 2 and the stained cells were incubated for 30 minutes at 4 °C followed by PBS (8g NaCl, 0.2g KCl, 1.4g Na₂HPO₄, 0.24g KH₂PO₄, in 1L distilled H₂O). After staining, the cell treated with RBC lysing solution by incubating at room temperature for 15 min and washed with Fifty microliter of whole blood were stained with combination of fluorochrome-conjugated

permeabilizing buffer for 20 minutes at room temperature. Then Alexa fluor® 488-labeled antiacquisition and analysis on FACSCalibur. Foxp3 (BioLegend, San Diego, USA) was incubated for 30 minutes at room temperature after which manufacturer's recommendation (BioLegend, San Diego, USA). The cells were incubated in the cells For intracellular staining, cells were washed with a permeabilizing solution according to the were washed with PBS. Cells were fixed with 2% of Paraformaldehyde in PBS for

2.6. Data analysis

percentages of cell phenotypes were log transformed. Parametric analysis independent t test was then performed on the transformed data as follows; The difference of mean percentages of cell acute infection, immune controls vs. acute infection. Data in the results and tables showed median phenotypes among each following groups i.e. naïve controls vs. immune controls, naïve controls vs. (SE). The results also showed mean difference (MD), 95% Confident Interval (CI) and P value. The and interquartile ranges (25^{th} - 75^{th} percentile). Data in vitro study showed mean ± 2 standard errer results were considered significant at P<0.05. All data were analyzed by the SPSS programme (Version 11.5, Chicago, USA). The

Results

T cells phenotyping

percentage of CD4+CD45RO+ T cells in the acute infection (27%) was significantly higher than in difference when compared with immune control (22%) (P=0.1). the naive controls (20%) (MD=8.8, 95%CI=0.5-17.1, P=0.02), however, this was not significant The CD4+ memory T cells were quantified and the results showed that the median for the

controls (18%) comparing with native control (13%) (P=0.2). Similar raised proportion of memory CD8+ T cells was also seen in patients with acute infection (17%) (P>0.05). proportion of CD8+ memory T cells was not significantly higher among

95%CI=-0.1-4.2, P=0.03) and immune controls (2%) (MD=3.2, 95%CI=1.0-5.4, P=0.005). significant The result of percentage of $\gamma\delta$ T cells showed that the median of CD3+ δ 2+ was statistically higher in the acute infection (4%) comparing with naïve controls (2%) (MD=2.1)

showed in naïve controls (9%). 95%CI=0.9-6.0, P<0.001). However, after infection this level was higher (9%) to the same level as significantly lower in immune controls (6%) comparing with naïve controls (9%) (MD=3.5, The level of CD3-CD19+ B cells in blood circulation was detected. The median of levels

quantified and showed that the significant higher among immune controls (3%) than healthy controls P=0.002), and the immune controls (3%) (MD=1.3, 95%CI=0.9-2.7, P=0.03). (2%) MD=0.9, 95%CI=0.1-1.7, P=0.02). Moreover, the level was significantly elevated in acute P. vivax infection (4%) comparing with those of the healthy controls (2%) (MD=2.0, 95%CI=0.7-3.0, Among CD3+ T cells, the percentage of regulatory-T cells expressing CD4⁺CD25^{hi}

and analyzed to verify the regulatory type-T cells (8). However, we found in contrast result with And among CD4+ T cells, the expression of FOXP3+ on CD4+CD25hi T cells was examined

CD4⁺CD25^{hi}, The median level of CD4⁺CD25^{hi}FOXP3⁺ T-cells in the acutely infected patients were comparing with the naïve controls (14%). We also found a few cases (7%) of P. vivax infected not significant lower in acute infection (7%) (P=0.2) and the immune controls (10%) (P=0.1) patients and 6% of immune villagers has very high level of CD4⁺CD25^{hi}FOXP3⁺ which we will not use these data to calculate T-cells (>30%)

However, in contrast to NK cells, the percentages of level of NKT cells showed the significantly low (16%) (P>0.05), this could be the high level of NK cells in some immune controls and acute patients significant decreased after infection (6%) comparing with immune controls (15%) and naïve control P=0.05) and naïve controls (5%) (MD=1.4, 95%CI=-0.2-3.0, P=0.03). acute infection (3%) comparing with immune controls (2%) (MD=1.4, 95%CI=-0.5-3.0, The percentages of NK and NKT cells were identified. The percentages of NK cells were not

In vitro activation

day 14 was co-cultured with difference concentration of P. vivax or P. falciparum antigens. We used this levels was similar to positive controls (5396) (Figure 3). that PBMC from P. vivax infected patients at day 0 after infection had highest proliferated (5781), Hence, we used only this concentration for further experiments (data not shown). The results showed between co-cultured PBMC with nRBC, P. vivax and P. falciparum crude antigen at 10 ug/ml. between species. We found the obviously difference no. of count per minute by using H3-thymidine P. falciparum in parallel with P. vivax crude antigen to determine the cross activation and reaction The PBMC from P. vivax infected patients at acute infection and followed up on day 7 and

falciparum antigen. There was no responding to P. falciparum crud antigen in any PBMC activation After day 14 followed up, PBMC were proliferated by co-culturing with both P. vivax and P. All patients's PBMC at day 7 folowed up had no response with any stimulator even anti-CD3

Discussion

Our major finding showed that upon acute infection, both CD4+ and CD8+ memory T cells were one immune suppression mechanism by P. vivax parasites increased. Our result also showed the activation of regulatory T cells during acute infection, this also levels in immune individual of P. vivax infection, During infection there also were elevated in blood circulation. However, there was only CD8+ memory T cells maintained at elevated vivax infection among Chinese population living in Central of China, north areas of Anhui Province. The objective of this work was to characterize T cell phenotypes in patients during acute γδ P

patients among Thai population (6). However, those levels of Thai patients (38%) were higher than Chinese shown CD4 $^{+}$ memory T cells were elevated during P. vivax infected patients and convalescent period patients. This result in line with recent study performed in Western border of Thailand which has might be due to previous infection by P. vivax parasites by the parasites. The reasons why the acutely infected patients had such high levels of memory cells high levels memory T cells during acute infection, suggests that memory T cells were not suppressed and shown in long-term protection against P. falciparum infection (10). The finding that there were confirmed by recent study, showed that memory CD4⁺ T cell (CD45RO⁺CD27) T cell produce IL-4, play role P. falciparum sporozoites. The study has shown that the CD4+CD45RO T cells produced IL-4 and CD45RO have been detected in the peripheral blood circulation of persons who treated by attenuated (27%) for memory $\mathrm{CD4}^+$ T cells and the level of memory $\mathrm{CD8}^+$ T cells was also higher in the protective immunity against P. falciparum infection (9). This study has finding showed that $CD4^+$ memory T cells were elevated in acutely P. patients (26%) than Chinese patients (17%). In human, CD4+ T cells that express

acute infection, suggests that cytotoxic memory T cells are activated by the parasite. These memory Our finding showed that the expression of memory CD8⁺ T cells was increased during the

by cross-presentation of blood stage antigens, since the similar elevated levels of memory CD8+ T CD8⁺ cells in immune controls. However, present study has shown only that cytolytic CD8⁺ T cells play a role in protection against the malaria liver stage (11). T cell responses could have been influenced by an earlier exposure to liver stage antigens or

showing differentiation and expansion of memory CD8⁺ T cells. These findings are consistent with our data memory T cells (12). This is supported by the finding (13) that T-helper cells play a role in the mechanisms whereby the memory cells control P. vivax parasites at the liver stage and blood stage that the increased levels of memory T cells may control parasitaemia during acute infection through could act as T-helper cells regulating antibody response against the P. vivax parasite. We hypothesize function of these memory T cells during acute infection could either be through cytotoxicity or they await further investigation influence induction of both memory CD4+ recent study has shown that CD4⁺ T cells are essential for the differentiation of on P. vivax specific antibody responses rather than cytotoxicity. However, and CD8+ T cells during acute P. vivax infection. The

most likely due to frequent exposure to P. vivax parasites at liver stage, hypnozoite this study, memory CD8+ T cells were readily detectable in the immune controls. This

individuals with acute or convalescent P. falciparum infection and also clinical paroxysms (19,20). Moreover, $\gamma\delta$ T cells are increased in the spleen of humans who died malaria (18). An increase of γδ T cells has been observed in non immune P. vivax patients during play role against P. vivax infection. Recent finding found that $\gamma\delta$ T cells kill P. falciparum parasites from cerebral malaria (17). Moreover, recent study has also confirmed that $\gamma\delta$ T cells are elevated the level of $\gamma\delta$ T cells was elevated during acute infection. So, this indicates that $\gamma\delta$ T cells Ъ. cells have been reported to be elevated in peripheral blood and spleen (14-17) of vivax infection in Thailand (6). In similar phenomenon was in spleen of mice with found in our study, we

falciparum extracts of blood mononuclear cells not previously exposed to malaria also results in $\gamma\delta$ T production of pro-inflammatory cytokines by cytolytic pathway and our group is studying in P. vivax infection (21). In vitro stimulation with P. function and their mechanism involves both cytotoxic and regulatory functions against malaria cell activation, infection donors inhibit parasite replication in erythrocytes in vitro and also induced the with a majority of $V\gamma9/V\delta2$ cells responding (22,23). Activation of $\gamma\delta$ T cells from (24,25), suggesting that these cells have protective

patients [submitted], moreover, Treg also increased during P. falciparum infection and correlated study which has shown the increase number of Treg upon P. vivax infection among Thai infected antibody-mediated immunity, which may result in improved parasite survival. One remains poorly characterized cells and the level of anti-P. vivax antibody among P. vivax infected patients was low during acute differentiation to plasma cells. This could be the reason why this study found the decreasing of B in down-regulation of IL-2 or IL-4 production by responder lymphocytes and suppression of B cell vivax infection may with higher rates of parasite growth in vivo (26). The increased frequency of Treg during an acute vivax infection (6). However, the interaction among malaria specific T cells, B cells and Treg cells Our finding showed an increase of Treg during acute P. is Treg cells may directly suppress B cells (27) or the proliferation of Th cells, resulting lead to the suppression of protective immune response vivax infection. In support to a recent both of

significant decreased level of NK cells, our result support the study among Thai population (7), and contact between NK cells and P. falciparum infected erythrocytes (20,29). Our study showed individuals directly lyse parasitised erythrocytes in vitro (20,28), and this killing mechanism requires in Ethiopian population (3). Therefore, the expression of NK cells during acute infection may not Recent study has shown that the NK cells from both healthy and P. falciparum infected

depend hours IL-12 studies peripheral blood during acute infection which was in contrast to gamma delta T suggests that NK cells protect earlier against P. vivax infection than gamma delta T cells and NKT (20). in vitro indicated that NK cells are the first cells in peripheral blood that produce IFN-y within 18 on geographical location, genetic factors difference or level of malaria endemicity. Recent That may be the reason that why we found that NK cells level were not changed in after exposure to infected erythrocytes followed and this activation was dependent on cells. Our result

level of proliferation after 5 days co-cultured with P. vivax then developed higher again at day 14. China is P. vivax endemic area and only P. vivax prevalence Moreover, our study also confirmed the specificity to P. vivax antigen, since this area of central of antigen, this could be there malaria antigens during first week infection. We did not find the cell proliferation by P. falciparum One explanation for this result could be the patients did not well develop immune response against vitro stimulation was of PBMC from P. vivax infected patients at day 0 and showed higher no cross-reactivity between P. vivax and P. falciparum antigens.

cell-mediated immunity against P. particularly the CD8 phenotypes and $\gamma\delta$ T cells, could play significant roles in the development of could be affected to the reduction of B cells levels during acute infection. However, the interaction caused of the suppression of NK and NKT cells. Moreover, the suppression by regulatory T cells that the between regulatory T cells and NK, NKT and B cells need to be elucidated In conclusion, our findings showed P. vivax infection induced the increasing memory T cells, early protection by NK and NKT cells caused of the transients activation after infection. reason may be explained by the increasing of regulatory T vivax infection. The decreasing of NK and NK T cells during acute infection, cells suggests

Acknowledgements

programme (2004sys008) for Key Lab of Provincial University from Anhui Provincial Education International Center to KJ, LC and RU, and by The Natural Science Research Programme the Thailand Research Fund (BRG498009) to RU, KJ and a grant (D43Tw006571) from The Fogarty Immunology of Bengbu Medical College for technical support. This work was partly supported by Shoufeng Hu of the departments of Parasitology, Hongta Huang, Jina Jiang of department of Hospital, and Dr. Mu-shan Zhu of The First Hospital of Bengbu for malaria patients collection, and Department to BL (2006KJ344b) from Anhui Provincial Education Department to HX, and by the key research We thank Dr. Xiu-zhi Ma of Wuhe County Hospital, Dr. Jie Mei of Guzheng County

References

- Sachs, J. and Malaney, P. 2002. The economic and social burden of malaria. Nature 415:680-
- 2 Krotoski, W. A., Krotoski, D. M., Garnham, P. C., Bray, R. S., Killick-Kendrick, R., Draper, populations of exoerythrocytic stages. Preliminary note. Br Med J 280:153-4. C. C., Targett, G. A., and Guy, M. W. 1980. Relapses in primate malaria: discovery of two
- S peripheral blood lymphocyte subsets in patients with acute Plasmodium falciparum and P. Petros, B., Mesele, T., Hailu, E., and Wolday, D. 2006. Characterization of
- 4 vivax malaria infections at Wonji Sugar Estate, Ethiopia. Clin Vaccine Immunol 13:376-9. Na-Bangchang, K. and Congpuong, K. 2007. Current malaria status and distribution of drug 211:99-113. resistance in East and Southeast Asia with special focus to Thailand. Tohoku J Exp Med
- S Thailand. Am J Trop Med Hyg 72:256-62. Zhou, G., Sirichaisinthop, J., Sattabongkot, J., Jones, J., Bjornstad, O. N., Yan, G., and Cui, L. 2005. Spatio-temporal distribution of Plasmodium falciparum and p. Vivax malaria in
- 9 Jangpatarapongsa, K., Sirichaisinthop, J., Sattabongkot, J., Cui, L., Montgomery, S. M., Looareesuwan, S., Troye-Blomberg, M., and Udomsangpetch, R. 2006. Memory T cells protect against Plasmodium vivax infection. Microbes Infect 8:680-6.
- 7 infected individuals living in an endemic area. Southeast Asian J Trop Med Public Health Srisurapanon, S., Wiwattanakul, S., Apibal, S., Suwannuruk, R., Sujimanaskul, S., Petchsuwan, B., and Pattanapanyasat, K. 2003. Lymphocyte subpopulations in malaria
- ∞ Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. *Nat Immunol* 4:330-6.
- 9 sporozoites. Cell Immunol 180:143-52. an in vitro correlate of protective immunity induced with attenuated Plasmodium falciparum lymphocytes producing IL-4 in response to antigens on Plasmodium falciparum erythrocytes: Bergmann, E. S., Ballou, R. W., and Krzych, U. 1997. Detection of CD4+CD45RO+ T
- 10 attenuated Plasmodium falciparum sporozoites. Eur J Immunol 32:652-61. 4-producing memory CD4(+)CD45RO(+)CD27(-) T cells during protection induced by Palmer, D. R. and Krzych, U. 2002. Cellular and molecular requirements for the recall of IL-
- infections: implications for malaria vaccine development. Parasitol Today 16:50-6. Aidoo, M. and Udhayakumar, V. 2000. Field studies of cytotoxic T lymphocytes in malaria
- 12 Johansen, P., Stamou, P., Tascon, R. E., Lowrie, D. B., and Stockinger, B. 2004. CD4 T cells
- 13 provide the key. Eur J Immunol 34:317-26. guarantee optimal competitive fitness of CD8 memory T cells. Eur J Immunol 34:91-7. Bachmann, M. F., Hunziker, L., Zinkernagel, R. M., Storni, T., and Kopf, M. 2004. Maintenance of memory CTL responses by T helper cells and CD40-CD40 ligand: antibodies
- 14 Ho, M., Webster, H. K., Tongtawe, P., Pattanapanyasat, K., and Weidanz, W. P. 1990. Increased gamma delta T cells in acute Plasmodium falciparum malaria. *Immunol Lett*
- 15 Roussilhon, C., Agrapart, M., Ballet, J. J., and Bensussan, A. 1990. T lymphocytes bearing Infect Dis 162:283-5 gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria. J
- 16 Ho, M., Tongtawe, P., Kriangkum, J., Wimonwattrawatee, T., Pattanapanyasat, K., Bryant, Shafiq, J., Suntharsamai, P., Looareesuwan, S., Webster, H. K., and et al.

- malaria. Infect Immun 62:855-62.

 Bordessoule, D., Gaulard, P., and Mason, D. Y. 1990. Preferential localisation of human Polyclonal expansion of peripheral gamma delta T cells in human Plasmodium falciparum
- 17 lymphocytes bearing gamma delta T cell receptors to the red pulp of the spleen. J Clin Pathol
- 18 van der Heyde, H. C., Elloso, M. M., Roopenian, D. C., Manning, D. D., and Weidanz, W. P. 1993. Expansion of the CD4-, CD8- gamma delta T cell subset in the spleens of mice during non-lethal blood-stage malaria. *Eur J Immunol* 23:1846-50.
- 19 circulating gamma/delta T cells during Plasmodium vivax malarial paroxysms. J Exp Med Perera, M. K., Carter, R., Goonewardene, R., and Mendis, K. N. 1994. Transient increase in
- 20 erythrocytes. J Immunol 169:2956-63. induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected Artavanis-Tsakonas, K. and Riley, E. M. 2002. Innate immune response to malaria: rapid
- 21 Farouk, S. E., Mincheva-Nilsson, L., Krensky, A. M., Dieli, F., and Troye-Blomberg, M. falciparum by a granule exocytosis-dependent cytotoxic pathway that requires granulysin 2004. Gamma delta T cells inhibit in vitro growth of the asexual blood stages of Plasmodium Eur J Immunol 34:2248-56.
- 22 following stimulation of peripheral blood lymphocytes with extracts Behr, C. and Dubois, P. falciparum. Int Immunol 4:361-6. 1992. Preferential expansion of V gamma 9 V delta 2 T cells of Plasmodium
- 23 gamma delta T cells respond to antigens of Plasmodium falciparum. Int Immunol 4:33-41. Goodier, M., Fey, P., Eichmann, K., and Langhorne, J. 1992. Human peripheral blood
- 24 Immunol 153:1187-94. 1994. Inhibition of Plasmodium falciparum in vitro by human gamma delta T cells. JElloso, M. M., van der Heyde, H. C., vande Waa, J. A., Manning, D. D., and Weidanz, W. P.
- 25 Plasmodium falciparum parasite express cytolytic and proinflammatory molecules. Scand J Elghazali, G., Moretta, L., Hammarsuoui, ivi, and inverse sexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the in vitro growth of the asexual blood stages of the gamma delta T cells that inhibit the invitro growth of the asexual blood stages of the gamma delta T cells that inhibit the invitro growth of the asexual blood stages of the gamma delta T cells that inhibit the invitro growth of the asexual blood stages of the gamma delta T cells that inhibit the invitro growth of the asexual blood stages of the gamma delta T cells that inhibit the invitro growth of the asexual blood stages of the gamma delta T cells that inhibit the gamma delta T cells that inhib Troye-Blomberg, M., Worku, S., Tangteerawatana, *Immunol* 50:642-50. rg, M., Worku, S., Tangteerawatana, P., Jamshaid, R., S. Moretta, L., Hammarstrom, M., and Mincheva-Nilsson, L. Soderstrom, K.,
- 26 regulatory T cells correlates with more rapid parasite growth in human malaria infection Walther, M., Tongren, J. E., Andrews, L., Korbel, D., King, E., Fletcher, H., Andersen, R. F., Bejon, P., Thompson, F., Dunachie, S. J., Edele, F., Brian de Souza, J., Sinden, R. E., Gilbert, S. C., Riley, E. M., and Hill, A. 2005. Upregulation of TGF-b, Foxp3, and CD4+CD25+ Immunity 23:287-296.
- 27 suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175:4180-3. Lim, H. W., Hillsamer, P., Banham, A. H., and Kim, C. H. 2005. Cutting edge: direct
- 28 cytolysis of Plasmodium falciparum-infected human red blood cells in vitro. Eur Cytokine Mavoungou, E., Luty, A. J., and Kremsner, P. G. 2003. Natural killer (NK) cell-mediated
- 29 Plasmodium falciparum-infected erythrocytes. J Immunol 171:5396-405 M., and Riley, E. M. 2003. Activation of a subset of human NK cells upon contact with Artavanis-Tsakonas, K., Eleme, K., McQueen, K. L., Cheng, N. W., Parham, P., Davis, D.

List of figures

between naïve controls (NC), immune controls (IC), patients with acute P. vivax infection (AC) Data Fig. 1. Comparison of Memory CD4+ and CD8+ T cell, gamma delta T cell and B cell phenotypes are shown in median, inter-quartile ranges (box plots), maximum and minimum (upper-lower lines).

and minimum (upper-lower lines). acute P. vivax infection (AC) Data are shown in median, inter-quartile ranges (box plots), maximum NKT cells phenotypes phenotypes between naïve controls (NC), immune controls (IC), patients with Fig. 2. Comparison of regulatory T cell (CD4+CD25hi and CD4+CD25hiFOXP3+), NK cell and

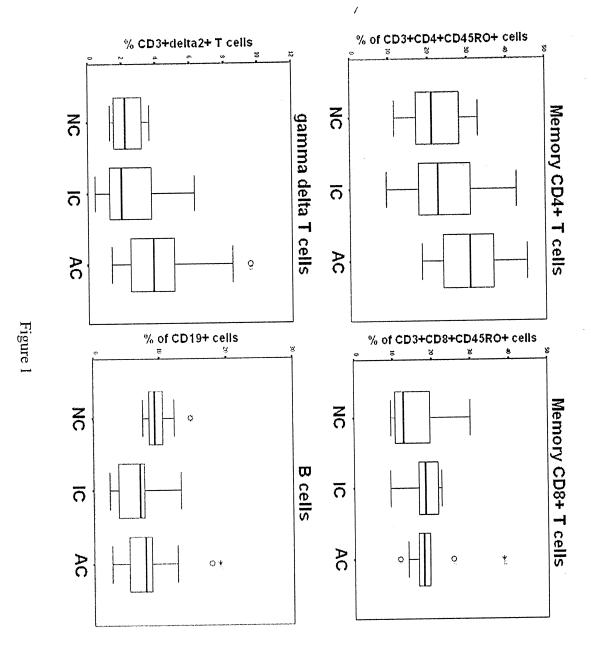
day 7 and day 14 with P. vivax antigen 10 ug/ml (PV10). H3-Thymidine was used for proliferation Fig. 3. The activation of PBMC from P. vivax infected patients at day 0 (acute) and followed up on assay and showed as count per minute (CPM). Data are shown in mean \pm 2 Standard Errer (SE).

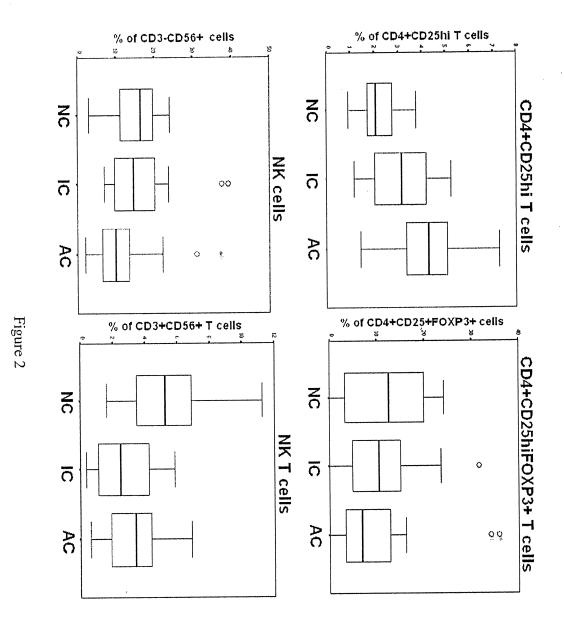
List of Tables

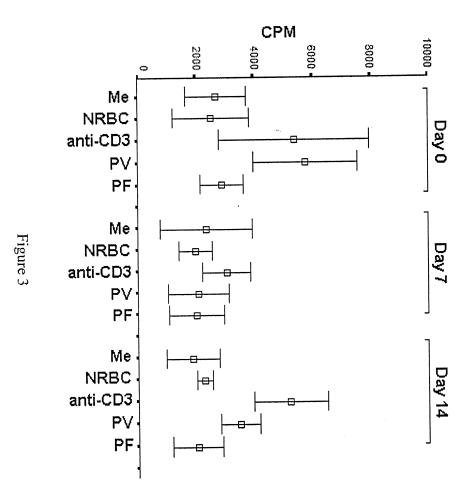
Information and Clinical data of P.vivax patients, immune and naïve controls* Table 1.

					: ;	*
36.5±0.5	0	10 11 29±5	_	- 0	17	Naïve controls
36.5±0.5	0	11 6 33±11	6	_	21	Immune controls
38.5±0.7	0.05 ± 0.08	37 10 17 29±10	17	10	37	P. vivax infection
	(%)	(years)	ᆔ	×		
Temperature	Parasitemia	Age	×	Sex	Z	

mean \pm standard deviation (SD)


Table 2.


List of the combination of fluorochrome-conjugated with anti-human mAbs were used for FCM analysis


	5	4	ω	2	_	Tube no.	ſ
	anti-Foxp3 ^c	anti-CD56 ^a	anti-gamma9 ^b		anti-CD45RO ^a	FITC	Combination
	anti-CD25 ^b			anti-CD19 ^a	anti-CD4 ^a	RPE	Combination of fluorochrome-conjugated mAbs
:	anti-CD3ª	anti-CD3ª	anti-CD3ª	anti-CD3ª	anti-CD8 ^a	RPE-Cy5	e-conjugated
					anti-CD3 ^a	APC	mAbs

^aCaltag, Burlingame, USA; ^bImmunotech, Marseille, France,

^cThis mAb was conjugated with Alexa fluor[®] 488 (BioLegend, San Diego, USA)

surface protein-1 (MSP-1) and apical membrane antigen-1 (AMA-1) and Natural immune response against Plasmodium vivax c-terminal merozoite cross-reactivity between P. vivax and P. falciparum infection:

A study in Thailand and China

Rachanee Udomsangpetch a** Fane, Long Cuie, Jetsumon Sattabongkot, Qi Gaoe, Liwang Cuie, Baiqing Lih** Kulachart Jangpatarapongsa^{a,b}*, Hui Xia^{c,d}*, Kaiming Hu^c, Tao Zhiyong^c, Jun Miao^e,

Bangkok 10700, Thailand ^a Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol University,

Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400,

^cDepartment of Parasitology, Bengbu Medical College, Anhui 233030, China

^dDepartment of Parasitology, Xuzhou Medical College, Jiangsu 21----, China

^eDepartment of Entomology, The Pennsylvania State University, PA 16802, USA

Research Institute of Medical Sciences, Bangkok 10400, Thailand Department of Entomology, United States Army Military Component, Armed Forces

^g Jiangsu Institute of Parasitic Disease, Wuxi 210064, China

^hDepartment of Immunology, Bengbu Medical School, Anhui 233030, China

These authors contributed equally to this work.

** Correspondence: Professor Rachanee Udomsangpetch, PhD

Department of Pathobiology, Faculty of Science

Mahidol University, Rama VI Road

Bangkok 10400, Thailand

Tel +662 201 5576, Fax +662 354 7158

e-mail: scrud@mahidol.ac.th

** Correspondence: Professor Baiqing Li, MD, PhD

Department of Immunology,

Bengbu Medical College,

Bengbu, Anhui, China 233030

Introduction

against P. vivax parasite remained poorly understood. Most study of human malaria immunity is incidence of P. vivax infection, the mechanism of cellular and humoral immune responses benign P.vivax infection causes relapsing fever but is rarely fatal [2]. In spite of the current Plasmodium falciparum, mainly in African countries [1]. In contrast with Pfalciparum malaria, has been limited. Immunity to P. vivax has been studied in various endemic areas. Antibody in P. falciparum infection. The reasons for this could be the difficulty to access P. vivax-infected response to different parasite proteins is reported [3-5]. However, only few recombinant proteins areas where P.vivax is endemic should be encouraged. can be used due to lack of the parasite materials [6]. The collection of more information from Malaria is a common tropical disease associated with mortality among children infected with and to maintain the parasite in vitro for studies. Therefore, progress in P. vivax research

platelets [8]. cellular cytotoxicity during blood stage than in liver stage infections [7]. Antibodies also mediate antibody-dependent intensity of exposure to malaria. The level Malaria infection induces strong humoral immune responses in residents of endemic of total antimalarial antibodies increases with age and depends on the length and and phagocytosis Antibody-mediated inhibition of parasites is more efficient involving polymorphonuclear cells, neutrophils

falciparum, 0.1% by P. malariae, and 0.4% by mixed infection) [9]. completely having mixed Plasmodium spp. infection incidence (50.6% was caused by P. vivax, 48.9% by P. This study was performed in 1) a vivax malaria-endemic area of central of China which has P. vivax infection cohort 2) malaria endemic area of western border of Thailand

aimed to characterize the level of IgG antibody following P.vivax infection comparing between proteins produced by E.coli system consisting of PvMSP1(19) and PvAMA-1 [10-13]. Our study antibodies in the sera to proteins extracted from P. vivax parasites, and to P. vivax-derived two malaria endemic areas having difference geography and incidence of Plasmodium spp. Infection. To understand the natural immune response during P. vivax infection, we determine

Materials and Methods

Study population

primers was performed on DNA isolated from the blood samples to further verify P. vivax Giemsa-stained Wuhe County Hospital, Guzhen County Hospital, The Frist City Hospital, Bengbu city, Anhui Plasma samples were collected from 76 patients with acute P. vivax infections (AC) at China. The diagnosis of P. vivax malaria infection was based on the examination of thick blood films. Polymerase chain reaction (PCR) with species-specific

endemic area. These subjects serving as "immune controls" (IC) did not have acute P. infections at the time of blood collection as determined by both microscopy. A further 20 healthy subjects parasites adults living in Bengbu city area without previous malaria exposure or antibodies to malaria individual before a blood sample was taken Biomedical Institute of Anhui Medical University. Informed consents were obtained from each Blood samples were collected from additional 32 are listed in Table 1. were recruited to serve as "naïve controls" This study was approved by Ethical Approval (NC). The clinical characteristics of the peoples residing in the same Committee of Р.

Parasite cultures and antigen preparations

filtering through a sterile column of CF11 cellulose (Whatman®, Maidstone, UK) and the red antigens for coating. Briefly, P. vivax infected blood was depleted of white parasites were cultured for 24 - 30 hours at 5% hematocrit in McCoy's 5A medium (GIBCO blood cells were Р. vivax-infected washed with RPMI-1640 by centrifugation at 1190 g red blood cells (iRBC) purified from infected blood was used as crude for Ş blood cells by minutes.

Materials and Methods

Study population

Plasma samples were collected from 76 patients with acute P. vivax infections (AC) at Wuhe County Hospital, Guzhen County Hospital, The Frist City Hospital, Bengbu city, Anhui province, China. The diagnosis of P. vivax malaria infection was based on the examination of Giemsa-stained thick blood films. Polymerase chain reaction (PCR) with species-specific primers was performed on DNA isolated from the blood samples to further verify P. vivax infections.

Blood samples were collected from additional 32 peoples residing in the same *P. vivax*-endemic area. These subjects serving as "immune controls" (IC) did not have acute *P. vivax* infections at the time of blood collection as determined by both microscopy. A further 20 healthy adults living in Bengbu city area without previous malaria exposure or antibodies to malaria parasites were recruited to serve as "naïve controls" (NC). The clinical characteristics of the subjects are listed in Table 1. This study was approved by Ethical Approval Committee of Biomedical Institute of Anhui Medical University. Informed consents were obtained from each individual before a blood sample was taken.

Parasite cultures and antigen preparations

P. vivax-infected red blood cells (iRBC) purified from infected blood was used as crude antigens for coating. Briefly, *P. vivax* infected blood was depleted of white blood cells by filtering through a sterile column of CF11 cellulose (Whatman®, Maidstone, UK) and the red blood cells were washed with RPMI-1640 by centrifugation at 1190 g for 5 minutes. The parasites were cultured for 24 – 30 hours at 5% hematocrit in McCoy's 5A medium (GIBCO,

RBC seconds at 150 watts and the protein concentration was determined by the Bradford assay (Bio-Uppsala, Sweden) at 1190 g for 10 minutes. The enriched iRBC pellets were sonicated for 40 The late an incubator containing 5% CO₂, 5% O₂ and 90% N₂ until matured to schizont stage (≥6 nuclei). Carlsbad, USA) supplemented with 25% human AB serum. P. vivax parasites were maintained in antigens was stored at -70°C to be used as a negative control. Rad, Hercules, were processed similarly as above and the protein concentration equal to the malaria stage iRBC were enriched by centrifugation using 60% Percoll (GE Healthcare, USA). The vials were then aliquoted and stored at -70°C until use. Uninfected

Protein expression and purification

PVMSP1 (19)

protein induction and cell pellet was collected and sonicated. and checked expression by SDS-PAGE collected and protein was purified by Ni-NTA beat (bind to 6His-tag). Finally, protein was eluted native were cut by using BamHI and XhoI and verified. Verified sequences were cloned into pET28a DNA then PCR was used to Briefly, blood filtered paper from isolated P. vivax infected patients was used to get genomic condition as described by manufacturer's protocol [Qiagen, USA]. Supernatant Protein was expressed in E. coli BL21 by culturing in LB medium. IPTG was used for get MSP1(19) gene by using designed primers in Table. Sequences Protein was purified by using

PVAMAI

pET22b vector. Protein was expressed in E. coli BL21 by culturing in LB medium. IPTG was were cut by using Ndel and Xhol enzymes and verified. Verified sequences were PCR was used to get PVAMA-1 gene by using designed primers in Table. Sequences

using denaturing condition as described by manufacturer's protocol [Qiagen, USA]. Supernatant used for protein induction and cell pellet was collected and sonicated. Protein was purified by was collected and protein was purified by Ni-NTA beat (bind to 6His-tag). Finally, protein was eluted and checked expression by SDS-PAGE.

Kesuit

between Thai and Chinese P. vivax infected patients Naturally anti-P. vivax IgG antibody responses after infected with P. vivax comparing

Anti-Crude PV

control, the immune controls among Chinese patients (0.8) had higher level of IgG against P. found the increasing in the level of IgG higher than Thai infected patients. (0.85) and Thai (0.14) infected patients. However, P. vivax infected patients from Chinese was P<0.001). After infection by P. vivax, the significant elevation of IgG was found both Chinese vivax crude antigen between Chinese (0.07) and and Thai (0.03) (MD=0.07, 95%CI=0.04-0.1, vivax crude antigen than Thai patients (0.07). There was significantly difference of base line level of IgG among naïve controls against P. In similar to naïve

Anti-P. vivax MSP-1(19)

Chinese naïve controls (0.3) (P<0.001). Moreover, the level of antibodies in peoples living in P. was compared. We found that there was higher levels mean of total IgG among Thai (0.03) than (P<0.001). We found two samples of Thai healthy control had IgG to PvMSP1(19) as high as P. vivax endemic area was significant different between Thai (0.31) and China population (0.06) Chinese population living outside (naïve controls) and inside (immune controls) endemic area value. Among both population, the mean level of total IgG to PvMSP-1(19) was significantly vivax infected patients as shown in above figure, so we excluded this samples to calculate the Base lines of mean level of total IgG to PvMSP1(19) among healthy controls of Thai and

increased during P. vivax infected patients (P=0.02). (P<0.001). Interestingly, we found the significantly higher of these levels among Thai than China acute P. vivax infection in both of Thai (0.8) (P<0.001) and Chinese (0.5)

Anti-P. vivax AMA-1

among Thai (0.2) than Chinese immune comtrols (0.1) (P<0.001). We also found non significant difference between healthy donors among Thai peoples living inside and outside endemic areas was significant higher comparing with naïve controls ((Thai P=<0.001, Chinese P<0.0.001). (P>0.05), which was contrasted with Chinese (P<0.001). During acute P. vivax infection, there had obviously high level of IgG to PvAMA-1, so we did not use this data to calculate (0.3) and China (0.2) population (P=-0.15). We also found a sample of P. vivax infected patient vivax endemic area was very low both of Thai (0.1) and Chinese population (0.03). However, The mean level of total IgG against PvAMA-1 among healthy controls living outside the the significant higher among Thai than Chinese (P<0.000). There was higher level among P. vivax patients population, we found no significant different between Thai

between Chinese and Thai P. vivax infected patients Cross-reactivity between P. vivax and P. falciparum antigens; comparative

percentage of base line level of IgG in naive controls among Chinese was very low (0.003) and Moreover, we also found the significant higher level of IgG against P. falciaprum antigens significantly lower than that of Thai (0.04) donors (MD=0.07, 95%CI=0.04-0.1, P<0.001). To examine the cross-reactivity between P. vivax and P. falciparum antigens, the P. falciparum crude antigens were used as coated antigen on the plate. The median vivax

immune controls among Thai (0.18) than Chinese (0.01) (MD=0.6, 95%CI=0.45-0.75). After (Chinese=0.07, Thai=0.36). infection with P. vivax, patients have had higher level of IgG against P. falciparum

Discussion

living the presence of antibodies to P. vivax antigens by testing with recombinat P. vivax proteins, i.e. the complex proteins in the crude extract from P. vivax-infected erythrocytes, we have confirmed status in those areas reactivity between P. falciparum and P. vivax which lead to the examination of epidemiological endemic PvMSP1₁₉ and PvAMA1, and compared the level of natural antibodies between two P. However, in an assay with proteins extracted from the parasites. Since this has been tested with in the endemic area do not produce high level of crude P. vivax-specific IgG [14]. In this study, we have evidence that Thai villagers having had P. vivax infection and areas, Chinese and Thai. The species specific antibodies could tell us the

antibody [17]. Similarly, IgG1 and IgG3 are predominant among P. vivax-infected patients with against blood stage of P. passive transfer of immune IgG to Gambian children provides protection [16]. The immunity primates [6] group with >19 years of exposure [19]. PvMSP119 is shown to induce immunity in non-human IgG3 against P. vivax are higher among the subjects with a 1) IgG among subjects with distinct degrees of malaria exposure in endemic area. The IgG1 and history of malaria [18]. Recent study has shown anti-P. vivax merozoite surface protein 1 (MSP-Various immunoglubulins are produced and IgG is the most important [15], Previously, a falciparum infection is associated with class and subclass of --- year-exposure period than the

immune controls. Moreover, this level was very high in similar to that showed in the acute P. Chinese than Thai. We found the higher level of anti-crude P. vivax IgG in Chinese than Thai two area are hypo-endemic area. vivax infection. Our study showed the significant lower of base line level of anti-crude P. vivax IgG among This could be the P. vivax endemicity in China was more than Thai, even these

or AMA-1, therefore they can develop IgG against these peptides. Another possible reason could could be hypothesized that the IgG among Thai donors can recognize a part of peptide of MSP-1 MSP-1 and anti-AMA-1 IgG was significantly lower in naïve controls of China than Thai. This among Thai healthy donors, therefore, they can develop and maintain the low level of antibodies be all of these malaria naïve donors have had malaria experiences, but asymptomatic conditions in their circulation. However, in contrast to what we found in anti-crude P. vivax IgG, the base line level of

both of healthy controls and immune controls of Chinese donors. After infected with P. vivax, antibody and the cross-reactivity. We found the very low level of base line IgG antibody among healhy and immune controls. Moreover, development of anti-P. falciparum IgG in Thai P. vivax those found in Thai. The higher level of base line of anti-P. falciparum IgG Chinese patients also develop a bit of P. falciparum antibodies. These results were in contrast to falciparum infection experience in their life during staying in malaria endemic area. falciparum infection in Thailand was more than China. This also could species specific of total IgG. Moreover, his could be told us the higher risk or incidence of infected Crude P. falciparum antigens was used patients were much more higher than Chinese. This could be suggested the accuracy of Ħ. this study to determine the be was found among species told us the

Thai patients living in malaria endemic area could develop P. falciparum antibody and maintain this level in their body.

Acknowledgements

(BRG498009). KJ was a research fellow supported by The Commission on Higher of Health (NIH) and by a grant (D43-TW006571) to LC and RU from FIC, NIH. Education of Thailand and the Fogarty International Center (FIC), National Institutes This work was partly supported by the Thailand Research Fund

Reference

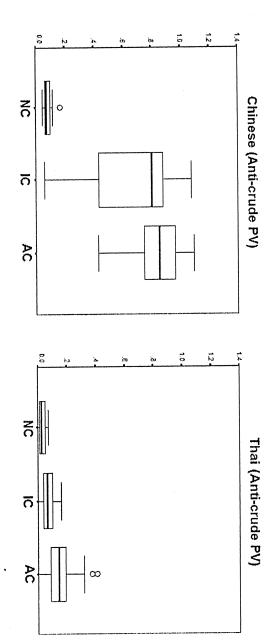
- **415**(6872):680-685 Sachs J, Malaney P: The economic and social burden of malaria. Nature 2002,
- Targett exoerythrocytic stages. Preliminary note. Br Med J 1980, 280(6208):153-154 Krotoski WA, Krotoski DM, Garnham PC, Bray RS, Killick-Kendrick R, GA, Guy MW: Relapses in primate malaria: discovery of two populations of Draper CC,
- living in malaria-endemic areas of Brazil. Malar J 2006, 5:83 the acquired immune responses to Plasmodium vivax VIR variant antigens in individuals Oliveira TR, Fernandez-Becerra C, Jimenez MC, Del Portillo HA, Soares IS: Evaluation
- Plasmodium vivax apical membrane antigen-1. Int J Parasitol 2005, 35(2):185-192 Thomas AW, Soares IS: Antibody response of naturally infected individuals to recombinant Rodrigues MH, Rodrigues KM, Oliveira TR, Comodo AN, Rodrigues MM, Kocken CH,
- under low transmission and unstable malaria conditions in Sri Lanka. Int J Parasitol 2006 against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 Handunnetti SM, Udagama-Randeniya PV: Comparison of naturally acquired antibody responses Wickramarachchi Ţ, Illeperuma RJ, Perera L, Bandara 'n Holm I, Longacre S
- human primates (Callithrix jacchus jacchus). Microbes Infect 2006, 8(8):2130-2137 vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-Kalil J, Mello LE et al: Immunogenicity of a recombinant protein containing the Plasmodium Rosa DS, Iwai LK, Tzelepis F, Bargieri DY, Medeiros MA, Soares IS, Sidney J, Sette A,
- other malarias. Prog Allergy 1988, 41:253-287. Troye-Blomberg M, Perlmann P: T cell functions in Plasmodium falciparum and

- mediated parasite neutralization. Scand J Immunol 2000, 52(3):233-239. Ļ Berzins K: Antigenic diversity of Plasmodium falciparum and antibody-
- In: The use of antimalarial drugs. Geneva: World Health Organization; 2001 WHO: Report of a WHO informal consulation. Report WHO/CDC/RBM/2001.33
- the 19-kDa C-terminal region of the merozoite surface protein-1. Malar J 2003, 2(1):39 Serological detection of Plasmodium vivax malaria using recombinant proteins corresponding to 10. Rodrigues MH, Cunha MG, Machado RL, Ferreira OC, Jr., Rodrigues MM, Soares IS:
- Longevity Plasmodium vivax merozoite surface protein 1. Am J Trop Med Hyg 1999, 60(3);357-363 1. Soares of naturally acquired antibody responses to the IS, da Cunha MG, Silva MN, Souza JM, Del Portillo HA, Rodrigues MM: N- and C-terminal regions of
- area of exclusive terminal regions of the Plasmodium vivax Merozoite Surface Protein 1 in individuals living in an 72(1):13-24 12. Soares IS, Oliveira SG, Souza JM, Rodrigues MM: Antibody response to the N and transmission of P. vivax malaria in the north of Brazil. Acta Trop 1999, Ģ
- individuals exposed to malaria. Infect Immun 1997, 65(5):1606-1614 responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in 13. Soares IS, Levitus G, Souza JM, Del Portillo HA, Rodrigues MM: Acquired immune
- Plasmodium vivax infection. Microbes Infect 2006, 8(3):680-686 Looareesuwan 14. Jangpatarapongsa S, Troye-Blomberg M, Udomsangpetch R: Memory **Ж** Sirichaisinthop J, Sattabongkot J, Cui T cells protect against ŗ Montgomery SM,
- and T cell stimulation by dendritic cells. Annu Rev Immunol 2002, 20:621-667. 15. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation
- 16. McGregor IA: The Passive Transfer of Human Malarial Immunity. Am J Trop Med

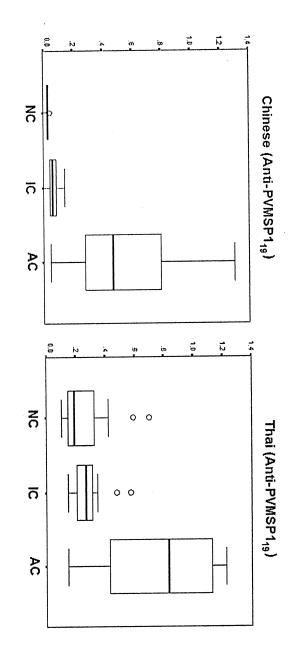
Hyg 1964, 13:SUPPL 237-239.

- stage Plasmodium falciparum parasites. Am J Trop Med Hyg 1999, 60(1):135-141. interaction of monocytes, hyperimmune sera, and immunoglobulin G on the growth of asexual 17. Shi YP, Udhayakumar V, Oloo AJ, Nahlen BL, Lal AA: Differential effect and
- 77(4):299-306. children exposed to malaria, before and after specific treatment]. J Pediatr (Rio J) 2001, 18. Pinto AY, Ventura AM, Souza JM: [IgG antibody response against Plasmodium vivax in
- terminal 19 kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitol Res 2005, 95(6):420-426. 19. Morais CG, Soares IS, Carvalho LH, Fontes CJ, Krettli AU, Braga EM: IgG isotype to C-

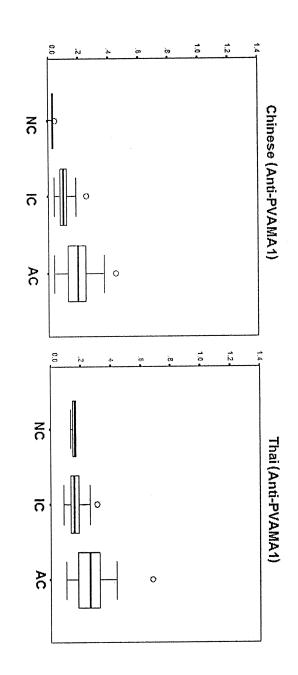
List of Tables

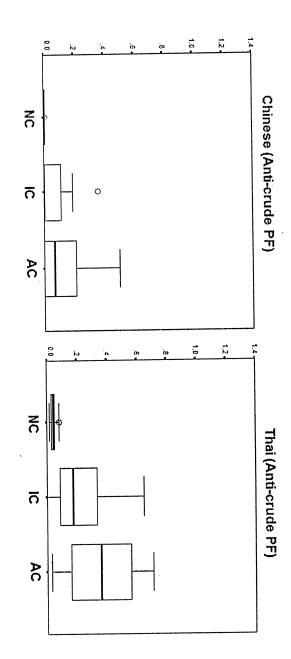

Table 1 Information and Clinical data of P.vivax patients, immune and naïve controls a

(0.02 - 1.2)	(34 - 40)	(30 - 63)	(15 - 70)				
0.4 ± 0.4	37.8 ± 1.3	41 ± 6	32 ± 12	20	32	52	Acute P. vivax
	(36 - 37)	(34 - 64)	(16 - 77)				
0	36.8 ± 0.4	47±7	40 ± 15	13	40	53	Immune controls
		(37 - 48)	(15 - 70)				
0	37.5 ± 0.5	41 ± 3	32 ± 12	12	15	27	Naïve controls
							Thai
							Acute P. vivax
							Immune controls
						4	Naïve controls
							Chinese
(%)	(°C)	(%)		Ħ	М		
Parasitemia	6	Hct	Age		Sex	N _o .	
	_						


Table 2 the PCR primers

PvAMA Reverse	PvAMA Forward	PvMSP1(19) Reverse	PvMSP1(19) Forward	Name
CCG CTC GAG tag tag cat ctg ctt gtt cg (XhoI)	GGAATTC CAT ATG acc gtt gag aga agc aca cg (Nde I) (PET22b)	CCG CTC GAG gct gga gga gct aca gaa aac (Xho I)	CG GGATCC aat gtg caa act cag tta tta ac (BamHI) (PET28a)	Sequences 5'→ 3' (enzymes)(vectors)


Figure legends


the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) comparing between minimum (upper-lower lines). Chinese and Thai. Fig. 1 Absorbance (405 nm) value of IgG antibody reacting with crude P. vivax antigens in Data are shown in median, interquartile ranges (box plots), maximum and

plots), maximum and minimum (upper-lower lines). comparing between Chinese and Thai. 119 protein in the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) Fig. 2 Absorbance (405 nm) value of IgG antibody reacting with recombinant P. vivax MSP-Data are shown in median, interquartile ranges (box

plots), maximum and minimum (upper-lower lines). comparing between Chinese and Thai. AMA-1 protein in the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) Fig. 3 Absorbance (405 nm) value of IgG antibody reacting with recombinant P. vivax Data are shown in median, interquartile ranges (box

plots), maximum and minimum (upper-lower lines). comparing between Chinese and Thai. Data are shown in median, interquartile ranges (box antigen in the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) Fig. 4 Absorbance (405 nm) value of IgG antibody reacting with crude P. falciparum

Killing mechanism of *Plasmodium vivax* parasites by γδ T cells

Sasithorn Promwan¹, Kirasikan Dabkam¹, Kesinee Chotivanich³, Duangporn Polpanich⁴, Jetsumon Sattabongkot⁵, Suradej Hongeng⁶, Jeerapat Sirichaisinthop⁷, Marita Troye-Kulachart Jangpatarapongsa¹, Somying Loharangsikul¹, Lertyot Treeratanapaiboon², Blomberg⁸, Liwang Cui⁹, Rachanee Udomsangpetch^{10*}

- University, Bangkok 10700, Thailand Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol
- Bangkok 10700, Thailand ² Department of Parasitology, Faculty of Medical Technology, Mahidol University,
- University, Bangkok, Thailand Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol
- ⁴National Science and Technology Development Agency, Pathumthani, Thailand
- Bangkok 10400, Thailand ⁵ Department of Entomology, Armed Forces Research Institute of Medical Sciences,
- University, Bangkok, Thailand Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol
- Thailand ⁷ Center of Malaria Research and Training, Ministry of Public Health, Saraburi 18120,
- Stockholm, Sweden ⁸ Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-10691
- ⁹ Department of Entomology, The Pennsylvania State University, PA 16802, USA
- Thailand 10 Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok,
- Correspondence: Professor Rachanee Udomsangpetch, PhD

Department of Pathobiology, Faculty of Science

Mahidol University, Rama VI Road

Bangkok 10400, Thailand

Tel +662 201 5576, Fax +662 354 7158 e-mail: scrudmu@yahoo.com

Introduction

drug resistance. In certain area of Srakaew, P. vivax infection is >90% of the infected cases. parasite among indigenous villagers of endemic area will be a good parameter for evaluation of host from the infection and severe manifestations. Measuring level of the antibody to P. vivax responds in order to eliminate the parasites, and how possible can the immune response protect However, this does not prevent subsequent infections. One of the major interests is that how host most cases, villagers have immunity to the parasites, which may help reducing disease severity. Cambodian borders. Malaria prevalence in these areas is increased indicating the potential risk of efficient the patients can protect themselves from the disease the baseline immunity. Cell-mediated immune response, having specificity to a particular antigen vivax parasite, elicited during the repeated episodes Thailand, major malaria endemic areas are located along the Thai-Myanmar and Thaiof infection will determine how

immunity against the disease. Various T cell populations categorized by a number of phenotypic expand. As shown earlier that expansion of gamma/delta T cells play roles in innate immunity to presentation and stimulation of the specific parasite proteins, particular T cell phenotypes will determines effectiveness of the cell-mediated response to malaria. Depending on the antigen markers are malaria infection (Stevenson and Riley 2004). Our previous study has shown a similar increase promote the parasites. There is an immune suppression caused by the presence of P. falciparum 2006). However, function of these T cells is not verified, whether they are for or against the P. gamma/delta T parasite. Antigen-specific T cells recruited during P. vivax infection can either eliminate or cell activation by malaria parasites plays an important role in elicitation of protective responsible cells in acute and convalescent P. for different functions. Function of various mononuclear leukocytes vivax infection (Jangpatarapongsa

how how immune surveillance would be in a carrier having hypnozoites in the liver parasite during acute infection (Hisaeda et al. 2005). However, there is limited information about patients primarily respond to acute P.vivax infections, and much less understanding about

during has shown that gd T cells can inhibit the growth of P. falciparum in vitro by cytolytic pathways induces production of pro-inflammatory cytokines (Troye-Blomberg et al. 1999). Recent study 2006). Activation of gamma/delta T cells but not alpha/beta T cells from malaria naïve donors gamma/delta T cells is in non-immune P. vivax patients during paroxysms (Perera et al. 1994), (Bordessoule et al. 1990; Ho et al. 1990; Roussilhon et al. 1990; Ho et al. 1994). An increase of cytokines and act as MHC restricted and non-restricted cytotoxic effector cells (Haas et al. alpha/beta TCR whereas about 6-8% bear the gamma/delta TCR. gamma/delta T produce various molecules. (TCR) consisting of alpha/beta and gamma/delta chain which are associated with CD3 surface the killing mechanism of $\gamma\delta$ T cells against two major malaria species: P. falciparum and P. mechanisms against malaria infection. However, the direct killing mechanism suggesting inhibits blood gamma/delta-memory gamma/delta Antigen recognition by human T cells is mediated through two types of T The that these cells have protective function involving both cytotoxic and regulatory stage infection has not yet been investigated. This studies aims to vast majority of lymphocytes parasite replication (Elloso et al. 1994; Troye-Blomberg et cells are T cells elevated in in acute and convalescent period (Jangpatarapongsa et al. acute in the peripheral blood (>90%) express or convalescent P. falciparum study and compare of these cells al. 1999) and cell receptor

Materials and methods

Isolation and activation peripheral blood mononuclear cells (PBMC)

were in RPMI 1640 supplemented with 10%fetal calf serum (FCS), and then plated in 24-well plates Norway) according to the manufacturer's recommendations. The PBMC pellet were resuspended at a concentration of 1×106/ml together with 30 mg/ml Isopentenylpyrophosphate (IPP) for 2 weeks with addition of 20 U/ml rhIL-2 every 3 days exclusion. At day 14, cells were washed reinvasion/growth inhibition assays. PBMC at the same amount of gamma delta were twice in TCM, counted, phenotyped by flow cytometry and used as effector cells in the parasite equation (Farouk et al. 2004): %parasite growth inhibition = parasitemia in test) / (% parasitemia in control) ×100 separated by gradient centrifugation using Lymphoprep™ (AXIS-Shied PoC AS, Oslo, Venous blood from five healthy donors was collected in heparinized tubes and PBMC % growth inhibition of the parasite was calculated according (% parasitemia in control ō the following

Parasite cultures

for intact parasites in the studies. P. vivax infected blood was depleted of white blood cells by filtering through a sterile column of CF11 cellulose (Whatman®, Maidstone, UK) and the red 5% O₂ and 90% N₂. Uninfected RBC was processed similarly as above was used as a base line. PBMC or $\gamma\delta$ T cells. Co-cultured parasites were maintained in an incubator containing 5% CO2. cells were were adjusted to be 2% parasitemia, 5% Hematocrit (Hct) before co-culturing with falciparum (AMB47) and P. vivax infected blood collected from endemic area wa used washed with RPMI-1640 by centrifugation at 1190 g for 5 minutes. Both

In vitro stimulation of PBMC

5% Hct. Medium alone, 1x106 cells/well of NRBC extracts or were used as negative control and and 90% N₂ in the presence of Intact P. falciparum or P. vivax parasites at a 2% parasitemia and inactivated FCS were cultured for 3 days at 37°C in a humidified chamber with 5% CO2, 5% O2 cells were harvested and stained for the gamma deta T cells and interested markers base line level, respectively. All experiments were performed in duplicates. After activation, the PBMC (1x10⁵, 1x10⁶ and 2 x 10⁶ cells/well) in RPMI-1640 supplemented with 25 mM 1.8 mg/ml D-glucose, 2 mM glutamine, 40 mg/ml of gentamicin and 10% heat-

Intracellular staining and flow cytometric (FCM) analysis

acquisition and analysis on FACSCalibur using the CELLQUEST software (Becton Dickinson, combination of fluorochrome-conjugated monoclonal antibodies (mAbs): RPE-Cy5-labeled anti-San Jose, USA) phosphate-buffered saline FITC-labeled anti-CD69 CD3 (Caltag, Burlingame, USA) and RPE-anti-gamma9 (Immunotech, Marseille, France) and marker by the three-color FCM analysis, harvested cells were stained with a or FITC-labeled anti-CD25 (PBS). Cells were fixed with 1% paraformaldehyde and data for 30 min at 4°C and washed with

permeabilizing buffer for 20 min at room temperature, paraformaldehyde USA) and labeled anti-CD107a and then washed with PBS For intracellular, after staining with RPE-Cy5-labeled anti-CD3 (Caltag, Burlingame, RPE-anti-gamma9 and washed with a permeabilizing (Immunotech, Marseille, France), the cells were the cells were incubated with FITCsolution. After incubation fixed

Kesults

Growth inhibition of *P. falciparum* parasites by γδ T cells

intact P. falciparum parasites were co-cultured with PBMC (Fig. 1A) and gamma delta T cells growth inhibition was not difference if we put more amounts of cells co-culturing with parasites of growth inhibition in 1x10⁶ cells/well of gamma delta T cells than PBMC. However, the (Fig. 1B). the % growth inhibition was dose dependence manner. At day 2, we found the higher The median percentage of parasites growth inhibition was increased everyday when

Activation of γδ T cells by *P. falciparum* parasites

gamma9⁺ stimulation with intact P. falciparum parasites (Fig. 2B). Moreover, the highest level of stimulation (Fig 2A). However, gamma delta T cells were maintained and increased after day 2 resulted in decreasing of gamma9 T cells activation. The similarly results were shown in both dependent manner. **PBMC** The median level of CD3⁺gamma9⁺ T cells in PBMC was decreased increased at day 2 and enriched gamma9 T cells. Therefore, the activation of gamma9 T cells was dose T cells was intact parasites co-culturing with 10^5 cells/well. The high amount of cells

Early activation of γδ T cells by P. falciparum parasites

T cells activation level from Fig. 1 was also confirmed the cells activation status. In concordance with gamma9 T cells activation, we found the early activation marker (gamma9⁺CD69⁺ T cells) Normally, CD69⁺ molecule was expressed at the early stage of activation. The gamma9

were expressed at day 2 in PBMC (Fig 3A), and day 1 in gamma delta T cells after activation with intact P. falciparum parasites (Fig. 3B). Moreover, the early activated marker was increased when amount of gamma delta T cells was increased (Fig 3B).

expression in $\gamma\delta$ T cells by *P. falciparum* parasites Activation of lysosomal-associated membrane protein-1 (LAMP-1) intracellularly

components of the lysosomal membrane. Protein components of the lysosomal membrane also mediate a number of essential functions of this compartment, including the acidification of the hydrolytic lysosomal lumen, transport of amino acids, fatty acids, and carbohydrates resulting from the involved in the interaction and fusion of the lysosomes with themselves as well as with other cell components, including endosomes, phagosomes, and the plasma membrane (Fukuda 1991). Lysosome degradation (Eskelinen 2006). In addition, lysosomal membrane proteins may be associated membrane protein-1 (LAMP-1 or CD107a) are major protein

gamma9⁺CD107a⁺ cells was increased in gamma delta T cells co-culturing with intact P. falciparum parasites which concordance with the activated marker (CD69⁺), the median percentage of gamma9⁺CD107a⁺ T lower amount of cells (10⁵ cells/well). was higher than was found in PBMC. Interestingly, the expression of CD107a+ was highest in this study, we determined the cytolytic activities by quantification of the levels of T cells expressed intracellular of gamma delta T cells (Fig. 4). Ħ

Gamma/delta T cells in acute P. vivax infected patients

the parasites and therefore control parasitemia to subside the disease severity. maintained after treatment (Fig.5). We hypothesize that the gamma/delta T cells can eliminate Gamma/delta T cells are activated during acute P. vivax infection and the high level is

Activation of $\gamma \delta$ T cells by *P. vivax* parasites

of CD3⁺gamma9⁺ T cells was increased after enriched gamma delta T cells was co-cultured with was increased after PBMC co-culturing with intact P. vivax parasites (Fig. 6). However, the level dependence CD3⁺gamma9⁺ T cells was increased at high amount of cells, suggesting that this level was dose **P**. At the first donors, the percentage of CD3⁺gamma9⁺ T cells expressing on lymphocytes vivax parasites at day 2 and maintained at day 3. We also found the

Early and late activation of $\gamma\delta$ T cells by P. vivax parasites

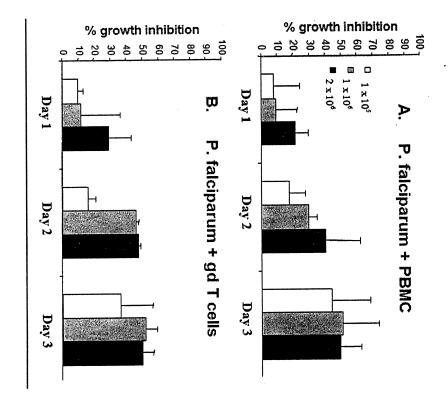
to what we found in P. falciparum, CD3+gamma9+T cells of the PBMC co-culturing with intact increased when amount of gamma delta T cells was increased (Fig 7A,B). after activation with intact P. vivax parasites (Fig. 7B). Moreover, the early activated marker was early activation marker (gamma9⁺CD69⁺ T cells) was expressed at day 1 in gamma delta T P. vivax parasites also expressed CD69 $^{+}$ at early stage (day 1) (Fig. 7A). Moreover, we found the gamma9 T cells activation was also confirmed the cells activation status. In similar

expressed at day 3 activation in PBMC co-culturing with intact P. vivax parasites (Fig. 7C). In contrast to early stage activation, the CD25⁺ expressing on CD3⁺gamma9⁺T cells was

vivax parasites was expressed at the first day stimulation (Fig. 7D). The activation was also dose However, the level of CD3⁺gamma9⁺CD25⁺ T cells in gamma delta T cells co-culturing with P.

expression in $\gamma \delta$ T cells by *P. vivax* parasites of lysosomal-associated membrane protein-1 (LAMP-1) intracellularly

T cells co-culturing with intact P. vivax parasites (Fig. 8). The level of CD3⁺gamma9⁺CD107a⁺ activities expressing of CD107a⁺ intracellularly of gamma delta T cells in PBMC or gamma delta T cells was increased at day 0 and rapidly decreased at day later (Fig. 8A). In contrast to what we culturing with intact P. vivax parasites at day 2 and rapidly decreased at day later. found in PBMC, the level of gamma9⁺CD107a⁺ T cells was increased in gamma delta T cells co-In comparison with what we found in P. falciparum, we also determined the cytolytic


Acknowledgements

a grant (D43-TW006571) to LC and RU from FIC, NIH. collection of the samples. This work was partly supported by the Thailand Research Fund Entomology, AFRIMS, Bangkok, and the Malaria Training Center in Saraburi, Thailand for Thailand and the Fogarty International Center (FIC), National Institutes of Health (NIH) and by (BRG498009). KJ was a research fellow supported by The Commission on Higher Education of We thank all staff at the Mae Sot and Mae Kasa Malaria Clinics, the Department of

References

- Bordessoule, D., P. Gaulard, et al. (1990). "Preferential localisation of human lymphocytes 461-4 bearing gamma delta T cell receptors to the red pulp of the spleen." J Clin Pathol 43(6):
- Elloso, M. M., H. C. van der Heyde, et al. (1994). "Inhibition of Plasmodium falciparum in vitro by human gamma delta T cells." J Immunol 153(3): 1187-94.
- Eskelinen, autophagy." Mol Aspects Med 27(5-6): 495-502. İΞ L. (2006). "Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and
- Farouk, S. E., L. Mincheva-Nilsson, et al. (2004). "Gamma delta T cells inhibit in vitro growth cytotoxic pathway that requires granulysin." Eur J Immunol 34(8): 2248-56 of the asexual blood stages of Plasmodium falciparum by a granule exocytosis-dependent
- Fukuda, intracellular trafficking." J Biol Chem 266(32): 21327-30 Z. (1991). "Lysosomal membrane glycoproteins. Structure, biosynthesis, and
- Haas, W., P. Pereira, et al. (1993). "Gamma/delta cells." Annu Rev Immunol 11: 637-85
- Hisaeda, H., K. Yasutomo, et al. (2005). "Malaria: immune evasion by parasites." Int J Biochem Cell Biol 37(4): 700-6.
- Ho, M., P. Tongtawe, et al. (1994). "Polyclonal expansion of peripheral gamma delta T cells in human Plasmodium falciparum malaria." Infect Immun 62(3): 855-62.
- Но, M., H. K. falciparum malaria." Immunol Lett 25(1-3): 139-41. Webster, et al. (1990). "Increased gamma delta T cells in acute Plasmodium
- Jangpatarapongsa, Plasmodium vivax infection." Microbes Infect 8(3): 680-6 K., ۳. Sirichaisinthop, et al. (2006). "Memory cells protect against

- Perera, M. K., R. Carter, et al. (1994). "Transient increase in circulating gamma/delta T cells during Plasmodium vivax malarial paroxysms." J Exp Med 179(1): 311-5.
- Roussilhon, C., M. Agrapart, et al. (1990). "T lymphocytes bearing the gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria." J Infect Dis 162(1): 283-
- Stevenson, M. M. and E. M. Riley (2004). "Innate immunity to malaria." Nat Rev Immunol 4(3): 169-80.
- Troye-Blomberg, M., S. Worku, et al. (1999). "Human gamma delta T cells that inhibit the in cytolytic and proinflammatory molecules." Scand J Immunol 50(6): 642-50. vitro growth of the asexual blood stages of the Plasmodium falciparum parasite express

counted everyday from day 0 until day 3. Data represent median percentage (blocks) ± SD cells (B) at different cell number from 1x105, 1x106 and 2x106 (vertical bars) from five experiments. Fig. 1. % P. falciparum parasites growth inhibition after co-culturing with PBMC (A) or γδ T cells/well. parasitemia was

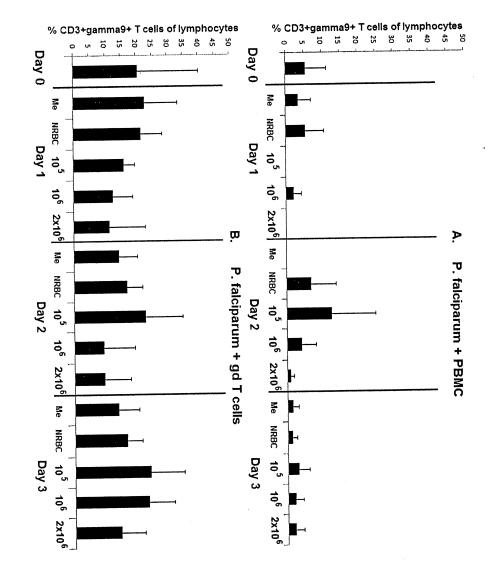


Fig. 2 parasitemia, 5% Hct was co-culturing with PBMC (A) or γδ T cells (B) at different cell number red blood cells (NRBC) was used as base lines levels. Data represent median percentage (blocks) ± SD (vertical bars) from five experiments 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative controls and normal % $\mathrm{CD3}^{+}\mathrm{gamma9}^{+}\mathrm{T}$ cells of lymphocytes shown by flow cytometry. *P. falciparum* at 2%

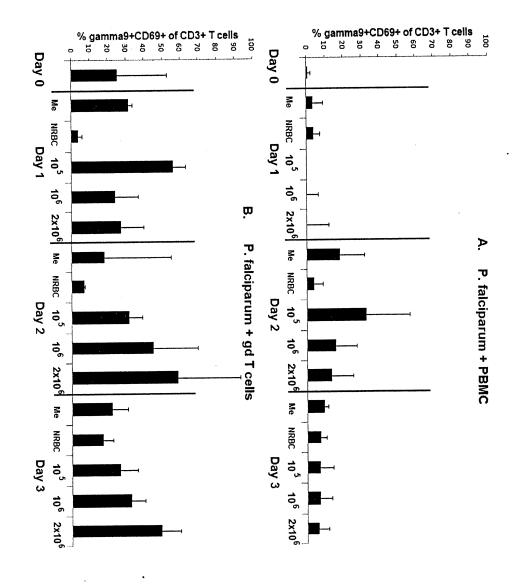
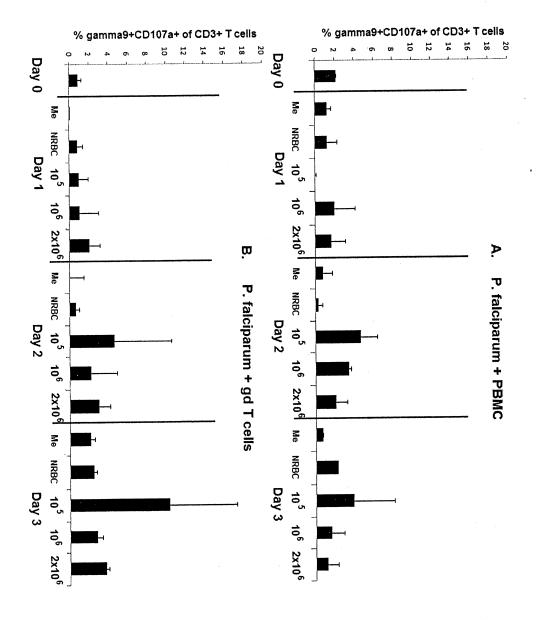
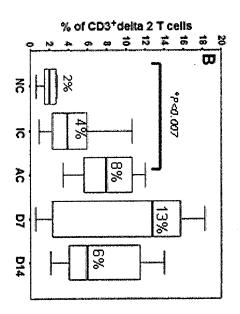




Fig. parasitemia, 5% Hct was co-culturing with PBMC (A) or γδ T cells (B) at different cell number ± SD (vertical bars) from five experiments. red blood cells (NRBC) was used as base lines levels. Data represent median percentage (blocks) 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative controls and normal w % gamma9⁺CD69⁺ T cells of CD3⁺ shown by flow cytometry. P. falciparum at 2%

normal red blood cells (NRBC) was used as base lines levels. Data represent median percentage number 10⁵, 10⁶ and 2x10⁶ cells per well. Medium alone (Me) was used as negative controls and parasitemia, (blocks) ± SD (vertical bars) from five experiments **4** % gamma9⁺CD107a⁺ 5% Hct was co-culturing with PBMC (A) or □□ T cells (B) at different cell T cells of CD3⁺ shown by flow cytometry. P. falciparum at 2%

exposed donors (IC)(N=25), acute P. vivax infection (AC)(N=17), the day 7 (D7), and day 14 Fig. 5 Gamma/delta T cells shown by flow cytometry. Naïve controls (NC)(N=27), malarialower lines) are shown. (D14) after treatment. Median, interquartile ranges (box plots), maximum and minimum (upper-

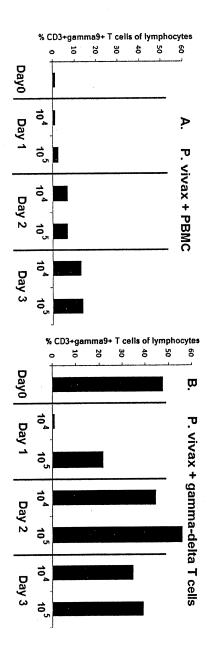
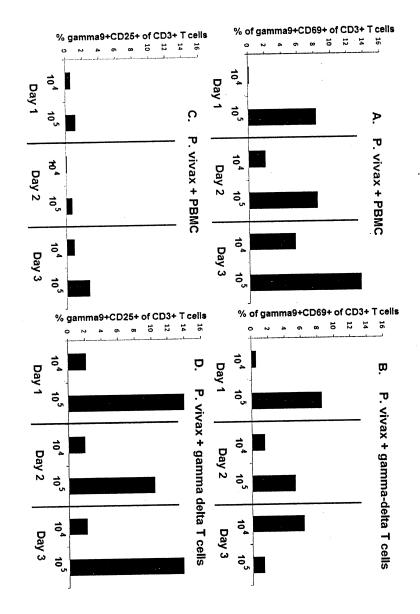
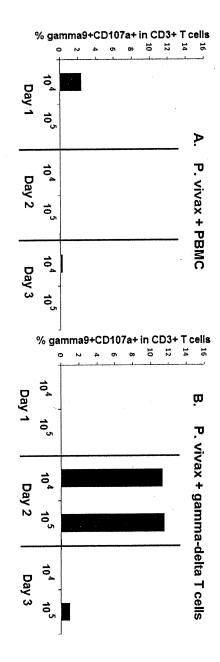




Fig. parasites at 2% parasitemia, 5% Hct were co-culturing with PBMC (A) or $\gamma\delta$ T cells (B) at percentage (blocks) \pm SD (vertical bars) from five experiments. controls and normal red blood cells (NRBC) was used as base lines levels. Data represent median different cell number 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative 6 % CD3⁺ gamma 9^+ T cells of lymphocytes shown by flow cytometry. Intact P. vivax

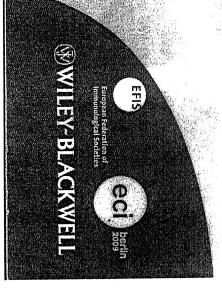
cells (B,D) at different cell number 105, 106 and 2x106 cells per well. Medium alone (Me) was Intact P. vivax parasites at 2% parasitemia, 5% Hct were co-culturing with PBMC (A,C) or $\gamma\delta$ T Fig. 7 % gamma9⁺CD69+ (A,B) and CD25⁺ T cells (C,D) of CD3⁺ shown by flow cytometry. represent median percentage (blocks) used as negative controls and normal red blood cells (NRBC) was used as base lines levels. Data

(blocks) at 2% parasitemia, 5% Hct were co-culturing with PBMC (A) or yô T cells (B) at different cell normal red blood cells (NRBC) was used as base lines levels. Data represent median percentage number 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative controls and Fig. 8 % gamma9⁺CD107a⁺T cells of CD3⁺ shown by flow cytometry. Intact P. vivax parasites

1SSN 0014-2980 · EJIMAF 39 (S1) S1-S808 (2009) · Vol. 39 · No. S1 · September 2009

European Journal of

Supplement


SICSY DEFICE

Abstracts

2nd European Congress of Immunology

September 13-16, 2009 www.eci-berlin2009.com Berlin, Germany

www.eji-journal.eu

0

PA13/60 KILLING MECHANISM OF PLASMODIUM WWAX PARASITES BY GAMMA-DELTA T

CELLS
K. Chotivanich⁵, D. Polpanich⁶, J. Sattabongkor⁷,

k. Jangatearapongsa," S. Loharangsikul', L. Treeratanapiboon', S. Promwan', K. Dabkam', S. Hongeng', K. Chorivanich', D. Polpanich', J. Sartabongkot', J. Chaisinthops, L. Cul', R. Udomsangpetch¹²
Faculty of Medical Technology, Mahidol University, Department of Clinical Microbiology, Bangkok, Thailand, Faculty of Science, Mahidol University, Department of Partabiology, Bangkok, Thailand, Faculty of Medical Technology, Mahidol University, Department of Parasitology, Bangkok, Thailand, Faculty of Medical Remathibodi Hospital, Mahidol Eniversity, Bangkok, Thailand, Faculty of Medical Remathibodi Hospital, Mahidol Eniversity, Bangkok, Thailand, Faculty of Topkal Medicine, Mahidol University, Department of Clinical Tropical Medicine, lok, Thailand, National Nanorectanology Center, National Science and Technology Development Agency, Pathumthani, Thailand, AprilMS, Department of mology, Bangkok, Thailand, Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand, The Pennsylvania State University, Department of Entomology, State College, United States

Objectives & methods: An increasing of gamma-delta T cells during acute P. vivax infection and convalescent period has been reported. Moreover, the activity of gamma-delta T cells leads to the inhibition of blood stage P. foliapurum parasites in vitro. To determine the killing mechanisms of P. vivax parasites by gadelta T cells comparing with what has been found in P. falciparum, the gamma-delta T cells were enriched by Isopentenylpyrophosphate (PP) from reave P. Different number of gamma-delta T cells and normal PBMC were incubated with intact of P. vivax parasites and protein extract of P. vivax parasites, recomb PMCSP1₃ and PvAMA1 proteins. Gamma-delta T cells was daily determined the cytokine and granzyme intracellular releasing by Flow cytometry until day.

Results: Among the enriched gamma-delta T cells, the percentage of cells expressing CD69* and CD25* was elevated after co-culturing with intact and the teins of P. vivax parasites. The overall gamma-delta T cells showed proliferation at day 3 after the co-cultivation. Moreover, the gamma-delta T cells expressing gamma* and CD107a* (lysosomal associated membrane proteins: LAMP-1) elevated from the first day of PBMC collection after co-culturing with the intact P. vivax antigens. This level was correlated with the significantly decreasing number of parasites and the increasing percentage of parasite growth inhibition Conclusion: Our results showed the activation of gamma-delta T cells could kill the parasites via mechanism of granayme and cytokines at the early stage of cells by P. vivax parasites and these actively activated gamma-delta T cells could kill the parasites via mechanism of granayme and cytokines at the early stage of cells with the cells are considered to the selection of appropriation. This study provides more understanding in activation of the innate immunity during acute malaria infection which may lead to the selection of appropriation as vaccine candidates in the future.

ANALYSIS OF INVARIANT NKT CELLS OF PATIENTS WITH ATOPIC DERMATITIS BY FLOW CYTOMETRY E. Gyimesi¹, S. Sipka¹, M. S. Szárazné¹, A. Szegedi²

¹University of Debrecen, Medical and Health Science Centre, 3rd Department of Internal Medicine, Debrecen, Hungary, ²University Health Science Centre, Department of Dermatological Diseases, Debrecen, Hungary of Debrecen, Medicai

Objectives: Several evidence suggest that invariant NKT cells (iNKT) connect innate and acquired innume system. They are able to produce both Th1 and cytokines after stimulation. Atopic dermatitis (AD) is a chronic inflammatory skin disease. Th1-like and Th2-like cytokines have been implicated in the pathog sis of AD, but there are controversial data on their role in AD.

Methods: The frequency and absolute number of iNKT cells in mononuclear cells (PBMCs) of peripheral blood of patients with atopic dermatitis (AD) (n=43) healthy controls (n=13) were determined by flow cytometry using anti-CD3 and monoclonal antibody specific for the CDR3 loop of the invariant TCR a cha (DN), CDA-CD8+ and CDA+CD8+ subsets of iNKT cells by five colour flow cytometry in patients with AD (n=10) and healthy controls (n=10).

Results: Both frequency and absolute number of iNKT cells were significantly lower in patients with AD (n=10) and healthy controls (n=10).

AD patients (R=0.726 and P< 0.001) and healthy controls (R=0.693 and P< 0.001). There was a positive correlation between the frequency of DN cells and iNKT cells be NKT subsets of AD patients, however the intracellular IL-4 level was significantly bigher in DN subpopulation of iNKT cells and the cytokine producing capacity of the CD4/CD8 iNKT subsets are different in peripheral blood obta controls (P< 0.05).

Conclusion: The frequency, the number of iNKT cells and the cytokine producing capacity of the CD4/CD8 iNKT subsets are different in peripheral blood obta from AD patients compared to healthy controls.

Our result suggest that the DN iNKT cell subset can serve as a source of IL-4 that promotes the Th2 differentiation in AD patients and might play a role in the pagencies of this disease.

PA13/62 ISOLATION OF MURINE INTRAHEPATIC IMMUNE CELLS EMPLOYING A MODIFIED PROCEDURE FOR DISRUPTION AND FUNCTIONAL CHARACTERIZATION OF THE B, T AND NATURAL KILLER T CELLS M.R. Qazi¹, K. G. Blom¹, J. B. N. Matos¹, B. D. Nelson¹, J. De Pierre¹, M. Abedi-Valugardi¹ stockholm University, Biochemistry and Biophysics, Stockholm, Sweden R MECHANICAL OBTAINED

Introduction: Intrahepatic immune cells (IHIC) are known to play central roles in immunological responses mediated by the liver, and isolation and phenot characterization of these cells is therefore of considerable importance.

Aims: In the present investigation, we developed a simple procedure for the mechanical disruption of mouse liver that allows efficient isolation and phenot characterization of IHIC. These cells are compared with the corresponding cells purified from the liver after enzymatic digestion with different concentration collagenase and DNase.

Results: The mechanical disruption yielded viable IHIC in considerably greater numbers than those obtained genzymatic digestion. The IHIC isolation is mechanical disruption were heterogeneous in composition, consisting of both innate and adaptive immune cells, of which B, T, natural killer (I NK T cells, granulocytes and macrophages were the major populations (constituting 37.5%, 16.5%, 12.1%, 7.9%, 7.9% and 7.5% of the total number of cells receively). The IHIC obtained following enzymatic digestion contained markedly lower numbers of NK T cells (1.8%). The B, T and NK T cells among I solated expectively). The IHIC obtained following enzymatic digestion contained markedly lower numbers of NK T cells (1.8%). The B, T and NK T cells among I rick, concanavalin A and alpha-galactosylecramide respectively) and produced immunoglobulin M and interferon gamma.

Conclusions: Thus, the simple procedure for the mechanical disruption of mouse liver described here results in more efficient isolation of functionally competities.

THE FUNCTION AND CHARACTERISTICS OF SUPERANTIGEN SEB-ACTIVATING CD8*NKT CELLS Y. Chen¹, Y.L. Guo¹, J. Zhong², S.L. Zhang²

¹General Hospital of PLA, Institute of Basic Medical Sciences, Department of Immunology, Beijing, China, ²Fudan University, School of Life Science, and Microbial Biotechnology, Shang Hai, China , Microbiol

Nature Killer T cells (NKT) are a special T cell population with co-expresses NK and T cell surface markers. Murine NKT cells include CD4* NKT and CD4* CD8* cells. NK1.1* NKT cells may release large amounts of IL-2, IL-4, IFN-y and IL-10 after they are activated. It has been reported that \(\alpha\)-Calactorsykeramide (\(\alpha\)-Calactorsykeramide (\(\alpha\)-ConA, LIS* and IL-2 had significantly decreased compared with that of normal lymphocytes. The effect cells exerted an inhibitory effect for response of normal lymphocytes to ConA and IL-2. There was a significantly increase in the percent of CD8* NK1.1* and TcRV\)-RYR-1 (\(\alpha\)-RYR-1 (\(\alpha\)-RYR-2 (\(\alpha\)-CD8* NK1.1*) and TcRV\)-RYR-1 (\(\alpha\)-RYR-1 (\(\alpha\)-RYR-2 (\(\alph

THROUGH TCR-DEPENDENT

INTESTINAL INTRAEPITHELIAL yô T CELL SHAPE THEIR CELLULAR ENVIRONMENT THI PRODUCTION OF CHEMOKINES AND CYTOKINES

F. Malinarich¹, E. Grabski², T. Worbs³, R. Förster³, M. Hermoso¹, I. Prinz³

Universidad de Chile, Facultad de Medicina, ICBM, Programa de Inmunología, Santiago, Chile, ³TWINCORE - Programa de Inmunología, Santiago, Santiago, Santiago, Santiago, Santiago, Sa Centre for Germany for Experimental and Clinical Infec

γδ T cells in the intestinal intraepithelial compartment (γδ iIEL) show an intrinsic activated phenotype. We hypothesised that their T cell receptor γδ (TCR) implicated in the activation of γδ iIEL. Because the TCR γδ ligands in mice are not well described, monoclonal antibodies (mAb) directed against the γδ TCR) the clone GL3 which binds the δ subunit of TCR γδ, are important tools to specifically activate γδ T cells. Using cytometric Indo-IAM measurement, we could calcium flux of intestinal and peripheral γδ T cells from TCRd-H2BeGFP reporter mice. Stimulation with anti-γδ clone GL3 or anti-CD3 clone 2C11 elicited action of γδ T cells suggesting that TCR γδ and CD3 molecules in γδ T cells are functional and signalling competent.

S 393

sion was found in the B-cell zone after low-dose injection only. A much stronger T-cell proliferation was induced after high-dose formed T cells did not respond to the second encounter with SRBC in the footpad. This unresponsiveness remained even after tran host and challenging them again with SRBC.

Conclusion: We conclude that the absent DTH reaction after high-dose injection of SRBC is not due to lower numbers of T cells. formed T cells are either unable to migrate into the skin or are regulatory T cells which suppress the DTH reaction in the skin. T-cell proliferation was induced after high-dose injection of SRBC. The This unresponsiveness remained even after transferring the T cells into This newly

the newly

1/55 LIVER SINUSOIDAL ENDOTHELIAL AUTOIMMUNE HEPATITIS CELLS INDUCE ANTI-INFLAMMATORY CD4" T CELLS SUPPRESSING MURINE

N. Kruse¹, A. Schrage¹, K. Neumann¹, K. Derkow², E. Schott², A. Kühl³, C. Lodde Medizinische Klinik I, Charité, Universitätsmedizin Berlin, Berlin, Germany, ²Medizinische Klinik I, Research Center ImmunoSciences gie, Charité, Universitätsmedizin Berlin, Berlin, Germany Loddenkemper³, A. Hamann⁴, K. Klugewitz¹ my, ²Medizinische Klinik m.S. Hepatologie und Gastroenterologie, ciences (RCIS), Charité, Universitätsmedizin Berlin, Berlin, German , Charité ay, "Exp. I é Campus Vir-. Rheumatolo-

Objectives: Cellular mechanisms that maintain the intrahepatic immune balance are crucial in viral or autoimmune liver diseases and for allograft acceptance. For naive CD8⁺ T cells, liver sinusoidal endothelial cells (LSEC) have been shown to act as non-professional antigen presenting cells and thus induce tolerance by inhibition of cytotoxicity. In this study we investigated consequences of CD4⁺ T cell priming by LSEC.

Methods: Priming by LSEC was investigated in bone marrow chimeric mice expressing MHC class II exclusively on non-hematopoietic cells. We studied the cyto-kine expression of LSEC primed CD4⁺ T cells (T_{LSEC}) and determined the stability of their phenotype in vivo by adoptive transfer into congenic mice and immunogenic antigen application. Investigating suppressive capacities of T_{LSEC} we performed an in vitro suppression assay. The ability of T_{LSEC} to influence proinflammatory reactions in vivo was analyzed in a model of T cell-mediated autoimmune hepatitis. Hepatic inflammation was monitored by ALT levels and histologic analyses. The migration pattern of T_{LSEC} was investigated by an in vivo homing assay.

Results: We demonstrated that LSEC induce proliferation of naive CD4⁺ T cells in vitro. Although the expression of CD45RB was downregulated in T_{LSEC}, these cells did not produce effector cytokines. This phenotype of T_{LSEC} remained stable in vivo. The in vivo migration pattern of T_{LSEC} was different from cells activated by professional antigen presenting cells isolated from the spleen, since they showed enhanced homing into lymph nodes and the intestine while they were also present in the liver. Interestingly, T_{LSEC} negative for CD25 and Foxp3, suppressed the proliferation of naive CD4⁺ T cells in vitro. They did neither support a DTH reaction nor a hepatic inflammation and were even able to suppress hepatitis.

Conclusion: Priming of naive CD4⁺ T cells by LSEC leads to an anti-inflammatory phenotype here referred to as T_{LSEC}. Thus liver sinusoidal endothelia may di

aKAL BLOOD ;). Adjei⁴, B = 1 FROM PATIENTS WITH BURULI ULCER

¥/56

SPECIFIC T-CELL RESPONSES IN LESIONS AND PERIPHERAL BLOOD FROM PACK. Becker¹, M. Badusche¹, G. Bretzel², K.-H. Herbinger², W. Nienhuis³, O. Adjer⁴, B. Fleischer¹, M. Ja Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany, ³University of Munich, Munich, Netherlands, ⁴Kumasi Centre for Collaborative Research, Kumasi, Ghana , Germany, ³University Medical Centre Groningen, Groningen

Buruli ulcer disease (BUD), caused by Mycobacterium (M.) ulcerans, is a neglected bacterial infection of the poor in remote rural areas. BUD is a mutilating disease leading to severe disability, it is the third most common mycobacterial infection in immunocompetent people after tuberculosis and leprosy most endemic in West

There is some evidence that a T helper type 1-mediated immune response is protective against *M. ulcerans* but the role and distribution of antigen-specific T cells in BUD lesions is hardly defined. In addition, analysis and diagnosis of specific T-cell immunity against *M. ulcerans* is hampered by concomitant infection with other applied mycobacteria, *M. tuberculosis*, and/or *M. bovis BCG* vaccination.

Here we determine the T-cell distribution of two ulcerative lesions and peripheral blood from a BUD patient using a quantitative PCR method for analyses of T-cell receptor VB (TCR-BV) chains and compare the antigen-specific T-cell response in peripheral blood of children infected with *M. ulcerans* or other mycobacteria using in vitro restimulation with mycobacterial lysates and intracellular cytokine analyses.

TCR-BV chains are different between two distinct lesions from the same BU patients. This suggests that T cells, which infiltrate the BUD lesions, are oligoclonally expanded but a predominantly infiltrating subtype could not be identified.

Antigen-specific T-cell cytokine analyses of peripheral blood mononuclear cells from patients with BUD (n = 26) and other mycobacterial infections (n = 9) reveal FN-7, IL-2, and TNF-a secretion after stimulation with lysates, ratios of specific T cells (protein derivates from a non-toxic *M. ulcerans* strain, *M. tuberculosis*, and *M. avium*. In Despite crossreactivity against different mycobacterial bysates, ratios of specific T cells (protein expression after restimulation with different mycobacterial potent mycobacterial infections. Therefore concomitant measurement of T-cell cytokine expression after restimulation with different mycobacterial lysates can help to distinguish early infection with *M. ulcerans* from infection with other mycobacterial. mycobacteria

PLASMODIUM VIVAX ALTERS IMMUNOSUPPRESSION CAUSED S. Chuangchaiya^{1,2}, K. Jangpatarapongsa^{2,3}, J. Sirichaisinthop⁴, J. Sattabongko sangpetch^{2,3} Sattabongkor⁵, K. ᄌ PLASMODIUM FALCIPARUM INFECTIONS

L Pattanapanyasat^{6,7}, K. Chotivanich¹, M. Troye-Blomberg⁸, L. Cui⁹, R. Udom

¹Maĥidol University, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Bangkok, Thailand, ²Mahidol University, Department of Pathobiology, Faculty of Science, Bangkok, Thailand, ³Mahidol University, Department of Clinical Microbiology, Faculty of Medical Technology, Bangkok, Thailand, 'Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand, 'AFRIMS, Department of Entomology, Bangkok, Thailand, 'Mahidol University, Department of Immunology, Faculty of Medicine, Siritaj Hospital, Bangkok, Thailand, 'Mahidol University, Center of Excellence for Flow Cytometry, Office for Research and Development, Bangkok, 'Thailand, 'Menner-Gren Institute, Department of Immunology, Stockholm, Sweden, 'Pennsylvania State University, Department of Entomology, Pennsylvania State, United States Department of Pathobiology,

Objectives: Plasmodium falciparum infection causes transient immunosuppression during parasitemic stage. However, immune response during simultation infection with both P. vivax and P. falciparum has not been investigated. In particular, it is not clear whether host immune response to malaria will be different compare an infection with single malaria species versus mixed malaria species.

Methods: Human blood mononuclear cells from mixed P. vivaxP. falciparum infection were characterized by flow cyrometry for the immunomodulatory T cells. In addition, antibodies to parasite-derived proteins and to PfMSP-1₁₉ and PvMSP-1₁₉ recombinant proteins were determined.

Results: We found that CD3'-delta 2'-TCR T cells, T-killer cell phenotype, were significantly higher in the acute-mixed P. vivax-P. falciparum infection con with either single P. vivax or P. falciparum infection. Interestingly, mixed malaria-infection had the highest antibodies against both P. vivax and P. falciparun pared with those antibodies obtained from the single malaria infection.

Conclusion: This suggests that co-infection with P. vivax could induce effector T-killer cells. In addition, antimalarial antibodies found in the mixed infection have protective role against disease severity in P. falciparum infection as shown by the lower parasitemia in the mixed infection group. These findings imp e during simultaneous will be different when

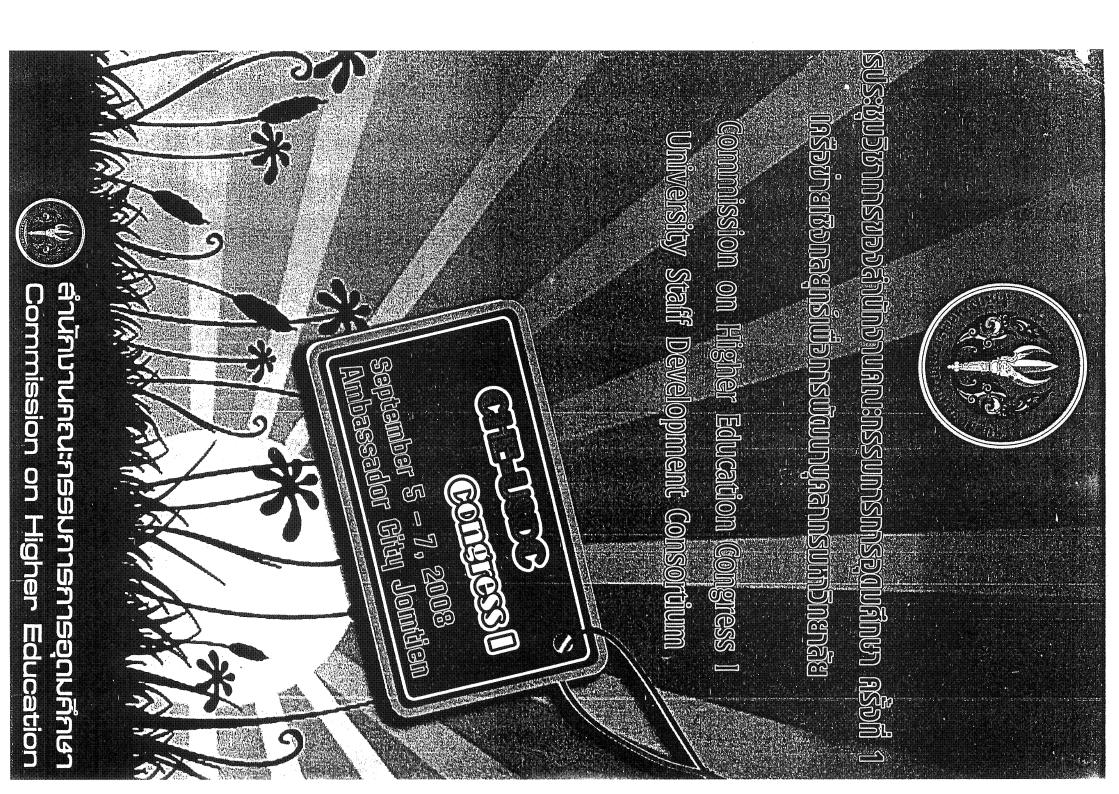
role

infection compared d P. falciparum com-

vivax may help resolving the severity against disease severity in P. falciparum infection. solving the severity of P. falciparum infection. ound in the mixed infection could group. These findings imply that

ARGENTINA. GROUPS A. FIRST

PHENOTYPIC CHARACTERIZATION OF PERIPHERAL BLOOD MEMORY CD8+ T CELL SUBSETS, WITHIN DIFF OF PATIENTS SUFFERING AMERICAN TEGUMENTARY LEISHMANIASIS (ATL) IN THE NORTHWEST OF ARGIREGIONAL REPORT


REGIONAL REPORT

C.M. Parodi; A. Barrio; M.F. García Bustos; M.C. Mora; F. Ramos; J. Beckar; S. Monroig; B. Ruibal-Ares; M.M. E de Bracco; M.A. Basombrío1 Investigaciones Hema

Aim: Phenotypic characterization of CD8+ T peripheral cells from patients suffering ATL is the purpose of this work in order to better understand their role within the pathology outcome.

Methods: Study groups: 1) 9 patients with diagnosis of ATL (infection duration: 5-20 years); 2) 5 ATL patients that received 2 or more complete therapy regimens but suffered frequent relapses (infection duration: 5-20); 3) 2 acute ATL patients (infection duration: < 1 month); 4) 6 healthy subjects. Isolated, cryopreserved and thawed peripheral blood mononclear cells were stained with: Anti-CD3,-CD8,-CD57,-CD457,-CD457A,-CD45RA,-CD28-FITC,-PE or -PerCP labelled monoclonal antibodies (BD, Pharmingen). Results were evaluated by flow cytometry (FACScan cytometry, CellQuest software).

Results: Lower percentages of CD127, CD27, CD28 and "early" CD8+ T cells (CD27+, CD28+) were observed in the first two groups of patients compared to the control group. Likewise, increase of "late" (CD27-, CD28-) and CD57+ T cells was observed, indicating the presence of highly differentiated cells. As shown in the able, these differences were more accentuated in group 1. On the other hand, no differences were found between acute ATL patients and the control group.

Killing mechanism of *Plasmodium vivax* parasites by $\gamma \delta$ T cells

Sattabongkot⁶, Jeerapat Sirichaisinthop⁷, Liwang Cui⁸ and Rachanee Udomsangpetch^{1,2}

¹Faculty of Medical Technology, ²Faculty of Science, ³Faculty of Medicine, Ramathibodi Hospital,

⁴Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. ⁵National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand. ⁶ Department of Entomology, AFRIMS, Bangkok, Thailand. ⁷Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand. 8Department of Kulachart Jangpatarapongsa^{1,2} Entomology, The Pennsylvania State University, PA 16802, USA Jangpatarapongsa^{1,2}, Sasithorn Promwan¹, Kirasikan Dabkam¹, Somying , Suradej Hongeng³, Kesinee Chotivanich⁴, Duangporn Polpanich⁵, Jetsumon

Objectives and Method

normal PBMC was incubated with intact P. vivax parasites, recombinant PvMSP119 and granzyme intracellular releasing by Flow cytometry. PvAMA1 proteins. After 5 days co-culturing, γδ T cells was determine the cytokine and Isopentenylpyrophosphate (IPP) from naïve PBMC. The different number of $\gamma\delta$ T cells of 1999). To determine the killing mechanisms of P. vivax parasites by $\gamma\delta$ T cells comparing leads to the inhibition of blood stage P. falciparum parasites in vitro (Troye-Blomberg, et al. has been reported (Jangpatarapongsa K, et al. 2006). Moreover, the activation of $\gamma\delta$ T cells An increasing of γδ T cells during acute P. νίναχ infection and convalescent period been found ij. P. falciparum, the γδ T cells were enriched by

of $\gamma\delta$ T cells activation among lymphocyte populations by P. $\nu i \nu \alpha x$. of CD69 $^+$ and CD25 $^+$ expressing on $\gamma\delta$ T cells respectively. This could tell us the early stage at day 2 after co-culturing. At day 1 and 3 of γδ T cells stimulation, we found the high level with intact P. νίναχ parasites. Moreover, the enriched γδ T cells were found the proliferation The percentage of γδ T cells in lymphocytes was elevated after PBMC co-culturing

rapidly decreased on further days. stimulation, the increasing of $\gamma\delta$ T cells expressing CD107a⁺ was increased at day 2 and at day 0 and rapidly decreased on further days. In contrast to what we found in normal PBMC intact P. vivax parasites. The level of enriched $\gamma\delta$ T cells expressing CD107a⁺ was elevated activities of γδ T cells by the intracellular expression of CD107a⁺ during co-culturing with As expected, by comparing with P. falciparum, we also determine the cytolytic

Conclusion and Discussion

also showed the killing mechanism of $\gamma\delta$ T cells against P. vivax infection by releasing of νίνα parasites at early stage of infection in blood stage. granzyme at early stage activation. These suggest that $\gamma\delta$ T cells may play role against P. Our results showed the activation of $\gamma\delta$ T cells during P. $\nu i \nu a x$ infection in $\nu i t r o$. We

Publications Output

cells. Eur. J. Immunol (accepted). alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T Jangpatarapongsa K, Chootong P, Sattabongkot J, et al. Plasmodium vivax parasites

infection: A study in Thailand and the Central of China (manuscript in preparation). echnologist Programme, NSTDA are gratefully acknowledged. The financial support from The Commission on Higher Education and Young Scientist and Xia H, Jangpatarapongsa K, Fang Q. et al. Immune response to Plasmodium vivax

Joonan & Histing

 ${\cal C}$ ommission on Higher Education-Congress II

 ${\it University}$ Staff Development Consortium

(CHE - USDC Congress II)

27 - 29 August, 2009

KILLING MECHANISMS OF PLASMODIUM VIVAX PARASITES BY GAMMA-DELTA T CELLS

Kulachart Jangpatarapongsa^{1,9}, Somying Loharungsikul¹, Lertyot Treeratanapiboon² Sasithorn Promwan¹, Kirasikarn Dabkam¹, Suradej Hongeng³, Kesinee Chotivanich⁴, Doungporn Polpanich⁵, Jetsumon Sattabongkot⁶, Jeerapat Sirichaisinthop⁷, Liwang Cui⁸ and Rachanee Udomsangpetch^{1,9}

Department of Clinical Microbiology, ²Department of Parasitology, Faculty of Medical Technology, Mahidol University, ³Faculty of Medicine, Ramathibodi Hospital, Mahidol University, ⁴Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, ⁵National Nanotechnology Clinical Tropical Medicine. Faculty of Tropical Medicine, Mahidol University, ⁵National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, ⁶Department of Entomology, AFRIMS, Bangkok, ⁷Center of Malaria Research and Training, Ministry of Public Health, Saraburi, ⁸Department of Entomology, The Pennsylvania State University, USA and ⁹Department of Pathobiology, Faculty o Science, Mahidol University.

and convalescent period has been reported. Moreover, the activation of gamma-delta T cells leads to the inhibition of blood stage *P. falciparum* parasites in vitro. To determine the killing mechanisms of P. vivax parasites by gamma-delta T cells comparing with what has been found in P. falciparum, the gamma-delta T cells were enriched by Isopentenylpyrophosphate (IPP) Objectives & Methods: An increasing of gamma-delta T cells during acute P. vivax infection intracellular releasing by Flow cytometry until day 5 culturing. and PvAMA1 proteins. Gamma-delta T cells was daily determined the cytokine and granzyme with intact of P. vivax parasites and protein extract of P. vivax parasites, recombinant PvMSP119 from naïve PBMC. Different number of gamma-delta T cells and normal PBMC were incubated

of parasites and the increasing percentage of parasite growth inhibition. proteins: LAMP-1) elevated from the first day of PBMC collection after co-culturing with the overall gamma-delta T cells showed proliferation at day 3 after the co-cultivation. Moreover, the gamma-delta T cells expressing IFN-gamma and CD107a+ (lysosomal associated membrane and CD25 was elevated after co-culturing with intact and the proteins of P. vivax parasites. The Results: Among the enriched gamma-delta T cells, the percentage of cells expressing CD69 intact and P. vivax antigens. This level was correlated with the significantly decreasing number

these actively activated gamma-delta T cells could kill the parasites via mechanism of granzyme activation of the innate immunity during acute malaria infection which may lead to the selection and cytokines at the early stage of cell activation. This study provides more understanding in in vitro. This suggests that gamma-delta T cells could be stimulated by P. vivax parasites and Conclusion: Our results showed the activation of gamma-delta T cells during P. vivax infection of appropriate malaria proteins as vaccine candidates in the future.

Publication Outputs: Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J. Tangpradubkul S, Hisaeda H, Troye-Blomberg M, Cui L, Udomsangpetch R. *Plasmodium vivax* alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T cells. (2008) Eur. J. Immunol Oct;38(10):2697-705

Xia H, Jangpatarapongsa K, Qiang F, Kaiming H, Sattabongkot J, Qi G, Cui L, Li B, Udomsangpetch R Immune response to Plasmodium vivax infection: A study in the Central of China. (In preparation)

mechanism of Plasmodium vivax parasites by gamma-delta T cells. (in preparation) Chotivanich K, Jangpatarapongsa K, Loharungsikul S, Treeratanapiboon L, Promwan S, Dabkam K, Hongeng S, Polpanich D, Sattabongkot S, Sirichaisinthop J, Cui L, Udomsangpetch R.

1.1

Vivax Malaria Research III+ Conference Bangkok, Thailand 30 September 2009 – 1 October 2009

AGENDA

30 September 2009	r 2009	Pullman Bangkok King Power Hotel
0800 – 0930:	Registration, Coffee and Pastry Break	Infinity Room 1 Foyer, Ground Floor
0930 – 1030:	Welcome & review of draft report Dr. John Adams et al. University of South Florida Department of Global Health	Infinity Room 1, Ground Floor
1030 - 1100:	Mid Morning Break	Infinity Room 1 Foyer, Ground Floor
1130 – 1230:	Discussion of draft report	
1230 - 1330:	Lunch	Cuisine Unplugged, Ground Floor
1330 – 1515:	1330 – 1515: Afternoon Presentations	Infinity Room 1, Ground Floor
<u>Diagnosis, cli</u>	Diagnosis, clinical management, pathogenesis	

Dr. Kesinee Chotivanich, Mahidol University Plasmodium vivax infected red cells cytoadherence to glycosaminoglycan

exposure related immunity in the Low Transmission region of the Peruvian Comparison of P. vivax with P. falciparum symptoms and development of

Oralee Branch, New York University

Cytoadhesion of *Plasmodium vivax* infected erythrocytes Laurent Renia, Singapore Immunology Network

Epidemiology, vectors, environmental control

2001-2002 Impact of global malaria programme on P.vivax prevalence in Cambodia

Frederic Ariey, Institut Pasteur

Rick Paul and Anuvaj Sakuntubhai, Institut Pasteur A role for G6PD Mahidol Mutation in Protection Against Malaria in South-East Asia

Northern Thai-Myanmar and Thai-Cambodia Active surveillance of malaria in military areas of operation (AO) along

COL Jariyanart Gaywee, Ph.D

Vivax malaria in China

Cao Jun, Ph.D

Situation of vivax malaria in Thailand

Bangkok Jeeraphat Sirichaisinthop, MD, MPH, Vector Borne Disease Training Center,

Geographic and Genetic of Thai Plasmodium vivax isolates

Usa Lek-Uthai, Mahidol University

Immunity, preclinical discovery, vaccine development

naturally acquired inhibitory antibodies. Mapping epitopes of the Plasmodium vivax Duffy binding protein with

Dr. Patchanee Chootong, Mahidol University

Natural immunity against P. vivax infection

Dr. Kulachart Jangpatarapongsa, Mahidol University

Drugs, Resistance, Targets and Development

Potential use of 8 aminoquinolines for malaria elimination on islands

Dennis Shanks, Director, Australian Army Malaria Institute

Drugs for Liver Stages

Dennis Kyle, Professor, University of South Florida, Department of Global Health

vivax: Practical considerations and its relevance to antimalarial sensitivity Ex vivo studies on fresh and cryopreserved clinical isolates of Plasmodium

Bruce Russell, Singapore Immunology Network

1515 – 1600: Break

1600 – 1745: Afternoon Discussion

Infinity Room 1, Ground Floor

1800 – 1930: Dinner

Infinity Room 2, Ground Floor

1 October 2009

Armed Forces Research Institute of Medical Sciences Vet Med conference room, Building 5

0800 - 0900: Coffee and Pastry

0900 - 11:30: Discussion

11:30: Meeting Adjournment