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Fig. A.1. Geometrical analysis of the cutter.

Fig. A.2. Machining strip width estimation.

Fig. B.1. Tool gouging.
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Fig. C.1. Machining strips (dashed lines) on adjacent tool paths generated by

using space-filling curve.

Fig. C.2. Tool path trajectory alteration at (a) corner turn (left or right) and (b)

U turn.

where L and w denote the tool path interval and the side

machining strip width (left or right), respectively, as shown in

Fig. C.1

The second modification is applied to the tool orientation.

The tool orientation is usually set by inclining the tool by

λ in the tool cutting direction.2 At sharp turns, the tool

orientation changes abruptly creating large kinematics error.

This kinematics error could not be reduced by merely inserting

more points as usually done for tool path segmentation [4,22].

Additionally, the tool orientation of the newly inserted CC point

needs to be adjusted by interpolating the tool orientations at the

two adjacent CC points.

Consider the sharp turn o–p–q shown in Fig. C.2. To make

a correct turn, the feed direction at the turning point p is first

aligned with the feed direction at the previous point o. To reduce

the kinematics error when going from point p to point q, a new

point p′ is inserted and the feed direction is set to

fp′ = fp + fq
∣
∣fp + fq

∣
∣
,

where fp is the feed direction at point p.

2 The tool cutting direction is the direction from the current CC point to the
next CC point.

Fig. C.3. Trajectories of the cutter’s effective cutting edge (projected onto the

x–y plane) (a) before and (b) after the tool path correction.

Fig. C.3 shows the trajectories of the effective cutting edge

of the tool projected onto the x–y plane before and after

applying the tool path correction.
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Abstract

The paper presents a concatenation of two methods for optimization of five-axis machining proposed earlier by the author. The
first method is based on the grid generation techniques whereas the second method exploits the space filling curve technologies.
Combination of the two techniques is superior with regard to the conventional methods and with regard to the case when the two
methods are applied independently.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Milling machines are programmable mechanisms for cutting industrial parts. The axes of the machine define the
number of the degrees of freedom of the cutting device. Five axes provide that the cutting device (the tool) is capable
of approaching the machined surface at a given point with a required orientation. The machines consist of several
moving parts designed to establish the required coordinates and orientations of the tool during the cutting process
(see Figs. 1 and 2). The movements of the machine parts are guided by a controller which is fed with a so-called NC
program comprising commands carrying three spatial coordinates of the tool-tip and a pair of rotation angles needed
to rotate the machine parts to establish the orientation of the tool.

1.1. Tool path generation

The tool path is a sequence of positions possibly arranged into a structured spatial pattern. The conventional
engineering patterns are the zigzag and the spiral (see Fig. 3).
Tool path planning for five-axis machining requires a multi-criteria optimization governed by estimates of the

difference between the required and the actual surface. Additionally, the criteria vector may include the length of the
path, the negative of the machining strip (strip maximization), the machining time, etc. (see for instance [20,23,29]).
Besides, the optimization could be subjected to constraints [22,39] the most important of which are

• The scallop height constraints. The scallops between the successive tool tracksmust not exceed a prescribed tolerance.
• The local accessibility constraints. The constraint ensures against the removal of an excess material when the tool
comes in contact with the desired surface due to the so-called curvature interference.

E-mail address: makhanov@siit.tu.ac.th.

0378-4754/$36.00 © 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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Fig. 1. Five-axis milling machine MAHO600E (Deckel Maho Gildemeister) a and b are the rotation axes.

Fig. 2. MAHO600E during cutting operations.

Fig. 3. Zigzag tool path and the machining strips in the workpiece coordinate system.
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• The global accessibility constraints. The constraint ensures against the tool colliding with either machine parts or
unwanted parts of the desired surface.

1.2. Space filling curves and their applications

Some formal definitions of the space filling curves (SFC) and their short history are presented below.

Definition 1. 1 A function f from a domain X to a codomain Y is said to be surjective if its values span its whole
codomain; that is, for every y in Y, there is at least one x in X such that f (x) = y.

Definition 2. A function f from a domain X to a codomain Y is said to be bijective if for every y in Y there is exactly
one x in X such that f (x) = y.

Definition 3. An N-dimensional SFC is a continuous, surjective (onto) function from the unit interval [0, 1] to the
N-dimensional unit hypercube [0, 1]N . In particular, a 2-dimensional space-filling curve is a continuous curve that
passes through every point of the unit square [0, 1]2.

The history of space-filling curves started in 1878 when George Cantor (1845–1918) demonstrated that any two
smooth manifolds of arbitrarily finite dimensions have the same cardinality. Cantor’s finding implies that the unit line
segment [0, 1] can be mapped bijectively onto the unit square [0, 1]2. In 1879, Eugen Netto (1848–1919) demonstrated
that such mapping is necessarily discontinuous and cannot be called a curve. Given that the condition of bijectivity
is neglected, in 1890 Giuseppe Peano (1858–1932) found a continuous map from an interval onto a square. This
was the first example of a space-filling curve (see Fig. 4(a)). Further examples were introduced by D. Hilbert (in
1891, see Fig. 4(b)), E.H. Moore (in 1900), H. Lebesgue (in 1904), W. Sierpinski (in 1912), G. Polya (in 1913)
(see ref. [31]). The SFCs are encountered in different fields of computer science, especially where it is important to
linearize multidimensional data. Examples of multidimensional data are matrices, images, tables and computational
grids resulting from the discretization of partial differential equations. Typical applications of SFCs are data indexing
[21,27], data storing and retrieving [33], image processing [36,40], image scanning and coding [10,11,38], mesh
partitioning and reordering [32], etc.
With the variety of space-filling curves and the wide spread of multidimensional applications, the selection of the

appropriate space-filling curve for a certain application is not a trivial task. According to the classification in ref. [3]
space-filling curves are classified into two categories: recursive and nonrecursive. Examples of recursive SFCs are the
Peano’s curve and the Hilbert’s curve. Most of the existing applications employ the recursive SFCs which allow for
the linearization of recursive hierarchical data structures. One of the most favorable properties of SFCs is their locality
(SFC never leaves a region at any level of refinement before traversing all points of that region) and the fact that the
linearization is easily computable.

1.3. Space-filling curves and tool paths

The most popular SFC for tool path planning is the recursive Hilbert’s curve [19] considered for numerous appli-
cations including the tool path planning [14]. Cox et al. [9] used various forms of space-filling curves, such as the
Moore’s curve, for tool path generation. Nevertheless, Hilbert’s curve is still particularly appealing in tool path planning
as its local refinement property can be used to adaptively to increase the density of the path only where necessary.
However, each local refinement of the tool path based on the Hilbert’s curve increases the tool path density in the
refined region by a factor of 2 resulting in lower machining efficiency due to the increased total path length. Besides,
the Hilbert’s curve has an undesirable property that it leads to a path, where the tool is frequently changing direc-
tions which slows down the machining process and produces large kinematics errors. To overcome these drawbacks
Anotaipaiboon and Makhanov [1,2] proposed the use of an adaptive SFC characterized by the following features.
First of all, the adaptive SFC always follows the local optimal direction. Second, as opposed to the conventional
SFC, the adaptive SFC turns only when necessary, in other words, only when the optimal direction changes. Third,
the adaptive SFC eliminates the large kinematics errors and the overcuts appearing due to the sharp angular turns.
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Fig. 4. (a) 3 iterations of the Peano’s space-filling curve and (b) 6 iterations of the Hilbert’s space-filling curve.

Finally, local refinement of the adaptive SFC is accomplished in exactly the same fashion that the conventional SFC is
refined.
The proposed adaptable SFC tool path generation method requires four steps.

• Construction of a basic rectangular grid.
• Generation of the adaptive space-filling tool path on the grid.
• Correction of the tool path.
• Inserting additional points along the path to reduce the kinematics error. The SFC is constructed as a Hamiltonian
path on a grid-like graph using a cover and merge algorithm [2,11].

1.4. The new curvilinear space filling curve approach for tool path generation

The basic rectangular grid used to construct the adaptable SFC in [2] is often inefficient since a small step between
the tracks could be required only in certain areas. The grid is also inefficient in treating complex geometries appearing
in the case of the so-called trimmed surfaces having the boundaries created by intersections with other surfaces.
On the other hand the above geometrical complexities and sharp variations of the surface curvature have been

proven to be successfully treated by numerically generated curvilinear zigzag tool paths obtained from adaptive grids
topologically equivalent to the rectangular grids. In refs. [24,25] a modification of a classic grid generation method
based on the Euler–Lagrange equations for Winslow functional [37] has been adapted to the curvilinear zigzag tool
path generation. The zigzag tool path is constructed by solving numerically Euler–Lagrange equations for a functional
representing desired properties of the grid such as smoothness, adaptivity to the boundaries and to a certain weight
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(control) function [7]. A similar idea to use a Laplacian curvilinear grid was suggested independently by Bieterman and
Sandstrom in ref. [4]. In the framework, proposed in refs. [5,24–26] the grid is adapted to the kinematics error subject
to constrains relevant to the heights of scallops between the successive tool tracks. However, these techniques have
several major drawbacks. Chief among them is slow convergence for complicated constraints. Besides, the approach
requires an equal number of the cutter contact points on each track of the tool. Therefore, if the kinematics error
changes sharply from track to track, the method may require an excessive number of points.
This paper introduces a new modification of the grid refinement which fits better in the framework of tool path

optimization and is designed specifically for the SFCgeneration. Themethod does not require equal number of points on
each track. It automatically evaluates the number of the required grid lines.As opposed to the preceding approach,where
the weight function represents either the kinematics error or an estimate of the kinematics error (such as the surface
curvature or the rotation angles), the proposed algorithm iteratively constructs an adaptive control function designed
to represent the scallop height constraints. Additionally, instead of the Winslow functional the new optimization is
based on the harmonic functional derived from the theory of harmonic maps [16]. The functional not only provides
the smoothness and the adaptivity but under certain conditions guarantees the numerical convergence [17]. Finally,
this approach merges with the SFC techniques. In this case, the grid is not converted to the tool path directly. Instead,
it becomes the basic grid required for the SFC generation. With this modification, the curvilinear space filling curve
(CSFC) tool path can be constructed for surfaces with complex irregular boundaries, cuts off, pockets, islands, etc.
Besides, the adaptive grid allows to efficiently treat complex spatial variability of the constraints in such a way that the
SFC is created on a grid having the small cells only where necessary.
The combination of the two techniques is superior with regard to the case when the two methods are applied

independently. A variety of examples is presented when the conventional methods are inefficient whereas the proposed
algorithms allow constructing the required tool path with the length close to the minimal. The numerical experiments
are complemented by the real machining as well as by the test simulations on the Unigraphics 18. Finally, although
elegant and intellectually appealing, grid generation methods are computationally costly, in many cases, requiring
many hours of computing. The use of such methods is well justified only for regional milling for complex shaped
surfaces with sharp variations in curvature.

2. Grid generation method

Let S ≡ S(u, v) ≡ (x(u, v), y(u, v), z(u, v)) be a surface to be machined, where u and v are the parametric variables.
Consider a set of cutter location points {ui,j, vi,j} arranged as a curvilinear grid.Mathematically, itmeans that (ui,j, vi,j),
0 ≤ i ≤ Nξ, 0 ≤ j ≤ Nη is a discrete analogy of a mapping from the computational region {0 ≤ ξ ≤ Nξ, 0 ≤ η ≤ Nη}
onto a parametric region defined in the parametric coordinates u, v. In other words, there exists a pair of functions
{u(ξ, η), v(ξ, η)} such that the rectangular grid i, j being fed to {u(ξ, η), v(ξ, η)} becomes {ui,j, vi,j} (see Fig. 5).

2.1. The harmonic functional

The required grid is a discretized solution the following minimization problem:

min
u,v

I ≡ min
u,v

∫ (u2ξ + u2η)(1+ f 2u )+ (v2ξ + v2η)(1+ f 2v )+ 2fufv(uξvη + uηvξ)

(uξvη − uηvξ)
√
1+ f 2u + f 2v

dξ dη, (1)

where subscripts u, v, ξ, η denote partial derivatives and f is the control function. The harmonic functional I is a
generalization the Winslow functional to the case of grids lying on the surface f (u, v). The harmonic functional is
derived from the theory of harmonicmaps [16]. It has been proven that the functionalminimizes an “energy ofmapping”
[35] and produces a grid adapted to the regions of large gradients of f. Note that if fu = fv ≡ 0, then the harmonic
functional becomes the Winslow functional, however, it is important that I adapts the grid to the gradients of f rather
than to f itself as in ref. [24].
It is known that minimization of Eq. (1) could be computationally expensive as compared with minimization of the

Winslow functional [8]. However, it has many points in its favor. In particular, it is possible to construct a computational
procedure which, under certain conditions, converges to a non-degenerate grid [35], that is, the grid without twisted or
non convex cells. The constraint minimization of Eq. (1) can be performed by using efficient penalty type techniques
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Fig. 5. Grids and the curvilinear zigzag tool path.

similar to those presented in ref. [24]. Finally, the algorithm based on Eq. (1) is more reliable and converges for sharp
variations of the input data whereas the Winslow functional often produces degenerated grids.

2.2. Control function for tool path optimization

Since the tool path is a discrete set of points, the derivatives of the control functions fu(u, v) and fu(u, v) in (1)
for a given surface can not be explicitly evaluated. Therefore, these derivatives are generated “artificially” as follows.
First (fu)0n ≡ (fv)0n ≡ 0. Next,

(fu)
l+1
n =

⎧⎨
⎩
(fu)ln + λ+, if su(n) > 0,

(fu)ln − λ−, otherwise,

(fv)
l+1
n =

⎧⎨
⎩
(fv)ln + λ+, if sv(n) > 0,

(fv)ln − λ−, otherwise,

where λ+ and λ− is the prescribed increment and decrement, respectively, n is the grid node number, l is the iteration
number and sd(n) is the difference between the actual distance between the tracks and the machining strip defined by:

su(n) = max
d ∈ {left,right}

W(n, N ′(n, d))− T (n, N ′(n, d)),

sv(n) = max
d ∈ {up,down}

W(n, N ′(n, d))− T (n, N ′(n, d)),

where N ′(n, d) is the set of neighboring nodes to n andW(n, m) is the distance between nodes n and m given by

W(n, m) = |S((u, v)n)− S((u, v)m)|.
Finally, T (n, m) is an estimate of the machining strip at midpoint S(un + um/2, vn + vm/2) (see Sections 2.4 and 2.5).



S.S. Makhanov / Mathematics and Computers in Simulation 79 (2009) 2385–2402 2391

2.3. Inserting additional tracks

The initial grid does not (and should not) satisfy the scallop height constraint. However, it is often the case that
additional trucks must be inserted for convergence. For a structured grid having initially nr rows and nc columns, the
number of rows and columns at the next step is evaluated as follows

nr,new = nr + nr,add,

nr,add =
max1≤i≤nr

nc−1∑
j=1
(W(ni,j, ni,j+1)− T (ni,j, ni,j+1))

2r
, (2)

nc,new = nc + nc,add,

nr,add =
max1≤i≤nc

nr−1∑
j=1
(W(ni,j, ni,j+1)− T (ni,j, ni,j+1))

2r
, (3)

whereni,j is the grid node and r is the tool radius. It should be noted that if the grid is constructed to produce a curvilinear
zigzag tool path in one direction, then only one from the two formulas (2) and (3) must be applied. However, if the grid
is needed for the CSFC generation, they must be applied in the both directions. Finally, (2) and (3) may overestimate
the number of the required tracks. Consequently, it can be replaced by

nnew = n+ naddαrel,

whereαrel < 1 is a “the rate of release” of the additional curves. The “rate of release” is determined experimentally. Such
a procedure may lead to a decrease in the number of the zigzag curves, thus, improving the efficiency of the machining.
An inexperienced user is safe with αrel = 1/nadd which, however, may lead to an increase in the computational
cost.

2.4. Machining strip evaluation

Given the maximum allowable scallop height hmax, the distance between the tool tracks is found by computing the
machining strip width.
Introduce a local coordinate system (Ol, xl, yl, z1) at the CC (cutter contact) point Ol shown in Fig. 6, where xl

denotes the normalized projection of the tool cutting direction onto the tangent plane, zl denotes the surface normal
vector, and y1 = z1 × x1. The tool is rotated by an inclination angle λ about the yl axis, then by a tilt angle ω about the
zl axis. The projected bottom edge of a flat-end cutter with radius r onto the (yl, zl)-plane becomes an ellipse called
the effective cutting shape. In order to evaluate the machining strip, the surface cross-section perpendicular to the tool
cutting direction xl is approximated by a circular arc, for which radius Ry is equal to the radius of the normal curvature
of the surface in the yl direction as shown in Fig. 6. Suppose that h = hmax. The maximum machined surface error is
represented by a virtual circular arc with radius Ry − h as shown in Fig. 7. The machining strip width is then obtained
by finding intersections of the effective cutting shape with the virtual arc.
Let P be an arbitrary point on the cutter bottom edge (see Fig. 7). Consider an angle θ required to turn the yc-axis

around the zc axis in such a way that the negative yc-axis passes through P. Furthermore, angles corresponding to the
left and the right intersections Pl and Pr are denoted by θl and θr respectively. It is not hard to demonstrate that the left
and the right machining strip wl and wr are then given by

wμ = r| cosω cos θμ − cos λ sinω(1− sin θμ)|,
where μ = l or μ = r.
The entire machining strip width is then

w = wl + wr.
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Fig. 6. Geometric analysis of the cutter.

2.5. Tool orientation and gouging

The effective cutter radius re is given by

re = ra2
(
1+ b2

a2 + b2

)3/2
,

where a = sin λ cosω, b = tan λ sinω, (see ref. [23]).
To optimize the machining strip width, λ and ω are usually set so that re is the best match to the radius of curvature

at the CC point. For convex or planar surfaces, the tool inclination angle λ is set to a small default angle or zero and
the tilt angle ω is set to zero as well. If the surface is non-convex, a non-zero tool inclination angle λ is needed to avoid
gouging. Consider a flat-end cutter shown in Fig. 8. Gouging occurs whenever a point on the circle touches or goes
inside the surface. Let G be a gouging point (Fig. 8(a)). The line connecting the two points, Ol and G, forms a chord
on the circle. Denote the angle between this line and O1O2 by φ (see Fig. 8(a and b)). Let λφ be the tool inclination
angle that corresponds to a specific φ. The minimum tool inclination angle to avoid gouging is then

λmin = max
−π/2≤φ≤π/2

λϕ.

Fig. 7. Machining strip width estimation.
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Fig. 8. Tool gouging.

It is not hard to demonstrate that for a non-convex surface

λmin = sin−1(rkmax),
where kmax is themaximum surface curvature at theCCpoint. Clearly, for a convex surface an inclination is not required,
so λmin = 0, however, from technological viewpoints a small inclination angle is still recommended. Furthermore, for
∀λ < λmin the gouging will be avoided as well. It also can be shown [23] that for the flat end (cylindrical) cutter the
orientation (λ, ω) = (λmin, 0) maximizes the machining strip. If gouging can not be eliminated by inclining the tool
alone or the inclination angle λ requires rotations which exceed the limit of the machine, the tilt angle can be optimized
or a smaller tool size must be used.

2.6. The algorithm

The grid generation algorithm consists of the following steps

(1) Generate an initial convex grid. The grid is generated manually or by interpolating. Note that interpolation may
generate a grid with the nodes outside the boundary of the region. In that case, several iterations can be performed
by the classic Brackbill’s and Saltzman’s method [7] which will move the nodes back inside the region. The initial
grid should not satisfy the scallop constraints, because, if it does, the adaptation is not necessary. It also means
than the number of grid nodes could be reduced.

(2) Insert additional nodes using (2) and (3).
(3) Adapt the grid by numerically minimizing functional Eq. (1) until all the grid points satisfy the scallop constraint

or until a prescribed number of iterations has been exceeded.
(4) If the scallop constraint has not been satisfied for all the points, goto the refinement stage 2. Fig. 9 illustrates the

adaptive harmonic grid generation applied to a simple surface characterized by a large gradients along a sinus
shaped zone (Fig. 9(a)). The required small machining strips generate the control function depicted in Fig. 9(b)
which in turn produces a gird adapted to the control function depicted in Fig. 9(c).

2.7. Composite surfaces

The techniques above work for a single parametric surface, however, the industrial parts are usually represented by
surfaces composed from the Bezier or NURBS patches [12,28,6]. TheNURBS are supported by one of themost popular
formats called the IGES (the Initial Graphics Exchange Specification). There exists a variety of other CAD formats and
representations such as STL, STEP, SLC, DXF, etc. However, the commercial CAD/CAM systems usually provide con-
version between the major data formats (see, for instance, http://www.actify.com/v2/products/Importers/formats.htm).
Usually, the compound NURBS surface is defined as multiple patches whose boundaries are generated in trimming
and/or intersecting manipulations and which are joined together with C0, C1, or C2 continuity. Special techniques
exist to connect those patches smoothly and automatically (see, for instance ref. [18]). Fortunately, the CAD/CAM
systems provide all information about each patch, including its external and internal boundaries, both in the part
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Fig. 9. Adaptive harmonic tool path generation (a) the surface,(b) the control function, (c) the grid.

coordinate system and the parametric space. In many cases, the part surface is composed from a structured grid
of multi-block patches. In this case the composed surface can be re-parametrized in such a way that global para-
metric coordinates can be introduced across the entire surface. Alternatively, if the patch data is not structured,
the commercial CAD/CAM systems often make it possible to reduce or increase the number of patches to create
a structured multi-block geometry without a significant loss of accuracy. Finally, if such correction is not appli-
cable, a variety of multi-block strategies developed for general purpose grid generation can be adapted, see for
instance, ref. [35] or [34]. However, even in this case, inspite of obvious technical problems, the main ideas pro-
posed in this paper, namely, the scallop based Dirichlet curvilinear grid, artificially generated derivatives of the
control function and the Hamilton path for generation of the SFC apply irrespectively of an underlying surface
representation.



S.S. Makhanov / Mathematics and Computers in Simulation 79 (2009) 2385–2402 2395

Fig. 10. (a–c) Construction of an undirected graph for the CSFC tool path generation. (d) Generation of an initial set of circuits for constructing the
CSFC.

3. Tool path generation using curvilinear space filling curve method

As an example consider a basic curvilinear grid generated using the algorithm developed in Section 2(Fig. 10(a)).
In order to construct the CSFC, each grid cell is replaced by a vertex in the middle of the cell (Fig. 10(b)). Every pair

of adjacent vertices is then connected by an edge as shown in Fig. 10(c and d) to create an initial set of small circuits.
Note that vertices of the graph correspond to initial set of CC points on the required surface. Therefore, the distance
between two connected vertices is defined as the distance between the corresponding CC(cutter contact) points on the
surface in R3. A cut along the path between any two connected vertices satisfies the scallop height constraint. This
feature allows for the tool path optimization by means of the SFC. The SFC tool path generation algorithm is presented
next.
The tool path generation on the grid-like graph constructed is a particular case of the travelling salesman problem

called the Hamiltonian path problem [30]. Since the problem is NP-hard [15], the algorithms for finding the optimal
solution are slow and inefficient.
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A simple and computationally efficient algorithm for producing the Hamiltonian path based on the cover and merge
algorithm was developed by Dafner et al. [11] for 2-dimentional image scanning. This paper extends the algorithm for
non rectangular domains and block structured grids and applies it to the CSFC tool path generation which works as
follows. First, all vertices are covered by small disjoint circuits. The circuits are then merged into a single Hamiltonian
circuit. The initial circuits are created by constructing small rectangular cyclic paths over every 4 adjacent vertices,

Fig. 11. Curvilinear grid adapted to the unimodal surface which exponential peak along a line in (a) u– v domain and (b) grid on the surface in the
workpiece coordinate systems, (c) the corresponding curvilinear space filling curve.
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i.e., by connecting the vertices on even rows and columns with the vertices on odd rows and columns, respectively. For
structured grid, if the grid size is odd, virtual circuits are constructed to cover the vertices along the boundaries. Any
two adjacent circuits can be merged into one bigger circuit. The cost of merging is defined by

Cost(A, B) = |s| + |t| − |e| − |f |, (4)

where |e| denotes the distance between two vertices connected by edge e. The cost of merging of two virtual circuits
is set to −∞, i.e., all the virtual circuits are initially merged. This is to ensure that there is no discontinuity of the tool
path after removing the virtual edges from the Hamiltonian path. To merge all small circuits, we construct a dual graph
and a minimum spanning tree is constructed by iteratively merging circuits according to Eq. (4).

4. Examples and practical machining

This section demonstrates the efficiency and advantages of the use of the proposed CSFC tool path generation by
examples and practical machining.

4.1. Example 1. A unimodal surface

The first example demonstrates the efficiency of the CSFC with the reference to the traditional iso-parametric tool
path method. Consider a unimodal surface which exponential peak along a line in the parametric domain (u, v) given
by (see Fig. 11)

x = 100u− 50,

y = 100v− 50,

z = 10 exp−40(2u− 0.5− v)2 − 15.
For flat-end tool of radius 3mm andmachined surface tolerance of 0.1mm, the final curvilinear grid is shown in Fig. 11.
The comparison of the zigzag and SFC tool paths generated from traditional iso-parametric tool path and curvilinear
grid is presented in in Table 1. The length of the zigzag and SFC tool paths based on the adaptive grid are shorter by
45.76% and 17.84% respectively, when compared with the zigzag and SFC based on iso-parametric tool path method.

4.2. Example 2. Curvilinear boundaries and pocket milling

This example demonstrates the use of the CSFC to construct tool paths to machine surfaces with complex irregular
boundaries, cuts off, and islands. Consider a surface shown in Fig. 12(a and b) shows the basic curvilinear grid
constructed using the proposed method. Fig. 12(c) shows the CSFC and Fig. 12(d) the CSFC on the surface. Finally,
Fig. 12(e) shows themachining result obtainedwith the use of the solidmodeling engine of theUnigraphics. The surface
has been machined by a flat-end tool of radius 3mm and the machined surface tolerance of 0.05 mm. Consequently,
the method is capable of creating tool path for surfaces with complex non rectangular boundaries and islands.

4.3. Example 3. Point milling of an impeller blade

Frequently, the blades od industrial impellers are produced by the so-called five-axis swarf milling made by a side
of the tool. In this case the contact between the workpiece and the cutter is characterized by a contact line rather than a

Table 1
Comparison of the methods in terms of the tool path length.

Method used for constructing the basic grid Total path length (mm)

Vertical zigzag SFC

Iso-parametric tool path 4716.91 3066.87
Curvilinear grid generation 2557.74 2508.25
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Fig. 12. Constructing the curvilinear space filling curve. (a) The surface, (b) the curvilinear grid, (c) the space filling curve, (d) the space filling
curve on the surface and (e) virtual machining, Unigraphics.
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Fig. 13. (a) A broken blade and (b) the missing part of the blade.

Fig. 14. Curvilinear grid adapted to part of a surface of the blade (a) on the surface (c) in the u– v domain, (b) CSFC on the surface, (d) CSFC in
the u– v domain.
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Fig. 15. The blade restoration. Simulation in the Unigraphics.

Fig. 16. The blade restoration. Actual machining.
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contact point. However, this technique may lead to large errors. This example demonstrates machining of the impeller
by five-axis point milling with the use of curvilinear adaptive space filling curves.
In order to demonstrate the advantages of the proposed method, the geometrical complexity of the example blade

is increased as follows. Consider a blade depicted in Fig. 13(a). After long-hours serves in a harsh environment the
blades may suffer from a variety of defects, such as distortion, cracks, nicks and dents. Suppose that the blade is broken
as shown in Fig. 13(a) (the dashed line) and requires a restoration. The missing part is shown in Fig. 13(b). Note that
similar (but smaller in size) restorations through the reverse engineering techniques are described, for instance, in ref.
[13]. The tool path must be generated using the shape and the boundary of the repair volume to reduce the machining
time. It will be shown that the CSFC method generates the tool path which follows exactly the boundary of the region
being restored.
Our basic curvilinear grid adapted to the shape of the blade is shown in Fig. 14(a). For a ball-end tool of the radius

3mm and the surface tolerance of 0.05mm, the SFC tool path is shown in Fig. 13(b). The corresponding grid and the
SFC tool path in the parametric region are shown in Fig. 14(c and d).
Finally, the virtual cutting using the proposed CSFC tool path is shown in Fig. 15 whereas a real prototype of the

blade (wood) is shown in Fig. 16. For demonstration purposes the size of scallops has been chosen so that the CSFC
is clearly visible on the surface.

5. Conclusions

Numerically generated adaptive curvilinear grid is introduced to replace the rectangular grid used for construction
of the space filling tool path for five-axis machining. With this modification the SFC can be constructed for surfaces
with complex irregular boundaries, cuts off, pockets, islands, etc. Besides, the adaptive grid allows to efficiently treat
complex spatial variability of the constraints. The combination of the two techniques is superior with regard to the case
when the two methods are applied independently.
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Abstract The paper presents a survey of five-axis com-
puter numerical controlled (CNC) machining optimization
methods employing adaptable geometric patterns. First, the
survey introduces evolution of CNC interpolators from the
simplest Taylor series-based routines to sophisticated
procedures based on constraint minimization from dynamic
systems control theory. Furthermore, a variety of methods
based on spline interpolation, NURBS interpolation and
Farouki’s Pythagorean–hodograph curves is presented and
analyzed. Next, the survey deals with techniques to
optimize the positions and orientations of the tool in a
particular neighborhood of the part surface. The most
important application of these techniques is cutting by a
flat-end or a fillet mill while avoiding local overcuts or
undercuts due to the curvature interference and rear
gouging. This section is supplemented by detection of
global interference using visibility cone schemes and their
recent modifications and improvements. Solutions offered
by solid modeling are presented as well. Finally, adaptable
geometric patterns employed for tool path generation are
considered and analyzed. The adaptation is performed using
certain criteria of the tool path quality, such as kinematics
error, scallops, possible undercuts or overcuts, and the
continuity of the path. Also covered are complex pocket
milling employing geometric patterns capable of following
the boundary, such as the offset methods, regional milling,
the potential path methods, and clustering. The chapter also
presents tool path optimization based on the adaptable

curvilinear grids connecting the cutter location points.
Finally, navigation approaches and the shortest-path
schemes are considered, along with the adaptive space-
filling curve algorithms and their combinations with grid
generation.

Keywords Five-axis machines . Multi-axis machines .

CNC interpolators . Tool orientation . Curvature
interference . Rear gouging . Solid modeling .

Pythagorean–hodograph curves . Pocket machining .

Regional milling . Space-filling curves for machining .

Curvilinear grids for machining . Navigation approach
for machining

1 Introduction

Five-axis numerical controlled (NC) machines are becom-
ing increasingly popular due to their ability to handle
geometrically complex workpieces composed of raw
material such as wood, wax, rubber, metal, stone, and
plastic. Up-to-date five-axis NC machines are characterized
by a high material removal rate and an efficient surface
finish-up. Typically, manufacturing of the design surface by
an NC machine comprises two stages, a rough cutting and a
finish machining. During the rough cut, the raw material is
removed as fast as possible while ensuring no excessive
cutting or gouging. During the finish machining, the tool is
placed at the maximum contact with the surface to remove
the remaining excess and create a well-finished and
accurate surface. After finishing, the remaining scallops
which are inevitably generated on the machined surface
must be removed by manual surface grinding and polishing.
The finish machining and manual polishing stages require
as much as 75% of the total machining time. Besides,
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manual polishing is prone to error and undesirable
irregularities.

The surfaces are usually characterized by complex
geometries and variable curvatures. A single surface is
usually composed of patches represented mathematically by
parametric forms such as Bezier surfaces, B-splines, and
NURBS [2]. Design and manufacture of the sculptured
surface parts is an expensive and time-consuming process.
First, a design surface is transformed into a computer model
(possibly with the help of CAD [5]). The computer model
is then imported into CAM software to generate commands
to move the cutting tool of the machine. The resulting set of
tool positions and orientations constitutes a tool path to
machine the desired surface.

Five-axis machining offers an improvement in efficiency
of the both the rough and the finish machining stage over
the three- and four-axis counterparts. In five-axis machining,
the tool orientation relative to the workpiece can be controlled
by two additional degrees of freedom so as to achieve higher
machining efficiency (see Figs. 1 and 2). With these
advantages, a large number of tool path planning methods
for five-axis machining have been developed and presented
in the literature.

This survey of five-axis machining optimization methods
is focused on adaptable geometric patterns, tool path
interpolators, and methods for tool posture and gouging
avoidance. We believe that the above components are the
most important for constructing numerical methods for
five-axis tool path optimization. The survey also includes
three-axis methods so long as they can be extended to the
five-axis case.

Finally, kinematics error is important for constructing
efficient tool path generation methods. Therefore, the paper
includes an appendix presenting kinematics equations for
five-axis milling machines classified by the relative
positions of the rotary axes.

2 CAD/CAM formats

Every CAD [5] or CAD/CAM software uses an internal
format to represent and control the required part. When
geometrical data is transferred from a CAD [5] system to a
CAD [5] or CAM system, a neutral format for the data
transfer is used. One of the most popular is the initial
graphics exchange specification (IGES) format (see the
history of the IGES format in B). Goldstein et al. [71]. The
IGES format supports the use of surfaces defined by
NURBS [2], see Farin [54]; Piegl and Tiller [161]; and
De Boor [39].

There are also several free libraries designed to control
and manipulate NURBS [1], such as NURBS++ (http://
libnurbs.sourceforge.net/index.shtml) and Nurbs Toolbox
(http://www.aria.uklinux.net/nurbs.php3). Some free IGES-
file processing tools are collected at the NIST/IGES [3]
webpage (http://www.nist.gov/iges/).

The STL files originally employed by layered manufactur-
ing technologies such as rapid prototyping are now becoming
more and more popular due to the simplicity of describing the
part surfaces. Rather than a complex description of surfaces,
lines and trimming boundaries employed by the IGES format,
a collection of triangles each described by the coordinates of
its three corners and a normal vector is being transferred. This
technology provides an important platform for CAD/CAM
applications due to the existence of many robust triangulation
algorithms. Besides, the surface models are often composed of
many patches. Therefore, by tessellating the patches and
creating groups of triangles, one can use many well-
established methods for treating intersections, trimming,
shading, hidden surface removal, and gouge protection [67].
The machining is usually performed by creating contours
obtained by slicing the STL-surface [140, 195]. Of course,
slicing of the NURBS [2] surfaces is also possible, but it
requires much more sophisticated techniques such as Ma et
al. [132]. The contours are then saved using the SLC [4]
format (see, for instance, http://www-rp.me.vt.edu/bohn/rp/
SLC.html).Fig. 1 Five-axis milling machine MAHO600E

Fig. 2 MAHO600E during cutting operations
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Other popular CAD/CAM formats include Standard for
the Exchange of Product Data (STEP), The Drawing
Exchange Format from AutoDesk and many others. As a
matter of fact, the difference in data formats has created a
large software industry specializing in transferring, adapting,
and processing the CAD/CAM files. A table of compatibility
of the CAD/CAM formats is at http://www.cs.cmu.edu/
People/unsal/research/rapid/cadcam.html or http://www.
actify.com/v2/products/Importers/formats.htm.

3 Optimization of the tool path and adaptable patterns

Optimization of tool paths for five-axis machining includes
many features and multiple criteria, such as the accuracy,
the length of the tool path, the machining time and the size
of the remaining scallops. It may also include gouging
avoidance, satisfying the machine axis limits, maximizing
the volume of the removed material, and reducing the tool
wear. The optimization may also take into account thermal
characteristics of the cutting process, the tool bending,
vibrations and jacks, workpiece positioning, and many
other parameters. The criteria could also include the
configuration of the machine or specific parts of the
machine as well as the design of the clamping device.

Readers interested in citations before 1997 could use a
fairly comprehensive survey Dragomatz and Mann [45].
Their survey presents a classification of research on three-
to five-axis machining related to geometry of the tool paths
and tool positioning. These categories include (1) systems,
(2) iso-parametric paths, (3) non-iso-parametric paths, (4)
planar pocketing paths, (5) sculptured surface pocketing
paths, (6) roughing paths, (7) tool positioning, (8) offset
surface methods, (9) five-axis machining, (10) mesh
models, (11) pixel and point models, and (12) simulation
and verification.

Of course, the above groups overlap. Techniques
involved in one group could be also involved in another
group. For example, systems for tool path generation may
include all of the above mentioned techniques. Roughing
paths may be generated by the iso-parametric or non-iso-
parametric schemes and so on.

This survey is primarily focused on five-axis machining.
It also includes three-axis methods so long as they can be
extended to the five-axis case. We confine ourselves to
techniques designed for cutting the part surface by the
bottom edge of the tool, e.g., flat-end milling and fillet
milling. Many interesting methods designed for five-axis
grinding (flank milling) and plunge milling are not
included.

The survey is focused on the following three categories:
tool path interpolators, methods for tool posture and
gouging avoidance, and adaptable geometric patterns.

3.1 Tool path interpolators

A conventional scheme for five-axis tool path planning and
control is presented in Fig. 3. It includes generation of the
cutter contact (CC) path, offsetting to create a cutter
location (CL) path, and interpolation to create inputs for
axial controllers of the milling machine.

Conventional servo control systems employ linear or
circular interpolation techniques, see Koren [104]. Both
methods may result in discontinuities in the velocity at the
junctions of the segments. They may also result in high
accelerations and subsequent surface inaccuracies as well as
long machining time. Furthermore, modern high-speed
machining may require feed rates up to 40 m/min with
accelerations up to 2g. At such high speeds, small
discontinuities in the reference tool path can result in
undesirable high-frequency harmonics in the reference
trajectory, which may excite natural modes of the mechanical
structure and the servo control system.

Although the NC program cannot change the way the
controller moves the machine parts, the cutter location
points, the rotation angles, and the feed rates applied to cut
the part surface can be changed in such a way that the
errors are minimized or at least reduced on the tool path
generation stage.

Optimization of the CC positions is often combined with
feed rate adaptation and reprogramming the machine
controller.

The way the controller operates may be changed in two
different ways. The first method uses the cutter path curve,
which is transformed from the part-based coordinate system
to the machine coordinate system, maintaining a special
representation of the curve (for instance, a spline). Then the

Fig. 3 A conventional scheme for tool path generation and control
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part program is composed of axis-positioning commands
given in terms of the spline representation. As the part
program is run, the controller interprets the spline repre-
sentation of the path and uses this to find a sequence of
discrete time axis-positioning commands for the given feed
rate. An example is the Siemens SINUMERIK 840-D
controller.

The second approach uses a traditional part program,
processed for certain cutter location points, but the
controller interpolates between the points using a specified
interpolation method to produce smoother sequences at the
segment boundaries. Such policies could be implemented
with an open CNC controller [see 159].

The task of generating such a sequence of points using a
traditional or advanced controller is called interpolation.
The method of moving the tool (actually the machine parts)
between the prescribed positions or along the entire curve is
called the tool path interpolator.

One of the major problems occurring in tool path
interpolators design is the need to accommodate smooth
accelerations to suppress machining force variations and to
subdue feed rate fluctuations that arise from the discrete
nature of the traditional piecewise linear or circular
interpolation methods.

Conventional G-code part programming invokes a basic
conflict between the accuracy with which the curved path is
specified and the smoothness with which it is traversed at
high feed rates. Indeed, a piecewise linear or circular tool
path can be improved to any prescribed accuracy by
increasing the number of approximating segments. Howev-
er, if l is a typical segment length, V is the feed rate, and Δt
is the sampling time of the controller, the feed rate accuracy
is maintained only if VΔt<< l, in other words, if many
sampling intervals elapse while traversing a segment.
Otherwise, one may expect a variety of deleterious
consequences, including jerkiness of the tool motion and
execution times longer than those expected from the
specified paths and speeds.

Early interpolation schemes tackle this problem by
smoothing the tool path at the corners [27] and using low-
pass filters [208]. The low-pass filter scheme proposed by
Weck and Ye, which they refer to as “the inverse
compensation filter”, filters out the high-frequency compo-
nents of reference trajectories and makes them easier to
track. A similar approach was proposed by Tung and
Tomizuka in [196].

However, the filter’s parameters depend on the drive
dynamics, and for operation at a different feed rate,
readjustments to the filter are necessary. Besides, the above
filtering techniques ignore the basic difference between the
chord and the arc lengths. That is, actually, why generating
the tool positions by incrementing the chord length leads to
feed rate instabilities.

In the controller, the interpolation points are generated
with a constant frequency called the sampling rate of the
controller loop. Consequently, the time between two
consecutive points is constant during the interpolation.
Therefore, the feed rate has to be controlled depending on
the arc length distance between two consecutive points. The
ideal fit curve must be parameterized with respect to the arc
length. In this case, equal increments in the curve parameter
yield equal increments in the arc length, and feed rate
inaccuracies are eliminated.

Many modern interpolation schemes are focused on
finding a suitable interpolation. Based on B-spline curves, a
variety of free-form curve interpolators for CNC machin-
ing have been proposed [89, 179, 212, 217, 223, 224].

However, the major inconvenience of the B-splines is
that the arc length along the curve has to be approximated
using numerical integration leading to inevitable numerical
errors.

As a matter of fact, arc length parameterizations are not
analytically possible for general spline curves. Therefore, a
number of approximate solutions have been proposed.
Shpitalni et al. [179] present a numerical method based on
a truncated Taylor series to estimate in real-time the next
point along the spline for a given feed rate. Suppose that the
spline functions representing the cutter path are given by
P(t)=(x(t), y(t), z(t)), R(t)=(a(t), b(t)), where P(t) represents
the three spatial coordinates of the tool tip (the tool position
vector) and R(t) represents the rotation angles. Suppose that
t is discretized as {t0,t1,...,tn}. Using a first-order Taylor
series yields: tkþ1 ¼ tk þ t0$t þ o $t2ð Þ, where prime
denotes the derivative and Δt the increment. Given a
desired velocity V (the feed rate) and a sampling (servo
update) period TS our basic interpolation algorithm assigns
the discrete values t=tk as follows:

tkþ1 ¼ tk þ V Tsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ z02

p ; ð3:1:1Þ

This generates approximately equal arc-length steps for
each round of interpolation.

A compensatory parameter for the first-order approxi-
mation Eq. 3.1.1 was proposed by Yeh and Hsu [216].

Of course, the first-order approximation is not always
appropriate [101]. Therefore, the accuracy is enhanced by
using a second-order Taylor series. In this case the curve
parameter is incremented as follows:

tkþ1 ¼ tk þ V Tsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02 þ z02

p � V 2T2
s x0x00 þ y0y00 þ z0z00ð Þ
2 x02 þ y02 þ z02
� �2 :

ð3:1:2Þ
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Wang and Yang [203] generate the trajectory by means
of cubic and quintic splines using the chord length and a
nearly arc length parameterization, implemented with the
quintic spline interpolation. Assuming small curvatures, the
points on the original curve can be (approximately) evenly
distributed so that the resulting composite spline is closer to
being arc-length parameterized with the reference to the
cubic splines. The quintic splines are likely to be shaped
close the original curves without unwanted high-order
oscillations. With this property the next point along the
spline is simply obtained by

tkþ1 ¼ tk þ V Ts:

The first stage of the algorithm is calculation of the near
arc-length quintic position spline using a set of position
vectors. The k-th segment of the position spline on tk ; tkþ1½ �
is represented by Pk ¼ c0;k þ c1;k t þ c2;k t2 þ c3;k t3þ
c4;k t4 þ c5;k t5, where t 2 0; lk½ � and lk is the range of t.
Coefficients ci,k are found using the following procedure.
First, a cubic spline p(t) is constructed through the given set
of points. Next, the first and second derivatives of the cubic
spline at the data points are extracted and used to construct
the quintic near arc-length parameterized spline. The first
derivative is normalized so that the quintic spline is arc-
length parameterized at the data points. Coefficients ci,k are
then found by

c0;k ¼ pk ; c1;k ¼ p
0
k ; c2;k ¼ p

0 0
k

2
;

c3;k ¼ 10 pkþ1 � pkð Þ
l3k

� 2 p
0
kþ1 þ 3p

0
k

� �
l2k

þ p
0 0
kþ1 � 3p

0 0
k

2lk
;

c4;k ¼ 15 pkþ1 � pkð Þ
l4k

þ 7p
0
kþ1 þ 8p

0
k

l3k
� 2p

0 0
kþ1 � 3p

0 0
k

2l2k
;

c5;k ¼ 6 pkþ1 � pkð Þ
l5k

� 3 p
0
kþ1 þ p

0
k

� �
l4k

� p
0 0
kþ1 � p

0 0
k

2l3k
;

ð3:1:3Þ
where pk=p(lk). Finally, lk are re-evaluated using the
condition: dPk

dt
lk
2

� � ¼ 1.
This model was followed by [202], who included an

extra jerk (the rate of change of acceleration) continuity into
the quintic spline interpolation. Although this improved the
correctness of the resultant feed rate profile, significant
fluctuations may still occur at high curvatures. Therefore,
Wang and Wright recommended increasing the number of
points at these segments to reduce the fluctuations due to
the parameterization errors.

Fleisig and Spence [66] improved the quintic spline
routine by finding the curvature of the cubic spline at the
data points and applying these values to construct the
quintic spline. This yields a spline that is significantly
closer to arc-length parameterization. They also introduced

the so-called orientation spline which interpolates the
orientation of the tool vectors. Since the orientation of the
tool is defined by a unit vector, the orientation spline must
lie on the surface of the unit sphere. The orientation spline
must have both the near arc-length parameterization
property and C2 continuity. Therefore, it requires some
adjustments. The first adjustment is made in the selection of
the tangents and curvatures of the quintic spline by
modifying the first and the second derivatives extracted
from the cubic spline. The second improvement is made
once the quintic spline control points are known, by forcing
the unit tangency property at the middle of each segment.

Weck et al. [207] presented cubic spline interpolation,
where feed rates at the spline segments are corrected based
on the physical limitations of the drives using fourth-order
acceleration profiles. This idea was then further developed
by Erkorkmaz and Altintas [52] in the quintic spline
trajectory generation algorithm to produce continuous
position, velocity, and acceleration profiles. The reference
trajectory generated with varying interpolation period is re-
sampled at the servo loop closure period using fifth-order
polynomials, which enables the desired kinematics profiles
to be preserved.

The quintic spline is parameterized with respect to the
chord length between two consecutive positions and
the chord length is retained as the parameter. However,
the increment is adjusted recursively to obtain a constant
displacement magnitude at each step of interpolation, hence
avoiding feed rate fluctuations. The step is selected so that
the total length L is traveled at the highest feed rate hmax.

Therefore, the number of interpolation steps Ni ¼ L
Ts Vmax

h i
and $t ¼ L

Ni
:

For simplicity, consider two axes. Suppose that the axes
increments are given by Δx and Δy. The path increment is
then given by

$t ¼ L

Ni
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$x2 þ $y2

p
:

Invoking the quintic representations yields

$x ¼ xiþ1 � xi ¼ cx0 þ cx1t þ cx2t
2 þ cx3t

3 þ cx4t
4 þ cx5t

5 � xi;

$y ¼ yiþ1 � yi ¼ cy0 þ cy1t þ cy2t
2 þ cy3t

3 þ cy4t
4 þ cy5t

5 � yi:

Substituting Δx, Δy into the equation for Δt produces a
10th order polynomial equation solved numerically by
Newton–Raphson’s iterations. An additional modification
providing a smooth feed motion along the quintic spline is
performed by modulating the interpolation period between
evenly spaced reference points. The approach allows the
feed rate to be easily modified on the fly, by rescaling
the interpolation period with a desired override factor. As
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the result the requested value of jerk is not larger than an
achievable value for given acceleration, deceleration, and
sampling period values. The kinematics profiles used in
feed rate generation are characterized by trapezoidal
acceleration profiles with pre-specified slopes (jerk values).
The acceleration, feed rate, and displacement profiles are
obtained by integrating the jerk profile.

Substituting specified jerk profiles, integrating and
setting a desired jerk magnitude as well as desired
acceleration and deceleration magnitudes makes it possible
to evaluate feed rates at the end of each stage as well as the
distances to be traveled at each stage. Finally, reference
trajectories generated with varying interpolation period are
reconstructed at the control loop closure period so that
smooth feed rate and acceleration profiles are received by
each digital axis controller.

Of course, the jerks are only limited rather than entirely
eliminated. The approach requires a considerable offline
computing effort. In particular, in order to generate the
boundary conditions for the quintic spline, the method uses
a preprocessing cubic spline interpolation. Another disad-
vantage is that since the chord length is used to parame-
terize the curve the method leads to good results only for
small curvatures. Yet, this technique is an efficient
combination of the kinematics profile analysis and quintic
spline interpolation method. However, as far as this group
of methods is considered, it is not clear how to implement
them for a five-axis case and whether such technique is
applicable to the jerks appearing in the rotation axis.

A similar approach was proposed by Nam and Yan [152].
The jerk-limited path is obtained by estimating an admissible
range of accelerations at the consecutive points along the
tool path and deciding the maximum possible value for
achieving the final deceleration stage at every sampling
period. Interestingly, four years earlier Red [171] took it one
step further allowing for non-zero starting accelerations.

Some research has been focused on generating optimal
or nearly optimal speed profiles for single moves to execute
the process plan as quickly as possible, subject to process
constraints, and dynamic limitations of a given machine.

Renton and Elbestawi [172] developed a two-pass
algorithm to determine a minimum time speed profile
subject to speed and acceleration constraints. The method is
computationally expensive and evaluates the speed profile
in the parametric domain.

Dong and Stori [40] extended Renton and Elbestawi’s
method to account for and limit the effects of actuator
limitations on the contour error. Timar et al. [44] developed
a method for time-optimal speed profiles for a single move
subjected to speed and acceleration constraints.

As far as more general control system approaches are
concerned Shin and McKay [181] proposed a dynamic
programming approach to solving the minimum time control

problem with jerk constraints. In the general framework, there
are no limitations on the form of the constraints, cost
function, or system model. However, the approach is
computationally expensive since discretization of the phase
plane requires high numerical accuracy and, therefore, a large
number of points to obtain an acceptable feasible solution.

Dong et al. [43] suggested a general approach in the
framework of the dynamic systems control theory. Given an
arbitrary parameterized curve S(t), the feed rate optimization
problem is formulated as identification of a parametric
velocity function _sðtÞ such that S(s(t)) is time-optimal subject
to a particular set of limitations and dynamics state
constraints. The machine tool constraints are the velocity,
acceleration/torque, and jerk limits of all active linear and
rotary drives (Fig. 4). Since the feed must be assigned along
the tool path in such a way that the constraints are not
violated, the velocity, acceleration, and jerk become path-
depended as follows:

vSðtÞ¼ dSðsÞ
ds

�s

aSðtÞ¼ d2SðsÞ
ds2

�sðtÞ2 þ dSðsÞ
ds

��sðtÞ2

jSðtÞ¼ d3SðsÞ
ds3

�sðtÞ3 þ 3
d2SðsÞ
ds2

�sðtÞ ��sðtÞ þ dSðsÞ
ds

���s ðtÞ:
ð3:1:4Þ

Fig. 4 The feed, acceleration, and jerk profiles along the tool path
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With these relationships the system’s states can be
represented explicitly in terms of the parametric velocity,
acceleration, and jerk. The problem is stated as

minimize�sðtÞ

Z1
0

ds
�sðtÞ ð3:1:5Þ

subject to constraints representing limitations on the jerk,
acceleration, and velocity given by

jSðtÞj j � Jmax;

kaaSðtÞ þ kvvSðtÞj j � Fmax vSðtÞð Þ;

where ka,kv,Fmax(v) represent the system capability con-
straints of each axis derived from the system’s dynamics
characteristic (see further details in [41, 61]). However, the
methods are computationally expensive. Besides, they do
not consider the actual kinematics of the machine, assuming
that the tool follows a certain parameterized curve.
Furthermore, [42] included into the formulation some tool
capability constraints, and presented a two-pass algorithm to
solve the corresponding optimization problem. Unfortunately,
the resulting trajectories may still possess discontinuous
acceleration and torque profiles, defeating the purpose of
using a smooth tool path and leading to inaccurate cuts for
high-speed machining.

Smoothing the trajectory and enhancing the tracking
performance taking into account the jerk limits of the drives
has been considered in Tarkiainen and Shiller [198] and
Piazzi and Visioli [163].

Constantinescu and Croft [37] used torque rate constraints,
and iteratively optimized the spline trajectories for finding
minimum time trajectories of robotic manipulators. In all
those cases the constraints considerably increase the compu-
tational complexity, requiring iterative numerical methods.

Sencer et al. [185] minimize five-axis machining time
subject to process and machine tool constraints. The first
constraint is the vector feed along the tool path defined by
the NC program and the machine tool constraints are the
velocity, acceleration/torque, and the jerk limits of all active
linear and rotary drives (see Eq. 3.1.5). In addition to that,
the tangential feed, acceleration and jerk are fitted as to
cubic or quintic splines to avoid discontinuities in the multi-
axis trajectory. Furthermore, the drive constraints are
adapted to the five-axis mode as follows: the tool tip
position P(t)=(x(t), y(t), z(t)) and the orientations are
transferred into the drive position vector M(t)=(X(t), Y(t),
Z(t), a(t), b(t)) for which the profiles of velocity, acceleration
and jerk can be derived similarly to (Eq. 3.1.4; see Fig. 5)
but with regard to the drive trajectories produced by the five-
axis kinematics. The velocity constraints are given by

�1 �

X ðtÞ
vx;max

Y ðtÞ
vy;max

ZðtÞ
vz;max

aðtÞ
va;max

bðtÞ
vb;max

0BBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCA

�s � 1:

It is clear that the slowest drive, which has the maximum
derivative of its displacement normalized with its velocity
limit, defines the allowable feed. The acceleration and the
jerk limits are determined in a fashion similar to Eqs. 3.1.4
and 3.1.5 for all five drives.

Fig. 5 Generation of the
motions for five-axis drives
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Note that in Eq. 3.1.5 Sencer et al. [185] replace �sðtÞ by�
SðtÞ, where S is an arbitrary splined tool path, as follows:

minimize�
SðtÞ

Z 1

0

ds
�sðtÞ: ð3:1:6Þ

Furthermore, the feed profile is represented in a B-spline
form as a function of the path length with modulated
control points defined at some fixed path positions.

The optimization is performed with regard to these
positions to minimize the machining time while respecting
the axis constraints. The feed control points move up and
down, altering the feed profile, during an iterative optimi-
zation process until optimal feed values, which do not
violate the machine drive constraints, are obtained. Note
that the optimization process can be computationally
inefficient if all control points are considered simultaneous-
ly along a long tool path. Therefore, the optimization
algorithm is applied in a suboptimal fashion, employing
moving windows with a smaller number of control points.

Finally, in spite of a variety of research and experimental
papers there is still no agreement on the best interpolation S
(t) in Eq. 3.1.6. Although NURBS [2] seems to present one
of the best options, arc length parameterizations are not
analytically possible for general spline curves.

In [55, 56], Farouki introduced Pythagorean–hodograph
(PH) curves to solve the problem of feed rate control for
three-axis machines. These curves provide a mathematical-
ly elegant solution to interpolation problems occurring in
NC machining.

For simplicity consider a 2D case. The hodograph of a
polynomial curve S(t)=(x(t), y(t)) is called a curve given by
hðtÞ ¼ x0ðtÞ; y0ðtÞð Þ. A Bezier curve is called Pythagorean–
hodograph (PH) if the length of its tangent vector depends
in a (piecewise) polynomial way on the parameter t. In
particular S(t)=(x(t), y(t)) is called the planar PH curve if
there exists a polynomial σ(t) such that

s2ðtÞ ¼ x02ðtÞ þ y02ðtÞ:

Furthermore, introducing a complex valued eSðtÞ ¼
xðtÞ þ iyðtÞ and ehðtÞ ¼ x0ðtÞ þ iy0ðtÞ, entails that S(t) is a
PH if and only if there exists a complex polynomial w(t)
such that ehðtÞ ¼ wðtÞ2:

In terms of real analysis it means that there exist three
polynomials eaðtÞ;ebðtÞ; ewðtÞ such that

x0ðtÞ ¼ ew ea2 � eb2� �
; y0ðtÞ ¼ 2eweaeb; sðtÞ

¼ ew ea2 þ eb2� �
: ð3:1:7Þ

A major advantage of the PH curves, compared to the
ordinary polynomial curves, is that their arc length is a
polynomial given by

sðuÞ ¼
Z u

u0

sðlÞj j dl:

Besides their offset curves have a closed form given by
o d; uð Þ ¼ d

sðuÞ y0ðuÞ � x0ðuÞð Þ, where d is the oriented offset
distance.

Suppose that ewðtÞ � 1. In this case the PH curve is
constructed as follows. First, two polynomials eaðtÞ;ebðtÞ are
selected to define the so-called pre-image curve. Next, we
integrate Eq. 3.1.7 to obtain a parametric representation of
the PH curve. Since curves having the same hodograph differ
only by translation, a regular planar PH curve is fully
determined by the pre-image and by the location of its
starting point.

In Farouki and Neff [57], a 2D Hermite interpolation
combined with PH curves was proposed and analyzed.
The ideas were further developed in Farouki et al. [60, 62]
and Farouki et al. [61]. It has been demonstrated that
since the arc length of the PH curves can be represented
by a polynomial function of the curve parameter, they can
be successfully used for NC interpolation. Consequently,
a variety of planar PH curves given Hermite-type
boundary data were developed and implemented [e.g.
97, 145, 184].

Finally, Aigner et al. [8] demonstrate the use of the PH
curves for approximation of data, in the framework of an
evolution-based least square approach. Some available PH
solutions for the Hermite-type interpolation are given in
Table 1 [184]

We outline the following advantages of the PH curves:

– the ability to specify smooth accelerations and decel-
erations along curved tool paths through the use of feed
rate functions with linear or quadratic dependence on
the arc length,

– the use of curvature dependent feed rates to reduce
machining force variations due to varying material
removal rates at fixed depth of cut along curved tool
paths

– the ability to directly interpolate the offset at a given
fixed distance from a curved path for tool radius
compensation,

– suppression of feed rate fluctuations incurred by the
incompatibility of discrete i. e. linear/circular tool path
descriptions with smooth realization of high speeds and
hence improved surface finish.

Figure 6 shows PH quintics (bold) compared with
conventional cubic interpolants to a first-order Hermite
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data. The PH curves have fairer shapes especially in cases
with inflections [60, 62].

Among the disadvantages of PH curves are computa-
tional difficulties and the fact that they have less degrees of
freedom than other polynomial curves of the same order.
For example, a cubic PH curve has only one degree of
freedom. At least five degrees of freedom are required for a
PH curve to have an inflection point.

Besides an important step in the application of PH
curves is their construction from the input data. Due to the
special algebraic properties of PH curves, all constructions
which are linear in the case of standard curves [such as the
Bezier curves or 2] become nonlinear in the PH case. In
particular, the applicability of global constructions, such as
global spline interpolation and least squares fit is limited,
since they lead to large systems of nonlinear equations.

Furthermore, a common drawback of all the above
interpolators is that they neglect the actual machine
kinematics. Consequently, there is a need to merge the
concept of tool path interpolation with kinematics of a
particular milling machine (see the Appendix).

The fact that, a linear trajectory in the workpiece
coordinate system becomes nonlinear in the machine
coordinates (if the rotary axes are involved) is not always
well understood in the engineering practice. However, the
errors induced by the kinematics of the machine in many
cases become the major source of the inaccuracies.
Moreover, the kinematics error may exceed the above
mentioned errors related to the discontinuities of the
velocities and accelerations.

The nonlinear effects can be observed on the real speed
of the tool relatively to the part [111]. As opposed to
considering the tool motions solely in the workpeice
coordinates, the corresponding errors include kinematics
of the particular machine making the optimization problem
machine-dependent (Fig. 7).

Some classification of machine errors and demonstra-
tions of the nonlinear effects are given in Bohez [25].
Coordinate transformations between the workpiece and
machine coordinate systems for five-axis milling are
incorporated in the interpolator by Lo [126, 128]. The task
of the proposed interpolation algorithm is to assign a
distribution of the sampled tool locations following a
specified parametric curve with a desired velocity. The

Fig. 7 A linear trajectory in the machine coordinates becomes
nonlinear in the workpeice coordinatesFig. 6 PH curves vs. cubics

Table 1 Hermite-type interpolation of planar data by the PH curves

Continuity Degree Number of solutions Remarks

G1 3 2 solutions, a quadratic equation [142] One of the solutions has the 4-th order approximation at generic points

C1 5 4 solutions, quadratic equations [57] The best solution can be identified via its rotation index [145].
One of the solutions has approximation order 4 [184]

G2 5 System of 6 equations, the 2-d degree [58, 59]

G2(C1) 7 8 solutions, quartic equations [97] One of the solutions has the 6-th order of approximation at
generic points. Inflections reduce the approximation order [97]

G2 9 4 solutions, quadratic equations [58,59] The best solution can be found by visual inspection of the curves
and their control points [58, 59].

One of the solutions has the 6-th order of approximation [184]
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algorithm utilizes a recursive approach based on Taylor
series Eqs. 3.1.1 and 3.1.2 combined with inverse the
kinematics transformations.

In [128] a problem of maintaining a desired cutter
contact point velocity, rather than a cutter location point
velocity, is considered. This task is combined with
decreasing of the deviation from the desired curve along
the cutter contact path. The proposed method includes
spline functions for the CC location, the surface principal
normal, the CC velocity, the tool inclination, and the
rotation angles.

The CNC interpolator calculates the CL path in real-time
so as to meet the desired CC velocity along the path. A
global feedback loop is closed by the interpolator, which
monitors the actual CC location in real-time and compensates
for the deviations from the desired surface. In addition, an
online adaptation of the feed rate is introduced.

Muller et al. [148] presented an algorithm for simulta-
neous five-axis spline interpolation which merges PH
interpolation and an analytic solution of the inverse
kinematics equations using a template equation method.
The result is a time-dependent spline which represents a
given tool path with a high accuracy. However, the
technique is complicated and cumbersome. Some techno-
logical factors such as maximum allowed velocities and
accelerations along each axis or altering material removal
rates are not considered. The authors write that “the
algorithm turned out to be very robust [only] if the
following assumptions are true: (1) the given surface is
smooth (no geometric discontinuities); (2) the position and
tangent values can be calculated on the given surface and
(3) a reasonable discretisation is given. Points (1) and (2)
seems to be trivial but it turned out in practical applications
that the surfaces obtained from commercial CAD [5] or
CAM systems do not always correspond to what was
expected from visualization. Besides, the problem of
finding an optimal discretisation is excluded from the scope
of this article although the issue is important for the
robustness of the algorithm in practical applications.”

The machines with rotation axes on the table often have
to turn around heavy workpeices. Therefore, they must
support significant mechanical efforts during machining. As
a result, these machines may have low capacities for
acceleration. When such a machine has to slow down or
stop, the speed reduction requires a considerable time for
deceleration and re-acceleration. This effect significantly
increases machining time, and is amplified in HSM when
the rotation axes reach greater speeds. Therefore, it can
even be economically justified to use three-axis at high
speeds to reduce the number of decelerating axis.

As far as the five-axis machines are concerned, two basic
problems can be considered. ProblemA: evaluation of the tool
path using a polynomial curve in the workpiece coordinates

and problem B: calculation of the tool path in the machine
coordinates using inverse kinematics transformations.

Langeron et al. [111] note: “The essential difficulty
concerns the relative position of these two problems within
the general process. In other words, does the calculation of
the tool path have to be carried out in the part coordinate
system (problem A before problem B) or in the machine
coordinate system (problem B before problem A)?”

In case of “problem A before problem B”, the CAM
system fits a curve to a set or subset of prescribed tool path
positions. Furthermore, the spatial coordinates as well as
the rotation angles can be represented in the workpeice
coordinates using a certain family of curves such as the B-
splines PH curves, etc. At this stage, tool path discontinuities
can be detected. The curve is then transmitted to the NC unit,
which interprets it before performing the inverse kinematics
transformation. Therefore, this case seems to be well adapted
to five-axis polynomial curve machining.

Langeron et al. [111] suggest a polynomial B-spline
interpolation method which takes into account the kine-
matics of the five-axis machine as follows: P(t)=(x1(t), y(t),
z2(t))defines the locus of the tool tip locations, whereas
Q(t)=(x2(t), y2(t), z2(t)) defines the locus of a second point
belonging to the tool axis. This new five-axis format is
generic and allows for representing the tool path for all
types of machining such as three, four, or five-axis
machining, including point, flank, or even plunge milling
(Fig. 8).

Clearly, 9H : 8t PðtÞ � QðtÞk k ¼ H :

Moreover, the tool orientation is conveniently defined by
OðtÞ ¼ PðtÞ�QðtÞ

jjPðtÞ�QðtÞjj :
It has been shown that the new format makes it possible

to design efficient algorithms for elimination of gouging.
As a matter of fact, with this format, one can easily quantify
the maximum distance between the side of the tool and the
surface or the distance between the back of the tool and the
part. Furthermore, NURBS-based [2] P(t) and Q(t) are used
to represent the tool movement in the part coordinate
system. The C2 continuity introduced by the interpolation
format ensures continuous dynamics of the rotation axes,
which often have lower capacities of acceleration and thus

Fig. 8 Tool path definition using the two-curve format
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are the main source of the kinematics errors. Although the
errors due to the difference between the chord and the arc
lengths are not analyzed with the reference to the machine
kinematics, the proposed format appears to be suitable to be
combined with the PH curves to represent {P(t), Q(t)}.
However, such analysis remains an open problem.

Lo [129] introduced spline interpolators for iso-
parametric, iso-scallop, and iso-planar machining methods
(see the forthcoming sections). Besides that, the paper
merges online interpolation with the benefits of offline tool
path generation. The offline part of the interpolation
approach is based on the CC path, followed by real-time
tool offsetting that calculates CL points. Note that the older
methods use cutter offsets computed in the CAM system
before interpolation. As opposed to that, Lo’s proposed
procedure is executed at the sampling rate of the actual
CNC unit. Therefore, at any sampling instant, the CC point
is always located on the surface, whereas the older methods
lead to CC position errors, except at the end points of the
segments.

Sır et al. [183] presented a modification of the bi-arc
interpolation technique based on spline curves composed of
circular arcs and compared them with the PH curves. The
paper concludes that PH curves are still one of the best
options for maintaining a constant feed rate.

Furthermore, NURBS-based [2] interpolators have re-
ceived considerable attention. By manipulating the weights,
knot vectors, and control points, a variety of curves suitable
for interpolation can be designed and implemented [161].
NURBS [2] have also been employed by many CAD/CAM
systems as a basic geometry representation. Therefore,
many NURBS-based [2] command generators were proposed
[see, for instance, 32, 107, 224].

NURBS [2] command generators eliminate linear inter-
polation errors as well as errors due to converting from a
CAD [5] representation to the CNC interpolating mode.
Many NURBS [2] interpolators similar to those employed
for cubic or quintic splines [16] are capable of achieving
approximately constant velocity along the required curve.
In fact, NURBS [2] have become the standard for many
CAD/CAM and computer graphics systems. Their basics
are considered in many text books such as, Piegl and Tiller
[161]; Farin [54], etc.

Some CNCs have already incorporated the option to
internally spline a point data in the conventional part
program. However, better solution is to interpolate directly
from the actual curves generated in CAM. For instance, GE
Fanuc [6, 7] [GE FANUC, NURBS 2 Interpolation] control
reads a G-code which includes the NURBS [2] data: the
control points, weights, and knot vectors required to define
the curve. The control builder asserts that this method of
representing curved cutter paths "results in a reduction of
program size of 1/10th to 1/100th of a comparable linear

interpolation part program and significantly improves the
fundamental accuracy issues."[8] (Akino. Interpolating
Curves).

Still there have been many improvements and modifica-
tions of the NURBS [2] based on interpolation technologies.
Liu et al. [124] develops an interpolation scheme which,
when applied to NURBS [2], not only meets the require-
ments of approximately constant feed rate and chord
accuracy but also integrates dynamic factors, namely, sharp
corners, feed rate-sensitive corners, components with high
frequencies or frequencies matching the machine natural
frequencies, and high jerks. A look-ahead module uses the
Fast Fourier transform to detect unwanted frequencies. A
notch-filtering or a time-spacing method is used to eliminate
those components.

Interesting NURBS [2] interpolations, taking into account
the volume of the removed material (which could be an
important factor as far as the load on the machine tool is
concerned), is considered by Tikhon et al. [143] and Ko et al.
[102]. The research papers propose a feed rate evaluation
algorithm that keeps an approximately constant material
removal rate along the desired curve.

Many papers claim an improvement of the NURBS [2]
based interpolation; however, it is often a modification of
constraint minimization Eq. 3.1.6. For instance, Altintas
and Erkorkmaz [12] perform a gradient-based search that
leads to shorter time cycles. Erkorkmaz and Heng [53]
present yet another heuristic approach to produce a shorter
cycle time compared to the worst-case approach. The
numerical algorithm converges to a feasible solution faster
than a gradient-based method. Lei et al. [118] take an
advantage of the numerical adaptive quadrature to evaluate
the curve length dividing the parameter interval into
subintervals with a fine or coarse grid spacing.

M. Korosec [105] integrates feed rate evaluation based
on the constant instantaneous volumetric removal [204]
with an adaptive least square NURBS [2] approximation to
produce a minimal or close to the minimal number of
control points. The method can be interpreted in the
framework of grid generation methods comprehensively
discussed in this paper Section (3.3).

A novel approach to NURBS [2] based interpolation is
proposed by Tsai et al. [193], where a NURBS [2]
interpolator has been integrated with a model of servo
dynamics of the machine. A look-ahead code includes a
corner detection module, a jerk-limited module, and a
dynamics module to take into account chord errors, feed
rate fluctuations, jerks, and servo-errors simultaneously.
The experiments show that in many cases, the techniques
achieves better accuracy while requiring less machining
time with the reference to an adaptive-feed rate method of
Tikhon [143] and curvature-feed rate interpolation proposed
by Yeh and Hsu [216].
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Finally, a number of papers introduce interpolators
designed for high-speed milling (HSM). In HSM opera-
tions, the tool path frequently changes direction producing
high accelerations and decelerations. Therefore, commercial
CAM systems often cannot accurately predict the cycle
time by assuming a constant feed rate. During high-speed
machining, the actual average feed rate could be signifi-
cantly lower than the programmed feed rate due to the
physical restrictions of the machine tool and the block
processing time of the CNC controller. In many cases, the
machine tool hardly reaches the maximum feed rates
offered by the manufacturer. This happens when the block
processing time is longer than the block execution time and
the machine reaches the end point of the segment before
information required for the next movement is available. In
this case some machines stop, producing a significant jerk.
Others automatically reduce the programmed feed rate,
which results in a lower real feed rate and, consequently, a
longer machining time [130]. This relatively new HSM
issue has been further discussed in Monreal and Rodriguez
[144]. This paper demonstrates the phenomenon experi-
mentally and presents some heuristics to evaluate the actual
feed rate. However, a theoretical framework to evaluate the
feed rate for HSM has not been proposed.

Siller et al. [182] suggest a mechanistic model based on
the frequency distribution of linear interpolation path
lengths in the CNC program and characterizations of the
machine tool for brisk and smooth movements. The model
is characterized by the standard advantages and disadvan-
tages of statistical models. In particular, the model does not
take into account the actual kinematics of the five-axis
HSM machine. In addition, statistical data could be very
different for different parts in which case, the proposed feed
rate prediction techniques could be inaccurate.

Hu et al. [87] suggest a look-ahead algorithm to find an
approximate “optimal” feed rate for high-speed machining.
This paper successfully builds up a mathematical model for
feed rates by considering only the key and representative
factors, then proposes a feasible way to find the approxi-
mate feed rate by reading a preset number of line blocks
ahead. Simulations show that this algorithm is able “to
anticipate sudden direction changes and react accordingly.
If the look-ahead check reveals that there may be a
problem, feed rate for intermediate points along the tool
path can slow down, otherwise it will maintain a high
speed.” The algorithm considers constraints on accelera-
tions assuming linear acceleration/deceleration profiles and
constraints on the angular acceleration. However, the angle
constraints are somewhat artificial since the tool is being
moved by rotating the machine parts. Therefore, the angular
accelerations should be represented in terms of the accel-
erations of the rotating axes rather than the tool. The
authors do not differentiate between CL and CC points and

do not take into account the machine kinematics. Finally,
the method has not been analyzed from the viewpoint of the
optimal number of look-ahead blocks. The authors admit
that “Generally the more look-ahead blocks there are, the
greater productivity is. However, when the number of look-
ahead blocks is set too large, the calculation time and
memory cost is also increased. So more blocks do not
necessarily mean better performance.”

Finally, surface quality and machining time are recog-
nized as the most important machining criteria in the
modern tool-shop industry. However, there are other
important measures such as the tool wear, the machining
costs and so forth, which can be significant as well.
Therefore, the intelligent controller of the future should be
capable of adaptation according to a variety of selected
technological parameters and criteria.

3.2 Tool posture and gouging avoidance

This section deals with techniques to optimize the position
and orientation of the tool in a particular neighborhood of
the machined surface. The most important application of
these techniques is cutting a part surface by a flat-end or a
fillet mill.

In [141], Marciniak proved that in five-axis machining,
the width of the machined strip on the surface can be
maximized when the tool is moved on the surface
approximately along the minimum curvature line or curve.
The maximum strip width depends on the difference
between the surface main curvatures at the contact point.

Some of the early research papers exploiting this idea are
Kruth and Klewais, [108], Li and Jerard [120], and Gani et al.
[68].

Furthermore, Kruth and Klewais [108] introduced an
optimal milling direction parallel to the principal direction
of the surface with the minimum curvature.

Elber [49] introduced a tool path optimization method
which splits the surface into convex, concave, and saddle-
like regions. Applying a flat-end cutting tool to convex
regions and a ball-end tool to other regions leads to better
material removal rates and smaller scallops. Of course,
having irregular-shaped regions cut by different tools is not
always a good idea due to difficulties in finding the
boundaries of those regions and possible inaccuracies at
the boundaries. On the other hand, the ball-end (ball-nose)
tool is capable of changing the orientation without
additional path correction which makes it useful for regions
that are hard to reach (see Fig. 9)

Another important drawback of the ball-end cutters is that
the cutting speed varies along the tool radius. Maximal cutting
speed is reached along the tool circumference, and at the tool
tip (the center) it is zero. This may lead to cutting edge
chipping as well as poor surface roughness (see Fig. 10).
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Gani et al. [68] noticed that “One of the critical problems
in five-axis milling is the positioning of the cutter in
relation to the surfaces in order to machine without having
overcut or undercut (gouging). Because of this problem,
ball-end cutters are preferred because the tool path for the
ball-nose cutters is mainly a problem of surface offset.”

Recall that in five-axis machining, the tool has five
degrees of freedom relative to the surface. The three spatial
degrees are used to locate the tool at the cutter location. The
additional two rotational degrees establish the orientation of
the tool represented by the inclination angle and the tilt
angle [see, for instance, 178] or the tilt angle and the yaw
angle [96]. The angles are evaluated in a local coordinate
system usually defined by the feed direction, the surface
normal and the corresponding cross-product vector.

Consider the flat-end mill. The boundary of the base of
the tool, which is the part of the tool cylinder, is called the
cutting circle of the tool.

The effective cutting shape, also referred to as the tool
swept section, is defined as the projection of the base of the
tool onto the plane normal to the feed direction. The
projected edge of the flat-end mill becomes an ellipse called
the effective cutting ellipse.

Let us introduce a local coordinate system (Ol, xl, yl, z1)
at CC point Ol shown in Fig. 11, where xl denotes the
normalized projection of the tool cutting direction onto the
tangent plane, zl denotes the surface normal vector, and
y1 ¼ z1 � x1. The tool is rotated by an inclination angle l
about the yl axis and by a tilt angle w about the zl axis. The
projected bottom edge of a flat-end cutter with radius r onto
the (yl, zl)-plane is the effective cutting ellipse.

In order to evaluate the machining strip, the surface
cross-section perpendicular to the tool cutting direction xl is
approximated by a circular arc, for which radius Ry is equal
to the radius of the normal curvature of the surface in the yl
direction as shown in Fig. 12. Suppose that h is the
maximum allowed scallop height. The maximum machined
surface error can be represented by a virtual circular arc
with radius Ry-h shown in Fig. 12. The machining strip
width is then obtained by finding intersections of the
effective cutting shape with the virtual arc as follows.

Let P be an arbitrary point on the cutter bottom edge (see
Fig. 11). We consider an angle θ required to turn the yc axis
around the zc axis in such a way that the negative yc axis
passes through P. Furthermore, angles corresponding to the
left and the right intersections Pl and Pr are denoted by θl
and θr respectively (Fig. 12). It is not hard to demonstrate
that the left and the right machining strip wl and wr are
given by

wm ¼ r cosw cos qm � cos l sinw 1� sin qm
� ��� �� ð3:2:1Þ

where μ=l or μ=r. The entire machining strip width is
then

w ¼ wl þ wr:

Note that the local surface cross-section at the CC point
seems to be better approximated by a circular arc [14] than
by the parabola suggested by Lee and Ji [115].

The local gouging or the curvature interference is
defined as the excess material removal in the vicinity of
the cutter contact point due to the mismatch in curvatures
between the tool cutting edge and the desired surface.
Detecting and avoiding local gouging requires matching up
the curvature of the effective cutting shape (also referred to
as the effective cutting curvature) with the normal curvature
of the surface evaluated in the same plane. If the effectiveFig. 10 Cutting speed profiles for the ball-nose cutter

Fig. 9 Ball-end vs. flat-end cutter
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cutting curvature is greater than the normal curvature of the
surface then local gouging does not occur.

The effective cutter radius re is given by [127, 128].

re ¼ ra2
1þ b2

a2 þ b2

� 	3=2

ð3:2:2Þ

where a ¼ sin l cosw; b ¼ tan l sinw.
The curvature of the effective cutter shape is then given

by

keff ¼ sin l
r cos2w

ð3:2:3Þ

To optimize the machining strip width, l and w are
usually set so that re is the best match to the radius of
curvature at the CC point. For convex or planar surfaces,
the tool inclination angle l is set to a small default angle or
zero and the tilt angle w is set to zero as well. If the surface

is non-convex, a non-zero tool inclination angle l is needed
to avoid gouging.

Consider a flat-end cutter shown in Fig. 11. Gouging
occurs whenever a point on the circle touches or goes inside
the surface. Let G be a gouging point (see Fig. 13a). The
line connecting the two points, Ol and G, forms a chord on
the circle. Denote the angle between this line and O1Oc by
f (see Fig. 13a, b). Let lf be the tool inclination angle that
corresponds to a specific f. The minimum tool inclination
angle to avoid gouging is then

lmin ¼ max
�p=2�f�p=2

lf: ð3:2:4Þ

It is not hard to demonstrate that for a non-convex surface

lmin ¼ sin�1 rkmaxð Þ; ð3:2:5Þ

where kmax is the maximum surface curvature at the CC
point. Clearly, for a convex surface an inclination is not

Fig. 11 Geometric analysis of
the flat-end cutter

Fig. 12 Machining strip width
estimation
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required, so lmin=0 (from technological viewpoints a small
inclination angle is still recommended). Furthermore, it can
be shown that for flat-end cutters the orientation (l, w)=
(lmin, 0) maximizes the machining strip. If gouging cannot
be eliminated by inclining the tool alone or the inclination
angle l requires rotations which exceed the limit of the
machine, the tilt angle can be optimized or a smaller tool size
must be used.

Note that Eqs. 3.2.1–3.2.4 follow seminal works of Lee
and Chang [215]; Lee and Ji [115]. Similar analysis of the
fillet end mill has been published in Lee [114].

Of course, gouging is still possible, because the
curvatures are compared only in one section. In order to
eliminate this error, Lee and Ji [115] compare the curvature
of the effective cutting shape evaluated in two planes: along
the tool path and along the normal to the tool path. The
effective cutting curvatures are compared with the normal
curvatures of the surface in the respective planes and the
inclination angle is computed as the maximum of the two
minimal inclinations. Unfortunately, the method is not
applicable to non-convex surfaces when the radius of the
curvature of the part surface is negative in the both directions
but the maximum principle curvature is positive. In these
cases, the method produces a zero inclination. This “bug” often
leads to local gouging. Lo [128] solves this problem by
continuously checking for gouging in all directions. Some
improvements and modifications of these techniques are also
given in Anotaipaiboon and Makhanov [14].

Pottmann et al. [164] proposed a local millability
criterion which also guarantees global millability (i.e. rear-
gouge and collision-free milling) for three-axis machining
using ball-end tools. The local millability criterion is based
on curvature matching, using Dupin indicatrices in the

tangent plane at the CC point, between the designed surface
and the tool swept surface [218]. A five-axis version of this
method is presented in Yoon et al. [220].

Furthermore, Rao and Sarma [178] presented a general
closed form, coordinate free method for the detection and
elimination of local gouging using flat-end tools. The
method is based on finding the curvatures of the tool swept
surface at CC points along the tool path. Local gouging can
then be detected and eliminated by sampling a finite set of
points on the tool path, while comparing curvatures of the
tool swept surface and the designed surface.

Consider a tangent plane (x,y) at a CC point (Fig. 13c).
The effective surface curvature ka for the direction bxa is the
normal curvature of the surface in the cutting plane bxa;bzað Þ
at the CC point.

An expression for the effective surface curvature can is found
by using Euler’s formula for normal curvatures as follows:

ka ¼ kmaxsin
2 a � bð Þ þ kmincos

2 a � bð Þ; ð3:2:6Þ

where kmin, kmax are the maximum and minimum principal
curvatures with the corresponding principal directionsbtmin;btmax and where β locates the principal curvatures in
the tangent plane (see Figs. 11 and 13).

Elementary trigonometric relations yield

ka ¼ kp=2sin
2 að Þ � kmax � kmin

2
sin 2að Þ sin 2bð Þ þ k0cos

2 að Þ;
ð3:2:7Þ

where

k0 ¼ kmaxsin
2 bð Þ þ kmincos

2 bð Þ; kp=2 ¼ kmaxcos
2 bð Þ þ kminsin

2 bð Þ

Fig. 13 a and b tool gouging,
c principal directions at the
CC point
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are the curvatures along the tool path tangent and along the
normal to the tangent, respectively.

The tool swept surface in the global part surface
coordinate system is represented by

V t; qð Þ¼ x1 y1 z1 S

0 0 0 1

 ! cos wð Þ � sin wð Þ 0 0

sin wð Þ cos wð Þ 0 0

0 0 1 0

0 0 0 1

0BBB@
1CCCA�

cos lð Þ 0 sin lð Þ 0

0 1 0 0

� sin lð Þ 0 cos lð Þ 0

0 0 0 1

0BBBB@
1CCCCA

1 0 0 �r
0 1 0 0

0 0 1 0

0 0 0 1

0BBB@
1CCCA�

r cos qð Þ
r sin qð Þ

0

1

0BBBB@
1CCCCA:

ð3:2:8Þ

where θ is the angle from yc axis to point P on the cutter
edge (see Fig. 11).

The effective cutting shape in the direction normal to the
tool motion for a flat-end tool is calculated by assuming
that the tool moves along a first-order approximation of the
tool path (i.e. along the tangent of the tool path) at the CC
point. With this assumption the effective cutting shape is
given by [113]

E qð Þ ¼
0

r cos l sinw cos q þ r cosw sin q � r cos l sinw

�r sin l cos q þ r sin l

0@ 1A:

ð3:2:9Þ

The effective cutting curvature keff is the curvature of the
effective cutting shape Eq. 3.2.8. It can be shown [169,
178] that

keff ;a ¼ sin2ðaÞ
cos2ðwÞ

sin l
r
� k0

� 	
þ k0 � tan wð Þ kmax � kminð Þ sin 2bð Þ

ð3:2:10Þ
Note that Eq. 3.2.8 presents the curvature of the tool swept
shape for an arbitrary bxa.

Taking a ¼ p
2 in Eq. 3.2.10 yields

keff ;p=2 ¼
1

cos2 wð Þ
sin l
r
� k0

� 	
þ k0 � tan wð Þ

kmax � kminð Þ sin 2bð Þ:

ð3:2:11Þ

Comparing Eqs. 3.2.11 and 3.2.3 shows a significant
difference when w 6¼ 0. However, when w=0, the both
estimates produce the traditional keff ;p=2 ¼ sin l

r :

Finally, comparing Eqs. 3.2.11 and 3.2.7 implies that the
local gouging occurs when

keff ;p=2 < kp=2: ð3:2:12Þ

This relationship is necessary and sufficient for detection
of the local gouging.

Furthermore, the accuracy of the single-point gouging
models may be insufficient. Li and Chen [121] write “Not
only the parameters of the part of cutter body that pierces
into the stock, but also the parameters of the area on the
designed surface that may have relations to the cutter is yet
to be studied. But the cutter location point, just as its name,
is only the common point both on the cutter and the
designed surface, any methods only based on the geometric
properties of it will not obtain the best cutter positions.” As
a matter of fact, the single-point methods do not guarantee
gouge-free tool positions. This weakness is due to
considering the geometric properties of the tool and the
surface only at a single point and matching the curvature in
a single plane or at selected set of planes. Consequently,
these methods use secondary gouge check and avoidance
strategies that complicate implementation.

Multipoint strategies [205, 206, 220] could be applied to
further enhance the accuracy of tool positioning. In multi-
point machining methods, the lead angle is computed by
finding configurations where there is more than one contact
point between the desired surface and the tool. However,
the intersections are evaluated numerically, and the
corresponding iterations in some cases may diverge [72].
As a matter of fact, the computational complexity of the
multipoint method can be very high and still there is no
absolute guarantee of a gouge-free position.

The arc intersect method [73] presents a certain
compromise between curvature matching methods and
multipoint methods. The tool is tilted along the feed
direction since it leads to the widest machined strip.
Therefore, the tool vector is constrained to lie in the tilting
plane. The idea is to find the minimum tilt angle (about the
corresponding cross-product vector) at which the tool
contacts a second point on the surface and maintains its
contact with the CC point without gouging the surface.

A new strategy is suggested in Kiswanto et al. [106]. For
a constant tool orientation, the tool is lifted immediately
when the specified inclination angle causes gouging with
the part surface. In the case of varying optimal tool
orientation, the minimum rotation angle (inclination angle)
has to be found first to avoid gouging. If gouging still
occurs (e.g. due to limited rotational axes of the milling
machine), then the tool is lifted.

In [74], Gray et al. proposed another modification of the
five-axis arc intersection method for the so-called 3 ½ ½-
axis machining. This type of machining is characterized by
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three linear axes and two temporarily locked rotary axes.
The rotary axes are locked during the entire cut (resulting in
a fixed tool orientation) or during a certain fraction of the
cut. The rotary axes, represented by a high-precision
indexing device, constitute a powerful and inexpensive
alternative to five-axis machining. Interestingly enough,
3 ½ ½-axis machining can be also considered as a way to
solve problems associated with reduced and fluctuating
feed rates commonly encountered in simultaneous five-axis
machining as well as problems related to sharp angular
variations near stationary points [149]. In 3 ½ ½-axis
machining, the rotary axes are locked while the tool is
engaged with the workpiece. Therefore the machine only
interpolates and moves linearly. The result is that cutting
forces and surface finish are more consistent than in
simultaneous five-axis machining.

Hosseinkhani et al. [85] proposed an interesting modi-
fication of the arc intersect method, applying it to each
sampling point. After this transformation is done, the
gouging intensity function for each sample point of the
surface is calculated. The results of this calculation are
saved in a two-dimensional matrix called the gouging
matrix which is used to determine the minimal inclination
angle.

The above methods are based on the properties of a
single or several contact points and therefore errors are still
unavoidable, for instance when wide strip precision
machining is required. Besides, there is always a possibility
of so-called rear gouging when the back side of the tool
gouges the surface in an attempt to obtain a wider
machining strip. When a gouge is detected the tool must
be inclined further and checked for gouging again until it
clears the part. This secondary check and gouge elimination
can be performed using the rolling ball method suggested in
Gray et al. [72]. The basic idea is to roll a varying radius
ball along the tool path and position the tool inside the ball.

An original approach has been developed by Li and
Chen [121]. The envelope surface created by the cutter
movement is discretized into an infinite set of characteristic
curves. Each of these curves exactly copies itself onto the
stock. Then an analysis of the characteristic curves is
performed to solve the problem of cutter positioning. The
authors use the concept of instantaneous cutter position
error employing the virtual cutting edge of the tool. The
effective bandwidth of the cutting strip is calculated and
used in the optimization algorithm.

Furthermore, even though improvement provided by the
multipoint methods is undeniable, there are still many
drawbacks to these strategies. For example, most methods
lead to suboptimal results by overestimating the area that
should be considered in the rear gouging elimination phase.
Furthermore, they do not guarantee that the proposed
inclination angle is the smallest. Finally, both the multipoint

and single-point methods treat gouging qualitatively without
evaluating the damage made.

Finally, the above problem of millability of the part
surface in the neighborhood of a particular cutter contact
point is referred to as local millability. However, regardless
of the tool orientation, there always exists a possibility of
global interference of the workpiece with the tool holder,
fixture, or other parts of the machine. There also exists a
possibility that given any orientation, the tool still flank-
mills an unwanted part of the surface. Moreover, it is often
the case that there is no orientation of the workpiece
providing access to each portion of the surface. Elber and
Cohen [51] write “The problem of accessibly, or the ability
to verify and possibly correct gouging into the machined
surface or even into other surfaces, is apparently the most
fundamental hindering factor in the broad use of five-axis
machining.” Therefore, the global millability at a point is
defined as the local millability combined with the absence
of flank milling.

Solid modeling systems offer the possibility of doing
both simulation and verification of tool paths offline. In
particular, curvature interference and rear gouging can be
verified, but the solid modeling approach is computationally
expensive [11]. The cost of simulation using so-called
constructive solid geometry is proportional to the fourth
power of the number of the tool movements [26].

On the other hand, the solid model detects both local and
global interference, including collisions with the clamping
device and machine parts. Therefore, it is suitable for global
millability checks. However, a typical G-code could contain
more than 10,000 tool positions and orientations. Therefore,
current solid modeling research focuses on efficient and fast
algorithms to compute the swept volume of the tool and
perform Boolean operations to subtract the intersection
from the stock.

The partition into elements and the corresponding data
structures are the most important components of these
procedures. The Z-buffer structure [13, 189], ray represen-
tation [88], Octree method [155, 174], K–D trees [80], BSP
trees [154], B-rep indices [200, 103], tetrahedral meshes
[155], and regular grids [69] are examples of such spatial
decomposition techniques. Each solid modeling algorithm
has advantages and disadvantages in terms of accuracy,
robustness, data structure, and computation time. However,
it seems that the simplicity of the data structure required for
the Z-buffer scheme and the possibility to generate and
update the part model very quickly have influenced many
commercial CAM programs to use the Z-buffer algorithm
or its extensions for NC code verification and optimization
[225].

Bohez et al. [26] presents a short introduction to solid
modeling schemes such as the extended Z-buffer algorithm
[82], line graphic simulation approaches [95].
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Recent research papers include many improvements on
the Z-buffer techniques such as the enhanced Z-buffer
model [116, 225], the stencil buffer [26], the adaptive
depth buffer [173], and the undo facilities for the Z-buffer
scheme [21].

However, the above methods are not designed specifi-
cally for global interference detection. As a matter of fact,
the solid model visualizes a general cut which may or may
not include global interference. It may take hours of
simulation and possibly an operator to visually detect
collisions. It is undeniable that solid modeling systems
such as Vericut or UG provide a very good simulation of
real cutting. However, as is the case with the real system,
after hours of virtual cutting, it is often hard to say what
was the reason for a particular inaccuracy [84].

Elber and Cohen [51] note that “A first attempt at the
global interference problem might be to expand the Z-buffer
idea by one-dimension and create a volumetric representation
of the entire stock that is encompassing the machined model”.
However, “It would entail the use of a huge amount of
memory.” For instance, consider a small 1-in. model of a cube
approximated with a moderate tolerance of a thousandth of an
inch. For this unit size stock and a resolution of one thousand,
one is required to provide 1,0003 or one billion volumetric
cells.

Therefore, methods based on closed-form mathematical
solutions or their approximations are still valuable.

The problem of global gouging can be treated mathemat-
ically using the concept of accessibility. The accessibility of a
point in a given direction is defined as follows: a surface point
is accessible in a given direction if a ray can be drawn from it
in the given direction without intersecting the interior of the
surface.

The problem of accessibility in three-axis machining can
be solved by a method of hidden surface removal of the
same scene from a direction collinear with the tool axis [47,
83]. The fact that the tool has a finite thickness can be
compensated for, by offsetting all the check surfaces by the
radius of the tool.

Moreover, for three-axis machining, under certain con-
ditions, the absence of local gouging implies a complete
absence of collisions [165].

In 2000, Wallner and Pottmann [201] proved a global
millability theorem for general workpieces see also [164].
They analyzed several possible configuration manifolds of
tool positions relative to a workpiece under different
aspects: the number of degrees of freedom of tool motion,
the correspondence between the contact point and the tool
position, and the presence or absence of unwanted
collisions between the tool and the workpiece.

Unfortunately, the three-axis methods are not applicable
to the five-axis case. For example, when the tool is oriented
along the normal of the surface, two normals emanating

from two different points on the surface might intersect at
the same point. Therefore, a point on a check surface could
affect two different, disjoint points on the desired surface.
Consequently, the collisions in five-axis mode require
sophisticated mathematical methods and enhanced computer
graphics.

Takeuchi et al. [190], Takeuchi et al. [191] and Takeuchi
and Watanabe [192] proposed a method for computing
collision-free CL data using a trial and error approach.

Morishige and Takeuchi [146] and Morishige et al. [147]
used so-called C-space techniques to generate a smooth,
continuously varying tool path without collisions. The C
space is a general concept of robotics where the configu-
ration of a mechanism is specified by a sequence of values.
A rigid body, for example, can be located in space by
specifying six parameters related to its six degrees of
freedom. The configuration space (C space) of a mechanism
is the space of these parameters, and a point in the C space
specifies a particular configuration. Obstacles can be mapped
to the C space as well, and the required collision-free access
can theoretically be inferred by navigating the point in the C
space around the obstacles. Unfortunately, though intuitive
and intellectually appealing, the C-space approach could lead
to computationally intractable tasks.

An interesting approach based on a physical analogy
with electrically charged bodies was suggested by Cho et
al. [34]. When the cutter and part surfaces are virtually
charged with static electricity, the potential energy is stored.
When the cutter approaches the part surface, the stored
potential energy increases. In the case of a collision, the
energy increases enormously. Meanwhile, a relatively small
amount of energy is stored for collision-free cases.
Although interesting, the method does not provide a way
to efficiently threshold the energy to specify whether a local
or global collision occurred or whether the cutter just
approached the part surface.

Lee and Chang [113] utilize convex hulls to find a
feasible set of tool orientations. In the case of a collision, a
correction vector is calculated in the direction opposite to
the surface normal vector at the point of interference.

Lauwers et al. [112], describe multi-axis tool path
generation software in which the tool orientation is
optimized to avoid machine collisions and at the same time
to maximize the material removal rate along the tool track.
To perform efficient collision avoidance, the tool path
generation module, the post-processing module, and the
machine simulation have been integrated into one system.
Once a collision is detected, the collision vector is derived
from two objects: the center of the collision curve and the
curve of intersection of the machined part with the
cylindrical approximation of the tool, in the direction
perpendicular to the tool axis. This is used later to calculate
the correction vector. Unfortunately, these techniques
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assume a cylindrical approximation of the tool, which is not
always the case.

[165] show that if in five-axis machining all axis
positions pass through a fixed point and if all points of
the workpiece surface can be seen from this point, then
local millability implies global millability. However, first of
all, this is only a necessary condition. Second, the result
only applies to a special class of so-called star-shaped
surfaces defined by the condition that there exists a point
called a guard such that the guard can see every point on
the surface.

However, the above tells us that accessibility can be
represented by a somewhat simpler concept of visibility. A
point on an object is visible from a point at infinity if there
exists a straight line segment connecting the two points
which does not intersect with the object. Visibility is a
useful precursor for the accessibility computation because,
for a certain class of tools, visibility is a necessary
condition for accessibility.

Seminal theoretical results on visibility were obtained by
Woo and Turkovich, [209], Woo and Gan [210], Woo
[211], Elber and Cohen [48], and Elber and Zussman [50].
In particular, the concept of visibility maps derived from
Gauss maps [46] to define mutual visibility of points on the
surface was studied by Woo and Turkovich, [209] and by
Woo [211]. The problem of finding suitable setups for
composite surfaces is dealt with in Woo and Turkovich
[209]. Relevant solution methods and computational issues
are discussed in Chen and Woo [29].

Later research focuses on global accessibility using so-
called visibility cones [see 98, 199]. The visibility cone is
defined as the feasible range of the tool axis for a surface
point. In other words, it is a set of directions along which
the tool can approach a part of the workpiece without
intersecting with another part of the surface as shown in
Fig. 14. The visibility cone and the corresponding spherical
map are measures of the surface complexity, that is, when
the visibility cones are scattered on the sphere, the
corresponding surface has a complex shape. Translating
the apex of the local visibility cone to a fixed center gives a
map on the unit sphere called the spherical map or visibility
map (V-map). The V-map represents all the orientations

along which a given tool can access and machine the point
on the surface.

If a machine can produce a part surface in one setup without
violating the workspace limits, we shall call this surface
machinable. The work space is defined by the range of the
linear and rotational axes. However for convenience it is often
assumed that the motion ranges are confined to the rotational
axes. This is based on the practical observation that it is the
rotational axes that usually effect the machinability.

For a three-axis machine without a rotation axis a single
tool motion is represented by a point on the sphere
(Fig. 15a). A four-axis machine with one rotational axis is
represented by an arc on the sphere (Fig. 15b) and the five-
axis machine with two rotational axes is represented by a
fan or a rectangle (depending on the machine configuration)
as shown in Fig. 14c and d.

A point is accessible only from the directions that lie
above the tangential plane at that point. In other words, the
feasible tool direction vectors lie within 90° from the
surface normal vector at the point. Each point visibility
cone lies completely inside a hemisphere centered at the
point and placed above the tangential plane at the point.

Furthermore, the size of the feasible tool motion is
defined by the rotational axes range. A k-axis feasible tool
motion depends on the position on the sphere T and the
range of the rotational motions, Ω. In a four-axis config-
uration Ω=(O−, O+) whereas in the a five-axis version Ω ¼
O�;Oþð Þ � Φ�;Φþð Þ½ � (see Fig. 15).
The visibility maps, the k-axis feasible tool motion and

the point visibility cone are the fundamental means for
solving the machinability problems.

Fig. 15 Feasible tool motions of a three-axis machine, b four-axis
machine, c and d two types of the five-axis machine motionsFig. 14 Point visibility cone
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A point visibility cone can also be considered as subset
of a complete sphere and hence a set of all accessible
directions for a point can be represented by a sphere
centered at the point, also called a binary spherical map
(BSM). A BSM is a discretized unit sphere decomposed by
tessellation into a finite number of triangles. Each triangle
on the sphere can be labeled 0 or 1 depending upon
whether a ray projected through the center of the patch to
the centroid of the sphere provides access to the point or
not [see 98]

Tseng and Joshi [194] use the visibility maps to
determine the accessibility of a tool given its point location,
exploiting the subdivision and convex hull properties of the
free-form surface representations to compute directional
bounds.

Kang and Suh [98] present visibility maps combined
with the convex hull techniques designed for several (but
not all) types of industrial five-axis machines. The
algorithms are very complicated, including many “if-then”
rules. Besides, they have not been fully verified by practical
machining. Furthermore, in five-axis machining, the inter-
section of the local visibility cones derived from each
subsurface of the part does not give global visibility. The
planar projection approach proposed by Kang and Suh may
be computationally intractable. Finally, the full variety of
possible five-axis configurations is not considered.

Elber and Zussman [50] extend the idea of local
visibility to the so-called a-sensibility to express the
sensor’s physical constraints. A point is called a sensible
if the angle between the corresponding normal on the Gauss
map and a certain fixed direction is not less than a. The
goal is to subdivide the freeform surface into regions that fit
into a single visibility cone. The method decomposes the
surface into regions, so that each region is a sensible from a
selected direction. The selection of the directions guarantees
complete coverage of the surface. However, the method is
suboptimal and has been designed for laser scanning without
considering the specific five-axis issues such as local mill-
ability, shape of the tool, and nonlinear kinematics.

It is also worthwhile to note that the orientation of the
tool does not necessarily follow the normal of the surface.
In the case of the flat-end tool the orientation is derived
from the local millability constraints. Furthermore, the tool
may follow orientations that go through a point to machine
cavities with negative slopes. One might define machining
operations in other ways, for example going through a
curve with some specific orientation. In this sense, the
regular hidden surface removal solution is a special global
accessibility problem for which the prescribed vector field
follows the viewing direction.

Elber and Cohen [51] formulate global accessibility as
follows: given a part surface S(u, v) a vector field that
prescribes the orientations of the tool O(u, v), and a check

surface K(s,t), find all regions ℘(u,v) accessible with
respect to the check surface (or all regions }0 u; vð Þ
inaccessible with respect to the check surface, see
Fig. 16). Suppose that @S u;vð Þ

@u 6¼ 0.
Define

O1 u; vð Þ ¼ O u; vð Þ � @S u; vð Þ
@u

;

O2 u; vð Þ ¼ O u; vð Þ � O1 u; vð Þ:
The vector fields above span the plane orthogonal to

O(u, v). Finally, a point lies on the boundary between
℘(u, v) and }0 u; vð Þ if and only if

O1 u; vð Þ; S u; vð Þ � K s; tð Þð Þ ¼ 0

O2 u; vð Þ; S u; vð Þ � K s; tð Þð Þ ¼ 0

nK s; tð Þ; S u; vð Þ � K s; tð Þð Þ ¼ 0 ;

8>>>><>>>>: ð3:2:13Þ

where nK (s,t) is the normal to K(s,t).
In other words we deal with three nonlinear equations in

four unknowns. In particular when O(u, v)=n(u, v), where
n(u, v) is the surface normal, we have

@S u; vð Þ
@u

; S u; vð Þ � K s; tð Þ
� 	

¼ 0

@S u; vð Þ
@u

; S u; vð Þ � K s; tð Þ
� 	

¼ 0

nK s; tð Þ; S u; vð Þ � K s; tð Þð Þ ¼ 0

8>>>>>>>><>>>>>>>>:
ð3:2:14Þ

Providing the global solution has many advantages over
point-by-point local validation and correction approach.

( , )S u v

( , )K s t

( ,' )u v ℘

( , )Kn s t

( , )Sn u v

Fig. 16 Global accessibility
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First, the solution is independent of the selected tool
path, as it solves the general accessibility problem that is
not specific to some given tool path. Furthermore, by
considering the global picture, global algorithms can
potentially be made more accurate and efficient. When a
tool path is validated on a point-by-point basis, no
guarantee can be made on possible gouging between the
verified contact point locations. In contrast, this guaran-
tee is fundamental to global algorithms and, in fact, is
cost-free once a global algorithm is employed.

Equations 3.2.14 are capable of answering the funda-
mental global question: what regions of a surface can be
machined from an arbitrarily prescribed orientation field
and not gouge into the given check surface. Of course, an
iterative numerical solution is needed. Consequently, the
user may experience problems such as divergence or slow
convergence.

As of yet, there have not been many examples of
application of the proposed techniques. A possible reason is
that conceptually, solid modeling can be easily understood
by mechanical engineers whereas methods of differential
geometry require sophisticated analysis.

There have been many interesting five-axis collision
detection methods designed for particular parts. For
instance, Gian et al. [70] developed a method to find open
regions (the ones that can collide with the tool) using
slicing, Boolean operations, and geometric analysis in the
regions. The geometric relationship between the CC point
and the contour of the open region is considered to obtain
an initial orientation of the tool. With the orientation,
collisions are inspected to ensure that the orientation can
feasibly prevent interference between the cutting tool and
the cavity surface.

Young et al. [222] presented a new parametric method
with an approximate constant cutting depth for the rough
machining of an impeller. The initial tool spindle axis is
considered as the initial orientation to determine the cutting
tool posture for which the variation of rotational axes of the
five-axis machine tool will be reduced.

Kim et al. [99, 100] presented a cutter location (CL)
surface deformation approach for a five-axis tool path
generation. The proposed algorithm was applied for
machining of a cooling pin (a small part used to remove
the heat from the chips of the computer) and a tire mold.
Lee and Lee [116] present an interference-free tool path
generating method of a spatial cam. The cutting tool is
confined within the meshing element and the motion of the
cutting tool follows the meshing element so that collision
problem can be avoided. Unfortunately, many elements of
the above procedures are problem-dependent and cannot be
generalized.

In [17], Balasubramaniam et al. developed a method for
five-axis tool positioning that accounts for accessibility of

the tool using visibility maps of the triangulated data. Using
this visibility data for finish machining, the authors show
how it can be used to generate globally collision-free five-
axis finishing tool paths while considering machine limits,
tool tilt, cusp height, and tool pitch limits.

Ilushin et al. [90] exploited the axial symmetry inherent
in the tool’s rotational motion to construct a polygon/tool
intersection algorithm for global collision detection. The
algorithm allows testing for collisions between arbitrarily
shaped tools and tool holders, clamping devices, and the
rotating table. The workpiece and the parts of the NC
machine are given in a polygonal representation. An
arbitrary polyline representation of the tool is allowed.
Given a potentially interfering set, the authors derive planar
hyperbolic segments that originate from the radial projec-
tion of the triangles’ points around the tool’s axis onto a
plane for each triangle in the set. These hyperbolic
segments are then tested for intersections with the tool’s
profile and all other rotating parts such as the chucks and
spindle. Such intersections identify collisions between the
rotating parts of the NC machine and the workpiece or
other stationary parts. A very important advantage of this
approach is that the collision tests are independent of the
initial orientation of the model. This dependency is a
significant drawback of many contemporary voxel-based
alternatives. On the other hand, the algorithm considers
possible collisions only at the contact points. Obviously,
collisions could occur between contact points and hence
could be missed.

Hsueh et al. [86] propose to prevent collisions using
two-stage techniques. The first stage is to obtain the tilting
and collision-free angle range in the plane that is normal to
the tool path obtained. Next, a checking cone generated
from this collision-free tool axis range is used for the
second collision check. The collision region is formed by
the intersection of the neighboring surfaces.

Analyzing a proper sculptured surface orientation on the
worktable of a multi-axis CNC machine, Radzevich and
Goodman [167] proposed the so-called spherical indicatrix
of the sculptured surface machinability. This characteristic
curve indicates whether the sculptured surface is machinable
under a known scenario. The theory is developed in
connection with a sculptured surface orientation on the
worktable of a multi-axis CNC machine.

Radzevich [168] presents an approach that enables us to
detect regions of a sculptured surface which are not
accessible for a cutting tool of a given design. Furthermore,
if any unmachinable regions exist, the approach enables us
to subdivide the sculptured surface into the cutter-
accessible and the cutter-inaccessible regions.

Still it is not clear whether solid modeling- or differential
geometry-based methods produce better results. Perhaps the
solution is a suitable hybrid involving both approaches
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combined with a specific CAD [5] representation of the part
surface such as IGES or STL [106].

An interesting algorithm which exemplifies the above-
mentioned combination of the two approaches has been
proposed by Tang et al. [197]. The algorithm detects
collisions between the tool and workpiece and also between
the other parts of the CNC machine. Changing workpiece
geometry is included in the detection process. The workpiece
and machine bodies are represented by an octree of bounding
spheres. Collision detection is then conducted between these
spheres. When interference is detected between the spheres
in the last octree level, the slices within these colliding
spheres are further checked using the sweep plane algorithm.

Finally, CAM for five-axis machining should be able to
analyze the machine limits, global and local collisions, rear
gouging, and kinematics errors, thus providing an appropriate
interpolation to generate feasible gouge-free tool positions and
orientations. Several noncommercial systems such as Xu et al.
[214] and Lauwers et al. [112] present a suitable integration
of some these components. However, none of the up-to-date
five-axis modeling tools is capable of providing a fully
integrated solution for an arbitrary desired part.

3.3 Adaptable geometric patterns and grid generation
methods

Five-axis machining offers an improvement in both rough
and finish machining efficiency over three-axis machining.
In five-axis mode, the tool orientation relative to the
workpiece can be controlled by two additional degrees of
freedom so as to achieve higher machining efficiency. A
milling machine can be considered as a special type of
robot, and for robots, optimal control is a well-known
theory. However, the robot theory seeks to follow a given
path, whereas milling machine paths are not pre-specified,
but must be designed in order to cover the entire area.
Besides, the tool must be inclined in a special way,
machining strips should be maximized, and geometric
errors should be minimized. These and other differences
gave rise to a large number of tool path planning methods
developed specifically for five-axis machining. Many of
these methods adapt the tool positions offline to minimize
machining errors. Note that the tool positions along a path
cannot be assigned independently. They must follow a
certain connecting pattern. The patterns usually are composed
of curves along which the CC points are allowed to move. The
simplest patterns are the zigzag and the spiral paths.

Furthermore, as opposed to the general robot trajectory
planning problem, the connecting curves usually are not
allowed to intersect. Although this requirement is not a
must, the majority of tool path generation methods follow it.
One of the main reasons is that paths including intersecting
curves are likely to be longer than those without intersections.

Although in general this is not always the case, it has a
heuristic value in not performing the same cut twice. Besides,
self-intersecting tool paths could create unpredictable patterns
of scallops which might be hard to eliminate.

Another desired feature of the designed tool path is that
the number of tool retractions is minimal or zero in order to
reduce cutting time and minimize the risk of tool marks due
to jumps and plunge on the machined surface. Thus, the
best solution is a single continuous curve running across the
entire surface, even though as far as machining time or tool
path length is considered, the single curve does not
necessarily outperform machining with retractions.

This section presents adaptable geometric patterns for
tool path generation. Adaptation is performed using criteria
representing certain characteristics of tool path quality such
as kinematics error, scallop heights, undercuts/overcuts, and
the continuity of the path. The section partly covers
methods for complex pocket milling employing geometric
patterns capable of following the boundary of a pocket.

Conventional tool path planning employs structured
zigzag or spiral patterns due to their simplicity and their
ease of computation [see surveys by 45, 178]. Still,
adaptation of the positions of the CC or CL points along
the zigzag or spiral is needed.

The simplest adaptation deals with spacing between the
points by using a variable forward step. In this approach we
select the forward step with regard to geometric errors
appearing due to the discrete nature of the prescribed tool
path. We assume that the trajectories of the tool tip between
the CC points are linear. We extract a reference curve from
the desired surface and compare it with the linear trajectory.
This is done one step forward at a time. In other words,
given the initial CC point the forward step is selected by
assigning the maximum allowable deviation between the
desired curve and the straight line.

Choi and Banerjee [36] define the forward step as the
maximum distance between CC points on the current tool
path in which the chordal deviation does not exceed the
given tolerance. The forward step found by bisection or
another inexpensive numerical methods converted from the
physical domain into the parametric domain.

The problem can be further simplified by introducing a
certain approximation to the reference curve, for example,
employing arcs or polynomials. In that case some closed-form
solutions can be found in Li et al. [119].

A slightly more accurate technique evaluates errors
produced by several selected points on the tool, for
instance, Pi et al. [162] consider the CC points and the
CL points at the same time.

Numerical procedures can also be replaced by a closed-
form solution found by Choi and Banerjee [36] for the
three-axis case under the assumption of the Lipshitch
continuity of the part surface.
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Observe that the above methods based on the chordal
deviation are assumed by the most previous studies in five-
axis machining as producing accurate results [125].
However, despite the simplicity of the chordal deviation
measure, the approach may lead to considerable inaccuracies
and, often, it is not recommended. Note that in five-axis
machining, even the assumption that the error gets smaller as
the CC points get closer is not actually correct at singularities
such as ridges or stationary points [23, 134].

Fortunately, the forward step technique applies to the
nonlinear case as well. All we have to do is to evaluate the
error, taking into account the kinematics of the machine.
The maximum forward step providing the maximum
allowable tolerance can be found using a numerical
approach. However, in the nonlinear case the solution
becomes machine-dependent. Moreover, it depends not
only on the machine configuration but on the particular
setup of the part surface on the mounting table.

Furthermore, the solution is not unique. For example, the
step forward approach may produce different results given
different initial points along the path. Besides, the tool path
usually includes some fixed points, such as the turning
points of the zigzag, which contribute to the multiplicity of
the forward step solutions.

It is important to notice the measurement of the kinematics
error presents itself a computational problem. Recall that the
tool path is defined by a sequence of cutter contact points and
orientation vectors. In the machine coordinates the CC points
and angles are linearly interpolated.

I f WD
p;pþ1ðtÞ � xDp;pþ1ðtÞ; yDp;pþ1ðtÞ; zDp;pþ1ðtÞ

� �
2 S u; vð Þ

is a desired curve between two tool positions Wp and
Wp+1, it is often extracted from the machined surface
S(u, v), where t is a parametric coordinate along the curve.
The kinematics error [136] can be defined as a total distance
between the desired trajectories WD

p;pþ1ðtÞ and the actual
trajectories Wp;pþ1ðtÞ � xp;pþ1ðtÞ; yp;pþ1ðtÞ; zp;pþ1ðtÞ

� �
gen-

erated by the machine kinematics, namely,

" ¼
X
p

dist WD
p;pþ1;Wp;pþ1

� �
; ð3:3:1Þ

where dist(A, B) denotes an appropriate distance between
space curves A(t) and B(t). The difference between the
space curves can be evaluated by the generic Hausdorff
distance [19] or the Fréchet distance [10]. However, these
measures are computationally expensive and may lead to
intractable optimization problems. Some computationally
simple choices are

dist2 A;Bð Þ ¼
Z 1

0

AðtÞ � BðtÞj jEdt and dist1 A;Bð Þ

¼ max
t

AðtÞ � BðtÞj jE

where j jE is the Euclidian distance and A(t), B(t) are
parameterized with regard to t∈[0,1].

Although these distances depend on parameterization,
they often produce good results when the actual trajectory
is parameterized with regard to the fictitious time t and the
surface curve with regard to a line segment between (up, vp)
and (up+1, vp+1) in the parametric space (u,v). This is
because when the number of inserted points is large enough
the compared curves are similar, arc-like segments with
their arc length close to the corresponding chord length.

The parameterization-invariant Hausdorff distance is
given by

distH A;Bð Þ ¼ max max
a2AðtÞ

min
b2BðtÞ

ja� bjE; max
b2BðtÞ

min
a2AðtÞ

ja� bjE

 	

:

ð3:3:2Þ

Another option is the Fréchet distance defined by

distF A;Bð Þ ¼ min
faðtÞ;bðtÞg

max
t2 0;1½ �

A aðtÞð Þ � B bðtÞð Þj jE; ð3:3:3Þ

where minimum is considered over all continuous and
increasing functions α(t) and β(t).

However, distH and distF are computationally expensive.
Note that distH A;Bð Þ � dist1 A;Bð Þ. Therefore, minimi-

zation with regard to dist1 reduces the error measured by
distH as well.

Recall summed Hausdorff metrics (such as the Lindstrom–
Turks mean geometric distance distHS (A, B)) obtained by
replacing “max” in Eq. 3.3.2 by summation or integration
[123]. Since distHS A;Bð Þ � dist2 A;Bð Þ the minimization
with regard to dist2 (A, B) reduces distHS (A, B), but, of
course, it does not guarantee a minimum in distHS.

Finally, the compared curves can be approximated by
piecewise linear functions. In this case the Fréchet distance
(which is essentially the minimum equal-parameter distance
between A and all possible re-parameterizations of B) can
be evaluated explicitly [9]. However, the algorithm is
computationally expensive and may lead to hard optimization
problems.

A good option is a distance based on the natural
parameterization given by

distN A;Bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

A lAðtÞð Þ � B lBðtÞð Þj j2dt

vuuut ; ð3:3:4Þ

where A(lA(t)) and B(lB(t)) denote the corresponding arc-
length parameterizations.

Unfortunately, it not possible to find a closed-
form parameterization for real rational curves [such as
NURBS 2] represented by rational functions of its arc
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length [63]. Therefore, such parameterizations must be
evaluated numerically.

Finally, finding a distance between curve Wp,p+1(t) and
the entire part surface S(u,v) rather than between Wp,p+1(t)
and WD

p;pþ1ðtÞ certainly increases the quality of the error
evaluation. However, the problem often requires minimizing
the distance between unknown curves. Therefore, computa-
tionally hard metrics may lead to intractable optimization
problems.

Finally, the tool trajectory is compared with the desired
trajectory which is in some way extracted from the
machined part. In engineering practice the parts are defined
by standard formats such STEP, IGES, etc. For instance, the
IGES represents curvilinear NURBS [2] faces glued
together along the boundary edges. Therefore, the method
of extracting the trajectory should include the case of the
multi-patch surfaces when the curve crosses the boundary
or even several boundaries.

Once the distance and the error are defined, the points
must be distributed along the tool path to minimize the
error. A general approach based on grid generation
technology was proposed in [133, 134]. The CL points
are distributed along the required curve extracted from the
part surface in such a way that the total interpolation error
is minimized. The grid generation approach works either
with a linear or with a nonlinear model of the machine
kinematics. The kinematics error contributes to a weighting
function which controls the grid spacing. These techniques
are illustrated in Fig. 17.

The resulting grid is topologically equivalent to two tool
paths in the v and the u direction. The grid generation
technologies are capable of treating complex-shaped
boundaries and islands for complex pocket milling. How-
ever, the adaptations of the grid generation methods to tool
path generations are often slow and require additional
assumptions to increase computational efficiency. For
example, in Makhanov et al. [134] in order to simplify

the computational algorithm the authors made a heuristic
assumption that the error is proportional to the curvature of
the part surface. However, this assumption (although
realistic) has not been proven theoretically.

Observe that we deal with the distribution of the CL or
CC points along a desired set of curves extracted from the
part surface. In turn, these curves are connected with each
other into a complete tool path using certain patterns
adapted to the prescribed quality criteria.

The most popular patterns are the iso-parametric zigzag
and spiral (box) patterns [175]. The term iso-parametric
means that the zigzag or the spiral are generated in the
parametric space u,v along one of the coordinates, say, u.
The v coordinate is then used to generate the forward steps
so that the kinematics error is within the required tolerance.
In the case of the spiral path the parametric space is
represented in polar coordinates. The radial and angular
variables are incremented so that the linear distance between
the tool tracks and the distance between the CL points along
the tracks are controlled. Alternatively, the increments can
be measured in terms of the distance on the surfaces and
then translated back into the steps in the parametric space.

However, in some cases these simple methods are not
applicable. For example, so-called pocket milling requires
special geometric patterns designed for parts with one or
more complex shaped “islands” inside [78, 79]. Special
patterns are also needed for so-called trimmed surfaces,
whose boundaries are defined by intersections with other
surfaces.

A method called iso-planar machining follows curves
that are intersections of the part surface and a series of
parallel planes (Fig. 18). In other words, the cutter follows a
contour map of the surface. Generally speaking, the contour
map can be constructed using planes parallel to an arbitrary
reference plane. Once generated, the contours are saved
using the SLC [4] format developed specifically for this
type of machining (see Section 1). Early papers reporting

Fig. 17 Grid generation for tool path optimization a the part surface, b the control function, c the grid
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these techniques are Loney and Ozsoy [131], Chen et al.
[31], and Rao et al. [170].

In [35], Choi and Jerard introduced the term regional
milling referring to machining operations in several regions

specified within the parametric space or directly on the part
surface. The iso-planar methods are well adapted to
regional milling. However, if the surface has several
stationary points (Fig. 18b), the tool path consists of
disconnected subpaths with possible retractions. Therefore,
one of the most important problems is linking the contours
in such a way that the number of tool retractions is
minimized.

Furthermore, the idea of offsetting boundary or/and
planar curves to obtain an appropriate tool path for pocket
milling is very popular in “3+”-axis machining. As a matter
of fact, contour-parallel machining is the most popular
method for a two-dimensional pocket machining and three-
dimensional machining if surfaces with islands. The
method used successive offsets of the boundary curve as
tool path elements. Offsetting the boundary could create a
singly connected tool path even for a complex surface
(Fig. 19). However, as opposed to the iso-planar method,
the resulting curves may intersect, creating loops and ridges
(Fig. 20). Besides offsetting complex boundaries can lead
to disconnected paths requiring linking (Fig. 21).

One of early works on linking is Held et al. [81]. Their
algorithm designed for these types of machining is based on
proximity maps and Voronoi diagrams. A linking procedure
requires a spanning tree of the planar graph of the
monotonic pouches.

Park and Chung [157] develop a contour-parallel linking
algorithm accommodating minimization of slotting, tool
retractions, and drilling holes.

Park et al. [158] present a tool path linking algorithm,
which guarantees zero tool retractions for contour-parallel
milling. The algorithm employs the concept of a tool path
element net providing information on the parent/child
relationships between the regions.

Feng and Teng [65] present iso-planar piecewise linear
NC tool paths for three-axis surface machining using ball-
end milling generated directly from discrete measured data

Fig. 18 Milling patterns: a zigzag, b iso-planar

Fig. 19 Simply connected
boundary offset tool path
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points. However, generalizations to the four- and five-axis
case are still not available.

In [156], Park and Choi proposed direction parallel
machining routine which can handle multiple connected
areas (Fig. 22). The input of the algorithm is a set of planar
area curves, and the output is a linked set of direction-
parallel tool paths. The tool path planning method for
direction-parallel milling consists of three modules: finding
the optimal inclination, calculating and storing tool path
elements, and tool path linking solved by the so-called tool
path element net traversing method. The authors claim
simplicity and short computational time as compared to the
contour parallel mode.

Kim and Choi [24] compare the direction-parallel path
with contour parallel paths. The evaluation includes a
model of the machining time based on the assumption that
the velocity of the CN machine is a linear function of the
distance in the acceleration, deceleration, and uniform
stages. The study shows an advantage of the direction
parallel smooth zigzag (C type and S type connections)
regardless of the feed rates and the tool path offset.
However, it is clear that the study cannot be generalized
to an arbitrary part surface.

Jeong and Kim [93] and Lai et al. [109] present
algorithms designed to offset boundary curves in a
geometrically complex region using the Voronoi diagram.
Each curve segment is offset within the corresponding
Voronoi polygon to avoid the degeneracy problem; however,
from the practical viewpoint it is not easy to implement a

reliable and efficient Voronoi algorithm applicable to an
arbitrary boundary.

Jeong and Kim [94] introduce a distance map approach
to effectively find characteristic points and self-intersection
points of the offset curve segments and to eliminate such
topological problems as loops, ridges, and cusps. An
adaptation of these ideas to spiral high-speed machining is
presented by Lee [117].

A forward locus tracing method is introduced in Lai et
al. [110]. The algorithm searches for all intervals split by
intersections of planar curves then maps the 2D transversal
intersections onto 1D interval identifications. This proposed
mapping simplifies the structure of tasks and can be
integrated easily into CAD [5] systems.

A promising technique to remove possible loops
appearing in the boundary offset methods is the so-called
rolling ball method, similar to that used to avoid local
gouging in the cutter positioning problem. However, this
time gouging is defined as intersection of the rolling ball
and the boundary contour. This idea is exploited in You et
al. [219]. Furthermore, avoiding boundary gouging is
crucial when converting CC data into CL data for arbitrary
pockets involving islands.

Fig. 20 Machining a pocket
profile (a), offset profile (b),
offset profile after the required
loop removal (c)

Fig. 21 Contour parallel tool path with links
Fig. 22 Direction-parallel milling (a) tool path and the regions (b)
region connectivity graph
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Sheen and You [180] propose the use of so-called pair-
wise bridges to merge pockets and islands. They show that
the proposed pair-wise bridge method leaves very small-
sized scallops. An alternative Boolean method is designed
to solve the problem of pocket machining including
numerous islands. However, the method is very hard to
implement since it involves multiple complicated geometric
constraints. There is still no guarantee that it applies to an
arbitrary sculptured surface.

Observe that the above iso-parametric and iso-planar
methods calculate the distance between consecutive tracks
based on the maximum allowable scallop height. Therefore, a
conservatively small interval for incrementing the cutter
paths is selected. In other words, the minimal allowable step
is taken from all the maximum allowable (point wise)
distances. Otherwise the curves are no longer iso-parametric
or iso-planar. Consequently, the method does not produce
constant scallop heights across the entire surface. Thus, the
machining strip is undervalued and as a result, machining
efficiency is limited.

The above observations lead to the concept of iso-scallop
tool path generation. Methods to maintain a constant scallop
height, called iso-scallop machining methods, were first
proposed in Suresh and Yang [188], Lin and Koren [122],
and Sarma and Dutta [177] for three-axis ball-nose machin-
ing. Observe that the scallop depends on many factors for
instance the direction of the tool motion. Therefore, scallop
height is not a 2D surface, hence 2D contour map of scallops
for an arbitrary sculptured surface cannot be defined.
Consequently generation of the iso-scallop tool paths is
more difficult problem than that of the iso-planar paths.
Additionally as noted by Sarma and Dutta [177] the iso-
scallop paths may lead to cusps and self-intersections when
the variation of the surface curvature is large.

The iso-scallop methods often use swept sections of the
tool along the tracks to calculate the tool path intervals. The
swept sections of the tool are assumed to be coplanar or

perpendicular to tangent vectors to a common scallop
curve. This means that the 3D scallop evaluation problem
has been reduced (under questionable assumptions) to 2D
calculations in the corresponding section of the desired
surface. Figure 23 depicts the elements of the scallop
evaluation for ball nose and the inclined flat-end cutter.
Figure 24 shows scallops for the flat-end cutter along the
surface normal for a convex surface.

Feng and Li [64] extend the swept section framework to
the 3D case. As the tool moves along the tool path, the tool
envelope surface is created by sweeping a circle which
represents the cutter. The horizontal distance between the
adjacent tracks is referred to as the side step or tool path
interval. The scallop curve is defined as the 3D curve along
which the machined scallops are equal. The curve satisfying
this definition is not unique since it depends on the shape of
next track of the tool path. Feng and Li’s iso-scallop
machining method is based on the fact that the scallop
curve is the intersection of the two adjacent envelope
surfaces and the scallop surface. The method improves on
the accuracy of iso-scallop machining because it works
directly with 3D envelope surfaces rather than with the
projections of the effective cutting shape. However, since
the two adjacent envelope surfaces are not defined
uniquely, the problem has multiple solutions.

Yoon [221] reports an iso-scallop height method for three-
axis ball-end milling similar to Feng and Li [64]. As opposed
to the previous approach, which uses the bisection method to
search for scallop curves and tool center curves, the author
applies Newton’s iterative algorithm, which converges faster.
The derivatives of the functions are represented by their
Taylor approximations and the initial guess is obtained by
considering the local machining geometry.

Finally, the above algorithms are suitable only for ball-
nose three-axis machining. An efficient algorithm for
searching the iso-scallop cutter paths that extends the
algorithm to five-axis machining with a flat-end cutter

Fig. 23 A simple scallop eval-
uation procedure
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was proposed by Lo [127]. The method is suitable for the
three-axis case as well. The algorithm starts with an initial
curve in the parametric domain and calculates offset curves
so that the scallop height remains approximately constant.
A tool path in the Cartesian 3D domain corresponds to a
specific curve c(w)=(x(w), y(w)) in the parametric u–v
domain. These technique in parametric domain is illustrated
in Fig. 25. The i-th u–v is obtained by an increment of the
i-1-th u–v curve. For iso-scallop paths, the increments
Δu,Δv correspond to a fixed scallop height. For a given
scallop height, the path interval, of which the distance l can
be calculated in the side-step direction b by using.

@S

@u
$uþ @S

@v
$v ¼ bl: ð3:3:5Þ

Note that Eq. 3.3.5 is a vector equation which provides
three individual component equations; however, only two
axial components need to be evaluated so as to calculate
Δu,Δv.

The algorithm is designed for flat-end cutters and
includes adaptive inclination which maximizes the machin-
ing strip and avoids local gouging (see Section 2). A
boundary curve, considered as the initial track, is repeatedly
offset, propagating into the parametric region. At each point
the offset depends on the tool inclination and therefore
varies from point to point. Consequently, the next track is a
curve which may have an entirely different shape as
compared with the initial track. Eventually, a zigzag-like
set of curves is constructed. Lo [129] incorporates these
ideas into an interpolator (see Section 1) designed for iso-
parametric, iso-scallop, and iso-planar machining by ball-
nose cutters.

However, there are a number of open problems. In
particular, the solution depends on the initial curve and the
choice of this curve is not trivial. It is not clear how to
proceed if the next curve intersects the boundary of the
region or another curve. Furthermore, none of the above
tool path generation methods provide optimal cutting
conditions at each CC point.

Evaluation of the machining strip versus the inclination
and the direction appears to entail very complicated tool
path topologies. For each tool position on the surface there
exists at least one direction which maximizes the machining
strip. Consider the corresponding vector field. For simplic-
ity let us map the vector field onto the parametric space
(u,v) so that the field becomes two-dimensional. Clearly, a
continuous tool path which visits every point and follows
the optimal direction at every point constitutes the optimal
tool path which maximizes the machining strip in the global
sense. However, such a path can rarely be found in practice
due to the complexity of the resulting vector field. An
algorithm to find a suboptimal solution of this problem is
presented in Chiou and Lee [33]. The idea is similar to Lo
[127], but the optimization is considered in more global

Fig. 24 A simple scallop evaluation for a flat-end cutter positioned
along the normal.
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Fig. 25 Iso-scallop tool path
generation
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sense. The entire surface is discretized using a rectangular
grid in the parametric space and then covered by potential
machining patches each characterized by the optimal
direction producing the maximum machining strip
(Fig. 26). The optimal direction vector field can be used
to find the an approximate optimal direction in an arbitrary
point without employing an expensive direct evaluation of
the machining strips similar to Eq. 3.2.1.

Next, the authors introduce an “initial” path which has
the largest average machining strip. Next, the entire tool
path is constructed by offsetting the initial path and
propagating the offsets inside the region. These offset paths
are modified if they substantially deviate from the stream-
lines of the optimal direction vector field (Figs. 26 and 27).

Unfortunately, many surfaces produce a complicated,
non-uniform vector field and although the above algorithm
allows one to decompose the surface into sub-surfaces, the
decomposition is not very well motivated from the
optimization viewpoint. In particular, after the first propa-
gation step, the algorithm searches for a new “initial tool
path” such that the ratio between the length of the path and
the average machining strip is less than a certain threshold.
It is not hard to show that such analysis is not always
accurate from the viewpoint of global optimization. It may
also be sensitive to local variations of the optimization
criteria. More importantly, finding the initial tool path is a
computationally expensive, NP hard problem.

My et al. [150, 151] and Makhanov [137, 138] intro-
duce a partition of the surface into clusters having vector
field streamlines similar to the conventional zigzag or
spiral patterns (Fig. 27). The advantage of this approach is
that within a cluster the tool follows a nearly optimal path.
Clustering optimizes global criteria of the decomposition
and makes it possible not only to decompose the surface
but also to recognize local similarity to the conventional
tool path patterns such as the zigzag and the spiral. An
appropriate linking of the clusters can be performed using
the ideas introduced in Park and Chung [157].

Furthermore, a few papers explore other “iso” methods
such as the iso-distance and iso-curvature methods [77]. In
Kim et al. [99, 100] additional tool path segments are
appended to the basic tool path in order to achieve constant
cutting forces and to avoid chatter vibrations in the entire
machining area.

Suppose that the part is partitioned into a grid of cells
each of them being a curvilinear triangle or a curvilinear
rectangle. The optimization can then be considered as
constructing a path which visits each cell, does not have
intersections, requires a minimal number of tool retractions,
and satisfies some error-related criteria. Using this idea, a
pocket machining technique using staircase or window
frame patterns was proposed in Persson [160].

Hansen and Arbab [76] developed a similar scan line
algorithm for generating NC tool paths for arbitrarily
shaped flat-bottom pockets with islands. Flat pocket
machining based on grids was suggested by Bao and Yim
[18]. High speed pocket machining was analyzed in [166].

Treating tool path generation as a navigation problem
on grids leads to exploiting shortest-path optimization and
related techniques. Suh and Shin [186] developed a neural
network model to obtain the tool path in rough pocket
machining as a solution to the traveling salesperson
problem. A rigorous mathematical analysis of such
strategies is given in Arkin et al. [15]. The problem is
formulated as follows: given a region in the plane, and
given the shape of a cutter, find a shortest tour/path for the
cutter such that every point within the region is covered by
the cutter at some position along the tour (tool path).
Additionally, the cutter could be constrained to stay within
a certain region.

Narayanaswami and Choi [153] present an extension of
the grid-based navigation approach to the 3D case. The
approach can be extended to the five-axis case.

Space-filling curves (SFC) having been applied in
computer graphics, image processing, and information
systems, can be also seen as a suitable navigation pattern

Fig. 26 Optimal direction
vector field
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for generation of machining paths. The first application of
SFC to NC tool path generation was reported in Griffiths
[75] and Cox et al. [38].

Griffiths proposed the use of Hilbert’s curve as a tool
path (Fig. 28), while Cox et al. used various forms of space-
filling curves such as Moore’s curve.

Fractal-based techniques were suggested by Chen et al.
[30].

The Hilbert curve is in particular appealing in tool path
planning as its local refinement property can be used to
adaptively increase the density of the path only where
necessary. However, each local refinement of the tool path

Fig. 27 Vector field clustering
approach: a the part
surface, b the optimal direction
vector field, c the resulting
clusters with the spiral and
zigzag type of the motion
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based on the Hilbert’s curve increases the tool path density
in the refined region by a factor of 2 resulting in lower
machining efficiency due to the increased total path length.
Besides, the Hilbert’s curve has an undesirable property that
it leads to a path, where the tool is frequently changing
directions which slows down the machining process and
produces large kinematics errors. This is why neither SFCs
nor fractals have ever been very popular in the five-axis
machining community due to a large number of sharp turns
produced by conventional SFC’s.

The concept of adaptive space-filling curves for tool path
planning for five-axis NC machining was proposed in
Anotaipaiboon and Makhanov [14]. Space-filling curves,
adapted to the local optimal cutting direction, produce
shorter tool paths. Besides, a tool path correction stage
makes it possible to eliminate the effect of the sharp angular
turns that characterize the standard SFC patterns (Fig. 29).

Note that even if the SFC provides the shortest path in
five-axis machining, that path does not necessarily
provide the shortest time. A slow angular feed rate may
lead to time longer than that provided by a zigzag grid.
This follows from a simple estimate of the required
machining time based on the slowest (for this step) axis.
Given the spatial and angular increments ΔxM,ΔyM,ΔzM,
Δa,Δb and the feed rate F, the machining time tM is
calculated by tM =max{t0,tx,ty,tz,tA,tB}, where t0 ¼ $L

F ,

where $L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
$xMð Þ2 þ $yMð Þ2 þ $zMð Þ2

q
, and where

tx ¼ $xM
vx;max

; tx ¼ $yM
vy;max

; tz ¼ $yM
vz;max

; tA ¼ $A
vA;max

; tB ¼ $B
vB;max

, where

vmax denotes the maximum speed in the corresponding axis.
However, for fast angular feed rates and short, slow

linear motions, SFCs are a very good choice.
Finally, the direction of the adaptive SFC at a given

point can be selected using a variety of criteria such as the

speed of the tool or the acceleration of the linear and/or
rotation axes. In this case the definition of the distance
between two cutter location points must be modified
accordingly. Of course, having angular accelerations con-
strained could turn the SFC into a simple zigzag. In some
cases it is possible to perform optimization directly with
regard to the machining time; however, for general
machining tools, it is still an open problem.

Furthermore, the entire tool path can be considered in the
framework of grid generation technologies. The concept
was first introduced in Makhanov [133] and developed in
Bohez et al. [23] and Makhanov et al. [134]. Grid
generation techniques are surprisingly well adapted to
tool path optimizations. As a matter of fact, the concept of
grid refinement contains almost all the main ingredients
for tool path planning, such as grid adaptation to the
regions of large milling errors, the possibility of easily
constructing curvilinear versions of the conventional
zigzag and spiral patterns, and adaptation to constraints
related to the tool diameter and the scallop height.
Moreover, in contrast to the standard techniques charac-
terized by a local error estimate, grid generation deals with
a global spatial error and consequently adapts all the CL
points simultaneously.

These ideas were developed further in Makhanov and
Ivanenko [135] and Makhanov [137] specifically for five-
axis machining. Bieterman and Sandstrom [20] suggested a
similar approach independently. Finally, Sun et al. [187]
presented a spiral version of the grid generation algorithm
applied to tool path generation.

Consider a set of cutter location points {ui,j, vi,j}
arranged as a curvilinear grid. Mathematically, it means
that (ui,j, vi,j) is a discrete analogy of a mapping from the
computational region {0≤ξ≤1, 0≤η≤1} onto a parametric

Fig. 28 Six iterations of the
Hilbert space-filling curve
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region defined in the parametric coordinates u, v. In other
words, there exists a pair of functions {u(ξ,η), v(ξ,η)} such
that the rectangular grid {i, j} being fed to {u(ξ,η), v(ξ,η)}

becomes {ui,j, vi,j}, see Fig. 30. The required (unknown)
grid is a discretized solution the following minimization
problem:

min
u;v

Z1
0

Z1
0

u2x þ u2h

� �
1þ f 2u
� �þ v2x þ v2h

� �
1þ f 2v
� �þ 2fufv uxvh þ uhvx

� �
uxvh � uhvx
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2u þ f 2v
p dxdh; ð3:3:6Þ

where subscripts u, v, ξ ,η denote partial derivatives and f
is the control function. The harmonic functional I is a
generalization the Winslow functional [22, 213] to the
case of the grids lying on the surface f(u,v). The harmonic
functional is derived from the theory of harmonic maps
[91, 92]. It has been proven that the functional minimizes
an “energy of mapping” and produces a grid adapted to

the regions of large gradients of f. Note that if fu ¼ fv � 0,
then the harmonic functional becomes the Winslow
functional; however, it is important that I adapts the grid
to the gradients of f rather than to f itself as in the
previous version [133]. It is known that minimization of
Eq. 3.3.6 could be computationally expensive as com-
pared with minimization of the Winslow functional [28].

Fig. 29 Adaptive space-filling curve a part surface with an island, b space-filling curve in the parametric space, c space-filling curve on the
surface
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However, it has many points in its favor. In particular, it is
possible to construct a computational procedure which,
under certain conditions, converges to a non-degenerate
grid, that is, the grid without twisted or non-convex cells.
The constraint minimization of Eq. 3.3.6 can be per-
formed by using efficient penalty type techniques similar
to those presented in [133]. Finally, Eq. 3.3.6 is more
reliable and converges for sharp variations of the input
data whereas the Winslow functional often produces
degenerated grids.

However, the above techniques have a number of
drawbacks. In particular, they may converge slowly for
complicated constraints. Besides, the approach requires
equal numbers of cutter contact points on each track of the
tool. Therefore, if the kinematics error changes sharply
from track to track, the method may require an excessive
number of points.

A new modification of grid refinement which better fits
within the framework of tool path optimization and is
designed specifically for SFC generation is introduced by
Anotaipaiboon and Makhanov [139]. The method does not
require equal number of points on each track since the grid
generation does not try to minimize or to reduce the
kinematics error along the tracks as in Makhanov [133]. At
the grid generation stage, the kinematics error is ignored
and the grid is generated with regard to scallop height
constraints. In fact, the proposed techniques present a
combination of the iso-scallop method, the boundary offset
method, and the grid navigation approach.

The resulting grid can be converted into a curvilinear
zigzag path or into a space-filling curve. After that, the
cutter location points along the resulting curve are
distributed using a standard method such as bisection.

Additionally, the algorithm evaluates the number of
required grid lines. As opposed to the preceding approach,
where the weight function represents either the kinematics
error or an estimate of the kinematics error (such as the
surface curvature or the rotation angles), the proposed
algorithm iteratively constructs an adaptive control function
designed to represent the scallop height constraints. This
important modification makes it possible to consider an
arbitrary number of points along the tool tracks.

The kinematics error is reduced by means of inserting
additional points along the resulting curvilinear coordinates.
In other words, the approach replaces the scallop con-
straints by a weight function and then treats the kinematics
error independently. Additionally, instead of the Winslow
functional proposed in [133] the new optimization is based
a functional derived from the theory of harmonic maps
[28]. The functional not only provides smoothness and
adaptivity but under certain conditions also guarantees
numerical convergence.

Finally, Anotaipaiboon and Makhanov [139] merge the
grid generation technique with SFC techniques (Fig. 31). In
this case, the grid is not converted to a tool path directly.
Instead, it becomes the basic grid required for SFC
generation. With this modification, the SFC tool path can
be constructed for surfaces with complex irregular bound-
aries, cutoffs, pockets, islands, etc. Besides, the adaptive
grid is an efficient way to handle complex spatial variability
because it allows the SFC to be created on a grid having
small cells only where necessary. The combination of the
two techniques is superior to the cases where the two
methods are applied independently.

Finally, although elegant and intellectually appealing,
grid generation methods are computationally costly. In

Fig. 30 Tool path in the
framework of grid generation
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many cases they require many hours of computing time.
Sometimes the computation time is larger than the cutting
time. Therefore, the use of such methods is well justified
for regional milling for complex-shaped surfaces with sharp
variations in curvature.

4 Conclusions

A survey on tool path interpolators, methods for tool
posture, gouging avoidance, and adaptable geometric
patterns has been presented. The most important numerical

optimization procedures for constructing efficient adaptable
tool paths for five-axis machining are outlined and
analyzed. The survey includes 225 references dated from
1978 to 2009.

The survey shows that tool path generation for five-axis
milling machines is a multi-criteria problem which includes
minimization of the machining time, the length of the tool
path, kinematics error, scallops, undercuts/overcuts due to
the curvature interference, and rear gouging. The optimiza-
tion is subjected to a number of constraints such as the
machine axis limits, global gouging, acceleration, and jerk
limits.

Fig. 31 Curvilinear SFC for the blade of an industrial impeller a curvilinear grid on the surface, b curvilinear SFC on the surface, c curvilinear
grid in the parametric domain, d curvilinear SFC in the parametric domain
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The adaptable patterns such as the navigated paths,
space-filling curves, cluster-based or region-based methods,
and curvilinear grids constitute a promising trend in modern
tool path generation. However, as of yet, there is not a
single approach applicable to an arbitrary part. Therefore,
intelligent adaptive tool path generation of the future should
include a variety of the quality criteria combined with
technological parameters and the machine kinematics.
Besides, the tool path generator must be able to select an
appropriate geometric pattern based on the machining
features and the quality requirements. There is no doubt
that the adaptable geometric patterns will become such
industry standards as NURBS [2] and solid modeling.
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Appendix. Kinematics equations of the five-axis
machines

In order to classify the machine kinematics, we, introduce
the following coordinate systems: the workpiece coordinate
system O1, a coordinate system of the first rotary part O2, a
coordinate system of the second rotary part O3, and a
coordinate system of the spindle O4. We shall call the first
rotary axis the A-axis and the second rotary axis the B-axis.

Fig. 32 The 1-0 machine and the reference coordinate systems

Fig. 33 The 1-1 machine and the reference coordinate systems
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where T23 is the coordinate of O2 in O3.
Consider three important types of the machine kinemat-

ics categorized by the positions of the rotational joints in
the kinematics chain.

The 2-0 machine. Two rotary axes on the table, Fig. 32.
In this case the kinematics is the 1-1 machine. One rotary
axis on the table and one on the tool, Fig. 33.

The 0-2 machine. Two rotary axes on the tool, Fig. 34.
Let us deduce the corresponding kinematics equations.

The 2-0 machine

The kinematics equations are obtained by the following
coordinate transformations (see Fig. 32).

Step 1: Coordinate translation O1→O2

P2 ¼ W þ T12;

where T12 is the coordinate of O1 in O2.
Step 2: Rotation around A-axis in O2 by a

P2A ¼ A a½ �P2 ¼ A a½ � W þ T12ð Þ;

where A a½ � ¼
cos a sin a 0
� sin a cos a 0

0 0 1

24 35 is the rotation

matrix around the A-axis.
Step 3: Coordinate translation O2→O3

P3 ¼ P2A þ T23 ¼ A a½ � W þ T12ð Þ þ T23;

Step 4: Rotation around B-axis in O3 by b

P3B ¼ B b½ �P3 ¼ B b½ � A a½ � W þ T12ð Þ þ T23ð Þ;

where B b½ � ¼
cos b 0 � sin b
0 1 0

sin b 0 cos b

24 35 is the rotation

matrix around B-axis.
Step 5: Coordinate rotation (axis alignment) O3 ! O

0
3

P
0
3 ¼ GP3B ¼ GB b½ � A a½ � W þ T12ð Þ þ T23ð Þ;

where G ¼
0 0 �1
0 1 0
1 0 0

24 35 is the axis alignment

matrix.
Step 6: Coordinate translation O

0
3 ! O4 with machine

slide translation M

P4 ¼ P
0
3 þ T34 �M ¼ GB b½ � A a½ � W þ T12ð Þ þ T23ð Þ
þ T34 �M ;

where T34 is the coordinate of O
0
3 in O4 with

respect to the machine zero point M=(0, 0, 0).

Equating P4 and T4 yields

T4 ¼ P4 ¼ GB b½ � A a½ � W þ T12ð Þ þ T23ð Þ þ T34 �M :

After rearrangement,

M ¼ GB b½ � A a½ � W þ T12ð Þ þ T23ð Þ þ T34 � T4;

W ¼ A�1 a½ � B�1 b½ �G�1 M � T34 þ T4ð Þ � T23ð Þ � T12;

where T4 ¼ 0; 0;�Lð Þ is the coordinate of the tool tip in O4

and L is the tool length.

Fig. 34 The 0-2 machine and the reference coordinate systems
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Let T
0
1 be the coordinate of T

0
4 ¼ 0; 0;�Lþ 1ð Þ in O1

and is given by

T
0
1 ¼ A�1 a½ � B�1 b½ �G�1 M � T34 þ T

0
4

� �
� T23

� �
� T12:

The relationship between the tool orientation I=(Ix, Iy, Iz)
and the rotation angles, a and b, are then given by

I ¼ T
0
1 �W ¼ A�1 a½ �B�1 b½ �G�1 T

0
4 � T4

� �
¼

cosðaÞ cosðbÞ
sinðaÞ cosðbÞ
� sinðbÞ

24 35:
Inverting with regard to a and b yields

a ¼
tan�1 Iy

Ix

� �
if Ix > 0 and Iy > 0;

tan�1 Iy
Ix

� �
þ p if Ix < 0;

tan�1 Iy
Ix

� �
þ 2p otherwise;

8>>><>>>:
b ¼ �sin�1Iz:

The 1-1 machine

The above procedure applies to an arbitrary machine
configuration. For the 1-1 machine shown in Fig. 33, the
coordinate of the tool tip in O4 is given by

T4 ¼ B b½ � GA a½ � W þ T12ð Þ þ T23 �Mð Þ þ T34:

Clearly,

M ¼ GA a½ � W þ T12ð Þ þ T23 þ B�1 b½ � T34 � T4ð Þ;
W ¼ A�1 a½ �G�1 M � T23 � B�1 b½ � T34 � T4ð Þð Þ � T12;

I ¼ T
0
1 �W ¼ A�1 a½ �G�1B�1 b½ � T 0

4 � T4
� � ¼ cosðaÞ sinðbÞ

� sinðaÞ sinðbÞ
cosðbÞ

24 35;

a ¼
�tan�1 Iy

Ix

� �
if Ix > 0 and Iy < 0;

�tan�1 Iy
Ix

� �
þ p if Ix < 0;

�tan�1 Iy
Ix

� �
þ 2p otherwise;

8>>><>>>:
b ¼ cos�1Iz;

where

A a½ � ¼
cos a � sin a 0
sin a cos a 0
0 0 1

24 35;B b½ � ¼
cos b 0 � sin b
0 1 0

sin b 0 cos b

24 35;
G ¼

�1 0 0
0 1 0
0 0 �1

24 35;
T4 ¼ 0; 0;Lð Þ:

The 0-2 machine

Applying the same procedure to the for 0-2 machine
(Fig. 34) yields

T4 ¼ B½b� A½a� GW þ T12 �Mð Þ þ T23ð Þ þ T34:

Clearly,

M ¼ GW þ T12 þ A�1½a� T23 þ B�1½b� T34 � T4ð Þð Þ;
W ¼ G�1 M � T12 � A�1½a� T23 þ B�1½b� T34 � T4ð Þð Þð Þ;

I ¼ T
0
1 �W ¼ G�1A�1½a�B�1½b� T 0

4 � T4
� � ¼ cosðbÞ

sinðaÞ sinðbÞ
� cosðaÞ sinðbÞ

24 35;

a ¼
�tan�1 Iy

Iz

� �
if Iy < 0 and Iz > 0;

�tan�1 Iy
Iz

� �
þ p if Iz < 0;

�tan�1 Iy
Iz

� �
þ 2p otherwise;

8>>><>>>:
b ¼ �cos�1Ix:

where

A a½ � ¼
cos a � sin a 0
sin a cos a 0
0 0 1

24 35;
B b½ � ¼

1 0 0
0 cos b � sin b
0 sin b cos b

24 35;
G ¼

0 �1 0
0 0 1
�1 0 0

24 35;
T4 ¼ 0; 0; Lð Þ:
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Abstract Five-axis machines with three translational and
two rotation axes are becoming increasingly popular in
serving the needs of the mass production industry due to
their ability to handle geometrically complex workpieces
using the rotational axes. Theoretically, the combination of
the five axes offers a minimal number of the degrees of
freedom required to transport the tool into a prescribed
spatial position and establish a required orientation.
However, the rotation axes lead to an inevitable nonlinear-
ity of the tool tip trajectory and the so-called kinematics
errors appearing due to the specific kinematics of the
machine. Eventually, one arrives at an interesting question.
Is it possible to compensate this error by introducing an
additional rotation axis? In other words, “does an additional
rotation axis offer any optimization benefits in the sense of
the above mentioned error?” In this paper, we answer this
question positively by analyzing a hypothetical six-axis
milling machine with two rotation axes on the table and one
additional rotation axis on the tool. The sixth axis is build
on the top of the existing five-axis machine MAHO600E by
Deckel Gildemeister. We present an extension of an
optimization algorithm developed earlier by the authors
for five-axis machining based on an optimal angle
sequencing (the shortest path optimization). The extension
is a combination of the shortest path strategy and the use of
the additional axis. The algorithm leads to an increase in the
machining accuracy, in particular, for rough milling.
Numerical experiments and cutting by a virtual six-axis
machine built in Vericut 5.0 validates the results of the

optimization. The proposed optimization procedure is
capable of upgrading the existing five-axis G-codes to the
case of six-axis machine.

Keywords Multi-axis machining . Optimization .

Kinematics of milling machines

1 Introduction

Milling machines are programmable mechanisms for
cutting complex industrial parts. The machine consists of
several moving bodies designed to establish the required
coordinates and orientations of the tool during the cutting
process. The axes of the machine define the number of the
degrees of freedom of the cutting device. The movements
of the machine are guided by a controller which is fed with
a so-called NC program comprising commands carrying
spatial coordinates of the tool-tip and angles needed to
rotate the machine parts to establish the orientation of the
tool.

One of the most popular five-axis configurations consists
of three translation and two rotation axes. This combination
offers a minimal number of the degrees of freedom required
to transport the tool into a spatial position and to establish
the required orientation.

The machines with the rotation axes on the table often
have to turn around heavy workpieces. Therefore, they
must support significant mechanical efforts during machin-
ing. As a result, the machines may have low capacities for
acceleration. When the machine has to slow down or stop,
the speed reduction requires a considerable time for
deceleration and re-acceleration. This effect significantly
increases the machining time and can be even amplified in
high-speed machining when the rotation axes must reach
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greater speeds. As a matter of fact, it can be often
financially justified to use only three linear axes at high
speeds to reduce the number of decelerating axes. This is
also because the rotation axes invoke an inevitable
nonlinearity of the tool trajectory and, consequently, errors
appearing due to specific kinematics of the machine (the
kinematics errors).

Therefore, we arrive at an interesting question. Does an
additional sixth rotational axis offer any optimization
benefits in the sense of the abovementioned kinematics
error? In other words, can the rotations (not the tool
positions!) be optimized so that the kinematics errors are
reduced as compared to the five-axis machining?

Note that the six-axis configuration is usually being
discussed with the reference to the Steward platform
mechanisms. Only a few papers deal with kinematics of
conventional six-axis machines. The conventional six-axis
configurations have been recently analyzed with regard to
non-rotational tool in [1, 2] and with regard to six-axis
grinding in [3]. However, to the best our knowledge, the
kinematics errors produced by a hypothetical or a real six-
axis point milling and possible benefits of sixth axis have
not been presented in the literature.

This paper offers a positive view regarding benefits of
the sixth axis; however, it also shows that the additional
axis cannot be used in an ad hoc fashion. Moreover, in
some cases, it is not efficient. For demonstration, we
present an analysis of a hypothetical six-axis milling
machine with two rotation axes on the table and an
additional rotation axis on the tool. The sixth axis is built
on the top of the existing five-axis machine MAHO600E by
Deckel Gildemeister.

The analysis shows that the six-axis machine requires
special optimization algorithms. Otherwise, the result can
be even worse than that produced by five-axis machining.

Therefore, a new optimization procedure has been
proposed and analyzed. The new algorithm is an extension
of the shortest path optimization developed earlier by the
authors for five-axis machining [4, 5]. The algorithm is
based on minimization of the total distance traveled by the
tool in the angular space.

The algorithm leads to a significant increase in the
machining accuracy, in particular, for rough milling display-
ing clearly optimization benefits of the additional axis.

The algorithm does not change the prescribed tool path
in the part surface coordinate system and changes only the
way the orientations are being achieved. The proposed
procedure is capable of upgrading and optimizing the
existing five-axis G-codes to the case of six axes.

Finally, the basic virtual five-axis machine has been
successfully tested and compared with the actual machine
Maho600E at the CIM Lab of Asian Institute of Technol-
ogy of Thailand (see, for instance [4, 5]). The sixth axis has

been built at the top of this well-known and verified virtual
machine. Virtual machining using Vericut has been proven
to correctly represent a variety of multi-axis machines in
numerous reports and publications. Therefore, the virtual
machine is a practical way to verify the proposed algorithm.

2 Kinematics of six-axis milling machines

Consider a six-axis machine with two rotary axes on the
table and an additional axis on the tool (Fig. 1). The
machine is guided by axial commands carrying three spatial
coordinates of the tool-tip in the machine coordinate system
M and three rotation angles A, B, and C. A successive set of
coordinates (cutter location points or CL points) in the
workpiece (part surface) coordinate system W is trans-
formed into the M system to provide reference inputs for
the servo-controllers of the machine.

Define the kinematics transformation of the machine
KðM ;<Þ : R6 ! R3. For every point M≡(X,Y,Z) in the
machine coordinates and every triple of the rotation angles
< � ðA;B;CÞ KðM ;<Þ generates a corresponding point
W≡(x,y,z) in the workpiece coordinates. Examples of the
kinematics transformations for some particular six-axis
machines are presented in the Appendix.

Let K�1ðW ;<Þ be the inverse transformation such that
8W ;M ;<, K�1ðKðM ;<Þ;<Þ � M andK�1ðKðW ;<Þ;<Þ �
W . Let Wp and Wp+1 be two successive spatial positions in
the part-surface coordinates and let Mp � K�1ð<p; WpÞ,
Mpþ1 � K�1ð<pþ1;Wpþ1Þ. The machine coordinates and the

Fig. 1 Hypothetical six-axis machine build on the top of
MAHOO600E

Int J Adv Manuf Technol



rotation angles between p and p+1 are assumed to
change linearly, namely, MðtÞ ¼ tMpþ1 þð1� tÞMp,
<ðtÞ ¼ t<pþ1 þ ð1� tÞ<p, where t is the fictitious time
coordinate (0≤t≤1). Transforming machine coordinates M
back to workpiece coordinates W for every t yields

Wp;pþ1ðtÞ ¼ Kð<ðtÞ;MðtÞÞ ¼ Kðt<pþ1 þ ð1� tÞ<p; tMpþ1

þ ð1� tÞMpÞ:

The above represents a tool tip trajectory between p
and p+1 as a function of the workpiece coordinates and
the tool orientation. Kinematics transformations for the
specific six-axis machine shown in Fig. 1 are obtained

using intermediate reference coordinate systems shown in
Fig. 2 (see [6, 7]).

The kinematics of the machine works in such a way that the
tool vector (1, 0, 0) in the machine coordinate system O5 is
transformed into the tool orientation vector (i,j,k) in O1.
Introducing the rotation angles A, B, and C and applying the
corresponding rotation matrices to (1, 0, 0) yields

i
j
k

0@ 1A ¼ sinðAÞ sinðCÞ þ cosðAÞ sinðBÞ cosðCÞ
� cosðAÞ sinðCÞ þ sinðAÞ sinðBÞ cosðCÞ

cosðBÞ cosðCÞ

0B@
1CA:

ð1Þ
Solving with regard to A, B and leaving C as a free

variable yields

A � AðCÞ ¼

tan�1
ðj sinðBÞ þ i tanðCÞÞ
ð�j tanðCÞ þ i sinðBÞÞ ; if ð�j tanðCÞ þ i sinðBÞÞ > 0 and ðj sinðBÞ þ i tanðCÞÞ > 0;

tan�1
ðj sinðBÞ þ i tanðCÞÞ
ð�j tanðCÞ þ i sinðBÞÞ þ p; if ð�j tanðCÞ þ i sinðBÞÞ < 0;

tan�1
ðj sinðBÞ þ i tanðCÞÞ
ð�j tanðCÞ þ i sinðBÞÞ þ 2p; otherwise:

8>>>>>>><>>>>>>>:
ð2Þ

B � BðCÞ ¼ cos�1
k

cosðCÞ
� 	

: ð3Þ

Note that (3) implies k
cosðCÞ � 1. Also, note that any

angle can be selected as the independent (free) variable;
however, the selection of C has some benefits because the
C axis is at the end of the kinematics chain [8].

3 Optimization with regard to the sixth axes

Introduce a kinematics error defined as a norm of the
difference between the desired the actual trajectory
Wp;pþ1ðtÞ � ðxp;pþ1ðtÞ; yp;pþ1ðtÞ; zp;pþ1ðtÞÞ, namely,

" ¼
X
p

dist ðWD
p;pþ1;Wp;pþ1Þ; ð4Þ

where WD
p;pþ1ðtÞ � ðxDp;pþ1ðtÞ; yDp;pþ1ðtÞ; zDp;pþ1ðtÞÞ 2 Sðu; vÞ

is a curve between tool positions Wp and Wp+1 extracted

from part surface S(u,v), t is the parametric coordinate along
the curve and dist is an appropriate distance. The curve is
extracted in such a way that it represents the desired tool
trajectory. For every cutting step p, p+1 the tool tip trajectory
must be as close as possible to the desired surface.

The actual trajectory Wp,p+1(t) is generated using inverse
transformations derived for the specific machine configura-
tion (see, for instance, [2]). Note that ε is nothing else than a
numerical approximation of the deviation between the
machined and the actual surface. As a matter of fact, the
actual error might even exceed ε; however, ε is a
conventional error estimate which should be minimized first.

Furthermore, we follow an assumption validated by
numerical simulations and cutting experiments in [4, 5] and
[6] that the kinematics error ε is proportional to the
variation of the rotation angles given by

f¼
X
p

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dAp

ds

� 	2

þ dBp

ds

� 	2

þ dCp

ds

� 	2
s

ds : ð5Þ

Fig. 2 Intermediate reference
coordinate systems for the
six-axis machine
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Approximating (5), using tool positions ð<p;WpÞ for
discretization yields

f � fC � fCðC1;C2; :::;CN Þ ¼ 1
N�1

PN
p¼2
ðApðCpÞ � Ap�1ðCp�1ÞÞ2

þ ðBpðCpÞ � Bp�1ðCp�1ÞÞ2 þ ðCp � Cp�1Þ2 ;
where N is the total number of the cutter location points.
Note that fC can be interpreted as the average (per step)
distance traveled by the tip of the tool in the angular space
(A, B, C).

We seek

argmin fCðC1;C2; :::;CN Þ ð6Þ
subject to

kp
cosðCpÞ � 1; p ¼ 1; :::;N : ð7Þ

Note that (7) defines the C range for a given tool
position. For example, if k=1 (the tool is parallel to the z-
axes), the only possible value is C=0.

The constraint minimization (6) and (7) can be
performed by many ways, for instance, employing a penalty
function

~
f ¼ fCðC1;C2; :::;CN Þ þ l

X
p

LðxpÞ; ð8Þ

where and LðxÞ ¼ ðminð0; xÞÞ2, x ¼ k � cosðCÞ.
Unfortunately, fC(C1,C2,...,CN) is not always differen-

tiable. It may include corners and sharp variations near
stationary points of the part surface [5] and where the
components of the surface normal change the sign (see
formula (2)). As an example, consider a test surface
depicted in Fig. 3. Two triples of cutter location points are
indicated by 1, 2, 3 and 4, 5, 6. The cost function

~
f ðC2Þ ¼

fCðC1;C2;C3Þ for some fixed C1 and C2 is depicted in
Fig. 4 (solid line). Figure 5 shows the cost function for the
second triple, namely,

~
f ðC5Þ ¼ fCðC4;C5;C6Þ for fixed C4

and C6 (solid line). The function k
cosðCÞ which defines

constraint (6) is depicted by a dotted curve. Note that
~
f ðC2Þ

and
~
f ðC5Þ are defined only when k

cosðCÞ � 1:
These curves represent typical profiles of the cost function

when all the variables, except the one corresponding to the
current point, are fixed. The cost function in Fig. 4 has three
corners generated by different branches of A(C).

A smooth monotone profile is shown in Fig. 5. Clearly,
for this component of the cost function, finding the
minimum is a trivial task whereas the function in Fig. 4
may require a combination of continuous and discrete
minimization to treat the singularities.

We minimize
~
f using a combination of the gradient

based method (a MATLAB built-in routine) and a standard
bisection. First, a certain number the gradient minimization

Fig. 3 A test surface and cutter location points 1,2 and 3 and 4,5,6

Fig. 4 The cost function and the constraints, point 3 in Fig. 3

Fig. 5 The cost function and the constrains, point 5 in Fig. 3
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steps is performed. Then, if a corner is detected around the
local minimum, the method switches to bisection. Other-
wise, the gradient minimization continues. Our numerical
experiments show that such combination of methods
usually converges; however, it does not guarantee the
global minimum.

4 Errors induced by an additional axis
and other sources of errors

Apart from providing a possibility to optimize the tool path
introduced in this paper, the sixth axis may entail a variety
of degrading effects on the dynamics of the machine, the
stability, and other critical parameters of the machining.

As far as the dynamics are concerned, the additional axis
inevitably introduces an additional mass which may reduce
the maximum achievable velocity and acceleration. This is,
in particular, important when the additional axis is
rotational since it is typically slower than the Cartesian
(linear) axes. The sixth axis also requires a new controller
and an additional servomotor which leads to a higher cost
of the machine and an extra power consumption.

On the other hand, if high-performance servomotors are
employed, the redundant axis can be utilized to compensate
for velocity or/and acceleration saturation (see for instance
[9] on the redundant manipulators). Nevertheless, benefits
of the sixth axis should be weighted against possible
changes in dynamics as well as additional energy costs.
Such analysis presents an interesting optimization problem
which, however, lies out of the scope of this paper.

The additional rotational joints may change the stability
conditions of the cutting operations (the natural frequencies of
the system) which may lead to an unexpected chatter (self-
excited vibrations) and unwanted waviness of the part surface.

Fig. 6 Test surface 1

Fig. 7 A trajectory with loops (large errors)

Fig. 8 Loops have been removed by a six-axis optimization

Fig. 9 Non optimized virtual cut. A single curve
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Even under stable, chatter-free conditions, the tool
experiences periodic forced vibrations leading to overcuts
or undercuts. In some cases [10], these effects may amount
to as much as 75% of all contributions of the error sources.
Clearly, the sixth axis can change the characteristics of the
forced vibrations and, therefore, increase these inaccuracies.

Among other sources of errors neglected in our model are
thermal deformations. It has been demonstrated [11] that
additional degrees of freedom may increase these errors since
under certain conditions, the thermal deviations associated
with different axes add up. A variety of interesting thermal
effects appearing during five-axis machining including high-
speed micro-milling are analyzed in [11–14]. The effects of
the temperature of the main building blocks of the machine
on the tool errors are presented in [15, 16].

Furthermore, the tool deflection errors are one of the
most prominent [17]. Milling a complex shape may be

affected by deflections of the end mills caused by variation
of the cutting forces especially when corner cutting is
involved [18, 19]. The end milling force and deflection
models based on the input machining data (tool geometry,
cutting conditions, and workpiece material properties) have
been proven to be applicable for generating accurate and
reliable cutting force and deflection errors [20, 21].
However, it is difficult to entirely eliminate these errors
although a considerable increase in the accuracy of the
machining can be achieved by various compensating
strategies [22].

Machines with three linear axes have a total of 21 linear
independent geometric error components [23]. A five-axis
milling machine regarded as a set of rigid bodies has 42
independent geometric error components [24].

The number of the geometric errors for six-axis machine
can be evaluated as follows: a rigid solid body has six
degrees of freedom specifying uniquely its position in the

Fig. 10 Optimized virtual cut. A single curve

Table 1 Cost function and the kinematics error for five-axis and six-axis machining of surface 1

Number of the CL points The cost function
~
f Kinematics error ε

Five-axis Five-axis with
sequencing

Six-axis (cost
reduction)

Five-axis Five-axis with
sequencing

Six-axis (error reduction)

20×20 19.94 17.87 13.71 (31.24,23.28)% 0.0356 0.0217 0.0160 (55.06,26.27)%

30×20 13.37 12.52 9.69 (27.5,22.60)% 0.0173 0.0112 0.0086 (50.29,35.26)%

40×20 10.05 9.73 7.52 (25.17,22,71)% 0.0089 0.0076 0.0048 (46.07,36.84)%

50×20 8.05 7.76 6.16 (23.48,20.61)% 0.0075 0.0050 0.0037 (50.67,26.00)%

60×20 6.71 6.48 5.23 (22.06,19.29)% 0.0062 0.0037 0.0025 (59.68,32.43)%

70×20 5.75 5.61 4.55 (20.87,18.89)% 0.0046 0.0030 0.0022 (52.17,23.33)%

Fig. 11 Five -axis tool trajectories with large loops (errors) before
optimization
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three-dimensional space. A six-axis machine has six slides
that can move relative to each other. Two other bodies fixed
to the machine are the tool and the workpiece. The total
number of the positioning errors is 8� 6 ¼ 48.

Furthermore, when eight bodies move relative to each
other, the number of independent error components can be
found by connecting the eight bodies by a minimum
number of rigid bars to form a single rigid body. Three
rigid bodies can be connected by three rigid bars in a rigid
triangle. Four bodies require six rigid bars (tetrahedron),
etc. Eight bodies require 18 rigid bars. Therefore, the total
number of independent error components is 48þ 18 ¼ 64.
A variety of efficient procedures based on polynomial
models to identify and compensate for these errors in the

five-axis mode have been developed and implemented (see
a literature survey in [24]). Many of these methods can be
generalized to the six-axis case.

Furthermore, some other less prominent sources of errors
are: machine operating conditions such as the material
removal rate, wet or dry cutting, clamping conditions, the
tool wear and other tool imperfections, errors due to
configuration of the machine, errors due to singular points
of the part surface, etc.

Recall that the tool path is defined by a sequence of
cutter contact points and orientation vectors. The positions

Fig. 12 Five-axis with sequencing. Large loops have been reduced

Fig. 13 Six-axis tool trajectories after optimization. Many loops have
been eliminated.

Fig. 14 Fragment of a non optimized five-axis virtual cut with a large
error

Fig. 15 Fragment of the virtual cut, six-axis machine. The error has
been eliminated
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of translation and rotary axes are linearly interpolated. Due
to the prescribed transformations, the machine tool tip
follows curves which represent a continuous piecewise-
smooth nonlinear three-dimensional interpolation of the
desired trajectories. The deviation of the interpolating
function from the actual trajectory defined by (4) is called
the kinematics error. However, the definition is not
complete. For instance, it does not include the scallops
appearing between the tool tracks.

Moreover, the distance involved in (4) is an open problem.
The difference can be evaluated by the generic parameter
invariant Hausdorff or Fréchet distance given, respectively, by
distHðA;BÞ ¼ maxfmax

a2AðtÞ
min
b2BðtÞ

ja� bjE; max
b2BðtÞ

min
a2AðtÞ

ja�
bjEÞ and distFðA;BÞ ¼ min

faðtÞ;bðtÞg
max
t2½0;1�

jA� BjE ; where min-

imum in the second formula is considered over all
continuous and increasing functions α(t) and β(t). However,
these measures are computationally expensive and may lead
to intractable optimization problems. Some computationally
simple choices are the root mean square (rms) given by
dist2ðA;BÞ ¼ jj jAðtÞ � BðtÞjE jj2 and the max-norm given
by dist1ðA;BÞ ¼ jj jAðtÞ � BðtÞjE jj1 ;where jjE is the Eu-

clidian distance and A(t), B(t) are parameterized with regard
to t∈ [0,1].

A good option is an rms-distance based on a natural
parameterization given by

distN ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ1
0

jAðlAðtÞÞ � BðlBðtÞÞj2dt

vuuut ;

where A(lA(t)) and B(lB(t)) denote the corresponding arc-
length parameterizations.

Unfortunately, it is not possible to find a closed-form
parameterization for real rational curves (such as NURBS)
by rational functions of its arc length [25]. Therefore, such
parameterizations are evaluated numerically.

Finally, finding a distance between curve Wp,p+1(t) and
the entire part surface S(u,v), rather than between Wp,p+1(t)
and WD

p;pþ1ðtÞ, is certainly a better option. However, this
solution is computationally hard and often impractical.

The proposed compensation algorithm can be con-
structed for each of the abovementioned estimates; howev-
er, finding an appropriate distance for a particular

Fig. 16 Test surface 1

Fig. 17 Five-axis trajectory with loops

Fig. 18 Six-axis trajectory with reduced loops

Fig. 19 Five-axis virtual cut
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application is often problem dependent. In this paper, the
problem of finding the appropriate error estimate is solved
under a practical assumption that the error is proportional to
the variation of the rotation angles no matter what distance
is being considered. However, this assumption is heuristic
and has been proven only experimentally [5, 26].

In summary, the proposed method invokes many assump-
tions.Moreover, in case of real six-axis machining, many types
of errors could exceed kinematics error. However, a design of a
newmachine (which inevitably requires a prototype) lies out of
the scope of this presentation. The goal of the paper is to find

benefits of the additional rotation axis in the sense of the
abovementioned error (4). Consequently, an algorithm to
improve the accuracy of the machining using the redundant
sixth axis (without changing positions and orientations of the
cutting tool!) has been introduced and analyzed.

4.1 Six-axis optimization: numerical experiments

Example 1 Six-axis optimization outperforms five-axis
with sequencing

We demonstrate results of optimization (6) and (7) using
a test surface given by (Fig. 6)

Sðu; vÞ ¼
100u� 50

100v� 50

�80vðv� 1Þð3:5u� 14:8u2 þ 21:15u3 � 9:9u4Þ � 28

0B@
1CA; u; v 2 0; 1½ �:

Our optimization performed on a single curve extracted
from the test surface is illustrated in Figs. 7 and 8. A non-
optimized tool trajectory characterized by many unwanted
loops (large errors) induced by large differences of the

rotation angles is shown in Fig. 7. The loops produce
considerable errors and may even lead to collisions of the
machine tool and other parts of the machine. However, the
proposed angle optimization procedure eliminates many

Fig. 20 Six-axis virtual cut with reduced loops

Fig. 21 A trajectory after five-axis sequencing. The large loops at the
beginning can not be eliminated. The cost function and the kinematics
error are 17.39 and 0.1613 respectively

Table 2 Cost function and the kinematics error for five-axis and six-axis machining of surface 2

Number of the CL points The cost function
~
f Kinematics error ε

Five-axis Five-axis with
sequencing

Six-axis Five-axis Five-axis with
sequencing

Six-axis

20×20 14.79 7.68 11.21 (24.21,−31.49)% 0.0573 0.0045 0.0278 (51.48,−83.81)%
30×20 10.31 5.17 8.06 (21.82,−35.85)% 0.0399 0.0013 0.0212 (46.87,−93.87)%
40×20 7.92 3.91 6.94 (12.37,−43.66)% 0.0306 0.000732 0.0170 (44.44,−56.94)%
50×20 5.73 2.87 4.59 (19.90,−37.47)% 0.0287 0.000703 0.0162 (43.55,−95.66)%
60×20 4.66 2.24 3.01 (35.41,−25.58)% 0.0201 0.00065 0.0157 (21.89,−95.86)%
70×20 3.77 2.04 2.56 (32.09,−20.31)% 0.0188 0.00059 0.0115 (38.83,−94.87)%
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unwanted loops, leading to an improved trajectory shown in
Fig. 8.

Virtual cutting using our virtual six-axis machine build
in Vericut 5 [27] (Figs. 9 and 10) validates the optimization.
Vericut makes it possible to entirely design the milling
machine: define the dimensions and the shape of every part
and set up the controller. Furthermore, the software makes
it possible to perform virtual cutting using a built-in solid
modeling engine.

Table 1 shows that the proposed six-axis angle optimiza-
tion applied to the entire surface leads to a considerable error
reduction. For instance, optimization of the tool paths
consisting of 400 (20×20) points leads to a cost reduction of
about 31.24/23.28%, respectively, with the reference to five-
axis and five-axis with sequencing proposed in [3, 4]. For 800
(40×20) points, it is 25.17/22.71%. The kinematics error has
been reduced by 55.06/26.27% and 46.07/36.84%.

The tool trajectories from a sample cut (70×20 CL
points) for non-optimized and optimized (six-axis) code are
shown in Figs. 11, 12, and 13. Finally, fragments of a non-
optimized virtual cut Figs. 14 and 15, respectively.

Example 2 Five-axis with sequencing may outperform six-
axis optimization

Consider a test surface given by (Fig. 16)

Sðu; vÞ ¼
100u� 50

100v� 50

10:0e�10ð2:0u�1:0Þ
2ð2:0v�1:0Þ2 � 15:0

0BB@
1CCA; u; v 2 0; 1½ �;

In order to analyze the efficiency of the six-axis
optimization, the results obtained by five-axis machining
and by five-axis with sequencing [3] are compared with the
proposed six-axis optimization (Figs. 17, 18, 19, 20). The
results presented in Table 2 show that five-axis optimization
with the optimal choice of rotations [3, 4] outperforms
optimization with regard to the sixth axis. Note that six-axis
error reduction is close to the five-axis shortest path
optimization [3]. However, it has been shown in [4] than
inserting new point into the optimized shortest path
sequence is not a trivial task, whereas optimization with
regard to the six-axis does not present this problem. Next,
the six-axis optimization is combined with sequencing
proposed in [3]. However, this combination is not as trivial
as it may seem. As a matter of fact, it leads to a much more
sophisticated mathematical problem presented in the next
section.

5 Six-axis optimization with sequencing: numerical
experiments

In order to introduce six-axis sequencing, note that (1) has
multiple solutions. Suppose A0, B0 is a solution (2) and (3)
obtained for an arbitrary but fixed C, which satisfies

k
cosðCÞ � 1. It is not hard to demonstrate that if � p

2 �
C � p

2, then the following triples

A1ðCÞ ¼ 2p � A0ðCÞ;B1ðCÞ ¼ B0ðCÞ;C1ðCÞ ¼ C;
A2ðCÞ ¼ A0ðCÞ þ p;B2ðCÞ ¼ �B0ðCÞ;C2ðCÞ ¼ �C;
A3ðCÞ ¼ A0ðCÞ � p;B3ðCÞ ¼ �B0ðCÞ;C3ðCÞ ¼ �C

are also solutions of ð1Þ:

Fig. 22 The trajectory after six-axis sequencing. The large loops
become smaller and some errors have been reduced. The cost function
and the kinematics error are 15.98 and 0.1542 respectively.

Table 3 Cost function and the kinematics errors: five-axis and six-axis machining of surface 1

Number of the CL points The cost function
~
f Kinematics error ε

Five-axis with
sequencing

Six-axis Six-axis with
sequencing

Five-axis with
sequencing

Six-axis Six-axis with sequencing

20×20 17.87 13.71 12.15 (32.01,11.38)% 0.0217 0.0160 0.0145 (33.18,9.36)%

30×20 12.52 9.69 9.01 (28.04,7.02)% 0.0112 0.0086 0.0080 (28.57,6.98)%

40×20 9.73 7.52 7.14 (26.62,5.05)% 0.0076 0.0048 0.0047 (38.16,2.08)%

50×20 7.76 6.16 5.98 (22.94,2.92)% 0.0050 0.0037 0.0036 (28.00,2.70)%

60×20 6.48 5.23 5.17 (20.22,1.15)% 0.0037 0.0025 0.0024 (35.14,4.00)%

70×20 5.61 4.55 4.50 (19.77,1.10)% 0.0030 0.0022 0.0019 (36.67,13.63)%
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Consequently, our new optimization problem is formu-
lated as follows:

Define

eAðC; dÞ ¼X3
k¼0

dkAkðCÞ ; eBðC; dÞ ¼X3
k¼0

dkBkðCÞ ; eCðC; dÞ
¼
X3
k¼0

dkCkðCÞ;

where d=(d0,d1,d2,d3) is a binary vector, di=0 or di=1.
The minimization problem becomes

minimize
C1;C2;:::;CN ;D1;:::DN

1

N � 1

XN
p¼2
ðeAðCp;DpÞ

� eAðCp�1;Dp�1ÞÞ2

þ ðeBðCp;DpÞ � eBðCp�1;Dp�1ÞÞ2

þ ðeCðCp;DpÞ � eCðCp�1;Dp�1ÞÞ2; ð9Þ

where Ci are continuous variables and Di ¼ ðd0;i; d1;i;
d2;i; d3;iÞ are the discrete optimization variables satisfying
d0;p þ d1;p þ d2;p þ d3;p ¼ 1.

The minimization is subjected to a condition given by

kpðsÞ
cosðCpðsÞÞ � 1; 8s; 8p : ð10Þ

It should be noted that this paper does not find the best
optimization method for the hard mixed nonlinear optimi-
zation problem (9) and (10). Rather than that, a formulation
of the problem is presented and a possibility of finding a
suboptimal solution using a simple heuristic approach is
demonstrated.

The heuristic method is based on the following iter-
ations. First, the integer variables Di are fixed and the
corresponding nonlinear constraint minimization problem is
solved with regard to Ci. Next, the continuous variables get
“frozen” and a shortest path routine is applied to the binary
variables Di. With the new set of the binary variables and
the initial values for Ci taken from the previous step, the

Table 4 Cost function and the kinematics error: five-axis and six-axis of surface 2

Number of the CL points The cost function
~
f Kinematics error ε

Five-axis with
sequencing

Six-axis Six-axis with
sequencing

Five-axis with sequencing Six-axis Six-axis with sequencing

20×20 7.68 11.21 6.23 (18.88,44.42)% 0.0045 0.0278 0.0037 (17.78,86.69)%

30×20 5.17 8.06 4.78 (7.54,40.69)% 0.0013 0.0212 0.0009 (30.77,95.75)%

40×20 3.91 6.94 3.11 (20.46,55.19)% 0.000732 0.0170 0.00061 (16.67,96.41)%

50×20 2.87 4.59 2.63 (8.36,42.70)% 0.000703 0.0162 0.000698 (0.71,95.69)%

60×20 2.24 3.01 2.01 (10.27,25.58)% 0.00065 0.0157 0.00060 (7.69,96.17)%

70×20 2.04 2.56 1.99 (2.45,22.27)% 0.00059 0.0115 0.00052 (11.86,95.48)%

Fig. 23 Five-axis with sequencing virtual cut (20×20 CL points) Fig. 24 six-axis with sequencing virtual cut
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problem is solved with regard to the continuous variables
again. The procedure repeats until convergence.

Although this method does not guarantee the optimal
solution, the engineers are often satisfied with a suboptimal
solution as long as it provides that the objective function
has been improved sufficiently. In our case, a lower bound
on the optimal value is available from the solution of the
five-axis shortest path routine which presents a fairly good
idea regarding the quality of the solution.

Example 3 Six-axis optimization with sequencing, Surface 1

Let us use test surface 1 to demonstrate results of the six-
axis sequencing.

The results obtained for a single curve are shown in
Figs. 21 and 22. The errors analysis for the entire surface
is given in Table 3. Clearly, the six-axis sequencing
makes it possible to achieve an impressive reduction of
the error, with regard to five-axis sequencing of about
30%.

Example 4 Six-axis optimization with sequencing, Surface 2

These experiments extend analysis presented by Example 2.
Recall that for surface 2, five-axis optimization with
optimal choice of rotations outperforms six-axis optimiza-
tion. Table 4 shows that six-axis optimization (9) and (10)
solved by the proposed procedure always improves the
result. The error reduction ranges from 19% to 32% in
terms of the cost function and 28–36% in terms of the
kinematics error. Finally, a rough virtual cut (20×20)
shown in Figs. 23 and 24 shows visually large errors
produced by five- axis with sequencing compared to a six-
axis rough cut with sequencing where these errors have
been partially eliminated.

6 Conclusions

The additional rotation axis provides certain optimization
benefits. The kinematics error can be substantially
reduced at the expense of the correctional rotations
around the additional axes. However, special minimiza-
tion algorithms should be employed. The optimization
formulated in terms of a functional representing the total
distance traveled by the tool tip in the angular space
makes it possible to reduce the kinematics error by 25–
30%. The proposed six-axis optimization could be
coupled with other schemes to insert additional points
or to distribute the existing points in a desirable fashion.
Finally, the optimal design of the six-axis machine is still
an open problem.

Acknowledgment We acknowledge sponsorship of Thailand Re-
search Fund, grant BRG 50800012.

Appendix: possible configurations of six-axis machines

The presented configurations differ by the number of the
rotary axes on the tool and the table.

1. The 2–1 machine

The kinematics equations are obtained by the following
coordinate transformations (see Figs. 25 and 26).

Step 1: Coordinate translation O1→O2

P2 ¼ W þ T12; ð11Þ

where T12 is the coordinate of O1 in O2.

Step 2: Rotation around the A-axis in O2 by A

P2A ¼ RZ ½A�P2 ¼ RZ½A�ðW þ T12Þ; ð12Þ

where RZ ½A� ¼
cosA sinA 0
� sinA cosA 0

0 0 1

24 35 is the rota-

tion matrix around the A-axis.

Step 3: Coordinate translation O2→O3

Fig. 25 Hypothetical six-axis machine with 2 axis on the table and
one on the tool
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P3 ¼ P2A þ T23 ¼ RZ ½A�ðW þ T12Þ þ T23; ð13Þ

where T23 is the coordinate of O2 in O3.

Step 4: Rotation around the B-axis in O3

P3B ¼ RY ½B�P3 ¼ RY ½B�ðRZ ½A�ðW þ T12Þ þ T23; ð14Þ

where RY ½B� ¼
cosB 0 � sinB
0 1 0

sinB 0 cosB

24 35 is the rota-

tion matrix around the B-axis.

Step 5: Coordinate translation O3→O4 with the machine
slide translation M.

P4 ¼ P3B þ T34 �M
¼ RY ½B�ðRZ ½A�ðW þ T12Þ þ T23Þ þ T34 �M ;

ð15Þ
where T34 is the coordinate ofO3 in O4 with respect
to the machine zero point M=(0, 0, 0).

Step 6: Rotation around the C-axis in O4 by C

P4C ¼ RX ½C�P4

¼ RX ½C�ðRY ½B�ðRZ ½A�ðW þ T12Þ þ T23Þ
þ T34 �MÞ;

ð16Þ

where RX ½C� ¼
1 0 0
0 cosC sinC
0 � sinC cosC

24 35:
Step 7: Coordinate translation O4→O5 yields

P5 ¼ P4C þ T45 ¼ RX ½C�ðRY ½B�ðRZ ½A�ðW þ T12Þ
þ T23Þ þ T34 �MÞ þ T45;

ð17Þ

where T45 is the coordinate of O4 inO5.

Let T5 ¼ ð0; 0;�LÞdenote the coordinate of the tool tip in
coordinate system O5 where L is the tool length. Equating
P5 and T5 yields

T5 ¼ P5 ¼ RX ½C�ðRY ½B�ðRZ ½A�ðW
þ T12Þ þ T23Þ þ T34 �MÞ þ T45; ð18Þ

After a rearrangement

M ¼ RY ½B�ðRZ ½A�ðW þ T12Þ þ T23 þ T34

� RX ½C��1ðT5 � T45Þ; ð19Þ

W ¼ RZ ½A��1ðRY ½B��1ðM � RX ½C��1ðT45 � T5Þ
� T34Þ � T23Þ � T12: ð20Þ

Let T
0
1 be the vector corresponding to T

0
5 ¼ ð0; 0;�Lþ 1Þ in

O1 so that

T
0
1 ¼ RZ

�1½A�ðRY
�1½B�ðM � RX

�1½C�ðT45 � T
0
5Þ

� T34Þ � T23Þ � T12: ð21ÞFig. 27 3-0 six-axis machine with 3 axis on the table and none on the
tool

Fig. 26 Intermediate reference
coordinate systems for the 2-1
six-axis machine
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The unit vector T
0
5 � T5 ¼ ð0; 0; 1Þ in the machine

coordinates represents the tool orientation I=(i,j,k) in O1.
Clearly,

I ¼ T 01 �W ¼ RZ ½A��1RY ½B��1RX ½C�ðT 05 � T5Þ: ð22Þ

After the matrix multiplications, we have

i
j
k

0@ 1A ¼ sinðAÞ sinðCÞ þ cosðAÞ sinðBÞ cosðCÞ
� cosðAÞ sinðCÞ þ sinðAÞ sinðBÞ cosðCÞ

cosðBÞ cosðCÞ

0B@
1CA:

ð23Þ

Solving (23) with regard to A and B yields

A ¼

tan�1
ðj sinðBÞ þ i tanðCÞÞ
ð�j tanðCÞ þ i sinðBÞÞ ; if ð�j tanðCÞ þ i sinðBÞÞ > 0 and ðj sinðBÞ þ i tanðCÞÞ > 0;

tan�1
ðj sinðBÞ þ i tanðCÞÞ
ð�j tanðCÞ þ i sinðBÞÞ þ p; if ð�j tanðCÞ þ i sinðBÞÞ < 0;

tan�1
ðj sinðBÞ þ i tanðCÞÞ
ð�j tanðCÞ þ i sinðBÞÞ þ 2p; otherwise:

8>>>>>>><>>>>>>>:
ð24Þ

B ¼ cos�1
k

cosðCÞ
� 	

: ð25Þ 2. The 3–0 machine

The 3–0 machine configuration shown in Figs. 27 and 28
implies that the coordinates of the tool tip in O5 are given
by

T5 ¼ RY ½B�ðRx½C�ðRz½A�ðW þ T12Þ þ T23Þ þ T34Þ
þ T45 �M : ð26Þ

Clearly,

M ¼ RY ½B�ðRx½C�ðRz½A�ðW þ T12Þ þ T23Þ þ T34Þ
þ T45 � T5; ð27Þ

W ¼ Rz½A��1ðRx½C��1ðRY ½B��1ðM � T45 þ T5Þ
� T34Þ � T23Þ � T12; ð28Þ

I ¼ T 01 �W ¼ Rz½A��1Rx½C��1Ry½B��1ðT 05 � T5Þ

¼
cosðAÞ sinðBÞ þ sinðAÞ sinðCÞ cosðBÞ
sinðAÞ sinðBÞ � cosðAÞ sinðCÞ cosðBÞ

cosðCÞ cosðBÞ

0B@
1CA: ð29Þ

Fig. 28 Intermediate reference
coordinate systems for the 3-0
six-axis machine

Fig. 29 1-2 six-axis machine with 1 axis on the table and 2 on the
tool
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Solving with regard to A and B yields

A ¼

tan�1
ðj sinðBÞ þ i sinðCÞ cosðBÞÞ
ð�j sinðCÞ cosðBÞ þ i sinðBÞÞ ; if ðð�j sinðCÞ cosðBÞ þ i sinðBÞÞ > 0 and ðj sinðBÞ þ i sinðCÞ cosðBÞÞ > 0;

tan�1
ðj sinðBÞ þ i sinðCÞ cosðBÞÞ
ð�j sinðCÞ cosðBÞ þ i sinðBÞÞ þ p; if ð�j sinðCÞ cosðBÞ þ i sinðBÞÞ < 0;

tan�1
ðj sinðBÞ þ i sinðCÞ cosðBÞÞ
ð�j sinðCÞ cosðBÞ þ i sinðBÞÞ þ 2p otherwise:

8>>>>>>><>>>>>>>:
ð30Þ

B ¼ cos�1
k

cosðcÞ
� 	

: ð31Þ

3. The 1–2 machine

Applying the same procedure to the 1–2 machine (Figs. 29
and 30) yields

T5 ¼ RY ½B��1ðRx½C��1ðRz½A�ðW þ T12Þ þ T23 �MÞ
þ T34Þ þ T45: ð32Þ

Clearly,

M ¼ Rz½A�ðW þ T12Þ þ T23 � Rx½C�ðRY ½B�ðT5 � T45Þ � T34Þ;
ð33Þ

W ¼ Rz½A��1ðM þ Rx½C�ðRY ½B�ðT5 � T45Þ � T34Þ
� T23Þ � T12 ; ð34Þ

and

I ¼ T
0
1 �W ¼ Rz½A��1Rx½C�Ry½B�ðT 0

5 � T5Þ

¼
� cosðAÞ sinðBÞ þ sinðAÞ sinðCÞ cosðBÞ
� sinðAÞ sinðBÞ � cosðAÞ sinðCÞ cosðBÞ

cosðCÞ cosðBÞ

0B@
1CA; ð35Þ

Fig. 30 Intermediate reference
coordinate systems for the 1-2
six-axis machine

Fig. 31 0-3 six-axis machine
with 0 axis on the table and 3
on the tool

Int J Adv Manuf Technol



where

A ¼

�tan�1ði sinðCÞ � j tanðBÞ
i tanðBÞ þ j sinðCÞÞ; if ði tanðBÞ þ j sinðCÞ > 0 and ði sinðCÞ � j tanðBÞÞ > 0

�tan�1ði sinðCÞ � j tanðBÞ
i tanðBÞ þ j sinðCÞÞ þ p; if ði tanðBÞ þ j sinðCÞÞ < 0;

� tan�1ði sinðCÞ � j tanðBÞ
i tanðBÞ þ j sinðCÞÞ þ 2p; otherwise:

8>>>>>>><>>>>>>>:
ð36Þ

B ¼ cos�1
k

cosðCÞ
� 	

: ð37Þ

4. The 0–3 machine

The kinematics of the 0–3 machine is illustrated in Figs. 31
and 32. It is not hard to show that

T5 ¼ P5 ¼ Ry½B�ðRx½C�ðRZ ½A�ðW þ T12 �MÞ
þ T23Þ þ T34Þ þ T45 ; ð38Þ

M ¼ W þ T12 � Rz½A�ðRx½C�ðRY ½B�ðT5 � T45Þ
� T34Þ � T23Þ ; ð39Þ

W ¼ M � T12 þ Rz½A�ðRx½C�ðRY ½B�ðT5 � T45Þ
� T34Þ � T23Þ ; ð40Þ

and

I ¼ Rz½A�ðRx½C�ðRy½B�ðT5 0 � T5ÞÞÞ

¼
� cosðAÞ sinðBÞ � sinðAÞ sinðCÞ cosðbÞ
sinðAÞ sinðBÞ � cosðAÞ sinðCÞ cosðBÞ

cosðCÞ cosðBÞ

0B@
1CA; ð41Þ

where

A ¼

tan�1ð�j sinðBÞ þ i sinðCÞ cosðBÞ
j sinðCÞ cosðbÞ þ i sinðBÞ Þ; if ðj sinðCÞ cosðbÞ þ i sinðBÞ > 0 and ð�j sinðBÞ þ i sinðCÞ cosðBÞÞ > 0Þ

tan�1ð�j sinðBÞ þ i sinðCÞ cosðBÞ
j sinðCÞ cosðbÞ þ i sinðBÞ Þ þ p; if ðj sinðCÞ cosðbÞ þ i sinðBÞ < 0Þ;

tan�1ð�j sinðBÞ þ i sinðCÞ cosðBÞ
j sinðCÞ cosðbÞ þ i sinðBÞ Þ þ 2p; otherwise:

8>>>>>>><>>>>>>>:
ð42Þ

and

B ¼ cos�1
k

cosðCÞ
� 	

: ð43Þ
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Preface

Tool path generation and optimization for multi-axis milling machines is a
new application area for computational mathematics requiring knowledge of
numerical methods, differential and computational geometry, solid modeling,
and optimization methods, as well as mechanical engineering and NC (Nu-
merical Control) programming.

This book presents a computational framework for designing efficient com-
putational algorithms for tool path optimization. We focus on five-axis ma-
chining, but the methods can also be applied to three- and four-axis machines.

The first three chapters of the book are tutorial, exposing readers to the
basic knowledge necessary for five-axis cutting, such as G-code programming,
differential geometry, and fundamental issues of tool path planning. These
chapters can be used as an introduction to five-axis machining in the frame-
work of an undergraduate or graduate course in computer aided manufactur-
ing.

Advanced numerical methods introduced in the subsequent chapters in-
clude grid generation methods, space-filling curves, shortest path optimiza-
tion, and the ramifications of each technique. This part of the book can be
used for undergraduate and graduate research as well for corporate research
and development. The authors have first-hand experience in designing, pro-
gramming, and verifying five-axis optimization algorithms. Building on this
experience, we present the numerical methods in detail and provide all of
the basic computational formulas. Moreover, we illustrate and analyze the
methods through numerous practical numerical examples, so that readers can
understand, reproduce, and program any of them.

The book also includes a review of modern tool path optimization methods
(130 references) and short historical notes on grid generation and space-filling
curves.

We would like to thank Erik Bohez, Mud-Ameen Munlin, Bert Lauwers,
and Than Lin for fruitful discussions and suggestions.

We also wish to acknowledge the National Science and Technology Agency,
the National Electronic and Computer Technology Center, and the Thailand

We also wish to acknowledge the National Science and Technology Agency,
the National Electronic and Computer Technology Center, and the Thailand
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1

Introduction

1.1 Motivation and Structure of the Book

A variety of on-going research is focused on the development and analysis of
methods to decrease the time required to progress from the computer modeling
of the design surface to the machining while maintaining or improving the
quality of the surface. One of the most important areas is tool path planning
for numerical control (NC) machining. The main goal is obtaining the cutter
location and orientation data that allow for an efficient surface milling within
an allowed machining error.

Five-axis NC machines are becoming increasingly popular due to their
ability to handle geometrically complex workpieces composed of raw material
such as wood, wax, rubber, metal, stone, plastic, etc. Moreover, up-to-date
five-axis NC machines are characterized by a high material removal rate and
an efficient surface finish up.

Typically, manufacturing of the design surface by an NC machine com-
prises two stages, a rough cutting and a finish machining. During the rough
cutting, the raw material is removed as fast as possible while ensuring no ex-
cessive cutting or gouging. During the finish machining, the tool is placed at
the maximum contact with the surface to remove the remaining excess and
create a well-finished and accurate surface. After finishing, the remaining scal-
lops which are inevitably generated on the machined surface must be removed
by manual surface grinding and polishing. The finish machining and manual
polishing stages require as much as 75% of the total machining time. Besides,
manual polishing is prone to error and undesirable irregularities.

Five-axis machining offers an improvement in efficiency of both the rough
and finish machining stages over the three-axis counterpart. In five-axis ma-
chining, the tool orientation relative to the workpiece can be controlled by two
additional degrees of freedom so as to achieve higher machining efficiency.
With these advantages, a large number of tool path planning methods for
five-axis machining has been developed and presented in the literature.
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In chapter 1 we present the most popular CAD/CAM data formats and
give a short literature survey on mathematical methods for optimization of
five-axis machining. The survey has been focused on tool path interpolators,
adaptable geometric patterns and methods for tool posture and gouging avoid-
ance.

Chapter 2 exposes the readers to basic knowledge required to perform
five-axis cutting. The G-code programming, examples of five-axis machining
of simple shapes and verification of the cut using solid modeling software is
presented and discussed. The chapter can be used as a short introduction into
five-axis machining in the framework of an undergraduate course in Computer
Aided Design (CAD) and Computer Aided Manufacturing (CAM).

Chapter 3 introduces theories required to embrace the concepts of the tool
path optimization for five-axis machining. The chapter presents such funda-
mental issues as kinematics of the five-axis machines, part surface represen-
tation, machining strip, tool orientation and gouging avoidance as well as the
forward step error. A variety of configurations of the five-axis machines is also
discussed and analyzed. This chapter can also be used at an undergraduate
or a postgraduate level for CAD/CAM related studies.

Chapters 4 and 5 present advanced optimization schemes based on the
adaptable geometric patterns, namely, the space-filling curves (SFC) and
adaptive curvilinear grids. The SFC tool path has a number of attractive
features such as the possibility to locally adapt the curve in such a way that
the cutting device travels along the optimal direction. In addition, the entire
surface is cut in one path eliminating the need of tool retractions. The use of
the concept of curvilinear grids allows to simultaneously adapt the points on
the tool paths to create more efficient zigzag, spiral or even SFC structures.
The combination of the SFC and grid generation allows for tool paths on
surfaces with complex irregular boundaries, cuts off, pockets, islands, etc.

Three-axis machines are often thought of as three dimensional plotters.
However the five-axis machine is more like a big bore machine. That is why
changing from three-axis to five-axis programming is not an easy task. In
particular, the idea of optimizing rotations may seem totally foreign from the
viewpoint of the three-axis machining. Therefore, chapter 6 presents the the-
ory and practice of optimization of rotations for five-axis machining. Several
optimization algorithms based on the shortest path techniques are presented
and discussed.

Chapter 7 presents a theoretical background developed to construct nu-
merical algorithms to minimize kinematics error introduced by the initial
setup of five-axis milling machines. The initial setup consists of the posi-
tion and orientation of the workpiece with respect to the mounting table and,
optionally, the machine’s initial configuration. Given a set of cutter contact
points and tool orientations, a least-squares optimization procedure finds the
optimal setup parameters.
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1.2 CAD/CAM Formats

Sculptured or free-form surfaces are widely used in today’s manufacturing
industries for a variety of applications such as the production of dies, molds,
aerospace and automotive parts, etc. The surfaces are usually characterized
by complex geometries and variable curvatures. A single surface is usually
composed of patches represented mathematically by parametric forms such as
the Bezier surfaces, B-splines and NURBS. A design and manufacture of the
sculptured surface parts is an expensive and time-consuming process. First, a
design surface is transformed into a computer model (possibly with the help
of CAD programs). The computer model is then used by the CAM programs
to generate commands to move the cutting tool of the machine. The resulting
set of tool positions and orientations constitutes a tool path to machine the
desired surface.

Every CAD or CAD/CAM software uses an internal format to represent
and control the required part. When the geometrical data is transferred from a
CAD system to a CAD or CAM system, a neutral format for the data transfer
is used. One of the most popular is the IGES (Initial Graphics Exchange
Specification) format (see the history of the IGES format in [40]). The IGES
format supports the use of surfaces defined by NURBS (Non Uniform Rational
B-Splines) or derivatives of these representation. A good book for a beginner
in NURBS is [31]. An advanced reader could use [98] and [24]. There are
also several free libraries designed to control and manipulate the NURBS,
such as NURBS++ package [1] and NURBS Toolbox [2]. Some free IGES-file
processing tools are collected at the NIST/IGES web page [3].

The STL files, originally employed by the so-called layered manufacturing
technologies such as the rapid prototyping, are now becoming more and more
popular due to the simplicity of describing the part surfaces. As opposed to
the complex description of surfaces employed by the IGES format, the STL
format defines the surface as a collection of triangles each described by the
coordinates of its three corners and a normal-vector. This technology provides
an important platform for CAD/CAM applications due to the existence of
many robust triangulation algorithms. Besides, the surface models are often
composed of many patches. Therefore, by tessellating the patches and creating
groups of triangles one can use many well established methods for treating
intersections, trimming, shading, hidden surface removal and gouge protection
[36]. The machining is usually performed by creating contours obtained by
slicing the STL-surface [85, 115]. Of course, slicing of the NURBS surfaces is
also possible, but it requires much more sophisticated techniques such as [81].
The contours are then saved using the SLC format (see [4] for instance).

Other popular CAD/CAM formats include STEP (Standard for the Ex-
change of Product Data), DXF (The Drawing Exchange Format from Au-
toDesk) and many others. As a matter of fact, the difference in data formats
has created a large software industry specializing in transferring, adapting and
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processing the CAD/CAM files. A table of compatibility of the CAD/CAM
formats can be found, for instance, at [5] or [6].

1.3 Short Literature Survey

Optimization of tool paths for five-axis machining may include many features
and multiple criteria such as the accuracy, the length of the tool path, the
machining time, the size of the remaining scallops, etc. It may also include
gouging avoidance, satisfying the machine axis limits, maximizing the volume
of the removed material, reducing the tool wear. The optimization may also
take into account the thermal characteristics of the cutting process, the tool
bending, the vibrations and jacks, the workpiece positioning and many other
parameters. The criteria could also include the configuration of the machine
or specific parts of the machine as well as the design of the clamping device.
Readers interested in citations before 1997 could use a fairly comprehensive
survey by Dragomatz and Mann [25]. The survey presents a classification of
research papers on three-axis and five-axis machining related to geometries of
the tool paths and tool positioning. These categories include: 1) systems, 2)
isoparametric paths, 3) non-isoparametric paths, 4) planar pocketing paths,
5) sculptured surface pocketing paths, 6) roughing paths, 7) tool position-
ing, 8) offset surface methods, 9) five-axis machining, 10) mesh models, 11)
pixel and point models, 12) simulation and verification. Of course, the above
groups overlap. Techniques involved in one group could be also involved in
another group. For example, systems for tool path generation may include all
of the above mentioned techniques. Roughing paths may be generated by the
isoparametric or non-isoparametric schemes and so on.

Our survey is focused on five-axis machining. It also includes the three-axis
methods but as long as they can be extended to the five-axis case. Besides,
we confine ourselves by techniques designed for cutting the part surface by
bottom-edge of the tool, e.g., flat-end milling and fillet milling. Many interest-
ing methods designed for five-axis grinding (flank milling) and plunge milling
have not been included.

The survey has been focused on the following categories: 1) tool path in-
terpolators, 2) adaptable geometric patterns and 3) methods for tool posture
and gouging avoidance. We believe that the above procedures are the most
important part for efficient design of the numerical methods for five-axis ma-
chining.

Tool path interpolators

In the CNC machines, the tool motion is controlled by a sequence of reference
points that are fed to the servo control system. The NC controllers employ
linear interpolation techniques [66] or a circular interpolation which may result
in discontinuities of the velocity at the junctions of the segments. They may
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also result in high accelerations, subsequent surface inaccuracies and long
machining time required to eliminate them. Furthermore, the modern high
speed machining requires feedrates up to 40 m/min with accelerations up to
2 g. At such high speeds, small discontinuities in the reference tool path can
result in undesirable high frequency harmonics in the reference trajectory,
which may end up exciting the natural modes of the mechanical structure
and the servo control system.

Although the NC program cannot change the way the controller moves the
machine parts, the cutter location points and the rotation angles required to
cut the prescribed curve can be changed in such a way that these errors are
minimized or at least decreased. The task of generating such a sequence of
points is called interpolation. Early interpolation schemes solved the problem
of discontinuities by smoothing the tool path at the corners [17] and using
low pass filters [126]. However, the problem is due to the difference between
the chord and the arc lengths. That is why, generating the tool positions by
incrementing the chord length leads to the feedrate instabilities. Therefore,
if the fit curve is parameterized with respect to the arc length, these type
of the inaccuracies will be eliminated. Therefore, many modern interpolation
schemes are focused on finding a suitable polynomial interpolation (such as
the B-splines) parameterized by means of the arc length.

Unfortunately, such parameterization is not analytically possible for gen-
eral spline curves. Therefore, a number of approximate solutions were pro-
posed. For instance, Wang and Yang [122] generate the trajectory by means
of cubic and quintic splines using the chord length and a nearly arc length
parameterization, Zhang and Greenway [133] implemented a similar B-spline
based interpolation. Coordinate transformations between the workpiece and
machine coordinate systems for five-axis milling were incorporated in the inter-
polator by Lo [77, 79] and Bohez et al. [14]. An extra jerk continuity condition
has been included into the solution in [121].

Furthermore, the limitations of the machine tool drivers may cause fail-
ure in maintaining the commanded feedrate which in turn may lead to the
tool chatter or breakage. Therefore, Weck et al. [125] have implemented cubic
spline interpolation where adaptation of the feedrate was based on the physical
limitations of the drives. The smooth transitions were obtained using fourth
order acceleration profiles. Erkorkmaz and Altintas [30] presented a quintic
spline trajectory generation algorithm that produced continuous position, ve-
locity, and acceleration profiles. Smooth accelerations and decelerations were
provided by imposing constrains on the first and second time derivatives of
the feedrate.

In 1994, Farouki and Sakkalis [33] introduced the Pythagorean-Hodograph
(PH) curves to solve the problem of feedrate control for three-axis machines.
The curves provide a mathematically elegant solution to the above mentioned
problems occurring in NC machining. In particular, the arc length was repre-
sented by a polynomial function of the curve parameter. In [32], a 2D Hermite
interpolation combined with the PH was proposed and analyzed. The ideas



6 1 Introduction

were further developed in [34, 35]. It was shown that since the arc length
of the PH curves can be represented by a polynomial function of the curve
parameter, they can be successfully used for the interpolation. Consequently,
a variety of planar PH curves matching given Hermite type boundary data
were developed (see, for instance, [61, 88, 119]).

Müller et al. [90] presented an algorithm for simultaneous five-axis spline
interpolation which merges the PH interpolation and the analytic solution
of the inverse kinematics problem using the template equation method. The
result is a time-dependent spline which represents the given tool path with a
high accuracy. Langeron et al. [69] suggested a polynomial B-spline interpo-
lation which took into account the kinematics of the five-axis machine. The
B-spline interpolation of the tool path in the part coordinate system includes
the accuracy requirements and describes a five-axis tool path in a format
adapted to the communication between the CAM software and the NC unit.
The CAM output is directly expressed through the B-spline curves. Lo [80]
introduced spline interpolators for isoparametric, iso-scallop and iso-planar
machining methods (see the forthcoming section). Š́ır et al. [118] presented
biarc interpolation techniques based on spline curves composed of circular
arcs and compared them with the PH curves.

Finally, a number of papers introduce interpolators designed for high speed
milling. During the high speed machining the actual average feedrate could be
significantly lower than the programmed feedrate due to the physical restric-
tions of the machine tool and the block processing time of the CNC controller.
In many cases the machine tool hardly reaches the maximum feedrates offered
by the manufacturer. This happens when the block processing time is longer
than the block execution time and the machine reaches the end point of the
segment before information required for the next movement is available. In
this case modern CNCs automatically reduce the programmed feedrate which
results in a lower real feedrate and, consequently, a longer machining time.
This relatively new issue has been discussed in [55, 64, 87, 109].

Adaptable geometric patterns

This section surveys research aimed to construct geometric patterns adaptable
to a criteria which represents a certain estimate of the quality of the tool path
such as the kinematics error, scallop heights, undercuts, overcuts, etc. It also
includes methods for complex pocket milling since they often require special
geometric patterns. Finally, the construction of the geometric patterns might
or might not take into account the actual machine kinematics. In many cases,
patterns employed for three-axis machining are also applicable, with certain
modifications, to the five-axis machining.

The simplest tool path planning algorithms employ structured zigzag
or spiral patterns due to their simplicity and the ease of computation (see
[25, 108]). The zigzag and spiral motions employ uniform steps along a coor-
dinate which parametrizes the desired curve extracted from the part surface.
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The early adaptable methods replace the uniform spacing in favor of distrib-
uting the cutter location points by analogy with interpolation characterized
by a variable step. First, the trajectories were assumed to be linear. Next, the
desired curve was approximated using a certain technique, for example, em-
ploying arcs. Next, the forward step was selected by considering the deviation
between the approximation and the straight line (see, for instance, [73]). The
choice of the forward step can be performed by bisection or another inexpen-
sive method. Some of the recent developments of these ideas are presented in
[22, 73].

As mentioned before the most popular geometric solutions are the zigzag
and the spiral isoparametric patterns constructed for single-patch or multi-
patch parametric surfaces S(u, v). In this context, the term isoparametric
means that the zigzag tool path is generated in the parametric space u − v
along one of the coordinates, say, u. The v coordinate is then used to generate
the forward steps.

Another approach is the contour based or iso-planar machining. In this
case the cutter path follows intersection curves of the parametric surface and
a series of vertical planes. One of the first papers reporting such techniques is
[19], see also [104].

The both methods calculate the maximum allowable distance between the
consecutive tracks using a scallop height limitation. However, if the maximum
allowable distance is calculated globally, that is, the minimal allowable dis-
tance is taken from all the maximum allowable (pointwise) distances, then
the method does not produce a constant scallop height. As the result, the ma-
chining efficiency is limited. Methods to maintain the constant scallop height
called the iso-scallop machining methods were first proposed in [76, 112].

Lo [78] developed these approach and adapted it to five-axis machining.
His algorithm starts with an initial curve in the parametric domain and calcu-
lates offset curves so that the scallop height remains approximately constant.
The algorithm is designed for flat-end cuter and includes adaptive inclina-
tion which maximizes the machining strip. The algorithm also includes a local
gouging avoidance. The local gouging refers to the removal of an excess mater-
ial in the vicinity of the cutter contact point (CC point) due to the mismatch
in curvatures between the tool as it is carried along the tool path and the
desired surface (see the forthcoming section for details). Rao and Sarma [103]
introduced similar local gouging avoidance algorithms applicable to surfaces
characterized by low curvature and cut by the flat-end cutter. Finally, Lo [80]
presents an iso-scallop tool path for ball nose cutters.

Evaluation of the machining strip versus the inclination and the direction
could lead to complicated tool path topologies. For each tool position on the
surface there exists at least one direction which maximizes the machining strip.
The corresponding set of vectors mapped onto the parametric space (u, v)
constitutes a 2D vector field which could be further analyzed. A continuous
tool path which visits every point and follows the optimal direction at every
point constitutes the optimal tool path which will maximize the machining


