Materials and Methods

Study population

Plasma samples were collected from 76 patients with acute P. vivax infections (AC) at Wuhe County Hospital, Guzhen County Hospital, The Frist City Hospital, Bengbu city, Anhui province, China. The diagnosis of P. vivax malaria infection was based on the examination of Giemsa-stained thick blood films. Polymerase chain reaction (PCR) with species-specific primers was performed on DNA isolated from the blood samples to further verify P. vivax infections.

Blood samples were collected from additional 32 peoples residing in the same *P. vivax*-endemic area. These subjects serving as "immune controls" (IC) did not have acute *P. vivax* infections at the time of blood collection as determined by both microscopy. A further 20 healthy adults living in Bengbu city area without previous malaria exposure or antibodies to malaria parasites were recruited to serve as "naïve controls" (NC). The clinical characteristics of the subjects are listed in Table 1. This study was approved by Ethical Approval Committee of Biomedical Institute of Anhui Medical University. Informed consents were obtained from each individual before a blood sample was taken.

Parasite cultures and antigen preparations

P. vivax-infected red blood cells (iRBC) purified from infected blood was used as crude antigens for coating. Briefly, *P. vivax* infected blood was depleted of white blood cells by filtering through a sterile column of CF11 cellulose (Whatman®, Maidstone, UK) and the red blood cells were washed with RPMI-1640 by centrifugation at 1190 g for 5 minutes. The parasites were cultured for 24 – 30 hours at 5% hematocrit in McCoy's 5A medium (GIBCO,

RBC seconds at 150 watts and the protein concentration was determined by the Bradford assay (Bio-Uppsala, Sweden) at 1190 g for 10 minutes. The enriched iRBC pellets were sonicated for 40 The late an incubator containing 5% CO₂, 5% O₂ and 90% N₂ until matured to schizont stage (≥6 nuclei). Carlsbad, USA) supplemented with 25% human AB serum. P. vivax parasites were maintained in antigens was stored at -70°C to be used as a negative control. Rad, Hercules, were processed similarly as above and the protein concentration equal to the malaria stage iRBC were enriched by centrifugation using 60% Percoll (GE Healthcare, USA). The vials were then aliquoted and stored at -70°C until use. Uninfected

Protein expression and purification

PVMSP1 (19)

protein induction and cell pellet was collected and sonicated. and checked expression by SDS-PAGE collected and protein was purified by Ni-NTA beat (bind to 6His-tag). Finally, protein was eluted native were cut by using BamHI and XhoI and verified. Verified sequences were cloned into pET28a DNA then PCR was used to Briefly, blood filtered paper from isolated P. vivax infected patients was used to get genomic condition as described by manufacturer's protocol [Qiagen, USA]. Supernatant Protein was expressed in E. coli BL21 by culturing in LB medium. IPTG was used for get MSP1(19) gene by using designed primers in Table. Sequences Protein was purified by using

PVAMAI

pET22b vector. Protein was expressed in E. coli BL21 by culturing in LB medium. IPTG was were cut by using Ndel and Xhol enzymes and verified. Verified sequences were PCR was used to get PVAMA-1 gene by using designed primers in Table. Sequences

using denaturing condition as described by manufacturer's protocol [Qiagen, USA]. Supernatant used for protein induction and cell pellet was collected and sonicated. Protein was purified by was collected and protein was purified by Ni-NTA beat (bind to 6His-tag). Finally, protein was eluted and checked expression by SDS-PAGE.

Kesuit

between Thai and Chinese P. vivax infected patients Naturally anti-P. vivax IgG antibody responses after infected with P. vivax comparing

Anti-Crude PV

control, the immune controls among Chinese patients (0.8) had higher level of IgG against P. found the increasing in the level of IgG higher than Thai infected patients. (0.85) and Thai (0.14) infected patients. However, P. vivax infected patients from Chinese was P<0.001). After infection by P. vivax, the significant elevation of IgG was found both Chinese vivax crude antigen between Chinese (0.07) and and Thai (0.03) (MD=0.07, 95%CI=0.04-0.1, vivax crude antigen than Thai patients (0.07). There was significantly difference of base line level of IgG among naïve controls against P. In similar to naïve

Anti-P. vivax MSP-1(19)

Chinese naïve controls (0.3) (P<0.001). Moreover, the level of antibodies in peoples living in P. was compared. We found that there was higher levels mean of total IgG among Thai (0.03) than (P<0.001). We found two samples of Thai healthy control had IgG to PvMSP1(19) as high as P. vivax endemic area was significant different between Thai (0.31) and China population (0.06) Chinese population living outside (naïve controls) and inside (immune controls) endemic area value. Among both population, the mean level of total IgG to PvMSP-1(19) was significantly vivax infected patients as shown in above figure, so we excluded this samples to calculate the Base lines of mean level of total IgG to PvMSP1(19) among healthy controls of Thai and

increased during P. vivax infected patients (P=0.02). (P<0.001). Interestingly, we found the significantly higher of these levels among Thai than China acute P. vivax infection in both of Thai (0.8) (P<0.001) and Chinese (0.5)

Anti-P. vivax AMA-1

among Thai (0.2) than Chinese immune comtrols (0.1) (P<0.001). We also found non significant difference between healthy donors among Thai peoples living inside and outside endemic areas was significant higher comparing with naïve controls ((Thai P=<0.001, Chinese P<0.0.001). (P>0.05), which was contrasted with Chinese (P<0.001). During acute P. vivax infection, there had obviously high level of IgG to PvAMA-1, so we did not use this data to calculate (0.3) and China (0.2) population (P=-0.15). We also found a sample of P. vivax infected patient vivax endemic area was very low both of Thai (0.1) and Chinese population (0.03). However, The mean level of total IgG against PvAMA-1 among healthy controls living outside the the significant higher among Thai than Chinese (P<0.000). There was higher level among P. vivax patients population, we found no significant different between Thai

between Chinese and Thai P. vivax infected patients Cross-reactivity between P. vivax and P. falciparum antigens; comparative

percentage of base line level of IgG in naive controls among Chinese was very low (0.003) and Moreover, we also found the significant higher level of IgG against P. falciaprum antigens significantly lower than that of Thai (0.04) donors (MD=0.07, 95%CI=0.04-0.1, P<0.001). To examine the cross-reactivity between P. vivax and P. falciparum antigens, the P. falciparum crude antigens were used as coated antigen on the plate. The median vivax

immune controls among Thai (0.18) than Chinese (0.01) (MD=0.6, 95%CI=0.45-0.75). After (Chinese=0.07, Thai=0.36). infection with P. vivax, patients have had higher level of IgG against P. falciparum

Discussion

living the presence of antibodies to P. vivax antigens by testing with recombinat P. vivax proteins, i.e. the complex proteins in the crude extract from P. vivax-infected erythrocytes, we have confirmed status in those areas reactivity between P. falciparum and P. vivax which lead to the examination of epidemiological endemic PvMSP1₁₉ and PvAMA1, and compared the level of natural antibodies between two P. However, in an assay with proteins extracted from the parasites. Since this has been tested with in the endemic area do not produce high level of crude P. vivax-specific IgG [14]. In this study, we have evidence that Thai villagers having had P. vivax infection and areas, Chinese and Thai. The species specific antibodies could tell us the

antibody [17]. Similarly, IgG1 and IgG3 are predominant among P. vivax-infected patients with against blood stage of P. passive transfer of immune IgG to Gambian children provides protection [16]. The immunity primates [6] group with >19 years of exposure [19]. PvMSP119 is shown to induce immunity in non-human IgG3 against P. vivax are higher among the subjects with a 1) IgG among subjects with distinct degrees of malaria exposure in endemic area. The IgG1 and history of malaria [18]. Recent study has shown anti-P. vivax merozoite surface protein 1 (MSP-Various immunoglubulins are produced and IgG is the most important [15], Previously, a falciparum infection is associated with class and subclass of --- year-exposure period than the

immune controls. Moreover, this level was very high in similar to that showed in the acute P. Chinese than Thai. We found the higher level of anti-crude P. vivax IgG in Chinese than Thai two area are hypo-endemic area. vivax infection. Our study showed the significant lower of base line level of anti-crude P. vivax IgG among This could be the P. vivax endemicity in China was more than Thai, even these

or AMA-1, therefore they can develop IgG against these peptides. Another possible reason could could be hypothesized that the IgG among Thai donors can recognize a part of peptide of MSP-1 MSP-1 and anti-AMA-1 IgG was significantly lower in naïve controls of China than Thai. This among Thai healthy donors, therefore, they can develop and maintain the low level of antibodies be all of these malaria naïve donors have had malaria experiences, but asymptomatic conditions in their circulation. However, in contrast to what we found in anti-crude P. vivax IgG, the base line level of

both of healthy controls and immune controls of Chinese donors. After infected with P. vivax, antibody and the cross-reactivity. We found the very low level of base line IgG antibody among healhy and immune controls. Moreover, development of anti-P. falciparum IgG in Thai P. vivax those found in Thai. The higher level of base line of anti-P. falciparum IgG Chinese patients also develop a bit of P. falciparum antibodies. These results were in contrast to falciparum infection experience in their life during staying in malaria endemic area. falciparum infection in Thailand was more than China. This also could species specific of total IgG. Moreover, his could be told us the higher risk or incidence of infected Crude P. falciparum antigens was used patients were much more higher than Chinese. This could be suggested the accuracy of Ħ. this study to determine the be was found among species told us the

Thai patients living in malaria endemic area could develop P. falciparum antibody and maintain this level in their body.

Acknowledgements

(BRG498009). KJ was a research fellow supported by The Commission on Higher of Health (NIH) and by a grant (D43-TW006571) to LC and RU from FIC, NIH. Education of Thailand and the Fogarty International Center (FIC), National Institutes This work was partly supported by the Thailand Research Fund

Reference

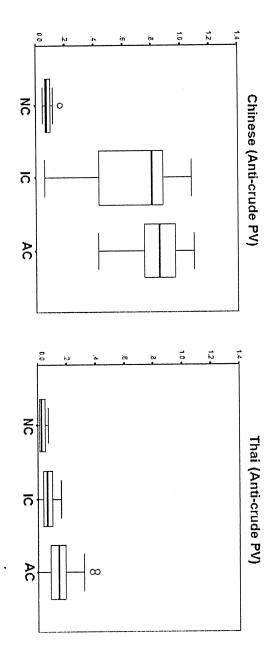
- **415**(6872):680-685 Sachs J, Malaney P: The economic and social burden of malaria. Nature 2002,
- Targett exoerythrocytic stages. Preliminary note. Br Med J 1980, 280(6208):153-154 Krotoski WA, Krotoski DM, Garnham PC, Bray RS, Killick-Kendrick R, GA, Guy MW: Relapses in primate malaria: discovery of two populations of Draper CC,
- living in malaria-endemic areas of Brazil. Malar J 2006, 5:83 the acquired immune responses to Plasmodium vivax VIR variant antigens in individuals Oliveira TR, Fernandez-Becerra C, Jimenez MC, Del Portillo HA, Soares IS: Evaluation
- Plasmodium vivax apical membrane antigen-1. Int J Parasitol 2005, 35(2):185-192 Thomas AW, Soares IS: Antibody response of naturally infected individuals to recombinant Rodrigues MH, Rodrigues KM, Oliveira TR, Comodo AN, Rodrigues MM, Kocken CH,
- under low transmission and unstable malaria conditions in Sri Lanka. Int J Parasitol 2006 against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 Handunnetti SM, Udagama-Randeniya PV: Comparison of naturally acquired antibody responses Wickramarachchi Ţ, Illeperuma RJ, Perera L, Bandara 'n Holm I, Longacre S
- human primates (Callithrix jacchus jacchus). Microbes Infect 2006, 8(8):2130-2137 vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-Kalil J, Mello LE et al: Immunogenicity of a recombinant protein containing the Plasmodium Rosa DS, Iwai LK, Tzelepis F, Bargieri DY, Medeiros MA, Soares IS, Sidney J, Sette A,
- other malarias. Prog Allergy 1988, 41:253-287. Troye-Blomberg M, Perlmann P: T cell functions in Plasmodium falciparum and

- mediated parasite neutralization. Scand J Immunol 2000, 52(3):233-239. Ļ Berzins K: Antigenic diversity of Plasmodium falciparum and antibody-
- In: The use of antimalarial drugs. Geneva: World Health Organization; 2001 WHO: Report of a WHO informal consulation. Report WHO/CDC/RBM/2001.33
- the 19-kDa C-terminal region of the merozoite surface protein-1. Malar J 2003, 2(1):39 Serological detection of Plasmodium vivax malaria using recombinant proteins corresponding to 10. Rodrigues MH, Cunha MG, Machado RL, Ferreira OC, Jr., Rodrigues MM, Soares IS:
- Longevity Plasmodium vivax merozoite surface protein 1. Am J Trop Med Hyg 1999, 60(3);357-363 1. Soares of naturally acquired antibody responses to the IS, da Cunha MG, Silva MN, Souza JM, Del Portillo HA, Rodrigues MM: N- and C-terminal regions of
- area of exclusive terminal regions of the Plasmodium vivax Merozoite Surface Protein 1 in individuals living in an 72(1):13-24 12. Soares IS, Oliveira SG, Souza JM, Rodrigues MM: Antibody response to the N and transmission of P. vivax malaria in the north of Brazil. Acta Trop 1999, Ģ
- individuals exposed to malaria. Infect Immun 1997, 65(5):1606-1614 responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in 13. Soares IS, Levitus G, Souza JM, Del Portillo HA, Rodrigues MM: Acquired immune
- Plasmodium vivax infection. Microbes Infect 2006, 8(3):680-686 Looareesuwan 14. Jangpatarapongsa S, Troye-Blomberg M, Udomsangpetch R: Memory **Ж** Sirichaisinthop J, Sattabongkot J, Cui T cells protect against ŗ Montgomery SM,
- and T cell stimulation by dendritic cells. Annu Rev Immunol 2002, 20:621-667. 15. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation
- 16. McGregor IA: The Passive Transfer of Human Malarial Immunity. Am J Trop Med

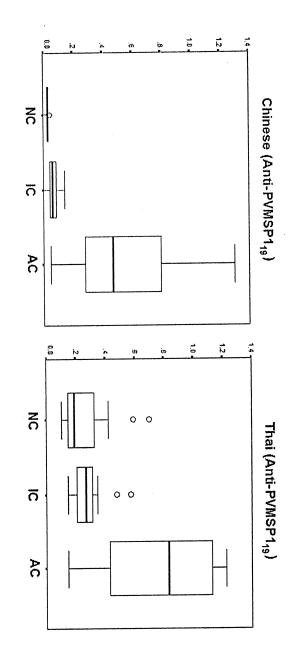
Hyg 1964, 13:SUPPL 237-239.

- stage Plasmodium falciparum parasites. Am J Trop Med Hyg 1999, 60(1):135-141. interaction of monocytes, hyperimmune sera, and immunoglobulin G on the growth of asexual 17. Shi YP, Udhayakumar V, Oloo AJ, Nahlen BL, Lal AA: Differential effect and
- 77(4):299-306. children exposed to malaria, before and after specific treatment]. J Pediatr (Rio J) 2001, 18. Pinto AY, Ventura AM, Souza JM: [IgG antibody response against Plasmodium vivax in
- terminal 19 kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitol Res 2005, 95(6):420-426. 19. Morais CG, Soares IS, Carvalho LH, Fontes CJ, Krettli AU, Braga EM: IgG isotype to C-

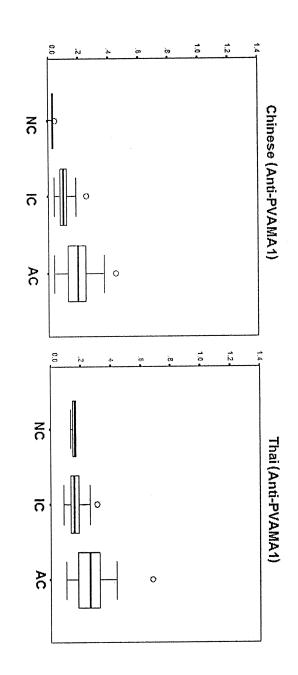
List of Tables

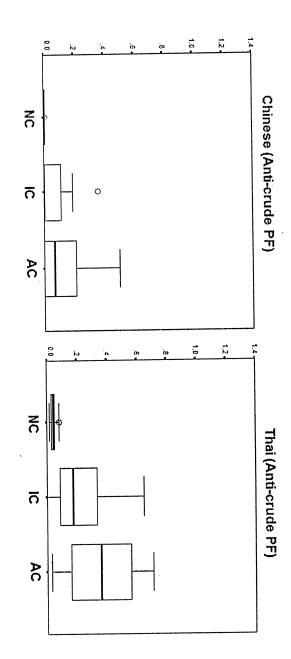

Table 1 Information and Clinical data of P.vivax patients, immune and naïve controls a

(0.02 - 1.2)	(34 - 40)	(30 - 63)	(15 - 70)				
0.4 ± 0.4	37.8 ± 1.3	41 ± 6	32 ± 12	20	32	52	Acute P. vivax
	(36 - 37)	(34 - 64)	(16 - 77)				
0	36.8 ± 0.4	47±7	40 ± 15	13	40	53	Immune controls
		(37 - 48)	(15 - 70)				
0	37.5 ± 0.5	41 ± 3	32 ± 12	12	15	27	Naïve controls
							Thai
							Acute P. vivax
							Immune controls
						4	Naïve controls
							Chinese
(%)	(°C)	(%)		Ħ	М		
Parasitemia	6	Hct	Age		Sex	N _o .	
	_						


Table 2 the PCR primers

PvAMA Reverse	PvAMA Forward	PvMSP1(19) Reverse	PvMSP1(19) Forward	Name
CCG CTC GAG tag tag cat ctg ctt gtt cg (XhoI)	GGAATTC CAT ATG acc gtt gag aga agc aca cg (Nde I) (PET22b)	CCG CTC GAG gct gga gga gct aca gaa aac (Xho I)	CG GGATCC aat gtg caa act cag tta tta ac (BamHI) (PET28a)	Sequences 5'→ 3' (enzymes)(vectors)


Figure legends


the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) comparing between minimum (upper-lower lines). Chinese and Thai. Fig. 1 Absorbance (405 nm) value of IgG antibody reacting with crude P. vivax antigens in Data are shown in median, interquartile ranges (box plots), maximum and

plots), maximum and minimum (upper-lower lines). comparing between Chinese and Thai. 119 protein in the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) Fig. 2 Absorbance (405 nm) value of IgG antibody reacting with recombinant P. vivax MSP-Data are shown in median, interquartile ranges (box

plots), maximum and minimum (upper-lower lines). comparing between Chinese and Thai. AMA-1 protein in the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) Fig. 3 Absorbance (405 nm) value of IgG antibody reacting with recombinant P. vivax Data are shown in median, interquartile ranges (box

plots), maximum and minimum (upper-lower lines). comparing between Chinese and Thai. Data are shown in median, interquartile ranges (box antigen in the naïve controls (NC), immune controls (IC), acute P. vivax infection (AC) Fig. 4 Absorbance (405 nm) value of IgG antibody reacting with crude P. falciparum

Killing mechanism of *Plasmodium vivax* parasites by γδ T cells

Sasithorn Promwan¹, Kirasikan Dabkam¹, Kesinee Chotivanich³, Duangporn Polpanich⁴, Jetsumon Sattabongkot⁵, Suradej Hongeng⁶, Jeerapat Sirichaisinthop⁷, Marita Troye-Kulachart Jangpatarapongsa¹, Somying Loharangsikul¹, Lertyot Treeratanapaiboon², Blomberg⁸, Liwang Cui⁹, Rachanee Udomsangpetch^{10*}

- University, Bangkok 10700, Thailand Department of Clinical Microbiology, Faculty of Medical Technology, Mahidol
- Bangkok 10700, Thailand ² Department of Parasitology, Faculty of Medical Technology, Mahidol University,
- University, Bangkok, Thailand Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol
- ⁴National Science and Technology Development Agency, Pathumthani, Thailand
- Bangkok 10400, Thailand ⁵ Department of Entomology, Armed Forces Research Institute of Medical Sciences,
- University, Bangkok, Thailand Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol
- Thailand ⁷ Center of Malaria Research and Training, Ministry of Public Health, Saraburi 18120,
- Stockholm, Sweden ⁸ Department of Immunology, Wenner-Gren Institute, Stockholm University, SE-10691
- ⁹ Department of Entomology, The Pennsylvania State University, PA 16802, USA
- Thailand 10 Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok,
- Correspondence: Professor Rachanee Udomsangpetch, PhD

Department of Pathobiology, Faculty of Science

Mahidol University, Rama VI Road

Bangkok 10400, Thailand

Tel +662 201 5576, Fax +662 354 7158 e-mail: scrudmu@yahoo.com

Introduction

drug resistance. In certain area of Srakaew, P. vivax infection is >90% of the infected cases. parasite among indigenous villagers of endemic area will be a good parameter for evaluation of host from the infection and severe manifestations. Measuring level of the antibody to P. vivax responds in order to eliminate the parasites, and how possible can the immune response protect However, this does not prevent subsequent infections. One of the major interests is that how host most cases, villagers have immunity to the parasites, which may help reducing disease severity. Cambodian borders. Malaria prevalence in these areas is increased indicating the potential risk of efficient the patients can protect themselves from the disease the baseline immunity. Cell-mediated immune response, having specificity to a particular antigen vivax parasite, elicited during the repeated episodes Thailand, major malaria endemic areas are located along the Thai-Myanmar and Thaiof infection will determine how

immunity against the disease. Various T cell populations categorized by a number of phenotypic expand. As shown earlier that expansion of gamma/delta T cells play roles in innate immunity to presentation and stimulation of the specific parasite proteins, particular T cell phenotypes will determines effectiveness of the cell-mediated response to malaria. Depending on the antigen markers are malaria infection (Stevenson and Riley 2004). Our previous study has shown a similar increase promote the parasites. There is an immune suppression caused by the presence of P. falciparum 2006). However, function of these T cells is not verified, whether they are for or against the P. gamma/delta T parasite. Antigen-specific T cells recruited during P. vivax infection can either eliminate or cell activation by malaria parasites plays an important role in elicitation of protective responsible cells in acute and convalescent P. for different functions. Function of various mononuclear leukocytes vivax infection (Jangpatarapongsa

how how immune surveillance would be in a carrier having hypnozoites in the liver parasite during acute infection (Hisaeda et al. 2005). However, there is limited information about patients primarily respond to acute P.vivax infections, and much less understanding about

during has shown that gd T cells can inhibit the growth of P. falciparum in vitro by cytolytic pathways induces production of pro-inflammatory cytokines (Troye-Blomberg et al. 1999). Recent study 2006). Activation of gamma/delta T cells but not alpha/beta T cells from malaria naïve donors gamma/delta T cells is in non-immune P. vivax patients during paroxysms (Perera et al. 1994), (Bordessoule et al. 1990; Ho et al. 1990; Roussilhon et al. 1990; Ho et al. 1994). An increase of cytokines and act as MHC restricted and non-restricted cytotoxic effector cells (Haas et al. alpha/beta TCR whereas about 6-8% bear the gamma/delta TCR. gamma/delta T produce various molecules. (TCR) consisting of alpha/beta and gamma/delta chain which are associated with CD3 surface the killing mechanism of $\gamma\delta$ T cells against two major malaria species: P. falciparum and P. mechanisms against malaria infection. However, the direct killing mechanism suggesting inhibits blood gamma/delta-memory gamma/delta Antigen recognition by human T cells is mediated through two types of T The that these cells have protective function involving both cytotoxic and regulatory stage infection has not yet been investigated. This studies aims to vast majority of lymphocytes parasite replication (Elloso et al. 1994; Troye-Blomberg et cells are T cells elevated in in acute and convalescent period (Jangpatarapongsa et al. acute in the peripheral blood (>90%) express or convalescent P. falciparum study and compare of these cells al. 1999) and cell receptor

Materials and methods

Isolation and activation peripheral blood mononuclear cells (PBMC)

were in RPMI 1640 supplemented with 10%fetal calf serum (FCS), and then plated in 24-well plates Norway) according to the manufacturer's recommendations. The PBMC pellet were resuspended at a concentration of 1×106/ml together with 30 mg/ml Isopentenylpyrophosphate (IPP) for 2 weeks with addition of 20 U/ml rhIL-2 every 3 days exclusion. At day 14, cells were washed reinvasion/growth inhibition assays. PBMC at the same amount of gamma delta were twice in TCM, counted, phenotyped by flow cytometry and used as effector cells in the parasite equation (Farouk et al. 2004): %parasite growth inhibition = parasitemia in test) / (% parasitemia in control) ×100 separated by gradient centrifugation using Lymphoprep™ (AXIS-Shied PoC AS, Oslo, Venous blood from five healthy donors was collected in heparinized tubes and PBMC % growth inhibition of the parasite was calculated according (% parasitemia in control ō the following

Parasite cultures

for intact parasites in the studies. P. vivax infected blood was depleted of white blood cells by filtering through a sterile column of CF11 cellulose (Whatman®, Maidstone, UK) and the red 5% O₂ and 90% N₂. Uninfected RBC was processed similarly as above was used as a base line. PBMC or $\gamma\delta$ T cells. Co-cultured parasites were maintained in an incubator containing 5% CO2. cells were were adjusted to be 2% parasitemia, 5% Hematocrit (Hct) before co-culturing with falciparum (AMB47) and P. vivax infected blood collected from endemic area wa used washed with RPMI-1640 by centrifugation at 1190 g for 5 minutes. Both

In vitro stimulation of PBMC

5% Hct. Medium alone, 1x106 cells/well of NRBC extracts or were used as negative control and and 90% N₂ in the presence of Intact P. falciparum or P. vivax parasites at a 2% parasitemia and inactivated FCS were cultured for 3 days at 37°C in a humidified chamber with 5% CO2, 5% O2 cells were harvested and stained for the gamma deta T cells and interested markers base line level, respectively. All experiments were performed in duplicates. After activation, the PBMC (1x10⁵, 1x10⁶ and 2 x 10⁶ cells/well) in RPMI-1640 supplemented with 25 mM 1.8 mg/ml D-glucose, 2 mM glutamine, 40 mg/ml of gentamicin and 10% heat-

Intracellular staining and flow cytometric (FCM) analysis

acquisition and analysis on FACSCalibur using the CELLQUEST software (Becton Dickinson, combination of fluorochrome-conjugated monoclonal antibodies (mAbs): RPE-Cy5-labeled anti-San Jose, USA) phosphate-buffered saline FITC-labeled anti-CD69 CD3 (Caltag, Burlingame, USA) and RPE-anti-gamma9 (Immunotech, Marseille, France) and marker by the three-color FCM analysis, harvested cells were stained with a or FITC-labeled anti-CD25 (PBS). Cells were fixed with 1% paraformaldehyde and data for 30 min at 4°C and washed with

permeabilizing buffer for 20 min at room temperature, paraformaldehyde USA) and labeled anti-CD107a and then washed with PBS For intracellular, after staining with RPE-Cy5-labeled anti-CD3 (Caltag, Burlingame, RPE-anti-gamma9 and washed with a permeabilizing (Immunotech, Marseille, France), the cells were the cells were incubated with FITCsolution. After incubation fixed

Kesults

Growth inhibition of *P. falciparum* parasites by γδ T cells

intact P. falciparum parasites were co-cultured with PBMC (Fig. 1A) and gamma delta T cells growth inhibition was not difference if we put more amounts of cells co-culturing with parasites of growth inhibition in 1x10⁶ cells/well of gamma delta T cells than PBMC. However, the (Fig. 1B). the % growth inhibition was dose dependence manner. At day 2, we found the higher The median percentage of parasites growth inhibition was increased everyday when

Activation of γδ T cells by *P. falciparum* parasites

gamma9⁺ stimulation with intact P. falciparum parasites (Fig. 2B). Moreover, the highest level of stimulation (Fig 2A). However, gamma delta T cells were maintained and increased after day 2 resulted in decreasing of gamma9 T cells activation. The similarly results were shown in both dependent manner. **PBMC** The median level of CD3⁺gamma9⁺ T cells in PBMC was decreased increased at day 2 and enriched gamma9 T cells. Therefore, the activation of gamma9 T cells was dose T cells was intact parasites co-culturing with 10^5 cells/well. The high amount of cells

Early activation of γδ T cells by P. falciparum parasites

T cells activation level from Fig. 1 was also confirmed the cells activation status. In concordance with gamma9 T cells activation, we found the early activation marker (gamma9⁺CD69⁺ T cells) Normally, CD69⁺ molecule was expressed at the early stage of activation. The gamma9

were expressed at day 2 in PBMC (Fig 3A), and day 1 in gamma delta T cells after activation with intact P. falciparum parasites (Fig. 3B). Moreover, the early activated marker was increased when amount of gamma delta T cells was increased (Fig 3B).

expression in $\gamma\delta$ T cells by *P. falciparum* parasites Activation of lysosomal-associated membrane protein-1 (LAMP-1) intracellularly

components of the lysosomal membrane. Protein components of the lysosomal membrane also mediate a number of essential functions of this compartment, including the acidification of the hydrolytic lysosomal lumen, transport of amino acids, fatty acids, and carbohydrates resulting from the involved in the interaction and fusion of the lysosomes with themselves as well as with other cell components, including endosomes, phagosomes, and the plasma membrane (Fukuda 1991). Lysosome degradation (Eskelinen 2006). In addition, lysosomal membrane proteins may be associated membrane protein-1 (LAMP-1 or CD107a) are major protein

gamma9⁺CD107a⁺ cells was increased in gamma delta T cells co-culturing with intact P. falciparum parasites which concordance with the activated marker (CD69⁺), the median percentage of gamma9⁺CD107a⁺ T lower amount of cells (10⁵ cells/well). was higher than was found in PBMC. Interestingly, the expression of CD107a+ was highest in this study, we determined the cytolytic activities by quantification of the levels of T cells expressed intracellular of gamma delta T cells (Fig. 4). Ħ

Gamma/delta T cells in acute P. vivax infected patients

the parasites and therefore control parasitemia to subside the disease severity. maintained after treatment (Fig.5). We hypothesize that the gamma/delta T cells can eliminate Gamma/delta T cells are activated during acute P. vivax infection and the high level is

Activation of $\gamma \delta$ T cells by *P. vivax* parasites

of CD3⁺gamma9⁺ T cells was increased after enriched gamma delta T cells was co-cultured with was increased after PBMC co-culturing with intact P. vivax parasites (Fig. 6). However, the level dependence CD3⁺gamma9⁺ T cells was increased at high amount of cells, suggesting that this level was dose .P At the first donors, the percentage of CD3⁺gamma9⁺ T cells expressing on lymphocytes vivax parasites at day 2 and maintained at day 3. We also found the

Early and late activation of $\gamma\delta$ T cells by P. vivax parasites

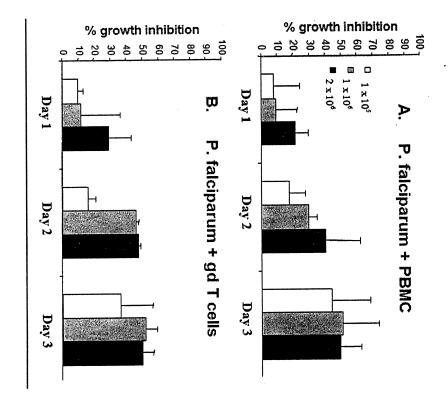
to what we found in P. falciparum, CD3+gamma9+T cells of the PBMC co-culturing with intact increased when amount of gamma delta T cells was increased (Fig 7A,B). after activation with intact P. vivax parasites (Fig. 7B). Moreover, the early activated marker was early activation marker (gamma9⁺CD69⁺ T cells) was expressed at day 1 in gamma delta T P. vivax parasites also expressed CD69 $^{+}$ at early stage (day 1) (Fig. 7A). Moreover, we found the gamma9 T cells activation was also confirmed the cells activation status. In similar

expressed at day 3 activation in PBMC co-culturing with intact P. vivax parasites (Fig. 7C). In contrast to early stage activation, the CD25⁺ expressing on CD3⁺gamma9⁺T cells was

vivax parasites was expressed at the first day stimulation (Fig. 7D). The activation was also dose However, the level of CD3⁺gamma9⁺CD25⁺ T cells in gamma delta T cells co-culturing with P.

expression in $\gamma \delta$ T cells by *P. vivax* parasites of lysosomal-associated membrane protein-1 (LAMP-1) intracellularly

T cells co-culturing with intact P. vivax parasites (Fig. 8). The level of CD3⁺gamma9⁺CD107a⁺ activities expressing of CD107a⁺ intracellularly of gamma delta T cells in PBMC or gamma delta T cells was increased at day 0 and rapidly decreased at day later (Fig. 8A). In contrast to what we culturing with intact P. vivax parasites at day 2 and rapidly decreased at day later. found in PBMC, the level of gamma9⁺CD107a⁺ T cells was increased in gamma delta T cells co-In comparison with what we found in P. falciparum, we also determined the cytolytic


Acknowledgements

a grant (D43-TW006571) to LC and RU from FIC, NIH. collection of the samples. This work was partly supported by the Thailand Research Fund Entomology, AFRIMS, Bangkok, and the Malaria Training Center in Saraburi, Thailand for Thailand and the Fogarty International Center (FIC), National Institutes of Health (NIH) and by (BRG498009). KJ was a research fellow supported by The Commission on Higher Education of We thank all staff at the Mae Sot and Mae Kasa Malaria Clinics, the Department of

References

- Bordessoule, D., P. Gaulard, et al. (1990). "Preferential localisation of human lymphocytes 461-4 bearing gamma delta T cell receptors to the red pulp of the spleen." J Clin Pathol 43(6):
- Elloso, M. M., H. C. van der Heyde, et al. (1994). "Inhibition of Plasmodium falciparum in vitro by human gamma delta T cells." J Immunol 153(3): 1187-94.
- Eskelinen, autophagy." Mol Aspects Med 27(5-6): 495-502. ĹΞ L. (2006). "Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and
- Farouk, S. E., L. Mincheva-Nilsson, et al. (2004). "Gamma delta T cells inhibit in vitro growth cytotoxic pathway that requires granulysin." Eur J Immunol 34(8): 2248-56 of the asexual blood stages of Plasmodium falciparum by a granule exocytosis-dependent
- Fukuda, intracellular trafficking." J Biol Chem 266(32): 21327-30 Z. (1991). "Lysosomal membrane glycoproteins. Structure, biosynthesis, and
- Haas, W., P. Pereira, et al. (1993). "Gamma/delta cells." Annu Rev Immunol 11: 637-85
- Hisaeda, H., K. Yasutomo, et al. (2005). "Malaria: immune evasion by parasites." Int J Biochem Cell Biol 37(4): 700-6.
- Ho, M., P. Tongtawe, et al. (1994). "Polyclonal expansion of peripheral gamma delta T cells in human Plasmodium falciparum malaria." Infect Immun 62(3): 855-62.
- Но, M., H. K. falciparum malaria." Immunol Lett 25(1-3): 139-41. Webster, et al. (1990). "Increased gamma delta T cells in acute Plasmodium
- Jangpatarapongsa, Plasmodium vivax infection." Microbes Infect 8(3): 680-6 K., ۳. Sirichaisinthop, et al. (2006). "Memory cells protect against

- Perera, M. K., R. Carter, et al. (1994). "Transient increase in circulating gamma/delta T cells during Plasmodium vivax malarial paroxysms." J Exp Med 179(1): 311-5.
- Roussilhon, C., M. Agrapart, et al. (1990). "T lymphocytes bearing the gamma delta T cell receptor in patients with acute Plasmodium falciparum malaria." J Infect Dis 162(1): 283-
- Stevenson, M. M. and E. M. Riley (2004). "Innate immunity to malaria." Nat Rev Immunol 4(3): 169-80.
- Troye-Blomberg, M., S. Worku, et al. (1999). "Human gamma delta T cells that inhibit the in cytolytic and proinflammatory molecules." Scand J Immunol 50(6): 642-50. vitro growth of the asexual blood stages of the Plasmodium falciparum parasite express

counted everyday from day 0 until day 3. Data represent median percentage (blocks) ± SD cells (B) at different cell number from 1x105, 1x106 and 2x106 (vertical bars) from five experiments. Fig. 1. % P. falciparum parasites growth inhibition after co-culturing with PBMC (A) or γδ T cells/well. parasitemia was

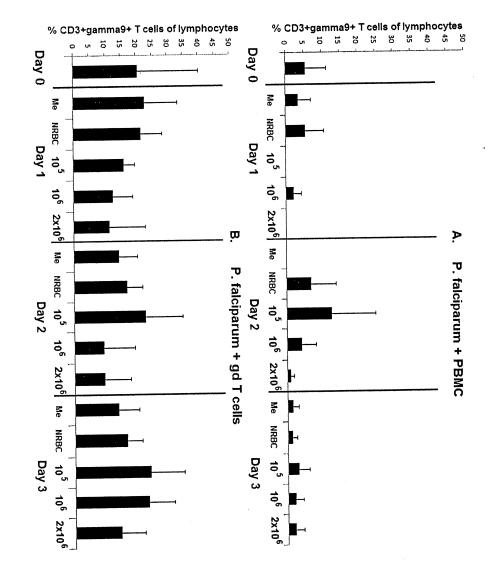


Fig. 2 parasitemia, 5% Hct was co-culturing with PBMC (A) or γδ T cells (B) at different cell number red blood cells (NRBC) was used as base lines levels. Data represent median percentage (blocks) ± SD (vertical bars) from five experiments 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative controls and normal % $\mathrm{CD3}^{+}\mathrm{gamma9}^{+}\mathrm{T}$ cells of lymphocytes shown by flow cytometry. *P. falciparum* at 2%

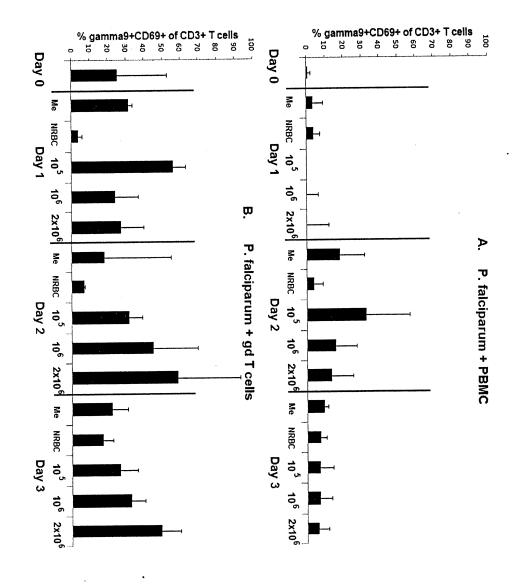
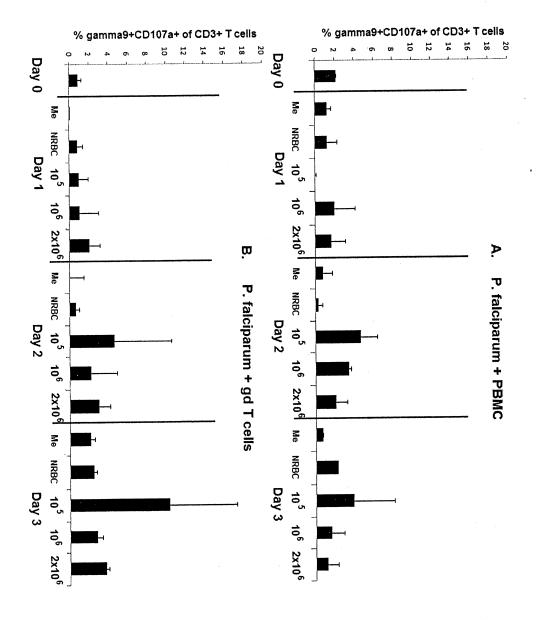
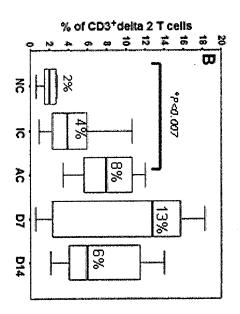




Fig. parasitemia, 5% Hct was co-culturing with PBMC (A) or γδ T cells (B) at different cell number ± SD (vertical bars) from five experiments. red blood cells (NRBC) was used as base lines levels. Data represent median percentage (blocks) 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative controls and normal w % gamma9⁺CD69⁺ T cells of CD3⁺ shown by flow cytometry. P. falciparum at 2%

normal red blood cells (NRBC) was used as base lines levels. Data represent median percentage number 10⁵, 10⁶ and 2x10⁶ cells per well. Medium alone (Me) was used as negative controls and parasitemia, (blocks) ± SD (vertical bars) from five experiments **4** % gamma9⁺CD107a⁺ 5% Hct was co-culturing with PBMC (A) or □□ T cells (B) at different cell T cells of CD3⁺ shown by flow cytometry. P. falciparum at 2%

exposed donors (IC)(N=25), acute P. vivax infection (AC)(N=17), the day 7 (D7), and day 14 Fig. 5 Gamma/delta T cells shown by flow cytometry. Naïve controls (NC)(N=27), malarialower lines) are shown. (D14) after treatment. Median, interquartile ranges (box plots), maximum and minimum (upper-

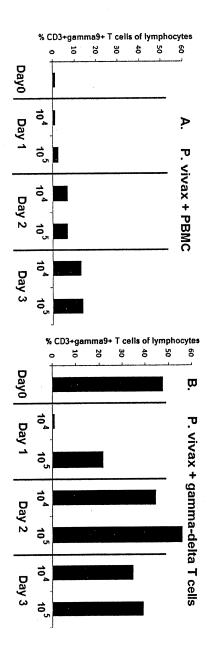
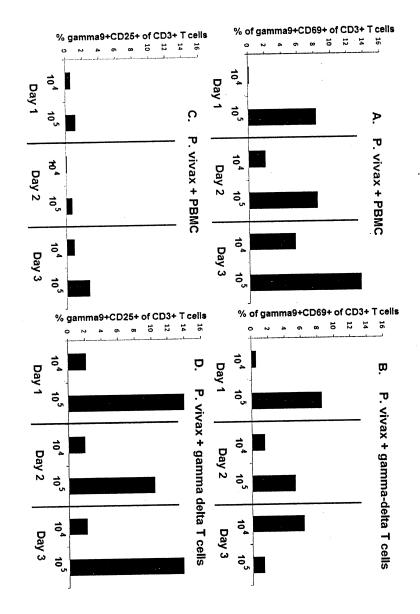
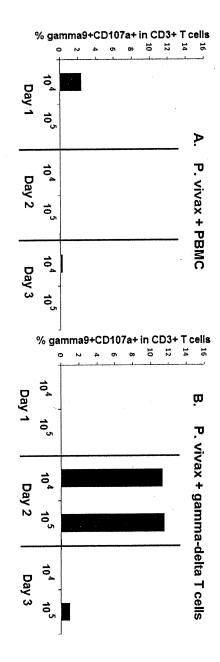




Fig. parasites at 2% parasitemia, 5% Hct were co-culturing with PBMC (A) or $\gamma\delta$ T cells (B) at percentage (blocks) \pm SD (vertical bars) from five experiments. controls and normal red blood cells (NRBC) was used as base lines levels. Data represent median different cell number 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative 6 % CD3⁺ gamma 9^+ T cells of lymphocytes shown by flow cytometry. Intact P. vivax

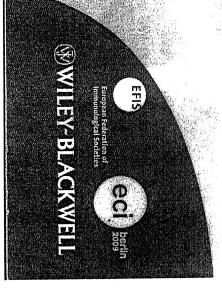
cells (B,D) at different cell number 105, 106 and 2x106 cells per well. Medium alone (Me) was Intact P. vivax parasites at 2% parasitemia, 5% Hct were co-culturing with PBMC (A,C) or $\gamma\delta$ T Fig. 7 % gamma9⁺CD69+ (A,B) and CD25⁺ T cells (C,D) of CD3⁺ shown by flow cytometry. represent median percentage (blocks) used as negative controls and normal red blood cells (NRBC) was used as base lines levels. Data

(blocks) at 2% parasitemia, 5% Hct were co-culturing with PBMC (A) or yô T cells (B) at different cell normal red blood cells (NRBC) was used as base lines levels. Data represent median percentage number 10^5 , 10^6 and $2x10^6$ cells per well. Medium alone (Me) was used as negative controls and Fig. 8 % gamma9⁺CD107a⁺T cells of CD3⁺ shown by flow cytometry. Intact P. vivax parasites

1SSN 0014-2980 · EJIMAF 39 (S1) S1-S808 (2009) · Vol. 39 · No. S1 · September 2009

European Journal of

Supplement


SICSY DEFICE

Abstracts

2nd European Congress of Immunology

September 13-16, 2009 www.eci-berlin2009.com Berlin, Germany

www.eji-journal.eu

0

PA13/60 KILLING MECHANISM OF PLASMODIUM WWAX PARASITES BY GAMMA-DELTA T

CELLS
K. Chotivanich⁵, D. Polpanich⁶, J. Sattabongkor⁷,

k. Jangatearapongsa," S. Loharangsikul', L. Treeratanapiboon', S. Promwan', K. Dabkam', S. Hongeng', K. Chorivanich', D. Polpanich', J. Sartabongkot', J. Chaisinthops, L. Cul', R. Udomsangpetch¹²
Faculty of Medical Technology, Mahidol University, Department of Clinical Microbiology, Bangkok, Thailand, Faculty of Science, Mahidol University, Department of Partabiology, Bangkok, Thailand, Faculty of Medical Technology, Mahidol University, Department of Parasitology, Bangkok, Thailand, Faculty of Medical Remathibodi Hospital, Mahidol Eniversity, Bangkok, Thailand, Faculty of Medical Remathibodi Hospital, Mahidol Eniversity, Bangkok, Thailand, Faculty of Topkal Medicine, Mahidol University, Department of Clinical Tropical Medicine, lok, Thailand, National Nanorectanology Center, National Science and Technology Development Agency, Pathumthani, Thailand, AprilMS, Department of mology, Bangkok, Thailand, Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand, The Pennsylvania State University, Department of Entomology, State College, United States

Objectives & methods: An increasing of gamma-delta T cells during acute P. vivax infection and convalescent period has been reported. Moreover, the activity of gamma-delta T cells leads to the inhibition of blood stage P. foliapurum parasites in vitro. To determine the killing mechanisms of P. vivax parasites by gadelta T cells comparing with what has been found in P. falciparum, the gamma-delta T cells were enriched by Isopentenylpyrophosphate (PP) from reave P. Different number of gamma-delta T cells and normal PBMC were incubated with intact of P. vivax parasites and protein extract of P. vivax parasites, recomb PMCSP1₃ and PvAMA1 proteins. Gamma-delta T cells was daily determined the cytokine and granzyme intracellular releasing by Flow cytometry until day.

Results: Among the enriched gamma-delta T cells, the percentage of cells expressing CD69* and CD25* was elevated after co-culturing with intact and the teins of P. vivax parasites. The overall gamma-delta T cells showed proliferation at day 3 after the co-cultivation. Moreover, the gamma-delta T cells expressing gamma* and CD107a* (lysosomal associated membrane proteins: LAMP-1) elevated from the first day of PBMC collection after co-culturing with the intact P. vivax antigens. This level was correlated with the significantly decreasing number of parasites and the increasing percentage of parasite growth inhibition Conclusion: Our results showed the accivation of gamma-delta T cells could kill the parasites via mechanism of granayme and cytokines at the early stage of cells by P. vivax parasites and these actively activated gamma-delta T cells could kill the parasites via mechanism of granayme and cytokines at the early stage of cells vation. This study provides more understanding in activation of the innate immunity during acute malaria infection which may lead to the selection of appropriate as vaccine candidates in the future.

ANALYSIS OF INVARIANT NKT CELLS OF PATIENTS WITH ATOPIC DERMATITIS BY FLOW CYTOMETRY E. Gyimesi¹, S. Sipka¹, M. S. Szárazné¹, A. Szegedi²

¹University of Debrecen, Medical and Health Science Centre, 3rd Department of Internal Medicine, Debrecen, Hungary, ²University Health Science Centre, Department of Dermatological Diseases, Debrecen, Hungary of Debrecen, Medicai

Objectives: Several evidence suggest that invariant NKT cells (iNKT) connect innate and acquired innume system. They are able to produce both Th1 and cytokines after stimulation. Atopic dermatitis (AD) is a chronic inflammatory skin disease. Th1-like and Th2-like cytokines have been implicated in the pathog sis of AD, but there are controversial data on their role in AD.

Methods: The frequency and absolute number of iNKT cells in mononuclear cells (PBMCs) of peripheral blood of patients with atopic dermatitis (AD) (n=43) healthy controls (n=13) were determined by flow cytometry using anti-CD3 and monoclonal antibody specific for the CDR3 loop of the invariant TCR a cha (DN), CDA-CD8+ and CDA+CD8+ subsets of iNKT cells by five colour flow cytometry in patients with AD (n=10) and healthy controls (n=10).

Results: Both frequency and absolute number of iNKT cells were significantly lower in patients with AD (n=10) and healthy controls (n=10).

AD patients (R=0.726 and P< 0.001) and healthy controls (R=0.693 and P< 0.001). There was a positive correlation between the frequency of DN cells and iNKT cells be NKT subsets of AD patients, however the intracellular IL-4 level was significantly bigher in DN subpopulation of iNKT cells and the cytokine producing capacity of the CD4/CD8 iNKT subsets are different in peripheral blood obta controls (P< 0.05).

Conclusion: The frequency, the number of iNKT cells and the cytokine producing capacity of the CD4/CD8 iNKT subsets are different in peripheral blood obta from AD patients compared to healthy controls.

Our result suggest that the DN iNKT cell subset can serve as a source of IL-4 that promotes the Th2 differentiation in AD patients and might play a role in the pagencies of this disease.

PA13/62 ISOLATION OF MURINE INTRAHEPATIC IMMUNE CELLS EMPLOYING A MODIFIED PROCEDURE FOR DISRUPTION AND FUNCTIONAL CHARACTERIZATION OF THE B, T AND NATURAL KILLER T CELLS M.R. Qazi¹, K. G. Blom¹, J. B. N. Matos¹, B. D. Nelson¹, J. De Pierre¹, M. Abedi-Valugardi¹ stockholm University, Biochemistry and Biophysics, Stockholm, Sweden R MECHANICAL OBTAINED

Introduction: Intrahepatic immune cells (IHIC) are known to play central roles in immunological responses mediated by the liver, and isolation and phenot characterization of these cells is therefore of considerable importance.

Aims: In the present investigation, we developed a simple procedure for the mechanical disruption of mouse liver that allows efficient isolation and phenot characterization of IHIC. These cells are compared with the corresponding cells purified from the liver after enzymatic digestion with different concentration collagenase and DNase.

Results: The mechanical disruption yielded viable IHIC in considerably greater numbers than those obtained genzymatic digestion. The IHIC isolation is mechanical disruption were heterogeneous in composition, consisting of both innate and adaptive immune cells, of which B, T, natural killer (I NK T cells, granulocytes and macrophages were the major populations (constituting 37.5%, 16.5%, 12.1%, 7.9%, 7.9% and 7.5% of the total number of cells receively). The IHIC obtained following enzymatic digestion contained markedly lower numbers of NK T cells (1.8%). The B, T and NK T cells among I solated expectively). The IHIC obtained following enzymatic digestion contained markedly lower numbers of NK T cells (1.8%). The B, T and NK T cells among I rick, concanavalin A and alpha-galactosylecramide respectively) and produced immunoglobulin M and interferon gamma.

Conclusions: Thus, the simple procedure for the mechanical disruption of mouse liver described here results in more efficient isolation of functionally competities.

THE FUNCTION AND CHARACTERISTICS OF SUPERANTIGEN SEB-ACTIVATING CD8*NKT CELLS Y. Chen¹, Y.L. Guo¹, J. Zhong², S.L. Zhang²

¹General Hospital of PLA, Institute of Basic Medical Sciences, Department of Immunology, Beijing, China, ²Fudan University, School of Life Science, and Microbial Biotechnology, Shang Hai, China , Microbiol

Nature Killer T cells (NKT) are a special T cell population with co-expresses NK and T cell surface markers. Murine NKT cells include CD4* NKT and CD4* CD8* cells. NK1.1* NKT cells may release large amounts of IL-2, IL-4, IFN-y and IL-10 after they are activated. It has been reported that \(\alpha\)-Calactorsykeramide (\(\alpha\)-Calactorsykeramide (\(\alpha\)-ConA, LIS* and IL-2 had significantly decreased compared with that of normal lymphocytes. The effect cells exerted an inhibitory effect for response of normal lymphocytes to ConA and IL-2. There was a significantly increase in the percent of CD8* NK1.1* and TcRV\)-RYR-1 (\(\alpha\)-RYR-1 (\(\alpha\)-RYR-2 (\(\alpha\)-CD8* NK1.1*) and TcRV\)-RYR-1 (\(\alpha\)-RYR-1 (\(\alpha\)-RYR-2 (\(\alph

THROUGH TCR-DEPENDENT

INTESTINAL INTRAEPITHELIAL yô T CELL SHAPE THEIR CELLULAR ENVIRONMENT THI PRODUCTION OF CHEMOKINES AND CYTOKINES

F. Malinarich¹, E. Grabski², T. Worbs³, R. Förster³, M. Hermoso¹, I. Prinz³

Universidad de Chile, Facultad de Medicina, ICBM, Programa de Inmunología, Santiago, Chile, ³TWINCORE - Programa de Inmunología, Santiago, Santiago, Santiago, Santiago, Santiago, Sa Centre for Germany for Experimental and Clinical Infec

γδ T cells in the intestinal intraepithelial compartment (γδ iIEL) show an intrinsic activated phenotype. We hypothesised that their T cell receptor γδ (TCR) implicated in the activation of γδ iIEL. Because the TCR γδ ligands in mice are not well described, monoclonal antibodies (mAb) directed against the γδ TCR) the clone GL3 which binds the δ subunit of TCR γδ, are important tools to specifically activate γδ T cells. Using cytometric Indo-IAM measurement, we could calcium flux of intestinal and peripheral γδ T cells from TCRd-H2BeGFP reporter mice. Stimulation with anti-γδ clone GL3 or anti-CD3 clone 2C11 elicited action of γδ T cells suggesting that TCR γδ and CD3 molecules in γδ T cells are functional and signalling competent.

S 393

sion was found in the B-cell zone after low-dose injection only. A much stronger T-cell proliferation was induced after high-dose formed T cells did not respond to the second encounter with SRBC in the footpad. This unresponsiveness remained even after tran host and challenging them again with SRBC.

Conclusion: We conclude that the absent DTH reaction after high-dose injection of SRBC is not due to lower numbers of T cells. formed T cells are either unable to migrate into the skin or are regulatory T cells which suppress the DTH reaction in the skin. T-cell proliferation was induced after high-dose injection of SRBC. The This unresponsiveness remained even after transferring the T cells into This newly

the newly

1/55 LIVER SINUSOIDAL ENDOTHELIAL AUTOIMMUNE HEPATITIS CELLS INDUCE ANTI-INFLAMMATORY CD4" T CELLS SUPPRESSING MURINE

N. Kruse¹, A. Schrage¹, K. Neumann¹, K. Derkow², E. Schott², A. Kühl³, C. Lodde Medizinische Klinik I, Charité, Universitätsmedizin Berlin, Berlin, Germany, ²Medizinische Klinik I, Research Center ImmunoSciences gie, Charité, Universitätsmedizin Berlin, Berlin, Germany Loddenkemper³, A. Hamann⁴, K. Klugewitz¹ my, ²Medizinische Klinik m.S. Hepatologie und Gastroenterologie, ciences (RCIS), Charité, Universitätsmedizin Berlin, Berlin, German , Charité ay, "Exp. I é Campus Vir-. Rheumatolo-

Objectives: Cellular mechanisms that maintain the intrahepatic immune balance are crucial in viral or autoimmune liver diseases and for allograft acceptance. For naive CD8* T cells, liver sinusoidal endothelial cells (LSEC) have been shown to act as non-professional antigen presenting cells and thus induce tolerance by inhibition of cytotoxicity. In this study we investigated consequences of CD4* T cell primitig by LSEC.

Methods: Priming by LSEC was investigated in bone marrow chimeric mice expressing MHC class II exclusively on non-hematopoietic cells. We studied the cyto-kine expression of LSEC primed CD4* T cells (T_{LSEC}) and determined the stability of their phenotype in vivo by adoptive transfer into congenic mice and immunogenic antigen application. Investigating suppressive capacities of T_{LSEC} we performed an in vitro suppression assay. The ability of T_{LSEC} to influence proinflammatory reactions in vivo was analyzed in a model of T cell-mediated autoimmune hepatitis. Hepatic inflammation was monitored by ALT levels and histologic analyses. The migration pattern of T_{LSEC} was investigated by an in vivo homing assay.

Results: We demonstrated that LSEC induce proliferation of naive CD4* T cells in vitro. Although the expression of CD45RB was downregulated in T_{LSEC}, these cells did not produce effector cytokines. This phenotype of T_{LSEC} remained stable in vivo. The in vivo migration pattern of T_{LSEC} was different from cells activated by professional antigen presenting cells isolated from the spleen, since they showed enhanced homing into lymph nodes and the intestine while they were also present in the liver. Interestingly, T_{LSEC} negative for CD25 and Foxp3, suppressed the proliferation of naive CD4* T cells in vitro. They did neither support a DTH reaction nor a hepatic inflammation and were even able to suppress hepatitis.

Conclusion: Priming of naive CD4* T cells by LSEC leads to an anti-inflammatory phenotype here referred to as T_{LSEC}. Thus liver sinusoidal endothelia may directly cont

aKAL BLOOD ;). Adjei⁴, B = 1 FROM PATIENTS WITH BURULI ULCER

¥/56

SPECIFIC T-CELL RESPONSES IN LESIONS AND PERIPHERAL BLOOD FROM PACK. Becker¹, M. Badusche¹, G. Bretzel², K.-H. Herbinger², W. Nienhuis³, O. Adjer⁴, B. Fleischer¹, M. Ja Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany, ³University of Munich, Munich, Netherlands, ⁴Kumasi Centre for Collaborative Research, Kumasi, Ghana , Germany, ³University Medical Centre Groningen, Groningen

Buruli ulcer disease (BUD), caused by Mycobacterium (M.) ulcerans, is a neglected bacterial infection of the poor in remote rural areas. BUD is a mutilating disease leading to severe disability, it is the third most common mycobacterial infection in immunocompetent people after tuberculosis and leprosy most endemic in West

There is some evidence that a T helper type 1-mediated immune response is protective against *M. ulcerans* but the role and distribution of antigen-specific T cells in BUD lesions is hardly defined. In addition, analysis and diagnosis of specific T-cell immunity against *M. ulcerans* is hampered by concomitant infection with other applied mycobacteria, *M. tuberculosis*, and/or *M. bovis BCG* vaccination.

Here we determine the T-cell distribution of two ulcerative lesions and peripheral blood from a BUD patient using a quantitative PCR method for analyses of T-cell receptor VB (TCR-BV) chains and compare the antigen-specific T-cell response in peripheral blood of children infected with *M. ulcerans* or other mycobacteria using in vitro restimulation with mycobacterial lysates and intracellular cytokine analyses.

TCR-BV chains are different between two distinct lesions from the same BU patients. This suggests that T cells, which infiltrate the BUD lesions, are oligoclonally expanded but a predominantly infiltrating subtype could not be identified.

Antigen-specific T-cell cytokine analyses of peripheral blood mononuclear cells from patients with BUD (n = 26) and other mycobacterial infections (n = 9) reveal FN-7, IL-2, and TNF-a secretion after stimulation with lysates and purified protein derivates from a non-toxic *M. ulcerans* strain, *M. tuberculosis*, and *M. avium*. In Despite crossreactivity against different mycobacterial bysates, ratios of specific T cells (percentage of *M. ulcerans* strain, *M. tuberculosis*, and *M. avium*. In individual donors) were significantly different between the BUD patients and donors with other mycobacterial infections. Therefore concomitant measurement of T-cell cytokine expression after restimulation with different mycobacterial lysates can help to distinguish early infection with *M. ulcerans* from infection with other mycobacteria. mycobacteria

PLASMODIUM VIVAX ALTERS IMMUNOSUPPRESSION CAUSED S. Chuangchaiya^{1,2}, K. Jangpatarapongsa^{2,3}, J. Sirichaisinthop⁴, J. Sattabongko sangpetch^{2,3} Sattabongkor⁵, K. ᄌ PLASMODIUM FALCIPARUM INFECTIONS

L Pattanapanyasat^{6,7}, K. Chotivanich¹, M. Troye-Blomberg⁸, L. Cui⁹, R. Udom

¹Maĥidol University, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Bangkok, Thailand, ²Mahidol University, Department of Pathobiology, Faculty of Science, Bangkok, Thailand, ³Mahidol University, Department of Clinical Microbiology, Faculty of Medical Technology, Bangkok, Thailand, 'Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand, 'AFRIMS, Department of Entomology, Bangkok, Thailand, 'Mahidol University, Department of Immunology, Faculty of Medicine, Siritaj Hospital, Bangkok, Thailand, 'Mahidol University, Center of Excellence for Flow Cytometry, Office for Research and Development, Bangkok, 'Thailand, 'Menner-Gren Institute, Department of Immunology, Stockholm, Sweden, 'Pennsylvania State University, Department of Entomology, Pennsylvania State, United States Department of Pathobiology,

Objectives: Plasmodium falciparum infection causes transient immunosuppression during parasitemic stage. However, immune response during simultation infection with both P. vivax and P. falciparum has not been investigated. In particular, it is not clear whether host immune response to malaria will be different compare an infection with single malaria species versus mixed malaria species.

Methods: Human blood mononuclear cells from mixed P. vivaxP. falciparum infection were characterized by flow cyrometry for the immunomodulatory T cells. In addition, antibodies to parasite-derived proteins and to PfMSP-1₁₉ and PvMSP-1₁₉ recombinant proteins were determined.

Results: We found that CD3'-delta 2'-TCR T cells, T-killer cell phenotype, were significantly higher in the acute-mixed P. vivax-P. falciparum infection con with either single P. vivax or P. falciparum infection. Interestingly, mixed malaria-infection had the highest antibodies against both P. vivax and P. falciparun pared with those antibodies obtained from the single malaria infection.

Conclusion: This suggests that co-infection with P. vivax could induce effector T-killer cells. In addition, antimalarial antibodies found in the mixed infection have protective role against disease severity in P. falciparum infection as shown by the lower parasitemia in the mixed infection group. These findings imp e during simultaneous will be different when

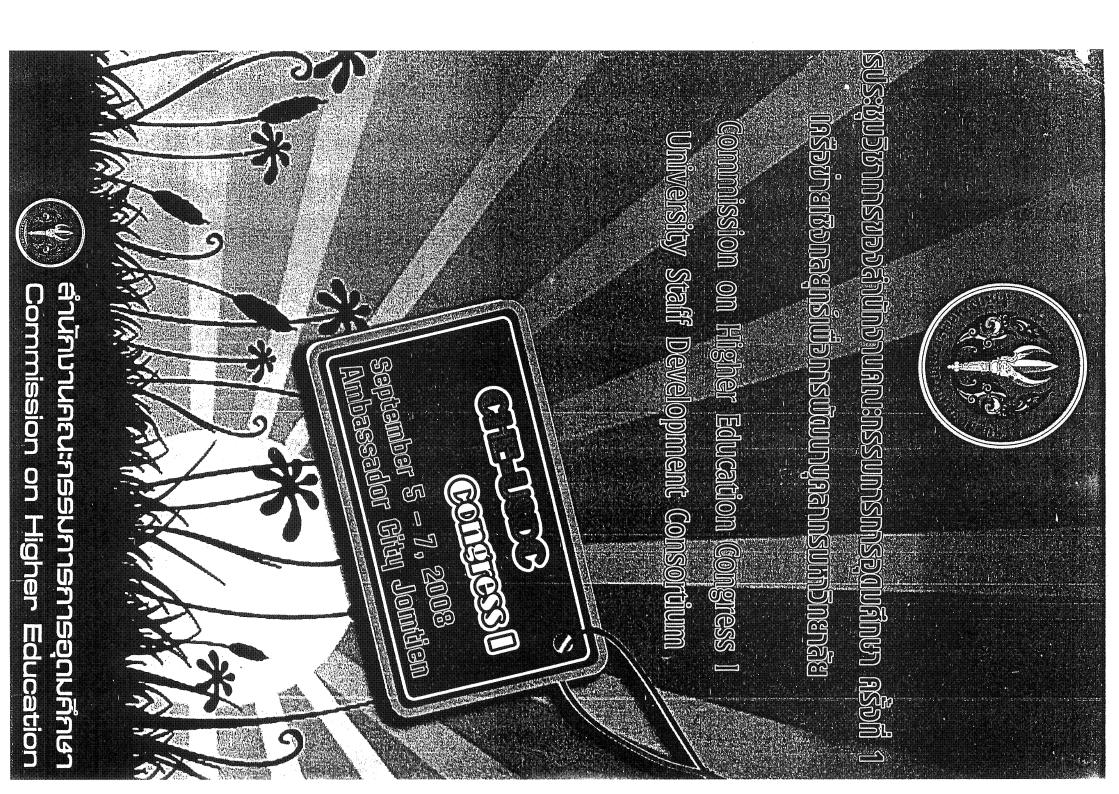
role

infection compared d P. falciparum com-

vivax may help resolving the severity against disease severity in P. falciparum infection. solving the severity of P. falciparum infection. ound in the mixed infection could group. These findings imply that

ARGENTINA. GROUPS A. FIRST

PHENOTYPIC CHARACTERIZATION OF PERIPHERAL BLOOD MEMORY CD8+ T CELL SUBSETS, WITHIN DIFF OF PATIENTS SUFFERING AMERICAN TEGUMENTARY LEISHMANIASIS (ATL) IN THE NORTHWEST OF ARGIREGIONAL REPORT


REGIONAL REPORT

C.M. Parodi; A. Barrio; M.F. García Bustos; M.C. Mora; F. Ramos; J. Beckar; S. Monroig; B. Ruibal-Ares; M.M. E de Bracco; M.A. Basombrío1 Investigaciones Hema

Aim: Phenotypic characterization of CD8+ T peripheral cells from patients suffering ATL is the purpose of this work in order to better understand their role within the pathology outcome.

Methods: Study groups: 1) 9 patients with diagnosis of ATL (infection duration: 5-20 years); 2) 5 ATL patients that received 2 or more complete therapy regimens but suffered frequent relapses (infection duration: 5-20); 3) 2 acute ATL patients (infection duration: < 1 month); 4) 6 healthy subjects. Isolated, cryopreserved and thawed peripheral blood mononclear cells were stained with: Anti-CD3,-CD8,-CD57,-CD457,-CD457A,-CD45RA,-CD28-FITC,-PE or -PerCP labelled monoclonal antibodies (BD, Pharmingen). Results were evaluated by flow cytometry (FACScan cytometry, CellQuest software).

Results: Lower percentages of CD127, CD27, CD28 and "early" CD8+ T cells (CD27+, CD28+) were observed in the first two groups of patients compared to the control group. Likewise, increase of "late" (CD27-, CD28-) and CD57+ T cells was observed, indicating the presence of highly differentiated cells. As shown in the able, these differences were more accentuated in group 1. On the other hand, no differences were found between acute ATL patients and the control group.

Killing mechanism of *Plasmodium vivax* parasites by $\gamma \delta$ T cells

Sattabongkot⁶, Jeerapat Sirichaisinthop⁷, Liwang Cui⁸ and Rachanee Udomsangpetch^{1,2}

¹Faculty of Medical Technology, ²Faculty of Science, ³Faculty of Medicine, Ramathibodi Hospital,

⁴Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. ⁵National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand. ⁶ Department of Entomology, AFRIMS, Bangkok, Thailand. ⁷Center of Malaria Research and Training, Ministry of Public Health, Saraburi, Thailand. 8Department of Kulachart Jangpatarapongsa^{1,2} Entomology, The Pennsylvania State University, PA 16802, USA Jangpatarapongsa^{1,2}, Sasithorn Promwan¹, Kirasikan Dabkam¹, Somying , Suradej Hongeng³, Kesinee Chotivanich⁴, Duangporn Polpanich⁵, Jetsumon

Objectives and Method

normal PBMC was incubated with intact P. vivax parasites, recombinant PvMSP119 and granzyme intracellular releasing by Flow cytometry. PvAMA1 proteins. After 5 days co-culturing, γδ T cells was determine the cytokine and Isopentenylpyrophosphate (IPP) from naïve PBMC. The different number of $\gamma\delta$ T cells of 1999). To determine the killing mechanisms of P. vivax parasites by $\gamma\delta$ T cells comparing leads to the inhibition of blood stage P. falciparum parasites in vitro (Troye-Blomberg, et al. has been reported (Jangpatarapongsa K, et al. 2006). Moreover, the activation of $\gamma\delta$ T cells An increasing of γδ T cells during acute P. νίναχ infection and convalescent period been found ij. P. falciparum, the γδ T cells were enriched by

of $\gamma\delta$ T cells activation among lymphocyte populations by P. $\nu i \nu \alpha x$. of CD69 $^+$ and CD25 $^+$ expressing on $\gamma\delta$ T cells respectively. This could tell us the early stage at day 2 after co-culturing. At day 1 and 3 of γδ T cells stimulation, we found the high level with intact P. νίναχ parasites. Moreover, the enriched γδ T cells were found the proliferation The percentage of γδ T cells in lymphocytes was elevated after PBMC co-culturing

rapidly decreased on further days. stimulation, the increasing of $\gamma\delta$ T cells expressing CD107a⁺ was increased at day 2 and at day 0 and rapidly decreased on further days. In contrast to what we found in normal PBMC intact P. vivax parasites. The level of enriched $\gamma\delta$ T cells expressing CD107a⁺ was elevated activities of γδ T cells by the intracellular expression of CD107a⁺ during co-culturing with As expected, by comparing with P. falciparum, we also determine the cytolytic

Conclusion and Discussion

also showed the killing mechanism of $\gamma\delta$ T cells against P. vivax infection by releasing of νίνα parasites at early stage of infection in blood stage. granzyme at early stage activation. These suggest that $\gamma\delta$ T cells may play role against P. Our results showed the activation of $\gamma\delta$ T cells during P. $\nu i \nu a x$ infection in $\nu i t r o$. We

Publications Output

cells. Eur. J. Immunol (accepted). alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T Jangpatarapongsa K, Chootong P, Sattabongkot J, et al. Plasmodium vivax parasites

infection: A study in Thailand and the Central of China (manuscript in preparation). echnologist Programme, NSTDA are gratefully acknowledged. The financial support from The Commission on Higher Education and Young Scientist and Xia H, Jangpatarapongsa K, Fang Q. et al. Immune response to Plasmodium vivax

Joonan & Histing

 ${\cal C}$ ommission on Higher Education-Congress II

 ${\it University}$ Staff Development Consortium

(CHE - USDC Congress II)

27 - 29 August, 2009

KILLING MECHANISMS OF PLASMODIUM VIVAX PARASITES BY GAMMA-DELTA T CELLS

Kulachart Jangpatarapongsa^{1,9}, Somying Loharungsikul¹, Lertyot Treeratanapiboon² Sasithorn Promwan¹, Kirasikarn Dabkam¹, Suradej Hongeng³, Kesinee Chotivanich⁴, Doungporn Polpanich⁵, Jetsumon Sattabongkot⁶, Jeerapat Sirichaisinthop⁷, Liwang Cui⁸ and Rachanee Udomsangpetch^{1,9}

Department of Clinical Microbiology, ²Department of Parasitology, Faculty of Medical Technology, Mahidol University, ³Faculty of Medicine, Ramathibodi Hospital, Mahidol University, ⁴Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, ⁵National Nanotechnology Clinical Tropical Medicine. Faculty of Tropical Medicine, Mahidol University, ⁵National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, ⁶Department of Entomology, AFRIMS, Bangkok, ⁷Center of Malaria Research and Training, Ministry of Public Health, Saraburi, ⁸Department of Entomology, The Pennsylvania State University, USA and ⁹Department of Pathobiology, Faculty o Science, Mahidol University.

and convalescent period has been reported. Moreover, the activation of gamma-delta T cells leads to the inhibition of blood stage *P. falciparum* parasites in vitro. To determine the killing mechanisms of P. vivax parasites by gamma-delta T cells comparing with what has been found in P. falciparum, the gamma-delta T cells were enriched by Isopentenylpyrophosphate (IPP) Objectives & Methods: An increasing of gamma-delta T cells during acute P. vivax infection intracellular releasing by Flow cytometry until day 5 culturing. and PvAMA1 proteins. Gamma-delta T cells was daily determined the cytokine and granzyme with intact of P. vivax parasites and protein extract of P. vivax parasites, recombinant PvMSP119 from naïve PBMC. Different number of gamma-delta T cells and normal PBMC were incubated

of parasites and the increasing percentage of parasite growth inhibition. proteins: LAMP-1) elevated from the first day of PBMC collection after co-culturing with the overall gamma-delta T cells showed proliferation at day 3 after the co-cultivation. Moreover, the gamma-delta T cells expressing IFN-gamma and CD107a+ (lysosomal associated membrane and CD25 was elevated after co-culturing with intact and the proteins of P. vivax parasites. The Results: Among the enriched gamma-delta T cells, the percentage of cells expressing CD69 intact and P. vivax antigens. This level was correlated with the significantly decreasing number

these actively activated gamma-delta T cells could kill the parasites via mechanism of granzyme activation of the innate immunity during acute malaria infection which may lead to the selection and cytokines at the early stage of cell activation. This study provides more understanding in in vitro. This suggests that gamma-delta T cells could be stimulated by P. vivax parasites and Conclusion: Our results showed the activation of gamma-delta T cells during P. vivax infection of appropriate malaria proteins as vaccine candidates in the future.

Publication Outputs: Jangpatarapongsa K, Chootong P, Sirichaisinthop J, Sattabongkot J. Tangpradubkul S, Hisaeda H, Troye-Blomberg M, Cui L, Udomsangpetch R. *Plasmodium vivax* alter the balance of myeloid and plasmacytoid dendritic cells and induction of regulatory T cells. (2008) Eur. J. Immunol Oct;38(10):2697-705

Xia H, Jangpatarapongsa K, Qiang F, Kaiming H, Sattabongkot J, Qi G, Cui L, Li B, Udomsangpetch R Immune response to Plasmodium vivax infection: A study in the Central of China. (In preparation)

mechanism of Plasmodium vivax parasites by gamma-delta T cells. (in preparation) Chotivanich K, Jangpatarapongsa K, Loharungsikul S, Treeratanapiboon L, Promwan S, Dabkam K, Hongeng S, Polpanich D, Sattabongkot S, Sirichaisinthop J, Cui L, Udomsangpetch R.

1.1

Vivax Malaria Research III+ Conference Bangkok, Thailand 30 September 2009 – 1 October 2009

AGENDA

30 September 2009	r 2009	Pullman Bangkok King Power Hotel
0800 – 0930:	Registration, Coffee and Pastry Break	Infinity Room 1 Foyer, Ground Floor
0930 – 1030:	Welcome & review of draft report Dr. John Adams et al. University of South Florida Department of Global Health	Infinity Room 1, Ground Floor
1030 - 1100:	Mid Morning Break	Infinity Room 1 Foyer, Ground Floor
1130 – 1230:	Discussion of draft report	
1230 - 1330:	Lunch	Cuisine Unplugged, Ground Floor
1330 – 1515:	1330 – 1515: Afternoon Presentations	Infinity Room 1, Ground Floor
<u>Diagnosis, cli</u>	Diagnosis, clinical management, pathogenesis	

Dr. Kesinee Chotivanich, Mahidol University Plasmodium vivax infected red cells cytoadherence to glycosaminoglycan

exposure related immunity in the Low Transmission region of the Peruvian Comparison of P. vivax with P. falciparum symptoms and development of

Oralee Branch, New York University

Cytoadhesion of *Plasmodium vivax* infected erythrocytes Laurent Renia, Singapore Immunology Network

Epidemiology, vectors, environmental control

2001-2002 Impact of global malaria programme on P.vivax prevalence in Cambodia

Frederic Ariey, Institut Pasteur

Rick Paul and Anuvaj Sakuntubhai, Institut Pasteur A role for G6PD Mahidol Mutation in Protection Against Malaria in South-East Asia

Northern Thai-Myanmar and Thai-Cambodia Active surveillance of malaria in military areas of operation (AO) along

COL Jariyanart Gaywee, Ph.D

Vivax malaria in China

Cao Jun, Ph.D

Situation of vivax malaria in Thailand

Bangkok Jeeraphat Sirichaisinthop, MD, MPH, Vector Borne Disease Training Center,

Geographic and Genetic of Thai Plasmodium vivax isolates

Usa Lek-Uthai, Mahidol University

Immunity, preclinical discovery, vaccine development

naturally acquired inhibitory antibodies. Mapping epitopes of the Plasmodium vivax Duffy binding protein with

Dr. Patchanee Chootong, Mahidol University

Natural immunity against P. vivax infection

Dr. Kulachart Jangpatarapongsa, Mahidol University

Drugs, Resistance, Targets and Development

Potential use of 8 aminoquinolines for malaria elimination on islands

Dennis Shanks, Director, Australian Army Malaria Institute

Drugs for Liver Stages

Dennis Kyle, Professor, University of South Florida, Department of Global Health

vivax: Practical considerations and its relevance to antimalarial sensitivity Ex vivo studies on fresh and cryopreserved clinical isolates of Plasmodium

Bruce Russell, Singapore Immunology Network

1515 – 1600: Break

1600 – 1745: Afternoon Discussion

Infinity Room 1, Ground Floor

1800 – 1930: Dinner

Infinity Room 2, Ground Floor

1 October 2009

Armed Forces Research Institute of Medical Sciences Vet Med conference room, Building 5

0800 - 0900: Coffee and Pastry

0900 - 11:30: Discussion

11:30: Meeting Adjournment